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Two-orbital SU(N) magnetism with ultracold
alkaline-earth atoms
A. V. Gorshkov1*, M. Hermele2, V. Gurarie2, C. Xu1, P. S. Julienne3, J. Ye4, P. Zoller5,6, E. Demler1,7,
M. D. Lukin1,7 and A. M. Rey4

Fermionic alkaline-earth atoms have unique properties that make them attractive candidates for the realization of atomic
clocks and degenerate quantum gases. At the same time, they are attracting considerable theoretical attention in the context
of quantum information processing. Here we demonstrate that when such atoms are loaded in optical lattices, they can be used
as quantum simulators of unique many-body phenomena. In particular, we show that the decoupling of the nuclear spin from
the electronic angular momentum can be used to implement many-body systems with an unprecedented degree of symmetry,
characterized by the SU(N) groupwithN as large as 10.Moreover, the interplay of the nuclear spin with the electronic degree of
freedomprovided by a stable optically excited state should enable the study of physics governed by the spin–orbital interaction.
Such systems may provide valuable insights into the physics of strongly correlated transition-metal oxides, heavy-fermion
materials and spin-liquid phases.

The interest in fermionic alkaline-earth atoms1–8 stems from
their two key features: (1) the presence of a metastable
excited state 3P0 coupled to the ground 1S0 state through

an ultranarrow doubly forbidden transition1 and (2) the almost
perfect decoupling1 of the nuclear spin I from the electronic angular
momentum J in these two states, because they both have J = 0.
This decoupling implies that s-wave scattering lengths involving
states 1S0 and 3P0 are independent of the nuclear spin, aside from
the restrictions imposed by fermionic antisymmetry. We show that
the resulting SU (N ) spin symmetry (where N = 2I + 1 can be as
large as 10) togetherwith the possibility of combining (nuclear) spin
physics with (electronic) orbital physics opens up awide field of rich
many-body systems with alkaline-earth atoms.

In what follows, we derive the two-orbital SU (N )-symmetric
Hubbard model describing alkaline-earth atoms in 1S0 and 3P0
states trapped in an optical lattice. We focus on specific parameter
regimes characterized by full or partial atom localization resulting
from strong atomic interactions, where simpler effective spin
Hamiltonians can be derived. The interplay between orbital and
spin degrees of freedom in such effective models is a central topic
in quantum magnetism and has attracted wide interest in the
condensed-matter community. Alkaline-earth atoms thus provide,
on the one hand, a unique opportunity for the implementation of
some of these models for the first time in a defect-free and fully
controllable environment. On the other hand, they open a new
arena to study a wide range of models, many of which have not
been discussed previously, even theoretically. We demonstrate, in
particular, how to implement the Kugel–Khomskii model studied
in the context of transition-metal oxides9–13, the Kondo lattice
model14–26 (KLM) studied in the context of manganese oxide
perovskites20 and heavy-fermion materials25, as well as various
SU (N )-symmetric spin Hamiltonians that are believed to have
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spin-liquid and valence-bond-solid (VBS) ground states27–34. For
example, we discuss how, by appropriately choosing the initial state,
a single alkaline-earth atom species with I = 9/2 (such as 87Sr)
can be used to study experimentally such a distinctively theoretical
object as the phase diagram as a function ofN for allN ≤10.

Before proceeding, we note that, whereas an orthogonal
symmetry group SO(5) can be realized in alkali atoms35, proposals
to obtain SU (N > 2)-symmetric models with alkali atoms36,37
and solid-state systems11,38 are a substantial idealization owing to
strong hyperfine coupling and a complex solid-state environment,
respectively. In this context, alkaline-earth-like atoms make an
exceptional system to studymodels with SU (N >2) symmetry.

Alkaline-earth atoms in an optical lattice
We begin with the Hamiltonian (H ) describing cold fermionic
alkaline-earth atoms in an external trapping potential:

H =
∑
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Here Ψαm(r) is a fermion field operator for atoms in internal state
|αm〉, where α= g (1S0) or e (3P0) denotes the electronic state and
m=−I ,...,I denotes one of theN = 2I+1 nuclear Zeeman states.
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The density operators are defined as ραm(r)=Ψ †
αm(r)Ψαm(r) and

ρα(r)=
∑

mραm(r). The term Vα(r) describes the external trapping
potential, which we will assume to be an optical lattice independent
of the nuclear spin: even for a relatively deep lattice with a 100 kHz
trap frequency, tensor and vector light shifts should be well below
1Hz (ref. 1). h̄ω0 is the transition energy between |g 〉 and |e〉, where
h̄ is the reduced Plank’s constant andω is the frequency. Extra lasers
can be used to drive transitions between |g 〉 and |e〉 levels1,2. As we
will need these extra lasers only for system preparation, we have not
included the corresponding terms in theHamiltonian.

