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Real materials are extremely complicated, and any attempt to understand their bulk prop-

erties must begin with the appropriate choice of an idealized model, or Hamiltonian. There are

many situations where such models have furnished a decisive understanding of complex quantum

phenomena, such as BCS superconductivity and quantum magnetism. There are also cases, for

instance the unconventional superconductivity of doped cuprates or heavy-fermion metals, where

even the simplest conceivable models are intractable to current theoretical techniques. A promising

route toward understanding the physics of such models is to simulate them directly with a highly

controlled quantum system. Ultracold neutral atoms, polar molecules, and ions are in many ways

ideally suited to this task.

In this thesis, we emphasize how the unique features of particular atomic and molecular sys-

tems can be leveraged to access interesting physics in experimentally feasible temperature regimes.

In chapter 3, we consider prospects for simulation of the Kondo lattice model using alkaline-

earth atoms. In particular, we show how groundstate properties—for instance anomalous mass

enhancement—can be probed by looking at far-from equilibrium dynamics, which are a standard

diagnostic tool in ultracold atom experiments. Chapter 4 describes a realistic implementation of a

bosonic version of the Kondo lattice model, and we show how the Kondo interaction qualitatively

changes the superfluid to Mott insulator phase transition. Chapters 5, 6, and 7 are unified through

an attempt to understand the effects of dissipation in many-body quantum systems. In chapter 5,

our goal is mainly to understand the detrimental effects of two-body reactive collisions on dipolar

molecules in a 3D optical lattice. Chapter 6 takes a rather different perspective, and shows that

this type of loss naturally induces quantum correlations in the steady state of reactive fermionic

molecules or alkaline earth atoms. In chapter 7, we develop an exact analytic solution for the
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non-equilibrium dynamics of long-ranged Ising models with Markovian decoherence. We apply our

solution to the benchmarking of dynamics in an existing trapped-ion quantum simulator, which

due to its large size and long-ranged, frustrated, interactions is well beyond the reach of a brute

force numerical description.
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3.9 COM oscillations for decreasing values of v, showing how the fast free-particle dy-

namics emerge on top of the slow quasiparticle dynamics. The red solid line is

from MFT dynamics, and the blue dotted line is the noninteracting solution. The

parameters used in this plot are q = 235, Lt = 1, Ng = 6, and Jl/Jt = 2. . . . . . . . 68

4.1 In (a) we plot an energy level diagram for states |00〉 (S band), |10〉 (Px band), |01〉

(Py band), |20〉 (Dx2 band), |02〉 (Dy2 band), and |11〉 (Dxy band). The resonant

scattering process (due to the Wαβγδ terms in H) that transfers atoms from the

initially populated S and Dxy bands into the Px and Py bands is shown in (b). . . . 74



xvii

4.2 (a) Mott lobes in the M− J plane, with J plotted in units of Jc = (3 +
√

8)−1,

which is where the single band mean-field transition occurs at unit filling. The red
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n (J , 1/2).
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4.5 Dynamics during a slow ramp of V from the SF to the MI at fixed conduction band

filling n = 1 (through a first-order phase transition). The ramping function is V(t) =

Vf (tanh(t/t0) + 1)/2, with t0 ≈ 5.7~/J . For a ramp to Vf = Vc + δ (Vf = Vc − δ),

the lower blue solid (dotted) line is ψ2 and the upper red solid (dotted) line is 〈Sza〉.

The fast oscillations of ψ2 in the non-adiabatic case occur on a time scale of order 2π
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insulator shell manifest as a ring of singly occupied Rb sites (the hollow area within

the ring has mostly sites with two Rb atoms). The offset along z of about 11a, where

a is the lattice spacing, is caused by the differential gravitational sag in the initial

optical dipole trap, and is an important source of inefficiency in the molecule creation. 95

5.2 Loss processes within the lowest two bands of the z lattice. (a) Lowest band loss

rate for two molecules on neighboring lattice sites (γ00). (b) Onsite loss rate for one

molecule in the lowest band and one in the first excited-band on the same site (γ01).

The offset ∆ is in general present, due to the gaussian profile of the lattice beams. . 98
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a function of the z-lattice depth. The black dashed-dotted curve is γ00, the red solid

curve is J1/~, and the green dotted curve is γ01. It is clear that γ00 is too small
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the first excited-band hopping rate (J1/~) at a z-lattice depth of around 23 ER. For
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5.6 Plots of discrete level population Pd(t) (blue line), continuum population Pc(t) (red
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Chapter 1

Quantum simulation: goals and feasibility

The standard procedure for modeling a many-body quantum system consists of two basic

parts: (1) deciding on some set of degrees of freedom, which we call the system, and (2) establishing

a set of rules for the behavior of these degrees of freedom. For solid state systems, these are not

easy choices. On one extreme, one could approach part (1) by trying to include everything, i.e. all

of the atomic nuclei and all of the electrons. By some accounting, this leads to the simplest result in

part (2); Coulomb’s law is just about all there is. Nevertheless, the shear complexity of the system

makes such an approach entirely hopeless. And, even if it were numerically tractable, it’s not clear

what one would actually learn by solving such a complex model; would the behaviors found for one

type of atom allow one to predict the behaviors for another type without just starting over?

Typically one operates more toward the opposite extreme by trying to minimize the number

of degrees of freedom included in the model. But the effect of ignoring degrees of freedom is

sometimes very difficult to predict. For example, in describing a metal, it is often a good starting

point to assume that the nuclei and core electrons are frozen in space, thus comprising a crystal

lattice in which the valence electrons move. Part (1) has been greatly simplified, because now the

system contains only one—or maybe a small number of—electrons per atom. In reality, these nuclei

can vibrate around their equilibrium positions; these lattice vibrations, called phonons, couple to

the electric charge of the valence electrons (simply because they are vibrations of charged ions).

One might quite reasonably ask: Is this coupling important for describing the qualitative behavior

of the valence electrons? In many situations, the answer is no, but in some metals this coupling
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mediates a weak effective attraction between electrons that, at sufficiently low temperatures, leads

to superconductivity. There are many other similar situations, where the inclusion of complexities

that exist in real materials—disorder, anisotropy, magnetic impurities, etc.—give rise to interesting

and unexpected physics. In other words, when modeling a particular material, seemingly innocuous

omissions of detail can cause one to overlook qualitatively important aspects of the material’s

properties.

The above example is meant to illustrate an essential difficulty in condensed matter physics.

The enormous complexity of the systems we would like to understand forces us to make many—

sometimes uncontrolled—approximations in order to define a workable model of the system. In the

end, the appropriate model is often chosen by experience, or intuition, or luck, and its ability to

describe the correct physical properties of a material are verified afterwards.

To date, there are many physical properties of materials that are both useful and lack-

ing of a “good” description, i.e. one that is simple and contains only the essential ingredients.

Such instances provide some of the most interesting, important, and difficult questions in mod-

ern condensed-matter theory. In the particular case of high-Tc superconductivity in the cuprates

[33, 30, 110], a very difficult situation exists. The model that most people believe affords a minimal

description of this behavior, the repulsive Fermi Hubbard model, has resisted decades of theoretical

attacks. The seemingly simple question: does the repulsive Fermi-Hubbard model admit super-

conductivity? cannot yet be answered. One possible approach to answering such questions, which

was introduced in 1982 by Feynman [49] and formalized over a decade later by Lloyd [113], is to

simulate the model in a physical system. A “quantum simulation” of this sort could probe the

physics of such a model by actually putting it to work, so to speak. Quantum simulation, then, is

not directly aimed at understanding real materials at all. Rather, it is a program to understand

simple models, or Hamiltonians, and to determine whether they do or do not describe the physical

properties found in those materials. This knowledge, in turn, is expected to aid in the long term goal

of deterministically producing materials with desired physical properties. The basic idea behind

building a quantum simulator is to find a physical system in which certain approximations—which
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perhaps we are forced to make when describing more complicated systems—are essentially exact.

Then one can experimentally answer well posed mathematical questions, such as does (insert some

simple Hamiltonian) have a groundstate with (insert some interesting property).

Ultracold atomic and molecular gases in optical lattices comprise a uniquely versatile toolbox

for addressing such questions because: (1) The system is intrinsically clean and simple: optical

lattices are almost perfectly free of defects, atoms interact with each other in simple and well

understood ways, and isolation from the environment is typically exquisite. (2) The geometry of the

optical lattice, the strength (and often even structure) of inter-atomic interactions, the statistics of

the particles—bosons or fermions, their internal degrees of freedom, even the number of dimensions

in which they exist, are all mutable in modern experiments. One significant disadvantage is that

ultracold atoms in optical lattices need to be, well, extremely cold. On dimensional grounds, the

only intrinsic temperature scale for a particle of mass m moving in a lattice with period d should

scale as T ∼ ~2/(d2m). Taking into account that atoms are & 104 times heavier than electrons

(ma/me ∼ 104), while interparticle separations in typical ultracold-atom experiments are ∼ 104

times larger than lattice constants in crystals (da/de ∼ 104), we find that atomic temperatures of

Ta ∼
(
med

2
e

mad2
a

)
Te ∼ 10−12Te (1.1)

are needed to simulate electron systems at temperatures Te. If the goal is to simulate electrons in a

crystal-lattice at room temperature (∼ 102K), which may seem modest, ultracold atom experiments

need to operate at . nK temperatures. If the goal is to simulate superconductivity, which often

occurs at temperatures one order of magnitude lower, prospects really look quite grim. Luckily,

there are many reasons to be optimistic:

(1) Temperatures in atomic physics are extremely low, and get lower all the time. State-of-

the-art cooling techniques bring fermionic atoms in a 3D optical lattice about an order of magnitude

below the bandwidth of the lattice in which they move[89, 151, 167] (or, continuing to speak loosely,

the Fermi-temperature). These low temperatures bring within reach the physics observed in many
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room-temperature solid-state systems, including local-moment antiferromagnetism. Another order

of magnitude or so in temperature would bring these systems close to where the superconducting

instability is believed to exist in the Hubbard model [110, 30].

