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We propose and analyze a setup to achieve strong coupling between a single trapped atom and a me-

chanical oscillator. The interaction between the motion of the atom and the mechanical oscillator is me-

diated by a quantized light field in a laser driven high-finesse cavity. In particular, we show that high

fidelity transfer of quantum states between the atom and the mechanical oscillator is in reach for existing

or near future experimental parameters. Our setup provides the basic toolbox from atomic physics for co-

herent manipulation, preparation, and measurement of micromechanical and nanomechanical oscillators.
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Recent experiments with micromechanical and nano-
mechanical oscillators coupled to the optical field in a
cavity are approaching the regime where quantum effects
dominate [1–3]. In light of this progress, the question arises
to what extent the quantized motion of a mesoscopic
mechanical system can be coherently coupled to a micro-
scopic quantum object [4–9], the ultimate challenge being
strong coupling to the motion of a single atom. A direct

mechanical coupling involves scale factors
ffiffiffiffiffiffiffiffiffiffiffi
m=M

p �
10�7–10�4, the mass ratio of the atom m and the mechani-
cal oscillator M [4]. It is hence difficult to achieve the
strong coupling regime.

In this Letter we show, however, that strong coupling can
be realized between a single trapped atom and an optome-
chanical oscillator. The coupling between the motion of a
membrane [10]—representing the mechanical oscillator—
and the atom is mediated by the quantized light field in a
laser driven high-finesse cavity. Remarkably, in this setup a
coherent coupling for single atom and membrane exceed-
ing the dissipative rates by a factor of 10 is within reach for
present or near future experimental parameters [11].
Entering the strong coupling regime provides a quantum
interface allowing the coherent transfer of quantum states
between the mechanical oscillator and atoms, opening the
door to coherent manipulation, preparation, and measure-
ment of micromechanical objects via the well-developed
tools of atomic physics.

We propose and analyze a setup which combines the
recent advances of micromechanics with membranes in
optical cavities [10] and cavity QED with single trapped
atoms [11] [see Fig. 1(a)]. We consider a membrane placed
in a laser driven high-finesse cavity representing the opto-
mechanical system with radiation pressure coupling. In

this setup the motion of the membrane manifests itself as
a dynamic detuning of cavity modes. For a cavity mode
driven by a detuned laser this translates into a variation of
the intensity of the intracavity light field. In addition, we
assume that this intracavity field provides an optical lattice
as a trap for a single atom. Thus for the setup of Fig. 1(a)
the motion of the membrane will be coupled via the
dynamics of the optical trap to the motion of the atom,
and vice versa. This coupling is strongly enhanced by the
cavity finesse which is a key ingredient in achieving the
strong coupling regime.
In the following we are interested in a configuration

which—after integrating out the internal cavity dynam-
ics—realizes a coupled oscillator dynamics linear in the
displacements of atom and membrane (@ ¼ 1)

H ¼ !ma
y
mam þ!ata

y
ataat �Gðaat þ ayatÞðam þ aymÞ:

(1)

The first and second terms are the Hamiltonians of the bare
micromechanical oscillator and the harmonic motion of the
trapped atom, respectively. We adopt the notation x� �
‘�ða� þ ay�Þ and p� for the position and momentum

operators (along the cavity axis) with � � ðm; atÞ for the
membrane and atom, respectively, and a� are annihilation

operators. Both atom and mechanical oscillator are pre-
pared close to their respective ground states, and their

oscillator lengths are denoted by ‘m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=2M!m

p
and

‘at ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=2m!at

p
with ‘m � ‘at in view of M � m, and

we assume a near resonance condition !m � !at of the
mechanical and atomic oscillation frequencies. The system
dynamics will obey a master equation

_� ¼ �i½H;�� þ ðLc þ Lat þ LmÞ�; (2)
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where the three Liouvillian terms describe dissipation via
cavity decay, atomic momentum diffusion due to sponta-
neous emission, and thermal heating of the membrane,
respectively. Our goal is to obtain a coupling G much
larger than the rates of decoherence.

