Extraterrestrial Life: Final Formula Sheet

Please bring a calculator to the exam. Some of the following formulae and constants may be useful.

Constants

Astronomical unit: $1 \text{ AU} = 150,000,000 \text{ km} (1.5 \times 10^8 \text{ km})$

Light year: 1 light year = 9.5×10^{12} km Solar luminosity: $L_{sun} = 3.9 \times 10^{26}$ watts Gravitational constant: $G = 6.67 \times 10^{-11}$ m³ kg-¹ s-²

 $\pi = 3.14159$

Formulae

Surface area of a sphere of radius r: $A = 4\pi r^2$

Volume of a sphere of radius r: $V = \frac{4}{3}\pi r^3$

Area of a circle of radius r: $A = \pi r^2$

Flux at distance d from a star with a luminosity L: $F = \frac{L}{4\pi d^2}$

Power emitted in thermal radiation by a planet or star of radius R and temperature T: $P = 4\pi R^2 \sigma T^4$, where $\sigma = 5.67 \times 10^{-8}$ watts m⁻² K⁻⁴ is a constant

Radioactive decay law: $N(t) = N_0 e^{-t/\tau}$, where N(t) is the number of atoms left at time t in a system that started (t = 0) with N_0 atoms. The decay time is τ .

Velocity of a planet orbiting at distance a from a star of mass M_∗:

$$v_p = \sqrt{\frac{GM_*}{a}}$$

Stellar velocity caused by an orbiting planet of mass M_p :

$$v_* = \frac{M_p}{M_*} \sqrt{\frac{GM_*}{a}}$$