Programmable arrays of alkaline earth atoms: qubits, clocks, and the Bose-Hubbard model
Abstract: Neutral atoms trapped in optical tweezer arrays have emerged as a promising platform for quantum computing, and for the analog simulation of various spin models. In this work, we apply the programmable control provided by optical tweezer arrays to new domains in quantum science by means of interfacing optical tweezers with a Hubbard-regime optical lattice, and extending the optical tweezer toolbox to new atomic species (namely alkaline earth atoms).