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Detailed Analysis of Coherence Collapse in 
Semiconductor Lasers 

Hua Li, Member, IEEE, Jun Ye, and John G. McInerney, Member, IEEE 

Absfruct-Experimental and theoretical studies of coherence 
collapse in GaAs/AlGaAs laser diodes with weak optical feed- 
back show two distinct routes to chaos. In each case we observe 
undamped relaxation oscillations, then external cavity mode 
beating, and finally coherence collapse. When there is fre- 
quency locking between the relaxation oscillations and external 
cavity modes, a period doubling sequence is followed, other- 
wise the route to chaos is via quasiperiodicity . 

I. INTRODUCTION 
EMICONDUCTOR lasers are extremely interesting as S physical systems as well as very useful for engineering 

applications, and their dynamical properties have been 
studied intensively for several years. An especially im- 
portant problem is the dynamics of these lasers when sub- 
ject to external optical feedback. Optical feedback is 
highly effective in linewidth narrowing [l], [2] and mode 
selection [3], [4]. While single-mode diode lasers have 
free-running linewidths - 50-100 MHz at milliwatt out- 
put powers, use of relatively simple external cavities can 
reduce these linewidths to less than 1 MHz. Using anti- 
reflection coatings and grating external cavities can give 
linewidths as narrow as 10 kHz [5]. Optical feedback- 
induced dynamics can also occur inadvertently, and it is 
essential to allow for these effects in designing real sys- 
tems [6], [7]. 

External cavity lasers are prone to exhibit various in- 
stabilities [8], of which the most common is coherence 
collapse, a sudden and catastrophic broadening of the li- 
newidth to - 10 GHz as the external cavity coupling (i.e., 
the degree of optical feedback) is increased [ 11, [9]-[14]. 
This occurrence is obviously deleterious for most practi- 
cal applications, although it may actually be useful in sup- 
pressing coherent backscatter and speckle effects, for ex- 
ample in optical disk information storage. At high 
feedback levels (- 10% in power) if the system is oper- 
ated close to the kink found just below the isolated laser 
threshold, the laser is dominated by the external cavity, 
under these conditions there are several distinct and qual- 
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itatively different phenomena which could also legiti- 
mately be collectively described as coherence collapse, 
including subharmonic bifurcation [ 151, self-pulsation 
[16], intermittent behavior [ 171 and “staircase fluctua- 
tions” involving>random power drops followed by step- 
wise recoveries [18], [19]. We shall use the term “co- 
herence collapse” in this paper exclusively to describe the 
feedback-induced catastrophic line broadening in a single 
transverse and longitudinal mode semiconductor laser op- 
erating well above the isolated laser threshold (20-100 %), 
when less than 0.1 % of the output power is coupled back 
from a simple plane mirror located at - 10 cm from the 
laser. Because of the minute amounts of feedback in- 
volved, there is no significant difference between the iso- 
lated and external cavity laser thresholds. 

In this paper we present the results of detailed theoret- 
ical and experimental analyses whose primary purpose is 
to examine carefully the sequence of events which occurs 
as coherence collapse develops, to learn the underlying 
mechanisms, and to characterize the coherence-collapsed 
state. We are particularly interested in establishing be- 
yond reasonable doubt whether coherence collapse is a 
stochastic or deterministic (chaotic) phenomenon. Al- 
though several authors have suggested that the coherence 
collapsed state is chaotic [lo], [ 131, [ 141, the coherence 
collapsed semiconductor laser has been analyzed with 
some success by a variety of rate equation models includ- 
ing coherent feedback without noise [ 131, injection lock- 
ing [20] and stochastic contributions [21]-[23]. More- 
over, the issue has not been proven by calculation of 
characteristic dimensions [24] or other accepted means. 
Apart from its intrinsic theoretical significance, the an- 
swer to this question will determine how to eradicate or 
exploit coherence collapse. Section I1 describes our ex- 
perimental results, while Section I11 describes our rate 
equation model. In Section IV we present experimental 
and theoretical results and make detailed comparisons be- 
tween them. We also present the outcomes of calculations 
to determine the influence of noise on the coherence-col- 
lapsed state. Section V contains some discussion and con- 
clusions. 

11. EXPERIMENTAL OBSERVATIONS 
The experimental arrangement used (Fig. 1) was essen- 

tially identical to those employed in previous observations 
of coherence collapse: a GaAs / AlGaAs double-hetero- 
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Fig. 1 .  Experiment arrangement. 

junction laser diode (Hitachi HLP1400) with built-in lat- 
eral index guiding via the channeled substrate planar 
structure was placed in an external cavity formed by an 
antireflection-coated collimating lens and a high reflectiv- 
ity plane mirror which reflected a portion of the output 
light back into the active region of the laser diode. The 
free-running laser diode oscillated in a single longitudinal 
and transverse mode at a wavelength close to 830 nm, 
although a tendency toward multiple diode mode opera- 
tion was common under external feedback. No facet coat- 
ings were applied to the laser chip. A stabilized current 
source and temperature control were used to ensure in- 
trinsic stability of the laser pumping: the absolute fre- 
quency drift was less than 100 MHz/min at all times dur- 
ing the experiments. The fraction of light coupled back 
into the laser was controlled by an attenuator consisting 
of a half-wave plate sandwiched between a pair of linear 
polarizers. A solid quartz etalon of free spectral range - 1 
THz and finesse -30 was inserted to force the laser to 
oscillate in a single longitudinal mode of the diode cavity 
(which contained many external cavity modes spaced by 
a frequency veXt, close to c/2Lext, where Lex, is the optical 
length of the external cavity). The bias current was set 
well above threshold, typically 1.2-2.0 Zth. Thus the nec- 
essary conditions for coherence collapse were estab- 
lished. 

To observe coherence collapse, the optical feedback 
was increased from zero, while intensity noise power 
spectra were measured using a fast p-i-n photodiode (An- 
tel AR-S2, 30 ps rise time) coupled to a microwave spec- 
trum analyzer (Tektronix 2755P, 21 GHz bandwidth), and 
optical spectra were measured simultaneously using a suite 
of three scanning Fabry-Perot interferometers. Two of 
these instruments were plane-plane cavities, with free 
spectral ranges of 2150 GHz and 11 GHz and finesses > 
100, enabling simultaneous observation of the overall 
laser diode ‘mode spectrum (which remained single lon- 
gitudinal mode throughout) and the fine side-band struc- 
tures induced by the relaxation oscillation and external 
cavity modes. The third scanning Fabry-Perot was a con- 
focal resonator with FSR 750 MHz and finesse 300, and 
was used to view narrowing of the laser linewidth at weak 
feedback levels. 

