Data-informed discovery of earth-abundant semiconductors for solar hydrogen generation

Details
Speaker Name/Affiliation
Ismaila Dabo / Pennsylvania State University
When
-
Location (Room)
JILA Auditorium
Event Details & Abstracts

Abstract: Solar hydrogen generation is pivotal to diversifying the global energy supply away from fossil fuels in the transportation sector and across major industries, including ammonia synthesis, process metallurgy, and hydrocarbon production [1,2]. While photovoltaics and electrolysis are increasingly mature technologies whose association may offer a viable path to produce hydrogen at scale, there is increasing debate over building a future hydrogen infrastructure that would massively rely on critical platinum-group metals and on photovoltaic devices, whose supply chains are not controlled domestically [3,4]. Thus, there is strategic interest in developing scalable semiconductors that can directly cleave water into oxygen and hydrogen under solar illumination by photocatalytic means. This presentation will discuss the use of data-intensive materials discovery workflow for narrowing down the choice of candidate semiconductors for solar hydrogen generation [5-7]. Progress in predicting the optical properties of compound semiconductors will also be highlighted [8,9].
 

References:

[1] B. Pivovar, N. Rustagi, S. Satyapal, Hydrogen at scale (H2@Scale): Key to a clean, economic, and sustainable energy system, Electrochemical Society Interface 27, 47 (2018). DOI: 10.1149/2.F04181IF

[2] B. A. Pinaud, J. D. Benck, L. C. Seitz, A. J. Forman, Z. Chen, T. G. Deutsch, B. D. James, K. N. Baum, G. N. Baum, S. Ardo, H. Wang, E. Miller, T. F. Jaramillo, Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry, Energy & Environmental Science 6, 1983 (2013). DOI: 10.1039/C3EE40831K

[3] A. C. Goodrich, D. M. Powell, T. L. James, M. Woodhouse, T. Buonassisi, Assessing the drivers of regional trends in solar photovoltaic manufacturing, Energy & Environmental Science 6, 2811-2821 (2013). DOI: 10.1039/C3EE40701B

[4] D. M. Powell, R. Fu, K. Horowitz, P. A. Basore, M. Woodhouse, T. Buonassisi, The capital intensity of photovoltaics manufacturing: barrier to scale and opportunity for innovation, Energy & Environmental Science 8, 3395-3408 (2015). DOI: 10.1039/C5EE01509J

[5] Y. Xiong, Q. T. Campbell, J. Fanghanel, C. K. Badding, H. Wang, N. E. Kirchner-Hall, M. J. Theibault, I. Timrov, J. S. Mondschein, K. Seth, R. R. Katzbaer, A. Molina Villarino, B. Pamuk, M. E. Penrod, M. M. Khan, T. Rivera, N. C. Smith, X. Quintana, P. Orbe, C. J. Fennie, S. Asem-Hiablie, J. L. Young, T. G. Deutsch, M. Cococcioni, V. Gopalan, H. D. Abruña, R. E. Schaak, I. Dabo, Optimizing accuracy and efficacy in data-driven materials discovery for the solar production of hydrogen, Energy & Environmental Science 14, 2335-2348. DOI: 10.1039/D0EE02984J

[6] R. R. Katzbaer, M. J. Theibault, N. E. Kirchner‐Hall, Z. Mao, I. Dabo, H. D. Abruña, R. E. Schaak, Understanding the photoelectrochemical properties of theoretically predicted water‐splitting catalysts for effective materials discovery, Advanced Energy Materials 12, 2201869 (2022). DOI: 10.1002/aenm.202201869

[7] S. Gelin, N. E. Kirchner-Hall, R. R. Katzbaer, M. J. Theibault, Y. Xiong, W. Zhao, M. M. Kahn, E. Andrewlavage, P. Orbe, S. M. Baksa, M. Cococcioni, I. Timrov, Q. Campbell, H . D. Abruña, R. E. Schaak, I. Dabo, Ternary oxides of s- and p-block metals for photocatalytic solar-to-hydrogen conversion, PRX Energy, in press (2023). arXiv: 2303.03332

[8] E. Linscott, N. Colonna, R. De Gennaro, N. L. Nguyen, G. Borghi, A. Ferretti, I. Dabo, N. Marzari, koopmans: An open-source package for accurately and efficiently predicting spectral properties with Koopmans functionals, Journal of Chemical Theory and Computation 19, 7097–7111(2023). DOI: 10.1021/acs.jctc.3c00652

[9] N. E. Kirchner-Hall, W. Zhao, Y. Xiong, I. Timrov, I. Dabo, Extensive benchmarking of DFT+U calculations for predicting band gaps. Applied Sciences 11, 2395 (2021). DOI: 10.3390/app11052395