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Evaluation of heating effects on atoms trapped in an optical trap
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We solve a stochastic master equation based on the theory of Savardet al. @T. A. Savard, K. M. O’Hara, and
J. E. Thomas, Phys. Rev. A56, R1095 ~1997!# for heating arising from fluctuations in the trapping laser
intensity. We compare with recent experiments of Yeet al. @J. Ye, D. W. Vernooy, and H. J. Kimble, Phys.
Rev. Lett.83, 4987~1999!#, and find good agreement with the experimental measurements of the distribution
of trap occupancy times. The major cause of trap loss arises from the broadening of the energy distribution of
the trapped atom, rather than the mean heating rate, which is a very much smaller effect.

PACS number~s!: 42.50.Ct, 32.80.Pj, 32.80.Lg, 42,50.Lc
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In a far-off-resonance red-detuned trap, the effective
tential of the trapped atom can be written

V~x!52 1
4 auE~x!u2, ~1!

wherea is the atomic polarizability andE(x) is the slowly
varying field amplitude@1,2#. Following @1#, the heating can
be modeled using a Hamiltonian for a trapped atom of m
M of the form

H5
p2

2M
1 1

2 Mv tr
2@11e~ t !#x2, ~2!

which leads to transition probabilities between trap levels
the form

Rn62←n5
pv tr

2

16
Se~2v tr!~n1161!~n61!. ~3!

In these equations,e(t) is a fluctuating quantity, whose spe
trum is

Se~v![
2

pE0

`

dt cos~vt!^e~ t !e~ t1t!&. ~4!

From these transition probabilities, in follows that the tim
dependent probabilityP(n) that asingle atomis in thenth
level of the trap under the influence of the fluctuation fie
satisfies the stochastic master equation

Ṗ~n!5
Ge

8
$~n12!~n11!P~n12!1n~n21!P~n22!

2@n~n21!1~n12!~n11!#P~n!% ~5!

with the rate constant

Ge[p2n tr
2Se~2n tr!. ~6!
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As shown in@1#, this constant is equal to themean heating
rate, defined as the rate of increase of the level number~pro-
portional to the energy! of the atom in the trap, i.e.,

d^n&
dt

5Ge^n&. ~7!

It should be noted, however, that this heating rate arise
the difference Rn12←n2Rn22←n , in which the quadratic
terms cancel. Ifn is significantly different from zero—
perhaps about 50 in@3#—the positive and negative contribu
tions to the heating rate will both be very much larger th
the heating rate itself. Thus the result of the heating proc
will be principally to spread the distribution over the ener
levels, superimposed on a much slower increase in the a
age energy according to Eq.~7!. In fact, the principal time
constant for the growth ofs, the standard deviation ofn, is
3Ge/2.

The principal effect of the heating in the experiment of@3#
is to expel the atom from the trap, and in general this w
occur not as a result of the increase of the average ene
but rather as a result of the rapid spreading of the width
the distribution, so that the upper part spreads into untrap
levels.

The three-dimensional trap used in@3# was sinusoidal lon-
gitudinally and had a Gaussian form radially. Approximati
both of these by harmonic fluctuation traps, it was found
measuring the fluctuation spectrum that

1/Ge
radial'830 ms, ~8!

1/Ge
axial'23 ms. ~9!

We may safely neglect the much slower radial heating, a
treat the trap as one dimensional. The trap depth corresp
to some 100 levels, so we will model the escape process
truncating the master equation to the first 100 levels—o
the atom leaves this range it is assumed not to return.
equation is easy to solve. As an initial condition, we assu
the atom is evenly distributed between the levelsN0 and
N011, with 0<N0,100. The results of a simulation with
N0545 are shown in Fig. 1. The very rapid spreading of t
probability distribution from its initially sharply peaked form