A strong effective coupling as in Eq. (1) is obtained in a
configuration involving two cavity modes (Fig. 1). The two
modes are driven by lasers of frequencies !1 and !2,
respectively, where the first (second) laser is tuned to the
red (blue) side of its respective cavity resonance [Figs. 1(b)
and 1(c)]. Both lasers provide red-detuned optical lattices
for the atom with wave vectors k1 � k2. A single atom is
trapped in one of the wells of the combined potential of the
two lattices (Fig. 1(d)). The particular well within the
optical lattice array is chosen such that each of the two
potentials has close to maximal but opposite slope at the
equilibrium position �xat of the atom. The membrane in turn
is positioned at �xm halfway between a field node and an
antinode, with similar slope for both modes, where the
linear optomechanical coupling is maximal [10]. A small
displacement of the membrane will thus shift the cavity
resonances [cf. dashed line in Fig. 1(b)]. Accordingly, one
driving laser will come closer to resonance, the other one
farther off resonance. This will in turn make one of the
lattice potentials deeper, the other one shallower, giving

rise to a spatial shift of the atomic trapping potential
proportional to xm [Fig. 1(e)], resulting in an overall
�xatxm coupling as in Eq. (1).
Before we analyze this setup in detail, we note that for a

single standing-wave cavity mode a displacement of the
membrane xm results in a change of the potential depth and
thus a parametric coupling of the atom to the motion of the
membrane of the type �xmx

2
at. This parametric coupling,

which is in principle present also in the proposed two mode
setup, will be smaller than the linear coupling in Eq. (1) by
at least a Lamb-Dicke factor � ¼ k1‘at � 1 and can be
neglected here.
Atom-cavity interaction.—The optical potential along

the cavity axis seen by the atom is VðxÞ ¼
U0ðu1ðxÞAy

1A1 þ u2ðxÞAy
2A2Þ, where uiðxÞ ¼ sin2ðkixÞ

and Ai is a photon destruction operator for field modes i ¼
1; 2. We assume for simplicity that each of the cavity fields

generates the same ac Stark shift U0 ¼ �2
0

� per photon,

where �0 is the vacuum Rabi frequency and � < 0 is the
detuning from atomic resonance (see Fig. 1). In our effec-
tive 1D model, transverse confinement is naturally pro-
vided by the Gaussian intensity profile of the cavity fields.
Consider the case where both cavity fields are driven so
that we have a large intracavity amplitude �, which we
choose to be equal and real for both cavity modes.
Expanding the potential in powers of this amplitude yields
VðxÞ ’ U0�

2uðxÞ þ U0�½u1ðxÞa1 þ u2ðxÞa2 þ H:c:�,
where uðxÞ ¼ u1ðxÞ þ u2ðxÞ, and we neglected terms of
order zero in �. The operators ai describe amplitude
fluctuations around the coherent field �, i.e., Ai ¼ �þ
ai. The first term �uðxÞ is the effective atomic potential
created by the combined effect of the two cavity modes.
In a Lamb-Dicke expansion around the equilibrium

position �xat, the potential together with the kinetic energy

of the atom combine to p2=2mþVðxÞ!!ata
y
ataatþHat;c,

where Hat;c¼gat;c½ða1þay1 Þ�ða2þay2 Þ�ðaatþayatÞ, and

we adopt for the motion of the atom a harmonic approxi-
mation with a trap frequency !2

at ¼ U0�
2u00ð �xatÞ=m. Here

Hat;c is the desired linear atom-field coupling at rate

gat;c ¼ U0���, where � ¼ u0
1
ð �xatÞ
k1

is a geometrical factor.

We assume that the �xat is chosen such that � ’ 1.
Membrane-cavity interaction.—As demonstrated [10],

vibrational fluctuations of a thin dielectric membrane

couple to cavity quadratures according to Hm;c ¼
�gm;c½ða1 þ ay1 Þ þ ða2 þ ay2 Þ�ðam þ aymÞ, with an optome-

chanical coupling gm;c ¼ ‘m
L !ifið �xmÞ� (i ¼ 1; 2), which

we take for simplicity to be the same for both cavity fields.
L is the length of the cavity. The geometrical factor

fið �xmÞ ¼ 2r sinð2ki �xmÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2cos2ð2ki �xmÞ

p
depends on

the membrane amplitude reflectivity r and the equilibrium
position �xm of the membrane. By a proper choice of �xm it is
possible to achieve fi ’ 2r for both fields.
Open system dynamics.—For the combined system of

