# AN IUE ATLAS OF PRE–MAIN-SEQUENCE STARS. III. CO-ADDED FINAL ARCHIVE SPECTRA FROM THE LONG-WAVELENGTH CAMERAS

JEFF A. VALENTI

Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218; valenti@stsci.edu

ADAM A. FALLON<sup>1</sup>

Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55015; afallon@astro.columbia.edu

AND

CHRISTOPHER M. JOHNS-KRULL

Department of Physics and Astronomy, Rice University, 6100 Main Street, MS-108, Houston, TX 77005; cmj@rice.edu Received 2002 October 8; accepted 2003 March 14

## ABSTRACT

We identified 137 T Tauri stars (TTS) and 97 Herbig Ae/Be (HAEBE) stars observed by IUE in the wavelength interval 1900–3200 Å. Each low-resolution ( $\vec{R} \sim 6$  Å) spectrum was visually inspected for source contamination and data quality, and then all usable spectra were combined to form a single time averaged spectrum for each star. For sources with multiple observations, we characterized variability and compared with previously published amplitudes at shorter wavelengths. We combined several co-added spectra of diskless TTS to produce a pair of intrinsic stellar spectra unaffected by accretion. We then fitted spectra of TTS with the reddened sum of an intrinsic spectrum and a schematic veiling continuum, measuring emission line fluxes from the residuals. We used extinction and distance estimates from the literature to convert measured Mg II line fluxes into intrinsic line luminosities, noting that the *IUE* detection limit introduces a sample bias such that intrinsic line luminosity is correlated with extinction. This sample bias complicates any physical interpretation of TTS intrinsic luminosities. We measured extinction toward HAEBE stars by fitting our co-added *IUE* spectra with reddened spectra of main-sequence stars and also from V band minus 3000 Å color excess. We measured excess line emission and absorption in spectra of HAEBE stars divided by fitted spectra of main-sequence stars, noting that HAEBE stars with an infrared excess indicating circumstellar material typically also have anomalous UV line strengths. In the latter situation, Mg II is usually shallower than in a main-sequence star of the same spectral class, whereas Fe II lines are equally likely to be deeper or shallower. Our co-added spectra of TTS, HAEBE stars, and main-sequence templates are available electronically.

*Subject headings:* accretion, accretion disks — atlases — stars: pre-main-sequence — ultraviolet: stars *On-line material:* machine-readable tables

# 1. INTRODUCTION

### 1.1. IUE Data

Although the International Ultraviolet Explorer (IUE) satellite ceased operations on 1996 September 27, the vast archive of IUE spectra continues to be an important astronomical resource. Ultraviolet (UV) spectrographs on the Hubble Space Telescope (HST) have observed only a small fraction of the pre-main-sequence (PMS) stars observed by IUE. Historically, the first dedicated IUE spectral atlas of PMS stars was published by Gómez de Castro & Franqueira (1997), who also tabulated selected line fluxes without uncertainties. Valenti, Johns-Krull, & Linsky (2000, hereafter Paper I) constructed a low-resolution spectral atlas and catalog of line fluxes for short-wavelength (1150–1980 A) IUE spectra of PMS stars. Johns-Krull, Valenti, & Linsky (2000, hereafter Paper II) used these line fluxes to investigate the effects of accretion and magnetic activity on short-wavelength spectra of T Tauri stars (TTS). Here we extend our earlier work to low-resolution spectra in the long-wavelength bandpass of IUE.

The *IUE* final archive project (Nichols & Linsky 1996) provided the original technical motivation for constructing a catalog of *IUE* observations of PMS stars. Final archive reprocessing with NEWSIPS (rather than the original IUE-SIPS) software (described in detail by Nichols et al. 1994) generally improved signal-to-noise (S/N) ratios and reduced fixed-pattern noise, especially for noisy spectra. Wavelength and photometric accuracy were also improved significantly.

The signal-weighted extraction algorithm in NEWSIPS attempted to determine empirically the cross-dispersion profile and the spectrum location. When both of these operations failed and default values were assumed, NEWSIPS sometimes yielded anomalously low emission line fluxes. To overcome this problem, the IUE Newly Extracted Spectra (INES) package uses a different algorithm to extract spectra from the two-dimensional images created by NEWSIPS (Rodríguez-Pascual et al. 1999). NEWSIPS extracted spectra are adequate for our project because NEWSIPS assumed default profiles and locations for only 10% of the 1062 images. The NEWSIPS assumptions are correct for some fraction of these cases, and for noisy images the distinction is not significant. Aside from this issue, Huélamo, Franqueira, & Gómez de Castro (2000) find that the two packages agree to within their uncertainty estimates. On the other hand, Massa & Fitzpatrick (2000) argue

<sup>&</sup>lt;sup>1</sup>Currently at Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027.

that NEWSIPS fluxes can have errors of 10%–15%. These calibration errors can be reduced somewhat by co-adding spectra from different epochs.

The *IUE* long-wavelength prime and redundant (LWP and LWR) cameras obtained useful spectra in the wavelength interval 1900–3200 Å. In this bandpass the most prominent spectral features are the Mg II resonance doublet at 2800 Å and numerous low-excitation Fe II lines. *IUE* long-wavelength (LW) data are of particular interest in the study of PMS stars because useful spectra exist for 86 sources that were not observed in the shortwavelength (SW) bandpass of *IUE*. In addition, observed continua are stronger at longer wavelengths, allowing a more detailed analysis of emission and absorption features than was possible with the SW data presented in Paper I. Finally, for 113 stars with usable spectra both here and in Paper I, co-added spectra now cover the entire *IUE* bandpass from 1150–3200 Å.

In Paper I, the enhanced data quality in the *IUE* final archive permitted identification of  $H_2$  fluorescent emission in spectra of 12 TTS and measurement of extinction and circumstellar absorption around higher mass PMS stars. These results illustrate how a large sample of UV spectra can facilitate the study of young stars and their environments. This extension of our PMS catalog to the LW bandpass of *IUE* explores new extinction and spectral line diagnostics.

## 1.2. T Tauri Stars

TTS are low-mass ( $M \leq 2 M_{\odot}$ ) PMS stars that are optically visible, as reviewed by Bertout (1989). TTS were originally divided into two observationally defined classes, with classical TTS (CTTS) having larger H $\alpha$  equivalent widths than weak TTS. Alternatively, TTS can be distinguished by whether or not material is accreting from a disk onto the stellar surface. In this more physical classification scheme, CTTS are accreting, whereas naked TTS (NTTS) are not (Walter 1986). Directly or indirectly, most excess emission from CTTS can be attributed to the presence of a disk interacting with a magnetically active star. Some weak TTS are accreting, yet still have relatively small H $\alpha$  equivalent widths, making the original classification scheme potentially confusing. We therefore adopt the more physical nomenclature, using CTTS and NTTS to distinguish whether or not TTS are accreting. FU Ori stars (see review by Hartmann & Kenyon 1996) are CTTS in outburst, accreting material at a rate  $\sim 10^3$  times greater than a typical CTTS.

The presence of a disk and accretion of material onto the surface of CTTS gives rise to excess continuum emission that veils stellar spectra, reducing the depths of photospheric absorption lines. Veiling is observable at IUE, optical, and infrared (IR) wavelengths (e.g., Herbig & Goodrich 1986; Basri & Batalha 1990; Paper II; Johns-Krull & Valenti 2001). Magnetospheric accretion models (Uchida & Shibata 1984; Bertout, Basri, & Bouvier 1988; Camenzind 1990; Königl 1991; Shu et al. 1994; Paatz & Camenzind 1996) invoke strong stellar magnetic fields that truncate the disk at several stellar radii, redirecting disk material along magnetic field lines to accretion footpoints on the stellar surface. Material impacts the surface at close to free-fall speeds, producing excess continuum emission in a strong shock (Calvet & Gullbring 1998). This shock also produces line emission in the UV

(Lamzin 1995, 1998; Paper II; Ardila et al. 2002), making *IUE* data particularly relevant for studying accretion onto CTTS. Magnetic activity on TTS also produces observable signatures in the UV that can be difficult to distinguish from accretion (Paper II).

Finally, CTTS systems lose mass at rates sufficient to produce significant blueshifted absorption in strong resonance lines, such as the Mg II doublet near 2800 Å (see Imhoff & Appenzeller 1987). The long-wavelength bandpass of *IUE* contains numerous Fe II lines that have generally been ignored in studies of CTTS outflows. High-resolution spectra of these Fe II lines have been used to study winds from cool giants (e.g., Carpenter et al. 1999), but even lowresolution *IUE* spectra permit an initial investigation of CTTS outflows.

# 1.3. Herbig Ae/Be Stars

Herbig Ae/Be (HAEBE) stars are conceptually defined as high-mass analogs of TTS, but it can be difficult to establish observationally the youth of a candidate HAEBE star (see review by Waters & Waelkens 1998). By analogy to CTTS, candidate HAEBE stars are often identified by the presence of an IR excess (e.g., Thé, de Winter, & Pérez 1994). IR colors of some HAEBE stars suggest the presence of circumstellar material that is not confined to a disk (Hillenbrand et al. 1992; Hartmann, Kenyon, & Calvet 1993). Nevertheless, it is widely believed that HAEBE stars have disks and actively accrete in a manner similar to CTTS. Testing this hypothesis is a key goal of current studies of HAEBE stars. Malfait, Bogaert, & Waelkens (1998) suggest that as HAEBE stars evolve, circumstellar properties change.

In four HAEBE stars of late spectral type, Blondel & Djie (1994) report a UV continuum excess that they attribute to accretion. Meeus, Waelkens, & Malfait (1998) obtain a similar result for three late A-type HAEBE stars. On the other hand, detailed searches for veiling in several HAEBE stars of earlier spectral type have produced negative results (Böhm & Catala 1993; Ghandour et al. 1994). Detection of excess continuum in hot HAEBE stars is difficult because shallow photospheric lines poorly constrain direct veiling measurements, especially at low resolution. Also, extinction and veiling can have similar effects on continuum slope, though the 2200 A bump helps lift the degeneracy. A systematic analysis of IUE spectra of HAEBE stars may provide more evidence for a continuum excess due to accretion. In addition, HAEBE stars also have strong winds that can be analyzed using UV diagnostics (e.g., Bouret & Catala 1998).

In § 2 we define our sample of PMS stars and describe our procedure for assessing and combining spectra. We then present the atlas of co-added *IUE* spectra, providing quantitative indicators of source variability. In § 3 we fit each co-added CTTS spectra with an NTTS template plus a polynomial approximation to the veiling continuum. We then measure emission line fluxes above the fitted model. We also determine extinction toward HAEBE stars by fitting co-added spectra with main-sequence templates. We then measure excess line emission, relative to the fitted templates. Finally, in § 4 we discuss the atlas and our measurements based on the atlas, highlighting opportunities for future investigation.

### 2. ATLAS OF SPECTRA

## 2.1. Sample Selection

Following the methodology of Paper I, we identified all LWP or LWR exposures obtained with a nominal *IUE* pointing within 2' of a known or candidate PMS star. This search radius accommodates the likely range of coordinate errors in NEWSIPS headers. We compared positions from the headers with coordinates for PMS stars in Herbig & Bell (1988), Hillenbrand (1997), Feigelson et al. (1993), Thé et al. (1994), Walter et al. (1994), and the SIMBAD database (object types pr\*, TT\*, Or\*, or FU\*). The coordinate matching procedure yielded 238 sources potentially observed by *IUE* in the LW bandpass. It is possible that we have missed a few PMS stars due to coordinate errors.

Table 1 lists in order of right ascension 238 known or candidate PMS stars for which coordinate matching indicates at least one possible LW observation by IUE. For reference within this paper, we assign each source an identification number between 1 and 238, but future citations should use standard nomenclature to refer to individual objects. For sources that also appear in Paper I, the identification number from Paper I appears in column (2) of Table 1. Column (3) lists the Herbig & Bell (1988) catalog number, if applicable. Alternate source names are given in column (4) and column (5) with catalog precedence as described in the table note. Column (6) gives spectral types taken preferentially from Paper I, Herbig & Bell (1988), Thé et al. (1994), and then other source material used in defining the sample. We present these spectral types without comment as to their veracity. In § 3.4 we use template fitting to determine alternate spectral types for some HAEBE stars. Column (8) gives the number of IUE spectra combined to produce each atlas spectrum, after manually rejecting unsuitable spectra. Sources with no usable spectra are retained in Table 1 to flag the existence of unusable data.

Column (7) of Table 1 classifies each source as a HAEBE star, CTTS, NTTS, FU Ori object (FUOri), or non-PMS star (nonPMS). The four non-PMS stars erroneously appear in PMS source catalogs. We retain them in Table 1 for reference, but they are not considered in the subsequent analysis. For the TTS listed by name and identification number in Table 2, the PMS catalogs used to select our sample did not indicate accretion status. We adopt a CTTS or NTTS classification for these stars based on published indications of near-IR (NIR) excess, large H $\alpha$  equivalent width (EW), broad H $\alpha$  emission profiles, or redshifted absorption components. Table 2 lists our adopted PMS categorizations, reasons for the assignment, and supporting literature citations. In some cases, our classifications are subjective and subject to change.

# 2.2. Combining Spectra

Our search of the *IUE* merged log yielded camera sequence numbers (e.g., lwp02061) for 1062 LW images of 238 PMS stars. Some images contain two adjacent spectra, obtained by exposing once with the source in the large aperture and once in the small aperture prior to a single read of the detector. As a result, the 1062 images actually contain 1224 spectra. Using the Multi-Mission Archive at Space Telescope (MAST), we successfully retrieved 1060 images containing 1222 spectra (a 99.8% success rate). In Paper I our retrieval success rate for SW images was only 91%.

Either final archive processing of SW images was incomplete in 1996 October (Paper I), or perhaps final archive processing fails on a larger fraction of images in the SW bandpass.

As in Paper I, an interactive procedure was used to assess whether each individual spectrum warranted inclusion in the final weighted mean spectrum. Individual spectra were overplotted with the mean spectrum superposed. For sources with many observations, individual spectra were examined successively in groups of six. Spectra were excluded from the mean for a variety of reasons recorded in the Appendix. Common reasons for rejecting spectra included no significant signal, relatively noisy spectrum, anomalously low flux, questionable spectral features, a preponderance of bad pixels (>10% with  $\nu$  flags  $\leq -8$ , indicating a wide range of serious data problems), or indications of trouble noted in the NEWSIPS header. Table 3 of Paper I lists the FITS header fields that were inspected and nominal acceptance criteria that we adopted from chapter 13 of Garhart et al. (1997). Occasionally, we retained a spectrum that failed one or more acceptance tests, if the spectrum appeared better than all other spectra of the source. Such instances are noted in the Appendix.

Low-resolution IUE spectra have dispersions of 2.663, 2.666, and 2.669 Å pixel<sup>-1</sup> for the LWP, LWR(A), and LWR(B) cameras, where "A" and "B" refer to the intensity transfer functions (ITF) used when processing images (Garhart et al. 1997). For sources with useful spectra at only one dispersion, no interpolation was necessary. For sources with useful spectra at two or three dispersions, we linearly interpolated flux spectra onto the lowest-dispersion wavelength scale for that source [LWP, if present, and otherwise LWR(A)]. We determined uncertainties for the interpolated flux points by propagating the original uncertainties for each pixel. Note that when the new and old wavelength scales are significantly out of phase, linear interpolation effectively smooths the result, increasing the signal-to-noise (S/N) ratio and decreasing spectral resolution. For LWR spectra, we ignored the negligible difference in dispersion (<0.0004 Å pixel<sup>-1</sup>) before and after 1980.1 and 1979.9 for ITF A and B, respectively. We did not attempt to align spectral features before co-addition because our main interest is line fluxes. Small residual errors in wavelength calibration will degrade spectral resolution in co-added spectra.

After wavelength interpolation, we renormalized individual spectra to match the unweighted mean flux for all spectra of a source in the wavelength range 1900–3200 Å, ignoring any bad pixels. We applied the same scale factor to the corresponding flux uncertainty vectors. This renormalization procedure removes intrinsic flux variations that would bias the weighted mean in favor of weaker spectra, which have lower uncertainties despite a worse S/N ratio. In Paper I, this effect was noted but ignored. After renormalization, we constructed a weighted mean flux spectrum for each source, weighting individual spectra by the inverse square of the corresponding flux uncertainties. We also determined a mean quality vector for each source, again using the flux uncertainty to construct weights. The formal uncertainty in each combined spectrum was determined by normal propagation of errors. Errors larger than the formal uncertainty may persist in the co-added spectra, especially near 3050 A, where data quality flags do not always completely exclude data affected by reseau marks in the IUE cameras.

TABLE 1 Pre–Main-Sequence Stars Observed by IUE with LW Cameras

| ID3 <sup>a</sup> | ID1 <sup>b</sup> | HBC <sup>c</sup> | Name <sup>d</sup>   | Alt. Named             | Spectral Type <sup>e</sup>    | Category <sup>f</sup> | $N^{\mathrm{g}}$ |
|------------------|------------------|------------------|---------------------|------------------------|-------------------------------|-----------------------|------------------|
| (1)              | (2)              | (3)              | (4)                 | (5)                    | (6)                           | (7)                   | (8)              |
| 1                | (1)              | 320              | VX Cas              |                        | A0.3eV                        | HAERE                 | 1                |
| 2                | 2                | 329              | VA Cas              | MWC 419                | Rieg                          | HAEBE                 | 1                |
| 3                | 3                | 10               | WY Ari              | $LkH\alpha$ 264        | K 5 V(Li)                     | CTTS                  | 3                |
| 4                |                  |                  | HD 19745            | CD - 65 150            | K1 III                        | nonPMS                | 1                |
| (5)              | 4                | 345              | HH 12/107           | SSS 107                | M0:                           | CTTS                  | 0                |
| 6                | (5)              | 350              | XY Per              | HD 275877              | Aep+sh                        | HAEBE                 | 1                |
| 7                | (7)              | 367              | V773 Tau            | HD 283447              | K3V(Li)                       | NTTS                  | 4                |
| 8                |                  | 23               | FM Tau              | Haro 6-1               | M0                            | CTTS                  | 1                |
| 9                |                  | 25               | CW Tau              | $MH\alpha$ 259-3       | K3 V(Li)                      | CTTS                  | 4                |
| 10               | 8                | 29               | V410 Tau            | BD +28 637             | K3 V(Li)                      | NTTS                  | 10               |
| 11               |                  | 376              | V1069 Tau           | NTTS 041559+1716       | K7(Li)                        | NTTS                  | 1                |
| 12               | 9                | 32               | BP Tau              | $MH\alpha$ 259-7       | K7 V(Li)                      | CTTS                  | 59               |
| 13               |                  | 378              | V819 Tau            | WK1                    | K7 V(Li)                      | NTTS                  | 1                |
| 14               | 10               | 33               | DE Tau              | MHα 259-8              | M2: V(Li)                     | CTTS                  | 8                |
| 15               | 11               | 34               | RY Tau              | BD +28 645             | KIIV,V(Lı)                    | CITS                  | 83               |
| 16               | 12               | 380              | V987 Tau            | HD 283572              | G5 IV(Li)                     | NTTS                  | 9                |
| 17               | 13               | 35               | T Tau<br>DDT        | BD + 19706             | K01V,V(L1)                    | CITS                  | 30               |
| 18               | 14               | 36               | DF Tau<br>DC T      | $MH\alpha 259-11$      | M0,1V(L1)                     | CTTS                  | 22               |
| 19               | 15               | 3/               | DG Tau<br>V1072 Tau | $MH\alpha$ 259-10      |                               | CI15<br>NTTS          | 18               |
| 20               | (10)             | 388              | VI0/2 Tau<br>DI Tau | MH ~ 250 0             | $\mathbf{K}$ I(LI)<br>MOV(Li) | NTTS                  | 2                |
| 21               | 17               | 39<br>42         | LIX Tau             | $M\Pi\alpha 239-9$     | $V_{10} V(L)$                 | CTTS                  | 1                |
| 22               | 17               | 43               | DK Tau              | $MH_{\odot} 259.12$    | $K_2 V(LI)$<br>$K_7 V(Li)$    | CTTS                  | 4                |
| 23               | 10               | 302              | V1074 Tau           | NTTS $042835 \pm 1700$ | K = V(LI)<br>K = 5(Li2)       | NTTS                  | - 1              |
| (25)             | (20)             | 49               | HI Tau              | Haro 6-14              | K7 M2?                        | CTTS                  | 0                |
| 26               | (20)             | 397              | V1075 Tau           | NTTS $042916 \pm 1751$ | K7(Li)                        | NTTS                  | 1                |
| 27               |                  | 399              | V827 Tau            | FK2                    | K7 M0(Li)                     | NTTS                  | 2                |
| (28)             |                  | 400              | V826 Tau            | FK1                    | K7.M0(Li)                     | NTTS                  | 0                |
| 29               |                  | 54               | GG Tau              | ΜΗα 257-2              | K7 V(Li)                      | CTTS                  | 6                |
| 30               |                  |                  | V1147 Tau           | HD 286839              | K0                            | nonPMS                | 1                |
| 31               |                  | 52               | UZ Tau              |                        | M1,3: V(Li)                   | CTTS                  | 1                |
| (32)             |                  | 55               | GH Tau              | Haro 6-20              | M2,3V(Li)                     | CTTS                  | 0                |
| 33               |                  | 404              | V807 Tau            | Elias 12               | K7 V(Li)                      | CTTS                  | 2                |
| 34               | (21)             | 405              | V830 Tau            | WK2                    | K7,M0 V(Li)                   | NTTS                  | 3                |
| 35               | 22               | 56               | GI Tau              | Haro 6-21              | K6 V(Li)                      | CTTS                  | 1                |
| 36               | (23)             | 57               | GK Tau              | Haro 6-22              | K7 V(Li)                      | CTTS                  | 2                |
| 37               | 24               | 58               | DL Tau              | MHα 259-13             | K7 V(Li)                      | CTTS                  | 6                |
| (38)             |                  | 60               | HN Tau              | Haro 6-24              | K5                            | CTTS                  | 0                |
| 39               |                  | 408              | V1110 Tau           | Wa Tau/1               | K0 IV                         | nonPMS                | 1                |
| 40               | 25               | 63               | AA Tau              | $MH\alpha$ 259-17      | K7 V(Li)                      | CTTS                  | 6                |
| 41               |                  | 65               | DN Tau              | $MH\alpha 259-18$      | M0 V(L1)                      |                       | 1/               |
| 42               |                  |                  | 93 I au             | HD 29589               | B8 IV                         | HAEBE                 | 4                |
| 43               | (20)             |                  | HD 283817           | BD + 240/0             | ASE/GUE<br>MO 1V(Li)          | TAEBE                 | 1                |
| 45               |                  | 72               | V1001 Tau           | Haro $6-37$            | K6                            | CTTS                  | 1                |
| 46               | 27               | 74               | DR Tau              | MH ~ 257-8             | <b>K</b> 0                    | CTTS                  | 40               |
| 47               | 28               | 75               | DS Tau              | MHα 259-2              | K 5 V(Li)                     | CTTS                  | 40               |
| 48               | 20               | 76               | UY Aur              | Milia 209 2            | K7 V(Li)                      | CTTS                  | 3                |
| 49               | 29               | 77               | GM Aur              | MHα 259-1              | $K_3 V(Li)$                   | CTTS                  | 5                |
| 50               | 30               | 426              | V396 Aur            | LkCa 19                | K0 V(Li)                      | NTTS                  | 2                |
| 51               | 31               | 78               | ABAur               | HD 31293               | B9,A0e+sh                     | HAEBE                 | 11               |
| 52               | 32               | 79               | SU Aur              | HD 282624              | G2 III(Li)                    | CTTS                  | 28               |
| 53               | 33               |                  | HD 31648            | MWC 480                | A2/3ep+sh                     | HAEBE                 | 4                |
| 54               | 34               | 430              | UX Ori              | BD -4 1029             | A3e III                       | HAEBE                 | 13               |
| 55               |                  | 82               | $LkH\alpha$ 333     |                        | K5                            | CTTS                  | 1                |
| 56               | 35               | 80               | RW Aur              | BD +30 792             | K1:                           | CTTS                  | 29               |
| 57               |                  |                  | AE Aur              | HD 34078               | O9.5 Ve                       | HAEBE                 | 5                |
| 58               | 36               |                  | V346 Ori            | HD 287841              | A5 III:e                      | HAEBE                 | 1                |
| 59               |                  | 84               | CO Ori              | Haro 6-44              | F8:e V(Li)                    | CTTS                  | 2                |
| 60               | 37               |                  | HD 35929            | BD -8 1128             | A5e                           | HAEBE                 | 3                |
| 61               | 38               | 85               | GW Ori              | BD+11819               | G5(L1)                        | CITS                  | 10               |
| 62               | (20)             | 86               | V649 Ori            | MHα 265-3              | G8 III,V(Li)                  | CITS                  | 1                |
| 63               | (39)             | 425              | HD 36112            | MWC /58                | A3e                           | HAEBE                 | 1                |
| 04               |                  | 435              | AB Dor              | HD 36/05               | KU,2(L1)                      | IN LLS                | 11               |