It was not possible to record meaningful time series or 
accumulate sufficient data for experimental determination 
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of correlation dimensions or similar dynamical parame- 
ters: for this purpose, we would require both a fast sam- 
pling interval (- 10 ps) and a large data set (- 10’ points) 
[35], a task which is beyond the limitations of currently 
available equipment. 

Fig. 2 and Fig. 3 show the evolution of the laser dy- 
namics with increasing optical feedback. In the absence 
of external feedback, the laser usually operated in a single 
longitudinal mode. The intensity noise power spectrum 
featured a small perturbation around the relaxation oscil- 
lation peak frequency vR, indicating damped oscillation. 
vR was easily identified by its strong dependence on the 
injection current. As the feedback was increased from 
zero, we initially observed linewidth narrowing, followed 
by the appearance of a sharp peak at vR (or equivalently 
of sidebands situated a distance vR on each side of the 
main peak in the optical spectrum). With further increase 
of the feedback fractionf,,, from the external mirror, we 
observed external cavity mode beating features spaced by 
veXt: these were easily identified by their dependence on 
the cavity length. Nonlinear interaction occurred between 
the relaxation oscillation and external cavity mode beat- 
ing with further increase infeXt culminating in the irregular 
state known as coherence collapse. These data agree gen- 
erally with the reported measurements of Dente et al. [ 131 
and of Mglrk et al. [14]. However, the details of this in- 
teraction differed according to whether there was an in- 
teger relation between the external cavity mode spacing 
vext and the relaxation oscillation resonance peak vR. 

Fig. 2 shows measured RF intensity power spectra in 
the usual situation where there is no integer ratio between 
vext and vR; the pump current is held constant ( z / z t h  = 
1.59) at fixed external cavity length (15.5 cm), while the 
feedback fraction fext from the external mirror was in- 
creased. The initial feedback-induced undamping of the 
relaxation oscillation and external cavity mode beating 
gives way to a complicated spectrum in which both the 
main laser oscillation peak and the relaxation oscillation 
sidebands are modulated by external cavity modes, with 
peaks at frequencies such as vR-6vext becoming evident. 
Here the interaction between veXt and vR is that of normal 
quasiperiodic mixing, and the coherence-collapsed state 
appears to be a chaotic one attained via a quasiperiodic 
route as surmised by Mglrk et al. This conjecture will be 
examined further in Section IV. 

Fig. 3 shows measured intensity noise and optical spec- 
tra as & was increased but this time the external cavity 
mode spacing vext was held equal to an integer sub-mul- 
tiple of the relaxation oscillation resonance peak vR by 
judicious fine adjustments of the pump current and cavity 
length. (Here the current was nominally 1.39 Ith while the 
external cavity length was 9.0 cm.) In this special case 
we observed peaks at vext, veXt /2, vext /4 appearing se- 
quentially with increasing feedback, followed by the 
catastrophically broadened laser linewidth and broadband 
intensity noise spectrum characteristic of coherence col- 
lapse. Period-8 oscillations were observed only tenta- 
tively, probably due to the presence of noise and the lack 



LI et al.: SEMICONDUCTOR LASERS 2423 

0 

fext=l(arb.) iVR 

d I  b 
\ 

amplifier noise 

+ f  5.5GHz 
Fig. 2. Measured power spectra of intensity noise showing a quasiperiodic 

sequence to chaos. I / I , h  = 1.59, Le,, = 15.5 cm. 

of long-term stability in these experiments. The sidebands 
in the optical spectra are clearly asymmetric about the las- 
ing frequency. From these results it is clear that the co- 
herence collapsed state was reached via a period-doubling 
route, again suggesting the onset of deterministic chaos. 
This is the first observation of period doubling in an ex- 
ternal cavity semiconductor laser and will be considered 
in detail in the next section. 

In several long-term experiments on coherence collapse 
we observed predominantly the quasiperiodic route. The 
pure period-doubling route to chaos occurred only by 
careful selection of parameters. Although it was possible 
to observe period-doubling at fixed pump current and ex- 
ternal cavity length, it was much more easily and clearly 
observed by fine-tuning the current or cavity length while 
increasing the feedback level. We also determined the 
usual quasiperiodic mixing process to be punctuated by 
regions of frequency locking between vext and vR, al- 

Fig. 3.  Measured period-doubling sequence to chaos. (1 )  Power spectra of 
intensity noise; (2) Optical spectra. I / I &  = 1.38, Le,, = 9 cm. 

though these regions were narrow and fragile and required 
careful observation. In the vicinity of these tentative fre- 
quency locking events, there was evidence of frequency 
pulling between vext and vR. 

One probable consequence of this behavior is the ex- 
istence of hybrid processes involving mostly quasiperiod- 
icity but including windows with weak frequency locking 
or pulling, sometimes a single period-doubling bifurca- 
tion. These effects were manifested by the appearance of 
peaks spaced by vext /2 and vext /4 at relatively high feed- 
back levels close to coherence collapse. We also observed 
combination tones such as ~ ~ - 6 . 5 ~ ~ ~ ~  in the noise power 
spectrum (cf. Fig. 2), and again the process culminated 
in a seemingly chaotic coherence-collapsed state. 

The external cavity length exerted a weak influence on 
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the qualitative nature of coherence collapse: the effect dis- 
appeared as Le,, is made very small. In general, for shorter 
external cavities (a few cm) the onset of coherence col- 
lapse occurred at higher feedback levels regardless of the 
particular route followed. In our experiments, when the 
cavity length was less than -3  cm, even with the maxi- 
mum available feedback (i.e., the attenuator and the eta- 
lon removed from the external cavity) it was possible only 
to observe undamping of the relaxation oscillation; there 
was insufficient feedback to generate significant external 
cavity mode beating, and hence coherence collapse did 
not occur. When the external cavity length was increased 
to - 4  cm, with maximum feedback we observed the un- 
damped relaxation oscillation followed by emergence of 
the external cavity modes; in the absence of the intracav- 
ity etalon the system then tended toward mode hopping 
and multi-longitudinal mode operation, a tendency which 
increased with increasing cavity length. With the etalon 
in place, for cavity lengths from 6 cm to 50 cm, coherence 
collapse occurred in the same qualitative manner as de- 
scribed above, except that the feedback fractionf,,, at the 
onset of coherence collapse decreased as Le,, increased. 

