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We propose a new light source based on having alkaline-earth atoms in an optical lattice collectively

emit photons on an ultranarrow clock transition into the mode of a high Q resonator. The resultant optical

radiation has an extremely narrow linewidth in the mHz range, even smaller than that of the clock

transition itself due to collective effects. A power level of order 10�12 W is possible, sufficient for phase

locking a slave optical local oscillator. Realizing this light source has the potential to improve the stability

of the best clocks by 2 orders of magnitude.
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Time and frequencies are the quantities that we can
measure with the highest accuracy by far. From this fact
derives the importance of clocks and frequency standards
for many applications in technology and fundamental sci-
ence. Some applications directly relying on atomic clocks
are GPS, synchronization of data and communication net-
works, precise measurements of the gravitational potential
of Earth, radio astronomy, tests of theories of gravity, and
tests of the fundamental laws of physics.

With the advent of octave spanning optical frequency
combs [1,2] it has become feasible to use atomic transi-
tions in the optical domain to build atomic clocks. Optical
clocks based on ions [3] and ultracold neutral atoms con-
fined in optical lattices [4] have recently demonstrated a
precision of about 1 part in 1015 at 1 s and a total fractional
uncertainty of 10�16 [4] or below [3], surpassing the pri-
mary cesium microwave standards [5,6].

The state-of-the-art optical atomic clocks do not achieve
the full stability that is in principle afforded by the atomic
transitions on which they are founded. These transitions
could have natural line Qs of order 1018, exceeding the
fractional stability of the clocks by a factor of �100. The
main obstacle that prevents us from reaping the full benefit
of the ultranarrow clock transitions is the linewidth of the
lasers used to interrogate these transitions. These lasers are
stabilized against carefully designed passive high-Q cavi-
ties and achieve linewidths <1 Hz, making them the most
stable coherent sources of radiation. It is mainly the ther-
mal noise of the reference cavity mirrors that prevent a
further linewidth reduction [7] and substantially reducing
this noise is hard [8].

An elegant solution to these problems would be to
directly extract light emitted from the ultranarrow clock
transition [9]. That light could then be used as an optical
phase reference, circumventing the need for an ultrastable
reference cavity. Unfortunately, the fluorescence light
emitted on a clock transition is too weak for practical
applications. For instance, for 106 fully inverted 87Sr atoms
the power of the spontaneously emitted light is of the order
of 10�16 W.

The key observation that motivates this work is that if we
could coerce the ensemble of atoms to emit the energy
stored in them collectively rather than individually, the
resulting power of order 10�12 W would be large enough
to be technologically relevant. We show that such collec-
tive emission of photons can indeed be accomplished if the
atoms are located inside a high-Q cavity. The collective
interaction between atoms and cavity fields [10–13] as well
as lasers based on emission from microscopic atom
samples [14–17] are of great theoretical and experimental
interest in quantum optics.
Such a laser would operate in a strikingly different

regime from conventional lasers: the cavity relaxation
rate exceeds the atomic relaxation rates by many orders
of magnitude. This system is thus an extreme case of a bad-
cavity laser. Such bad-cavity lasers have been studied in
the past [18–20], although in those papers the separation of
time scales was not nearly as large as is considered here. In
the microwave domain masers are prime examples of a
bad-cavity laser. Also in the previous systems the cavity
field contains macroscopic numbers of photons while in
our system the field occupation number can be �1. The
extremity of the current system makes it necessary that we
revisit the foundations of the theory to obtain reliable
predictions. We will focus on the example of 87Sr confined
in a lattice potential to make the presentation clearer and
more concise. Our results however are general and can be
easily translated to other alkaline-earth-like atomic sys-
tems with similar structure.
The general setup is shown schematically in Fig. 1. We

consider N ultracold two level atoms with transition fre-
quency !a confined in an optical lattice. e and g corre-
spond to the two clock levels, 3P0 and 1S0 in 87Sr. The
atoms have a spontaneous decay rate � and we model all
inhomogeneous processes by an effective relaxation rate
T�1
2 for the atomic dipole. The laser transition is coupled to

a single mode of a highQ-optical resonator with resonance
frequency !c and linewidth �. We assume that the atoms
are held in place by the external optical lattice potential
exactly in such a way that all atoms couple maximally and
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with the same phase to the specific cavity mode. Repump-
ing lasers resonantly drive transitions from the 1S0 to the
3P1 transition and from there to the 3S1 state. The repump
lasers optically pump the atoms into the 3P0 and

3P2 states.