Fig. 1(a) we thus arrive at a HamiltonianH ¼ !ata
y
ataat þ

!ma
y
mam � �ðay1a1 � ay2a2Þ þHat;c þHm;c. For the two

FIG. 1 (color online). (a) Strong coupling of the motion of a
single atom to a vibrational degree of freedom of a micron-sized
membrane can be achieved in a two mode cavity (for details see
text). (b) Cavity response as a function of frequency. Two cavity
modes are driven by two lasers of frequencies !1 and !2, with
red and blue detuning, respectively. (c) The two frequencies
drive two atomic transitions, e.g., the D1;2 lines of Cs, both with

red detuning, causing ac Stark shift of the ground state. (d) (Left-
hand side) The atom is trapped in the potential from the two
optical lattices. (Right-hand side) The membrane is placed at a
point of steepest slope of the intensity profiles. (e) A small
displacement of the membrane will shift the cavity resonances
[cf. dashed line in (b)] resulting in a spatial shift of the trap
potential for the atom, and thus an effective linear atom-
membrane coupling as in Eq. (1).
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cavity fields this Hamiltonian refers to frames rotating at
the respective driving laser frequencies !i; see Fig. 1. The
laser detunings, ��, for the two cavity modes are chosen
equal in magnitude and opposite in sign. The coherent
evolution is accompanied by various decay channels de-
scribed by a master equation _W ¼ �i½H;W� þ ðL1 þ
L2 þ Lat þ LmÞW. Using the notation D½a�W ¼
2aWay � ayaW �Waya to denote a general Lindblad
term, we have in particular L1;2W ¼ �D½a1;2�W with a

cavity amplitude decay rate �. Spontaneous emission will
inevitably cause momentum diffusion of the atom, which is

described by LatW ¼ �at

2 D½aat þ ayat�W and happens at a

rate �at ¼ �
�2

0
�2

�2 �2uð �xatÞ ¼ �
g2at;c
�2

0

	, where � is the spon-

taneous decay rate [12]. The geometrical factor 	 ¼ k2
1
uð �xatÞ

u01ð �xatÞ2
can be made close to unity by a proper choice of �xat [13].
Finally, thermal contact of the membrane to the environ-

ment at a temperature T is accounted for by LmW ¼ �m

2 	
ð �nþ 1ÞD½am�W þ �m

2
�nD½aym�W, where �m is the natural

linewidth of the mechanical resonance and �n its mean
occupation in thermal equilibrium. The relevant effective

decoherence rate of the membrane is �m ¼ �m �n ’ kBT
@Q for a

mechanical quality factor Q.
Mediated atom-membrane interaction.—We are now in

the position to derive the effective cavity-mediated cou-
pling between the single atom and the membrane. Consider
the case of far off-resonant drive j�j � gat;c; gm;c, where

fluctuations in cavity quadratures are fast variables and
adiabatically follow the dynamics of position fluctuations
of atom and membrane. In this dispersive limit the deco-
herence rate due to cavity decay can be kept small as
compared to the strength of coherent evolution by choosing
�
� � 1. We derive an effective master equation for the

reduced state of atom and membrane � ¼ tr12fWg as given
in Eq. (2). The rate of mediated coherent coupling de-
scribed by the Hamiltonian in Eq. (1) is G ¼
2gat;cgm;cð�þ!mÞ
�2þð�þ!mÞ2 þ 2gat;cgm;cð��!mÞ

�2þð��!mÞ2 . The most compelling fea-

ture of this cavity-mediated ‘‘spring’’ is that—to the best of
our knowledge—this is the first scheme for coupling the
motion of a single atom to a massive oscillator which

manages to avoid the mass ratio
ffiffiffiffiffiffiffiffiffiffiffi
m=M

p
entering the cou-

pling strength. This ratio necessarily enters any transla-
tionally invariant coupling �ðxat � xmÞ2, as it sets the
relative magnitude of the cross term �xatxm versus the
direct atomic frequency shift term �x2at.

Decay of the cavity field gives rise to four channels
of decoherence in the effective master equation in

Eq. (2), Lc� ¼ P

¼�

�

c

2 D½J
��þ ��

c

2 D½Jy
�� at rates

��
c ¼ 2�ðg2at;cþg2m;cÞ

�2þð��!mÞ2 with jump operators J� ¼ cosð�Þam �
sinð�Þaat where tan� ¼ gat;c

gm;c
. Each jump corresponds to

the emission of sideband photons at either side of the two
driving lasers and is associated with the creation or anni-
hilation of a quantum in either atom or membrane. For a
near resonant system (!m ’ !at) these two possibilities
are indistinguishable, and happen in a coherent fashion.