111. THEORETICAL MODELING 
We have adopted the usual rate equations for semicon- 

ductor lasers with the same modifications as other authors 
to allow for the weak optical feedback, and additionally 
taking into account the intraband relaxation of charge car- 
riers and polarization within the conduction and valence 
bands via a finite saturation intensity for the laser gain per 
unit time 

(1) 
where I is the mode intensity in the laser resonator, and 
the saturation intensity I, is related to the intraband relax- 
ation times [26]. Go is the linear gain rate given as 

(2) 
where GN is the differential gain, N is the carrier popula- 
tion and No is the value of N when the laser material is 
optically transparent. For a single mode isolated laser the 
rate equations have the following form [27], [28] 

G = Go/(Z + Z / Z , ) 1 / 2  

Go = GN(N - No) 

(3) 

(4) 

(5 ) 
where 9 is the phase of the field and rp is the resonator 
loss rate which is defined as: 

r p  = Gth = GN(Nth - No) (6) 

J is the pump rate, 7, is the carrier life time. R,, is the 
spontaneous emission rate. a is the antiguiding parameter 
or linewidth enhancement factor which governs the cou- 
pling between the optical intensity and phase in the laser: 
it is the ratio of the carrier-induced changes in the real 
and imaginary parts of the susceptibility [32], [33], and 
is customarily approximated by a constant in dealing with 
single mode laser dynamics. Fr(t), F+(t)  and FN(t)  rep- 
resent the Langevin forces of spontaneous emission noise 
for intensity, phase and carrier population, respectively. 

It is clear that the optical phase is not coupled directly 
to the intensity I and carrier population N ,  so that the be- 
havior of the isolated laser diode can be described com- 
pletely by (3) and (5): the resulting two-dimensional space 
is insufficient to generate chaos. However, if we add op- 
tical feedback (or modulation, or light injection, or any 
of several other external stimuli) we have to expand the 
phase space, so the system can support many different rich 
dynamical phenomena. If the external cavity is weakly 
coupled so that it is sufficient to consider only one feed- 
back delay term [29]-[31], the rate equations become: 

- sin @7 + 9(t) - 9(t - 7))  + F*(t) (8) 

(9) 

where 7 is the feedback delay (i.e., the round trip optical 
delay time in the external cavity), W is the steady state 
laser frequency. K is given as 

where R is the facet reflectivity and T~ is the optical round 
trip delay in the laser diode resonator andf,,, is the frac- 
tion of the laser output power coupled by the external cav- 
ity. Clearly we now have three coupled rate equations, 
the trajectory of the system is described in a three-dimen- 
sional phase space and deterministic chaos is now possi- 
ble. 

Equations (7)-(9) can be written in the general abbre- 
viated form 
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TABLE I 
LASER PARAMETERS USED IN CALCULATIONS 

IV. RESULTS OF THEORETICAL SIMULATIONS 

G N  5.3 . 1 0 3 1 ~  
?p = Gth 5.8 . 101 / s  
TS 3.0 1 o - 9 j s  
Nth 7.56 . lo8 
NO 6.45 - lo8 
R*P 1.5 * IO'*/s 
I ,  (photons) 5.0 lo6 
R 0.32 

a 5.3 
TLD 7.5 . 10-12/s 

where &t) = ( I ( t ) ,  ow, ", h = (FAO, F,(t), 
FN(t))  andfis a nonlinear function describing the isolated 
laser and K * g is the nonlinear feedback term with delay 
time T and strength K .  The field feedback parameter K is 
tniquely specified by fext, T~~ and R as described by (10). 
F ( t )  is a Langevin force describing white noise driving. 
It is reasonable to take K as a critical or control parameter 
in determining the dynamical, behavior of the external 
cavity laser system; other parameters such as 7 ,  I,, J, etc. 
will be assigned different values to assess their influences. 
In our theoretical modeling based on the above equations, 
we take all parameter values (Rsp, GN, No, Nth, R, etc.) as 
close as possible to the values appropriate to the real 
GaAs/AlGaAs CSP single mode lasers used in the ex- 
periments (see Table I) [13], [27]. 

In our numerical modeling, we first calculated the time 
series of I @ ) ,  (9(t), N ( z )  by numerical integration of (7)- 
(9). The smallest time step in the integration was 7.5 ps 
which corresponded to a single round trip in the laser 
diode resonator. 70 000 data points were obtained and the 
first - 10 OOO points were discarded to avoid initial tran- 
sients; hence approximately 60 000 data points remained 
to analyze the system dynamics over a total time interval 
of about 0.5 p s A  The corresponding Fourier frequency 
range was several tens of gigahertz which more than cov- 
ered the bandwidth of the phenomena under study with a 
resolution - 2 MHz. 

Because the phase diffusion process causes difficulties 
in constructing trajectories in the phase space ( I @ ) ,  @(t) ,  
N ( t ) ) ,  it was convenient to transform these phase (9 (2) to 
the instantaneous deviation of the optical frequency from 
its steady state value using 

and instead to construct trajectories in the modified phase 
space ( I ( t ) ,  W ( t ) ,  N ( t ) ) .  Thus the time series of these three 
variables, the corresponding intensity noise power spectra 
and autocorrelation function were calculated. In addition, 
bifurcation plots, Poincan5 maps and correlation dimen- 
sions were obtained to provide further insights into the 
dynamics of the external cavity laser. The Langevin noise 
driving terms were switched on and off to determine the 
effects of realistic noise on the coherence collapse pro- 
cess. 