A Raman transition from 3P0 to 3P2 via 3S1 is used to

implement sideband cooling to the vibrational ground state
and to optically pump all atoms to the 3P0 state, thus

providing inversion for the laser transition. We summarize
all these repump steps by an effective repump rate w. We
have estimated ac Stark shifts incurred by these repump
and cooling lasers and we find that for repump rates up to
around w� 103 s�1 the ac Stark shift induced fluctuations
of the atomic transition frequency is negligible at the mHz
level, if the laser intensity is stabilized to 1%. With the
continuous cooling in place we are justified in assuming
that the atoms are in the ground state of the lattice.

A discussion of the relative and absolute magnitude of
the different rate constants is in order. For 87Sr, the line-
width of the doubly forbidden intercombination line is � �
0:01 s�1. The inhomogeneous lifetime in the most recent
generation of lattice clock experiments has been pushed
to T2 � 1 s [21]. The effective repump rate w can be
widely tuned from 0 to values of order 104 s�1 and beyond.
The cavity parameters enter the physics through the
cooperativity parameter C ¼ �2=ð��Þ, which is inde-
pendent of the length of the cavity. For definiteness we
consider a cavity with an effective mode volume Veff ¼
ð1 mmÞ�ð50 �mÞ2. Because of the extremely weak dipole
matrix element of the inter combination transition of order
10�5ea0, with e the electron charge and a0 the Bohr radius,
this leads to a vacuum Rabi frequency of order ��
37 s�1. In this setup the cavity decay rate is by far the
largest time scale. For a finesse of F ¼ 106 and the above
cavity parameters the cavity linewidth is � ¼ 9:4�
105 s�1, and thus C � 0:15.

The coupled atom-cavity system can be described by the
Hamiltonian

Ĥ¼@!a

2

XN
j¼1

�̂z
jþ@!câ

yâþ@�

2

XN
j¼1

ðây�̂�
j þH:c:Þ: (1)

In this formula, � ¼ @
�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@!c=ð2�0VeffÞ

p
, �0 the vacuum

permittivity, and â and ây are bosonic annihilation and
creation operators for photons in the laser mode. We have
introduced Pauli matrices �̂z

j ¼ jejihejj � jgjihgjj and

�̂�
j ¼ ð�̂þ

j Þy ¼ jgjihejj for the jth atom.

We take the various decay processes into account by
means of the usual Born-Markov master equation for the

reduced atom-cavity density matrix �̂, d�̂=dt ¼ ði@Þ�1 �
½Ĥ; �̂� þL½�̂�, with the Liouvillian L½�̂�¼Lcavity½�̂�þ
Lspont:½�̂�þLinhom:½�̂�þLrepump½�̂�. The Liouvillian for

cavity decay is Lcavity½�̂�¼��=2ðâyâ�̂þ�̂âyâ�
2â�̂âyÞ, the spontaneous decay of the atoms is de-
scribed by Lspont½�̂� ¼ ��=2

P
N
j¼1ð�̂þ

j �̂
�
j �̂þ �̂�̂þ

j �̂
�
j �

2�̂�
j �̂�̂

þ
j Þ, and the Liouvillian for the inhomogeneous

lifetime is Linhom:½�̂� ¼ 1=ð2T2Þ
P

N
j¼1ð�̂z

j�̂�̂
z
j � �̂Þ. The

Liouvillian for the repumping is identical to that for
the spontaneous decay with the replacements � ! w,
�̂�

j ! �̂þ
j , and �̂þ

j ! ��
j .

An important aspect of this system that is born out by the
master equation is that the coupling of the atoms to the
light field is completely collective. The emission of pho-
tons into the cavity acts to correlate the atoms with each
other similar to the case of ideal small sample superra-
diance [22,23], leading to the buildup of a collective di-
pole. The locking of the phases of the dipoles of different
atoms gives rise to a macroscopic dipole that radiates more
strongly than independent atoms. The macroscopic dipole
is also more robust against noise from decay processes and
repumping, leading to a reduced linewidth.
We have verified that the system settles to steady state

much faster than the anticipated total operation time, pro-
vided that the repump rate is not too close to the laser
threshold derived below. For the representative example
parameters used below, the relaxation oscillations decay
after a time &1 s while the total operation time will typi-
cally be >1 min . We therefore focus entirely on the
steady state behavior in this Letter. To find the steady state
we introduce a cumulant expansion to second order for the
expectation values of system observables [24]. We denote
raw expectation values by h. . .i and cumulant expectation
values by h. . .ic. In our model all expectation values, cu-
mulant or raw, are completely symmetric with respect to
exchange of particles, for instance h�̂z

jic ¼ h�̂z
1ic and

hây�̂�
j ic ¼ hây�̂�

1 ic for all j, h�̂þ
i �̂

�
j ic ¼ h�̂þ

1 �̂
�
2 ic for

all i � j, etc. In this formalism where we explicitly keep
track of higher order correlations, the total phase invari-
ance of the system is not broken and we have hâi ¼ hâyi ¼
h�̂�

