Physics Department Colloquium

Taming the New Zoo of Exotic Heavy Hadrons

When
-

Abstract: A new zoo consisting of dozens of heavy subatomic particles that contain more than three quarks and antiquarks have been discovered beginning in 2003.  Although they must be described by the fundamental quantum field theory QCD, the pattern of these exotic heavy hadrons remained unexplained for more than 20 years.  I will present a simple proposal for the pattern based on the Born-Oppenheimer approximation for QCD.  There are simple calculations in lattice QCD that would corroborate the pattern.

What can the Standard Model actually predict?

When
-

Abstract: The most basic requirement of a scientific theory is that it make predictions. Is the Standard Model a scientific theory? As the well-tested, reigning theory of the elementary particles and fundamental forces, the Standard Model certainly claims to be able to predict the outcomes of a wide range of experiments. Yet from inelastic nuclear scattering, to neutron stars and superconductors, the universe is filled with systems whose behavior should be predicted by the Standard Model, but for which no such predictions are forthcoming!

The 2025 Nobel Prize in Physics: A Brief History of Superconducting Qubits and Circuit Quantum Electrodynamics

When
-

Abstract: The 2025 Nobel Prize in Physics was awarded to John Clarke, Michel Devoret, and John Martinis “for the discovery of macroscopic quantum mechanical tunnelling and energy quantization in an electric circuit.”  This talk will give a brief history of their work and the remarkable developments that followed from it.

Magnetism on Crystalline Lattices

When
-

Abstract: Magnetism is a striking example of how quantum mechanics and interactions among electrons combine to generate entirely new forms of collective behavior—phenomena that deepen our understanding of matter, as well as power modern technologies. Over the past decades, discoveries in magnetism have often heralded new paradigms in condensed matter physics, exemplified by antiferromagnetism and Mott insulators, and quantum spin liquids with their fractionalized excitations. In real materials, however, spins are inseparable from the crystalline lattices that host them.

Effects of the Sun’s trajectory through the galaxy on Earth’s climate over the past 10 million years

When
-

Abstract: With the advent of the Gaia space mission, there has been a revolution in astronomers’ ability to precisely locate the interstellar structures the Sun may have encountered on its voyage around the galaxy. We now have the spatial resolution to trace the Sun’s trajectory back through its interstellar environment up to 60 million years in the past (4000 light-years in distance). This timescale is commensurate with the timescale over which we can reconstruct the paleoclimate of Earth from deep ocean foraminiferas.

Quantum computational sensing

When
-

Abstract: Modern metrology involves a tight integration of sensors with computation. Suppose that a quantum computer were inserted into this pipeline as the first step in receiving and transforming sensor signals, before classical processing. What could be accomplished?  I illustrate the possibilities with three scenarios for which quantum computation may enhance sensing: demodulation of phase shift keyed signals, trajectory discrimination, and RF signal detection.

Historical trends in atmospheric humidity over arid and semi-arid regions

When
-

Abstract: An expected consequence of a warming atmosphere is that atmospheric humidity would rise as a result of the dependency of the atmospheric water vapor holding capacity on temperature (the Clausius-Clapeyron relationship).  But this is only true if there is sufficient availability of water to satisfy the rising atmospheric demand.

Listening to the Universe above the quantum din

When
-

Abstract: The Laser Interferometer Gravitational-wave Observatory (LIGO) detected gravitational waves for the first time in 2015. Since then, hundreds more astrophysical observations have been confirmed. To detect these spacetime ripples requires measurement with sub-attometer precision. I will describe the quantum technologies that make such a measurement possible, enabling present and future discoveries.

Host: Ana Maria Rey