A. Period Doubling 

Initially we obtained stable steady state solutions by 
quenching the derivatives in the rate equations ((7)-(9)}, 
then used these steady state solutions as initial conditions 
for full numerical solutions of the time-dependent equa- 
tions without noise terms. Where multiple stable steady 
state solutions existed, the one with the smallest fre- 
quency deviation from the isolated laser frequency was 
chosen. Because the most novel result of our experiment 
is the observation of a period-doubling bifurcation se- 
quence to coherence collapse in a narrow parameter range, 
we checked a wide range of parameter values numerically 
to determine the regime in which period-doubling could 
be observed theoretically. Fig. 4 shows the results of these 
calculations: time series and noise power spectra of the 
intensity I (? ) ,  with Poincad maps and intensity autocor- 
relation functions. The Poincark maps were plotted on the 
plane of constant carrier population N .  

There is good agreement between theory and experi- 
ment. From Fig. 4 it is clear that as the feedback param- 
eter K increased, first the relaxation oscillation at fre- 
quency vR was undamped, followed by excitation of the 
external cavity modes spaced by vext. When vR was equal 
to an integer multiple of vext, period doubling was ob- 
served with fundamental period 1 / vex t :  the relaxation os- 
cillation was initially modulated by vext, then by vext/2 
and vext/4 sequentially. There is evidence of weak vext/8 
features in the power spectrum before the onset of coher- 
ence collapse with further increase in K as shown in Fig. 
4(E, G). Note also the existence of a window of regular 
oscillation (Fig. 4(F)) before full development of the co- 
herence-collapsed state. 

To examine this period-doubling behavior in more de- 
tail, we constructed a bifurcation plot corresponding to 
the calculations in Fig. 4. This was done by calculating 
the local peak values of the time series Z ( t )  and hence the 
envelope of the relaxation for a given K ,  then taking the 
local maxima of this envelope for this value of K .  The 
result is given as Fig. 5 in which the range of x covers 
the traces shown in Fig. 4. Again there is clear period 
doubling with fundamental period 1 / v e X t .  We note that 
the values of the Feigenbaum universal constant 6f and 
the relative scale of successive branch splittings 6 6  in this 
bifurcation plot differ from the predicted values 4.6692 
* - and 2.5029 - - - [34], a result which is hardly sur- 
prising because 6f and & are defined in terms of the 
asymptotic behavior of the bifurcation splitting, whereas 
in our system the last observable bifurcation is only to 
period-4. Moreover, the external cavity laser under in- 
vestigation is much more complicated than the usual sys- 
tems undergoing period-doubling for which universality 
has been shown to be valid: apart from the main control- 
lable feedback parameter K ,  there are several other vari- 
ables, such as the feedback delay time T and pump rate J, 
which also influence the real physical process. 
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- t  
Fig. 4. Calculated period-doubling route to chaos as K increased. ( I )  Time series of Z(t). (2) Power spectra of Z(t). (3) Poincad 
maps for constant carrier population. (4) Autocorrelation function of I ( r ) .  L,,, = 18 cm; a = 5.3; Z, = 5.0 * lo6 (photons); J 
= 3.25 * lO"/s (corresponding Z/Z,,, I 1.5). 
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Fig. 5 .  Bifurcation plot showing the period-doubling sequence of Fig. 4. 

B. Dimensionality Analysis of the Coherence-Collapsed 
State 

Our experiments and theory have demonstrated clearly 
the existence of period-doubling bifurcation and aperiodic 
behavior in coherence collapse. However, the conclusion 
that coherence collapse in this system is deterministic 
chaos which occurs through period-doubling has not been 
justified until a clear distinction is made between chaos 
and random noise. Strange or chaotic attractors are typi- 
cally characterized by fractal dimensions D2 which are 
smaller than the number of degrees of freedom [32], hence 
we expect a strange attractor in our three-dimensional 
phase space to show a fractal dimension between 2 and 3, 
in contrast to a purely stochastic process which fills the 
whole phase space and hence has dimension 3. 

To clarify the essential nature of the coherence col- 
lapsed state, we have performed a dimensionality test on 
our theoretical data, and the results are given in Fig. 6, 
in which the letters A-F again indicate the data in Fig. 4.  
The calculation of the correlation dimension D2 was per- 
formed in the real phase space (Z(t), w( t ) ,  N(r ) )  using 
conventional box counting techniques [24], [36]. Refer- 
ring to Fig. 6, the trajectory is initially a limit cycle (di- 
mension unity) corresponding to undamped simple relax- 
ation oscillation, progressing to a chaotic attractor with a 
fractal dimension between 2 and 3 as coherence collapge 
develops. We note that the correlation dimension D2 is a 
function of the feedback parameter K ;  D2 in the coherence- 
collapsed state for finite K is always less than 3, and it 
tends to 3 as K tends to infinity. The regular oscillation 
window is consistently indicated by D2 = 1. These data 
provide clear evidence that the onset of coherence col- 
lapse by period doubling is deterministic chaos but not a 
stochastic process. The role of realistic noise in this pic- 
ture will be considered later. 

Considerable effort has been devoted to choosing the 
correct structure of the data set and comparing different 
techniques in determining the value of D2. The greatest 
difficulty is encountered in determining D2 just as the sys- 
tem approaches coherence collapse (point E in Figs. 4- 
6) : the intensity autocorrelation function here decays 
slowly compared with the fastest time constant of the sys- 
tem (i.e., the relaxation oscillation period) so that the 

4 

3 

E 2  

1 

0 

Fig. 6.  Calculated dimension D2 corresponding to the sequence of Fig. 4. 

problem is stiff and large data sets must be used. To al- 
leviate the logistical problems in this analysis, for this 
case we initially calculated D2 using all points in very 
large data sets (- 130 000 points after truncation of initial 
transients) using a supercomputer, then compared the re- 
sults with calculations using -60 OOO points, and found 
no significant difference. However, obvious differences 
were seen using - 40 OOO points. To choose the best tech- 
nique for calculating D2 we compared different methods 
such as single variable embedding techniques using the 
definitions of Grassberger et al. [36]-[38], finding point- 
wise dimensions in a real phase space at different points 
[39], and evaluating correlation dimensions in a real phase 
space with direct box counting techniques [24]. Nonuni- 
form attractor densities cause undulations in the log-log 
plots of the correlation integral C(r )  versus box size r 
which make the slopes of these plots uncertain, resulting 
in errors in the D2 values, whichever technique was used. 
We ultimately selected averaging of the pointwise dimen- 
sion at 100 randomly chosen points from the trajectory, 
an approach which provided good results with minimal 
computation times. Thus most of the D2 values were then 
obtained using this simplified technique and with - 60 000 data points. 

