Physics Department Colloquium

Developing current and next generation physics assessments

When
-

Abstract: The ability to measure what students are learning (or not) is a crucial component of crafting effective learning environments. In particular, low-stakes, standardized diagnostic assessments can provide a valuable tool for tracking student learning over time and between instructional approaches to identify effective strategies that improve students' understanding of core physics content.

Ergodicity breaking in quantum dynamics

When
-

When can isolated many body quantum systems fail to go to equilibrium under their own dynamics, and how robust can this 'ergodicity breaking’ be? This question has been a central theme of research in quantum dynamics and statistical mechanics over the past decade, and I will share with you some highlights, focusing on three key developments: many body localization, dynamics with multipolar symmetries, and dynamics with higher form symmetries. I will present the rich and exotic phenomena that arise in these three regimes, and how they may be realized experimentally.

Optical nuclear clock: nuclear physics meets metrology

When
-

Abstract: Laser-based measurement and control of atomic and molecular states form the foundation of modern quantum technology and provide deep insights to fundamental physics. The recent breakthrough of quantum-state-resolved thorium-229 nuclear laser spectroscopy marks the beginning of precision metrology for nuclear transitions. Using a state-of-the-art frequency comb in the vacuum-ultraviolet, we coherently excite the thorium nuclear clock transition and link its frequency directly to today’s most precise atomic clock based on strontium-87.

Effective field theories for phases of matter and cosmology

When
-

Abstract: I will review some modern applications of effective field theories outside their traditional particle physics domain. In particular, I will focus on spontaneous symmetry breaking for spacetime symmetries. The effective theories for the associated Goldstone excitations capture the low-energy/long-distance dynamics of a number of physical systems, from ordinary macroscopic media (solids, fluids, superfluids, supersolids) to more exotic cosmological ones.

Electron fractionalization in topological quantum materials

When
-

Abstract: The emergence of quasiparticles with fractional charge and fractional statistics is an essential feature of fractional quantum Hall states, which occur in two-dimensional electron gas under a strong magnetic field. An interesting question is whether fractional electron states can form spontaneously in quantum materials without the external magnetic field.

Symmetry, topology and electronic phases of matter

When
-

Abstract: Symmetry and topology are two of the conceptual pillars that underlie our understanding of matter. While both ideas are old, over the past several years a new appreciation of their interplay has led to dramatic progress in our understanding of topological electronic materials. A paradigm that has emerged is that insulating electronic states with an energy gap fall into distinct topological classes. Interfaces between different topological phases exhibit gapless conducting states that are protected and are impossible to get rid of.