Physics Department Colloquium

Geometric frustration, self-assembly, mechanics, and pathways to complexity

When
-

Abstract: Self-organized complex structures in nature, from hierarchical biopolymers to viral capsids and organisms, offer efficiency, adaptability, robustness, and multifunctionality.  How are these structures assembled? Can we understand the fundamental principles behind their formation, and assemble similar structures in the lab using simple inorganic building blocks?  What’s the purpose of these complex structures in nature, and can we utilize similar mechanisms to program new functions in metamaterials?

Planetary dynamos and the dynamics of rotating, electrically conducting fluids

When
-

Abstract: Planetary magnetic fields are ubiquitous in the Solar System. These fields are generated by the motion of an electrically conducting fluid within the interiors of the planets. For the Earth, turbulence in the liquid iron outer core has sustained the geomagnetic field for at least 4 billion years. Similar turbulent fluid systems are present in most planets, as well as stars. These flows are thought to be strongly influenced by system rotation (i.e.

Time-of-flight quantum tomography of single atom motion in an optical tweezer

When
-

Abstract: Quantum control of mechanical motion has been achieved in a surprising range of platforms in the past decades. These mechanical quantum systems have both piqued the curiosity of physicists, and enabled new approaches to difficult tasks in manipulating quantum information. Trapped particles offer one opportunity to study isolated quantum motion. Laser-cooled ions routinely demonstrate intriguing phonon control, and recent experiments have now brought trapped dielectric nanoparticles to their quantum ground state.

Immobile topological quantum matter: fractons

When
-

Abstract: I will discuss a bourgeoning field of "fractons" — a class of models where quasi-particles are strictly immobile or display restricted mobility. Focussing on just a corner of this fast-growing subject, a will explain how one class of such theories — symmetric tensor gauge theories surprisingly emerge from seemingly mundane elasticity of a two-dimensional quantum crystal. The disclination and dislocation crystal defects respectively map onto charges and dipoles of the fracton gauge theory.

CANCELLED

When
-

YouTube URL: https://youtu.be/MA-EFesKnQU

Colloquia are Wednesdays at 4:40 p.m. unless otherwise noted and will be in person at DUAN G1B20, as well as online via Zoom and Youtube. If you are not a student/faculty member in physics, pre-register with Veronica Lingo (veronica.lingo@colorado.edu) to attend a lecture.

Masks are required for all colloquium attendees, regardless of vaccination status.