Furthermore, while the temperatures mentioned above sound fantastically low, any honest

discussion ought to bring the physical content of these small numbers into question. If one wants

to characterize the proximity of a system to its groundstate (and one often does), especially in the

ultracold-atom context it is more meaningful to talk about the system’s entropy. One reason is that,

if one wants to use low temperature as a characterization of groundstate-proximity, the temperature

must be specified to be low compared to, e.g., the energy gap to excitations (or more generally

the characteristic energy scales in the model). In ultracold-atom quantum simulators, these energy

scales are typically tunable, and hence one needs to be very careful about what is meant by low

temperature. Another closely related reason is that the various manipulations that experimentalists

typically make in ultracold atomic systems are isentropic, but certainly not isothermic. We are

almost always dealing with a closed system, and so there is no thermal bath to enforce isothermic

behavior.

One possible approach to achieving a low entropy equilibrium state of an interesting Hamil-

tonian is to start in a low entropy state of an uninteresting Hamiltonian, and then adiabatically

make the Hamiltonian interesting (i.e. tune some parameters which, at their final values, cause the

groundstate to be nontrivial). It turns out that there are many excellent ways to produce uninter-

esting low entropy states of atomic gases.1 Therefore, often the most important question to ask

is whether a Hamiltonian can be made interesting slowly enough to be adiabatic, without other

bad things happening (decoherence or heating). The timescale for adiabaticity, τa, will typically be

inversely proportional to the relevant energy scales of the system. These are small for cold atoms,

and that is generically bad. But the timescale for decoherence, τd, is typically quite large in cold

atom systems (many orders of magnitude larger than in solid state systems), and that is generically
1 To what extent these techniques can be generalized to directly preparing low-entropy equilibrium states of

nontrivial Hamiltonians is an extremely interesting question, which has just begun to be addressed. See Chapter 6
for more discussion of these prospects.
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good. The important question is often whether the situation τa < τd can be achieved. This depends

very much on the details of the quantum simulator and the Hamiltonian one is trying to simulate;

sometimes the answer is yes, sometimes it is no, but it is never possible to answer this question

just by looking at the temperature.

(2) Cold atoms are not solid state systems, and they offer many attractive ways to alleviate

temperature constraints. First of all, many interesting behaviors of real materials occur at low

temperatures for detailed microscopic reasons, and this does not mean that the models describing

such systems can’t support the same interesting behavior at higher temperatures. This argument

applies to a number of crucially important condensed matter phenomena, including high-Tc super-

conductivity [110] and heavy fermion physics [29]. In both cases, the temperature scale below which

interesting physics emerges is controlled by an “effective interaction” strength, which because of its

perturbative origin is necessarily parametrically small compared to the Fermi temperature. This

certainly does not imply that the interesting physics cannot remain when the interaction scales are

comparable to the Fermi energy; cold atoms implementations of these models can often implement

these interactions in a direct, non-perturbative manner [70, 68, 56], and hence can in principle

access this regime.

Another remarkable example of this idea—which has been realized in a series of beautiful

experiments[72, 73]—is the BCS superconductivity of attractively interacting fermions[65]. In BCS

theory, the transition temperature to a superconducting state is suppressed by a factor that is

exponentially small in the interaction strength between these fermions. In solid-state BCS super-

conductors [9], this attraction is mediated by phonons and tends to be weak, resulting in critical

temperatures deep below the Fermi temperature.2 In an ultracold gas of fermionic atoms, the

interaction strength can be tuned via a Feshbach resonance [25]. As a fermionic gas approaches uni-

tarity, where the interactions become as strong as quantum mechanics will allow, the interparticle
2 Strictly speaking, the critical temperature in a metal is low compared to the Debye temperature, which is

typically one or two orders of magnitude below the Fermi temperature.
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separation is the only length scale left in the problem. The Fermi energy is therefore the only in-

trinsic energy scale and, perhaps not surprisingly, the superconducting instability occurs not much

below the Fermi temperature (which is well within the reach of modern Fermi-gas experiments).

Such behavior has never been observed in solid-state system (it would certainly be very interesting

if it were!).

(3) Long time-scales and sophisticated diagnostic tools, both of which exist for cold atoms,

open the possibility of asking—and hopefully answering—entirely different types of questions than

people typically ask in solid-state physics. In particular, the ability to controllably bring these

systems out of equilibrium, and the slow timescales for dynamics/relaxation, have made possible

the study of transport in confined geometries [48], light-cone like spreading of correlations [23], far-

from equilibrium spin physics [17], and thermalization in closed systems [98, 74]. With the advent

of ultrafast pulsed lasers, progress has been made in characterizing the real-time dynamics of

electrons in solid state systems (e.g., via transient absorption spectroscopy), but the fast timescales

(∼ 10−16s) make such experiments extremely challenging. In cold atoms experiments, timescales

of dynamics are ∼ 1012 times longer—for the same reason that the temperatures are similarly

lower—and hence spatially resolved real-time dynamics can be studied with inexpensive and widely

available tools.

There are, of course, many other application specific ultracold-atom tools that allow for mea-

surements not possible (or at least much more difficult) in the solid state context. For instance, the

rich internal structure of atoms and decades of expertise in high precision atomic clocks and inter-

ferometers have allowed numerous energy [19, 73] (and sometimes momentum [161])-resolved mea-

surements of many-body quantum systems. Most recently, the advent of quantum-gas microscopy

[8, 154] has enabled experimenters to image ultracold atoms in optical lattices with resolution com-

parable to the size of an individual lattice site. In principle, such techniques give experimentalists

access to essentially all information (by way of measuring nth-order correlation functions) contained

in the many-body wavefunction.
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Outline of this thesis:

Quantum simulation with ultracold atomic systems lies at the intersection of two enormous

and well established fields: atomic, molecular, and optical (AMO) physics on the one hand, and

solid-state physics on the other. This thesis begins with a basic review of several important concepts

in ultracold atomic gases and solid-state systems. The review is by necessity cursory—however,

I hope that it will at least help to orient people who are grounded in just one of these two fields

toward the essential details of the other field that are necessary to understand their intersection. In

section 2.1 I give a general overview of ultracold gas experiments, and some details of the atomic

structure on which they rely. Ultracold collisions are discussed in section 2.2, with a particular

emphasis on the approximations implicit in using a contact potential. I then move on to discuss

the optical trapping of atoms in standing-wave laser fields—optical lattices—in section 2.3. Section

2.4 reviews the basic strategy for describing particles moving in a periodic potential, which will be

very familiar to anyone with a solid-state physics background. I close with a brief discussion of

open-quantum systems in section 2.5, a topic which is extremely relevant to both solid-state and

AMO systems, and will be instrumental to understanding the final three chapters of this thesis.

The rest of the thesis is based on a variety of original research—and by original I mean,

of course, done in collaboration with many other people—which is unified by an attempt to con-

trollably add back in degrees of freedom that are typically ignored in the simplest optical lattice

simulations (e.g., the Bose- and Fermi- Hubbard models).

Chapter 3 introduces the Kondo lattice model (KLM)—a canonical model of strongly-correlated

electron physics—and discusses a promising strategy for its realization in experiments with ultra-

cold fermionic alkaline-earth atoms. The KLM is one of the simplest models of interacting fermions

with both spin and orbital degrees of freedom,3 and is widely accepted to be an appropriate model
3 Here spin refers to any internal degree of freedom, and orbital refers to the motional degrees of freedom within

a single lattice site.
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for heavy-fermion materials [40, 29]. The “heaviness” of charge carriers in these materials manifests

in a large linear coefficient of the specific heat; measurements of specific heat in optical lattices

systems are not currently feasible, but we show that the same heaviness can be probed via non-

equilibrium dynamics in a harmonic trap [56, 55]. Chapter 4 will extend these ideas to bosonic

models [57]. Such an extension is motivated in part by experimental accessibility, but we will also

show that the Kondo interaction leads to qualitatively new physics in a bosonic system, significantly

modifying the phase diagram of ultracold bosons in an optical lattice.

In chapter 5 we discuss the creation and reactive-collisional dynamics of KRb molecules in a

3D optical lattice reported in Ref. [27]. Based on a variety of experimental observations, we put

forward a phenomenological model for the loss of molecules in a corrugated 1D tube based on a

two-stage mechanism where: (1) molecules are promoted into higher bands by lattice instabilities,

and then (2) these molecules, now mobile due to the increased tunneling rates in the excited bands,

seek out and react with other molecules in the same tube. This process can be viewed as the

coupling of a discrete level (the initial ground-band molecule) into a lossy continuum (the excited

bands), and we derive the expected behavior in a more rigorous fashion from a detailed microscopic

theory of this process. This work implicates lattice instabilities as the leading cause of molecule

loss in lattices deep enough to suppress nearest-neighbor interactions, but not so deep that inelastic

photon scattering sets the molecule lifetime.

Almost always, reactive two-body collisions are considered to be undesirable, and many in-

genious schemes exist to prevent them [138, 69]. Chapter 6 takes a rather different perspective

on reactive collisions. Rather than asking the question: how can reactive collisions be avoided?

we demonstrate that they can be harnessed as a filtering mechanism for the production of highly

entangled Dicke states [53], which may find applications in enhanced quantum metrology [82, 15].

In particular we show that spin-1
2 fermionic particles, starting in an incoherent spin mixture and

undergoing reactive s-wave collisions, seek steady-states in which the spin wavefunction is a highly

entangled Dicke state. The initial state is required to be ultracold but non-degenerate, a situation

which can already be achieved experimentally for groundstate molecules [126] and alkaline earth
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atoms [61, 35] (both of which can be made to have reactive s-wave collisions). We emphasize that,

unlike in other proposals to use dissipation to create entanglement, in this case the necessary struc-

ture of the dissipative mechanism is endowed by nature. Namely, (1) s-wave scattering dominates

at low temperatures, and (2) the Pauli exclusion principle forces s-wave colliding fermions to have

correlations in their spin wavefunction.

In the final chapter, we consider the dynamics of Ising spin models subject to local decoher-

ence. This model is perhaps the simplest example of an interacting many-body system where the

coherently driven development of quantum correlations competes with decoherence. We incremen-

tally introduce a solution of the model under extremely general conditions [54], which we believe is

the only example of an exact (closed-form analytic) expression for the dynamics of a spin-model in

D > 1 and in the presence of decoherence. We then use this solution to understand the behavior

of current (and near-future) trapped-ion experiments.
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Chapter 2

Ultracold atoms in optical lattices

2.1 Ultracold atoms

2.1.1 From room temperature to ultracold

Most ultracold atomic gas experiments work with alkali atoms, mainly because they have a

single valence electron, and thus have a simple electronic level structure admitting a variety of useful

spectroscopic manipulations. When the atoms first enter the experiment, they are hot—sometimes

room temperature, sometimes hotter, so we’ll say 103K. By exposing the atoms to laser light that is

slightly lower in frequency than an atomic resonance, the Doppler effect promotes the absorption of

photons with momentum opposite to the velocity of the absorbing atom. The photon is reemitted

in a random direction, and thus on average the translational kinetic energy of an atom is reduced.