Although the pure period-doubling route to chaos oc- 
curred only within a narrow parametric range, frequency 
components involving veXt/2 and veXt/4 could also appear 
in the quasiperiodic route. Again we emphasize that a 
properly scaled sequence of period doubling bifurcations 
from the fundamental period 1 / veXt is what distinguishes 
the alternative route to coherence collapse. Since a sym- 
metric system cannot undergo period doubling [40], we 
postulate that in the external cavity laser the effects of 
external feedback are different for the two sidebands of 
the lasing mode (due to dispersion as expressed by the 
antiguiding or linewidth enhancement factor a). Thus the 
optical feedback causes symmetry breaking and that 
makes period doubling possible. In contrast, period-dou- 
bling from the relaxation oscillation period TR = 1 /vR has 
never been observed in the external cavity laser. 

C. Quasiperiodic Route to Coherence Collapse 
Similar calculations were performed for the situation 

corresponding to the experimental data in Fig. 2, in which 



a quasiperiodic route to coherence collapse was observed 
when the frequency locking condition vR = pvext (integer 
p )  was not satisfied. Again there is very good agreement 
as illustrated by Fig. 7 where calculated intensity noise 
power spectra and Poincark maps are plotted for increas- 
ing optical feedback. Fig. 8 shows a bifurcation plot ob- 
tained in a similar manner to Fig. 5 ,  and the calculated 
correlation dimension versus feedback parameter K is 
given in Fig. 9. 

As K increases, first the relaxation oscillation is excited 
(Fig. 7B), then the external cavity mode features appear, 
modulating both the main lasing peak and the relaxation 
oscillation sidebands. Quasiperiodic mixing occurs as 
evidenced by difference frequencies such as vR - 6veXt 
and 7vext - vR, and with further increase in K there are 
traces of features spaced by veXt/2 and possibly even 
vext/4, resulting in frequency components such as vR - 
6.5vext. Despite the occurrence of vex t /2  and vext/4 in the 
noise spectra this is not a period doubling scenario, but 
typical quasiperiodic behavior involving mixing of fre- 
quencies which are not commensurate or rationally re- 
lated. The correlation dimension plot again shows that the 
coherence collapsed state is chaotic, with a similar D2 
value (a fractal between 2 and 3) to the result of the period 
doubling sequence observed when frequency locking was 
maintained between vR and vext. In the experiments, the 
maximum broadened linewidth in the coherence collapsed 
state (refer to Fig. 2 and Fig. 3) was - 30-40 GHz which 
corresponded to the bandwidth of the isolated laser reso- 
nator. Beyond this effective bandwidth limit of the system 
the external cavity modes as well as the relaxation oscil- 
lation harmonics are strongly suppressed. 

Just as in the experiments, coherence collapse usually 
occurs in the theoretical model via a quasiperiodic route. 
Even when period doubling does occur, it is not robust: 
small changes in the external cavity length Lex, (-X/4) 
or the drive current (less than 0.1 %) can destroy the fre- 
quency locking condition and produce a quasiperiodic 
route to chaos. Also, we have observed situations where 
frequency locking conditions are satisfied at low feed- 
back, but as K increases the locking condition is violated 
and the onset of coherence collapse proceeds via the more 
usual quasiperiodic route. 

D. Influence of Spontaneous Emission Noise 
The influence of spontaneous emission noise on the dy- 

namics of the external cavity semiconductor laser has been 
studied theoretically by switching on realistic Langevin 
forces F,(t), F* ( t ) ,  FN ( t )  representing white noise driving 
on the right side of the rate equations {(7)-(9)). In the 
numerical integration of these equations the method in 
[41] was used to generate Gaussian noise. 

Fig. 10 shows the influence of realistic white noise on 
the intensity noise power spectra and phase space trajec- 
tories for the case where frequency locking occurred and 
the trajectory was a limit cycle. Although the white noise 
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driving caused noisy pedestals in the intensity noise spec- Fig. 11 gives the corresponding calculations of the cor- 
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Fig. 7. Calculated power spectra of intensity noise and Poincark map 
showing quasiperiodic route to chaos. Lext = 18 cm, (Y = 4, Z, = 5.0 * lo7 
(photons), J = 4.2 * lO”/s (corresponding Z/Z,,, I 1.68). 

tra and blurred the trajectories in phase space, the essen- 
tial features of the attractor were not altered. As the spon- 
taneous emission rate Rsp increased, the noise intensity 
increased and the external cavity modes became weaker. 
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+lC 
Fig. 8. Bifurcation plot showing the quasiperiodic sequence of Fig. 7.  

0 
-IC 

Fig. 9. Calculated dimension D2 for the sequence of Fig. 7. 

Fig. 10. Calculated power spectra of intensity noise and trajectories with- 
out and with white noise driving at different levels. Le,, = 18 cm, a = 5.3, 
I, = 5.0 * lo6 (photons), J = 3.25 * lO"/s, K = 1.9 * 10'. 

+r 
Fig. 1 1 .  Calculated slope of log-log plots of the correlation integral vs. 
box size r .  The parameters are the same as those used in Fig. 10. (1) R,, 
= 0; (2) Rsp = 1.5 * lO''/s; (3) R,, = 3.0 * 101*/s. 

relation dimension showing that the slopes S(r) of the log- 
log plots of the correlation integral versus box size r de- 
creased monotonically with r as white noise driving was 
added, a fact which makes it difficult to determine 4 in 
real experimental situations. As the box size r decreased, 
S(r) increased and tended toward 3, indicating that the 
noise was filling the phase space and dominating the dy- 
namics when we examined only a very small domain in 
the phase space. 

Fig. 12 shows the influence of realistic white noise on 
a chaotic coherence collapsed state. Again the noise driv- 
ing did not change the intensity noise spectra very much, 
but blurred the phase space trajectories. The correspond- 
ing correlation dimension calculations in Fig. 13 are very 
similar to those in Fig. 1 1  in that the dimension with noise 
driving tended toward 3 as the box size r approached zero, 
and it was always larger than that without noise driving. 
However, the D2 value for the coherence-collapsed state 
never reached 3-coherence collapse was always attrib- 
utable to deterministic chaos. We also performed dimen- 
sional calculations for the isolated laser with realistic 
white noise, and the convergent 4 value was always 3 
within a small computational error. This value was never 
exceeded by the maximum value of S(r)  in a feedback 
system with noise driving, hence we conclude that white 
noise driving does not change the deterministic nature of 
the system. 

