JILA Public Event

Science Communication for Researchers

When
-

In this workshop, you will learn how to tailor your research for different audiences. It will provide you with skills to present your work for job interviews in academia and industry. You will also learn how to apply these communication skills to the public and have the opportunity to practice with feedback from trained experts in science communication. All JILAns are welcome to attend.

The workshop is two hours total and will be offered twice: 
Option 1: Wednesday November 12, 10am-12pm in JILA X325
Option 2: Thursday November 13, 2-4pm in JILA X317

Science Communication for Researchers

When
-

In this workshop, you will learn how to tailor your research for different audiences. It will provide you with skills to present your work for job interviews in academia and industry. You will also learn how to apply these communication skills to the public and have the opportunity to practice with feedback from trained experts in science communication. All JILAns are welcome to attend. 

The workshop is two hours total and will be offered twice: 
Option 1: Wednesday November 12, 10am-12pm in JILA X325
Option 2: Thursday November 13, 2-4pm in JILA X317

Graduate Student Seminar Series

When
-

Hello!

The Graduate Association of Students in Physics (GASP) and the JILA Association of Graduate Students (JAGS) are excited to announce the next session of the Graduate Student Seminar Series! Please join us on Thursday, March 13th, at 12:30 in the JILA Auditorium for lunch, with the talks beginning at 12:45.

The talks for this session are:

   Light-assisted Collisions in Optical Tweezers - Steven Pampel, Regal Group
   Observation of field-split crystal electric field levels in CsErSe$_2$ - Hope Whitelock, Lee Group

Exploring novel magnetic phases in a programmable Fermi-Hubbard simulator

When
-

In quantum materials, function follows form: the collective behavior of a large ensemble of electrons crucially depends on the structure of the ionic crystal they inhabit. Ultracold fermionic atoms in optical lattices are a unique platform to understand such emergent phenomena by providing a very clean realization of the Hubbard model, one of the most fundamental models describing strongly correlated quantum matter. Yet, realizing and probing structures inspired by solid-state materials is a challenge beyond simple square geometries.

Towards quantum simulation of strongly interacting topological matter

When
-

Abstract: 

The interplay of topological order and strong interactions gives rise to exciting many-body physics such as the fractional quantum Hall effect, whose microscopic properties can be unveiled using neutral atom-based quantum simulators. However, the experimental challenges due to the need to engineer an artificial magnetic field, especially in presence of interactions, have so far limited possible studies to small systems with few particles.