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Extreme nonlinear response of ultranarrow optical transitions in cavity QED for laser stabilization
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We explore the potential of direct spectroscopy of ultranarrow optical transitions of atoms localized in an optical
cavity. In contrast to stabilization against a reference cavity, which is the approach currently used for the most
highly stabilized lasers, stabilization against an atomic transition does not suffer from Brownian thermal noise.
Spectroscopy of ultranarrow optical transitions in a cavity operates in a very highly saturated regime in which
nonlinear effects such as bistability play an important role. From the universal behavior of the Jaynes-Cummings
model with dissipation, we derive the fundamental limits for laser stabilization using direct spectroscopy of
ultranarrow atomic lines. We find that, with current lattice clock experiments, laser linewidths of about 1 mHz
can be achieved in principle, and the ultimate limitations of this technique are at the 1 μHz level.
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I. INTRODUCTION

Ultrastable lasers are central components of optical atomic
clocks and precision spectroscopy. Today’s most stable lasers
are made by locking the frequency of a prestabilized laser to a
resonance of a high-finesse reference cavity [1–3]. The phase
stability of these lasers is limited by thermal noise in the mir-
rors of the reference cavity [4]. They achieve linewidths below
1 Hz [5] corresponding to oscillator quality factors (Q factors)
of order 1015. Improvement of laser stability beyond the current
state of the art will have a significant impact on precision
science and quantum metrology [6], but further advances in
laser stability through refinement of reference cavities require
a significant investment in resources, given the maturity of the
optical designs involved [7]. The purpose of this paper is to pro-
pose an alternative laser stabilization technique, by means of
direct cavity-enhanced nonlinear spectroscopy and to elucidate
the rich phenomenology of this approach in an extreme regime
of cavity quantum electrodynamics and optical bistability.

Strong optical transitions typically used for laser stabi-
lization are not suitable for ultimate laser stability since the
atomic transition frequency is very sensitive to stray fields,
collisions, etc. However, for special ultranarrow optical clock
transitions that are now being routinely used for optical atomic
clocks [8–10], these shifts are small, very well characterized,
and can in some cases be eliminated or controlled [11].

Compared to the use of strong transitions, the physics of
this frequency-locking scheme is nontrivial because the atomic
transition is strongly saturated for very small intensities. Addi-
tionally, sufficient free-space optical depths are not available
in current-generation experiments. One can circumvent this
problem by working in a cavity-enhanced, highly non-linear,
strongly saturated regime in order to achieve a signal that is
strong enough for laser feedback. This regime has been studied
extensively in the context of nonlinear optics with alkali-metal
atoms [12–15], albeit in a much less extreme limit.

In this paper we consider a simplified model that contains
all the essential components of this many-atom cavity QED
system (Fig. 1), but in the extreme bad-cavity limit. Here,
despite the unavoidable strong saturation effect, we are able
to uncover a collective atomic interaction regime where we

preserve the superior frequency discrimination capability
of a narrow atomic transition. This model serves as a basis
upon which to calculate the fundamental limitations of our
stabilization scheme, although real-world implementations
will require more complicated topologies. One such approach
could be based on the NICE-OHMS (noise-immune
cavity-enhanced optical heterodyne molecular spectroscopy)
technique [16,17], where the local oscillator and signal beams
are copropagated through the cavity to reject common-mode
frequency noise. The effects of finite vacuum lifetime and
heating could be addressed by operating two systems in a
multiplexed fashion, while heating could additionally be
mitigated at the single-system level by implementing a Raman
cooling scheme similar to that proposed in [18].

II. MODEL SYSTEM

In our simplified theoretical analysis, we consider an
ensemble of N two-level atoms with transition frequency ωa

trapped in an optical lattice potential inside a cavity. The lattice
is at the magic wavelength where the difference of the ac Stark
shifts of both levels vanish [19]. The atoms are assumed to be
in the vibrational ground state along the lattice direction and
in the Lamb-Dicke regime such that we can neglect Doppler
broadening and recoil effects. The atomic transition is near
resonant with a cavity resonance with frequency ωc and field
decay rate κ . A laser with frequency ωL is coupled into
the cavity and the transmitted light is detected by means of
balanced homodyne detection.