The interaction is characterized by four s-wave scattering lengths
aX , X = gg ,ee,eg+,eg−, which define four interaction parameters
gX = 4πh̄2aX/M , where M is atomic mass. agg ,aee and a±eg are
the scattering lengths for two atoms in the electronic state |gg 〉,
|ee〉 and |±〉 = (|ge〉± |eg 〉)/

√
2, respectively. As shown in Fig. 1,

the fermionic antisymmetry then forces the nuclear state to be
symmetric for the only antisymmetric electronic state |−〉 and
antisymmetric otherwise. Very few aX are known at the moment
(see Supplementary Information).

The independence of each of the four scattering lengths from
the nuclear spin state is essential to the fulfilment of the SU (N )
symmetry of our model (see the Symmetries of the Hamiltonian
section). This independence is a consequence of the decoupling
between nuclear and electronic degrees of freedom shown during
the course of a collision involving any combination of g or e
states, which both have J = 0. Although for the |e〉 ≡ 3P0 atom, the
decoupling is slightly broken by the admixture with higher-lying P
states with J 6= 0, this admixture is very small1 and the resulting
nuclear-spin-dependent variation of the scattering lengths is also
expected to be very small, of the order of 10−3 (see Supplementary
Information). For agg , which does not involve state |e〉, this variation
should be even smaller (∼10−9).

The interaction terms in equation (1) describe the most general
s-wave two-body interaction consistent with elastic collisions as far
as the electronic state is concerned andwith the independence of the
scattering length from the nuclear spin. Whereas the assumption
of elasticity for g–g and e–g collisions is well justified, because
no inelastic exit channels exist, e–e collisions are likely to be
accompanied by large losses, which means that the magnitudes of
the imaginary and real parts of the e–e scattering length are likely
to be comparable (see Supplementary Information). Therefore,
we focus below on those situations where two e atoms never
occupy the same site.

We assume that only the lowest band in both e and g lattices is
occupied and expand the field operators in terms of the correspond-
ing (real) Wannier basis functions Ψαm(r) =

∑
j wα(r− rj)cjαm,

where c †
jαm creates an atom in internal state |αm〉 at site j (centred at

position rj). Equation (1) reduces then to a two-orbital single-band
Hubbard Hamiltonian

H = −
∑
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†
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∑
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∑
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Here Jα = −
∫
d3rwα(r)(−(h̄2/2M )∇2

+Vα(r))wα(r− r0) are the
tunnelling energies, r0 connects two nearest neighbours, h.c. stands
for Hermitian conjugate, njαm = c †

jαmcjαm and njα =
∑

mnjαm. The
tunnelling is isotropic, which is a crucial difference between
this model and its analogues in solid-state systems with orbital
degeneracy9. The sum 〈j,i〉 is over pairs of nearest-neighbour sites
i, j. V = (U+eg +U−eg )/2 and Vex = (U+eg −U−eg )/2 describe the direct
and exchange interaction terms, respectively. The onsite interaction
energies are Uαα = gαα

∫
d3rw4

α(r) and U±eg = g±eg
∫
d3rw2

e (r)w
2
g (r).

Constant terms, proportional to
∑

jnjα , are omitted in equation (2).

|gg〉

Ugg Uee Ueg
+ Ueg

¬
|s〉 |ee〉 (|ge〉 + |eg〉) (|ge〉 ¬ |eg〉)|s〉 |s〉 |t〉

Figure 1 | Interaction parameters between g and e atoms loaded in the
lowest vibrational state of the corresponding optical lattice. Green
spheres: g atoms; yellow spheres: e atoms. Here we assumed the nuclear
spin to be I= 1/2, and the arrows indicate the mI=±1/2 spin states. |s,t〉
denote the singlet and triplet nuclear spin states of the two atoms (only
one of three triplet states—| ↑↑〉—is shown). The dashed ellipse represents
antisymmetrization of the nuclear spin state (that is, |s〉). The interaction
energy UX (X= gg,ee,eg+,eg−) is proportional to the corresponding
scattering length aX .

Experimental control over the parameters in equation (2) will
enable us tomanipulate the atoms (see theMethods section).

Symmetries of the Hamiltonian
To understand the properties of the Hamiltonian in equation (2),
we consider its symmetries.Wedefine SU (2) pseudo-spin algebra

Tµ
=

∑
j

Tµ

j =
1
2

∑
jmαβ

c †
jαmσ

µ

αβcjβm

where σµ (µ= x,y,z) are Pauli matrices in the {e,g } basis. We
further define nuclear-spin permutation operators

Smn =
∑
j

Smn (j)=
∑
j,α

Smn (j,α)=
∑
j,α

c †
jαncjαm

which satisfy the SU (N ) algebra [Smn ,S
p
q] = δmqSpn− δpnS

m
q and thus

generate SU (N ) rotations of nuclear spins (N =2I+1).
In addition to the obvious conservation of the total number of

atoms n=
∑

j(nje + njg ), H shows U (1)× SU (N ) symmetry (see
the Methods section for the discussion of enhanced symmetries),
where U (1) is associated with the elasticity of collisions as far
as the electronic state is concerned ([T z ,H ] = 0) and SU (N ) is
associated with the independence of scattering and of the trapping
potential from the nuclear spin ([Smn ,H ] = 0 for all n,m). The two-
orbital SU (N )-symmetric Hubbard Hamiltonian in equation (2)
is a generalization to N > 2 of its SU (2)-symmetric counterpart9
and to two orbitals of its single-orbital counterpart28. The SU (N )
symmetry and the largely independent spin and orbital degrees
of freedom are two unique features present in alkaline earths but
absent in alkalis owing to strong hyperfine interactions.