TABLE 1—Continued

| ID3 <sup>a</sup> | ID1 <sup>b</sup> | HBC <sup>c</sup> | Name <sup>d</sup>  | Alt. Name <sup>d</sup> | Spectral Type <sup>e</sup> | Category <sup>f</sup> | $N^{\mathrm{g}}$ |
|------------------|------------------|------------------|--------------------|------------------------|----------------------------|-----------------------|------------------|
| (1)              | (2)              | (3)              | (4)                | (5)                    | (6)                        | (7)                   | (8)              |
| 65               | 40               | 94               | HK Ori             | MWC 497                | B8/A4en                    | HAEBE                 | 2                |
| 66               | (41)             | 436              | RY Ori             |                        | F8:pe(Li)                  | CTTS                  | 1                |
| 67               | 42               | 443              | HD 245059          | $\lambda$ Ori X-1      | K3 V:(Li)                  | NTTS                  | 1                |
| 68               | (43)             | 113              | V1044 Ori          | Parenago 1404          | G5 IV,V(Li)                | CTTS                  | 1                |
| 69               | ·                | 114              | EZ Ori             | Parenago 1409          | G0:n(Li)                   | CTTS                  | 1                |
| (70)             |                  |                  | Parenago 1539      | -                      | A0                         | HAEBE                 | 0                |
| 71               | 44               |                  | V372 Ori           | HD 36917               | A0 V                       | HAEBE                 | 2                |
| 72               | 45               | 451              | HD 245185          | BD +9 880              | A5e $\alpha$               | HAEBE                 | 5                |
| 73               |                  |                  | BD -5 1306         |                        | A2 Vp                      | HAEBE                 | 1                |
| 74               |                  |                  | HD 36939           | Parenago 232           | B9                         | HAEBE                 | 2                |
| (75)             | (46)             | 122              | KM Ori             | Parenago 1659          | K1(Li)                     | NTTS                  | 0                |
| 76               |                  |                  | KS Ori             |                        | A0                         | HAEBE                 | 1                |
| (77)             |                  | 125              | KR Ori             | Parenago 1684          | K6(Li)                     | CTTS                  | 0                |
| (78)             | 47               | 126              | LL Ori             | Parenago 1746          | K2,3(Li)                   | CTTS                  | 0                |
| 79               |                  |                  | HD 36981           | Parenago 237           | B5 V                       | HAEBE                 | 3                |
| 80               | 49               |                  | LP Ori             | HD 36982               | B1.5 V                     | HAEBE                 | 3                |
| 81               |                  | 132              | Parenago 1817      |                        | K2(Li)                     | NTTS                  | 1                |
| 82               |                  |                  | V1016 Ori          | HD 37020               | O7                         | HAEBE                 | 3                |
| (83)             |                  | 455              | Parenago 1869      |                        | G5:(Li)                    | CTTS                  | 0                |
| 84               |                  |                  | BM Ori             | HD 37021               | B0 V                       | HAEBE                 | 44               |
| 85               |                  |                  | HD 37022           |                        | O6pe                       | HAEBE                 | 7                |
| 86               |                  | 456              | MR Ori             | Parenago 1885          | A2 V                       | HAEBE                 | 3                |
| 87               |                  |                  | LZ Ori             | HD 294263              | A0                         | HAEBE                 | 1                |
| 88               |                  |                  | HD 37023           |                        | B0.5 Vp                    | HAEBE                 | 3                |
| (89)             | 50               | 458              | MT Ori             | Parenago 1910          | K3,4(Li)                   | NTTS                  | 0                |
| 90               | 51               |                  | V1230 Ori          | BD -5 1318             | B8 IV–V                    | HAEBE                 | 2                |
| 91               | 52               | 464              | CQ Tau             | HD 36910               | A8ve $\alpha$              | HAEBE                 | 7                |
| 92               |                  |                  | 43 Ori             | HD 37041               | O9.5 Vpe                   | HAEBE                 | 10               |
| 93               |                  |                  | HD 37042           | ZI 435                 | B1 V                       | HAEBE                 | 2                |
| (94)             | (53)             |                  | NT Ori             | Haro 4-241             | K8e                        | CTTS                  | 0                |
| 95               | 54               |                  | NU Ori             | HD 37061               | B1 V                       | HAEBE                 | 5                |
| 96               | (56)             | 471              | NV Ori             | BD -05 1324            | F4,8III,V                  | NTTS                  | 2                |
| 97               |                  | 144              | V360 Ori           | Haro 4-84              | K6                         | CITS                  | 1                |
| 98               |                  |                  | V359 Ori           | HD 37058               | B3 Vp                      | HAEBE                 | 2                |
| 99               | 59               | 154              | TOri               | Haro 4-123             | $A3e\alpha$                | HAEBE                 | 4                |
| 100              |                  |                  | HD 37114           | NSV 2386               | B8 V                       | HAEBE                 | 1                |
| 101              | 60               | 482              | BN Ori             | HD 245465              | F2,3e $\alpha$             | HAEBE                 | 4                |
| 102              | (62)             |                  | PR Ori             | Haro 4-213             | K4e                        | NITS                  | 1                |
| 103              | 63               | 164              | V 380 Ori          | BD -06 1253            | Al:e                       | HAEBE                 | 12               |
| 104              | 64               | 16/              | BD -04 1191        | Parenago 2441          | G5:(L1)                    |                       | 1                |
| 105              |                  | 48/              | BD -06 1258        | Parenago 2494          | K0IV(L1)                   | NIIS                  | I                |
| 100              | 03               | 109              | BF Off             | Haro 4-229             | Abe+sn                     | HAEBE                 | 0                |
| 107              |                  |                  | HD 3/35/           | BD -6 1264             | AU Ve                      | HAEBE                 | 1                |
| 108              | 00<br>67         | 170              | KK 1au<br>HD 27400 | AS 105                 | $B\delta,9e\alpha$         | HAEBE                 | 3<br>11          |
| 109              | (68)             | /02              | V350 Ori           | ωσπ                    |                            | HAEDE                 | 11<br>2          |
| 110              | (08)             | 493              | V 550 OF1          | MWC 120                | AUC<br>BO Ve Lob           | ПАЕВЕ<br>Наере        | 2<br>0           |
| 111              | 09               | 1.01             | DLOri              | Haro 7 3               | K1                         | CTTS                  | 0                |
| 112              | 70               | 101              | V351 Ori           | HD 38238               |                            | HAFRE                 | 2                |
| 113              | 70               | 186              | FUOri              | 11D 30230              | GUI                        | FUOri                 | 13               |
| 115              | / 1              | 515              | HD 288313          | BD ±1 1156             | $K_{2:n}(I_i)$             | NTTS                  | 15               |
| 116              | 72               | 192              | HD 250550          | MWC 789                | R9eg                       | HAFRE                 | 16               |
| 117              | 73               | 193              | LkHa 208           | 111110 705             | FOVe                       | HAFRE                 | 1                |
| 118              | 74               | 175              | EKIIQ 200          | HD 45677               | R3[eln+sh                  | HAEBE                 | 22               |
| 119              | 75               | 202              | VY Mon             | 112 13077              | BS[e]p + sh                | HAEBE                 | 1                |
| 120              | 76               | 528              | V699 Mon           | $LkH\alpha 215$        | B7 IIne                    | HAEBE                 | 1                |
| 121              | 77               | 529              | HD 259431          |                        | B5:e                       | HAEBE                 | 6                |
| 122              | 78               | 207              | R Mon              | BD + 81427             | B0e                        | HAEBE                 | 2                |
| (123)            | (79)             | 216              | NX Mon             | LH $\alpha$ 22         | cont                       | CTTS                  | 0                |
| 124              | ()               | 217              | W84                | VSB 59                 | F8.G0e                     | NTTS                  | 1                |
| 125              | 80               | 219              | V590 Mon           | $LH\alpha 25$          | B8pe+sh                    | HAEBE                 | 9                |
| 126              |                  | 222              | W108               | VSB 78                 | F9:e(Li)                   | CTTS                  | 1                |
| (127)            |                  | 229              | LX Mon             | $LH\alpha$ 51          | K7                         | CTTS                  | 0                |
| (128)            |                  | 238              | MO Mon             | $LH\alpha$ 72          | K2                         | CTTS                  | Ő                |
| 129              | 81               |                  | HD 50138           | MWC 158                | B6 V[e]+sh                 | HAEBE                 | 18               |

TABLE 1—Continued

| ID3 <sup>a</sup> | ID1 <sup>b</sup> | HBC <sup>c</sup> | Name <sup>d</sup> | Alt. Name <sup>d</sup> | Spectral Type <sup>e</sup>   | Categoryf | $N^{\mathrm{g}}$ |
|------------------|------------------|------------------|-------------------|------------------------|------------------------------|-----------|------------------|
| (1)              | (2)              | (3)              | (4)               | (5)                    | (6)                          | (7)       | (8)              |
| 130              | 82               |                  | OV Gem            | HD 51585               | B[e]                         | HAERE     | 3                |
| 131              | 82               | •••              | GUCMa             | HD 52721               | B2 Vne                       | HAEBE     | 2                |
| 131              | 84               | 243              | Z CMa             | HD 53179               | B5/8neq+sh                   | HAEBE     | 6                |
| 132              | 85               | 243              | HD 53367          | MWC 166                | B0 III /IVe                  | HAEBE     | 4                |
| 134              | 86               |                  | FW CMa            | HD 56014               | B3 IIIen                     | HAEBE     | 2                |
| 135              | 87               | 552              | NX Pup            | $C_0D = 44.3318$       | El:e                         | HAEBE     | 5                |
| (136)            | 07               | 552              | HD 85567          | $H_{0} = 3 = 331$      | P1.C<br>B5 Vne               | HAEBE     | 0                |
| 137              | 80               |                  | HD 87643          | He 3-365               | B3/4[e]                      | HAEBE     | 8                |
| 138              | 0)               |                  | CPD = 59.2854     | WR A 15-689            | $B2/3V_{e}$                  | HAEBE     | 2                |
| 130              | 91               |                  | GG Car            | HD 94878               | $B5/6[e] \pm K3$             | HAEBE     | 7                |
| 140              | 71               | 565              | SV Cha            | Sz 3                   | M0                           | CTTS      | 2                |
| 141              |                  | 567              | TW Cha            | Sz 5                   | MO:                          | CTTS      | 1                |
| 142              | (02)             | 244              | CP Cha            | Sz 5                   | $K_2(\mathbf{I};\mathbf{i})$ | CTTS      | 3                |
| 142              | 02               | 569              | TW Uvo            | J2 0                   | $K_2(LI)$                    | CTTS      | 0                |
| 143              | 95               | 508              | HD 05881          | He 3 554               | $\Lambda 1/2III/IV_{P}$      | HAFRE     | 1                |
| 144              | 05               | 560              | CS Cha            | Sz 0                   | K1/2111/1VC                  | CTTS      | 2                |
| 145              | 95               | 570              | CT Cha            | SZ 7                   | KJ.<br>V 7.                  | CTTS      | 1                |
| 140              |                  | 570              |                   | SZ 11<br>CUVD 16       | $\mathbf{N}/\mathbf{N}$      |           | 1                |
| 14/              | 90               | 245              | HD 900/3          | CHAK 10<br>S= 10       |                              | HAEBE     | 1                |
| 148              | (97)             | 245              | DI Cha            | SZ 19                  | G2 V(L1)                     | CTTS      | 2                |
| 149              | 98               | 5/5              | v w Cha           | SZ 24                  | K2                           |           | 3                |
| 150              | 99               | 246              | CU Cha            | HD 97048               | A0pe+sh                      | HAEBE     | /                |
| 151              | (100)            | 5/8              | VZ Cha            | Sz 31                  | K6                           | CIIS      | 1                |
| 152              | 102              | 588              | Sz 41             | HJM E1-9a              | K0                           | CITS      | l                |
| 153              | 103              | 247              | CV Cha            | LHα 332-21             | G8 V(L1)                     | CITS      | 5                |
| 154              | 104              |                  | HD 98922          | He 3-644               | B9 Ve                        | HAEBE     | 3                |
| 155              | 105              |                  | HD 100546         | He 3-672               | B9 Vne                       | HAEBE     | 3                |
| 156              |                  |                  | HD 101412         | He 3-692               | B9.5 Ve                      | HAEBE     | 1                |
| 157              | 106              |                  | HD 104237         | He 3-741               | A4e                          | HAEBE     | 5                |
| 158              | (107)            |                  | He 3-847          | CPD -48 5215           | B5e                          | HAEBE     | 1                |
| (159)            |                  |                  | GSC 07798-00578   |                        |                              | CTTS      | 0                |
| 160              | 108              |                  | He 3-1013         | CPD -64 2939           | Be                           | HAEBE     | 1                |
| 161              |                  |                  | HD 130437         | He 3-1031              | B8 Ve                        | HAEBE     | 2                |
| 162              | 109              |                  | HD 132947         | CPD -62 4379           | A0e                          | HAEBE     | 1                |
| 163              |                  | 597              | IK Lup            | Sz 65                  | K7,M0(Li)                    | CTTS      | 2                |
| 164              | (110)            | 248              | HT Lup            | CoD -33 10685          | K2 V(Li)                     | CTTS      | 4                |
| 165              |                  | 249              | GW Lup            | Sz 71                  | M1.5                         | CTTS      | 1                |
| 166              | (111)            |                  | HD 141569         | BD -3 3833             | A0 Ve                        | HAEBE     | 1                |
| 167              |                  | 603              | Sz 77             |                        | M0(Li)                       | CTTS      | 2                |
| 168              | 112              |                  | HD 142361         | ScoPMS 5               | G2 IV                        | NTTS      | 1                |
| 169              |                  | 605              | IM Lup            | Sz 82                  | M0(Li)                       | CTTS      | 2                |
| 170              | 113              | 251              | RU Lup            | Sz 83                  | K                            | CTTS      | 23               |
| 171              | 114              |                  | HD 142666         | BD -21 4228            | A7/8Ve                       | HAEBE     | 2                |
| 172              |                  | 606              | Sz 126            |                        | K,M                          | CTTS      | 1                |
| 173              | (115)            | 608              | HD 143006         | He 3-1126              | G5                           | CTTS      | 1                |
| 174              |                  | 609              | He 3-1125         | Sz 129                 | K7,M0                        | CTTS      | 1                |
| 175              | 116              | 252              | RY Lup            |                        | K0,1V(Li)                    | CTTS      | 2                |
| 176              |                  |                  | V1152 Sco         | ScoPMS 21              | K1 IV                        | NTTS      | 1                |
| 177              | (117)            |                  | V1154 Sco         | ScoPMS 23              | K5 IV                        | NTTS      | 1                |
| 178              | 118              | 253              | EX Lup            |                        | M0: V(Li)                    | CTTS      | 1                |
| (179)            | (119)            |                  | V1156 Sco         | ScoPMS 27              | K2 IV                        | NTTS      | 0                |
| 180              | 120              | 612              | HO Lup            | Sz 88                  | M1                           | CTTS      | 1                |
| 181              | 121              |                  | HD 144432         | He 3-1141              | A7 Ve/F0e                    | HAEBE     | 2                |
| 182              |                  | 615              | Sz 96             |                        | M1.5                         | CTTS      | 1                |
| 183              | 122              | 616              | HK Lup            | Sz 98                  | K7,M0(Li)                    | CTTS      | 3                |
| 184              | 124              | 619              | V856 Sco          | HD 144668              | A7e III, IV                  | HAEBE     | 18               |
| (185)            |                  | 620              | Sz 108            | Eggen 2                | M0.5                         | NTTS      | 0                |
| (186)            |                  | 622              | Sz 111            | $TH\alpha$ 15-33       | M0.5                         | CTTS      | 0                |
| (187)            |                  | 631              | Sz 124            | $TH\alpha$ 15-43       | M0                           | NTTS      | 0                |
| 188              | 125              | 254              | V866 Sco A        | AS 205                 | K5V(Li)                      | CTTS      | 1                |
| 189              |                  | 633              | V1001 Sco         | Wa Oph/2               | K1 IV(Li)                    | NTTS      | 1                |
| 190              | 126              | 634              | V1002 Sco         | ScoPMS 52              | K0 IV(Li)                    | NTTS      | 2                |
| 191              | 127              |                  | HD 146516         | ScoPMS 60              | G0 IV                        | NTTS      | 2                |
| 192              |                  | 256              | V895 Sco          | Haro 1-1               | K5,7                         | CTTS      | 1                |
| (193)            |                  | 636              | V2245 Oph         | ROX 3                  | MO                           | NTTS      | 0                |
| 194              |                  | 259              | V2058 Oph         | AS 206                 | K6,7                         | CTTS      | 1                |

| ID3 <sup>a</sup> | ID1 <sup>b</sup> | HBC <sup>c</sup> | Name <sup>d</sup> | Alt. Name <sup>d</sup> | Spectral Type <sup>e</sup> | Category <sup>f</sup> | $N^{\mathrm{g}}$ |
|------------------|------------------|------------------|-------------------|------------------------|----------------------------|-----------------------|------------------|
| (1)              | (2)              | (3)              | (4)               | (5)                    | (6)                        | (7)                   | (8)              |
| (195)            |                  | 637              | Haro 1-6          | DoAr 21                | G,K                        | NTTS                  | 0                |
| 196              | 128              |                  | He 3-1191         | WRA 15-1484            | B0:[e]                     | HAEBE                 | 1                |
| (197)            |                  | 641              | ROX 20-2 se       |                        | Μ                          | NTTS                  | 0                |
| (198)            |                  | 263              | V2247 Oph         | SR 12                  | M1,2                       | NTTS                  | 0                |
| 199              | 129              | 264              | V2129 Oph         | AS 207                 | K5,7                       | CTTS                  | 2                |
| 200              |                  | 265              | V2059 Oph         | SR 10                  | M1.5                       | CTTS                  | 1                |
| 201              |                  | 266              | V853 Oph          | SR 13                  | M1.5                       | CTTS                  | 2                |
| 202              |                  | 268              | Haro 1-16         | DoAr 44                | K2,3                       | CTTS                  | 1                |
| (203)            | (130)            | 646              | V346 Nor          | HH57/IRS 8             | F8eq III(Li)               | FUOri                 | 0                |
| 204              |                  | 647              | V2248 Oph         | DoAr 51                | M0:                        | NTTS                  | 1                |
| 205              | (131)            |                  | HD 150193         | MWC 863                | A0/4Ve                     | HAEBE                 | 1                |
| 206              | 132              | 270              | V1121 Oph         | He 3-1260              | K5(Li)                     | CTTS                  | 2                |
| 207              | 133              | 271              | AK Sco            | HD 319139              | F5 Ve(Li)                  | CTTS                  | 7                |
| 208              | 134              | 655              | V921 Sco          | CoD -42 11721          | B0[e]p                     | HAEBE                 | 1                |
| 209              | 135              |                  | HD 326823         | He 3-1330              | B1.5[e]                    | HAEBE                 | 1                |
| 210              | 136              | 273              | KK Oph            | $TH\alpha 27-3$        | A5 Ve                      | HAEBE                 | 3                |
| 211              | (137)            |                  | HD 327083         | He 3-1359              | B1.5e                      | HAEBE                 | 3                |
| 212              | 138              |                  | He 3-1357         | CPD - 59 6926          | B0/3e                      | nonPMS                | 8                |
| 213              | 139              |                  | He 3-1428         | CD -49 11554           | B0e                        | HAEBE                 | 2                |
| 214              | 141              |                  | HD 316285         | He 3-1482              | B2/3[e]+sh                 | HAEBE                 | 2                |
| 215              | 142              |                  | HD 163296         | He 3-1524              | A0/2Vep+sh                 | HAEBE                 | 10               |
| 216              | 143              | 662              | V4046 Sgr         | HD 319139              | K5,6Vn(Li)                 | CTTS                  | 6                |
| 217              | 144              | 663              | FK Ser            | BD -10 4662            | K5pV(Li)                   | CTTS                  | 2                |
| 218              | 145              | 282              | VV Ser            | IrCh 21                | B,Ae                       | HAEBE                 | 2                |
| 219              | 146              | 286              | S CrA             |                        | K6:                        | CTTS                  | 1                |
| 220              |                  | 676              | V709 CrA          | Wa CrA/1               | K0,2 IV(Li)                | NTTS                  | 1                |
| 221              | 147              | 287              | TY CrA            | CoD -37 13024          | B9                         | HAEBE                 | 3                |
| 222              | 148              | 288              | R CrA             |                        | A5:e+sh                    | HAEBE                 | 3                |
| (223)            | 149              | 678              | V702 CrA          | Wa CrA/2               | G8 IV:(Li)                 | NTTS                  | 0                |
| 224              | 150              |                  | HD 179218         | MWC 614                | B9/A0 IV/Ve                | HAEBE                 | 1                |
| 225              | 152              | 686              | WW Vul            | BD+204136              | A0,3Ve                     | HAEBE                 | 7                |
| 226              | 153              |                  | V1295 Aql         | HD 190073              | A0 IVep+sh                 | HAEBE                 | 8                |
| 227              | 154              | 689              | V1685 Cyg         | MWC 340                | B2,3e+sh                   | HAEBE                 | 1                |
| (228)            | 155              | 297              | V751 Cyg          | $LkH\alpha 170$        | A5:e                       | HAEBE                 | 0                |
| (229)            |                  | 300              | V1057 Cyg         | $LkH\alpha$ 190        | A-Ge                       | FUOri                 | 0                |
| 230              |                  | 302              | V1331 Cyg         | $LkH\alpha$ 120        | cont                       | CTTS                  | 3                |
| 231              | 156              | 726              | HD 200775         | MWC 361                | B3eq                       | HAEBE                 | 3                |
| 232              | 157              | 730              | BD+651637         |                        | B2,3nne                    | HAEBE                 | 1                |
| 233              | 158              | 309              | V373 Cep          | $LkH\alpha 234$        | B5,7e                      | HAEBE                 | 2                |
| 234              | 159              | 310              | V1578 Cyg         | BD+463471              | A4:e+sh                    | HAEBE                 | 1                |
| (235)            |                  | 313              | V375 Lac          | $LkH\alpha 233$        | A7e $\alpha$               | HAEBE                 | 0                |
| 236              | 160              | 315              | DI Cep            | $MH\alpha$ 47-30       | G8 V:(Li)                  | CTTS                  | 2                |
| 237              | (161)            | 317              | MWC 1080          |                        | B0?eq                      | HAEBE                 | 1                |
| 238              |                  |                  | BP Psc            | IRAS 23198-0230        |                            | CTTS <sup>h</sup>     | 1                |

TABLE 1—Continued

<sup>a</sup> Internal identification number, enclosed in parentheses if none of the LW spectra are useful.

<sup>b</sup> Identification number from Paper I, enclosed in parentheses if none of the SW spectra were useful.

<sup>c</sup> Catalog number from Herbig & Bell 1988.

<sup>d</sup> Names in cols. (4) and (5) were selected from Paper I or using the catalog precedence specified therein.

<sup>e</sup> Spectral types preferentially from Herbig & Bell 1988 for TTS and Thé et al. 1994 for HAEBE stars.

f PMS category.

<sup>g</sup> Number of useful *IUE* LW spectra.

<sup>h</sup> We analyze as a CTTS, despite a HAEBE classification by Gregorio-Hetem et al. 1992.