In our stochastic calculations the value of the sponta- 
neous emission rate R,, was taken as 1.5 x 10l2/s and 
3.0 X 1OI2/s. The value of R = 1.5 X 1OI2/s led to a 
calculated Lorentzian linewidth of about 40 MHz in the 
isolated laser diode at pump current Z/Zth = 1.68, in 
agreement with experimental measurements. The spectral 
density of the noise was assumed white, and no attempt 
was made to include "natural" low-frequency noise with 
a 1 /f spectral dependence. 

Figs. 11 and 13 show that with noise driving S ( r )  did 
not converge. This difficulty is generic to all real systems 
involving a mixture of deterministic and stochastic pro- 
cesses where the definitions of characteristic dimensions 
may not be meaningful. It is sufficient here that we have 
found that deterministic processes are the dominant influ- 
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Fig. 12. Calculated power spectra of intensity noise and trajectories with- 
out and with white noise driving at different levels. Le,, = 18 cm, a = 5.3,  
I ,  = 5.0 * 10' (photons), J = 3.25 * 10L'/s, K = 3.0 * lo9. 

4! 3p 

2 

N r  
Fig. 13. Calculated slope of log-log plots of the correlation integral vs. 
box size r,  The parameters are same as those used in Fig. 12. (1) R,, = 0; 
(2) R,, = 1.5 * 10L2/s; (3) R,, = 3.0 * 10L2/s. 

ences in coherence collapse, despite the very high spon- 
taneous emission rates in semiconductor lasers, larger by 
several orders of magnitude than in other laser systems. 

V. DISCUSSION AND CONCLUSIONS 
We have shown experimentally and theoretically the 

progression of events leading to coherence collapse in a 
semiconductor laser subject to weak optical feedback 
(- 0.01-0.1 % in power) from a simple reflector several 
centimeters away. The laser was operated well above 

threshold (1.2-2.0 It,,) and was constrained to operate in 
a single longitudinal mode of the diode cavity. As the 
feedback level increased, the laser initially underwent 
linewidth narrowing, then undamping of the relaxation 
oscillations, excitation of external cavity modes, and fi- 
nally reached the coherence-collapsed state through one 
of two different routes or occasionally by a hybrid be- 
tween them. A period-doubling route to chaos occurred 
only when the relaxation oscillation and external cavity 
modes or their harmonics were locked together, otherwise 
a quasiperiodic route was followed. In each case the prox- 
imate cause of coherence collapse was interaction be- 
tween the feedback-induced undamped relaxation oscil- 
lation and the external cavity modes. We obtained 
excellent agreement between theory and experiment. From 
theoretical calculations of the correlation dimensions we 
showed that the coherence-collapsed state is a chaotic at- 
tractor with a fractal dimension between 2 and 3, even 
with the inclusion of realistic spontaneous emission noise. 

Chaos occurred most frequently via quasiperiodicity , 
since frequency locking did not usually occur. When fre- 
quency locking did occur, it could be destroyed by small 
perturbations to the pump current or external cavity 
length. Most incidents of coherence collapse should 
therefore be due to quasiperiodic mixing between the re- 
laxation oscillation and external cavity modes. The onset 
of coherence collapse occurred (for a given pump current 
and cavity length) at a certain value of the feedback pa- 
rameter K and did not depend on the particular route (pe- 
riod-doubling or quasiperiodicity) . 

At higher pump currents it is more difficult to produce 
coherence collapse when there is significant gain satura- 
tion or suppression, for example due to intraband scatter- 
ing in the semiconductor. We attribute this to saturation- 
induced damping of the relaxation oscillation, which 
makes it more difficult to generate undamped relaxation 
oscillation, a necessary precursor to coherence collapse in 
our case. 

Lasers with optical feedback are good examples of the 
generic nonlinear system with delayed feedback which has 
already been studied [42], [43]. In the external cavity laser 
the optical feedback effectively modulates the gain and 
constrains the optical phase, and the system formally be- 
comes infinite-dimensional by considering each external 
cavity mode to be a separate degree of freedom. Even 
with the limited bandwidth of the system the effective di- 
mension is still very large and the problem is not tracta- 
ble. Here we have adopted the more straightforward al- 
ternative of considering the total laser intensity and phase 
(i.e., the sum of all the modes) to be single degrees of 
freedom while allowing sufficient time and bandwidth to 
include all the mode dynamics in the picture, thus effec- 
tively reducing the problem to three dimensions. 

Our results could be generalized for a greater under- 
standing of laser instabilities. The semiconductor laser is 
a typical class B laser: yp ,  y1 << y2, where y?, y1 and y2 
are the decay rates of the photons, injected minority car- 
riers (i.e., population inversion) and polarization, respec- 
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tively . Thus the free-running semiconductor laser is well 
described by rate equations with only two independent 
variables, usually the photon and carrier numbers or den- 
sities. The dynamical properties of isolated semiconduc- 
tor lasers are therefore relatively simple. However, when 
an additional degree of freedom is added such as pump 
current modulation, optical feedback, external light injec- 
tion, mutual coupling to another laser etc., the situation 
becomes much more complicated. The deterministic insta- 
bilities in this case are always connected with the inter- 
action between some external modulation (external cavity 
modes in our case) and undamped intrinsic oscillations 
(relaxation oscillation in our case). We suggest that this 
behavior may be common to several laser systems under 
different circumstances, and it may be a very general 
scenario for an externally modulated Class B laser. For 
example, similar phenomena have been observed in single 
mode CO2 lasers (which are also typical Class B lasers) 
with modulated cavity Q-factors, and these phenomena 
have also been explained in terms of interaction between 
the modulation and relaxation oscillation [44]. There are 
also interesting comparisons to be developed with multi- 
mode laser dynamics, where generally similar behavior- 
period-doubling and quasiperiodic routes to deterministic 
chaos-has been discovered [45]-[48]. Those lasers (and 
several other physical systems) may have intrinsic natural 
frequencies for oscillations. These oscillations are nor- 
mally damped out but may be excited by external pertur- 
bations which are either external modulations or beatings 
between unequally spaced longitudinal or transverse 
modes. These excited intrinsic oscillations will then tend 
to interact with external modulations due to nonlinearities 
in the laser medium. Thus the study of coherence collapse 
may lead to extensive physical insights into nonlinear dy- 
namics and chaos in lasers and similar physical systems 
well beyond the usual limitations of the simple rate equa- 
tion theories used. 

