Atomic Defect–Mediated Phase Engineering in 2D van der Waals Structures and Nanoclusters
We show that targeted energy input from an electron beam in a transmission electron microscope (TEM), often combined with concurrent heating in a MEMS holder, drives atomic defect formation and phase transitions across four classes of low-dimensional materials: (1) few-layer transition metal phosphorus trichalcogenides (TMPTs), (2) graphene sandwich structures encapsulating either lithium droplets (2a) or a benzenehexathiol-based two-dimensional conjugated metal-organic framework (2b), (3) platinum nanocrystals on graphene, and (4) noble metals confined within carbon nanotubes.