Strong coupling regime.—We now show that the cou-
pling can be strong enough such that coherent dynamics
dominates over the various decoherence processes. In a
system described by the effective master equation (2)
strong coupling is established by fulfilling the set of con-
ditions G � ��

c , �at, �m, in addition to !at ¼ !m for a

resonant coupling. For a ratio ��
c

G � 1, it is necessary to

drive the cavity far off-resonant, and it is desirable to keep
at the same time a balanced atom-cavity and membrane-
cavity coupling gat;c ’ gm;c, which is equivalent to

� � �;!m;
4r

�

�

�

F
C

ffiffiffiffiffi
m

M

r
’ 1; (3)

respectively. Here C ¼ �2
0

�� is the one-atom cooperativity

parameter and F ¼ �c
2�L the cavity finesse. Small decoher-

ence due to atomic momentum diffusion, �at

G � 1, requires

a large cooperativity parameter

C � �

4�
: (4)

Finally, thermal decoherence depends on the ambient tem-
perature T of the membrane. It is important to note that
there is a natural lower limit for the temperature T which is
set by light absorption inside the membrane. If we assume
the cavity finesse to be limited by absorption, the power
absorbed by the membrane is Pa ’ 2�

F Pc for an overall

circulating power Pc ¼ @!1c�
2

L in the two cavity modes.

Such an amount of absorbed power will cause an increase
of the membrane temperature �T ’ 1

kB�th
Pa, where �th is

the thermal link of the membrane to its supporting frame
which depends on the specific geometry and material
properties [14]. While it is not entirely clear how this
heating exactly affects the vibrational mode in question,
a safe assumption is an equal increase in temperature. For
typical parameters (see below), �T corresponds to a few
kelvin, so that standard cryogenic precooling allows one to
reach T ’ �T. Under these fairly cautious assumptions we

can expect a small thermal decoherence �m

G � 1 as long as

8r2

�2

�th

�m

@!1

Mc2
F 2 � �

�
: (5)

Remarkably, this is independent of circulating power and
only implicitly depends on temperature through �th [15].
Together, Eqs. (3)–(5) ensure the set of conditions for

strong couplingG � ��
c ;�at;�m. Note that the intracavity

amplitude � and therefore the absolute time scale of the
system are not fixed by Eqs. (3)–(5). These equations
actually impose conditions on the properties of the system
at the single photon level. The necessary cavity amplitude
�, and with it the absolute time scale of the dynamics, will
finally follow from the resonance condition !at ¼ !m.
Example.—We will show now that the interaction be-

tween a single Cs atom and a SiN membrane of small
effective mass M ¼ 0:4 ng mediated by a high-finesse
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optical microcavity can enter the strong coupling regime.
First, we assume a large cavity finesse of F ’ 2	 105,
which is consistent with a measured value of ImðnÞ ’ 1	
10�5 for the absorption in a SiN membrane inside a cavity
[16]. A small cavity waist of w0 ¼ 10 �m results in a

cooperativity parameter of C ¼ 140. A ratio of �
� ’ 18

satisfies Eqs. (3) and (4). Second, for the mass ratio of m
M ¼

6	 10�13 and an amplitude reflectivity r ¼ 0:45, we
choose a ratio �

� ’ 450 in order to approximately satisfy

the second condition in (3) and at the same time to ease
requirements for condition (5). Third, from the data mea-
sured in [15] we infer a value of kB�th ’ 10 nW=K for the
dimensions of the membrane ð100 �m	 100 �m	
50 nmÞ ¼ ðl	 l	 dÞ required here. A mechanical quality
factor of Q ¼ 107 and a resonance frequency !m ¼ 2�	
1:3 MHz set the left-hand side of Eq. (5) to �45. Finally,
the resonance condition !at ¼ !m demands a circulating
power Pc ’ 850 �W which will cause heating of &2:5 K
for the given thermal link. We assume the driving laser to
be shot noise limited in intensity at the relevant sideband
frequencies !m; 2!m and to have kHz linewidth, in order
to avoid FM to AM conversion of frequency noise [11].
This is readily achieved at the optical frequencies and �W
driving power required here. In order to make a statement
about the absolute time scales of the dynamics, we still
need to fix the cavity length. For L ¼ 50 �m we find a
cavity-mediated coupling G ’ 2�	 45 kHz and decoher-
ence rates �c;�m;�at ’ 0:1G. It is thus indeed possible to
enter the strong coupling regime with state-of-the-art ex-
perimental parameters.