ACKNOWLEDGMENT 
The authors express gratitude to N. B. Abraham for 

helpful discussion. 

REFERENCES 

[ l ]  L. Goldberg, H. F. Taylor, A. Dandridge, J. F. Weller, and R. 0. 
Miles. “Spectral characteristics of semiconductor lasers with optical 
feedback,” IEEE J .  Quantum Electron., vol. QE-18, pp. 555-564, 
Apr. 1982. 

[2] E. Patzak, H. Olesen, A. Sugimura, S .  Saito, and T. Mukai. “Spec- 
tral linewidth reduction in semiconductor lasers by an external cavity 
with weak optical feedback,” Electron. Lett., vol. 19, pp. 938-940, 
Oct. 1983. 

[3] M. W. Fleming and A. Mooradian. “Spectral characteristics of ex- 
ternal-cavity controlled semiconductor lasers,” IEEE J .  Quantum 
Electron., vol. QE-17, pp. 44-59, Jan. 1981. 

[4] M. B. Snipes and J. G. McInerney. “Transverse mode filtering of 
wide stripe semiconductor lasers using an external cavity,” SPIE 
Proc.,  vol. 1634, Laser Diode Technology and Applications IV, pp. 

[5] R. Wyatt and W. J .  Devlin. “10 kHz linewidth 1.5 pm InGaAsP 
external cavity laser with 55 nm tuning range,” Electron. Lett., vol. 
19, pp. 110-112, Feb. 1983. 

542-551, 1992. 

[6] T. Morikawa, Y. Mitsuhashi, and J. Shimada. “Return-beam in- 
duced oscillations in self-coupled semiconductor lasers, ” Electron. 
Lett., vol. 12, pp. 435-436, Aug. 1976. 

[7] Ch. Risch, and C. Voumard. “Self-pulsation in the output intensity 
and spectrum of GaAs-AIGaAs CW diode lasers coupled to a fre- 
quency-selective external optical cavity,” J .  Appl. Phys. ,  vol. 48, 
pp. 2083-2085, May 1977. 

[8] K. Otsuka. “Nonlinear phenomena in semiconductor lasers,” SPIE 
Proc., vol. 1497, Nonlinear Optics and Materials, pp. 432-443, 1991. 

[9] R. 0. Miles, A. Dandridge, A. B. Tveten, H. F. Taylor, and T. G. 
Giallorenzi. “Feedback-induced line broadening in CW channel-sub- 
strate planar laser diodes,” Appl. Phys. Lett., vol. 37, pp. 990-992, 
Dec. 1980. 

[lo] D. Lenstra, B. H. Verbeek, and A. J. den Boef. “Coherence collapse 
in single-mode semiconductor lasers due to optical feedback,” IEEE 
J. Quantum Electron., vol. QE-21, pp. 674-679, June 1985. 

[ l l ]  H. Olesen, J. H. Osmundsen, and B. Tromborg. “Nonlineardynam- 
ics and spectral behavior for an external cavity laser,” IEEEJ. Quan- 
tum Electron., vol. QE-22, pp. 762-773, June 1986. 

1121 R. W. Tkach and A. R. Chraplyvy. “Regimes of feedback effects in 
1.5-pm distributed feedback lasers,” J .  Lighmave Technol., vol. LT- 

[13] G. C. Dente, P. S .  Durkin, K. A. Wilson, and C. E. Moeller. “Chaos 
in the coherence collapse of semiconductor lasers,” IEEE J .  Quantum 
Electron., vol. 24, pp. 2441-2447, Dec. 1988. 

[ 141 J. M@rk, J .  Mark, and B. Tromborg. “Route to chaos and competition 
between relaxation oscillations for a semiconductor laser with optical 
feedback,” Phys. Rev. Lett., vol. 65, pp. 1999-2002, Oct. 1990. 

[ 151 T. Mukai and K. Otsuka. “New route to optical chaos: successive- 
subharmonic-oscillation cascade in a semiconductor laser coupled to 
an external cavity,” Phys. Rev. Lett., vol. 55,  pp. 1711-1714, Oct. 
1985. 

[I61 J.-D. Park, D.-S. Soe, and J .  G. McInemey. “Self-pulsations in 
strongly coupled asymmetric external cavity semiconductor lasers,” 
IEEE J .  Quantum Electron., vol. 26, pp. 1353-1362, Aug. 1990. 

[17] J. Sacher, W. Elsaesser, and E. 0. Goebel. “Intermittency in the 
coherence collapse of a semiconductor laser with external feedback,” 
Phys. Rev. Lett., vol. 63, pp. 2224-2227, Nov. 1989. 

[I81 H. Temkin, N. A. Olsson, J. H. Abeles, R. A. Logan, and M. B. 
Panish. “Reflection noise in index-guided InGaAsP Lasers,” IEEE 
J .  Quantum Electron., vol. QE-22, pp. 286-293, Feb. 1986. 

[I91 C. H. Henry and R. F. Kazarinov. “Instability of semiconductor la- 
sers due to optical feedback from distant reflectors,” IEEE J .  Quan- 
rum Electron., vol. QE-22, pp. 294-301, Feb. 1986. 

[20] B. Tromborg and J. Mflrk. ‘Wonlinear injection locking dynamics 
and the onset of coherence collapse in external cavity lasers,’’ IEEE 
J .  Quantum Electron., vol. 26, pp. 642-654, Apr. 1990. 

[21] N. Schunk and K. Peterman. “Numerical analysis of the feedback 
regimes for a single-mode semiconductor laser with external feed- 
back,” IEEE J .  Quantum Electron., vol. QE-24, pp. 1242-1247, July 
1988. 

[22] J .  S .  Cohen and D. Lenstra. “Spectral properties of the coherence 
collapsed state of a semiconductor laser with delayed optical feed- 
back,” IEEEJ. Quantum Electron., vol. QE-25, pp. 1143-1 151, June 
1989. 