One important consequence of SU (N ) symmetry is the
conservation, for any m, of Smm, the total number of atoms with
nuclear spin m. This means that an atom with large I , for example,
87Sr (I = 9/2), can reproduce the dynamics of atoms with lower
I if one takes an initial state with Smm = 0 for some m values.
To verify SU (N ) symmetry of the interaction experimentally, one
could, thus, put two atoms in one well in spins m and m′ and
confirm that collisions do not populate other spin levels. This
feature of SU (N ) symmetry is in stark contrast to the case of weaker
SU (2) symmetry, where the dependence of scattering lengths on the
total spin of the two colliding particles allows for scattering into
spin states other than m and m′. We note that although collisions
are governed by electronic interactions and obey the nuclear-spin
SU (N ) symmetry, the nuclear spins still indirectly control the
collisions through fermionic statistics and give rise to effective
spin–orbital and spin–spin interactions.

290 NATURE PHYSICS | VOL 6 | APRIL 2010 | www.nature.com/naturephysics

© 2010 Macmillan Publishers Limited.  All rights reserved. 

 

http://www.nature.com/doifinder/10.1038/nphys1535
http://www.nature.com/naturephysics


NATURE PHYSICS DOI: 10.1038/NPHYS1535 ARTICLES

p

q nA
nB

p = nB
on B sites

(1) (2)

p = nA
on A sites

(p, q) (1, 0) (p, 0)

a b

Figure 2 |Young diagrams describing the irreducible representations of
SU(N) on individual sites. a, A general diagram consists of nj boxes
arranged into at most two columns (to satisfy fermionic antisymmetry with
only two orbital states), with heights denoted by p and q, such that
N≥ p≥ q and p+q= nj. See Supplementary Information for a brief review
of Young diagrams. b, The Young diagrams for the two special cases
discussed in the main text: (1) (p,q)= (1,0) and (2) (p,q)= (p,0) on a
bipartite lattice.

One can alternatively implement the two-orbital Hubbard
model with two ground-state species of alkaline-earth atoms
(for example, 171Yb and 173Yb or 173Yb and 87Sr). If we still
refer to them as |g 〉 and |e〉, the nuclear distinguishability
and the fact that both atoms are in the ground state will
result in a+eg = a−eg , corresponding to an enhanced symmetry (see
Methods). Although experimentally more challenging, the use of
two different ground-state species will solve the problem of losses
associated with collisions of two excited state atoms and will reduce
the (already veryweak) nuclear-spin dependence of aee and aeg .

Spin Hamiltonians
One of the simplest interesting limits of equation (2) is the
strongly interacting regime (J/U � 1) where the Hilbert space
is restricted to a given energy manifold of the Jg = Je = 0
Hamiltonian (with a fixed number of atoms on each site),
and tunnelling is allowed only virtually, giving rise to an
effective spin (and pseudo-spin) Hamiltonian. Single-site energy
manifolds can be classified according to the number of atoms
nj = njg + nje , the pseudo-spin component T z

j and the spin
symmetry (SU (N ) representation) described by a Young diagram.
As shown in Fig. 2a, each diagram consists of nj boxes and at
most two columns of heights p and q, representing two sets of
antisymmetrized indices.

TheU (1)×SU (N ) symmetry of equation (2) restricts the order
J 2 spin Hamiltonian to the form

H(p,q) =
∑
〈i,j〉,α

[
κ ijαniαnjα+λ

ij
αS

n
m(i,α)S

m
n (j,α)
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+
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m
n (j,e)

+ κ̃ ijgeS
em
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gn
en(j)+ λ̃

ij
geS

en
gm(i)S

gm
en (j)+{i↔ j}

]
(3)

where the sum over n and m is implied in all but the κ terms
and Sαmβn (j)= c †

jβncjαm. {i↔ j} means that all four preceding terms
are repeated with i and j exchanged. The coefficients κ , λ, κ̃ and
λ̃ are of order J 2/U with the exact form determined by what
single-site energy manifolds we are considering. κ terms describe
nearest-neighbour repulsion or attraction, and λ, κ̃ and λ̃ terms
describe nearest-neighbour exchange of spins, pseudo-spins and
complete atomic states, respectively. Without loss of generality,
κ ijα = κ

ji
α and λ

ij
α = λ

ji
α . In many cases (for example, case (2) below),

theHilbert space, whichH(p,q) acts on, has nie and nig constant for all
i, which not only forces κ̃ ijge = λ̃

ij
ge = 0 but also enables one to ignore

a b
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Figure 3 | The ground-state phase diagram for the SU(N= 2)
Kugel–Khomskii model restricted to two wells, left and right. a, The
phase diagram for Tz=−1 (two g atoms). |gg〉= |gg〉LR (L and R denote left
and right wells, respectively). |s〉 and |t〉 are spin singlet and triplet states,
respectively. b, The phase diagram for Tz=0 (one g atom and one e atom).
|Σ 〉= (1/