1 i ¼ 0. The only nonzero cumulant of the first order is
then the inversion h�̂z

1ic ¼ h�̂z
1i. This cumulant couples to

second order cumulants through the atom-field coupling,

dh�̂z
1ic

dt
¼ �ðwþ �Þðh�̂z

1ic � d0Þ
þ i�ðhây�̂�

1 ic � hâ�̂þ
1 icÞ; (2)

where d0 ¼ ðw� �Þ=ðwþ �Þ. The atom-field coherence
hây�̂�

1 ic evolves according to
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FIG. 1 (color online). (a) Experimental scheme and (b) the
level structure. The ultranarrow 3P0-

1S0 transition indicated by

the red arrow is the laser transition. The repumping lasers are
indicated by the blue arrows, spontaneous decay into the 3P
states by the gray arrow, and the Raman sideband cooling lasers
by the black arrows. The n quantum numbers indicate the
vibrational levels of 3P0 and 3P2.
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dhây�̂�
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¼ �
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2
þ 1
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2
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�
hây�̂�

1 ic

þ i�

2

�
hâyâ�̂z

1ic þ hâyâich�̂z
1ic
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1ic þ 1

2
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1 �̂
�
2 ic

�
; (3)

where � ¼ !c �!a. We have estimated the third order
cumulant in square brackets to be much smaller than the
other terms and therefore neglect it. The second and third
terms represent the exchange of energy between cavity
field and a single atom. They are noncollective in nature.
The last term describes the coupling of the atom-field
coherence to the collective spin-spin correlations which
locks the relative phase between atoms and field to the
phase of the macroscopic atomic dipole.

The spin-spin correlations evolve according to

dh�̂þ
1 �̂

�
2 ic

dt
¼ �ðwþ �þ 2T�1

2 Þh�̂þ
1 �̂

�
2 ic

þ�h�̂z
1ic

2i
½hây�̂�

1 ic � h�̂þ
1 âic�; (4)

where we have dropped the small third order cumulants of
the type hây�̂z

1�̂
�
2 ic. To close the set of equations we also

need the equation for the mean photon number,

dhâyâic
dt

¼ ��hâyâic þ N�

2i
ðhây�̂�

1 ic � h�̂þ
1 âicÞ: (5)

We consider the steady state of this system for the case
� ¼ 0 by setting the time derivatives in Eqns. (2)–(5) to
zero. The resulting algebraic equations can be solved ex-
actly. Simple approximate results can be obtained in cer-
tain limits on which we will focus in our discussion to
explain the underlying physics. The numerical results re-
produced in the figures are based on the exact solutions and
agree well with the approximate treatment.

Our first goal is to understand the role of the collective
effects. Neglecting all decay constants but � in Eq. (3),
keeping only the collective term proportional to h�̂þ

1 �̂
�
2 ic,

and approximating N � 1 � N we find for the atom-field
coherence in steady state hây�̂�

1 i ¼ iN���1h�̂þ
1 �̂

�
2 ic.

Inserting this result into the steady state equation for the
inversion determines the saturated inversion and plugging
that and hây�̂�

1 i into the steady state equation for the spin-
spin correlations yields the central equation

0¼h�̂þ
1 �̂

�
2 ic

�
��þd0N�C�2

N2�2C2

wþ�
h�̂þ

1 �̂
�
2 ic

�
; (6)

where � ¼ �þ wþ 2=T2 is the total relaxation rate of the
atomic dipole. The solution for h�̂þ

1 �̂
�
2 ic corresponding to

the term in parenthesis is the physically stable solution.
The laser threshold is the pump rate at which the gain
d0N�C overcomes the losses �. In the limit �=ð�NCÞ !
0 this condition turns into w> �. At threshold the pump
overcomes the atomic losses which is in contrast to con-

ventional lasers where threshold is obtained when the
pump overcomes the cavity losses.
At threshold the spin-spin correlations change sign sig-

nifying the onset of collective behavior. Interestingly, the
spin-spin correlations change sign again at a larger pump
rate above which the atoms return to normal noncollective
emission. This upper threshold comes about because d0
eventually saturates at 1 while the pump induced noise
grows with w. Setting d0 ¼ 1 and neglecting all atomic
noise sources other than w we find for the maximum pump
rate

wmax ¼ NC�: (7)

