Problem set 2 (due Thursday February 19th)

1 Starting from the full expression for the radial temperature profile of an irradiated disk,

$$
\left(\frac{T_{\mathrm{disk}}}{T_{*}}\right)^{4}=\frac{1}{\pi}\left[\sin ^{-1}\left(\frac{R_{*}}{r}\right)-\left(\frac{R_{*}}{r}\right) \sqrt{1-\left(\frac{R_{*}}{r}\right)^{2}}\right]
$$

Taylor expand the terms on the right hand side to show that for $r / R_{*} \gg 1$, $T_{\text {disk }} \propto r^{-3 / 4}$, as we asserted in class.

2 Consider a disk with mass $M_{\text {disk }} \sim \pi r^{2} \Sigma$ and thickness h, at radius r from a star of mass M_{*}. By approximating the self-gravity of the disk as that of an infinite sheet, estimate the minimum Σ such that disk self-gravity dominates the vertical acceleration at $z=h$. Hence, show that,

$$
\frac{M_{\mathrm{disk}}}{M_{*}}>\left(\frac{h}{r}\right)
$$

is a rough condition for when self-gravity matters for the vertical structure.
3 A disk is vertically isothermal, with a profile,

$$
\rho(z)=\rho_{0} \exp \left[-z^{2} / 2 h^{2}\right],
$$

as usual. The mid plane Keplerian velocity is $\Omega_{\mathrm{K}}=\sqrt{G M_{*} / r^{3}}$. Suppose that the disk has a radial variation of surface density and temperature,

$$
\begin{aligned}
& \Sigma \propto r^{-\gamma} \\
& T \propto r^{-\beta}
\end{aligned}
$$

with γ and β constants. In cylindrical co-ordinates, the condition for hydrostatic equilibrium is,

$$
r \Omega_{\mathrm{g}}^{2}=\frac{G M_{*}}{\left(r^{2}+z^{2}\right)^{3 / 2}} r+\frac{1}{\rho} \frac{\partial P}{\partial r},
$$

where Ω_{g} is the gas angular velocity. Find the lowest order expression for the gas angular velocity in the form $\Omega_{g}=\Omega_{\mathrm{K}}[1-\ldots]$, where the departure from Keplerian rotation is a function of $(h / r),(z / h)$ and the constants β and γ.