This process, called laser cooling, brings down the temperature of these initially hot gases by many

orders of magnitude, but it cannot stop their translation completely. The momentum kicks suffered

due to spontaneous emission of photons from the excited level push the atom around randomly,

causing heating and giving rise to a “Doppler cooling limit” (set by the decay rate from the atomic

excited state). For alkali atoms, where the excited electronic states used for laser cooling have

line widths & MHz, the minimum achievable temperatures from laser cooling are in the vicinity

of ∼mK. By combining the cooling lasers with an inhomogeneous magnetic field (in what’s called

a magneto-optical trap, or MOT), the radiation pressure can also confine the atoms, and so these

mK atoms become trapped.
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These cold gases can then be further cooled toward the ultracold regime1 by forced evap-

oration [94]: the hottest atoms are allowed to escape, carrying away entropy and reducing the

average energy of the remaining atoms. For alkali atoms, the evaporation is usually carried out

in a magnetic trap, but for alkaline earth atoms—which have no electronic angular momentum in

their groundstate—optical traps must be used instead (see Section 2.3.1 for a discussion of optical

trapping). Eventually, as the atoms become colder and move more slowly, the typical de Broglie

wavelength of the atoms,

λD =

√
2π~2

mkBT
(2.1)

(where m is the atomic mass), becomes comparable to the inter-particle spacing. For typical den-

sities and masses, this happens at . µK temperatures. At this point, the quantum nature of the

particles becomes important, and depending on whether the atoms are bosons or fermions some-

thing very different happens. For bosons, there is an abrupt change at the so-called condensation

temperature TBEC, and suddenly a finite fraction of the atoms begin to occupy the lowest energy

state. At this point, we say there is a Bose Einstein condensate (BEC) [14, 44]. For fermions, the

Pauli exclusion principle forbids this from happening. We find instead that as the temperature is

lowered, the gas shrinks toward the center of the trap until we reach the Fermi temperature TF,

at which point the Pauli exclusion principle (which can be viewed as a type of quantum pressure)

prevents the gas from shrinking any further. Notice that for fermions, nothing sudden happens

when T falls below TF (this is in stark contrast to a Bose gas when the temperature drops below

TBEC). Nevertheless, below this temperature we say that the Fermi gas is degenerate. These BECs

and degenerate Fermi gases are the starting point for almost all of the physics we will talk about

(with the exception of the trapped ions in Chapter 7).
1 Often, an intermediate stage of polarization gradient cooling is applied first to reach temperatures in the 10’s of

µK range.
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2.1.2 Basic atomic structure

We will not attempt to do any justice to the extensive topic of atomic structure, but instead

will simply introduce a few key ideas, notations, and energy scales, which should help guide the

unfamiliar reader through the rest of this thesis. Along the way, we will also point out some of the

key differences between alkali atoms and alkaline earth atoms, both of which will be considered at

various points throughout this thesis.

The low-energy level structure of an alkali atom, and the spectroscopic notation used to

describe it, is shown for 87Rb in the left pannel of Fig. 2.1. The core electrons are assumed to

be inert, and the electronic state of the one valence electron is written in terms of the associated

quantum numbers as n2S+1LJ . Here n is the principle quantum number, S is the electronic spin,

L is the electronic orbital angular momentum, specified as S, P,D, . . . for L = 0, 1, 2, . . . , and

J is the total electronic angular momentum (J = L + S). For any neutral alkali atom in its

groundstate, the electronic configuration is n2S1/2, with n = 5 for Rb. For a Coulomb potential

we expect the S and P states to have the same energy, but screening due to the core electrons

causes there to be a large energy splitting between the groundstate and the lowest lying excited

states n2PJ . This splitting is the largest energy scale typically addressed in experiments on alkali

atoms,2 and corresponds to optical photon frequencies. In an alkali atom there are two of these 52P

levels, with J = 1
2 ,

3
2 , depending on whether the electron spin aligns parallel to or antiparallel to

its orbital angular momentum (fine-structure splitting). The transitions from n2S1/2 to n2P1/2 and

n2P3/2 are referred to as the D1 and D2 lines, respectively, and are used for almost all spectroscopic

manipulations on alkali atoms (cooling, imaging, optical trapping).

The excited electronic states have short lifetimes (< µs), and so are never populated for

quantum simulations (they are coupled to off resonantly, however, for the creation of optical poten-

tials). Hyperfine coupling between the nuclear spin (I) and the total electronic angular momentum

(J) causes a splitting between states with different total angular momentum F = I +J (these are
2 There are certainly exceptions to this rule, in particular experiments on Rydberg atoms regularly excite the

valence electron to states with large principle quantum number n.
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Figure 2.1: Left pannel: some relevant features of the spectrum for a prominent bosonic alkali
atom (87Rb). Up to the magnitude of the nuclear spin I (and hence the maximal possible size of
the total angular momentum F = I + J) and the energy scales, the structure for other alkalis is
similar. Right pannel: some relevant features of the spectrum for a prominent fermionic alkaline
earth atom (87Sr).

shown for the electronic groundstate in the left pannel of Fig. 2.1). Unlike the excited electronic

states, hyperfine states within the ground-electronic manifold have long life times, and hence can

be used as internal degrees of freedom for quantum simulation. In Chapter 4 we will discuss the

implementation of a spin-1
2 model using the two levels of the F = 1 manifold labeled as σ =↑, ↓ in

Fig. 2.1.

Recently, a variety of bosonic and fermionic alkaline earth atoms have also been cooled

to quantum degeneracy [61, 60, 159, 103, 121, 166, 35]. In these two-electron atoms, the total

electronic angular momentum in the groundstate vanishes (the two valence electrons pair into a

singlet, and L = 0). As a result, the 1S0 groundstate is insensitive to magnetic fields, and hence

magnetic trapping is ineffective. These atoms can still be trapped optically, however, and all of the

discussion of optical lattices (in Section 2.3.1) applies equally well to both alkali and alkaline earth

atoms. Laser cooling on the broad (∼ MHz) 1S0 to 1P1 transition gives temperatures comparable

to those achievable in alkali atoms. Subsequent cooling on the relatively narrow (∼ kHz) 3P1 line
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can access much colder (. µK) temperatures, since the Doppler cooling limit is set by the line

width of the cycling transition used.

While the cooling of alkaline earth atoms is still in its infancy (relative to alkali atoms),

they have a number of remarkable properties that render them useful for quantum information

[31], quantum simulation [68, 79, 21, 175, 56, 55], and precision spectroscopy [16, 164, 112]. First

of all, the lowest lying excited electronic state is the 3P0 level (right pannel, Fig 2.1), and the

decay into the 1S0 groundstate is doubly dipole forbidden.3 As a result, the line width for the

transition is tiny (∼mHz, compared to typical line widths of ∼MHz for electronic excited states).

For this reason, the (optical) splitting between these so-called “clock states” is extremely useful as

a frequency standard in atomic clocks. This narrow line width also ensures that, in the absence

of collisions, the 3P0 state is metastable on timescales longer than nearly any quantum simulation.

Furthermore, because the clock states are optically separated, it is possible to simultaneously couple

them through some other excited electronic levels such that both states have large but different

detunings. This enables the application of independent and far-detuned optical lattices for each

state, greatly enhancing the flexibility of quantum simulations4 [31].

For fermionic isotopes, which have nuclear spin, another key feature of these two J = 0 clock

states is that there is effectively no hyperfine coupling (which arises from J ·I, as discussed above).

As a result, the nuclear spin is just a spectator to atom-atom collisions; more precisely, we can say

that the scattering length for 3P0 − 3P0, 3P0 − 1S0, and 1S0 − 1S0 collisions are almost perfectly

independent of the nuclear spin degree of freedom, mI [68]. Defining the nuclear spin degeneracy

N = 2I + 1, this gives rise to an SU(N) symmetry of the atomic interactions [68], which has a

number of interesting implications for quantum simulation. This symmetry, along with the ability

to create independent optical lattices for the 1S0 and 3P0 states [31], is the basis for quantum

simulation of the Kondo lattice model discussed in Chapter 3.
3 In the dipole approximation for atomic transitions, both J = 0 → J ′ = 0 and S 6= S′ transitions are forbidden

by selection rules.
4 See section 2.3 for more discussion. Hyperfine-state dependent lattices can also be made for alkali atoms, but

because the hyperfine splitting is in the GHz range, these lattices must be near-detuned (i.e. made from a laser with
frequency close to the D1 and D2 lines) and hence suffer from spontaneous photon emission.
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Figure 2.2: At short range, collisional physics is extremely complicated, but at long range the
interatomic potential is to a good approximation a Van der Waals potential. The competition
between Uvdw and the centrifugal potential Ucf determines the height of the barrier for collisions
with non-zero angular momentum (typically this barrier height is in the mK range).

2.2 Ultracold collisions

In general, the collision of two atoms is an extremely complicated process: in a close-range

encounter, the electronic wavefunctions of the atoms are severely distorted, and a full description

of this dynamics is a very difficult task. At the low temperatures and densities that are common

in ultracold atom experiments, however, many simplifications can be made. In particular, many

important features of low-energy atomic scattering owe to the long-range Van der Waals potential,

Uvdw(r) = −α/r6 (where r = |r| is the magnitude of the relative coordinate r), and hence are

universal in the sense that they do not depend in detail on the complicated short-range physics.

Let’s suppose that the height and location of the centrifugal barrier (for collisions with angular

momentum l~, l ≥ 1) is determined by competition between the repulsive centrifugal potential

Ucf(r) = l(l+ 1)~2/2mr2 and the attractive Uvdw(r). Setting these two energy scales equal to each

other, and taking l = 1, we find a characteristic radius of the centrifugal barrier5

r0 =
(αm

~2

)1/4
. (2.2)

For alkali atoms, this estimate typically yields r0 ∼ 102a0, with a0 the Bohr radius (the size of
5 Note that this length scale is actually more general, in the sense that it emerges from the Schrödinger equation

at zero energy for l = 0 as well (by dimensional analysis). Hence, even in the absence of a centrifugal barrier r0 is a
good order of magnitude estimate for emergent length scales of the problem, e.g. the s-wave scattering length.
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the atom). We take this estimate as post-facto justification that Uvdw does indeed determine the

centrifugal barrier, since the potential at this distance is well described by Van der Waals attraction.