[23] J .  Wang and K. Peterman. “Noise analysis of semiconductor lasers 
within the coherence collapse regime,” IEEE J .  Quantum Electron., 
vol. 27, pp. 3-9, Jan. 1991. 

[24] P. Grassberger and I. Pmcacia. “Measuring the strangeness of strange 
attractors,” Physica 9D, pp. 189-208, 1983. 

[25] A. Ben-Mizrachi, I. Procaccia, and P. Grassberger. “Characteriza- 
tion of experimental (noisy) strange attractors,” Phys. Rev. A . ,  vol. 
29, pp. 975-977, Feb. 1984. 

[26] G. P. Agrawal. “Effect of gain and index nonlinearities on single- 
mode dynamics in semiconductor lasers,” IEEE J. Quantum Elec- 
tron., vol. 26, pp. 1901-1909, Nov. 1990. 

[27] C. H. Henry. “Theory of the phase noise power spectrum of a single 
mode injection laser,” IEEE J. Quantum Electron., vol. QE-19, pp. 
1391-1397, Sept. 1983. 

[28] G. P. Agrawal and N. K. Dutta. “Long-Wavelength Semiconductor 
Laser,” Van Nostrand Reinhold Company, New York, 1986. 

[29] R. Lang and K. Kobayashi. “External optical feedback effects on 
semiconductor injection laser properties,” IEEE J. Quantum Elec- 
tron., vol. QE-16, pp. 347-355, Mar. 1980. 

[30] R.-Q. Hui and S.-P. Tao. “Improved rate equations for external cav- 
ity semiconductor lasers,” IEEE J .  Quantum Electron., vol. QE-25, 
pp. 1580-1584, June 1989. 

4, pp. 1655-1661, NOV. 1986. 



IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 29, NO. 9, SEPTEMBER 1993 2432 

[31] D.-S. Seo, J.-D. Park, J. G. McInerney, and M. Osinski. “Multiple 
feedback effect in asymmetric external cavity semiconductor lasers,’’ 
IEEE J. Quantum Electron., vol. 25, pp. 2229-2238, Nov. 1989. 

[32] C. H. Henry. “Theory of linewidth of semiconductor lasers,’’ IEEE 
J. Quantum Electron., vol. QE-18, pp. 259-264, Feb. 1982. 

[33] M. Osinski and J. Buus. “Linewidth broadening factor in semicon- 
ductor lasers-an overview,” IEEE J. Quantum Electron., vol. QE- 
23, pp. 9-29, Jan. 1987. 

[34] H. G. Schuster. “Deterministic Chaos,” VCH Verlagsgesellschaf, 
Weinheim, 1988. 

[35] L. M. Narducci, E. J. Quel, and J. R. Tredicci. “Laser and Quantum 
Optics,” World Scient&, pp. 186-194, 1988. 

[36] P. Grassberger and I. Procaccia. “Estimation of the kolmogorov en- 
tropy from a chaotic signal,” Phys. Rev. A, vol. 28, pp. 2591-2593, 
Oct. 1983. 

[37] A. M. Albano, J. Muench, C. Schwarz, A. I. Mees, and P. E. Rapp. 
‘ ‘Singular-value decomposition and the Grassberger-Prucaccia algo- 
rithm,” Phys. Rev. A, vol. 38, pp. 3017-3026, Sept. 1988. 

[38] A. I .  Mees, P. E. Rapp, and J. S. Jennings. “Singular-value decom- 
position and embedding dimension,” Phys. Rev. A, vol. 36, pp. 340- 
346, July 1987. 

[39] J. D. Fanner, E. Ott, and J. A. Yorke. “The dimension of chaotic 
attractors,” Physica 70, pp. 153-180, 1983. 

[40] 1. W. Swift and K. Wiesenfeld. “Suppression of period doubling in 
symmetric system,” Phys. Rev. Lett., vol. 52, pp. 705-708, Feb. 
1984. 

[41] R. X. Fox, I. R. Gatland, R. Roy, and G. Vemuri. “Fast, accurate 
algorithm for numerical simulation of exponentially correlated col- 
ored noise,” Phys. Rev. A, vol. 38, pp. 5938-5940, Dec. 1988. 

[42] K. Ikeda and K. Kondo. “Successive higher-harmonic bifurcations in 
systems with delayed feedback,” Phys. Rev. Lett.,  vol. 49, pp. 1467- 
1470, Nov. 1982. 

[43] B. Dorizzi, B. Grammaticos, M. Le Berre, Y. Pomeau, E. Ressayre, 
and A. Tallet. “Statistics and dimension of chaos in differential delay 
systems,” Phys. Rev. A, vol. 35, pp. 328-339, Jan. 1987. 

[44] J. R. Tredicce, F. T. Arecchi, G. P. Puccioni, A. Poggi, and W. 
Gadomski. “Dynamics behavior and onset of low-dimensional chaos 
in a modulated homogeneously broadened single-mode laser: exper- 
iments and theory,” Phys. Rev. A, vol. 34, pp. 2073-2081, Sept. 
1986. 

[45] W .  Klische and C. 0. Weiss. “Instabilities and routes to chaos in a 
homogeneously broadened one- and two-mode ring laser,” Phys. Rev. 
A, vol. 31, pp. 4049-4041, June 1985. 

[46] D. J .  Biswas and R. G. Hamson. “Experimental evidence of three- 
mode quasiperiodicity and chaos in a single longitudinal, multi-trans- 
verse-mode cw CO2 laser,” Phys. Rev. A, vol. 32, pp. 3835-3837, 
Dec. 1985. 

[47] L. M. Hoffer, T. H. Chyba, and N. B. Abraham. “Spontaneous puls- 
ing, period doubling, and quasiperiodicity in a unidirectional, single- 
mode, inhomogeneously broadened ring laser,” J. Opt. Soc. Am. B ,  
vol. 2, pp. 102-107, Jan. 1985. 

[48] C. 0. Weiss. “Observation of instabilities and chaos in optically 
pumped far-infrared lasers,” J. Opt. Soc. Am. B ,  vol. 2, pp. 137- 
140, Jan. 1985. 

Hua Li (M’93), photograph and biography not available at the time of 
publication. 

Jun Ye, photograph and biography not available at the time of publication. 

John G. McInerney (M’81), photograph and biography not available at 
the time of publication. 