√
2)(|eg〉LR−|ge〉LR) and |τ 〉= (1/

√
2)(|eg〉LR+|ge〉LR) are

antisymmetric and symmetric orbital states, respectively. See
Supplementary Information for a detailed discussion of both of
these diagrams.

the constant κ ijα and κ ijge terms. We now discuss two special cases of
H(p,q) shown in Fig. 2b. A third case, (p,q)= (1,1), which reduces
forN = 2 to the spin-1 Heisenberg antiferromagnet, is discussed in
the Supplementary Information.

(1) In the case of one atom per site, (p,q)= (1,0). H(p,q) is then
a generalization to arbitrary N of the SU (N = 2) Kugel–Khomskii
model9,13, andwe rewrite it as (see Supplementary Information)

H(1,0) =
∑
〈i,j〉

[
2(κ̃ge+ λ̃geS2ij)(T

x
i T

x
j +T

y
i T

y
j )+λgeS

2
ij+κge

−[A+BS2ij]
(
T z
i T

z
j +

1
4

)
+h(1−S2ij)(T

z
i +T

z
j )
]

(4)

where S2ij =
∑

mn S
n
m(i)S

m
n (j) is +1 (−1) for a symmetric (anti-

symmetric) spin state, A= 2κge − κe − κg , B= 2λge −λe −λg and
h= (κe−κg )/2= (λg −λe)/2. The N = 2 Kugel–Khomskii Hamil-
tonian is used to model the spin–orbital interactions (not to be
confused with relativistic spin–orbit coupling) in transition-metal
oxides with the perovskite structure13. Our implementation enables
us to realize clean spin–orbital interactions unaltered by lattice and
Jahn–Teller distortions present in solids13.

To get a sense of the competing spin and orbital orders10–12
characterizing H(1,0), we consider the simplest case of only two
sites (L and R) and N = 2 (with spin states denoted by ↑
and ↓). To avoid losses in e–e collisions, we set Uee =∞ (see
Supplementary Information). The double-well ground-state phase
diagram for T z

= 1 (two e atoms) is then trivial; the T z
=−1 (two

g atoms) and T z
= 0 (one g atom and one e atom) diagrams are

shown in Fig. 3. One can see that, depending on the signs and
relative magnitudes of the interactions, various combinations of
ferromagnetic (triplet) and antiferromagnetic (singlet) spin and
orbital orders are favoured. In the Methods section, we propose
a double-well experiment along the lines of ref. 39 to probe the
spin–orbital interactions giving rise to theT z

=0 diagram in Fig. 3b.
Multi-well extensions of this experiment may shed light on the
model’s many-body phase diagram, which has been studied for
N = 2 and mostly at the mean-field level or in special cases, such as
in one dimension (1D) or in the presence of enhanced symmetries
(see for example, refs 10–12).

(2) To study SU (N ) spin physics alone, we consider the case
of only g atoms. On a bipartite lattice with sublattices A and B,
we choose A sites to have nA < N atoms [(p,q)= (nA,0)] and B
sites to have nB < N atoms [(p,q)= (nB,0)]. This set-up can be
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Figure 4 | Probing the phases of the SU(N) antiferromagnet on a 2D
square lattice. a, The phase diagram for the case nA+nB=N. Some points
on this diagram have been explored in earlier numerical studies29–31 and
are marked according to the ground state obtained: Néel (circles),
columnar VBS (shown schematically in b) (squares) and possibly critical
spin liquid (triangle)30,31. As for sufficiently large N quantum fluctuations
tend to destabilize long-range magnetic ordering, it is likely that VBS
ordering characterizes the ground state for all N>4 (that is, above the
wavy line). b, Thick bonds connect spins that are more strongly correlated
than spins connected by thin bonds, and dashed lines encircle
(approximate) SU(N) singlets.

engineered in cold atoms by using a superlattice to adjust the depths
of the two sublattices favouring a higher filling factor in deeper
wells.H(p,q) then reduces to

H(p,0)=
2J 2g Ugg

U 2
gg − (Ugg (nA−nB)+1)2

∑
〈i,j〉

S2ij (5)

where1 is the energy offset between adjacent lattice sites. The cou-
pling constant can be made either positive (antiferromagnetic) or
negative (ferromagnetic) depending on the choice of parameters39.
Three-body recombination processes will probably limit the life-
time of the atomswhen nj≥3 (see Supplementary Information).