### 2.3. Spectral Atlas

Figure 1 presents co-added LW spectra for 107 TTS with useful *IUE* data. Stars are ordered by right ascension, as in Table 1. Each panel is labeled with an identification number and name from Table 1. The typeface for each label reflects whether the star was categorized as CTTS/FUOri (*roman type*) or NTTS (*italic type*) in Table 1. Sources with no useful spectra (indicated by a zero in the last column of Table 1) do not appear in Figure 1. All spectra are presented on a

common wavelength scale, given at the bottom of each column. A flux scale factor of  $10^{-14}$  erg s<sup>-1</sup> cm<sup>-2</sup> Å<sup>-1</sup> applies to all TTS spectra, though the flux range for each panel is given separately. Many TTS spectra are dominated by the unresolved Mg II doublet at 2800 Å. In order to highlight weaker spectral features, we ignored the wavelength interval containing Mg II when selecting the plot ranges in Figure 1. For noisy spectra, a horizontal dashed line indicates the zero flux level, so that the scatter below this level can be used to visually estimate noise levels. A few spectra are dominated

| TABLE 2                                        |    |
|------------------------------------------------|----|
| Additional Classifications from the Literature | RE |

| ID <sup>a</sup><br>(1) | Name (2)                 | Category (3)            | Reason (4)                                           | Reference<br>(5) |
|------------------------|--------------------------|-------------------------|------------------------------------------------------|------------------|
| 4                      | HD 10745                 | nonPMS                  | Lithium rich giant                                   | 1                |
| 7                      | V772 Tou                 | NTTS                    | No significant NIP or P hand average                 | 1                |
| 14                     | V / / 5 Tau<br>V 097 Tau | NTTS                    | No ID every an appretion signatures                  | 2                |
| 10                     | V987 Tau                 | NTTS<br>CTTS            | NO IR excess of accretion signatures                 | 3                |
| 22                     | UX Tau                   | CIIS                    | UX Tau A CITS, B&C NITS                              | 4                |
| 30                     | V1147 Tau                | nonPMS                  | No lithium absorption                                | 5                |
| 39                     | V1110 Tau                | nonPMS                  | No lithium absorption                                | 6                |
| 75                     | KM Ori                   | NTTS                    | No NIR excess                                        | 7                |
| 83                     | Parenago 1869            | CTTS                    | Orion PROPLYD                                        | 8                |
| 89                     | MT Ori                   | <b>NTTS<sup>b</sup></b> | No NIR excess                                        | 7                |
| 94                     | NT Ori                   | CTTS                    | $75 \text{ Å} H\alpha EW$                            | 9                |
| 105                    | BD -06 1258              | NTTS                    | No NIR excess                                        | 10               |
| 124                    | W84                      | NTTS                    | Mg II absorption                                     | 11               |
| 126                    | W108                     | CTTS                    | Broad (>500 km s <sup>-1</sup> ) H $\alpha$ emission | 12               |
| 163                    | IK Lup                   | CTTS                    | $19 \text{ Å} H\alpha EW$                            | 13               |
| 169                    | IM Lup                   | CTTS                    | Red shifted absorption in $H\alpha$                  | 14               |
| 172                    | Sz 126                   | CTTS                    | Balmer series in emission (35 Å H $\gamma$ EW)       | 13               |
| 176                    | V1152 Sco                | NTTS                    | No NIR Excess                                        | 15               |
| 189                    | V1001 Sco                | NTTS                    | No accretion signatures                              | 16               |
| 190                    | V1002 Sco                | NTTS                    | No accretion signatures                              | 16               |
| 212                    | He 3-1357                | nonPMS                  | Planetary nebula                                     | 17               |
| 220                    | V709 CrA                 | NTTS                    | No accretion signatures                              | 16               |
| 223                    | V702 CrA                 | NTTS                    | No accretion signatures                              | 16               |

<sup>a</sup> Identification number from first column of Table 1.

<sup>b</sup> Status is uncertain as Hillenbrand et al. 1998 detect weak emission in the Ca II 8542 Å line, possibly indicating accretion.

REFERENCES.—(1) Gregorio-Hetem et al. 1992; (2) Ghez et al. 1997; (3) Walter et al. 1987; (4) White & Ghez 2001; (5) Li & Hu 1998; (6) Martín et al. 1994; (7) Stassun et al. 2001; (8) O'Dell & Wen 1994; (9) Pravdo & Angelini 1993; (10) Rydgren & Vrba 1984; (11) this paper; (12) Fernandez & Miranda 1998; (13) Appenzeller et al. 1983; (14) Reipurth et al. 1996; (15) Walter et al. 1994; (16) Walter 1986; (17) Feibelman 1995.

by noise, but all have at least one real spectral feature (e.g., DI Tau, no. 21) or significant continuum (e.g., W84, no. 124).

Figure 2 presents co-added LW spectra for 97 HAEBE stars with useful IUE data. Note that the flux scale factor  $(10^{-13} \text{ erg s}^{-1} \text{ cm}^{-2} \text{ Å}^{-1})$  is 10 times larger than in Figure 1. Spectra are ordered by spectral type (see  $\S$  3.4) to emphasize the striking differences between stars of similar spectral type, for example HK Ori (A1, no. 65), HD 163296 (A1, no. 215), and VX Cas (A1.5, no. 1). Continuum is clearly detected in all HAEBE stars. Spectral lines are rare in the hottest stars, becoming more common with decreasing temperature. Spectral lines can appear in emission or absorption. A broad graphite extinction feature near 2200 A is present in many spectra of HAEBE stars, for example AE Aur (O9.5, no. 57). Some stars have a rise in flux shortward of 2400 Å that may be due in part to a calibration error, rather than extinction. Because sensitivity drops quickly at the shortest wavelengths, a small error in background subtraction can leave a residual count rate that would mimic a flux spectrum rising toward the shortest wavelengths. Appropriate caution is advised.

Our co-added IUE spectra of TTS and HAEBE stars are available electronically<sup>2</sup> from the Multi-Mission Archive at Space Telescope (MAST). Co-added main-sequence templates described in § 3.3 are also available at the same site.

#### 2.4. Flux Variability

A detailed analysis of potentially interesting temporal variations is beyond the scope of this atlas, but as in Paper I, we report the amplitude and statistical significance of flux variations in 127 stars with more than one useful IUE spectra. We applied the methodology described in § 2.3 of Paper I to fluxes integrated over the wavelength interval 1900-3200 Å. Refer to Paper I for details of the analysis and an explanation of the measured quantities, except that Paper I should have stated that the hypothesis of null variation implies  $\alpha = 0$ , not  $\alpha = 1$ , where  $\alpha$  is a measure of the fractional change in the flux of a single exposure relative to the mean for all exposures. The results in Paper I are correct nonetheless.

Table 3 gives results of the variability analysis, ordered by decreasing significance of variability. The first four columns reiterate information from Table 1. Column (5) contains  $\chi^2_r$ for a model assuming no variability. Large  $\chi^2_r$  values imply a poor model fit or equivalently the presence of significant variations. The last two columns of Table 3 give the fractional variability amplitude (A) in percent and the associated uncertainty ( $\sigma_A$ ). When the measured value of A is less than  $2\sigma_A$ , we present the result as a 2  $\sigma$  upper limit on A. Since A is defined as variation relative to the mean, values of

<sup>&</sup>lt;sup>2</sup> See http://archive.stsci.edu/prepds/iuepms/.



FIG. 1.—Combined LW spectra of every TTS with useful *IUE* data. Each source name is preceded by an identification number and is set in a typeface that distinguishes between CTTS (*roman type*) and NTTS (*italic type*). For noisy sources, the zero flux level is indicated by a horizontal dashed line. Histogram breaks occur where data quality flags indicate bad data.

A significantly larger than 100% are unlikely, even when brightness varies by factors of a few. We discuss these variability results in § 4.

### 3. ANALYSIS

### 3.1. NTTS Templates

NTTS are useful proxies for the intrinsic stellar component of CTTS. Removing a properly scaled and reddened NTTS template spectrum from a CTTS spectrum leaves only the excess associated with accretion and outflows. To construct NTTS templates, we first dereddened spectra of each NTTS observed by *IUE* with literature values of  $A_V$ listed in the last five columns of Table 4. When more than one value of  $A_V$  is listed for a particular star, we adopted the first value in the corresponding row. The identification number and spectral class of each NTTS are repeated from Table 1. After interpolating the dereddened NTTS spectra onto a common wavelength scale, we normalized each spectrum by the total flux in the wavelength interval 2500–3200 Å, excluding the Mg II region 2775–2825 Å. We then compared each individual spectrum with the mean of all spectra, noting two slightly different groups of residuals. N1 templates resemble G type NTTS with weak Fe II absorption near 2600 Å and gradually rising continuum at the longest wavelengths. N2 templates resemble K type NTTS with deeper Fe II absorption near 2600 Å and a steeper rise beyond 3000 Å. Template classifications are not a strict function of spectral class because spectral characteristics also depend on magnetic activity level. The third column of Table 4 lists the template type of each NTTS, unless excessive noise or an unusual continuum shape precludes classification.

Use of an individual NTTS spectrum to model a CTTS would introduce noise. Because NTTS spectra within the N1 and N2 groups are similar, we constructed a single





weighted-mean spectrum for each group. To remove outliers that would compromise least-squares fits, we applied a 5 pixel wide median filter to the mean template spectra. As shown in Figure 3, the resulting NTTS template spectra are distorted locally but are free of major noise excursions. These N1 and N2 templates are used in the next section to model CTTS spectra. We also used the two NTTS templates to determine  $A_V = 0.5 \pm 0.2$  for AB Dor (no. 64) and  $A_V = 1.0 \pm 0.5$  for HD 288313 (no. 115), neither of which have  $A_V$  values in the references cited in Table 4.



FIG. 1.—Continued

# 3.2. CTTS Continuum and Line Emission

In Paper II we argued that most SW emission from CTTS is due to accretion related processes. Here we measure LW emission fluxes, which may also trace accretion, despite a larger contribution from the active photosphere. For each co-added CTTS spectrum, we calculated the mean continuum flux per Å in two wavelength intervals relatively free of strong spectral lines. Table 6 presents logarithms of the mean flux in the wavelength intervals 2200–2315 Å



FIG. 2.—Combined LW spectra of every HAEBE star with useful *IUE* data. Each source name is preceded by an identification number. For noisy sources, the zero flux level is indicated by a horizontal dashed line. Histogram breaks occur where data quality flags indicate bad data.

(" cnt2257 ") and 2995–3125 Å (" cnt3060 "). Throughout the table, parentheses enclose the formal uncertainty in the two least significant digits, unless a 2  $\sigma$  upper limit is quoted. Figure 4 shows the extent and spectral content of these two pseudo-continuum windows for T Tau (no. 17).

Figure 4 also illustrates that LW spectra of CTTS may contain prominent emission lines. Because individual spectral lines generally are not resolved in *IUE* low-resolution spectra, we defined seven wavelength intervals bounded by pseudo-continuum and dominated by emission from one ionic species. These wavelength intervals and species are listed in Table 5 and indicated in Figure 4. To facilitate line identification and to demonstrate the quality of *IUE* data, Figure 4 also shows a STIS G230L spectrum (data set o5ex05020) of T Tau degraded to 6 Å resolution and multiplied by a polynomial to match the observed *IUE* continuum. Note that NEWSIPS and *HST* use different flux calibration standards (Massa & Fitzpatrick 2000), so the two need not agree.

In order to measure excess line emission due to accretion, the underlying active photospheric spectrum must be characterized. We therefore fitted CTTS spectra with the reddened sum of an NTTS template plus a schematic veiling continuum, considering wavelengths in the interval 2160– 3165 Å, but excluding the spectral line windows in Table 5. Ideally a detailed physical model would be used to generate a family of realistic veiling continua, but excess line emission can be measured using any simple function that reproduces the observed pseudo-continua of CTTS. We used a quadratic polynomial to approximate crudely the continuum excess in CTTS. Figure 5 shows a sample continuum fit for CS Cha (no. 63). Fitted models are often dominated by the NTTS template or the quadratic veiling continuum, but in CS Cha the two components are comparable. We do not tabulate model veiling or reddening values because LW *IUE* spectra alone are not always sufficient to separate these parameters. For example, the quadratic continuum excess is negative in some cases. Nonetheless, the sum of the two components fitted all CTTS spectra well. For each CTTS, we compared fits using NTTS templates N1 and N2, selecting the fit with significantly lower  $\chi_r^2$  or averaging the two fits if  $\chi_r^2$  differed by less than 5%. All model fits were inspected visually to ensure accuracy.

For each observed CTTS spectrum, we computed excess flux above the model pseudo-continuum, integrating across the emission line windows listed in Table 5. Figure 4 presents graphically the integration intervals, while Figure 5 highlights portions of the CTTS flux spectrum above the fitted pseudo-continuum. Emission line fluxes and associated uncertainties are given in ergs s<sup>-1</sup> cm<sup>-2</sup> in the last seven columns of Table 6, which have header labels from column (4) of Table 5. Note the scale factor at the top of each column. We calculated uncertainties by propagating measurement errors for pixels used to compute the line flux. Labels at the top of each column indicate the dominant ionic species in each wavelength interval, but minority species may also contribute significantly. In particular, the C II] region also contains Fe II, and possibly a small contribution from C II (Wiese, Fuhr, & Deters 1996), but C II] is expected to dominate in all cases. Similar considerations apply to the other emission line windows.



FIG. 2.—Continued

# 3.3. Main-Sequence Analogs of HAEBE Stars

Spectroscopic evidence of accretion onto HAEBE stars is rare at best. Outflow signatures are more common, but still not ubiquitous. To study spectral peculiarities associated with the youth of HAEBE stars, ordinary comparison stars of the same spectral class are useful. We therefore constructed a LW spectral library of normal main-sequence stars for spectral types O3 V to F5 V.





We generally adopted template stars from Table 9 of Paper I, but LW spectra were inadequate or unavailable for five SW templates stars. For these missing templates and for spectral classes outside the range covered in Paper I, we searched the *IUE* merged log for new template stars. With no comprehensive catalog of coordinates to drive the search, we instead relied on object classes and spectral types in the *IUE* merged log. Specifically, we searched for *IUE* 

TABLE 3 MEASURED FLUX VARIATIONS

| ID2      | NL                 | C h      | MC  | 2                  | 4d               |            |
|----------|--------------------|----------|-----|--------------------|------------------|------------|
| ID"      | Name               | Category | IVC | $\chi_{\tilde{r}}$ | $A^{\mathrm{u}}$ | $\sigma_A$ |
| (1)      | (2)                | (3)      | (4) | (5)                | (6)              | (7)        |
|          |                    |          |     |                    |                  |            |
| 88       | HD 37023           | HAEBE    | 3   | 10623.3            | 83.9             | 0.6        |
| 48       | UY Aur             | CTTS     | 3   | 358.9              | 67.0             | 25         |
| 106      | DEOri              | LAEDE    | 6   | 274.2              | 527              | 1.0        |
| 100      | BF OII             | HAEDE    | 0   | 274.3              | 52.1             | 1.4        |
| 171      | HD 142666          | HAEBE    | 2   | 259.6              | 45.4             | 2.8        |
| 170      | RU Lup             | CTTS     | 23  | 195.7              | 46.9             | 0.8        |
| 56       | RW Aur             | CTTS     | 29  | 176.2              | 53.6             | 0.8        |
| 183      | HKLup              | CTTS     | 3   | 173.3              | 58 7             | 3.8        |
| 105      |                    |          | 2   | 175.5              | 10.5             | 5.0        |
| 80       | LPOri              | HAEBE    | 3   | 164.9              | 40.5             | 2.3        |
| 132      | Z CMa              | HAEBE    | 6   | 156.4              | 43.7             | 1.7        |
| 54       | UX Ori             | HAEBE    | 13  | 129.2              | 44.0             | 1.3        |
| 206      | V1121 Oph          | CTTS     | 2   | 122.8              | 36.7             | 3 3        |
| 200      | WILLI Oph          |          | 2   | 122.0              | 24.0             | 1.7        |
| 225      | ww vui             | HAEBE    | /   | 112.3              | 34.0             | 1./        |
| 84       | BM Ori             | HAEBE    | 44  | 112.2              | 36.9             | 0.6        |
| 122      | R Mon              | HAEBE    | 2   | 101.5              | 34.1             | 3.4        |
| 109      | HD 37490           | HAERE    | 11  | 92.8               | 34.2             | 13         |
| 107      | TO:                | HAEDE    | 11  | 92.0               | 22.0             | 2.2        |
| 99       | I Ori              | HAEBE    | 4   | 82.0               | 33.8             | 2.2        |
| 59       | CO Ori             | CTTS     | 2   | 78.0               | 28.3             | 3.6        |
| 108      | RR Tau             | HAEBE    | 3   | 73.2               | 49.8             | 4.3        |
| 18       | DF Tau             | CTTS     | 22  | 55.9               | 40.9             | 14         |
| 06       | NV O.              | NTTC     |     | 51.1               | 24.0             | 2.4        |
| 20       | INV OFI            | 11115    | 2   | 51.1               | 24.9             | 3.3        |
| 92       | 43 Ori             | HAEBE    | 10  | 47.3               | 19.9             | 1.4        |
| 47       | DS Tau             | CTTS     | 4   | 42.6               | 30.1             | 3.2        |
| 16       | V987 Tau           | NTTS     | 9   | 41.8               | 28.4             | 19         |
| 86       | MR Ori             | HAFRE    | 3   | 40.0               | 10.8             | 2.0        |
| 1.5      | DVT                | OTTO     |     | 40.9               | 19.0             | 2.9        |
| 15       | RY Iau             | CIIS     | 83  | 34.6               | 31.9             | 0.7        |
| 46       | DR Tau             | CTTS     | 40  | 34.4               | 29.2             | 1.1        |
| 82       | V1016 Ori          | HAEBE    | 3   | 28.0               | 19.2             | 2.7        |
| 184      | V856 Sco           | HAFRE    | 18  | 27.6               | 23.9             | 13         |
| 104      | P C nA             | LIAEDE   | 2   | 27.0               | 22.5             | 2.5        |
|          | KCIA               | TAEDE    | 5   | 27.5               | 23.2             | 3.5        |
| 91       | CQ Tau             | HAEBE    | 7   | 27.0               | 24.8             | 2.6        |
| 49       | GM Aur             | CTTS     | 5   | 23.4               | 26.9             | 4.0        |
| 12       | BP Tau             | CTTS     | 59  | 23.2               | 28.8             | 0.9        |
| 236      | DICen              | CTTS     | 2   | 20.7               | 16.1             | 3.6        |
| 1 40     | DI CCP             | CTTS     | 2   | 20.7               | 22.4             | 5.0        |
| 149      | v w Cha            | C115     | 3   | 20.4               | 33.4             | 5.4        |
| 17       | T Tau              | CTTS     | 30  | 20.1               | 23.6             | 1.3        |
| 129      | HD 50138           | HAEBE    | 18  | 20.1               | 18.7             | 1.2        |
| 201      | V853 Oph           | CTTS     | 2   | 19.8               | 29.2             | 6.6        |
| <u>າ</u> | V504 Cos           | LAEDE    | 4   | 10.6               | 10.1             | 2.6        |
| 4        | V J94 Cas          | TIALDE   | 4   | 19.0               | 19.1             | 2.0        |
| 40       | AA Tau             | CITS     | 6   | 16.9               | 33.4             | 4.4        |
| 207      | AK Sco             | CTTS     | 7   | 15.6               | 18.1             | 2.1        |
| 22       | UX Tau             | CTTS     | 4   | 15.5               | 33.1             | 5.8        |
| 217      | FK Ser             | CTTS     | 2   | 154                | 28.1             | 74         |
| 125      | NV D               | LADD     | 2   | 1/1                | 120.1            | 2.4        |
|          | INAPUP             | TAEBE    | 3   | 14.1               | 13.9             | 2.2        |
| 167      | Sz 77              | CTTS     | 2   | 13.1               | 28.8             | 8.0        |
| 175      | RY Lup             | CTTS     | 2   | 12.8               | 16.3             | 4.6        |
| 140      | SY Cha             | CTTS     | 2   | 12.8               | 41.0             | 11.8       |
| 118      | FS CM <sub>2</sub> | HAFRE    | 22  | 12.0               | 12.2             | 1 1        |
| 110      | V272 C             | HAEDE    | 44  | 12.2               | 13.3             | 1,1        |
| 233      | v 3/3 Cep          | HAEBE    | 2   | 11.9               | 13./             | 4.0        |
| 153      | CV Cha             | CTTS     | 5   | 11.0               | 16.2             | 2.7        |
| 216      | V4046 Sgr          | CTTS     | 6   | 10.4               | 17.3             | 3.3        |
| 51       | ABAur              | HAEBE    | 11  | 10.4               | 12.5             | 15         |
| 130      | GGCor              | LAEDE    | 7   | 10.7               | 12.5             | 2.5        |
| 1.37     | DOCAL              | TIAEDE   | /   | 10.5               | 12./             | 2.1        |
| 19       | DG Iau             | CITS     | 18  | 9.8                | 1/.6             | 1.7        |
| 37       | DL Tau             | CTTS     | 6   | 9.7                | 29.6             | 6.2        |
| 23       | DK Tau             | CTTS     | 4   | 9.1                | 33.4             | 9.9        |
| 64       | HTLup              | CTTS     | Д   | 8 3                | 22.1             | 47         |
| 01       | TV C-A             | LADDE    | 7   | 0.5                | 22.1<br>11 4     | т./<br>Э.О |
| <u> </u> | I I UTA            | HAEBE    | 3   | 8.2                | 11.4             | 2.9        |
| 52       | SU Aur             | CTTS     | 28  | 8.1                | 13.1             | 1.1        |
| 29       | GG Tau             | CTTS     | 6   | 8.0                | 22.0             | 3.9        |
| 137      | HD 87643           | HAFRE    | 8   | 7.6                | 11.0             | 2.0        |
| 142      | TWI                | CTTO     | 0   | 7.0                | 17.0             | 2.0        |
| 143      | i w Hya            | 0118     | 8   | 1.5                | 1/.0             | 3.0        |
| 41       | DN Tau             | CTTS     | 17  | 7.1                | 25.5             | 3.1        |
| 14       | DE Tau             | CTTS     | 8   | 7.0                | 14.7             | 2.9        |
| 10       | V410 Tau           | NTTS     | 10  | 6.2                | 22.8             | 37         |
| 65       |                    | LAEDE    | 20  | 5.2                | 0 2              | 2.1        |
| JJ       |                    | TIAEBE   | 2   | 5.5                | 0.3              | 3.1        |
| 211      | HD 327083          | HAEBE    | 3   | 5.3                | 18.0             | 5.8        |
| 3        | WY Ari             | CTTS     | 3   | 5.0                | 13.2             | 4.2        |