This N -atom system is described by the Hamiltonian

Ĥ = h̄ωa

2

N∑
j=1

σ̂ (j )
z + h̄ωcâ

†â + h̄η(e−iωLt â† + H.c.)

+ h̄g

N∑
j=1

(â†σ̂ (j )
− + H.c.). (1)

Here, σ̂
(j )
z = |ej 〉〈ej | − |gj 〉〈gj | is the operator for the inver-

sion of atom j , and σ̂
(j )
+ = |ej 〉〈gj | and σ̂

(j )
− = |gj 〉〈ej | are spin

raising and lowering operators, respectively. The bosonic field
operator â is the annihilation operator for a photon in the cavity.
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FIG. 1. (Color online) Schematic of cavity-enhanced
ultranarrow-linewidth absorption spectroscopy for laser stabilization.
M, mirror; BS, beam splitter; LO, local oscillator; D, photodiode.

The coupling constant g = (℘/h̄)
√

h̄ωc/ (2Veffε0) is half the
vacuum Rabi frequency with Veff the effective mode volume
of the cavity, ℘ the dipole moment of the atomic transition,
and ε0 the vacuum permittivity. The cavity is classically driven
with amplitude η by the in-coupled laser.

In addition to the coherent dynamics described by the
Hamiltonian, we also need to account for dissipative processes.
These are spontaneous emission from the excited atomic state
(decay rate γ ), decay of the atomic dipole with rate T −1

2 , and
decay of the cavity field with rate κ . We treat these dissipative
processes within the usual Born-Markov master equation [20].
Although we do not consider inhomogeneous atom-cavity
coupling, this effect does not change our results qualitatively
and can in principle be taken into account primarily by a
rescaling of the cooperativity parameter via an effective atom
number.

We assume that the cavity is locked to the probe laser, i.e.,
ωL = ωc. This could be achieved, for example, by using a
frequency-offset Pound-Drever-Hall locking scheme [21] on
a different cavity longitudinal mode in conjunction with a
piezo-tunable cavity. Effects due to a slight detuning between
laser and cavity are negligible owing to the comparatively
large cavity linewidth, and we further quantify this statement
in Appendix B.

III. ANALYSIS

To study the nonlinear dynamics of this system, we
consider a semiclassical approximation where all expectation
values of more than one operator can be factorized, e.g.,
〈â†σ̂ (j )

− 〉 ≈ 〈â†〉〈σ̂ (j )
− 〉. Consequently, we find the set of first-

order equations of motion for the expectation values o ≡ 〈ô〉
with ô ∈ {â ,σ̂− ,σ̂z},

da

dt
= η − κa + gNσ−, (2)

dσ−
dt

= −(
T −1

2 + i	
)
σ− + gaσz, (3)

dσz

dt
= −γ (1 + σz) − 4gRe(aσ ∗

−). (4)

The atom-cavity detuning is 	 = ωa − ωc.
The steady state of the system is obtained by setting the

time derivatives to zero. The steady-state polarization of the
atoms is given by

σ− = g

T −1
2 + i	

aσz. (5)
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FIG. 2. (Color online) Intracavity intensity as a function of
in-coupled intensity for C = 100 and 	 = 0 (blue solid line), 	 =
10T −1

2 (purple dashed line), and 	 = 100T −1
2 (yellow dotted line).

The vertical dashed lines mark the lower and upper thresholds for
bistability. The diagonal dashed lines show the intracavity intensity
for a completely bleached atomic ensemble, |a|2 = Iin, and for the
unsaturated limit, |a|2 = Iin/(2C)2. The saturation photon number is
n0 = γ T −1

2 /(4g2).

Inserting this into the equations for the inversion, we find the
saturated inversion

σz = −1

1 + |a|2/n0

1+T 2
2 	2

, (6)

where n0 = γ T −1
2 /(4g2) is the saturation photon number. The

mean number of photons in the cavity is then

|a|2 = η2

κ2

1 + T 2
2 	2

(1 − Cσz)2 + T 2
2 	2

. (7)

Here, C = NC0 is the cooperativity parameter and C0 =
g2/(κT −1

2 ) is the single-atom cooperativity parameter.
In this proposal we consider a regime of high cooperativity

where the total optical depth of the atom-cavity ensemble is
greater than unity in the weak-driving limit. Specifically, in
order to enter the nonlinear regime of spectroscopy considered
here, the total cooperativity must satisfy C > 8. The solution
for the steady-state intensity with C = 100 is illustrated in
Fig. 2. For low in-coupled intensity, Iin ≡ η2/(n0κ

