JILA Public Event

Exploring novel magnetic phases in a programmable Fermi-Hubbard simulator

When
-

In quantum materials, function follows form: the collective behavior of a large ensemble of electrons crucially depends on the structure of the ionic crystal they inhabit. Ultracold fermionic atoms in optical lattices are a unique platform to understand such emergent phenomena by providing a very clean realization of the Hubbard model, one of the most fundamental models describing strongly correlated quantum matter. Yet, realizing and probing structures inspired by solid-state materials is a challenge beyond simple square geometries.

Towards quantum simulation of strongly interacting topological matter

When
-

Abstract: 

The interplay of topological order and strong interactions gives rise to exciting many-body physics such as the fractional quantum Hall effect, whose microscopic properties can be unveiled using neutral atom-based quantum simulators. However, the experimental challenges due to the need to engineer an artificial magnetic field, especially in presence of interactions, have so far limited possible studies to small systems with few particles.