While being a surprising result on its own, entering the
regime of strong coupling holds promise for diverse appli-
cations, including for preparation and readout of quantum
states of mesoscopic massive oscillators. In the regime
!m ¼ !at � G, where the rotating wave approximation
can be applied in Eq. (1), the effective dynamics is de-

scribed byHI ’ Gðamayat þ H:c:Þ in the interaction picture.
This interaction swaps the state of the atom and the mem-
brane after a time Gt ¼ �

2 . Thus, states which are easily

created on the side of the atom (e.g., squeezed or Fock
states) can be transferred to the membrane. In Fig. 2 we
study such a transfer of a squeezed state based on the exact
solution of the master equation in Eq. (2). The figure also
illustrates the importance of limiting the loss in order to
achieve quantum state transfer or readout. The general
analysis provided here shows that condition (5) is the
principal bottleneck for a reduction of losses. In particular,

the ratio �thF 2

�mM
might be further increased by improving

material properties and nanostructuring, though there will
always be an apparent trade off between good mechanical
isolation and a large thermal link. Another rather obvious
route for improvement is to use a small ensemble of N

atoms trapped inside the cavity [17–19], resulting in a
ffiffiffiffi
N

p
enhancement of the atom-cavity coupling. However, our

main point here is to identify the general conditions for
achieving strong coupling of a single atom to a massive
mechanical oscillator, and to demonstrate that it is possible
to meet these conditions with state-of-the-art systems.
Support by the Austrian Science Fund through SFB

FOQUS, by the IQOQI, by the European Union through
project EuroSQIP, by NIST and NSF, and by the DFG
through NIM, SFB631, and the Emmy-Noether program
is acknowledged. M.W., K.H., P. Z., and J. Y. thank
H. J. K. for hospitality at Caltech.

[1] A. Schliesser et al., arXiv:0901.1456v1.
[2] S. Groeblacher et al., arXiv:0901.1801v1.
[3] F. Marquardt and S.M. Girvin, arXiv:09050566.
[4] L. Tian and P. Zoller, Phys. Rev. Lett. 93, 266403 (2004).
[5] P. Treutlein et al., Phys. Rev. Lett. 99, 140403 (2007).
[6] N. Lambert et al., Phys. Rev. Lett. 100, 136802 (2008).
[7] P. Rabl et al., Phys. Rev. B 79, 041302 (2009).
[8] C. Genes et al., Phys. Rev. A 77, 050307 (2008).
[9] S. Singh et al., Phys. Rev. Lett. 101, 263603 (2008).
[10] J. D. Thompson et al., Nature (London) 452, 72 (2008).
[11] R. Miller et al., J. Phys. B 38, S551 (2005).
[12] We assume that losses to other levels can be excluded.
[13] For wave numbers k1;2 ¼ 1

2 ðk� �kÞ the intensity extrema
fulfill k tanðkxÞ ¼ ��k tanð�kxÞ. Points where �kx ’ n�
fulfill 	ð �xatÞ; �ð �xatÞ ’ 1.

[14] �th is chosen here such as to have dimensions of Hz.
[15] B. L. Zink and F. Hellman, Solid State Commun. 129, 199

(2004).
[16] D. J. Wilson, C. A. Regal, S. B. Papp, and H. J. Kimble (to

be published).
[17] Y. Colombe et al., Nature (London) 450, 272 (2007).
[18] K.W. Murch et al., Nature Phys. 4, 561 (2008).
[19] F. Brennecke et al., Science 322, 235 (2008).

FIG. 2 (color online). (a) Wigner functions of atom and mem-
brane (upper and lower panels, respectively). At t ¼ 0 (left-hand
panels) the atom is in a squeezed state (9 dB) and the membrane
in a thermal state with a mean number of phonons �n ¼ 5. An
exact solution of the equation of motion (2) with losses � ¼
�c;�m;�at at rate � ¼ 0:1G shows that after a time Gt ¼ �

2

(right-hand panels) the states are exchanged, up to a trivial
rotation in phase space by 90
. (b) Squeezing transferred to
membrane (maximized over time), versus loss rate �, for the
indicated values of initial atomic position fluctuations.
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