2) < 4C, the
atoms and cavity behave like two coupled harmonic oscillators.
For ωa = ωc the resonances of the coupled system are split
by 2g

√
N , the vacuum Rabi splitting. Hence, the driving

field is far detuned from the coupled-system resonances for
	 = 0, and the intensity inside the cavity is reduced by a
factor 1/C2 compared to an empty cavity. On the other hand,
in the strong-driving limit, Iin > C2/4, the atomic transition
is completely saturated, and the cavity behaves as if it were
empty. In the intermediate regime, 4C < Iin < C2/4, two stable
solutions exist; a low-intensity branch on which the atomic
transition is unsaturated and a high-intensity branch on which
it is saturated.

To clarify the connection of the physics considered here
with previous studies of optical bistability in cavity QED, it is
useful to consider the intensity in the cavity as a function of
	 and ωc − ωL. One of the stable solutions for the intracavity
intensity is shown in Fig. 3. In the weak-driving limit, Iin → 0,
the resonances of the system approach the white hyperbolas
while the resonance of the strongly driven system, Iin → ∞,
lies on the black horizontal line. Remarkably, with the axis
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FIG. 3. Intracavity intensity as a function of detuning of the
driving laser from the atomic resonance and from the cavity for
C = 100 and Iin = 5 × 103. Only the solution with the largest
intracavity intensity is shown. Near resonance there are two additional
solutions (see Fig. 4). The white hyperbolas indicate the resonances
of the weakly driven system.

rescaled as in that figure, the plots depend only on two free
parameters C and Iin. Most experiments on optical bistability
in cavity QED to date have been carried out in a regime where
C/T2 � κ . For such an experiment, scanning ωL with ωa =
ωc corresponds to the nearly vertical dotted line in this figure
[13,22]. In our proposal 	 is scanned while ωc = ωL at all
times, corresponding to the black horizontal line. While the
basic physics behind this nonlinear coupled system has been
known for a long time [22], it has not been interrogated in the
way discussed here.

The spectra resulting from scanning 	 in this way are shown
for weak, intermediate (i.e., bistable), and strong pumping in
Fig. 4. These spectra are cuts through the plot in Fig. 3 along the
	 = 0 line. In the weak-pumping regime (dotted line), we see a
broadened absorption feature with width CT −1

2 . In the bistable
regime (dashed line), there are three possible stationary values
of the intracavity intensity near resonance. The solutions
corresponding to largest and smallest intensity are dynamically
stable while the intermediate-intensity solution is dynamically
unstable. In the strong-pumping regime (solid line), there is
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FIG. 4. (Color online) Intracavity intensity for C = 100 as a func-
tion of detuning for in-coupled intensities Iin = 5 × 103 (blue solid
line), 1 × 103 (purple dashed line), and 1 × 102 (yellow dotted line).

only one steady state for any detuning and a peak develops
near resonance. Physically, this peak emerges because near
resonance the atomic transition is strongly saturated, whereas
away from resonance the cavity field experiences an additional
phase shift due to the atoms and does not build up in the
cavity.

IV. APPLICATION TO LASER STABILIZATION

In this work, our idea is to lock the probe laser and cavity
to this strongly saturated resonance feature. To estimate the
potential performance of such a lock, we need to know the
signal power and the slope of the phase across the resonance.
The signal power is equal to the power leaking out of the cavity
in steady state, and is given by

P � h̄ωLκC2n0β/2 = 2h̄ωLη2/κ, (8)

where the parameter β = 4Iin/(C2) � 1 describes how far
above the upper threshold for bistability the system is
driven. This power corresponds to a photon shot-noise-
limited bandwidth-normalized signal-to-noise ratio ofR2

S/N =
κC2n0β (Hz), assuming unity photodetector quantum effi-
ciency. Specifically, near resonance, we can write the differ-
ential photocurrent from the system as

idiff = 2e

hν

√
PsigPLO

dφ

dν
δν (t) + δi (t) . (9)