TABLE 3—Continued

| IDa | Name          | Categoryb | Nc  | $\chi^2_{\pi}$ | $A^{\mathrm{d}}$    | σι         |
|-----|---------------|-----------|-----|----------------|---------------------|------------|
| (1) | (2)           | (3)       | (4) | (5)            | (6)                 | (7)        |
|     |               |           | -   |                |                     |            |
| 72  | HD 245185     | HAEBE     | 5   | 4.6            | 8.7                 | 2.3        |
| 103 | V 380 Ori     | HAEBE     | 12  | 4.6            | 8.5                 | 1.5        |
| 116 | HD 250550     | HAEBE     | 16  | 4.4            | 8.1                 | 1.3        |
| /4  | HD 36939      | HAEBE     | 2   | 3.9            | .5</td <td>3.8</td> | 3.8        |
| 226 | V1295 Aqi     | HAEBE     | 8   | 3.6            | /.1                 | 1.8        |
| 210 | KK Oph        | HAEBE     | 3   | 3.6            | 6.8                 | 3.1        |
| 213 | HD 103290     | HAEBE     | 10  | 3.3            | 7.5                 | 1.0        |
| 100 | V2120 Onh     | CTTS      | 10  | 2.1            | /.4                 | 1.7        |
| 64  | AP Dor        | NTTS      | 11  | 2.0            | <15.0               | 1.5        |
| 114 | FUOri         | FUOri     | 11  | 2.9            | 7.5                 | 1.7        |
| 190 | V1002 Sco     | NTTS      | 2   | 2.6            | /.0                 | 8.2        |
| 230 | V1002 Sco     | CTTS      | 3   | 2.0            | < 10.3              | 5.1        |
| 101 | HD 146516     | NTTS      | 2   | 2.0            | <7.6                | 3.8        |
| 50  | LkCa 19       | NTTS      | 2   | 2.5            | <16.5               | 83         |
| 110 | V350 Ori      | HAEBE     | 2   | 2.4            | <12.3               | 6.2        |
| 163 | IK Lup        | CTTS      | 2   | 1.8            | <72.4               | 36.2       |
| 218 | VV Ser        | HAEBE     | 2   | 1.0            | < 9.6               | 4.8        |
| 53  | HD 31648      | HAEBE     | 4   | 1.5            | < 5.1               | 2.5        |
| 34  | V830 Tau      | NTTS      | 3   | 1.5            | <23.2               | 11.6       |
| 111 | HD 37806      | HAEBE     | 8   | 1.3            | 4.8                 | 1.8        |
| 9   | CW Tau        | CTTS      | 4   | 1.2            | <28.6               | 14.3       |
| 157 | HD 104237     | HAEBE     | 5   | 1.2            | 5.0                 | 2.3        |
| 125 | V590 Mon      | HAEBE     | 9   | 1.1            | 4.9                 | 1.8        |
| 154 | HD 98922      | HAEBE     | 3   | 0.9            | < 5.9               | 3.0        |
| 150 | CU Cha        | HAEBE     | 7   | 0.9            | 4.0                 | 1.9        |
| 20  | V1072 Tau     | NTTS      | 2   | 0.9            | < 9.0               | 4.5        |
| 33  | V807 Tau      | CTTS      | 2   | 0.8            | <40.0               | 20.0       |
| 148 | DI Cha        | CTTS      | 2   | 0.8            | <13.3               | 6.7        |
| 57  | AE Aur        | HAEBE     | 5   | 0.8            | <4.6                | 2.3        |
| 169 | IM Lup        | CTTS      | 2   | 0.7            | <68.1               | 34.1       |
| 85  | HD 37022      | HAEBE     | 7   | 0.7            | <3.8                | 1.9        |
| 142 | CR Cha        | CTTS      | 3   | 0.7            | <15.9               | 7.9        |
| 93  | HD 37042      | HAEBE     | 2   | 0.6            | <7.1                | 3.6        |
| 113 | V351 Ori      | HAEBE     | 2   | 0.5            | <7.4                | 3.7        |
| 133 | HD 53367      | HAEBE     | 4   | 0.4            | < 5.0               | 2.5        |
| 121 | HD 259431     | HAEBE     | 6   | 0.4            | <4.2                | 2.1        |
| 7   | V773 Tau      | NTTS      | 4   | 0.4            | <25.2               | 12.6       |
| 60  | HD 35929      | HAEBE     | 3   | 0.4            | < 6.1               | 3.1        |
| 130 | OY Gem        | HAEBE     | 3   | 0.3            | < 5.9               | 2.9        |
| 27  | V82/ Tau      | NIIS      | 2   | 0.3            | <26.7               | 13.3       |
| 231 | HD 200775     | HAEBE     | 3   | 0.5            | < 5.9               | 2.9        |
| 101 | BN Ufi        | TAEBE     | 4   | 0.5            | < 3.4               | 2.1        |
| 145 | EWCMa         |           | 2   | 0.5            | <13.3               | 0.0        |
| 194 | HD 144432     | HAEBE     | 2   | 0.3            | < 7.1               | 5.0<br>4.0 |
| 131 | GUCMa         | HAEBE     | 2   | 0.2            | <7.9                | 3.6        |
| 95  | NUOri         | HAEBE     | 5   | 0.2            | <4.5                | 2.0        |
| 71  | V372 Ori      | HAEBE     | 2   | 0.2            | <7.2                | 3.6        |
| 214 | HD 316285     | HAEBE     | 2   | 0.1            | < 8.4               | 4.2        |
| 79  | HD 36981      | HAEBE     | 3   | 0.1            | < 5.8               | 2.9        |
| 155 | HD 100546     | HAEBE     | 3   | 0.1            | < 5.9               | 3.0        |
| 138 | CPD - 59 2854 | HAEBE     | 2   | 0.1            | <8.3                | 4.1        |
| 42  | 93 Tau        | HAEBE     | 4   | 0.1            | <5.1                | 2.5        |
| 36  | GK Tau        | CTTS      | 2   | 0.0            | <25.1               | 12.6       |
| 161 | HD 130437     | HAEBE     | 2   | 0.0            | <7.6                | 3.8        |
| 90  | V1230 Ori     | HAEBE     | 2   | 0.0            | <7.2                | 3.6        |
| 213 | He 3-1428     | HAEBE     | 2   | 0.0            | <7.3                | 3.6        |
| 98  | V359 Ori      | HAEBE     | 2   | 0.0            | <7.1                | 3.6        |

<sup>a</sup> Identification number from first column of Table 1. <sup>b</sup> PMS category from seventh column of Table 1. <sup>c</sup> Number of good *IUE* spectra used in analysis. <sup>d</sup> Relative amplitude of fluctuation (in percent).

| ID <sup>a</sup> | Туре  | Template | W94 | W88 | W86  | S89  | C79  |
|-----------------|-------|----------|-----|-----|------|------|------|
| (1)             | (2)   | (3)      | (4) | (5) | (6)  | (7)  | (8)  |
| 7               | K3    | N2       |     |     |      | 2.04 |      |
| 10              | K3    | N2       |     |     |      | 0.0  | 0.03 |
| 11              | K7    | N2       |     | 0.0 |      |      |      |
| 13              | K7    |          |     | 1.2 | 1.33 | 1.25 |      |
| 16              | G5    | N1       |     |     |      | 0.57 |      |
| 20              | K1    | N1       |     | 0.1 |      | 0.0  |      |
| 21              | M0    | N2       |     |     |      | 1.08 | 0.82 |
| 22              | K2    | N2       |     |     |      | 0.52 | 0.2  |
| 24              | K5    | N2       |     | 0.2 |      | 0.15 |      |
| 26              | K7    | N2       |     | 0.0 |      | 0.0  |      |
| 27              | K7,M0 | N1       |     | 0.3 | 0.53 | 0.61 |      |
| 28              | K7,M0 |          |     | 0.4 | 0.53 |      |      |
| 34              | K7,M0 | N1       |     | 0.4 | 0.31 | 0.42 |      |
| 50              | K0    | N2       |     | 0.0 |      |      |      |
| 75              | K1    |          |     |     |      |      | 0.08 |
| 81              | K2    |          |     |     |      |      | 0.32 |
| 168             | G2    | N1       | 0.2 |     |      |      |      |
| 176             | K1    | N2       | 0.2 |     |      |      |      |
| 177             | K5    | N2       | 0.2 |     |      |      |      |
| 179             | K2    |          | 0.8 |     |      |      |      |
| 189             | K1    | N2       |     |     | 0.93 |      |      |
| 190             | K0    | N1       | 1.3 |     | 0.87 |      |      |
| 191             | G0    | N1       | 0.6 |     |      |      |      |
| 220             | K0,2  | N1       |     |     | 0.84 |      |      |
| 223             | G8    |          |     |     | 0.16 |      |      |

 TABLE 4

 NTTS Extinction from the Literature

<sup>a</sup> Identification number from col. (1) of Table 1.

REFERENCES.—(W94) Walter et al. 1994; (W88) Walter et al. 1988; (W86) Walter 1986; (S89) Strom et al. 1989; (C79) Cohen & Kuhi 1979.



FIG. 3.—Generic NTTS templates used when fitting each co-added CTTS spectrum. Each template spectrum was constructed from co-added spectra of several NTTS with similar spectral features. A 5 pixel wide median filter was applied to suppress noise.

observations with spectral classes in the ranges O3–O9, B0– B2, B3–B5, B6–B9, A0–A3, A4–A9, F0–F2, and F3–F5 and corresponding object classes of 12, 20, 21, 22, 30, 21, 40, and 41. We matched only spectral types with luminosity class V and integer spectral subclass. No F1 V stars matched our search criteria. A secondary search based on right ascensions and declinations robustly yielded the number of LW spectra available for each potential template. For each spectral subclass, we selected a single template with numerous LW observations and a relatively low  $A_V$  value in Neckel, Klare, & Sarcander (1980), rejecting any candidate with spectral anomalies.

Table 7 describes our final set of main-sequence templates. The first four columns give the Henry Draper

TABLE 5 Spectral Line Windows

|       | Beginning<br>Wavelength | Ending<br>Wavelength | TTS        | HAEBE<br>Star |
|-------|-------------------------|----------------------|------------|---------------|
| Ion   | (A)                     | (A)                  | Label      | Label         |
| (1)   | (2)                     | (3)                  | (4)        | (5)           |
| Сп]   | 2315                    | 2345                 | "2330 Å"   | " 2379 Å "    |
| Fe п  | 2345                    | 2440                 | "2392 Å"   | " 2379 Å "    |
| Fe п  | 2496                    | 2520                 | "2508 Å"   |               |
| Fe п  | 2560                    | 2640                 | "2600 Å"   | "2600 Å"      |
| Fe п  | 2720                    | 2766                 | "2742 Å"   | " 2742 Å "    |
| Мд п  | 2775                    | 2822                 | " 2798 Å " | " 2798 Å "    |
| Fe II | 2916                    | 2995                 | "2955 Å"   |               |



FIG. 4.—Combined *IUE* LW spectrum (*dark histogram*) of a CTTS with wavelength intervals of interest marked and identified. The superposed STIS spectrum (*light curve*) matches well after being degraded to a resolution of 6 Å.

(HD) catalog number, the spectral type, the number of useful *IUE* spectra, and  $A_V$  from Neckel et al. (1980). Column (5) tabulates 3000 Å minus V band intrinsic color as a function of spectral class, calculated as follows. Using co-added *IUE* spectra with the effects of extinction removed (see below), we measured the unweighted mean flux in a 60 Å wide window centered at 3000 Å, obtaining  $f_{3000}$ . We converted these unreddened fluxes to magnitudes, initially adopting a magnitude zero flux of  $F_{3000} = 2.79 \times 10^{-9}$  erg s<sup>-1</sup> cm<sup>-2</sup> Å<sup>-1</sup>, which is the measured value of  $f_{3000}$  for HD 172167 (A0 V, Vega). With V-band magnitudes from the *IUE* merged log and  $A_V$  from Table 7, we calculated initial



FIG. 5.—Example of the fitting procedure used to model CTTS continua. An NTTS template is combined with a quadratic proxy for the veiling continuum and then scaled and reddened. The shaded areas between the fitted continuum and the observed CTTS spectrum yield integrated line fluxes.

values of 3000 Å minus V band intrinsic color using the relationship

$$(3000-V)_0 = -2.5 \log\left(\frac{f_{3000}}{F_{3000}}\right) - V + A_V .$$
(1)

We then smoothed the  $(3000-V)_0$  sequence with a boxcar filter five spectral subclasses wide to suppress scatter of 0.12 mag about the smoothed relationship. Setting  $(3000-V)_0 = 0$  at spectral type A0 V, we obtained a refined magnitude zero flux of  $F_{3000} = 3.48 \times 10^{-9}$  erg s<sup>-1</sup> cm<sup>-2</sup> Å<sup>-1</sup>. Table 7 gives smoothed values of  $(3000-V)_0$  based on this normalization. By empirically determining  $F_{3000}$  from *IUE* data, we partially compensate for any errors in our adopted values of V,  $A_V$ , and the *IUE* flux calibration at 3000 Å.

Using software and procedures described in § 2.2, we combined 463 *IUE* LW observations to produce a single coadded spectrum for each main-sequence template. As indicated in column (3) of Table 7, templates had from 1 to 303 useful spectra, with a median of three useful spectra per template. We removed the effects of continuous extinction using relations in Cardelli et al. (1989) and values of  $A_V$  from Table 7. Finally, template spectra were renormalized to obtain a mean of unity in the wavelength interval 1900– 3200 Å. For spectral class F1 we averaged the F0 and F2 template spectra. Figure 6 shows all the co-added mainsequence templates. Weak interstellar or circumstellar line absorption is visible in some hot stars, and photospheric absorption becomes prominent at later spectral types.

#### 3.4. Extinction toward HAEBE Stars

Assuming LW spectra of HAEBE stars are not significantly veiled by excess continuum from accretion processes, extinction can be determined by fitting spectra of HAEBE stars with reddened template spectra of the main-sequence analogs. Because circumstellar absorption is apparent in spectra of some HAEBE stars (see Fig. 2), we restricted template fits to wavelength intervals that are relatively free of strong circumstellar lines, specifically 1900–2315, 2500– 2590, 2650–2700, and 2915–3200 Å. Occasionally we

TABLE 6Measured Fluxes for TTS

|            | 1                              | 1                            | С п] 2330 Å            | Fe II 2392 Å         | Fe II 2508 Å           | Fe II 2600 Å           | Fe II 2742 Å           | Мд II 2798 Å           | Fe п 2955 Å             |
|------------|--------------------------------|------------------------------|------------------------|----------------------|------------------------|------------------------|------------------------|------------------------|-------------------------|
| ID<br>(1)  | $\log \operatorname{cnt} 2257$ | log ent3060                  | $(10^{-13})$           | $(10^{-13})$         | $(10^{-13})$           | $(10^{-13})$           | $(10^{-15})$           | $(10^{-13})$           | $(10^{-15})$            |
| (1)        | (2)                            | (3)                          | (4)                    | (5)                  | (6)                    | (7)                    | (8)                    | (9)                    | (10)                    |
| 3          | -13.956(86)                    | -13.569(12)                  | < 0.69                 | 0.90(44)             | 0.88(16)               | -1.28(23)              | -0.78(15)              | 16.01(31)              | 2.38(24)                |
| 7          | -14.99(46)                     | -14.292(28)                  | < 0.36                 | < 0.42               | < 0.11                 | 0.157(73)              | < 0.097                | 2.521(83)              | < 0.17                  |
| 8          | -14.76(16)                     | -14.315(21)                  | 0.67(12)               | < 0.29               | < 0.092                | 0.192(72)              | 0.115(47)              | 1.188(78)              | -0.181(61)              |
| 9          | <-15.3                         | -14.828(53)                  | 0.320(88)              | < 0.22               | 0.073(32)              | 0.231(88)              | 0.136(49)              | 3.168(45)              | < 0.093                 |
| 10         | <-15.2                         | -14.031(14)                  | < 0.24                 | 1.32(15)             | 0.128(46)              | 0.668(74)              | < 0.097                | 3.036(67)              | 0.485(83)               |
| 11         | -15.01(32)                     | -14.493(35)                  | < 0.23                 | < 0.30               | < 0.090                | 0.40(13)               | < 0.26                 | 1.114(90)              | 0.229(67)               |
| 12         | -14.104(12)                    | -13.7400(20)                 | 1.226(42)              | 1.313(56)            | 0.243(20)              | 2.559(82)              | 1.229(60)              | 12.300(52)             | 0.8/3(/1)               |
| 13         | <-15.5<br>14.524(66)           | -15.25(20)<br>14.153(11)     | < 0.21                 | < 0.30               | < 0.096                | < 0.13<br>2.354(65)    | < 0.085                | 0.336(43)              | < 0.17                  |
| 14         | -14.324(00)<br>-14.255(42)     | -13,2829(20)                 | 2 698(99)              | 3.18(12)             | 0.710(33)<br>0.755(41) | 2.554(05)<br>3.624(63) | 2.049(43)              | 27.96(12)              | 1.129(71)               |
| 16         | -13.893(74)                    | -12.8584(52)                 | < 0.81                 | <11                  | < 0.40                 | < 0.65                 | <0.48                  | 2 68(28)               | <10                     |
| 17         | -14.202(25)                    | -13.3997(40)                 | 6.65(13)               | 3.42(14)             | 0.856(63)              | 5.06(13)               | 5.640(100)             | 42.93(42)              | 4.51(13)                |
| 18         | -14.518(26)                    | -13.9123(32)                 | 2.395(47)              | 0.157(46)            | < 0.035                | 0.659(89)              | 0.267(47)              | 5.197(45)              | 0.214(38)               |
| 19         | -14.766(79)                    | -13.8160(56)                 | 1.418(65)              | 0.728(86)            | 0.763(35)              | < 0.27                 | < 0.15                 | 11.31(10)              | 0.690(61)               |
| 20         | -14.23(14)                     | -13.2689(67)                 | < 0.60                 | < 0.76               | 0.31(12)               | 2.21(21)               | 1.11(14)               | 1.59(14)               | 1.91(28)                |
| 21         | <-15.2                         | -15.13(11)                   | < 0.24                 | -0.27(13)            | < 0.062                | 0.436(43)              | 0.261(27)              | 0.529(39)              | < 0.088                 |
| 22         | -15.03(42)                     | -14.005(15)                  | 0.35(15)               | 0.69(20)             | < 0.13                 | < 0.17                 | 0.335(53)              | 0.879(57)              | 0.525(94)               |
| 23         | -14.90(16)                     | -14.668(30)                  | < 0.14                 | < 0.18               | < 0.059                | 0.448(87)              | 0.478(30)              | 2.745(49)              | 0.349(45)               |
| 24         | <-15.3                         | -14.785(58)                  | <0.20                  | <0.25                | < 0.073                | < 0.17                 | <0.12                  | 0.297(46)              | 0.220(52)               |
| 26         | <-15.4                         | -14./16(45)<br>14.757(20)    | < 0.15                 | <0.19                | < 0.057                | 0.248(67)<br>0.104(67) | 0.161(56)<br>0.144(52) | 0.48/(4/)              | <0.089                  |
| 27         | < -13.0<br>14.388(52)          | -14.737(30)<br>13.0010(76)   | 0.132(30)<br>0.946(85) | < 0.13               | < 0.043                | 0.194(07)<br>2.53(26)  | 1.01(11)               | 11.70(29)              | < 0.19<br>2.051(03)     |
| 31         | -14.388(32)<br>-14.64(16)      | -13.3919(70)<br>-14.147(18)  | 1.30(15)               | 1.30(11)<br>1.05(18) | 0.484(40)<br>0.442(63) | 0.807(84)              | 0.494(56)              | 552(14)                | 2.031(93)<br>0.545(81)  |
| 33         | <-15.0                         | -14.284(36)                  | < 0.40                 | <0.49                | <0.16                  | 1.36(12)               | 0.428(69)              | 3.77(10)               | < 0.22                  |
| 34         | <-15.6                         | -14.788(30)                  | < 0.10                 | 0.537(71)            | -0.044(21)             | 0.229(57)              | < 0.076                | 0.793(29)              | 0.113(30)               |
| 35         | -14.79(25)                     | -14.269(26)                  | < 0.30                 | <0.40                | < 0.14                 | < 0.18                 | < 0.11                 | 1.351(81)              | < 0.17                  |
| 36         | -15.24(43)                     | -14.464(26)                  | < 0.19                 | < 0.26               | < 0.076                | 0.173(56)              | 0.269(36)              | 1.604(64)              | 0.133(56)               |
| 37         | -15.10(19)                     | -14.348(12)                  | 0.165(58)              | 0.201(72)            | 0.128(23)              | 0.154(47)              | < 0.046                | 2.724(43)              | 0.243(34)               |
| 40         | -14.95(17)                     | -14.432(24)                  | 0.690(83)              | 0.74(11)             | 0.114(35)              | 0.246(98)              | 0.275(60)              | 1.529(42)              | 0.274(73)               |
| 41         | -15.15(14)                     | -14.549(14)                  | 0.334(42)              | 0.644(54)            | 0.076(17)              | 0.765(27)              | 0.422(17)              | 1.943(27)              | 0.216(24)               |
| 44         | -14.07(49)                     | -14.58(38)                   | <3.0                   | 4.2(2.0)             | <1.1                   | <1.5                   | < 0.76                 | 2.84(39)               | 1.85(52)                |
| 45         | <-15.3                         | -14.923(71)                  | -0.253(88)             | <0.22                | < 0.069                | 0.309(49)              | < 0.058                | 0.863(37)              | < 0.095                 |
| 40         | -13.889(13)<br>14.087(28)      | -13.2611(16)<br>12.6842(60)  | -0.59(12)              | -6.02(28)            | 0.680(90)              | -6.11(46)<br>0.70(10)  | -3.23(21)              | 6.366(93)<br>5.501(08) | 1.18(20)<br>0.704(02)   |
| 47<br>48   | -14.087(38)<br>-14.428(83)     | -13.0842(09)<br>-13.8834(97) | 0.44(13)<br>0.80(13)   | -0.80(10)            | <0.12                  | < 0.19(10)             | 0.172(02)<br>0.339(62) | 5.391(98)<br>6.46(30)  | -0.704(93)<br>0.475(83) |
| 49         | -14.91(15)                     | -14 184(14)                  | 0.662(85)              | (0.53)               | 0.149(37)              | 1 381(59)              | 0.555(38)              | 4 643(75)              | <0.11                   |
| 50         | <-15.0                         | -13.837(14)                  | 0.67(19)               | 1.66(24)             | < 0.19                 | -0.37(11)              | -0.538(69)             | 1.348(86)              | -0.28(13)               |
| 52         | -14.068(36)                    | -12.9209(22)                 | 1.25(13)               | -1.49(18)            | 0.198(66)              | -0.45(11)              | < 0.16                 | 9.60(12)               | -0.52(18)               |
| 55         | -12.792(22)                    | -12.649(14)                  | -5.7(1.8)              | -13.0(2.9)           | <2.9                   | <4.9                   | 5.9(1.9)               | <3.7                   | <5.1                    |
| 56         | -13.470(12)                    | -13.0151(32)                 | 4.87(21)               | -1.43(28)            | 2.57(14)               | 1.51(21)               | 1.23(15)               | 113.11(88)             | 1.81(23)                |
| 59         | -14.64(48)                     | -13.342(22)                  | 1.81(55)               | <1.4                 | < 0.50                 | 0.88(39)               | -0.67(31)              | 8.71(40)               | <1.2                    |
| 61         | -14.102(34)                    | -13.1098(49)                 | 1.77(14)               | < 0.39               | 0.92(22)               | <2.8                   | <1.7                   | 20.10(53)              | 3.77(30)                |
| 62         | <-14.2                         | -14.17(28)                   | <2.8                   | <3.9                 | <1.3                   | <1.8                   | <1.1                   | 7.76(72)               | <2.0                    |
| 64         | -13.074(41)                    | -11.9663(25)                 | <2.8                   | 12.2(2.1)            | -3.54(67)              | 33.6(1.3)              | 25.43(94)              | 73.2(1.2)              | 10.2(2.0)               |
| 66         | -14.39(44)                     | -14.41(13)<br>12.1125(72)    | <1.3                   | <1./                 | -0.50(25)              | -0.84(33)              | < 0.39                 | 1.61(21)<br>5.52(20)   | <0.58                   |
| 68         | -13.98(10)<br>14.30(10)        | -13.1133(72)<br>13.676(32)   | <1.2                   | < 1.0                | <0.46                  | 2.90(40)               | <1.3                   | 9.52(29)<br>9.53(52)   | < 0.86                  |
| 69<br>69   | -14.50(19)                     | -13.070(32)<br>-13.827(33)   | 1 54(61)               | <1.5                 | <0.45                  | < 0.65                 | 0.79(20)               | 5 77(35)               | <0.58                   |
| 81         | -13.90(28)                     | -13.596(23)                  | <2.7                   | 4.9(1.7)             | < 0.71                 | 2.05(46)               | 1.37(25)               | 3.34(28)               | < 0.76                  |
| 96         | -13.068(17)                    | -12.7643(69)                 | <1.2                   | -8.24(83)            | 1.70(35)               | <1.2                   | -3.93(45)              | 3.57(54)               | -5.23(84)               |
| 97         | <-14.8                         | -14.40(12)                   | < 0.87                 | 1.49(60)             | <0.45                  | < 0.59                 | < 0.37                 | 1.73(21)               | 0.58(28)                |
| 102        | <-14.6                         | -14.067(84)                  | <1.0                   | <1.5                 | < 0.51                 | < 0.73                 | < 0.46                 | 2.49(24)               | 1.76(40)                |
| 104        | -14.22(26)                     | -13.276(22)                  | <1.4                   | <2.2                 | < 0.71                 | <1.1                   | < 0.78                 | 7.70(54)               | 2.49(75)                |
| 105        | <-14.1                         | -13.552(39)                  | <3.4                   | <4.6                 | <1.3                   | 2.53(91)               | < 0.96                 | 1.59(51)               | <1.4                    |
| 112        | -14.52(48)                     | -14.005(84)                  | <1.4                   | -2.09(90)            | < 0.65                 | -1.48(47)              | -0.92(34)              | 4.35(39)               | 1.84(53)                |
| 114        | -14.599(87)                    | -13.4769(36)                 | 0.480(92)              | < 0.22               | 0.709(45)              | 0.596(62)              | < 0.084                | 10.48(14)              | -1.542(81)              |
| 115        | -14.53(26)                     | -13.503(10)                  | <0.58                  | < 0.84               | < 0.24                 | 1.75(17)               | 0.582(99)              | 1.80(12)               | < 0.42                  |
| 124        | <-14.5                         | -13./36(64)                  | <1.3                   | <2.0                 | <0.75                  | -1.86(72)              | $-1.1/(5^{-1})$        | -1.54(48)              | 5.43(63)                |
| 120<br>140 | <-14.3<br>-14.87(32)           | -13.770(00)<br>-14.428(30)   | <1.3                   | <2.0<br>0.96(28)     | < 0.75                 | < 1.1<br>0 561(73)     | < 0.09<br>0 344(45)    | < 0.74<br>1.737(57)    | 1.72(07)                |
| 140        | -14.07(32)<br>-14.77(20)       | -14.420(30)<br>-14.284(21)   | <0.33                  | -0.50(20)            | <0.202(03)             | <0.301(73)             | -0.181(64)             | 2 762(66)              | <0.10                   |
| 142        | <-15.4                         | -14.162(13)                  | 0.557(83)              | 0.840(99)            | < 0.084                | < 0.65                 | < 0.47                 | 1.59(18)               | 0.699(67)               |
| 143        | -13.585(20)                    | -13.3706(73)                 | 5.12(29)               | 8.81(40)             | 1.05(15)               | 9.64(25)               | 5.62(17)               | 32.33(51)              | 0.45(21)                |
|            |                                | . /                          |                        |                      | · · ·                  |                        |                        |                        | . /                     |