The height of the centrifugal barrier can now be estimated as Ecf = ~2/(mr2
0), which determines

a minimum characteristic temperature Tcf ∼mK below which scattering with l 6= 0 (when the

centrifugal barrier exists) is suppressed. Ultracold atomic gases are several orders of magnitude

colder (typically sub-µK), and hence only s-wave scattering needs to be considered.6

On general grounds, the s-wave scattering of two particles can be characterized by a mo-

mentum dependent scattering amplitude f(k) (basically the strength of the outgoing spherical

wave). When the relative momentum k satisfies kr0 � 1, f(k) can be parameterized by the s-wave

scattering length as as7

f(k) ≈ −as
1 + ikas

. (2.3)

This is a fairly remarkable result: despite the very complicated close-ranged potential, which we

may not even know, the low energy scattering is parameterized by a single number, as. Calculation

of as from first principles, however, requires a more detailed knowledge of the short range part of

the potential, and in general is a very difficult task.

Because the low-energy scattering of two atoms is characterized by the scattering length as,

it is possible to model this scattering using any short-ranged potential that has the same scattering

length. A key result, which is put to work in almost all many-body treatments of cold gases, is

that this scattering amplitude in Eq. (2.3) is exactly reproduced (i.e. the ≈ can be replaced with a

strict equality) by scattering from an s-wave pseudopotential Us(r), which is defined by its action

on the relative coordinate wavefunction [47, 85]

Us(r)ψ =
4π~2as
m

δ(r)× ∂r(rψ). (2.4)

This pseudopotential gives the low-energy result Eq. (2.3) for arbitrary k (which is not surprising,

since the potential is zero-range). However, it should be kept in mind that for sufficiently large
6 There are notable exceptions to this statement, the most important being when s-wave collisions are forbidden

by symmetry, for instance when two spinless fermions collide. In such situations, the dominant contribution to
low-energy scattering is in the p-wave channel, and though it is small it can sometimes be important.

7 We will take this dependence of the scattering amplitude as the definition of the s-wave scattering length.
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k, in particular for k ∼ 1/r0, the pseudopotential does not reproduce the scattering of the Van

der Waals potential [for which the true amplitude f(k) no longer obeys Eq. (2.3)]. When acting

on wavefunctions that are regular at the origin, the regularization operator ∂r(r...) has no effect

and can be dropped.8 As a result, the unregularized pseudopotential can be used when treating

an interacting gas at mean-field theory or in first-order perturbation theory, where one takes the

expectation value of Us(r) in well-behaved wavefunctions.

In second quantization, a two-body interaction of the form U(x − y) (here x and y are the

positions of the two interacting atoms) is written

U =
1
2

∫
d3xd3yψ̂†(x)ψ̂†(y)U(x− y)ψ̂(y)ψ̂(x), (2.5)

where ψ̂†(x)[ψ̂(x)] creates[annihilates] a particle at point x in space (see Appendix A). Inserting the

un-regularized pseudopotential Us(x− y) = 4π~2as
m δ(x− y) and integrating over y, the interaction

becomes

Us =
4π~2as
m

1
2

∫
d3xψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x). (2.6)

One should always keep in mind, however, that this interaction is explicitly designed to give the

correct physics when treated at first-order in perturbation theory, or in a mean-field approximation.

Any attempt to extend perturbative expressions to higher order using Eq. (2.6) is liable to produce

unphysical results, and one must be more careful.

Note that the above interaction Hamiltonian vanishes for fermions, because ψ̂(x)ψ̂(x) = 0

(the Pauli exclusion principle). This is an artifact of treating only s-wave scattering, which cannot

occur for identical fermions (since it implies a wavefunction that is even under particle exchange).

In reality, identical fermionic atoms interact in the p-wave channel; we could have included this by

using a p-wave pseudopotential [91]. But, as mentioned above, at ultracold temperatures these p-

wave interactions are severely suppressed, and degenerate Fermi gases (with all atoms in the same
8 A somewhat technical aside: It is not difficult to show that the asymptotic wavefunction (i.e. for r � r0)

contains contributions from functions that are both regular (do not diverge) and irregular (diverge as r−1) at the
origin. For a real atomic potential, these wavefunctions change their behavior completely as they approach the origin
(r . r0), and hence the irregular piece of the asymptotic wavefunction does not cause any pathological behavior. For
a zero-ranged pseudo-potential, where r0 = 0, the wavefunction maintains its asymptotic behavior all the way in to
r = 0. If the pseudopotential is to reproduce the correct asymptotic wavefunction, with its irregular piece included,
the regularization operator is needed to deal with the r−1 divergence at the origin.
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internal state) are essentially collisionless.9 One way to obtain interactions between fermionic

atoms is to populate two internal states (for instance, two hyperfine states of an alkali atom). As

long as scattering does not populate other states in the hyperfine manifold, and denoting these two

internal degrees of freedom by σ = ±, we obtained an interaction term

Us =
4π~2as
m

∑

σσ′

1
2

∫
d3xψ̂†σ(x)ψ̂†σ′(x)ψ̂σ′(x)ψ̂σ(x). (2.7)

For simplicity, in the rest of this chapter we will (mainly) focus on bosons, for which s-wave

interactions between spinless particles are allowed, and the simpler interaction Hamiltonian in Eq.

(2.6) does not vanish.

Before moving on, we note that as long as only two internal states are allowed, which we’ll

associate with spin-up and spin-down of a spin-1
2 , Eq. (2.7) is pretty much the most general

interaction that we will encounter. The reason is that for bosons (fermions) interacting in the

s-wave channel, the addition of the two spin-1
2 degrees of freedom in the problem is forced to yield

a spin triplet (singlet) in order to give the proper symmetrization of the two-body wavefunction

under particle exchange. Hence, despite the internal degrees of freedom, the combined internal

state of two interacting atoms is completely determined by the knowledge that they interact at all

(in the s-wave channel). In chapter 3 we will encounter situations where there are more than two

internal degrees of freedom, and we’ll see exactly how Eq. (2.7) generalizes.

2.3 Optical lattices

An optical lattice is the standing wave created by the retro-reflection of a laser beam onto

itself. The simplest case is a one dimensional (1D) optical lattice, which for light of wavelength

λ generates an intensity pattern I(x) = 2Ix cos2(kx), where Ix is the root-mean-square intensity

of the beam and k = 2π/λ. Lattices in the orthogonal direction can be added, and kept from

interfering with each other by either (a) using orthogonal polarizations of light, (b) detuning the
9 While this is usually true, one should keep in mind that p-wave scattering can sometimes be resonantly enhanced.
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Figure 2.3: Various separable lattice geometries obtainable by superimposing one, two, or three or-
thogonal 1D optical lattices. Note that the individual lattice sites can be made to have a quasi-2D,
quasi-1D, or quasi-0D geometry. Thus, in addition to enabling lattice physics (when tunneling be-
tween wells in a 3D lattice is possible), deep optical lattices enable experiments to probe continuum
physics in various dimensions.

lasers such that the interference terms are time-averaged away, or both. The total intensity is then

I(x, y, z) = 2Ix cos2(kx) + 2Iy cos2(ky) + 2Iz cos2(kz). (2.8)

By taking advantage of interference between the various beams, much more complicated lattice

structures can also be made. So far, we have said nothing to indicate that an atom actually

experiences a force due to this spatially varying intensity pattern; a brief explanation of how this

arises is given in the next section.

2.3.1 AC stark shift

The ability to confine atoms in an optical lattice relies on the AC stark shift, which causes

the energy of an atom in its ground electronic state to depend on the intensity of a laser field with

which the atom interacts. The physics behind the AC stark shift is actually quite simple, though

a full quantitatively correct treatment requires quite a bit of work. In the absence of an electric

field, a neutral alkali atom has a single valence electron that is uniformly distributed around the

nucleus, and hence there is no dipole moment. In the presence of an electric field E = εE , a dipole

moment d is induced, and the energy of the atom is reduced by ∆E ∝ d · E. The magnitude of

the induced dipole moment depends on how tightly bound the electron is to the atom. This is
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encapsulated mathematically by defining a polarizability α, in terms of which the dipole moment

satisfies d = αE, and the energy shift can be written as ∆E = −1
2αE · E. Because the electron

is in equilibrium for E = 0, it’s excursions from equilibrium in weak applied fields are harmonic.

If we assume it has a characteristic oscillation frequency ωeg (the meaning of the subscript eg will

become clear below), and a frequency dependent polarizability α(ω), perturbing the atom with the

AC electric field E cosωt induces an oscillating dipole moment of strength d(ω) = α(ω)E. Just as

for a classical driven harmonic oscillator, if the drive is below(above) resonance [∆ = ω − ωeg is

less(greater) than zero], the electron will oscillate in(out) of phase with the field, and hence the

energy of the atom will be shifted down(up) by 1
2 |α(ω)|E2.

To understand this effect slightly more quantitatively, and from an approach that is more

amenable to incorporating details of the actual atomic level structure, we make the approximation

of a two-level atom, with ground electronic state |g〉 and excited electronic state |e〉 (with difference

energy ~ωeg). It is possible to proceed by treating the electric field classically and using time-

dependent perturbation theory. However, we find it conceptually simpler to treat the field quantum

mechanically, as a collection of photons of energy ~ω. If we imagine that the atom sits in a cavity10

supporting a single (normalized) mode Ξ(r), then the coupling between the atom and the photon

field is given by V = Ê · d̂, where now

Ê = Ξ(r)ε
√

~ω/2ε0(â† + â) (2.9)

is an operator corresponding to the electric field (â† creates a photon in the mode Ξ) and d̂ is

the dipole operator of the atom. For a two level atom we can rewrite ε · d̂ in terms of its only

non-vanishing matrix elements as

ε · d̂ = |g〉〈e|µge + |e〉〈g|µeg, (2.10)

with µeg = ε · 〈e|d̂|g〉,11 and the atom-photon coupling can be written

V = Ξ(r)
√

~ω
2ε0

(â† + â) (|g〉〈e|µge + |e〉〈g|µeg) . (2.11)

10 The cavity is just a convenient way of dealing with the mode normalization, which for a plane wave in free space
is more confusing. Nothing discussed in this section actually requires the existence of a cavity.

