Duane Physics Room G126

The nonlinear Electrodynamics of Weyl Semimetals

When
-

Abstract: At the heart of the Weyl semimetal are massless, chiral quasiparticles that derive from electronic band-crossings split by either spatial inversion or time-reversal symmetry breaking. The resulting nodal points in the bulk band structure serve as sources and sinks of “topological charge” that are responsible for the phenomenology usually associated with these materials, including open Fermi arc surface states and the chiral anomaly.

Engineering novel quantum phases in twisted graphene multilayers

When
-

Abstract: Strongly correlated and topological phases in condensed matter systems are at the cutting edge of fundamental physics studies, as well as being promising candidates for the next generation of technological capabilities like quantum computing. In recent years, a remarkable amount of progress has been made in creating and controlling such phases by introducing a small twist angle or lattice mismatch between two-dimensional (2D) materials.

How electron interactions generate giant effective magnetic fields in rhombohedral graphene

When
-

Abstract:  Interacting electrons in strong magnetic fields give rise to rich phenomena, exemplified by the quantum Hall effect. In rhombohedral graphene, remarkably similar behavior has been observed even without an external field. In this talk, I will describe how electron–electron interactions in this system can spontaneously generate giant effective magnetic fields, reaching hundreds of Tesla. These emergent fields originate from self-organized layer-skyrmion textures, whose dynamics give rise to distinctive collective shape modes that can be experimentally probed.

Altermagnetism: an unconventional quantum state of matter

When
-

Abstract: Magnetism is the posterchild of how the interplay between electron-electron interactions and quantum physics promotes novel macroscopic phenomena. Historically, the evolution of our understanding of magnetism has been related to the discovery of new paradigms in condensed-matter physics, as exemplified by the connections between antiferromagnetism and Mott insulators, spin glasses and non-ergodic states, and spin liquids and fractionalized excitations.

Rapid Scan ESR as a Versatile Tool for High-Frequency Spin Dynamics and Quantum Technologies

When
-

Abstract: The development of pulsed Electron Spin Resonance (ESR) spectroscopy at microwave frequencies above 100 GHz remains a challenging and costly task, primarily due to the limited output power of modern high-frequency solid-state electronics. Nonetheless, a range of critical scientific problems—such as dynamic nuclear polarization (DNP) enhancement of NMR and quantum computing applications involving electron spins—necessitate spin relaxation measurements at THz frequencies.

Quantum Simulation of Gauge Theories

When
-

Abstract:
Gauge theories are ubiquitous in fundamental physics with applications ranging from high-energy particle physics over emergent phenomena in condensed matter to quantum information science and technology. Since several regimes of interest have remained inaccessible to classical simulations, they constitute an ideal target for quantum simulations.