| ID<br>(1) | log cnt2257<br>(2) | log cnt3060<br>(3) | С и] 2330 Å<br>(10 <sup>-13</sup> )<br>(4) | Fe п 2392 Å<br>(10 <sup>-13</sup> )<br>(5) | Fe п 2508 Å<br>(10 <sup>-13</sup> )<br>(6) | Fe п 2600 Å<br>(10 <sup>-13</sup> )<br>(7) | Fe п 2742 Å<br>(10 <sup>-13</sup> )<br>(8) | Мд п 2798 Å<br>(10 <sup>-13</sup> )<br>(9) | Fe п 2955 Å<br>(10 <sup>-13</sup> )<br>(10) |
|-----------|--------------------|--------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|---------------------------------------------|
| 145       | -15.03(31)         | -14.124(18)        | 0.58(12)                                   | 1.23(16)                                   | < 0.098                                    | 0.619(78)                                  | 0.365(46)                                  | 2.96(20)                                   | -0.297(68)                                  |
| 146       | <-14.4             | -14.80(36)         | <1.6                                       | <2.0                                       | < 0.61                                     | 1.23(41)                                   | < 0.46                                     | 4.30(35)                                   | < 0.65                                      |
| 148       | -14.95(45)         | -13.795(14)        | < 0.34                                     | < 0.44                                     | < 0.13                                     | 0.39(10)                                   | 0.424(76)                                  | 1.474(98)                                  | < 0.28                                      |
| 149       | -14.68(13)         | -14.254(16)        | 0.244(100)                                 | < 0.25                                     | 0.148(44)                                  | < 0.12                                     | < 0.075                                    | 2.542(56)                                  | 0.237(55)                                   |
| 151       | -14.62(44)         | -14.125(28)        | < 0.84                                     | 1.21(50)                                   | 0.27(13)                                   | 0.48(14)                                   | 0.193(78)                                  | 0.982(91)                                  | 0.31(13)                                    |
| 152       | <-14.5             | -14.48(11)         | -1.66(69)                                  | <1.7                                       | < 0.48                                     | 0.57(25)                                   | < 0.27                                     | 2.26(23)                                   | 0.85(21)                                    |
| 153       | -14.34(19)         | -13.399(14)        | 2.46(40)                                   | 3.89(60)                                   | 1.08(25)                                   | < 0.74                                     | 0.89(25)                                   | 22.48(63)                                  | 4.59(39)                                    |
| 163       | <-15.5             | -15.164(69)        | < 0.11                                     | 0.175(76)                                  | < 0.053                                    | < 0.063                                    | < 0.036                                    | 0.544(23)                                  | < 0.055                                     |
| 164       | -15.10(42)         | -13.906(10)        | 0.71(13)                                   | 0.40(16)                                   | < 0.10                                     | < 0.15                                     | < 0.099                                    | 5.50(12)                                   | 0.279(83)                                   |
| 165       | <-15.2             | -14.954(74)        | 0.210(99)                                  | < 0.28                                     | 0.142(39)                                  | 0.593(94)                                  | 0.195(36)                                  | 0.787(47)                                  | 0.216(48)                                   |
| 167       | -14.96(24)         | -14.496(28)        | 0.79(11)                                   | 0.41(13)                                   | < 0.084                                    | 0.330(97)                                  | < 0.12                                     | 1.496(46)                                  | < 0.12                                      |
| 168       | -13.350(71)        | -12.5186(60)       | <2.2                                       | -4.9(1.6)                                  | <1.1                                       | <2.0                                       | <1.4                                       | <1.4                                       | <2.6                                        |
| 169       | <-15.1             | -14.95(10)         | < 0.28                                     | < 0.36                                     | < 0.13                                     | < 0.15                                     | < 0.085                                    | 0.634(62)                                  | < 0.14                                      |
| 170       | -13.1455(89)       | -12.8304(22)       | 2.93(30)                                   | -13.83(42)                                 | 1.83(20)                                   | -13.11(29)                                 | -3.63(20)                                  | 56.98(61)                                  | 15.07(27)                                   |
| 172       | <-14.6             | -14.292(82)        | < 0.92                                     | <1.4                                       | < 0.43                                     | 1.56(30)                                   | < 0.34                                     | 5.53(87)                                   | -0.56(27)                                   |
| 173       | -14.28(19)         | -13.1125(69)       | < 0.73                                     | 1.72(52)                                   | 0.44(18)                                   | 2.93(30)                                   | 0.90(20)                                   | 1.88(21)                                   | 0.79(35)                                    |
| 174       | -14.59(18)         | -14.262(27)        | < 0.41                                     | < 0.47                                     | 0.257(97)                                  | 1.20(15)                                   | 0.214(74)                                  | 1.724(88)                                  | < 0.22                                      |
| 175       | <-15.0             | -13.685(20)        | 0.78(23)                                   | < 0.62                                     | < 0.22                                     | 0.39(16)                                   | 0.55(11)                                   | 1.67(12)                                   | 1.20(25)                                    |
| 176       | <-15.1             | -14.109(19)        | 0.36(16)                                   | 1.11(22)                                   | 0.243(70)                                  | 0.333(96)                                  | 0.153(53)                                  | 0.853(59)                                  | < 0.18                                      |
| 177       | -14.79(31)         | -14.129(49)        | < 0.37                                     | < 0.48                                     | < 0.16                                     | < 0.32                                     | < 0.26                                     | 1.12(19)                                   | 0.55(27)                                    |
| 178       | <-14.8             | -14.38(12)         | < 0.80                                     | 2.30(59)                                   | 0.96(23)                                   | 1.00(30)                                   | 0.89(19)                                   | 3.61(23)                                   | < 0.58                                      |
| 180       | -13.941(62)        | -13.669(11)        | 2.28(33)                                   | 1.30(44)                                   | < 0.33                                     | < 0.50                                     | 0.64(13)                                   | 2.85(18)                                   | < 0.34                                      |
| 182       | <-15.1             | -15.13(17)         | 0.44(14)                                   | < 0.36                                     | < 0.14                                     | 0.45(11)                                   | 0.198(53)                                  | 0.847(71)                                  | 0.750(76)                                   |
| 183       | -14.140(72)        | -13.682(10)        | 1.18(20)                                   | < 0.55                                     | 1.07(11)                                   | -0.41(14)                                  | -0.508(88)                                 | 4.98(12)                                   | 1.29(14)                                    |
| 188       | <-15.2             | -13.980(29)        | < 0.31                                     | 0.85(23)                                   | < 0.17                                     | 0.52(15)                                   | 0.67(10)                                   | 3.46(17)                                   | 0.61(20)                                    |
| 189       | <-14.8             | -14.344(53)        | < 0.59                                     | < 0.75                                     | < 0.23                                     | -0.83(15)                                  | < 0.19                                     | < 0.23                                     | < 0.29                                      |
| 190       | <-15.0             | -14.068(27)        | < 0.44                                     | 0.78(30)                                   | 0.35(10)                                   | 0.61(15)                                   | 0.236(87)                                  | 1.492(97)                                  | 0.43(14)                                    |
| 191       | -14.237(87)        | -13.1172(43)       | -0.55(18)                                  | -0.76(25)                                  | < 0.20                                     | < 0.35                                     | < 0.25                                     | -1.41(12)                                  | -1.77(24)                                   |
| 192       | -14.80(27)         | -14.429(29)        | 0.56(15)                                   | 1.05(21)                                   | 0.201(66)                                  | < 0.15                                     | -0.099(44)                                 | 2.780(69)                                  | < 0.13                                      |
| 194       | <-15.1             | -14.437(31)        | < 0.32                                     | 2.04(25)                                   | < 0.14                                     | 0.59(11)                                   | 0.205(71)                                  | 2.81(13)                                   | 0.59(11)                                    |
| 199       | <-15.0             | -13.819(13)        | 0.78(21)                                   | 1.21(28)                                   | < 0.18                                     | 1.52(15)                                   | 0.78(12)                                   | 4.90(14)                                   | 0.45(15)                                    |
| 200       | <-14.8             | -14.086(50)        | < 0.55                                     | < 0.81                                     | < 0.32                                     | < 0.47                                     | < 0.42                                     | 1.62(42)                                   | 1.26(36)                                    |
| 201       | -14.92(26)         | -14.185(20)        | 0.38(12)                                   | 0.75(16)                                   | 0.112(52)                                  | 0.345(79)                                  | 0.405(52)                                  | 2.667(84)                                  | 0.268(81)                                   |
| 202       | <-14.9             | -14.358(37)        | 0.77(23)                                   | 0.69(31)                                   | 0.206(96)                                  | 0.41(11)                                   | 0.36(15)                                   | 3.12(11)                                   | 0.61(12)                                    |
| 204       | -14.64(18)         | -14.892(83)        | < 0.27                                     | < 0.34                                     | < 0.10                                     | 0.174(70)                                  | -0.103(39)                                 | < 0.11                                     | < 0.14                                      |
| 206       | -14.46(12)         | -13.857(21)        | 0.48(21)                                   | < 0.57                                     | 0.33(11)                                   | 2.41(35)                                   | 2.04(21)                                   | 15.08(39)                                  | 2.10(21)                                    |
| 207       | -13.322(33)        | -12.5433(34)       | <1.3                                       | -9.23(86)                                  | < 0.57                                     | -7.29(45)                                  | -4.96(33)                                  | 22.66(53)                                  | -12.06(79)                                  |
| 216       | -14.50(11)         | -13.8130(91)       | 1.16(15)                                   | 1.69(19)                                   | 0.243(61)                                  | 1.301(88)                                  | 0.578(57)                                  | 4.430(86)                                  | 0.307(91)                                   |
| 217       | <-14.8             | -13.917(25)        | 2.12(32)                                   | 3.70(48)                                   | < 0.34                                     | 3.47(24)                                   | 2.48(14)                                   | 12.40(34)                                  | < 0.41                                      |
| 219       | -13.968(53)        | -13.274(14)        | 1.36(29)                                   | -3.75(41)                                  | 1.10(22)                                   | -2.81(34)                                  | -2.48(30)                                  | 2.91(31)                                   | <1.1                                        |
| 220       | -14.76(26)         | -14.152(25)        | < 0.34                                     | < 0.43                                     | < 0.10                                     | 0.517(80)                                  | 0.306(54)                                  | 0.762(74)                                  | < 0.20                                      |
| 230       | <-15.3             | -14.232(29)        | < 0.25                                     | < 0.34                                     | 0.316(61)                                  | 0.454(81)                                  | < 0.11                                     | 5.07(14)                                   | -0.468(97)                                  |
| 236       | -13.928(32)        | -13.2713(79)       | 0.90(19)                                   | -2.58(27)                                  | 1.89(15)                                   | -4.29(47)                                  | -1.60(25)                                  | 6.58(41)                                   | 3.53(35)                                    |
| 238       | -15.06(31)         | -14.482(30)        | 0.72(11)                                   | 0.36(14)                                   | < 0.10                                     | 0.79(12)                                   | 0.750(69)                                  | 5.77(14)                                   | 0.474(61)                                   |

TABLE 6—Continued

Notes.—Values in each column must be multiplied by the factor at the top of each column. Continuum spectral fluxes are in units of ergs s<sup>-1</sup> cm<sup>-2</sup> Å<sup>-1</sup>. Integrated line fluxes are in units of ergs s<sup>-1</sup> cm<sup>-2</sup>. Uncertainties in the last two digits are enclosed in parentheses after each value. Tabulated upper limits are twice the measured uncertainty. Line fluxes in several columns include significant contributions from more than one species. Table 6 is also available in machine-readable form in the electronic edition of the *Astrophysical Journal Supplement*.

excluded additional wavelength intervals contaminated by spectral features not in the templates. For HAEBE stars with half-integer spectral subclasses, we interpolated between neighboring template spectra described in § 3.3. When fitting spectra of HAEBE stars, the only free parameters were  $A_V$  and a global scale factor, which accounts for distance and radius differences between the template and HAEBE star.

Table 8 presents our values of  $A_V$  for HAEBE stars, which are ordered by identification number from Table 1. Column (2) contains the spectral class of the main-sequence template that yielded the best fit, whenever a change from the literature value in Table 1 was required.

Column (4) gives  $A_V$  values obtained by fitting *IUE* LW spectra with the most appropriate template. Columns (3) and (5) give  $A_V$  values when the template spectral class is increased  $(A_V^{+2})$  or decreased  $(A_V^{-2})$  by two subclasses. We do not report formal uncertainties in  $A_V$  because systematic errors are larger. Potential errors in  $A_V$  are best assessed by noting the range of values obtained with modest changes in template spectral class. Earlier than spectral class B5, LW template characteristics change more slowly with spectral class, so  $A_V$  is less sensitive to a change of two subclasses.

The analysis presented here assumes a typical interstellar value of 3.1 for the ratio of total to selective extinction,

TABLE 7Main-Sequence Template Stars

| HD     | Spectral Type | $N_{IUE}$ | $A_V^a$ | $(3000 - V)_0$ |
|--------|---------------|-----------|---------|----------------|
| (1)    | (2)           | (3)       | (4)     | (5)            |
| 303308 | O3 V          | 4         | 1.09    | -2.13          |
| 164794 | O4 V          | 3         | 1.13    | -2.36          |
| 93204  | O5 V          | 2         | 1.36    | -2.33          |
| 199579 | O6 V          | 4         | 1.19    | -2.36          |
| 48099  | O7 V          | 3         | 0.91    | -2.29          |
| 97848  | O8 V          | 1         | 0.94    | -2.21          |
| 93521  | O9 V          | 303       | 0.00    | -2.16          |
| 46106  | B0 V          | 1         | 1.33    | -2.05          |
| 144470 | B1 V          | 1         | 0.75    | -1.84          |
| 37776  | B2 V          | 5         | 0.36    | -1.75          |
| 120315 | B3 V          | 52        | 0.10    | -1.59          |
| 136664 | B4 V          | 2         | 0.08    | -1.37          |
| 25340  | B5 V          | 5         | 0.08    | -1.16          |
| 90994  | B6 V          | 3         | 0.07    | -0.98          |
| 87901  | B7 V          | 8         | 0.08    | -0.69          |
| 196519 | B8 V          | 11        | 0.19    | -0.39          |
| 98664  | B9 V          | 5         | 0.10    | -0.21          |
| 172167 | A0 V          | 13        | 0.01    | 0.00           |
| 41695  | A1 V          | 2         | 0.11    | 0.08           |
| 97633  | A2 V          | 1         | -0.16   | 0.18           |
| 102647 | A3 V          | 7         | 0.04    | 0.23           |
| 13041  | A4 V          | 1         | -0.04   | 0.35           |
| 11636  | A5 V          | 7         | -0.06   | 0.36           |
| 28527  | A6 V          | 2         | -0.03   | 0.48           |
| 87696  | A7 V          | 1         | -0.02   | 0.52           |
| 28910  | A8 V          | 6         | -0.08   | 0.51           |
| 157792 | A9 V          | 1         | 0.08    | 0.50           |
| 29375  | F0 V          | 2         | 0.27    | 0.54           |
| 164259 | F2 V          | 2         | 0.02    | 0.52           |
| 157950 | F3 V          | 1         | 0.06    | 0.58           |
| 8799   | F4 V          | 2         | 0.08    | 0.60           |
| 111456 | F5 V          | 2         | 0.05    | 0.68           |

<sup>a</sup> Visual extinction from Neckel et al. 1980.

 $R_V = A_V / E(B-V)$ . Larger values of  $R_V$  may be more appropriate for some HAEBE stars, especially when the star is dimmer than usual (Thé et al. 1996). On the other hand, Thé et al. (1996) find for HR 5999 that extinction anomalies in the UV (3.3 <  $R_V$  < 3.9) are less pronounced than in the optical and IR ( $R_V$  > 5.8). For the sake of expediency, we simply adopted the value  $R_V$  = 3.1 throughout our analysis.

For some HAEBE stars, our template fitting procedure yielded unusually large visual extinctions, notably  $A_V = 6.25$  for R CrA (A5, no. 222). As a consistency check, we also determined values of  $A_V$  from observed E(3000-V)color excess, relative to the intrinsic values reported in column (5) of Table 7. We computed 3000-V color using the procedure described in § 3.3, except that we used  $A_V = 0$  to obtain observed rather than intrinsic colors and we adopted V-band magnitudes directly from the source catalogs cited in § 2.1. Column (6) of Table 8 lists our measured values of 3000-V color from which E(3000-V) may be calculated. Assuming V-band photometry has an effective wavelength of 5500 Å, the extinction law of Cardelli et al. (1989) implies  $A_V = 1.21 \ E(3000 - V)$ . Column (7) of Table 8 gives values of  $A_V$  calculated from this relationship and E(3000-V)color excess.

Figure 7 compares our values of  $A_V$  measured via mainsequence template fitting and E(3000-V) color excess. The median of differences between the two measures is 0.09 mag, while the median of the absolute values of the differences is 0.39 mag. These statistics provide robust estimates of the systematic and random differences between the two measurement techniques. Outliers such as VV Ser (A0, no. 218), which is a member of the UX Ori class, are likely affected by interesting circumstellar processes that are beyond the scope of this study.

# 3.5. Continuum and Excess Line Emission from HAEBE Stars

For each co-added spectrum of a HAEBE star, we calculated the mean continuum flux per Å in the same two wavelength intervals used in § 3.2 for CTTS. Columns (2) and (3) of Table 9 presents logarithms of our measured fluxes. Throughout the table, parentheses enclose the formal uncertainty in the two least significant digits, unless a 2  $\sigma$  upper limit is quoted. Figure 8 shows part of our co-added spectrum of the HAEBE star HD 163296 (A1, no. 215), along with an entire STIS E230M spectrum (data set o66q01020) degraded to 6 Å resolution and multiplied by a polynomial to match the observed *IUE* continuum. The pseudo-continuum window at 3060 Å does contain contributions from photospheric and perhaps circumstellar lines but is still relatively free of line absorption.

In principle circumstellar material associated with HAEBE stars may affect the apparent strengths of normal photospheric lines. Conversely, anomalous line strengths may provide a diagnostic for evaluating the status of candidate HAEBE stars. To provide quantitative data for exploring this possibility, we measured *excess* line emission in each co-added *IUE* spectrum of a HAEBE star. We define excess emission or absorption as a localized deviation from unity after division by a fitted main-sequence template (see § 3.4).

Template division removes the photospheric contribution to spectral lines, leaving residuals that are mainly due to circumstellar absorption and perhaps accretion. Before measuring localized excesses, division by a fourth-order polynomial is used to iteratively remove global residuals that are typically small. Then we simply average deviations from unity in the spectral line windows defined below. Thus, our line excess measures the fractional change in line depth relative to line depth in a main-sequence analog. Positive values imply excess emission, while negative values imply extra absorption. We computed formal uncertainties for each excess by propagating uncertainties in spectrum points used to construct the excess. We then added an additional 3% uncertainty in guadrature to crudely account for residual errors in continuum normalization, determined by visual inspection. This 3% minimum uncertainty is not normally distributed and frequently dominates the final uncertainty.

As illustrated in Figure 8, individual spectral lines are usually blended in low-resolution *IUE* spectra, so we measured mean excesses in broad spectral windows typically dominated by lines of a single ion. Specifically, we use the wavelength intervals with a label in column (5) of Table 5. Note that the first two spectral windows used for CTTS are merged into a single "2379 Å" window for HAEBE stars because Fe II dominates both windows. These line windows are illustrated graphically in Figure 8.

Columns (4) through (7) of Table 9 present our measurements of excess line emission (positive values) or absorption



FIG. 6.—Co-added *IUE* spectra of main-sequence templates used as proxies for photospheric spectra of HAEBE stars. Mean flux has been normalized to unity and then offset for presentation purposes. Note the onset of prominent line absorption at later spectral types. Spectral class labels may be used as an index into Table 7.

(negative values) in each star. For a few cool or highly reddened stars, excesses are not reported at the shortest wavelengths due to insignificant flux in either the template or the



FIG. 7.—Comparison of  $A_V$  values for HAEBE stars, based of E(3000-V) color excess and on fits of *IUE* LW spectra with main-sequence templates. The two methods generally agree, but with a median scatter of 0.4 mag. VV Ser is an extreme outlier.

HAEBE star. A trailing colon indicates measurements that may be compromised by unusually large systematic errors. Despite the limitations imposed by low resolution, these excess measurements are potentially useful for studying peculiarities of HAEBE stars and for planning more detailed observational studies.

# 4. DISCUSSION

As mentioned in § 1, the *IUE* final archive contains many more UV spectra of PMS stars than all other mission archives combined. In particular, for the 238 stars in Table 1, we searched the *HST* archive for UV spectra obtained with either the Goddard High Resolution Spectrograph (GHRS) or Space Telescope Imaging Spectrograph (STIS). Tables 10 and 11 break down the number of PMS sources observed by instrument and category. *HST* spectra are better resolved and less noisy than *IUE* spectra, but in several cases the *HST* spectra also have more limited wavelength coverage. *IUE* has observed more PMS sources than *HST* by a factor of at least 2 for TTS and 10 for HAEBE stars. It is unlikely that *HST* will ever observe all of the PMS stars observed by *IUE*, so the *IUE* archive will remain a valuable resource for years to come.

As in Paper I, we find that data quality in the *IUE* final archive (Nichols & Linsky 1996) is generally excellent. NEWSIPS processing is definitely superior to the original IUESIPS processing. In particular, reduced pattern noise increases the value of co-adding multiple spectra of the same source, as we have done here. Even final archive spectra may have flaws, as indicated by the status codes described in the Appendix. For this reason, it is still important to visually

139.....

144.....

147.....

1.61

0.44

0.78

. . .