11 We will assume that |g〉 and |e〉 have well-defined parity, so that the diagonal elements of d̂ vanish.
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V (x) ∼ I

∆
sin2(2πx/λ)

|g�

|e� ∆

}a = λ/2

Figure 2.4: A 1D lattice is created from the interference pattern of two counter-propagating laser
beams. A sinusoidal intensity pattern is created, and the energy of an atom in its groundstate is
shifted in proportion to this intensity due to the AC-stark effect. Depending on whether the atom
is driven below or above resonance (in this picture it is driven below resonance, i.e. ∆ < 0), the
atoms are attracted to either the intensity maxima or the intensity minima.

We now imagine an atom sitting in this cavity, in its groundstate and in the presence of N

photons (denoted by |g,N〉), and ask how the introduction of the atom-photon coupling V shifts

the groundstate energy. Defining the detuning ∆ = ω − ωeg, we see that the two states |g,N〉 and

|e,N − 1〉 are degenerate when ∆ = 0. For non-zero ∆, but 〈g,N |V|e,N − 1〉 � ~∆, we expect

that the shift in energy to the state |g,N〉 to second order in perturbation theory, denoted δ, is

dominated by the term

δ =
〈g,N |V|e,N − 1〉〈e,N − 1|V|g,N〉

~∆
(2.12)

=
~Ω2

∆
. (2.13)

Here we have defined the Rabi frequency

Ω = |Ξ(r)||µeg|
√
Nω

2~ε0
, (2.14)

and the factor of N comes from the application of the photon annihilation operator to the state

|g,N〉 (â|g,N〉 =
√
N |g,N −1〉). There are also contributions to the ground-state energy shift that

arise from the term
〈g,N |V|e,N + 1〉〈e,N + 1|V|g,N〉

~(∆− 2ω)
, (2.15)
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but for ∆ � ω these terms are ignored because of the large denominator (if we had used time-

dependent perturbation theory, these terms would have been dropped by making the rotating wave

approximation). In general it is straightforward to calculate the matrix elements µeg, but in order

to do so we would need to specify what the states |e〉 and |g〉 are. In order to avoid this specification,

and because it will be useful for the discussion that follows, we simply parametrize these matrix

elements in terms of the decay rate from the excited state12

Γ =
ω3
eg|〈e|d|g〉|2
3πε0~c3

. (2.16)

Remembering that the time averaged intensity is given by I = 1
2ε0cE2, we can also write the energy

shift as

δ =
(

2πc2Γ
ω3
eg

)
I

∆
. (2.17)

In a simple cubic optical lattice, the intensity varies in space according to Eq. (2.8), resulting in a

spatially varying AC stark shift

V (r) = δ(r) =
(

2πc2Γ
ω3
eg

)
I(r)
∆

. (2.18)

Plugging in I(r) from Eq. (2.8) and defining Vµ = (4πc2ΓIµ)/(ω3
eg∆) (µ ∈ {x, y, z}), the 3D cubic

lattice potential is then given by

V (r) = Vx cos2(kx) + Vy cos2(ky) + Vz cos2(kz). (2.19)

Non-interacting ground-state atoms moving in this potential13 are described by the Hamil-

tonian V (r)− ~2∇2/(2m), which in second quantization becomes

H0 =
∫
d3rψ̂†(r)

[
V (r)− ~2∇2

2m

]
ψ̂(r). (2.20)

The wavelength of the lattice light affords a natural length scale. If we pull out the characteristic

length scale λ/2π = k−1 by defining a dimensionless coordinate r̃ = kr, dimensionless Laplacian
12 This decay rate can be calculated using Fermi’s golden rule, and it arises from the coupling of the atomic

dipole operator to vacuum fluctuations in the quantized electromagnetic field. This coupling induces matrix elements
between the states |e〉 and |g〉, and naturally these matrix elements are proportional to µeg.

13 Notice that we are assuming a Born-Oppenheimer style approximation, in which the atoms are assumed to
adiabatically follow the groundstate of the atom plus field as they move around in space.
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∇̃2 = k−2∇2, and dimensionless field operators ψ̃†(r) = k−3/2ψ†(r), Eq. (2.20) can be rewritten

H0 = ER

∫
d3r̃ψ̃†(r̃)

[∑

µ

Vµ
ER

cos2(r̃µ)− ∇̃2

]
ψ̃(r̃), (2.21)

where ER = ~2k2

2m = h2

2mλ2 . The energy scale ER, called the “recoil energy”, is the zero-point energy

of an atom moving in a box the size of one lattice site. Not surprisingly, this is a natural unit for

describing the kinetic energy of atoms in a lattice.14

2.3.2 Extensions and limitations

Two questionable approximations have to be made in order to derive the above results: (1)

the rotating wave approximation [i.e. ignoring the term in Eq. (2.15)] and (2) the two-level atom

approximation. If one makes the detuning ∆ very large, to the point where it is an appreciable

fraction of ωeg, the rotating wave approximation begins to break down. Indeed, in many exper-

iments operating with far-detuned optical lattices these corrections are important. If one makes

the detuning ∆ too small, to the point where it becomes comparable to the fine-structure split-

ting (between the D1 and D2 lines), then the two-level atom approximation breaks down. Once

the fine-structure can be spectroscopically resolved, the lattice becomes spin-dependent, in that it

couples different hyperfine levels differently.

This spin-dependence is not necessarily a bad thing: There are many theoretical proposals

to take advantage of it [122, 1, 41], and a number of experiments that do so [2, 119, 118]. However,

it should be kept in mind that the probability for an atom to be in the excited state (which has a

decay rate Γ) is equal to (Ω/∆)2. As a result, the rate at which a groundstate atom in an optical

lattice spontaneously emits photons is given by

γ = Γ
(

Ω
∆

)2

= ~−1V (r)
Γ
∆
. (2.22)

14 The name “recoil energy” comes from another physical meaning: By conservation of momentum, it’s not hard to
see that ER is the kinetic energy imparted to an atom of mass m upon spontaneously emitting a photon of wavelength
λ. This connection is useful, for instance, when computing heating rates do to inelastic photon scattering, where
ER sets the typical energy imparted per scattered photon. Notice that ER is much smaller than the photon energy
Eγ = hc/λ.
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The spontaneous emission of a photon causes the atom to recoil, gaining kinetic energy ER. Thus,

near-detuned lattices typically suffer from large heating rates. It is a common misconception that

this heating rate can be suppressed by working in a blue-detuned (∆ > 0) optical lattice, the

reasoning being that the atoms sit at the intensity minima of the optical lattice, and hence are

exposed to fewer photons. While the absolute scattering rate of photons is lower (for this exact

reason) in a blue detuned lattice, the heating that results due to this scattering is actually identical

for blue- and red-detuned lattices [132].

2.4 Physics in a lattice: choice of basis

As with any problem in quantum mechanics, the best choice of basis depends on the problem

one is trying to solve. For a particle moving in a periodic potential, the discrete translational

invariance of the problem allows one to construct plane-wave-like wavefunctions, called Bloch states.

The energies of these states can be grouped into distinct bands, which are separated by band

gaps. In terms of these Bloch states the single-particle Hamiltonian takes on a particularly simple,

diagonal form, which we derive in Section 2.4.1. This delocalized basis is, in principle, amenable

to the treatment of two-body interactions. However, we will show by explicit construction of the

interaction operator that such a description is extremely unwieldy (Section 2.4.2). This motivates

the introduction of Wannier functions in Section 2.4.3. Within a given band, Wannier functions are

as localized as possible around the individual lattice sites. Writing the interaction in this basis is

the starting point for a number of controlled simplifications known collectively as the tight-binding

approximation, which we introduce in Section 2.4.4. In the end we will see how, under typical

experimental conditions, an extremely simple real-space description of an interacting lattice gas

emerges.
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2.4.1 Single particle eigenstates in a periodic potential

The eigenstates of a particle in free space (we will work exclusively in 1D here) are plane

waves

ψk(x) =
1√
L
e−ikx, (2.23)

where we assume the length of space L is finite in order to introduce a proper normalization. We

would like to know what happens to these eigenstates in the presence of a periodi lattice potential

V (x) with periodicity a = λ/2.15 Because of the periodicity of the lattice potential, it can be

decomposed into discrete Fourier components as

V (x) =
∞∑

n=−∞
cne

i2πnx/a. (2.24)

If we would like to calculate the eigenfunctions in the lattice by working in the plane wave basis,

we will need to calculate matrix elements of the form

Hk′,k =
1
L

∫
dxψ∗k′(x)V (x)ψk(x)− 1

L

∫
dxψ∗k′(x)

~2∂2
x

2m
ψk(x). (2.25)

=
1
L

∫
dxeix(k′−k)V (x)− ~2k2

2m
1
L

∫
dxeix(k′−k). (2.26)

We can see from the Fourier expansion of V (x) that the first term will only be nonzero when

k−k′ = 2πr/a for some integer r, motivating the substitutions k → q+ 2πr/a and k′ → q+ 2πs/a,

where q ∈ (−π/a, π/a] (q must be restricted in this way to avoid redundancy). This allows us to

rewrite the above matrix elements as

Hrs(q) =
1
L

∫
dxei2π(s−r)x/aV (x)− ~2(q + 2πr/a)2

2m
1
L

∫
dxei2π(s−r)x/a (2.27)

= cr−s −
~2(q + 2πr/a)2

2m
δrs (2.28)

If we diagonalize this matrix, which is now discrete but with a parametric dependence on q, we find

eigenvectors vrα(q) and eigenvalues εα(q). The eigenfunctions can then be obtained by summing
15 While an optical lattice is often sinusoidal, it need not be, and for the time being we will keep things more

general.
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the amplitudes vrα(q) over the real-space basis elements they correspond to, e−i(q+2πr/a)x. We thus

obtain the eigenfunctions

ϕαq(x) =
∑

r

vrα(q)e−i(q+2πr/a)x = e−iqx

≡uαq(x)︷ ︸︸ ︷∑

r

vrα(q)e−i2πr/ax (2.29)

= e−iqxuαq(x). (2.30)

Notice that the functions uαq(x) have the periodicity of the lattice. That the wavefunctions

ϕαq(x) have the above form is called Bloch’s theorem, and can be argued for (without going

through all of the manipulations above) on the basis of discrete translational symmetry. The

above constructive derivation, however, has the advantage of demonstrating how these functions

are actually calculated, rather than just proving that they have a particular form. One can simply

truncate the matrix Hrs(q) to be finite,16 and then obtain the ε(q) and vrα(q) by numerically

diagonalizing this finite matrix, and then construct the Bloch functions according to Eq. (2.29).