-
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FIG. 1. Evolution of the probability distributionP(n). ~a! Plotted on a short time scale, it can be seen that the heating spreads the
sharp distribution in less than 2 ms to cover nearly the full height of the trap;~b! over the full time scale of the experiment losses contin
at a steady rate.The heating rate used is 1/Ge51/Ge

axial523 ms.
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is very clear. In fact very little difference results if a le
sharply peaked initial distribution is used, even for a width
about 20 levels. The probability that the atom remains in
trap is plotted in Fig. 2~a!, and this fits the experimental da
remarkably well. However, the result is not exponenti
though there is a strong similarity. Points to note are
following. ~1! From Fig. 1 and Fig. 2 it can be seen that
population aroundn50 is rapidly produced, and this decay
very slowly, because the relevant transition probabilities
very small. That this is not observed in practice may be
result of the existence of other heating mechanisms.~2! The
heating rateGe does correctly give the time scale of th
heating process, even though the details of the heating
cess are not themselves well summarized by Eq.~7!.

To counter this heating effect one can conceive of int
ducing some kind of laser cooling. One would expect t

FIG. 2. ~a! Solid line: Computed probability for the atom t
remain trapped when the initial mean excitation is the 45th leve
heating rate as in Fig. 1 Points: experimental data from@3#; dashed
line: exponential fit to data.~b! Solid line: mean excitation of an
atom remaining in the trap; dashed line: standard deviation of
excitation.
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provided the cooling time is sufficiently smaller than th
heating time, one should be able to ensure that the a
remains trapped. We can model cooling by use of a stand
master equation coupling to a heat bath, such as in@4#, which
would give an additional contribution to the stochastic m
ter equation~5!:

Ṗ~n!ucool5Gcool$~N̄11!@~n11!P~n11!2nP~n!#

1N̄@nP~n21!2~n11!P~n!#%. ~10!

In this equation the effective temperature of the heat bat
determined by the mean excitationN̄ that the bath acting by
itself would produce in the trap, andGcool is the inverse
cooling time. Adding this cooling term to the heating fro
Eq. ~5!, we see in Fig. 3 that the cooling very rapidly cou
teracts the heating. However, in Fig. 4 we note that ev

e
FIG. 3. Evolution of the probability distributionP(n) with both

heating and cooling. The heating rate used is 1/Ge51/Ge
axial

523 ms, and the cooling rate isGcool52 ms.
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with quite strong cooling, corresponding to 1/Gcool'2 ms,
the probability of remaining in the trap after 60 ms is on
90%. By solving the equations using only the cooling p
~10!, it can be verified that most of the loss is in fact
residual effect of the heating.

However, we cannot ensure better trapping simply by
creasing the cooling rate, since the cooling has the effec

FIG. 4. ~a! Solid line: computed probability with both heatin
and cooling for the atom to remain trapped when the initial me
excitation is the 45th level—heating and cooling rates as in Fig
Points: experimental data from@3#; dashed line: exponential fit to
data.~b! Solid line: mean excitation of an atom remaining in t
trap; dashed line: standard deviation of the excitation when b
heating and cooling are present.
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cooling to a certain residual temperature, and at any nonz
temperature there will always be some probability of esc
ing from the trap, even in the absence of the heating eff
Increasing 1/Gcool at fixed N̄ ~i.e., fixed temperature! is
equivalent to reducing the time scale of the dynamic p
cesses involved. Once the cooling is fast enough to ov
whelm the heating, any further increase will simply speed
the residual process of trap loss. The only way to get m
effective confinement is then to reduce the temperature
which one cools. With this model of cooling and withN̄
510, one finds that the best confinement is obtained w
1/Gcool'1 ms, although this is only marginally better tha
the case of 1/Gcool'2 ms shown in the figures.

Note that N̄510 corresponds to a temperatureT
'240 mK, or twice the Doppler cooling limit for cesium
Indeed, in this trap the zero point energy is roughly 12mK,
which is achievable using polarization gradient cooling.

In conclusion one should bear in mind that the model o
truncated harmonic trap is very crude. In the case conside
here the noise is of the order of 20% of the signal, wh
means that the validity of the perturbation theoretic calcu
tion used by@1# to derive the transition probabilities~3! will
also be marginal at best. However, the only realistic alter
tives to this very simple picture would involve extensiv
numerical work, such as direct simulation of a stochas
differential equation, or detailed computations of spectra a
matrix elements for the appropriate potential.
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