A3

1.81

0.68

1.02

1.93

0.78

1.10

-0.45

0.46

-0.10

TABLE 8 EXTRACTION OF HAEDE STAR

|                 | Template <sup>a</sup> | LW           | LW    | LW           |            | E(3000-V) |
|-----------------|-----------------------|--------------|-------|--------------|------------|-----------|
| ID <sup>b</sup> | Class                 | $A_{V}^{+2}$ | $A_V$ | $A_{V}^{-2}$ | (3000 - V) | $A_V$     |
| (1)             | (2)                   | (3)          | (4)   | (5)          | (6)        | (7)       |
| 1               |                       | 1.74         | 2.05  | 2.60         | 1.00       | 1.05      |
| 2               |                       | 1.85         | 2.06  | 2.19         | 0.39       | 1.89      |
| 6               |                       | 1.88         | 1.74  | 2.10         | 1.24       | 1.06      |
| 42              | <b>B</b> 7            | -0.09        | 0.01  | 0.15         | -1.05      | -0.45     |
| 43              |                       | 2.63         | 3.07  | 3.34         | 2.03       | 2.18      |
| 51              |                       | 0.34         | 0.60  | 0.71         | 0.28       | 0.47      |
| 53              | A3                    | 0.33         | 0.54  | 0.61         | 0.51       | 0.34      |
| 54              | A5                    | 0.38         | 0.36  | 0.58         | 1.78       | 1.72      |
| D/              |                       | 1.49         | 1.42  | 1.64         | -0.80      | 1.59      |
| 50<br>50        |                       | 1.49         | 1.28  | 1.72         | 0.37       | 0.00      |
| 50<br>52        | Að                    | 0.54         | 0.55  | 0.69         | 0.83       | 0.39      |
| 5               |                       | 0.39         | 0.00  | 0.80         | 0.77       | 0.00      |
| 71              | A4                    | -0.02        | 0.17  | 0.23         | 0.43       | 0.32      |
| 72              | •••                   | -0.32        | -0.26 | -0.11        | 0.27       | -0.38     |
| 73              |                       | 0.50         | 0.65  | 0.97         | 1.29       | 1.35      |
| /4              |                       | -0.14        | 0.07  | 0.11         | -0.54      | -0.41     |
| 6               |                       | -0.28        | 0.00  | 0.16         | -0.23      | -0.29     |
| 99              |                       | 0.00         | 0.14  | 0.21         | -1.33      | -0.19     |
| 0               |                       | 0.64         | 0.82  | 0.74         | -0.80      | 1.21      |
| 2               | O6                    | 0.40         | 0.70  | 0.60         | -1.69      | 0.81      |
| 4               | O9                    | 0.54         | 0.69  | 0.64         | -0.90      | 1.54      |
| 5               |                       | 0.45         | 0.75  | 0.65         | -1.78      | 0.70      |
| 6               |                       | -0.47        | -0.38 | -0.08        | -0.75      | -1.13     |
| 7               |                       | 0.45         | 0.78  | 0.90         | 0.51       | 0.62      |
| 8               |                       | 0.26         | 0.29  | 0.37         | -2.23      | -0.35     |
| 0               | B6                    | 0.13         | 0.30  | 0.34         | -1.04      | -0.08     |
| 1               |                       | 3.60         | 3.53  | 4.09         | 2.66       | 2.61      |
| 2               |                       | 0.18         | 0.11  | 0.31         | -1.71      | 0.48      |
| 3               |                       | 0.00         | 0.16  | 0.07         | -1.38      | 0.56      |
| 5               |                       | 0.59         | 0.75  | 0.65         | -0.94      | 1.10      |
| 8               |                       | 0.04         | 0.15  | 0.29         | -1.4/      | 0.14      |
| 00              |                       | 0.04         | 0.24  | 0.29         | 1.45       | 1.49      |
| 00              | <br>F0                | -0.01        | 0.15  | 0.27         | -0.32      | 0.09      |
| 01              | 10                    | -0.02        | 1.06  | 1.23         | 0.95       | 0.50      |
| 06              | A4                    | 0.02         | 0.55  | 0.66         | 1 11       | 0.02      |
| 07              | 214                   | -0.42        | -0.12 | 0.00         | -1.33      | -1.62     |
| 08              |                       | 4.29         | 4.52  | 4.97         | 2.29       | 3.14      |
| 09              |                       | 0.30         | 0.42  | 0.56         | -1.20      | 0.47      |
| 10              | B9                    | 1.50         | 1.78  | 2.00         | 1.89       | 2.54      |
| 11              |                       | 0.48         | 0.68  | 0.74         | -0.12      | 0.11      |
| 13              | A8                    | 0.84         | 0.65  | 1.00         | 0.96       | 0.55      |
| 16              | <b>B</b> 8            | 0.60         | 0.74  | 0.91         | -0.37      | 0.03      |
| 17              |                       | -0.30        | 0.22  | 0.02         | 0.27       | -0.32     |
| 18              |                       | 0.52         | 0.64  | 0.79         | -0.69      | 1.09      |
| 19              | B9                    | 0.76         | 0.97  | 1.04         | -1.46      | -1.53     |
| 20              | <b>B</b> 8            | 1.31         | 1.42  | 1.70         | 1.08       | 1.79      |
| 21              |                       | 0.68         | 0.83  | 0.91         | -0.40      | 0.93      |
| 22              |                       | 4.00         | 3.99  | 4.23         | 2.03       | 4.96      |
| 25              |                       | 0.32         | 0.46  | 0.62         | -0.05      | 0.42      |
| 29              | <b>B</b> 8            | 0.31         | 0.45  | 0.60         | -0.50      | -0.13     |
| 30              |                       | 0.54         | 0.67  | 0.75         | -0.60      | 0.69      |
| 31<br>22        | <br>D5                | 0.65         | 0.85  | 0.83         | -1.15      | 0.73      |
| 32              | RD                    | 5.08<br>1.75 | 0.0/  | 0.2/         | 2.18       | 4.06      |
| 24              |                       | 1./5         | 1./8  | 1.80         | -0.44      | 1.95      |
| 34              | •••                   | _0.02        | _0.14 | 0.28         | -1.33      | 0.07      |
| 37              | <br>В8                | 2 10         | 2 27  | 2.60         | 0.47       | 1.05      |
| 38              | 00                    | 1 74         | 1.92  | 2.00         | 0.47       | 2 20      |
|                 |                       | 1./ 1        | 1.74  | 2.0-r        | 0.17       | 2.20      |

0.76

0.28

1.06

| IDh             | Template <sup>a</sup> | LW      | LW    | LW    | (2000 1/)  | E(3000-V) |
|-----------------|-----------------------|---------|-------|-------|------------|-----------|
| ID <sup>o</sup> | Class                 | $A_V^+$ | $A_V$ | $A_V$ | (3000 - V) | $A_V$     |
| (1)             | (2)                   | (3)     | (4)   | (5)   | (6)        | (7)       |
| 150             |                       | 0.56    | 0.85  | 0.99  | 0.90       | 1.10      |
| 154             |                       | 0.40    | 0.61  | 0.67  | 0.20       | 0.49      |
| 155             |                       | 0.02    | 0.23  | 0.27  | -0.28      | -0.09     |
| 156             |                       | 0.30    | 0.56  | 0.68  | 0.45       | 0.67      |
| 157             |                       | 0.23    | 0.44  | 0.53  | 0.32       | -0.03     |
| 158             |                       | 0.65    | 0.82  | 0.91  | -0.17      | 1.21      |
| 160             | <b>B</b> 8            | 1.72    | 1.81  | 2.15  | -0.44      | -0.06     |
| 161             |                       | 2.28    | 2.35  | 2.75  | 0.37       | 0.93      |
| 162             |                       | 0.52    | 0.25  | 0.40  | -0.15      | -0.18     |
| 166             |                       | 0.01    | 0.30  | 0.45  | 0.24       | 0.29      |
| 171             | A9                    | 0.93    | 1.15  | 1.53  | 0.88       | 0.47      |
| 181             | A8                    | 0.38    | 0.21  | 0.58  | 0.82       | 0.37      |
| 184             |                       | 0.21    | 0.55  | 0.62  | 1.28       | 0.92      |
| 196             |                       | 2.33    | 2.33  | 2.50  | 0.50       | 3.10      |
| 205             | A3                    | 1.14    | 1.45  | 1.64  | 1.38       | 1.39      |
| 208             | B5                    | 4.15    | 4.55  | 4.72  | 1.38       | 3.09      |
| 209             |                       | 3.51    | 3.78  | 3.72  | 0.40       | 2.67      |
| 210             |                       | 0.89    | 0.90  | 1.11  | 2.73       | 2.87      |
| 211             |                       | 6.08    | 6.37  | 6.31  | 3.44       | 6.35      |
| 213             |                       | 1.43    | 1.38  | 1.51  | -0.14      | 2.31      |
| 214             |                       | 5.89    | 6.08  | 6.26  | 3.05       | 5.73      |
| 215             | A2                    | 0.07    | 0.19  | 0.48  | 0.24       | 0.07      |
| 218             |                       | 8.43    | 8.28  | 8.41  | -0.69      | -0.83     |
| 221             |                       | 0.68    | 0.88  | 0.94  | 1.25       | 1.76      |
| 222             |                       | 7.68    | 6.25  | 7.35  | 2.26       | 2.30      |
| 224             |                       | 0.27    | 0.52  | 0.65  | 0.24       | 0.42      |
| 225             | A4                    | 0.97    | 1.26  | 1.46  | 1.11       | 0.92      |
| 226             | A5                    | 0.17    | 0.26  | 0.42  | 0.18       | -0.23     |
| 227             |                       | 2.97    | 3.17  | 3.31  | 0.87       | 3.08      |
| 231             |                       | 1.11    | 1.24  | 1.39  | -0.12      | 1.78      |
| 232             |                       | 1.76    | 1.92  | 2.03  | -0.02      | 2.01      |
| 233             |                       | 2.29    | 2.97  | 3.22  | 1.99       | 3.60      |
| 234             |                       | 1.17    | 1.44  | 1.56  | 1.09       | 0.91      |
| 237             |                       | 8.23    | 8.40  | 8.63  | 1.97       | 4.87      |
|                 |                       |         |       |       |            |           |

TABLE 8—Continued

<sup>a</sup> Only specified when template spectral class differs from the value in Table 1.

<sup>b</sup> Identification number from col. (1) of Table 1.

examine and manually assess spectra prior to co-addition. In some cases, low-resolution spectra extracted with the INES package (Rodríguez-Pascual et al. 1999) are superior to final archive spectra processed with the NEWSIPS package.

The PMS spectral catalogs presented here and in Paper I can be used to motivate and guide further archival analysis or new observations with HST. For example, when combining spectra from multiple epochs, we have largely ignored temporal variations, merely noting the presence of significant variability (see Table 3). Detailed analysis of flux variations may provide clues about the physical origin of variability (e.g., Ardila & Basri 2000). In particular, IUE LW spectra of HAEBE stars could be used to study how brightness variations affect  $R_V$  (e.g., Thé et al. 1996) and strength of the 2200 Å bump. More generally, the mean spectra presented here are affected by many physical processes. Accretion and magnetic activity have similar observational characteristics at this resolution (see Paper II), but extinction and circumstellar absorption can be distinctive.

 $TABLE \ 9 \\ Continuum Fluxes and Excess Line Emission for HAEBE Stars$ 

| ID  | log cnt2257                  | log cnt3060                  | Fe п 2379 Å        | Fe п 2600 Å  | Fe п 2742 Å       | Mg 11 2798 Å         |
|-----|------------------------------|------------------------------|--------------------|--------------|-------------------|----------------------|
| (1) | (2)                          | (3)                          | (4)                | (5)          | (6)               | (7)                  |
| 1   | -13 705(55)                  | -13 2245(98)                 | < 0.09             | < 0.07       | 0.07(04)          | < 0.07               |
| 2   | -13.451(47)                  | -12.837(11)                  | -0.15(04)          | -0.20(03)    | -0.24(03)         | 0.09(03)             |
| 6   | -13.557(65)                  | -12.7084(65)                 | < 0.08             | < 0.07       | < 0.07            | 0.38(03)             |
| 42  | -9.9990(62)                  | -10.2202(47)                 | < 0.06             | < 0.06       | < 0.06            | <0.06                |
| 43  | <-14.6                       | -13.426(15)                  | < 0.51             | < 0.08       | < 0.08            | 0.43(04)             |
| 51  | -11.5237(50)                 | -11.4034(35)                 | -0.11(03)          | -0.16(03)    | -0.07(03)         | < 0.06               |
| 53  | -12.019(12)                  | -11.7016(93)                 | -0.12(03)          | -0.25(03)    | -0.24(03)         | 0.69(04)             |
| 54  | -13.301(13)                  | -13.0340(30)                 | 0.06(03)           | 0.11(03)     | 0.15(03)          | 0.50(03)             |
| 57  | -10.8848(74)                 | -10.5436(41)                 | < 0.06             | < 0.06       | < 0.06            | < 0.06               |
| 58  | -13.328(47)                  | -12.9086(89)                 | < 0.09             | < 0.07       | < 0.07            | -0.12(03)            |
| 60  | -12.483(19)                  | -12.0455(41)                 | < 0.07             | < 0.06       | < 0.06            | 0.25(03)             |
| 63  | -12.269(61)                  | -11.9940(96)                 | -0.24(05)          | -0.27(03)    | -0.21(03)         | 0.08(03)             |
| 65  | -13.353(20)                  | -13.3323(76)                 | 1.50(05)           | 1.24(04)     | 1.4/(05)          | 0.90(04)             |
| /1  | -11.8//(13)                  | -11.//94(68)                 | < 0.06             | <0.06        | < 0.06            | < 0.06               |
| 72  | -12.423(11)<br>12.270(02)    | -12.4439(39)<br>12.026(20)   | 0.23(03)           | (0.11(0.5)): | 0.12(03)          | 0.17(05)<br>0.15(05) |
| 75  | -15.579(92)<br>11.743(12)    | -13.030(30)<br>11.865(14)    | < 0.15             | < 0.09       | < 0.10            | <0.13(03)            |
| 76  | -11.743(12)<br>12.348(11)    | -11.803(14)<br>12.421(15)    | < 0.00             | < 0.00       | < 0.08            | < 0.07               |
| 70  | -10.9137(67)                 | -12.421(15)<br>-11.1298(62)  | < 0.06             | <0.00        | <0.07             | <0.07                |
| 80  | -10.9137(07)<br>-11.5244(88) | -11.1298(02)<br>-11.5150(55) | < 0.00             | < 0.00       | < 0.06            | < 0.00               |
| 82  | -101934(64)                  | -10.4769(72)                 | <0.06              | < 0.06       | < 0.00            | 0.12(03)             |
| 84  | -11.1435(20)                 | -11.2960(16)                 | < 0.07             | < 0.07       | < 0.06            | < 0.06               |
| 85  | -9.5839(56)                  | -9.8174(59)                  | < 0.06             | < 0.06       | < 0.06            | 0.06(03)             |
| 86  | -12.2528(73)                 | -12.3777(37)                 | 0.18(03)           | < 0.06       | 0.09(03)          | 0.10(03)             |
| 87  | -12.807(91)                  | -12.689(14)                  | < 0.11             | -0.11(04)    | -0.08(03)         | -0.10(03)            |
| 88  | -10.0364(75)                 | -10.2623(91)                 | < 0.06             | < 0.06       | < 0.06            | < 0.07               |
| 90  | -11.803(16)                  | -11.895(15)                  | 0.07(03)           | < 0.06       | < 0.07            | < 0.07               |
| 91  | -14.100(77)                  | -13.4703(76)                 |                    | 0.24(04)     | 0.26(04)          | 0.90(04)             |
| 92  | -9.5178(35)                  | -9.8242(37)                  | < 0.06             | < 0.06       | < 0.06            | < 0.06               |
| 93  | -9.9789(98)                  | -10.328(13)                  | < 0.07             | < 0.07       | < 0.07            | < 0.07               |
| 95  | -10.8204(59)                 | -10.8473(52)                 | < 0.07             | < 0.06       | < 0.06            | < 0.06               |
| 98  | -10.5222(62)                 | -10.8108(69)                 | < 0.06             | < 0.06       | < 0.06            | < 0.06               |
| 99  | -13.198(20)                  | -13.018(12)                  | < 0.07             | -0.11(03)    | <0.06             | 0.13(03)             |
| 100 | -11.804(16)                  | -11.953(18)                  | <0.07              | <0.07        | <0.07             | < 0.07               |
| 101 | -13.063(18)                  | -12.6634(44)                 | < 0.07             | <0.06        | 0.08(03)          | 0.53(03)             |
| 105 | -13.1074(93)<br>12.222(20)   | -12.7347(32)<br>12.0227(44)  | -0.17(03)          | -0.18(03)    | -0.15(03)         | 0.33(04)             |
| 100 | -15.525(20)<br>11.309(17)    | -15.0257(44)<br>11.4685(86)  | <0.06              | <0.06        | <0.06             | <0.98(04)            |
| 107 | -11.309(17)<br>14.82(38)     | -11.4083(80)<br>13.604(12)   | <0.00              | < 0.00       | < 0.00            | < 0.00               |
| 109 | -9.62(50)                    | -13.094(12)<br>-9.7838(29)   | <0.06              | <0.07        | <0.41(04)         | <0.06                |
| 110 | $-14\ 21(15)$                | -13812(20)                   | 0.75(12)           | 0.34(05)     | 0.24(05)          | 0.57(05)             |
| 111 | -11,7394(76)                 | -115679(28)                  | -0.08(03)          | -0.11(03)    | -0.11(03)         | 0.28(03)             |
| 113 | -13.020(23)                  | -12.3902(51)                 | < 0.07             | < 0.06       | < 0.06            | < 0.06               |
| 116 | -12.3074(49)                 | -12.0825(20)                 | -0.29(03)          | -0.34(03)    | -0.36(03)         | < 0.06               |
| 117 | -13.965(52)                  | -13.6496(81)                 | 0.75(06)           | 0.42(04)     | 0.50(04)          | 0.92(04)             |
| 118 | -11.3752(30)                 | -11.4750(26)                 | < 0.06             | < 0.06       | 0.18(03)          | 0.20(03)             |
| 119 | -13.305(36)                  | -13.0220(70)                 | 0.08(04)           | < 0.06       | < 0.06            | < 0.06               |
| 120 | -13.577(45)                  | -13.0193(69)                 | < 0.08             | < 0.06       | < 0.06            | 0.15(03)             |
| 121 | -11.8586(66)                 | -11.7800(40)                 | < 0.06             | < 0.06       | < 0.06            | < 0.06               |
| 122 | -14.305(76)                  | -13.771(17)                  |                    | < 0.07       | < 0.07            | 0.44(04)             |
| 125 | -13.608(12)                  | -13.5367(51)                 | 0.43(03)           | 0.32(03)     | 0.31(03)          | 0.19(03)             |
| 129 | -10.9995(38)                 | -10.9344(27)                 | < 0.06             | < 0.06       | < 0.06            | 0.15(03)             |
| 130 | -12.763(11)                  | -12.7473(86)                 | < 0.06             | -0.08(03)    | 0.12(03)          | 0.28(04)             |
| 131 | -10.657(17)                  | -10.639(15)                  | <0.07              | < 0.07       | <0.07             | < 0.07               |
| 132 | -14.38(11)                   | -13.0025(40)                 |                    | -0.40(03):   | -0.64(03):        | 0.33(03)             |
| 133 | -11.531(12)<br>0.2290(100)   | -11.094/(61)                 | < 0.06             | < 0.06       | < 0.06            | < 0.06               |
| 134 | -9.3369(100)<br>13.170(11)   | -9.00/(11)<br>12.0202(71)    | < 0.00<br>0 54(02) | < 0.00       | <0.07<br>0.45(02) | < 0.07<br>2.06(05)   |
| 133 | -13.179(11)<br>-13.054(10)   | -12.7373(71)<br>-12.1374(28) | -0.37(03)          | -0.41(03)    | -0.26(03)         | <0.06                |
| 138 | -13.063(54)                  | -12.1374(20)<br>-12.6083(74) | < 0.08             | <0.07        | <0.06             | <0.00                |
| 139 | -12.375(13)                  | -11.7964(45)                 | < 0.06             | -0.07(03)    | < 0.06            | 0.08(03)             |
| 144 | -12.278(34)                  | -11.9446(86)                 | < 0.08             | -0.14(03)    | < 0.06            | 0.28(03)             |
| 147 | -11.657(32)                  | -11.4513(68)                 | < 0.08             | < 0.07       | < 0.06            | < 0.06               |
| 150 | -12.488(10)                  | -12.1919(31)                 | < 0.06             | < 0.06       | < 0.06            | < 0.06               |

TABLE 9—Continued

| ID  | log cnt2257  | log cnt3060  | Fe п 2379 Å | Fe п 2600 Å | Fe II 2742 Å | Мg II 2798 Å |
|-----|--------------|--------------|-------------|-------------|--------------|--------------|
| (1) | (2)          | (3)          | (4)         | (5)         | (6)          | (7)          |
| 154 | -11.3323(94) | -11.2466(46) | -0.15(03)   | -0.12(03)   | -0.09(03)    | < 0.06       |
| 155 | -11.001(10)  | -11.0539(39) | 0.07(03)    | < 0.06      | < 0.06       | < 0.06       |
| 156 | -12.443(34)  | -12.3456(87) | < 0.07      | < 0.07      | < 0.07       | < 0.06       |
| 157 | -11.476(12)  | -11.1967(36) | -0.34(03)   | -0.36(03)   | -0.32(03)    | 0.80(04)     |
| 158 | -12.564(43)  | -12.541(12)  | 0.29(04)    | 0.37(04)    | 0.62(04)     | 0.50(03)     |
| 160 | -13.606(71)  | -12.8597(81) | 0.10(04)    | -0.10(03)   | < 0.06       | < 0.06       |
| 161 | -13.69(15)   | -12.5496(62) | 0.18(06)    | < 0.07      | < 0.06       | < 0.06       |
| 162 | -11.991(28)  | -11.9714(83) | < 0.07      | < 0.06      | < 0.06       | < 0.06       |
| 166 | -11.404(20)  | -11.3548(85) | < 0.07      | < 0.07      | < 0.06       | < 0.06       |
| 171 | -13.089(45)  | -12.4578(64) | 0.11(04)    | < 0.07      | 0.13(03)     | < 0.07       |
| 181 | -12.374(36)  | -11.9918(62) | < 0.08      | -0.12(03)   | -0.09(03)    | 0.48(03)     |
| 184 | -12.0982(54) | -11.6555(20) | < 0.06      | < 0.06      | < 0.06       | 0.56(04)     |
| 196 | -14.83(26)   | -14.239(20)  | < 0.14      | -0.09(03)   | 0.38(04)     | 0.30(04)     |
| 205 | -13.27(10)   | -12.510(10)  | < 0.10      | -0.15(03)   | -0.11(03)    | 0.18(03)     |
| 208 | <-14.6       | -13.557(17)  | < 0.45      | < 0.08      | 0.19(04)     | 0.16(04)     |
| 209 | -13.68(23)   | -12.3709(65) | 0.14(06)    | < 0.07      | < 0.07       | < 0.06       |
| 210 | -14.119(39)  | -13.6931(64) | 1.67(05)    | 1.47(04)    | 2.02(06)     | 1.40(05)     |
| 211 | <-15.1       | -13.6663(97) | < 0.65      | -0.08(04)   | < 0.07       | < 0.07       |
| 213 | -12.910(18)  | -12.6877(53) | < 0.07      | < 0.06      | < 0.06       | < 0.06       |
| 214 | -14.61(36)   | -13.326(17)  | < 0.78      | -0.22(05)   | < 0.08       | < 0.08       |
| 215 | -11.4592(56) | -11.2829(29) | -0.16(03)   | -0.19(03)   | -0.20(03)    | 0.33(03)     |
| 218 | -14.35(21)   | -12.7991(45) |             |             |              |              |
| 221 | -12.818(11)  | -12.5319(45) | 0.07(03)    | < 0.06      | < 0.06       | < 0.06       |
| 222 | -14.46(27)   | -13.553(12)  |             | -0.12(04)   | -0.17(04)    | 0.53(04)     |
| 224 | -11.660(18)  | -11.5379(66) | < 0.06      | < 0.06      | < 0.06       | < 0.06       |
| 225 | -13.642(22)  | -13.1294(34) | -0.12(03)   | -0.13(03)   | < 0.06       | 0.58(03)     |
| 226 | -11.8929(57) | -11.6723(40) | -0.19(03)   | -0.28(03)   | -0.19(03)    | 0.17(03)     |
| 227 | -14.16(22)   | -13.004(18)  | < 0.13      | < 0.07      | < 0.08       | < 0.08       |
| 231 | -11.588(12)  | -11.3573(45) | < 0.06      | < 0.06      | < 0.06       | < 0.06       |
| 232 | -13.055(44)  | -12.502(15)  | < 0.08      | -0.07(03)   | < 0.07       | < 0.07       |
| 233 | -14.621(99)  | -13.9991(75) | < 0.11      | < 0.07      | < 0.07       | 0.11(03)     |
| 234 | -13.669(99)  | -12.915(21)  | -0.25(05)   | -0.19(04)   | < 0.08       | 0.51(06)     |
| 237 | <-15.1       | -13.8281(84) |             | -0.46(05)   | -0.41(04)    | < 0.07       |

Notes.—Continuum spectral fluxes are in units of ergs s<sup>-1</sup> cm<sup>-2</sup> Å<sup>-1</sup>. Excess line emission is unitless. Uncertainties in the last two digits are enclosed in parentheses after each value. Tabulated upper limits are twice the measured uncertainty. The absence of data in an entry implies that line excess could not be measured, due to a poor template fit. Table 9 is also available in machine-readable form in the electronic edition of the *Astrophysical Journal Supplement*.