At this point several things are in need of saying. First of all, we normally refer to q as a

quasi-momentum (unlike the momentum k), and we call the range in which it sits, (−π/a, π/a], the

first Brillouin zone. Just as the quantum number k reflects the continuous translational symmetry

of free space, q reflects the discrete translational symmetry of the lattice Hamiltonian (which is

invariant under x→ x+a). While the spectrum of a free particle is continuous, even an arbitrarily

weak lattice causes gaps to appear in the single-particle spectrum. These gaps can be understood

from the lifting of degeneracy between free particle states with momentum k = ±(2m + 1)π/a in

the presence of a lattice with period a (which in general introduces matrix elements between such

states). The continuous set of energies εα(q) between two such gaps is called a band, and we often

call α a band index. We will use the convention that α = 0 for the ground-band, α = 1 for the first

excited band, etc.

In second quantization, the single particle Hamiltonian H0 = V (x)− ~2∂2
x/(2m) is given by

H0 =
∫
dx ψ̂†(x)

[
V (x)− ~2∂2

x

2m

]
ψ̂(x). (2.31)

16 This truncation limits the ability to get the short-wavelength behavior of these functions correct. Hence, for
deep lattices, where we expect these functions to be sharply peaked about the minima of the potential, many values
of m may need to be included.
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By expanding the field operators ψ̂(x) in terms of operators ϕ̂αq that create particles in the single-

particle eigenstates ϕαq(x),

ψ̂(x) =
∑

α,q

ϕαq(x)ϕ̂αq, (2.32)

and substituting this expression into Eq. (2.31), we obtain

H0 =
∑

α,q

εα(q)ϕ̂†αqϕ̂αq. (2.33)

The diagonal form of the Hamiltonian, of course, simply reflects the fact that we are working in

the eigen-basis.

2.4.2 Interactions in the quasi-momentum basis

When adding in the effects of a contact interaction, there is nothing to stop us from working

in the quasi-momentum basis defined by the operators ϕ̂αq. Because the interaction between atoms

is local in real space, however, it will couple eigenstates with many different quasi-momenta. Substi-

tuting this expression into the 1D interaction Hamiltonian17 U1D
s = g1D

1
2

∫
dx ψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x),

we obtain an awful mess:

U1D
s =

1
2

∑

q1,α

∑

q2,β

∑

q3,γ

∑

q4,δ

ϕ̂†αq1ϕ̂
†
βq2
ϕ̂γq3ϕ̂δq4U

α,β,γ,δ
q1,q2,q3,q4 . (2.34)

Here

Uα,β,γ,δq1,q2,q3,q4 = g1D

∫
dx ϕ∗αq1(x)ϕ∗βq2(x)ϕγq3(x)ϕδq4(x), (2.35)

and because the functions ϕαq(x) are delocalized over a lattice, most of these integrals are finite and

need to be retained. If we can find a basis in which each state is localized around a particular lattice

site, such that the spatial overlap between different states is small, we expect that the interaction

will be (predominantly) diagonal in this basis.
17 The 1D coupling strength g1D, which has dimensions of (energy×length), is left arbitrary here. This 1D

interaction might arise, for instance, by putting atoms a very elongated trap and keeping the temperature small
compared to the transverse level spacing, so that the physics is effectively 1D. In this case g1D can be calculated
explicitly in terms of the 3D scattering length [129].
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Figure 2.5: Illustration of the correspondence between bands (in quasi-momentum space) and the
localized wavefunctions they are built from (in real space). If the lattice were infinitely deep, the
Wannier functions would be harmonic oscillator levels. For a finite lattice depth, the Wannier
functions are no longer eigenstates, and so the once infinitely narrow harmonic oscillator levels
develop a finite lifetime set by the band-width (blue shaded region).

2.4.3 Local basis (Wannier functions)

In the absence of a lattice, we would construct a wave function maximally localized about

the point x0 by adding up plane waves ψk(x) = 1√
2π
eikx

δ(x− x0) =
1√
2π

∫
dk e−ikx0ψk(x). (2.36)

Analogously, in a lattice we can add up the delocalized Bloch-states within a given band to form

maximally localized Wannier functions, defined18

wα(x− xj) =
1√
L

∑

q

e−iqxjϕαq(x). (2.37)

Here we have implicitly assumed that the lattice has L sites, so that q is a discrete index with

spacing 2π/(aL), and for notational simplicity we will define wαj (x) = wα(x− xj).

These Wannier functions furnish a natural real-space description of atoms in an optical lattice,

with each wαj describing an atom in the αth band and on the jth site. In a very deep lattice, the

18 Note that there is an ambiguity here, because ϕαq(x) is only defined up to an overall phase, and clearly the
function wn(x − xj) will depend on how we make this choice for the many different q entering the sum. At least in
1D, it is known that there is a well defined phase convention that produces maximally localized Wannier functions
[100].
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low lying Wannier functions are localized near the center of each lattice site, where the potential

is to a good approximation harmonic (see Fig. 2.5). This approximately harmonic potential has

frequency ω = 2ER~−1
√
V/ER, and hence the low-lying band gaps are well approximated by ~ω.

In this real-space picture, the kinetic energy of an atom is due to tunneling from one site of the

lattice to another. As we will see below, this tunneling depends on the matrix elements of H0 in

neighboring Wannier functions. The Wannier functions wαj (x) have oscillatory tails extending in

each neighboring well (which are needed to ensure their orthogonality between neighboring Wannier

functions in the same band) and these matrix elements are sensitive to the oscillations. Hence the

harmonic-oscillator approximation of wαj generally does not provide a good estimate of the tunneling

of atoms between sites.

Before continuing, we note briefly that for any lattice potential that is separable in cartesian

coordinates, i.e. the simple cubic lattice often used in experiments

V (r) = Vx cos2(kx) + Vy cos2(ky) + Vz cos2(kz), (2.38)

all of the above discussion generalizes trivially to more than one dimension. For example, in 2D

(where we can easily picture the results), we simply solve for the Wannier functions of the lattice

in each direction, wxαx(x), and wyαy(y), and then compose the 2D Wannier functions as

wαxαy(x, y) = wxαx(x)wyαy(y), (2.39)

as shown in Fig. 2.6.

2.4.4 Hamiltonian in the Wannier basis (tight binding model)

Just as we did before with the Bloch-states, we can expand the field operators in the Wannier

basis as

ψ̂(x) =
∑

j,α

wαj (x)âjα, (2.40)
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Figure 2.6: Examples of Wannier functions in 2D and the language used to describe them.

where now â†jα creates an atom in the Wannier function wαj (x). Substituting this expression into

Eq. (2.31) we obtain

H0 = −
∑

α,i

∑

β,j

â†iαâjβJ
α,β
i,j , (2.41)

where

Jα,βi,j = −
∫
dx w∗αi (x)

[
V (x)− ~2∂2

x

2m

]
wβj (x). (2.42)

= −
∫
dx w∗αi (x)

[
V (x)− ~2∂2

x

2m

]
wαj (x)δα,β. (2.43)

The second equality follows because the noninteracting Hamiltonian (in the square brackets) is

block-diagonal in the band index (note that here δ is the Kronecker-δ, not an index). In what

follows we will therefore drop one of the two band indices on J , defining Jαi,j = Jα,βi,j δα,β. Notice

that the single particle Hamiltonian is more complicated (not diagonal) when expanded in the

Wannier basis, which simply reflects the fact that Wannier functions are not eigenstates of H0.

Similarly, we write the interaction Hamiltonian as

U1D
s =

1
2

∑

α,i

∑

β,j

∑

γ,k

∑

δ,l

â†iαâ
†
jβ âkγ âlδU

α,β,γ,δ
i,j,k,l , (2.44)

where

Uα,β,δ,γi,j,k,l = g1D

∫
dx w∗αi (x)w∗βj (x)wγk(x)wδl (x). (2.45)
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Figure 2.7: Illustration of the two terms in the Bose Hubbard model. The hopping term, propor-
tional to J , hops a boson from one site to the other, delocalizing the particles and thus contributing
to their kinetic energy. The term proportional to U enforces an energy penalty for putting more
than one boson on the same site, and thus tends to localize the particles.

It may not seem that we are any better off than before, when we used the Bloch-basis, but the

current form of the Hamiltonian is amenable to a series of well controlled (and often extremely well

justified) approximations, collectively referred to as the tight-binding approximation. The basic

idea is that, because wαj (x) is exponentially localized around the jth lattice site, we set all integrals

Uα,β,γ,δi,j,k,l to zero unless i = j = k = l, and set all integrals Jαi,j to zero unless |i − j| ≤ 1. Defining

nearest-neighbor tunneling matrix elements Jα = Jαi,i+1, onsite energies εα = −Jαii , and the onsite

interaction parameters Uα,β,δ,γ = Uα,β,δ,γi,i,i,i , the full Hamiltonian H = H0 + U1D
s then simplifies to

H =
∑

α,j

εαâ
†
jαâjα −

∑

α,〈i,j〉

Jαâ†iαâjα +
1
2

∑

j

∑

α,β,γ,δ

Uα,β,γ,δâ†jαâ
†
jβ âjγ âjδ. (2.46)

Here the notation 〈i, j〉 implies that the sum should be restricted to pairs of sites that are nearest

neighbors. It nearly all experiments where cold atoms have been loaded into optical lattices for

the purpose of quantum simulation, the temperature of the atoms is much smaller than the band

gap ∆01 = ε1 − ε0. In this case this case (and when all of the Uα,β,γ,δ are small compared to ∆01,

see the next section), the density of atoms in the excited bands is negligible. Defining J = J0,

U = U0,0,0,0, and â†j = â†j0, we have

H = −J
∑

〈i,j〉

â†i âj +
1
2
U
∑

j

â†j â
†
j âj âj . (2.47)

The Hamiltonian we are left with, called the single-band Bose-Hubbard model [50], describes

the nearest-neighbor hopping of bosons (J), in a single band, with an energy penalty (U) when two

bosons are on the same site. Note that by using the commutation relations for bosonic operators,

the interaction term can (and often is) be written 1
2Un̂j(n̂j−1), where n̂j = â†j âj counts the number
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of bosons on the site j. Therefore, more generally, this term assigns an energy U to all pairwise

interactions of multiple bosons on the same site. Despite the apparent simplicity, there is no exact

solution for, e.g., the groundstate correlation functions, finite temperature correlation functions,

or dynamics, even in 1D. A great deal of qualitative understanding of the model, however, can be

obtained in mean-field theory, as we will show in Chapter 4. Moreover, while analytic solutions are

not available, this model is amenable to a variety of very powerful numerical techniques (DMRG

for 1D [107] and Monte Carlo one [150] and two [106] dimensions), and thus many of its properties

have been determined in a numerically exact fashion.