Here, φ is the frequency-dependent phase shift imparted by
the intracavity atomic medium near atomic resonance, δi (t)
is the shot noise on the photodetector difference signal, δν (t) is
the system detuning from exact atomic resonance, and PLO(sig)

is the optical power in the LO (signal) pathway. Shot noise
will contaminate the resonance condition as

δν (t) = −δi (t)
hν

2e
√

PsigPLO
dφ

dν

. (10)

The phase shift near atomic resonance is linear to first order
for small frequency deviations, and is given by

dφ

d	
= T2

Cσz

Cσz − 1
= 4T2

βC + O(C−2). (11)

The shot-noise-limited photocurrent noise has a white power
spectrum and, in the limit of PLO � Psig, the magnitude is

proportional to e2

hν
PLO. As a consequence, the frequency noise

power spectral density of the lock error, Sδν , is white. We
convert this quantity to a conventional laser linewidth (see,
e.g., [24,25] and Appendix A) when the system is locked and
find that

	ν = 2πSδν = π

(
1

RS/N 2π
dφ

d	

)2

≈ C0

16πγT 2
2

β . (12)

This is the key result of this paper, as it represents the quantum-
limited linewidth 	ν of a laser stabilized to the nonlinear
resonance feature discussed in this work.

It is worth contrasting these results with the ones obtained
for a proposed active laser based on ultranarrow optical
transitions [18]. For that system the linewidth is given by
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TABLE I. Quantum-limited linewidth according to Eq. (A19) for several optical lattice clock systems. The cavity geometry is Veff =
L × (100 μm)2 and the finesse F is tuned to give NC0 � 100. The signal-to-noise ratio (SNR) is 1 Hz bandwidth normalized. In all but the
last case, T2 values have been set to be �1 s. This is a conservative estimate based on current-generation lattice clock experiments [23].

Transition λ T −1
2 γ N F C0 P (β = 2) SNR 	ν

24Mg1S0 → 3P1 457 nm γ /2 2π × 31 Hz 104 104 9.6 × 10−3 20 pW 9.8 × 103 20 mHz
87Sr1S0 → 3P0 698 nm 1 s−1 2π × 1 mHz 105 105 7.4 × 10−4 3 fW 1.5 × 102 4.7 mHz
171Yb1S0 → 3P0 578 nm 1 s−1 2π × 44 mHz 104 5 × 104 1.1 × 10−2 27 fW 3.9 × 102 1.6 mHz
199Hg1S0 → 3P0 265.6 nm 1 s−1 2π × 100 mHz 104 105 1.1 × 10−2 130 fW 5.8 × 102 0.68 mHz
87Sr1S0 → 3P0 698 nm γ /2 2π × 1 mHz 104 5 × 103 1.2 × 10−2 0.5 fW 6.1 × 101 0.74 μHz

	νlaser = C0γ /π . The atoms behave more collectively in the
case of the laser. At the peak of laser emission the collective
dipole of the atoms is proportional to N , i.e., 〈Ĵ+Ĵ−〉 ∝
N2, where Ĵ− = Ĵ

†
+ = ∑N

j=1 σ̂−. In contrast, for the passive
spectroscopy considered here,

〈Ĵ+Ĵ−〉 = N2

C2

T2γ

β
(13)

on resonance, 	 = 0, i.e., the effective number of atoms that
participate in the collective dynamics is reduced by a factor of
order

√
T2γ . Finally, we note that in the limit where there is

no inhomogeneous broadening (T2 = 2/γ ), Eq. (A19) reduces
to 	ν = βC0γ /(64π ). This is, for β of order unity, the same
scaling as in the laser case.

Table I summarizes the stabilization performance that can
be achieved for several atomic species and transitions. In all
these examples the parameters are chosen such that C ≈ 100.
The mode volume of the cavity is Veff = L × π (100 μm)2,
where the length L does not enter the results. Furthermore,
in this locking scheme, the quantum-limited lock bandwidth
(beyond which the signal-to-noise ratio drops below unity) is
given by Bql = κC2n0β. In all cases considered, this funda-
mental limitation is well above the kilohertz range, indicating
that the requisite level of laser prestabilization is well within
current technological capabilities. In several realistic lattice
clock systems, we find that laser stabilization can achieve
quantum-limited performance at the millihertz level without
suffering from thermal noise. Finally, improvements in the
coherence time T2 of the narrowest transitions yield reciprocal
gains in the quantum-limited locked-laser linewidth, under-
scoring the importance of investigating possible decoherence
mechanisms for neutral atom lattice clocks beyond the 1 s time
scale.