FIG. 8.—Combined *IUE* LW spectrum (*dark histogram*) of the HAEBE star HD 163296 with wavelength intervals of interest marked and identified. The superposed STIS spectrum (*light curve*) matches well after being degraded to a resolution of 6 Å.

100

TABLE 10 Number of Stars with NUV Spectra

| Category (1) | GHRS<br>Only<br>(2) | STIS<br>Only<br>(3) | Both<br>(4) | HST<br>Total<br>(5) | IUE<br>LW<br>(6) |
|--------------|---------------------|---------------------|-------------|---------------------|------------------|
| HAEBE        | 1                   | 5                   | 0           | 6                   | 97               |
| CTTS         | 0                   | 11                  | 8           | 19                  | 77               |
| NTTS         | 2                   | 1                   | 0           | 3                   | 29               |
| FUOri        | 0                   | 1                   | 0           | 1                   | 1                |
| Total        | 3                   | 18                  | 8           | 29                  | 204              |

## 4.1. Variability

Figure 9 shows fractional variability amplitudes, A, and upper limits from Table 3 as a function of spectral class. As in Figure 2 of Paper I, TTS variability amplitude increases toward the latest spectral classes, presumably because at IUE wavelengths hot emission due to accretion or activity dominates progressively cooler photospheric emission. NTTS can vary significantly due to magnetic activity, as demonstrated by V410 Tau (no. 10), V987 Tau (no. 16), and NV Ori (no. 96). In the SW data alone (Paper I) the apparent decrease in variability toward F and early-G spectral classes was ambiguous because of the paucity of such stars. Spectral class F stars are also rare in the LW sample, but four out of the five with multiple IUE observations show typical variability, so variability mechanisms apparently operate equally well for F stars. HAEBE stars show more than 10% variability in 41% of the LW sample, which equals the 41% rate in the SW sample. These variability rates are subject to observational biases inherent in the *IUE* archive. The LW HAEBE data show no trend in variability amplitude with spectral type, despite hints of such a trend in the SW data.

The set of HAEBE stars with multiple *IUE* observations is too biased to draw firm statistical inferences about the incidence of UV variability, but our analysis does show that HAEBE stars of any spectral type can vary significantly. Finkenzeller & Mundt (1984) show that the incidence of *V*band variability decreases dramatically for HAEBE stars with spectral class earlier than A0. Their variability threshold of 0.05 mag is comparable to our 5% threshold for detecting changes in *A*, though the typical amplitude of variations may be different at visual and UV wavelengths. Similarly, Herbst & Shevchenko (1999) find *V*-band variability greater than 0.2 mag in 15 out of 41 HAEBE stars with spectral classes later than B7, but they find no such variability in 19 earlier type HAEBE stars. Evidently, variability in early-

TABLE 11 Number of Stars with FUV Spectra

| Category (1) | GHRS<br>Only<br>(2) | STIS<br>Only<br>(3) | Both (4) | HST<br>Total<br>(5) | IUE<br>SW<br>(6) |
|--------------|---------------------|---------------------|----------|---------------------|------------------|
| HAEBE        | 0                   | 5                   | 2        | 7                   | 71               |
| CTTS         | 2                   | 8                   | 7        | 17                  | 38               |
| NTTS         | 4                   | 2                   | 0        | 6                   | 8                |
| FUOri        | 0                   | 0                   | 0        | 0                   | 1                |
| Total        | 6                   | 15                  | 9        | 30                  | 118              |

FIG. 9.—Mean deviation in 1900–3200 Å flux, relative to the global mean for all spectra of a given PMS star. Triangles indicate 2  $\sigma$  upper limits. Only stars observed more than once by *IUE* are shown. Few PMS stars of spectral class F were observed by *IUE*, but LW data are adequate to show that they can vary significantly.

type HAEBE stars is more prominent in the UV than in the visual.

Figure 10 statistically compares values of A as a function of bandpass for both TTS and HAEBE stars. Variability amplitudes come from Table 3 (LW) and Table 4 of Paper I (SW). We only consider sources with A greater than  $2\sigma_A$ in both *IUE* bandpasses. We fitted a power law, jointly considering uncertainties in both axes, obtaining

$$\log A_{\rm SW} = 0.248(58) + 0.794(37) \log A_{\rm LW} , \qquad (2)$$

where parentheses enclose the formal uncertainty in the two least significant digits of each coefficient. A  $\chi_r^2$  of 12.6 implies significant scatter about the fitted power law, due in part to different temporal sampling in the SW and LW bandpasses. Given the observed scatter about the fitted power law, there is no statistically significant difference between the fitted power law and a model in which variations have equal amplitude in both *IUE* bandpasses. Fitting TTS and HAEBE stars separately yields a similar result.

The statistical similarity between SW and LW variability amplitudes in Figure 10 can be explained by a variety of models. For example, small changes in  $A_V$  give rise to similar variability amplitudes in both *IUE* bandpasses, independent of spectral shape or the mean value of  $A_V$ . Figure 10 shows the predicted variability amplitudes for uniform  $A_V$  variations with a full range of 0.05–0.25 mag. The SW extinction variations are only 15% larger than the LW variations due to strong localized absorption near 2200 Å. Similarly, changes in accretion rate or activity level yield equal variability amplitudes in both *IUE* bandpasses, if the spectral shape of the variable component does not change with brightness and if the constant component is either negligible or has a spectrum that is similar to the variable component.



FIG. 10.—Comparison of logarithmic variability amplitudes for TTS (*squares*) and HAEBE stars (*circles*) in *IUE* long- and short-wavelength bandpasses. Formal errors small than the plot symbol are not shown. The solid line shows a linear fit, which corresponds to a power-law relationship between variability amplitudes. A dashed line shows the locus of equal amplitude variations in both bandpasses. The dotted line shows the effect of extinction variations, with diamonds illustrating  $A_V$  variations of 0.05–0.25 mag.

For example, CTTS flux variations may be dominated by changes in the spatial extent of accretion footpoints, rather than density or temperature changes in these regions. This possibility is supported by observational evidence that CTTS with higher accretion rates tend to have larger filling factors (Valenti, Basri, & Johns 1993; Calvet & Gullbring 1998). Detailed studies of variability in individual stars are needed to definitively test various models.

### 4.2. UV Diagnostics of TTS Activity and Accretion

CTTS are distinguished from NTTS primarily by excess emission associated directly or indirectly with accretion of circumstellar disk material. In Paper II we used SW spectra of four warm NTTS to estimate for all TTS the C IV surface flux due to saturated magnetic activity. We then attributed any significant C IV excess in CTTS to emission produced by accretion shocks at the stellar surface. We found a good correlation between excess C IV emission and  $\dot{M}$  from Hartigan, Edwards, & Ghandour (1995) for 13 CTTS, leading to our claim that much of the IUE SW emission comes from accretion processes. The correlation was improved by using distances and stellar radii to convert excess surface flux into excess line luminosity. We determined an empirical relationship between M and excess C IV line luminosity and that allowed us to estimate *M* for 15 additional CTTS with no previous measurements (see Table 4 of Paper II). A comparable analysis of Mg II emission would be quite interesting, so we begin here by describing observational characteristics of the *IUE* sample.

The Mg II doublet near 2800 Å is the most prominent emission feature in LW spectra of TTS. Although Mg II forms at cooler temperatures than C IV, many more TTS have Mg II measurements, so it is useful to explore the diagnostic potential of Mg II. Columns (1) and (2) of Table 12 list the identification number and TTS category from Table 1 for most TTS with an observed "Mg II 2798 Å" line flux in Table 6. Only four isolated TTS are excluded for lack of credible distance estimates, namely LkH $\alpha$  333 (No. 55), HD 288313 (No. 115), V4046 Sgr (No. 216), and BP Psc (No. 238). Column (3) of Table 12 gives the logarithm of intrinsic line luminosity ( $L_{Mg}$ ), which equals the observed line flux times  $4\pi d^2$  and  $6.0A_V$ , where the latter factor removes the effects of extinction at 2800 Å. The final columns of the table give distance (d) and  $A_V$  used in the calculation of  $L_{Mg}$ , each followed by literature reference codes defined in the table notes.

Figure 11 shows the relationship between our measured "Mg II 2798 A" line fluxes in Table 6 and literature values of  $A_V$  in Table 12. For TTS in the *IUE* sample, there is no significant correlation between observed Mg II flux and  $A_V$ , even though observed line fluxes are diminished by extinction factors of 1 to 200 from left to right across Figure 11. Correcting observed fluxes for differences in distance still leaves a threshold below which no TTS are detected. In principle increasing intrinsic line luminosity could exactly compensate for increasing extinction at 2800 A, but more likely the lower envelope in Figure 11 indicates the practical detection limit for IUE. The existence of this detection limit introduces a bias in the sample of stars with useful *IUE* data, such that minimum intrinsic line luminosity must increase with  $A_V$ . We adopt the lowest measured Mg II flux  $(3.0 \times 10^{-14} \text{ erg s}^{-1} \text{ cm}^{-2} \text{ for the NTTS V1074 Tau, No. 24})$ as the practical limit below which IUE could not detect Mg II emission. Co-added spectra have a range of noise levels, so use of a unique detection limit is only an approximation.

Figure 12 plots log  $L_{Mg}$  from column (3) of Table 12 versus  $A_V$  from column (4). TTS line luminosities span four orders of magnitude. There is a strong correlation between  $L_{Mg}$  and  $A_V$ , due at least in part to the observational bias that was demonstrated in Figure 11. Diagonal dashed lines in Figure 12 show our adopted IUE detection limit translated to the mean distances of the Taurus-Auriga and Orion star forming regions. At low extinction where observational bias is less of an issue, NTTS typically have lower intrinsic line luminosities than CTTS. This behavior is consistent with the hypothesis that  $L_{Mg}$  and UV flux in general scales with M, but more detailed analysis is needed. In particular, stellar radii should be used to assess and remove the contribution from magnetic activity, yielding excess  $L_{Mg}$ . Given the results of Paper II and preliminary LW tests, excess  $L_{Mg}$ is probably correlated with M, suggesting that accretion related processes may contribute significantly to the LW emission from CTTS. However, excess  $L_{Mg}$  is also correlated with  $A_V$  because of the sample bias discussed above, complicating the interpretation if circumstellar extinction is higher around CTTS with higher mass accretion rates.

Certain outliers in Figure 12 are worthy of specific mention. IK Lup (M0, No. 163) and GW Lup (M2, No. 165) are significantly less luminous than other CTTS. Barring an error in  $A_V$  or distance, these two CTTS demonstrate that accretion need not generate high line luminosity, especially at late spectral types where low accretion rates are more easily detected. Extended nebular emission (Panek 1983), rather than accretion, may elevate line luminosity for five NTTS with  $L_{Mg} \sim 10^{31}$  ergs s<sup>-1</sup>. A similar caveat may apply

331

TABLE 12Intrinsic Mg II Line Luminosity

|            |                   | -                 |                   |                  |      |                  |
|------------|-------------------|-------------------|-------------------|------------------|------|------------------|
|            | TTS               | $\log L_{\rm Mg}$ |                   | $A_V$            | d    | d                |
| ID         | Cat. <sup>a</sup> | $(ergs s^{-1})$   | $A_V$             | Ref.             | (pc) | Ref.             |
| (1)        | (2)               | (3)               | (4)               | (5)              | (6)  | (7)              |
| 3          | С                 | 31.8              | 0.85              | L01              | 275  | L01              |
| 7          | Ν                 | 30.8              | 1.32              | K95              | 140  | H95              |
| 8          | С                 | 29.6              | 0.26              | W01              | 140  | H95              |
| 9          | С                 | 31.6              | 2.21              | W01              | 140  | H95              |
| 10         | Ν                 | 29.9              | 0.00              | S89              | 140  | H95              |
| 11         | Ν                 | 29.4              | 0.00              | Avg <sup>b</sup> | 140  | H95              |
| 12         | С                 | 30.9              | 0.51              | G98              | 140  | H95              |
| 13         | N                 | 29.9              | 1.23              | Avg <sup>b</sup> | 140  | H95              |
| 14         | С                 | 30.8              | 0.62              | G98              | 140  | H95              |
| 15         | С                 | 31.0              | 0.29              | J00              | 140  | H95              |
| 16         | N                 | 30.2              | 0.49              | Avg              | 140  | H95              |
| 17         | С                 | 31.8              | 1.00              | B88              | 140  | H95              |
| 18         | С                 | 30.4              | 0.45              | G98              | 140  | H95              |
| 19         | C                 | 31.7              | 1.66              | J00              | 140  | H95              |
| 20         | N                 | 29.6              | 0.05              | Avg              | 140  | H95              |
| 21         | IN<br>N           | 29.9              | 1.08              | 589              | 140  | H95              |
| 22         | N                 | 29.5              | 0.26              | W01              | 140  | B99              |
| 23         | C                 | 30.9              | 1.42              | G98              | 140  | H95              |
| 24         | IN<br>N           | 29.0              | 0.18              | Avgo             | 140  | H95              |
| 20         | IN<br>N           | 29.1              | 0.00              | Avg              | 140  | H95              |
| 21         | IN<br>C           | 29.6              | 0.46              | Avg              | 140  | H95              |
| 29         | C                 | 30.9              | 0.60              | G98              | 140  | H95              |
| 31<br>22   | C                 | 30.9              | 1.00              | W01              | 140  | H95              |
| 33<br>24   |                   | 30.2              | 0.30              | wur<br>Asseb     | 140  | H95              |
| 34         | N<br>C            | 29.6              | 0.41              | AVg <sup>o</sup> | 140  | H95              |
| 22         | C                 | 30.3              | 1.54              | C 08             | 140  | П95<br>Ц05       |
| 27         | C                 | 30.5              | 0.94              | 100              | 140  | П95<br>Ц05       |
| <i>4</i> 0 | C                 | 30.5              | 0.88              | G08              | 140  | LI95             |
| 40         | C                 | 20.0              | 0.74              | G98              | 140  | H05              |
| 41<br>11   | C                 | 29.9              | 0.23              | G98              | 140  | H05              |
| 45         | C                 | 31.0              | 2.18              | C70              | 140  | H05              |
| 46         | C                 | 31.5              | 1.66              | 100              | 140  | H05              |
| 47         | C                 | 30.4              | 0.34              | G98              | 140  | H05              |
| 48         | C                 | 31.2              | 1.26              | G98              | 140  | H95              |
| 49         | C                 | 30.3              | 0.31              | G98              | 140  | H95              |
| 50         | Ň                 | 29.5              | 0.00              | W88              | 140  | H95              |
| 52         | C                 | 31.1              | 0.93              | B88              | 140  | H95              |
| 56         | Č                 | 32.3              | 1 14              | 100              | 140  | H95              |
| 59         | Č                 | 33.1              | 2.20              | E02              | 460  | C79              |
| 61         | Č                 | 32.3              | 0.82              | B90              | 460  | C79              |
| 62         | Č                 | 31.5              | 0.27              | C79              | 460  | C79              |
| 64         | N                 | 29.3              | 0.00 <sup>c</sup> |                  | 14   | E97              |
| 66         | C                 | 31.6              | 1.30              | E02              | 460  | C79              |
| 67         | Ν                 | 31.2              | 0.00              | C00              | 500  | S91              |
| 68         | С                 | 31.7              | 0.36              | C79              | 460  | C79              |
| 69         | С                 | 31.6              | 0.57              | G95              | 460  | C79              |
| 81         | Ν                 | 31.2              | 0.32              | C79              | 460  | C79              |
| 96         | Ν                 | 31.3              | 0.50              | L68              | 460  | C79 <sup>d</sup> |
| 97         | С                 | 31.4              | 0.97              | C79              | 460  | C79              |
| 102        | Ν                 | 31.0              | 0.20              | S90              | 460  | C79 <sup>d</sup> |
| 104        | С                 | 31.3              | 0.00              | C79              | 460  | C79              |
| 105        | Ν                 | 30.9              | 0.36              | S90              | 460  | C79 <sup>d</sup> |
| 112        | С                 | 31.3              | 0.28              | C79              | 460  | C79              |
| 114        | F                 | 33.4              | 2.50              | L88              | 480  | L88              |
| 124        | Ν                 | <30.9             | 0.00              | C79              | 800  | C79              |
| 126        | С                 | <30.7             | 0.13              | F91              | 700  | F91              |
| 140        | С                 | 29.9              | 0.21              | G92              | 170  | B99              |
| 141        | С                 | 32.3              | 2.99              | G92              | 170  | B99              |
| 142        | С                 | 30.8              | 1.37              | G92              | 170  | B99              |
| 143        | С                 | 30.1              | 0.00              | M00              | 56   | E97              |
| 145        | С                 | 30.7              | 0.85              | G92              | 170  | B99              |
| 146        | С                 | 30.3              | 0.14              | G92              | 170  | B99              |

|     | TTS   | $\log L_{\rm Mg}$       |       | $A_V$ | d    | d    |
|-----|-------|-------------------------|-------|-------|------|------|
| ID  | Cat.a | (ergs s <sup>-1</sup> ) | $A_V$ | Ref.  | (pc) | Ref. |
| (1) | (2)   | (3)                     | (4)   | (5)   | (6)  | (7)  |
| 148 | С     | 31.5                    | 2.35  | G92   | 170  | B99  |
| 149 | С     | 31.8                    | 2.39  | G92   | 170  | B99  |
| 151 | С     | 29.9                    | 0.47  | G92   | 170  | B99  |
| 152 | С     | 30.8                    | 1.17  | G92   | 170  | B99  |
| 153 | С     | 32.2                    | 1.67  | G92   | 170  | B99  |
| 163 | С     | 29.3                    | 0.20  | H94   | 140  | G92  |
| 164 | С     | 31.2                    | 1.45  | H94   | 140  | G92  |
| 165 | С     | 29.3                    | 0.00  | H94   | 140  | G92  |
| 167 | С     | 30.2                    | 0.79  | H94   | 140  | G92  |
| 168 | Ν     | <29.8                   | 0.20  | W94   | 160  | W94  |
| 169 | С     | 29.9                    | 0.98  | H94   | 140  | G92  |
| 170 | С     | 32.1                    | 1.28  | H94   | 140  | H94  |
| 172 | С     | 30.5                    | 0.55  | H94   | 140  | G92  |
| 174 | С     | 29.9                    | 0.37  | H94   | 140  | G92  |
| 175 | С     | 30.1                    | 0.65  | B90   | 140  | H94  |
| 176 | Ν     | 29.6                    | 0.20  | W94   | 160  | W94  |
| 177 | Ν     | 29.7                    | 0.20  | W94   | 160  | W94  |
| 178 | С     | 29.9                    | 0.00  | H94   | 140  | H94  |
| 180 | С     | 30.8                    | 1.25  | H94   | 140  | H94  |
| 182 | С     | 29.7                    | 0.50  | H94   | 140  | G92  |
| 183 | С     | 30.7                    | 0.82  | H94   | 140  | H94  |
| 188 | С     | 31.8                    | 2.23  | V93   | 160  | L96  |
| 189 | Ν     | <29.9                   | 1.40  | W94   | 160  | W94  |
| 190 | Ν     | 30.7                    | 1.30  | W94   | 160  | W94  |
| 191 | Ν     | <29.3                   | 0.60  | W94   | 160  | W94  |
| 192 | С     | 31.3                    | 1.70  | H92   | 160  | H92  |
| 194 | С     | 31.4                    | 1.84  | B90   | 170  | C79  |
| 199 | С     | 30.6                    | 0.50  | B90   | 170  | C79  |
| 200 | С     | 29.9                    | 0.14  | C79   | 170  | C79  |
| 201 | С     | 30.0                    | 0.00  | C79   | 170  | C79  |
| 202 | С     | 30.9                    | 1.16  | C79   | 170  | C79  |
| 204 | Ν     | <30.2                   | 2.10  | W94   | 160  | W94  |
| 206 | С     | 31.6                    | 1.15  | V93   | 160  | H92  |
| 207 | С     | 31.1                    | 0.40  | A89   | 145  | D99  |
| 217 | С     | 30.5                    | 0.31  | H86   | 106  | E97  |
| 219 | С     | 30.2                    | 0.50  | H92   | 130  | H92  |
| 220 | Ν     | 29.8                    | 0.84  | W86   | 130  | H92  |
| 230 | С     | 32.5                    | 1.30  | H92   | 700  | H92  |
| 236 | С     | 31.6                    | 0.90  | H92   | 300  | H92  |

TABLE 12—Continued

<sup>a</sup> TTS category codes: (C) CTTS, (N) NTTS, and (F) FU Ori.

<sup>b</sup> Tabulated  $A_V$  is the mean of values in Cohen & Kuhi 1979 and Strom et al. 1990.

<sup>c</sup> Assumed  $A_V = 0$  due to proximity of star.

<sup>d</sup> Distance assumed by analogy to Cohen & Kuhi 1979 distance for other Orion TTS.

REFERENCES.—(A89) Andersen et al. 1989; (B88) Bertout et al. 1988; (B90) Bouvier 1990; (B99) Bertout et al. 1999; (C79) Cohen & Kuhi 1979; (C00) Chavarría-K et al. 2000; (D99) de Zeeuw et al. 1999; (E97) ESA 1997; (E02) Eiroa et al. 2002; (F91) Feldbrugge & van Genderen 1991; (G92) Gauvin & Strom 1992; (G95) Gagné et al. 1995; (G98) Gullbring et al. 1998; (H86) Herbig & Goodrich 1986; (H92) Hamann & Persson 1992; (H94) Hughes et al. 1994; (H95) Hartigan et al. 1995; (J00) Paper II; (K95) Kenyon & Hartmann 1995; (L68) Lee 1968; (L88) Levreault 1988; (L96) Liu et al. 1996; (L01) Luhman 2001; (M00) Muzerolle et al. 2000; (S89) Strom et al. 1989; (S90) Strom et al. 1990; (S91) Skinner et al. 1991; (V93) Valenti et al. 1993; (W86) Walter 1986; (W88) Walter et al. 1988; (W94) Walter et al. 1994; (W01) White & Ghez 2001.

to large aperture observations of other TTS in Orion. Line luminosity may also be enhanced in magnetically active stars with relatively large radii or in systems with multiple components. The PMS stars with the largest  $L_{Mg}$  are FU Ori (No. 114) and then CO Ori (No. 59). Extremely large mass accretion rates have been inferred for FU Ori



FIG. 11.—Logarithm of observed "Mg II 2798 Å" line flux (Table 6) vs. visual extinction from the literature (Table 12). Plot symbol types distinguish detections (*circles*) from 2 σ upper limits (*triangles*) and CTTS (*filled*) from NTTS (*unfilled*). The horizontal dashed line at  $3.0 \times 10^{-14}$  erg s<sup>-1</sup> cm<sup>-2</sup> indicates the approximate flux limit below which Mg II was not detected by *IUE*.

(Kenyon, Hartmann, & Hewett 1988). V1074 Tau (No. 24) has the smallest  $L_{Mg}$  at  $1.0 \times 10^{29}$  ergs s<sup>-1</sup>. Note that in Figure 11, the zero-age main-sequence star AB Dor (No. 64), has the second largest observed flux because it is nearby (14 pc), not because it is intrinsically luminous.

Blueshifted absorption components in high-resolution Mg II profiles indicate that outflow optical depths can be significant in some CTTS (e.g., Imhoff & Appenzeller 1987; Ardila et al. 2002). Thus, outflows may also contribute significantly to Mg II emission, as in spherical wind models by Hartmann et al. (1990). High-resolution line profiles of Mg II and Fe II would help constrain wind models, as in evolved stars (e.g., Carpenter et al. 1999), but CTTS models must also include accretion flows and shocks, as in existing analyses of Balmer line profiles (e.g., Hartmann, Hewett, & Calvet 1994; Muzerolle, Calvet, & Hartmann 1998, 2001). For our purposes here, we loosely refer to accretion and outflows as "accretion related processes," since they are linked observationally (e.g., Cabrit et al. 1990; Valenti et al. 1993; Hartigan et al. 1995) and theoretically (e.g., Shu et al. 1994).

