A (non-rigid) diving bell has an air space of 3.0 m3 when on the deck of a small boat. What is the volume of the air space when the bell has been lowered to a depth of 50 m? The density of sea water is 1.025 g cm$^{-3}$.

What do we need to assume? Ideal gas behavior for air

Constant T, so use Boyle: PV=cons't

Water temperature is unchanged at 50 m

Why is “rigid” important information?

Boyle’s law in the form $p_f V_f = p_i V_i$ is solved for V_f: $V_f = \frac{p_i}{p_f} \times V_i$.

$p_i = 1.0\ \text{atm},$

$p_f = p_i + \rho gh = 1.0\ \text{atm} + \rho gh$

$\rho gh = (1.025 \times 10^3 \text{ kg m}^{-3}) \times (9.81 \text{ m s}^{-2}) \times (50 \text{ m}) = 5.03 \times 10^5 \text{ Pa}.$

Hence, $p_f = (1.01 \times 10^5 \text{ Pa}) + (5.03 \times 10^5 \text{ Pa}) = 6.04 \times 10^5 \text{ Pa}.$

$V_f = \frac{1.01 \times 10^5 \text{ Pa}}{6.04 \times 10^5 \text{ Pa}} \times 3.0 \text{ m}^3 = \boxed{0.50 \text{ m}^3}.$
Real Gases

* Compressibility, Z

$$Z = \frac{PV}{nRT} = \frac{PV}{RT}$$

$Z = 1$ Ideal Gas behavior

$Z < 1$ PV less than expected Attractive forces

$Z > 1$ PV greater than expected Repulsive forces
Real Gases – data!

Compressibility \[Z = \frac{PV}{nRT} = \frac{PV}{mRT} \]

\(Z = 1 \) at all \(P, T \) → Ideal Gas Behavior

Look at a broader 0 - 800 atm region

We need new eq of state for each gas
These data are many gases at one \(T \)
So next look at one gas at many \(T \)
Boyle Temperature, T_B

$Z = Z(P,T)$

T_B is the temperature corresponding to the greatest extent of near-ideal behavior.

We can determine T_B analytically.

$$\frac{\partial Z(T,P)}{\partial P} \bigg|_{\lim p \to 0^+} = f(T)$$

$$\frac{df}{dT} = 0 \text{ at } T = T_B,$$ the Boyle temperature
van der Waals equation of state

- Physically-motivated corrections to Ideal Gas EoS.
- For a real gas, both attractive and repulsive intermolecular forces are present. Empirical terms were developed to help account for both.

1. Repulsive forces: make pressure higher than ideal gas

 Excluded volume concept (nb)

 \[P = \frac{nRT}{V - nb} \]

Volume of one molecule of radius \(r \) is \(V_{\text{mol}} = \frac{4}{3} \pi r^3 \)

Closest approach of two molecules with radius \(r \) is 2r.
Excluded volume

\[P = \frac{nRT}{V - nb} \]

The volume of one molecule of radius \(r \) is \(V_{\text{mol}} = \frac{4}{3} \pi r^3 \)

The closest approach of two molecules with radius \(r \) is \(2r \). What is the excluded volume for the two molecules?

A. \(2V_{\text{mol}} \)
B. \(4V_{\text{mol}} \)
C. \(8V_{\text{mol}} \)
D. \(16V_{\text{mol}} \)
van der Waals equation of state

- Physically-motivated corrections to Ideal Gas EoS.
- For a real gas, both attractive and repulsive intermolecular forces are present. Empirical terms were developed to help account for both.

1. Repulsive forces: make pressure higher than ideal gas (or, equivalently, make the volume smaller)

Do the latter: Excluded volume

\[P = \frac{nRT}{V - nb} \]

Volume of one molecule of radius \(r \) is \(V_{\text{mol}} = \frac{4}{3} \pi r^3 \)
Closest approach of two molecules with radius \(r \) is \(2r \).
The excluded volume \(V_{\text{exc}} \) is \(2^3 V_{\text{mol}} = 8V_{\text{mol}} \) for two molecules.

So we might estimate that \(b \approx 4V_{\text{mol}}N_A \)

This assumes binary collisions only. Always true? NO!
van der Waals equation of state

- Physically-motivated corrections to Ideal Gas EoS.
- For a real gas, both attractive and repulsive intermolecular forces are present. Empirical terms were developed to help account for both.

2. Attractive forces: make pressure lower than ideal gas

Pressure depends on wall collisions, both on frequency and their force.

Not easy to show, but we expect a pressure correction of the form $-a(n/V)^2$, giving the van der Waals Equation of State

$$P = \frac{nRT}{V - nb} - \frac{an^2}{V^2} = \frac{RT}{V - b} - \frac{a}{V^2}$$
3D van der Waals eqn of state

\[T = \frac{T}{T_c} \]
Look at 50 °C isotherm. Behavior is near ideal gas

Look at 20 °C isotherm.
A→B→C Compression
At C, liquid condensation begins
D - liquid-vapor mixture at $P_{\text{vap}}(20 \, ^\circ C)$
E - last vapor condenses
F - Steep rise in pressure
A liquid or solid is much less compressible than a gas

For $T > T_c$, there is a single phase, with no liquid formed.
van der Waals Isotherms near T_c

$v d W$ “loops” are not physical. Why?

Patch up with Maxwell construction

van der Waals Isotherms, T/T_c
van der Waals Isotherms near T_c

Look at one of the van der Waals isotherms at a temperature of 0.9 T_c

- $A \to D$ compress the gas at constant T, (steep and not very compressible)
- $F \to G$ compress the liquid phase
- $D \to F$ vapor condensing (gas and liquid coexist)

These are **stable** states

$F \to C$ supercooled liquid
$D \to B$ superheated gas
These are **metastable** states

$C \to B$ a non-physical artifact of vdW
(patched up with Maxwell construction)

Metastable example:
Use a very clean glass. Add water and heat for a while with a microwave oven (superheat)
Add a drop of sand or perhaps touch with a spoon.