2.4.5 A note on energy scales

Besides the recoil energy, there are a number of other energy scales that appear when treating

cold atoms in optical lattices, and therefore there is no a priori reason to expect the relevant energy

scales to be comparable to the recoil energy. For instance one can change the lattice depth V , which

is in principle completely independent of ER. However, one can show via WKB-type arguments

that tunneling between lattice sites in the lowest band obeys J ∼ e−
√
V/ER , and hence in situations

where this tunneling is non-negligible, lattice depths are given in small numbers of (. 20) ER. The

lowest band gap can be estimated as ∆01 ≈ 2ER
√
V/ER, and hence it too is naturally expressed

in recoil energies (typically . 10ER). The extent of the lowest band Wannier function is given by

x0 ≈
√

~/mω, from which one can estimate (in a 3D lattice) U ≈ (~2as)/(
√

2πx3
0). Once again, for

typical alkali-atom scattering lengths (as ∼ 1− 10nm) this is naturally expressed in recoil energies

(U . 1ER). As a general rule of thumb, J , U , and ∆01 satisfy

J < U < ∆01, (2.48)

with both inequalities being replaceable by� in many cases. Notable exceptions are that (typically)

J ∼ U at the onset of the tight-binding regime (lattice depths of a few ER), and U ∼ ∆01 is possible

if the scattering length is made artificially large via a Feshbach resonance.
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2.5 Open quantum systems

The description of a quantum system always requires the choice of a boundary, i.e. a devision

between degrees of freedom we will explicitly treat (the system) and those that we will not (the

reservoir). Formally, we can say that the Hilbert space of the Universe is a direct product of a

System Hilbert space and an Reservoir Hilbert space:

HU = HS ⊗HR (2.49)

The Hamiltonian describing the Universe can always be written

HU = HS ⊗ IR + IS ⊗HR + vHS−R, (2.50)

where I is the identity operator, HS contains operators acting only on the system, HR contains

operators acting only on the reservoir, and HS−R contains products of both (and hence couples

the system to the reservoir). One possible approach to obtaining system dynamics, which is often

valid in atomic systems (at least on experimentally relevant timescales), is to completely ignore

the coupling between system and reservoir, i.e. to put v = 0 in Eq. (2.50). In this case, and

if the system and reservoir are initially unentangled so that |Ψ〉 = |ΨS〉 ⊗ |ΨR〉, then the system

wavefunction |ΨS〉 obeys a Schrödinger equation

d

dt
|ΨS〉 = −iHS |ΨS〉. (2.51)

The extent to which this approximation is valid in ultracold atomic systems is often quite re-

markable. However, even in these carefully isolated atomic systems, the system and reservoir are

nevertheless always coupled to some extent. Especially in ions and dipolar molecules, which typi-

cally couple to their environment more strongly than neutral atoms, this approximation can break

down on experimentally relevant timescales.

In the presence of even a weak system-reservoir coupling, the two become entangled, and the

notion of a system wavefunction is no longer well defined (in the full Hilbert space HU , however,

a wavefunction description is of course still valid). Let’s define the density matrix of the universe
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ρU = |Ψ〉〈Ψ|, in terms of which the expectation value of an arbitrary operator O is given by

〈O〉 = 〈Ψ|O|Ψ〉 = Tr [Oρ]. The trace is over states |u〉 in the Hilbert space HU . Notice that we

don’t need to introduce a density operator to calculate observables, but there is nothing to stop us.

If we only care to calculate expectation values of operators that act on the system (OS), we can

write

〈OS〉 = Tr [ρUOS ] =
∑

s,r

(〈s| ⊗ 〈r|) ρUOS (|r〉 ⊗ |s〉) (2.52)

=
∑

s

〈s|TrR[ρU ]OS |s〉 (2.53)

= TrS [ρSOS ]. (2.54)

In the second line we have defined the partial trace TrR(S)[A] =
∑

r(s)〈r(s)|A|r(s)〉, and in the third

line we have defined the reduced density operator of the system ρS ≡ TrR[ρU ]. The important point

emerging from this algebra is that the expectation value of system operators can be obtained by

tracing just over the system degrees of freedom, as long as one uses the reduced-system density

matrix (this is the reason why reduced density matrices are useful). Notice that unless ρU = ρS⊗ρR,

which only remains true in time if v = 0, the system reduced density matrix is not pure. Hence, if

we don’t want to make explicit mention of the reservoir, we are now forced to describe the system

with a density matrix. This is the price we pay for formally eliminating the reservoir.

At this point, everything we have said is exact, but if we want to derive an equation of motion

for ρS that does not explicitly involve the reservoir degrees of freedom, we will need to make some

approximations. This is the main goal in the field of open quantum systems. There are two very

common and broadly applicable approximations that are employed to make progress:

(1) The system-reservoir coupling is treated in the Born approximation, which means the resulting

equations are valid to second-order in v.

(2) The reservoir is assumed to be Markovian, meaning two things: (a) The time it takes for the

reservoir to relax to equilibrium after being perturbed by the system, called the correlation time,
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is small compared to the relaxation rate of the system and (b) The physical size of the reservoir is

large enough that, once it has relaxed, its density matrix is essentially unchanged.

For a system-reservoir interaction of the form

HS−R =
∑

α

√
γα
2

(
J †αRα + JαR†α

)
, (2.55)

and assuming that the effects of the various couplings add incoherently, these approximations lead

to the following master equation for the reduced system density matrix ρS

~ρ̇S = i [ρS ,HS ] +
∑

α

γα
2

(
2JαρSJ †α − J †αJαρS − ρSJ †αJα

)
. (2.56)

Obviously many details have been left out, but excellent pedagogical reviews exist [20]. Before

moving on, we simply note a few very general features of the master equation. First of all, the γα

are all assumed to be real and positive, in which case a valid density matrix remains a valid density

matrix (Tr [ρ] = 1, ρ is a positive operator, and ρ = ρ†). It can be explicitly checked, however, that

Tr
[
ρ2
]

is not in general conserved, and hence an initially pure state will in general become mixed.

For a finite-dimensional system Hilbert space [dimension D = dim(HS)] spanned by states

|µ〉, a pure-state |ψS〉 can be represented with D complex numbers as

|ψS〉 =
D∑

µ=1

cµ|µ〉. (2.57)

The most general representation of a density matrix, however, is furnished by D2 complex numbers

ρS =
D∑

µ,ν=1

cµν |µ〉〈ν|. (2.58)

Hence solving the master equation numerically is more difficult than solving the Schrödinger equa-

tion.19 There are techniques, broadly called Monte Carlo wavefunction simulations [133], that can

greatly speed up the solution of the master equation. In these techniques, one effectively reduces
19 As a result, for a many body system in which D scales exponentially with the particle number N , a good rule

of thumb is that the difficulty of solving the master equation is roughly comparable to that of solving a Schrödinger
equation with twice the number of particles.
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the solution to a stochastic sampling of wavefunctions, or “quantum trajectories”, the produc-

tion of which only requires solving the Schrödinger equation. A particular implementation of such

methods, which will be used extensively in Chapters 6 and 7.



Chapter 3

Quantum simulation of the Kondo lattice model with alkaline earth atoms

Like the Hubbard model, the Kondo lattice model (KLM) has served for decades as a canoni-

cal example of interacting-electron physics [40]. It is similarly difficult in the sense that its emergent

physical properties demand the proper incorporation of electron-electron correlations. While it can

be derived from a particular limit of a two-band Hubbard model [76], it differs fundamentally in

that the charge degrees of freedom (i.e. the hopping of electrons between lattice sites) in one of

those bands have been completely frozen out. Electrons in this band act as localized spins that

scatter itinerant electrons residing in the remaining (conduction) band, and in most treatments the

interaction between the conduction electrons is ignored. Hence the KLM is, on a formal level, a

model of electrons interacting with spins. In the most common presentation of the model there is

one localized spin on each lattice site, and the only interaction considered is an on-site Heisenberg

exchange between the conduction electrons and the localized spins (see Fig. 3.1). For different

values of the exchange coupling the KLM gives rise to very different physics [76, 169]. We focus

exclusively on the case of antiferromagnetic exchange (favoring anti-alignment of the localized spin

and a conduction electron on the same site), which has been studied for over three decades as

a model for inter-metallic compounds with anomalously massive quasiparticle excitations, termed

heavy fermion materials [40, 160, 29]. While heavy fermion physics is interesting in its own right,

the discovery of unconventional superconductivity in these materials [158] in 1979 has ensured

intense interest in the Kondo lattice model over the last several decades. Despite the wealth of

theoretical machinery developed for and brought to bear on the antiferromagnetic KLM, however,
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the structure of the ground-state phase diagram (in D > 1) is not yet well understood.

The layout of this chapter is as follows. Before delving into the details, we give a brief

historical overview of the KLM, with the simple intention of orienting the unfamiliar reader to its

context and importance. We will briefly review some of what is known about the groundstate phase

diagram, both in 1D and in 2D, and in so doing introduce the qualitative picture that has emerged

for understanding heavy-fermion materials. We then review the details of an experimentally realistic

scheme for simulating the Kondo lattice model using alkaline-earth atoms in an optical lattice, which

was originally proposed in [68].