### 4.3. Herbig Ae/Be Stars

HAEBE stars are well defined from an evolutionary standpoint, but observational signatures are imprecisely defined. The presence of emission or anomalous absorption lines indicates peculiarity, but youth is not the only explanation. In particular, normal Be stars may also show emission due to accretion from a companion, and various types of outflows (e.g., planetary nebulae, Wolf-Rayet stars) give rise to circumstellar absorption. Herbig (1960) defines HAEBE stars as early-type stars with emission lines, in obscured regions, and illuminating nearby nebulosity. Thé et al. (1994) discuss a much broader range of potentially dis-



FIG. 12.—Similar to Fig. 11, except the ordinate is the logarithm of intrinsic Mg II line luminosity, calculated from "Mg II 2798 Å" line flux using values of distance and extinction in Table 12. Diagonal dashed lines map the *IUE* detection limit in Fig. 11 to distances of 140 and 460 pc. The paucity of high- $A_V$ , low-luminosity sources below the diagonal lines is an observational bias.

tinctive observational characteristics. With the low-resolution UV spectra compiled here and in Paper I, it is appropriate to investigate the UV characteristics of HAEBE stars, which may in some cases distinguish HAEBE stars from other classes of unusual objects.

Figure 2 shows that UV spectra of HAEBE stars generally consist of a reddened continuum that is characteristic of the adopted spectral type, as expected. Narrow absorption features are weak or absent in roughly half the IUE spectra, especially for hotter HAEBE stars, not unlike IUE spectra of main-sequence extinction templates shown in Figure 6. For later spectral types, the *absence* of absorption features may be an indication of spectral peculiarity. For example, Figure 2 shows Mg II 2800 Å in absorption for V351 Ori (A7, No. 113), yet Table 9 indicates no anomalous emission or absorption. In contrast, Mg II is not apparent in V856 Sco (A7, No. 184), yet Table 9 indicates a highly significant excess. These results follow from the strong Mg II absorption present in the A7 template spectrum shown in Figure 6. An apparent excess in line emission can be due to line emission or to significant continuum veiling.

A significant fraction of the candidate HAEBE stars in the *IUE* sample show no evidence of their youthful nature in moderately noisy NUV spectra at low resolution. Our candidate HAEBE stars are drawn mainly from the catalog of Thé et al. (1994), which uses IR excess as a key selection criterion. Some candidates may ultimately prove to be older stars that are misclassified as HAEBE stars, but it is tempting to identify candidate HAEBE stars with ordinary UV spectra as higher mass analogs of NTTS. If the analogy is valid, then HAEBE stars with peculiar UV spectra would be accreting analogs of classical TTS, while those with normal UV spectra would be nonaccreting analogs of NTTS. To begin exploring this hypothesis, we now discuss the occurrence of various spectral anomalies in LW *IUE* spectra of HAEBE stars.

Table 9 indicates that 55 out of 97 HAEBE stars have significant excess absorption or emission in at least one of the Fe II windows centered at 2379, 2600, and 2742 Å. In 23 stars, all three windows are either significantly in absorption (12 stars) or emission (11 stars). All the HAEBE stars with Fe II consistently in absorption are spectral class A4 or earlier. Their mean spectral class is A0 with a standard deviation of 3 spectral subclasses. With the exception of V590 Mon (B8, No. 125) and He 3-847 (B5, No. 158), all the HAEBE stars with Fe II consistently in emission are spectral type A0 or later. The mean spectral class of these nine stars is A6 with a standard deviation of 3 spectral subclasses. Thus, HAEBE stars with prominent NUV lines of Fe II are typically in absorption for spectral classes A3 and earlier and in emission for later spectral classes. The corresponding stellar effective temperature at this spectral class boundary is about 8300 K, suggesting this as a rough formation temperature for the Fe II features, assuming substantial optical depth and geometrical extent equivalent to the photosphere.

In contrast to the spectral type dependence of Fe II excess absorption or emission, Mg II rarely exhibits excess absorption. Excess Mg II emission is significant in 47 out of 97 HAEBE stars, but only LP Ori (B1.5, No. 80), LZ Ori (A0, No. 87), and V346 Ori (A5, No. 58), exhibit marginally significant excess absorption in Mg II. The origin of this excess absorption is not understood. Interstellar line absorption should not be significant because extinction toward these three stars is relatively low (see Table 8), and wind absorption is also unlikely because no other lines appear in the spectra. A different set of HAEBE stars have excess Fe II absorption, indicating the presence of a wind, but apparently normal Mg II in Table 9. Many of these stars have P Cygni profiles, even at *IUE* resolution (about 640 km s<sup>-1</sup>). The most obvious examples are He 3-1428 (B0, No. 213), MWC 1080 (B0, No. 237), HD 87643 (B3.5, No. 137), HD 250550 (B9, No. 116), AB Aur (B9.5, No. 51), and HD 179218 (B9.5, No. 224). For these stars, emission and absorption largely cancel in our adopted Mg II wavelength interval (see Table 5). In IUE spectra of a few other HAEBE stars, emission and blueshifted absorption components are both present in unequal proportions. Figure 13 plots excess Mg II emission from Table 9 as a function of spectral class. Excess emission increases toward later spectral types, perhaps indicating increasing contrast of an accretion or outflow component.

Hillenbrand et al. (1992) used IR photometry to separate HAEBE stars into three classes (I, II, and III) associated with different circumstellar environments. IUE observed 26 of 30 class I sources with IR excesses characteristic of an accretion disk. Excluding VV Ser (A0, No. 218) for which our template fitting procedure failed, 21 of 25 class I sources have peculiar UV spectra with at least one anomalous line strength. Exceptions such as CU Cha (A0, No. 150) have normal UV spectra despite an IR excess indicative of a disk. Class II sources have IR characteristics suggesting emission from an envelope and possibly a disk. Three of four class II sources with useful IUE spectra have anomalous UV line strengths. Class III sources are usually associated with NTTS because normal IR colors rule out the presence of a disk. All three class III stars with useful IUE spectra have normal UV spectra. While there are exceptions, the presence

or absence of UV spectral peculiarities correlates well with IR classifications from Hillenbrand et al. (1992), connecting UV accretion and wind diagnostics with IR signatures of infalling material.

Corcoran & Ray (1997) separate HAEBE stars into categories (I, IIa, IIb, III, and IV) that define a sequence of progressively lower blueshifts of the [O I] emission line near 6300 Å. Category I and IIa sources have large or moderate blueshifts associated with jets (Hartigan et al. 1995). Category IIb sources have small blueshifts, but no supporting optical or radio evidence of outflows. Category III and IV sources have zero velocity or moderate redshifts with no evidence of outflows. Proceeding in sequence, there are one, five, three, zero, and five HAEBE stars with useful IUE spectra in each category. Following the same sequence, one, four, one, zero, and three of the stars have peculiar UV spectra. Although the statistics are poor, it seems that UV peculiarity is not well correlated with [O I] signatures of jets and outflows. If we accept that UV peculiarity typically implies accretion and/or outflows, then the velocity shift of [O I] may not be a robust indicator of these processes.

Accretion shocks at the surface of a CTTS produce observable veiling and excess blue emission because gas is heated to  $10^4$  K, which is significantly hotter than the photosphere. Veiling has not been detected in high-resolution optical spectra of HAEBE stars, perhaps because the photosphere and shocked gas have similar temperatures (Ghandour et al. 1994). Contrast might be improved in the UV, so we investigated the effect of a hypothetical veiling continuum on LW spectral shape and line strength. As a simple numerical experiment, we constructed veiled HAEBE spectra by combining main-sequence template spectra in Figure 6 with a  $10^4$  K blackbody assumed to cover 5% of the stellar surface. We fitted each artificial spectrum of a HAEBE star with the original template spectra,



FIG. 13.—Excess Mg II line emission in HAEBE stars, relative to mean line depths in main-sequence templates of the same spectral class. Excess emission increases toward later spectral types, perhaps indicating increasing contrast of an accretion or outflow component.

redetermining  $A_V$  and apparent spectral class. Errors in apparent spectral class decreased from about 1 subclass at F0 to a few tenths of a subclass at A0, while errors in  $A_V$ decreased from 0.05 to 0.01 magnitude over the same spectral class range. These small errors cannot be measured reliably in *IUE* spectra. On the other hand, veiling is strong at spectral class F0 and is still detectable at spectral class A5, appearing as excess line emission relative to main-sequence templates (see § 3.5). Thus, excess line emission in HAEBE stars later than spectral class A0 could be due to veiling. For spectral classes earlier than A0, addition of a 10<sup>4</sup> K blackbody has no significant effect on the composite spectrum because the hot photospheric spectrum is dominant.

C. M. J.-K. acknowledges partial support from NASA grant NAG5–8209. All of the data presented in this paper were obtained from the Multi-Mission Archive at the Space Telescope Science Institute (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5–26555. Support for MAST for non-*HST* data is provided by the NASA Office of Space Science via grant NAG5–7584 and by other grants and contracts. This research made use of the NASA Astrophysics Data System Bibliographic Services. This research made use of the SIMBAD database, operated at CDS, Strasbourg, France.

# APPENDIX

Section 2.2 describes the procedure we used to assess individual spectra, prior to constructing a combined spectrum for each source. During this procedure, we made note of the spectral characteristics listed in Tables A1 and A2. These two tables also define corresponding status codes, which are used in Table A3 to indicate which of the spectra we considered have these characteristics.

| STATUS CODES FOR INCLUDED SPECTRA |                                                          |  |  |
|-----------------------------------|----------------------------------------------------------|--|--|
| Code<br>(1)                       | Meaning (2)                                              |  |  |
| 0                                 | No comment                                               |  |  |
| 1                                 | Fails one or more quality tests                          |  |  |
| 2                                 | Relatively noisy spectrum                                |  |  |
| 3                                 | Questionable spectral feature near 3150 Å                |  |  |
| 4                                 | Spectrum is anomalously strong                           |  |  |
| 5                                 | Questionable spectral feature near 3075 Å                |  |  |
| 6                                 | Questionable spectral feature near 2900 Å                |  |  |
| 7                                 | Questionable spectral feature near 2500 Å                |  |  |
| 8                                 | Spectrum is anomalously weak                             |  |  |
| 9                                 | Relatively noisy small aperture spectrum                 |  |  |
| 10                                | Questionable small aperture spectral feature near 2875 Å |  |  |
| 11                                | Questionable small aperture spectral feature near 3200 Å |  |  |
| 12                                | Many spectrum points flagged as bad                      |  |  |
| 13                                | Questionable spectral feature near 3200 Å                |  |  |
| 14                                | Noisy spectrum                                           |  |  |
| 15                                | Negative excursions in flux near 3200 Å                  |  |  |
| 16                                | Questionable spectral feature near 2350 Å                |  |  |
| 17                                | Mg II only                                               |  |  |
| 18                                | Questionable spectral feature near 2600 Å                |  |  |
| 19                                | Large aperture spectrum fails one or more quality tests  |  |  |
| 20                                | Questionable spectral feature near 3175 Å                |  |  |
| 21                                | Questionable spectral feature after 3050 Å               |  |  |
| 22                                | Questionable large aperture spectral feature near 2250 Å |  |  |
| 23                                | Many small aperture spectrum points flagged as bad       |  |  |
| 24                                | Questionable spectral feature near 3100 Å                |  |  |
| 25                                | Relatively noisy large aperture spectrum                 |  |  |
| 26                                | Questionable spectral feature near 2950 Å                |  |  |
| 27                                | Many large aperture spectrum points flagged as bad       |  |  |

TABLE A1

| TABLE A2                          |
|-----------------------------------|
| STATUS CODES FOR EXCLUDED SPECTRA |

| Code Meaning |                                                         |  |  |
|--------------|---------------------------------------------------------|--|--|
| (1)          | (2)                                                     |  |  |
| -1           | Many spectrum points flagged as bad                     |  |  |
| -2           | Probably not a PMS star                                 |  |  |
| -3           | No significant signal                                   |  |  |
| -4           | Very noisy spectrum                                     |  |  |
| -5           | Very noisy small aperture spectrum                      |  |  |
| -6           | Fails one or more quality tests                         |  |  |
| -7           | Spectrum is anomalously weak                            |  |  |
| -8           | Very noisy large aperture spectrum                      |  |  |
| -9           | Many large aperture spectrum points flagged as bad      |  |  |
| -10          | Large aperture spectrum fails one or more quality tests |  |  |
| -11          | Many small aperture spectrum points flagged as bad      |  |  |
| -12          | Relatively noisy large aperture spectrum                |  |  |
| -13          | Different source in small aperture                      |  |  |
| -14          | Different source in large aperture                      |  |  |
| -15          | Scattered light                                         |  |  |
| -16          | Not available in final archive                          |  |  |
| -17          | Excessive contamination from nearby hot stars           |  |  |
| -18          | Large aperture spectrum is anomalously weak             |  |  |
| -19          | Small aperture spectrum is anomalously weak             |  |  |
| -20          | Questionable spectral features in 2200–2600 Å range     |  |  |
| -21          | Small aperture spectrum has no significant signal       |  |  |
| -22          | Unusual continuum shape                                 |  |  |
| -23          | Spectrum is anomalously strong                          |  |  |
| -24          | Relatively noisy small aperture spectrum                |  |  |
| -25          | Small aperture spectrum fails one or more quality tests |  |  |
| -26          | Spectrum not used in sum                                |  |  |
| -27          | Planetary nebula                                        |  |  |

| ID <sup>a</sup><br>(1) | Sequence<br>Number<br>(2) | Status<br>Code <sup>b</sup><br>(3) | Status<br>Code <sup>b</sup><br>(4) |
|------------------------|---------------------------|------------------------------------|------------------------------------|
| 1                      | lwp29701                  | 0                                  | 0                                  |
| 2                      | lwr02497                  | -1                                 | 0                                  |
| 2                      | lwr08062                  | 0                                  | 0                                  |
| 2                      | lwr08063                  | 0                                  | 0                                  |
| 2                      | lwr02496                  | 0                                  | 0                                  |
| 3                      | lwp10051                  | 0                                  | 0                                  |
| 3                      | lwp16942                  | 0                                  | 0                                  |
| 3                      | lwp16943                  | 0                                  | 0                                  |
| 4                      | lwp19651                  | -2                                 | 0                                  |
| 5                      | lwp05147                  | -3                                 | 0                                  |
| 6                      | lwp31507                  | 0                                  | 0                                  |
| 7                      | lwp23901                  | 0                                  | 0                                  |
| 7                      | lwp23902                  | 0                                  | 0                                  |
| 7                      | lwp23903                  | -3                                 | 0                                  |
| 7                      | lwp23904                  | 0                                  | 0                                  |
| 7                      | lwp23905                  | 0                                  | 0                                  |
| 7                      | lwp02069                  | -4                                 | 0                                  |

TABLE A3 IUE OBSERVATIONS OF PMS STARS

Notes.— Table A3 is available in its entirety in the electronic edition of the *Astrophysical Journal Supplement*. A portion is shown here for guidance regarding its form and content.

<sup>a</sup> Identification number from col. (1) of Table 1. <sup>b</sup> Status codes are defined in Tables A1 and A2.

#### REFERENCES

- Andersen, J., Lindgren, H., Hazen, M. L., & Mayor, M. 1989, A&A, 219,

- Appenzeller, I., Krautter, J., & Jankovics, I. 1983, A&AS, 53, 291 Ardila, D. R., & Basri, G. 2000, ApJ, 539, 834 Ardila, D. R., Basri, G., Walter, F. M., Valenti, J. A., & Johns-Krull, C. M. 2002, ApJ, 567, 1013 Basri, G., & Batalha, C. 1990, ApJ, 363, 654 Bertout, C. 1989, ARA&A, 27, 351 Partout, C. D.

- Bertout, C. 1989, ARA&A, 27, 551
  Bertout, C., Basri, G., & Bouvier, J. 1988, ApJ, 330, 350
  Bertout, C., Robichon, N., & Arenou, F. 1999, A&A, 352, 574
  Blondel, P. F. C., & Djie, H. R. E. T. A. 1994, in ASP Conf. Ser. 62, The Nature and Evolutionary Status of Herbig Ae/Be Stars, ed. P. S. Thé, M. R. Pérez, & E. P. J. van den Heuvel (San Francisco: ASP), 211
  Böhm, T., & Catala, C. 1993, A&AS, 101, 629
  Bouret, J.-C., & Catala, C. 1998, A&A, 340, 163

- Bouvier, J. 1990, AJ, 99, 946
- Cabrit, S., Edwards, S., Strom, S. E., & Strom, K. M. 1990, ApJ, 354, 687
- Calvet, N., & Gullbring, E. 1998, ApJ, 509, 802 Camenzind, M. 1990, Rev. Mod. Astron., 3, 234 Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
- Carpenter, K. G., Robinson, R. D., Harper, G. M., Bennett, P. D., Brown, A., & Mullan, D. J. 1999, ApJ, 521, 382
- A., & Mullan, D. J. 1999, ApJ, 521, 382 Chavarría-K, C., Terranegra, L., Moreno-Corral, M. A., & de Lara, E. 2000, A&AS, 145, 187 Cohen, M., & Kuhi, L. V. 1979, ApJS, 41, 743 Corcoran, M., & Ray, T. P. 1997, A&A, 321, 189 de Zeeuw, P. T., Hoogerwerf, R., de Bruijne, J. H. J., Brown, A. G. A., & Blaauw, A. 1999, AJ, 117, 354 Eiroa, C., et al. 2002, A&A, 384, 1038 ESA. 1997, The *Hipparcos* and Tycho Catalogues (ESA SP-1200) Feigelson F. D. Casanova, S. Montmerle, T. & Guibert, L. 1993, ApJ

- Feigelson, E. D., Casanova, S., Montmerle, T., & Guibert, J. 1993, ApJ, 416, 623
- Feldbrugge, P. T. M., & van Genderen, A. M. 1991, A&AS, 91, 209 Fernandez, M., & Miranda, L. F. 1998, A&A, 332, 629 Finkenzeller, U., & Mundt, R. 1984, A&AS, 55, 109

- Gagné, M., Ćaillault, J.-P., & Stauffer, J. R. 1995, ApJ, 445, 280
- Garhart, M. P., Smith, M. A., Levay, K. L., & Thompson, R. W. 1997, NASA *IUE* Newslett. 57
- Gauvin, L. S., & Strom, K. M. 1992, ApJ, 385, 217
   Ghandour, L., Strom, S., Edwards, S., & Hillenbrand, L. 1994, in ASP Conf. Ser. 62, The Nature and Evolutionary Status of Herbig Ae/Be Stars, ed. P. S. Thé, M. R. Pérez, & E. P. J. van den Heuvel (San France) 2020 Francisco: ASP), 223
- Ghez, A. M., White, R. J., & Simon, M. 1997, ApJ, 490, 353 Gómez de Castro, A. I., & Franqueira, M. 1997, *IUE*-ULDA Access Guide 8:T Tauri Stars (ESA-SP 1205)

- 8:T Tauri Stars (ESA-SP 1205) Gregorio-Hetem, J., Lepine, J. R. D., Quast, G. R., Torres, C. A. O., & de La Reza, R. 1992, AJ, 103, 549 Gullbring, E., Hartmann, L., Briceño, C., & Calvet, N. 1998, ApJ, 492, 323 Hamann, F., & Persson, S. E. 1992, ApJ, 394, 628 Hartigan, P., Edwards, S., & Ghandour, L. 1995, ApJ, 452, 736 Hartmann, L., Avrett, E. H., Loeser, R., & Calvet, N. 1990, ApJ, 349, 168 Hartmann, L., Hewett, R., & Calvet, N. 1994, ApJ, 426, 669 Hartmann, L., Kenyon, S. J. 1996, ARA&A, 34, 207 Hartmann, L., Kenyon, S. J., & Calvet, N. 1993, ApJ, 407, 219 Herbig, G. H. 1960, ApJS, 4, 337 Herbig, G. H., & Bell, K. R. 1988, Third Catalog of Emission-Line Stars of the Orion Population, Lick Obs. Bull, 1111 the Orion Population, Lick Obs. Bull. 1111

- Hillenbrand, L. A., Strom, S. E., Calvet, N., Merrill, K. M., Gatley, I., Makidon, R. B., Meyer, M. R., & Skrutskie, M. F. 1998, AJ, 116, 1816 Hillenbrand, L. A., Strom, S. E., Vrba, F. J., & Keene, J. 1992, ApJ, 397, 613

- Huélamo, N., Franqueira, M., & Gómez de Castro, A. I. 2000, MNRAS, 312, 833
- Hughes, J., Hartigan, P., Krautter, J., & Kelemen, J. 1994, AJ, 108, 1071
  Imhoff, C. L., & Appenzeller, I. 1987, ASSL Vol. 129: Exploring the Universe with the *IUE* Satellite, ed. Y. Kondo (Dordrecht: Reidel), 295
  Johns-Krull, C. M., & Valenti, J. A. 2001, ApJ, 561, 1060
  Johns-Krull, C. M., Valenti, J. A., & Linsky, J. L. 2000, ApJ, 539, 815
- (Paper II)
- Kenyon, S. J., & Hartmann, L. 1995, ApJS, 101, 117 Kenyon, S. J., Hartmann, L., & Hewett, R. 1988, ApJ, 325, 231

- Königl, A. 1991, ApJ, 370, L39 Lamzin, S. A. 1995, A&A, 295, L20 ——. 1998, Astron. Rep., 42, 322 Lee, T. A. 1968, ApJ, 152, 913 Levreault, R. M. 1988, ApJ, 330, 897
- Li, J. Z., & Hu, J. Y. 1998, A&AS, 132, 173

- Li, J. Z., & Hu, J. F. 1996, A&A, 152, 175 Liu, M. C., et al. 1996, ApJ, 461, 334 Luhman, K. L. 2001, ApJ, 560, 287 Malfait, K., Bogaert, E., & Waelkens, C. 1998, A&A, 331, 211 Martín, E. L., Rebolo, R., Magazzù, A., & Pavlenko, Ya. V. 1994, A&A, 282, 503
- Massa, D., & Fitzpatrick, E. L. 2000, ApJS, 126, 517
  Meeus, G., Waelkens, C., & Malfait, K. 1998, A&A, 329, 131
  Muzerolle, J., Calvet, N., Briceño, C., Hartmann, L., & Hillenbrand, L. 2000, ApJ, 535, L47

- Rydgren, A. É., & Vrba, F. J. 1984, AJ, 89, 399
- Shu, F., Najita, J., Ostriker, E., Wilkin, F., Ruden, S., & Lizano, S. 1994, ApJ, 429, 781
- Skinner, S. L., Brown, A., & Walter, F. M. 1991, AJ, 102, 1742
- Stassun, K. G., Mathieu, R. D., Vrba, F. J., Mazeh, T., & Henden, A. 2001,
- AJ, 121, 1003 Strom, K. M., Strom, S. E., Edwards, S., Cabrit, S., & Skrutskie, M. F. 1989, AJ, 97, 1451

- 1989, AJ, 97, 1451 Strom, K. M., et al. 1990, ApJ, 362, 168 Thé, P. S., de Winter, D., & Pérez, M. R. 1994, A&AS, 104, 315 Thé, P. S., Pérez, M. R., Voshchinnikov, N. V., & van den Ancker, M. E. 1996, A&A, 314, 233 Uchida, Y., & Shibata, K. 1984, PASJ, 36, 105 Valenti, J. A., Basri, G., & Johns, C. M. 1993, AJ, 106, 2024 Valenti, J. A., Johns-Krull, C. M., & Linsky, J. L. 2000, ApJS, 129, 399 (Paper I)

- (Paper I)
- Walter, F. M. 1986, ApJ, 306, 573 Walter, F. M., Brown, A., Mathieu, R. D., Myers, P. C., & Vrba, F. J.
- Walter, F. M., Vrba, F. J., Mathieu, R. D., Brown, A., & Myers, P. C. 1994, AJ, 107, 692
- Walter, F. M., et al. 1987, ApJ, 314, 297 Waters, L. B. F. M., & Waelkens, C. 1998, ARA&A, 36, 233

- White, R. J., & Ghez, A. M. 2001, ApJ, 556, 265 Wiese, W. L., Fuhr, J. R., & Deters, T. M., eds. 1996, Atomic Transition Probabilities of Carbon, Nitrogen, and Oxygen: A Critical Data Compilation (Washington: Am. Chem. Soc.)

Herbig, G. H., & Goodrich, R. W. 1986, ApJ, 309, 294 Herbst, W., & Shevchenko, V. S. 1999, AJ, 118, 1043 Hillenbrand, L. A. 1997, AJ, 113, 1733