V. CONCLUSION

We have proposed a laser stabilization technique based on
strongly saturated spectroscopy of narrow optical transitions
that enables linewidths in the 1 mHz range with current
experimental technology. This technique is not limited by
thermal noise and the fundamental limits of this scheme are
below the 1μHz level. In the future we plan to study alternative
realizations of this idea, including atomic beams and trapped
ions.
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APPENDIX A: DERIVATION OF LOCKED
LASER LINEWIDTH

In this Appendix we derive in detail the expression for
the quantum-noise-limited linewidth, which is presented in
Eq. (12). We begin by considering the configuration shown in
Fig. 1. The photocurrents of detectors 1 and 2 are given by

i1,2 = eηqe

hν

[
Psig

2
+ PLO

2
± √

PsigPLO cos (	ϕ − φLO)

]
+ δi1,2(t), (A1)

with the “+” (“−”) corresponding to detector 1 (2). Here,
	ϕ is the additional phase shift acquired by the signal
beam, PLO is the power in the local oscillator pathway,
Psig is the power in the signal pathway, ηqe is the detector
quantum efficiency, and δi1,(2) is the stochastically fluctuating
component of the photocurrent at detector 1 (2) due to shot
noise. Thus, with the proper choice of LO phase and assuming
	ϕ � 1,

idiff (t) = i1 − i2 = 2eηqe

hν

√
PsigPLO	ϕ + δi1 (t) − δi2 (t) .

(A2)

We rewrite the term δi1(t) − δi2(t) as δi(t) ≡ δi1(t) − δi2(t).
The time-domain autocorrelation of δi (t) is given by

〈δi(t)δi(t + τ )〉 = e2ηqe

hν
[Psig + PLO]δ(τ )

� e2ηqe

hν
PLOδ (τ ) . (A3)

Here, δ (τ ) is the Dirac delta function. This corresponds to a
two-sided photocurrent noise power spectral density of

Si (f ) = e2ηqe

hν
PLO. (A4)

The resonance center is observed in this system via
the difference photocurrent—namely, where the difference
photocurrent is equal to zero. In order to see the effect of
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FIG. 5. (Color online) Phase shift of the transmitted cavity light
(with respect to the LO) due to the atomic medium inside the cavity
and as a function of laser detuning. Here, C = 100 and β = 2.
The dotted line is the linear approximation for the phase near zero
detuning. Inset: Cavity transmission curve for the same parameters.

the LO shot noise on the lock stability, one can expand idiff

about zero detuning to linear order of 	ν as

idiff = 2eηqe

hν

√
PsigPLO	ϕ + δi (t)

� 2eηqe

hν

√
PsigPLO

∂ϕ

∂ν
	ν + δi (t) . (A5)

The validity of making this linear approximation is shown
in Fig. 5, where the complete phase shift of the medium is
shown as a function of detuning from resonance along with
an analytical solution for the linear phase shift ∂ϕ

∂ν
	ν. As

long as the laser is close to resonance, the phase is linear
to a good approximation. Now we can identify the effect of
δi(t) on our ability to determine the line center of the atomic
resonance.

Under the locked condition, the DC difference current Idiff

is enforced to be zero via control of the laser frequency. We
can thus see that the term δi(t) corrupts the measurement. That
is, our frequency error is given by

	νerr (t) = δi (t)
2eηqe

hν

√
PsigPLO

∂ϕ

∂ν

. (A6)

The denominator came directly from Eq. (A5).
When locked to the cavity-atom resonance, we assume the

laser has an electric field given by

E(t) = E0e
i2πν0t+iδφ(t). (A7)

Here the phase error δφ(t) is related to 	νerr (t) by

dδφ

dt
≡ 	νerr (t) . (A8)

In order to go from this time-domain expression to the fre-
quency domain via the Wiener-Khinchin theorem (following
the general approach presented in Chap. 3 of [26]), we compute
the autocorrelation of the field amplitude, RE (τ ), given by