We focus on the 2D square lattice in the antiferromagnetic
regime. The case nA+ nB = N shares with the SU (2) Heisenberg
model the crucial property that two adjacent spins can form
an SU (N ) singlet, and has thus been studied extensively as a
large-N generalization of SU (2) magnetism27,28. Figure 4a shows
the expected phase diagram for the case nA + nB = N , which
features Néel (circles), VBS (squares) (Fig. 4b) and possible critical
spin-liquid (triangle)30,31 ground states. To access various ground
states of the system, the initial state must be carefully prepared
so that the conserved quantities Smm take values appropriate
for these ground states. Another interesting and experimentally
relevant case, nA = nB 6= N/2, which can also show spin-liquid
and VBS-type ground states, is discussed in the Supplementary
Information and in ref. 34.

As one can vary N just by choosing the number of initially
populated Zeeman levels (for example, through a combination
of optical pumping and coherent manipulation), alkaline-earth
atoms offer a unique arena to probe the phase diagram of
H(p,0), including exotic phases such as VBS (Fig. 4b), as well as
competing magnetically ordered states. We propose to load a
band insulator of N g atoms per site, then slowly split each well
into two to form an array of independent SU (N ) singlets in a
pattern shown in Fig. 4b. The intersinglet tunnelling rate should
then be adiabatically increased up to the intrasinglet tunnelling
rate. As N increases, the magnetic or singlet nature of the state
can be probed by measuring the Néel order parameter (see the
description of the Kugel–Khomskii double-well experiment in
the Methods section) and spin–spin correlations by means of

|Vex| /Jg

TK

TRKKY

T
em

pe
ra

tu
re

NFL, and so on

AF HFL

a

b

Figure 5 |KLM for the case N= 2. a, Schematic of the set-up. g atoms are
green; e atoms are yellow; the spin basis is {↑,↓}. b, Schematic
representation of the competition between RKKY magnetism versus Kondo
singlet formation in the SU(2) antiferromagnetic (AF) KLM (see refs 16, 25,
26 and references therein). In this model, the localized spin-1/2 e atoms
couple antiferromagnetically to the delocalized g atoms through an onsite
exchange interaction proportional to Vex. This coupling favours the
formation of localized Kondo singlets between e and g atoms, with
characteristic energy scale kBTK ∼ Jgexp(−cJg/|Vex|), with c being a
dimensionless constant of order one25. On the other hand, the g atoms can
mediate long-range RKKY interactions between the e atoms, giving rise to
magnetic order (which can be antiferromagnetic or ferromagnetic
depending on the density of g atoms), where the characteristic energy is
kBTRKKY∼V2

ex/Jg. The competition between the Kondo effect and RKKY
magnetism leads to very rich physics. For small values of |Vex|/Jg, the RKKY
interaction is dominant and the system orders magnetically. At
intermediate values of |Vex|/Jg, the energy scales TK and TRKKY are of
comparable strength, and a variety of new quantum phenomena are
expected to arise, including quantum criticality and non-Fermi liquid (NFL)
physics25,26. With a further increase of the |Vex|/Jg coupling, magnetic
order is suppressed, the localized e atoms become screened into singlet
states and melt into the g-atom Fermi sea, forming the so-called HFL state.
The large Fermi volume21, which is set by the total number of g atoms plus
e atoms, can be directly probed by measuring the momentum distribution
by means of time-of-flight imaging.

noise spectroscopy in the time-of-flight40 (which directly measures∑
j,k〈S

m
n (j,g )S

n
m(k,g )〉e

iQ(j−k)).

The Kondo latticemodel (KLM)
The SU (N ) KLM (refs 15, 17) is another example of the rich
physics, beyond the Mott regime, that could be simulated with
alkaline-earth atoms. The KLM is one of the canonical models used
to study strongly correlated electron systems, such as manganese
oxide perovskites20 and rare-earth and actinide compounds classed
as heavy-fermion materials25.

For its implementation with cold atoms (for N = 2, see also
refs 23, 24), we propose to put one e atom (localized spin) per site
in a deep lattice such that Je �Uee , so that we can set Je = 0 and
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nje = 1 for all j in equation (2). We also suppose that we can set
Ugg = 0, for example, by taking a very shallow g lattice (see Fig. 5a).
The resultingHamiltonian is the SU (N ) KLM (refs 15, 17)

HKLM = −
∑
〈j,i〉m

Jg (c
†
igmcjgm+h.c.)+Vex

∑
j,m,m′

c †
jgmc

†
jem′cjgm′cjem (6)

Themagnitude ofVex can be adjusted by shifting the e and g lattices
relative to each other7.

The properties of the SU (N ) KLM depend crucially on the
sign of the exchange interaction. For concreteness, we focus on
the antiferromagnetic case (Vex < 0), which favours formation of
spin-antisymmetric states (singlets, for N = 2) between mobile
fermions and localized spins. This regime describes the physics of
heavy-fermionmaterials25, and, in the case of a single localized spin,
gives rise to the Kondo effect.

