JILA X317

A compact dual-species setup towards ultracold fermionic 6Li87Rb molecules

When
-

Ultracold polar molecules possess inherent strong electric dipole moments and a rich internal structure, making them ideal platforms for implementing novel quantum information schemes, performing precision quantum metrology, and exploring exotic quantum phases such as dipolar BEC-BCS crossover in molecular Fermi gases. However, such experiments require extensive control over two or more species of atoms and their interactions, significantly scaling up the complexity and construction period of the experiment setup.

Broad-Spectrum Photonics from Visible to Infrared: Multiscale, Multiphysics Challenges and Active Nanophotonic Devices

When
-

In this talk, Shinho Kim will discuss photonic systems studied across distinct spectral regimes, from the visible to the mid-infrared. His work addresses multiscale and multiphysics challenges in light–matter interactions, with each spectral regime involving fundamentally different mechanisms and applications.

Realizing spin squeezing on an optical-clock transition with Rydberg dressing and assembling a Bose-Hubbard superfluid with tweezer-controlled atoms

When
-

Neutral-atom arrays with single-particle detection and control are a powerful tool for quantum science. In this defense, I present results from two projects, both performed with the same tweezer-programmable neutral-strontium-array apparatus. First, we engineer Rydberg interactions to create entangled spin-squeezed states, whose measurement noise can outperform classical limits. In a synchronous optical-frequency comparison between two spin-squeezed ensembles of atoms, we realize a measurement with a stability better than the standard quantum limit.

JILA Mentoring in a Research Environment Training (day 1)

When
-

Description: This training was developed by the Center for the Improvement of Mentored Experiences in Research (CIMER) at University of Wisconsin Madison and provides evidence-based, interactive mentor training curricula that engages mentors in collective problem solving and connects them with resources to optimize their mentoring practices. Mentors engage in activities, assignments, case studies, and facilitated discussions to solve mentoring dilemmas and share successful mentorship strategies.

Learning Objectives:

Manipulating and entangling ultracold polar molecules in magic-wavelength optical tweezers

When
-

Ultracold polar molecules are an exciting platform for quantum science and technology. The combination of rich internal structure of vibration and rotation, controllable long-range dipolar interactions and strong coupling to applied electric and microwave fields has inspired many applications. These include quantum simulation of strongly interacting many-body systems, the study of quantum magnetism, quantum metrology and molecular clocks, quantum computation, precision tests of fundamental physics and the exploration of ultracold chemistry.