RE (τ ) = 〈E(t)E∗(t + τ )〉
= |E0|2ei2πν0τ 〈ei(δφ(t)−δφ(t+τ ))〉. (A9)

An application of the Gaussian moment theorem gives

〈ei[δφ(t)−δφ(t+τ )])〉 = exp{−〈[δφ(t) − δφ(t + τ )]2〉/2}. (A10)

We can rewrite the expectation value as

〈[δφ(t) − δφ(t + t)]2〉 = 2〈[δφ(t)]2〉 − 2〈[δφ(t)δφ(t + τ )]〉
= 2[Rφ(0) − Rφ(τ )]. (A11)

It is then a direct consequence of the Wiener-Khinchin theorem
that

〈[δφ(t) − δφ(t + τ )]2〉 = 2

[∫ ∞

−∞
Sδφ(f )(1 − ei2πf τ )df

]
,

(A12)

where Sδφ (f ) is the two-sided phase fluctuation power spectral
density for δφ(t). However, we can easily relate Sδφ to S	ν

(the two-sided frequency deviation power spectral density) by
Eq. (A8), such that

〈[δφ(t) − δφ(t + τ )]2〉= 2

[∫ ∞

−∞

S	νerr (f )

f 2
(1 − ei2πf τ )df

]
.

(A13)

Applying the Wiener-Khinchin theorem to Eq. (A6), we
have

S	νerr = hν

4ηqePsig
(

∂ϕ

∂ν

)2 . (A14)

We can therefore rewrite Eq. (A13) as

〈[δφ(t) − δφ(t + τ )]2〉 =
∫ ∞

0

b0

f 2
[1 − cos (2πf τ )] df

= b0π
2τ, (A15)

with b0 given by

b0 = hν

ηqePsig
(

∂ϕ

∂ν

)2 . (A16)

Now we have an expression for the electric field autocorrela-
tion, namely,

RE(τ ) = |E0|2ei2πν0τ e−b0π
2τ/2. (A17)

We apply the Wiener-Khinchin theorem to this expression and
obtain a Lorentzian profile for the laser optical power, with
frequency full width at half maximum, 	νFWHM, given by

	νFWHM = πb0

2
= πhν

2ηqePsig
(

∂ϕ

∂ν

)2 . (A18)

We combine this with the results of Eqs. (8) and (11) of the
main text, and obtain the result presented in Eq. (12), in the
limit of unity detector quantum efficiency, namely,

	ν ≈ C0

16πγT 2
2

β. (A19)

APPENDIX B: LINE-PULLING EFFECTS DUE TO
CAVITY-LASER DETUNING

In order to derive the line pulling due to an imperfect
lock between the cavity and probe laser, we make use of the
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full optical bistability equation that describes the input-output
steady state of the system [27],

y = x

(
1 + C 1 − iT2	

1 + |x|2 + (T2	)2 + iθ

)
. (B1)

The parameter x is related to 〈a〉 by x = 〈a〉/√n0, y is given
by η/(κ

√
n0) (|y|2 = Iin), 	 and T2 are the same as given in the

text, and the parameter θ is the cavity-laser detuning in units
of κ , namely, θ = (ωc − ωl)/κ . In the text, θ was assumed to
be negligibly small. Here we quantify this statement.

If we assume that we are near resonance in the nonlinear,
strongly saturated regime (β > 1, C � 1), then |y|2 � |x|2 =
βC2/4. If T2	 � C, then we can expand Eq. (B1) such
that

y � x

[
1 + 4

Cβ
(1 − iT2	) + iθ

]
. (B2)

Therefore, the phase shift of the transmitted light is given by

	φ = Arg [x/y] � 4T2	

Cβ
− θ. (B3)

From Eq. (B3), it can be seen that for a given cavity-laser
detuning, the lock-center frequency shift 	νlaser is given by

	νlaser = Cβ

8πT2

(
ωc − ωl

κ

)
. (B4)

Cavity lock precisions of >104 are routinely achieved in the
laboratory. This implies that(

ωc − ωl

κ

)
� 10−4. (B5)

For typical parameters considered in the main text, namely,
C = 100, β = 2, and T2 = 1 s, this implies that the cavity
pulling effect is below the 1 mHz level. Longer T2 times will
further suppress this effect.
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