In the limit |Vex |� Jg , g atoms mediate long-range Ruderman–
Kittel–Kasuya–Yosida (RKKY) interactions14 between localized
spins and tend to induce magnetic ordering (antiferromagnetic
or ferromagnetic depending on the density of g atoms) of these
spins, at least for N = 2. The engineering of RKKY interactions
can be tested in an array of isolated double wells (see the
Methods section). At intermediate and large |Vex |, the formation
of Kondo singlets dominates the RKKY interaction and favours
a magnetically disordered heavy-Fermi-liquid (HFL) ground state
with a significantly enhanced effective quasiparticle mass (see
Fig. 5b). The competition between RKKY interactions and the
Kondo effect in the regime where both are comparable is subtle,
and the resulting phases and phase transitions25,26 are not well
understood. Ultracold alkaline-earth atoms provide a promising
platform to study these phases and phase transitions.

In the large-N limit15,17, the SU (N ) HFL can be controllably
studied, and 1/N expansions have successfully reproduced the
experimentally observed properties of the HFL. However, very little
is known about the SU (N ) model outside the HFL regime. Several
very interesting parameter regimes in this domain can be directly
probedwith our system, as discussed in theMethods section.

Experimental accessibility
The phenomena described in this article can be probed with
experimental systems under development. Indeed, we show in the
Methods section that SU (N )-breaking terms are sufficiently weak,
and here we discuss the temperature requirements.

The key energy scale in the spin Hamiltonians (3) is the
superexchange energy J 2/U , whereas the RKKY energy scale is
kBTRKKY ∼V 2

ex/Jg . In their region of validity (J <U and |Vex |< Jg ,
respectively), these energy scales are limited from above by the
interaction energy (U and |Vex |, respectively), which typically
corresponds to temperatures T . 100 nK (ref. 39). Owing to
the extra cooling associated with certain adiabatic changes41,42,
T ∼ 10 nK and the Mott insulating regime have already been
achieved with fermionic alkali atoms43, and are therefore expected
to be achievable with fermionic alkaline earths, as well (a
bosonic alkaline-earth Mott insulator has already been achieved44).
Furthermore, the requirement to reach kBT smaller than J 2/U or
V 2

ex/Jg can often be relaxed. First, the double-well experiments,
such as the ones discussed in the Methods section in the contexts
of the Kugel–Khomskii model and the KLM, are done out of
thermal equilibrium, and can, thus, access energy scales far below
the temperature of the original cloud39. Second, for SU (N )
antiferromagnets, the energy range between J 2/U and NJ 2/U may
also show intriguing physics: in this regime, SU (N ) singlets, which
require NJ 2/U energy to break, stay intact but can diffuse around.
Finally, in the Vex < 0 KLM, exotic heavy-Fermi-liquid behaviour
is expected when Jg . |Vex | and the temperature is below the
Kondo temperature, that is, kBT . Jg exp(−cJg/|Vex |) where c is a

dimensionless constant of order one25. Thus, with Jg chosen to be
of the order of |Vex |, kBT as high as∼|Vex |may be sufficient.

Outlook
The proposed experiments should be regarded as bridges aiming to
connect well-understood physics to the complex and poorly under-
stood behaviour of strongly correlated systems. It is important to
emphasize that, except for the 1D case, the phase diagram of most
of the models considered is known only at the mean-field level or
numerically in reduced system sizes. Therefore, their experimental
realization in clean and controllable ultracold atomic systems can
provide significant advances.

Our proposal motivates other new lines of research. Ultracold
bosonic or fermionic diatomic molecules45 may give rise to similar
SU (N ) models with large N and with the possibility of long-range
interactions. Ions with alkaline-earth-like structure, such as Al+
could also be considered in this context. It would also be interesting
to explore the possibility of realizing topological phases with SU (N )
models for applications in topological quantum computation34.
Beyond quantummagnetism, the fact that the formation of SU (N )
singlets requires N partners might give rise to exotic types of
superfluidity and new types of Bardeen–Cooper–Schrieffer/Bose–
Einstein-condensation (BCS-BEC) crossover37. Practical applica-
tions of our Hubbard model, such as the calculation of the colli-
sional frequency shift in atomic clocks46, can also be foreseen.

Note added in proof : After the submission of this article, a theoreti-
cal study of the SU (6)-symmetric 173Yb systemwas reported47.

Methods
Experimental tools available for alkaline-earth atoms. Many experimental tools,
such as tuning the interaction strength by adjusting laser intensities39, are common
to both alkali and alkaline-earth atoms. There are, however, some experimental
tools specific to alkaline earths; we review them in this section.