Above this threshold the pump noise destroys the coher-
ences between different spins faster than the collective
interaction induced by the light field can establish them.
A minimum number of particles is necessary to have

collective behavior. Below this critical number, h�̂þ
1 �̂

�
2 ic

is never positive and hence the spin-spin correlations are
never collective. The critical particle number can be esti-
mated from Eq. (6). Assuming T2� � 1, we find Ncrit ¼
2=ðC�T2Þ. Physically, this equation means that there must
be enough particles for the system to be in the collective
strong coupling regime.
The collective versus noncollective behavior is nicely

illustrated by the outcoupled laser power as a function of w
and N (Fig. 2). Above threshold the outcoupled power
rapidly increases until the collective dipole is destroyed
at the second threshold wmax.
Equation (6) also allows us to determine the maximum

spin-spin correlation of h�̂þ
1 �̂

�
2 ic ¼ 1=8 which is obtained

for the pump rate wopt ¼ NC�=2. At this pump rate the

laser power reaches its maximum of

Pmax ¼ @!aN
2C�=8: (8)

The scaling of that power with the square of the number of
atoms underlines the collective nature of the emission.

10 3 10 210 1 1 101 102 103
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w s 1
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wmax 10 21

10 18
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10 12
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FIG. 2 (color online). Power as a function of pump rate w and
atom number N. The rapid buildup of power above threshold
w� � can be seen as well as the decrease of emitted power for
too strong a pump. The dashed line shows the boundary of the
region of collective emission as determined by the zero of the
term in parenthesis in Eq. (6). Here, � ¼ 0:01 s�1, 1=T2 ¼
1 s�1, � ¼ 37 s�1, and � ¼ 9:4� 105 s�1.
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Remarkably, this power is only a factor of 2 smaller than
the power expected for perfect superradiant emission from
the maximally collective Dicke state at zero inversion.
Figure 2 shows that an outcoupled power of order
10�12 W is possible with 106 atoms.

From the perspective of potential applications the most
striking feature of this laser is its ultranarrow linewidth. To
find the spectrum we use the quantum regression theorem
to find the equations of motion for the two time correlation
function of the light field hâyðtÞâð0Þi. This correlation
function is coupled to the atom-field correlation function
h�̂þðtÞâð0Þi. Factorizing h�̂zðtÞâyðtÞâð0Þi � h�̂zðtÞi�
hâyðtÞâð0Þi we arrive at the closed set of equations

d

dt

hâyðtÞâð0Þi
h�̂þðtÞâð0Þi

" #
¼ ��=2 iN�

2

� i�h�̂zic
2 ��=2

" #
hâyðtÞâð0Þi
h�̂þðtÞâð0Þi

" #
:

(9)

The initial conditions are the steady state solutions dis-
cussed above. Laplace transforming the solutions yields
the spectrum which is Lorentzian with linewidth �	 for
!a ¼ !c.

For our example parameters �	 is shown in Fig. 3. The
leftmost dashed line in that figure is � corresponding to the
threshold for collective behavior. When the pump strength
w passes through that threshold the linewidth gets rapidly
smaller with increasingw. Whenw reaches 1=T2, indicated
by the second dashed line, essentially all atoms are phase
locked together. From that point on the pump noise due to
w grows in proportion to the size of the collective spin
vector. Therefore the linewidth is approximately constant.
Making similar approximations as in the steady state cal-
culations we obtain the estimate for the minimum laser
linewidth, �	 ¼ C�. That estimate agrees well with our
numerical results. It is important to note that the parame-
ters for achieving the maximum outcoupled power Eq. (8)
and the minimum linewidth are compatible with each
other. For our example parameters the estimate yields a
linewidth smaller than the homogeneous linewidth of the
atomic clock transition. We have studied the dependence of
the laser frequency on the atom-cavity detuning and we
find that this narrow linewidth can be observed if the cavity
resonance frequency is stable at the 1 kHz level which is
relatively easy to achieve experimentally. When w in-

creases beyond wmax, indicated by the third dashed line,
the collective dipole is destroyed and the linewidth in-
creases rapidly until it is eventually given by w.
Future research is targeted at fully understanding the

recoil effects and the detailed nature of the joint atomic and
field state.
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FIG. 3 (color online). (a) Linewidth vs
w and N. The white dashed lines indicate
(from left to right) the spontaneous de-
cay rate �, the inhomogeneous relaxa-
tion rate 1=T2, and the maximum pump
rate wmax [Eq. (7)]. Parameters as in
Fig. 2. (b) is a cut through (a) for N ¼
106 atoms.
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