First, a combination of optical pumping2 and direct coherent manipulation of
the |g 〉−|e〉 transition in the presence of a magnetic field1,2 can be used8 to prepare
any desired single-atom state within the 2 (2I+1)-dimensional manifold with basis
|αm〉, where α= g or e and m=−I ,...,I . This coherent manipulation can also be
used to exchange quantum information between nuclear spin states and electronic
states. Second, by using far-detuned probe light or a large magnetic field to
decouple the electronic angular momentum J and the nuclear spin I , the electronic
|g 〉−|e〉 degree of freedom can be measured by collecting fluorescence without
destroying the nuclear spin state5,8. Fluorescence measurement of the nuclear
spins can be achieved by mapping nuclear spin states onto electronic states7,8: for
example, for a spin-1/2 nucleus, a π pulse between |g ,m= 1/2〉 and |e,m=−1/2〉
enables one to accomplish a swap gate between the nuclear {1/2,−1/2} qubit
and the electronic {e,g } qubit. Single-site spatial resolution during the coherent
manipulation and fluorescence measurement can be achieved using magnetic field
gradients7 or dark-state-based techniques8,48 that rely on an auxiliary laser field
for which the intensity vanishes at certain locations. Third, an appropriate choice
of laser frequencies enables one to obtain independent lattices for states g and e
(ref. 7). Finally, optical Feshbach resonances49 may be used to control scattering
lengths site-specifically and nearly instantaneously.

Enhanced symmetries. Whereas in the general case, our Hubbard model
(equation (2)) satisfies U (1)× SU(N ) symmetry, for particular choices of
parameters, higher symmetry is possible. In particular, if Jg = Je and the interaction
energies for all states within the pseudo-spin triplet are equal (Ugg =Uee =U+eg ),
the full SU (2) symmetry (not just U (1)) in the pseudo-spin space is satisfied.
Alternatively, if Vex = 0, then both Smn (i,g ) and S

m
n (i,e) generate SU (N ) symmetries

resulting in the overall U (1)× SU (N )× SU (N ) symmetry. Finally, if both
conditions are satisfied, that is, all fourUX are equal and Jg = Je , thenH satisfies the
full SU (2N ) symmetry (2N can be as high as 20) generated by

Sαmβn =
∑
j

Sαmβn (j)=
∑
j

c†
jβncjαm

in which case the interaction reduces to U
2

∑
jnj (nj−1), where nj=njg+nje .

In the case when |e〉 and |g 〉 correspond to two ground states
of two different atoms (with nuclear spin Ie and Ig , respectively), we
will have a+eg = a−eg (that is, Vex = 0), which is equivalent to imposing
U (1)×SU (Ng = 2Ig +1)×SU (Ne = 2Ie +1) symmetry, where SU (2Iα +1)
is generated by Smn (i,α). Whereas for Ig 6= Ie , the m index in cjαm will run over a
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different set of values depending on α, the Hubbard Hamiltonian will still have the
form of equation (2) (except with Vex = 0). If one further assumes that Jg = Je and
Ugg =Uee =Ueg , the interaction satisfies the full SU (Ng +Ne) symmetry. It is worth
noting that for the case of two different ground-state atoms, this higher symmetry
is easier to achieve than for the case of two internal states of the same atom, because
a+eg = a−eg automatically. Thus, in particular, it might be possible to obtain SU (18)
with 87Sr (I = 9/2) and 43Ca (I = 7/2) simply by adjusting the intensities of the two
lattices (to set Jg = Je and Ugg =Uee) and then shifting the two lattices relative to
each other (to set Ueg =Ugg ).

Enhanced symmetries of the Hubbard model (equation (2)) are inherited
by the spin Hamiltonian (equation (3)). In particular, imposing SU (2)×SU (N )
instead ofU (1)×SU (N ) forces κ ijge=κ

ji
ge , κ̃

ij
ge= κ̃

ji
ge , κ

ij
g =κ

ij
e =κ

ij
ge+κ̃

ij
ge≡κ

ij ,λijge=λ
ji
ge ,

λ̃ijge = λ̃
ji
ge , λ

ij
g =λ

ij
e =λ

ij
ge+λ̃

ij
ge ≡λ

ij . Alternatively, imposingU (1)×SU (N )×SU (N )
forces κ̃ ijge = λ

ij
ge = 0. Finally, imposing the full SU (2N ) forces the satisfaction of

both sets of conditions, yielding

H =
∑
〈i,j〉

[
κ ijninj+λijSβnαm(i)S

αm
βn (j)

]
which is, of course, equivalent to restricting equation (3) to g atoms alone and
extending labelsm and n to run over 2N states instead ofN .

Double-well Kugel–Khomskii and RKKY experiments. In the main text and in
the following section, we discuss the open questions and previously unexplored
regimes associated with the SU (N ) Kugel–Khomskii model and the KLM that
can be studied with ultracold alkaline-earth atoms. As a stepping stone towards
these many-body experiments, we propose in this section two proof-of-principle
experiments in an array of isolated double wells with N = 2 (with the spin basis
{↑,↓}): one to probe the spin–orbital interactions of the Kugel–Khomskii model
and one to probe the RKKY interactions associated with the KLM.

We first propose an experiment along the lines of ref. 39 to probe the spin–
orbital interactions giving rise to the T z

= 0 diagram in Fig. 3b. In the Supplemen-
tary Information, we describe how to prepare an array of independent double wells
in the state |e,↑〉L|g ,↓〉R, which is a superposition of the four eigenstates featured in
Fig. 3b. The energies of these four eigenstates (Supplementary Equations (S4)–(S7))
can be extracted from the Fourier analysis of the population imbalance as a function
of time:1N (t )= neR+ngL−ngR−neL =−cos[(4tJe Jg /h̄U−eg )]−cos[(4tJe Jg /h̄U

+

eg )].
1N can be measured by combining the dumping technique, band mapping and
Stern–Gerlach filtering of ref. 39 with the use of two probe laser frequencies to
distinguish between |g 〉 and |e〉.

We now turn to the double-well experiment aimed at probing RKKY
interactions. After preparing the state (1/

√
2)(|g ,↓〉L+|g ,↓〉R)|e,↓〉L|e,↑〉R

(see Supplementary Information for how to prepare this state),
we propose to monitor the Néel order parameter for the e atoms,
Nez = (1/2)[ne↑L − ne↓L − (ne↑R − ne↓R)]. In the limit |Vex | � Jg ,
Nez (t )=−(1/3)cos(Vex t/h̄)− (2/3)cos((Vex t/2h̄)− (3V 2

ex t/8Jg h̄)) (in the
Supplementary Information, we present the plot of Nez (t ) for Vex =−Jg /10). It
shows fast oscillations with frequency∼Vex , modulated by an envelope of frequency
∼V 2

ex/Jg induced by RKKY interactions. To probe only RKKY interactions, it is
important to suppress superexchange ∼ J 2e /Uee and thus to choose Je/Uee small.
To study the full spatial dependence of RKKY interactions, one must of course go
beyond the double-well set-up. We also note that recent experiments using alkali
atoms populating the lowest two vibrational levels of a deep optical lattice have
measured the local singlet-triplet splitting induced byVex (ref. 50).

Physics accessible with the alkaline-earth KLM. The alkaline-earth atom
realization of the antiferromagnetic KLM is well suited to access a number of
parameter regimes that are out of reach in solid-state materials. One example is
the 1D limit, because, to our knowledge, real solid-state materials showing KLM
physics are restricted to 2D or 3D. Another example is the regime of large Kondo
exchange (|Vex |� Jg ), which is interesting even for N = 2. In this limit, the system
is well described by theU→∞Hubbardmodel18 by identifying the Kondo singlets
with empty sites (holes) and the unpaired localized spins with hard-core electrons.
From this mapping, possible ferromagnetic ordering is expected at a small hole
concentration (small ng ); however, the stability of this phase for increasing hole
concentration and finite |Vex | values remains unknown. For general N , in the
extreme limit Jg = 0, the ground state is highly degenerate: for any distribution of
the g -atom density njg <N , there is a ground state (with further spin degeneracy),
where on each site the spins combine antisymmetrically to minimize the exchange
interaction. Lifting of such extensive degeneracies often leads to exotic ground
states; this will be addressed in future studies using degenerate perturbation theory
in Jg /Vex . ForN >2, antiferromagnetic SU (N ) spin models have a different kind of
extensive degeneracy, which was argued to destroy antiferromagnetism and to lead
to non-magnetic spin-liquid and VBS-like ground states34. Similar expectations are
likely to apply to the KLM at small |Vex |/Jg , where the N = 2 antiferromagnetism
may give way to situations where the localized spins form a non-magnetic state that
is effectively decoupled from the mobile fermions22.

Even though we have set Ugg to zero in equation (6), it can be tuned,
for example, by adjusting the g -lattice depth and can give rise to interesting

physics. For example, the ng = 1 case, which is known to be for N = 2 either
an antiferromagnetic insulator or a Kondo insulator depending on the ratio
|Vex |/Jg (ref. 19), will become for large enough Ugg and N > 2 a Mott insulator,
because the two atoms on each site cannot combine to form an SU (N ) singlet.
If ng is reduced from unity, the doping of this Mott insulator can be studied,
and it will be interesting to understand how this physics, usually associated with
cuprate superconductors, is related to the other ground states of the KLM, usually
associated with heavy-fermion compounds.

Experimental accessibility. Immediate experimental accessibility makes our
proposal particularly appealing. Having shown in the main text that the
temperature requirements of our proposal are within reach of present experimental
systems, here we show that the nuclear-spin dependence of interaction energies is
sufficiently weak to keep the SU (N ) physics intact.

In the Supplementary Information, nuclear-spin-dependent variation
in the interaction energies is estimated to be 1Ugg /Ugg ∼ 10−9 and
1Uee/Uee ∼1U±eg /U

±

eg ∼ 10−3. As the scale of SU (N ) breaking is at most
1U , a very conservative condition for the physics to be unaffected by SU (N )
breaking is that all important energy scales are greater than1U . In particular, in the
spin models with more than one atom per site, the condition is1U� J 2/U , which
can be satisfied simultaneously with J�U even for1U/U ∼ 10−3. With one atom
per site, the SU (N ) breaking scale is not1U but rather (J/U )21U , which relaxes
the condition to the immediately satisfied1U/U � 1. Similarly, in the KLM, the
conditions1Vex� J ,|Vex | can be satisfied for1Vex/|Vex |∼10−3.
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