Before there can be any prospect for the exploration of unknown aspects of the phase diagram

via quantum simulation, it is imperative that we understand the manifestation of relatively well

understood KLM physics in an inhomogeneous setting—the ubiquitous cold-atom trap. With this

goal in mind, we spend the rest of the chapter exploring the behavior of the Kondo lattice model in

a harmonic potential. We will begin by introducing an extension to the trap of a well known mean-

field theory (MFT) appropriate for describing the heavy Fermi liquid [109]. Some ground-state

properties can be determined with relatively little effort within the local-density approximation

(LDA). Already at this level several hallmarks of Kondo physics can be observed in the trap. For

example, the Kondo insulator phase induces a shell structure in the trapped density distribution,

and the emergence of heavy quasiparticles in the heavy Fermi liquid phase shifts conduction atom

weight out to the so called “large Fermi surface”.1

The harmonic trap is also a valuable tool for studying out of equilibrium dynamics [48]. After

a brief review of single particle dynamics in a lattice plus confining potential [144], we consider

three distinct parameter regimes where signatures of Kondo physics are manifest in dynamics after

a sudden trap displacement. The first two are in 1D, at weak coupling [155] and at strong coupling

[128, 156]. Such dynamics could be studied experimentally by making the optical lattice extremely
1 When the Kondo coupling is absent, the conduction electrons form a noninteracting Fermi sea. The volume of

this Fermi sea is determined by the number of conduction electrons, a scenario that is referred to in the literature
as the existence of a “small Fermi surface”. In the heavy Fermi liquid phase, it is well established that the localized
electrons (spins) should be included when determining the Fermi volume, and this scenario is referred to as the
existence of a “large Fermi surface”.
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!S ·!SKondo coupling: conduction electron
hopping

Figure 3.1: In the Kondo Lattice Model the conduction electrons (red) can hop from site to site,
and they interact with localized spins (blue) via a Heisenberg exchange.

deep in two directions, resulting in an array of independent 1D chains, and would be a sensible

starting point for simulations wishing to verify the model (especially with regards to the strong

coupling dynamics, which can be calculated quite rigorously and have a simple signature). Outside

of 1D, we employ a numerical self-consistent diagonalization of the MFT discussed above. Using

the exact mean-field wave function we explore center-of-mass oscillations resulting from a sudden

displacement of the trap center, and find a clear signature of the heavy fermion mass enhancement.

3.1 Introduction to the Kondo lattice model

The Kondo Lattice model (KLM) has a rich and elaborate history, and it would be difficult

to overemphasize its importance to the field of condensed-matter theory [80, 29]. An essential piece

of physics involved in the model is the spin-screening of localized magnetic impurities by itinerant

electrons. For a lattice of localized spins (Sej) interacting with a tight-binding band of electrons

(c†gjσ) via spin-exchange, the Hamiltonian is

HK = −J
∑

〈i,j〉σ

ĉ†giσ ĉgjσ − 2Vex

∑

j

Sej · Sgj . (3.1)

Here the spin density of the conduction electrons on site j is given by Sgj =
∑

σσ′ ĉ
†
gjστσσ′ ĉgjσ′ .

That the conduction band is tight-binding is largely irrelevant, but it simplifies the real space
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description. A negative exchange coupling Vex < 0 leads to an antiferromagnetic coupling, and we

will exclusively consider this case, and will often use the positive dimensionless quantity

v = −2Vex/J (3.2)

as a measure of strong (v � 1) and weak (v � 1) coupling. The localized spins can also be written

in terms of fermionic operators as Sej =
∑

σσ′ ĉ
†
ejστσσ′ ĉejσ′ , in which case, dropping constant energy

shifts, we can write

HK = −J
∑

〈i,j〉σ

ĉ†giσ ĉgjσ + Vex

∑

iσσ′

ĉ†igσ ĉ
†
ieσ′ ĉigσ′ ĉieσ. (3.3)

Historically, the screening of magnetic impurities in a metal was first studied for just a single

impurity (on site j = 0) [3, 102], such that the Hamiltonian takes the form

HK = −J
∑

〈i,j〉σ

ĉ†giσ ĉgjσ − 2V Se0 · Sg0. (3.4)

The apparent simplicity of the Kondo impurity model defined in Eq. (3.4) is misleading: A full

understanding of the low-temperature physics of this model took decades of work by numerous

researchers, and encouraged the development of a variety of new theoretical techniques [4, 173,

28, 141]. If the impurity did not interact via spin exchange, i.e. if the problem reduced to pure

potential scattering off of an energy barrier on site j = 0, the model would indeed be quite trivial.2

The essential difficulty arrises because the spin-spin interaction has terms like S+
e0S
−
g0, which cause

a scattered electron to exchange its spin with the local impurity. This electron, we’ll call it electron

1, then goes off with a knowledge of the state of the impurity, i.e. they are correlated. When

another electron comes in, we’ll call it electron 2, and scatters off the impurity, the result of this

scattering depends on the state of the impurity. In this way, electrons 1 and 2 become correlated,

despite the fact that they do not interact directly.

Interest in this model originated soon after the experimental observation that in some non-

magnetic metals, the existence of a small concentration of magnetic impurities was connected with

a minimum in the resistance at low temperatures [148] (in most metals that don’t superconduct, the
2 By trivial, we mean only that there would be no correlation effects, and one could solve the problem by looking

at a single-electron scattering process.
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resistance is expected to decrease monotonically and then saturate as the temperature T → 0). Jun

Kondo, for whom the model is named, calculated the scattering rate of electrons in perturbation

theory to third order in V [102]. The end result of this calculation was a contribution to the

resistivity ∝ Vex log(T ), which for Vex < 0 causes the resistivity to grow as T → 0. While this

calculation cemented the notion that magnetic impurities were central to the resistance minimum,

it was just the beginning of a long effort to understand the low temperature physics of the Kondo

model [which clearly is not captured by the log(T ) term, which diverges]. At this point, as a

result of numerical scaling analyses [173] and even an exact solution [4], the model has been very

extensively understood. The modern picture, due in large part to the work of Anderson [], Wilson

[], and Nozieres [], is that, at low energies, the scattering

The Kondo lattice model was subsequently proposed by Doniach [40] in the late 1970s as a

possible explanation for the enormous linear specific heat term in the recently discovered heavy-

fermion metals’ [5]. Unlike for the Kondo impurity model, the Kondo lattice model is far from

understood. At strong coupling, v � 1, it is clear that all conduction electrons should bind to the

localized spins as singlets, and in 2D this leads to a paramagnetic state called the heavy Fermi liquid.

In analogy to the single-impurity model, the energy scale associated with this singlet formation is

called the Kondo temperature, and obeys

TK ∼ Je−J/|Vex| . (3.5)

One essential problem with having a lattice of impurities is that, as the coupling v is reduced, the

conduction electrons mediate an effective magnetic interaction between the localized spins, known

as the RKKY interaction [146, 93, 176], which causes them to develop magnetic order. Because

this interaction arrises perturbatively from the scattering of conduction electrons (by the exchange

interaction) out of and then back into the Fermi sea, it has a characteristic strength

TRKKY ∼ V 2
ex/J. (3.6)

This magnetic ordering competes with the tendency toward singlet formation at larger Vex, and
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eventually destabilizes the heavy Fermi liquid when the characteristic temperature scale of mag-

netism becomes comparable to the Kondo temperature (TK ≈ TRKKY).

3.1.1 Groundstate Phase Diagram

Determining the groundstate phase diagram of the Kondo Lattice model is an active area

of current research. As is typical for many-body systems, the physics of the model in 1D is

quite different from in higher dimensions. Nevertheless the availability of numerical and analytical

techniques for treating 1D systems has prompted intensive study of the 1D phase diagram, which

at this point is basically known (a good review can be found in [169]). In D > 1, much less is

known. A number of approximate techniques, both numerical and analytical, have helped to form

some consensus about the basic structure, but there are many open questions. At zero temperature

(i.e. in the groundstate), the physics is entirely determined by the dimensionless ration v and the

average number of conduction electrons per unit cell, ng.

In 1D there are three distinct phases: (1) a ferromagnetic phase at large v, (2) a paramagnetic

phase at small v, and (3) an insulating state at ng = 1, for any value of the coupling. The

ferromagnetism at strong coupling may be surprising, given that the coupling is antiferromagnetic.

Strictly speaking, for ng < 1 and in the limit v → ∞, there are no processes (to first order in the

hopping J) within the low-energy Hilbert space that change the ordering of the unpaired localized

spins, and hence the groundstate energy is independent of the ordering of the unpaired localized

spins [128]. Working to second order in the hopping, however, the unpaired spins can change their

order, and a careful analysis of the matrix elements for such processes shows that the energy is

lowered when all unpaired spins are aligned, and hence the groundstate is ferromagnetic [156]. The

weak coupling phase is much more difficult to understand analytically, but extensive numerical

studies have helped clarify a number of its properties. It is known to be a paramagnetic metal,

with gapless spin and charge excitations [169]. Exactly at ng = 1, the system becomes insulating

(with finite spin and charge gaps) for any non-zero value of the coupling v.

In 2D, the groundstate phase diagram is much less well known. For ng = 1 and large v, the



44
(a)

FM AF

PM�heavy Fermi liquid�

K
on
do
in
su
la
to
r

ng

vv

ng
0 1

PM

FM

�Heavy Fermions� Ko
nd
o
In
su
la
to
r

0 1

ng

v

ng

v

(b)

FM AF

PM�heavy Fermi liquid�

K
on
do
in
su
la
to
r

ng

vv

ng
0 1

PM

FM

�Heavy Fermions� Ko
nd
o
In
su
la
to
r

0 1

ng

v

ng

v

Figure 3.2: (a) Schematic zero temperature phase diagram for the 1-D KLM [169, 76]. FM is a
ferromagnetic phase, and PM is a paramagnetic phase closely related to heavy fermions in higher
dimensions. (b) 2D mean-field ground-state phase diagram as constructed in [109], ng being con-
duction electron density and v being a dimensionless measure of the interaction strength. PM is a
paramagnetic phase, in which the heavy Fermi liquid behavior is expected. The FM (AFM) phase
is where RKKY interactions [146, 93, 176] generate ferromagnetic (antiferromagnetic) order among
the localized spins. Exactly at ng = 1 the AF phase gives way to a non-magnetic insulating state
for sufficiently large v [7].

system is insulating and has both spin and charge gaps. This phase is referred to as the Kondo

insulator. Unlike in 1D, the limit v → 0 with ng = 1 eventually causes a phase transition to a

magnetically ordered state [7], as has been confirmed by numerous numerical studies. As discussed

above, at ng < 1 the behavior is expected to be determined by a competition between the Kondo

effect—favoring a paramagnetic heavy Fermi liquid at strong coupling—and the RKKY mediated

magnetic ordering at weak coupling. The type of magnetic ordering that develops at weak coupling

depends on both the filling ng and the details of the lattice structure, but is generically expected

to range from ferromagnetic at ng � 1 to antiferromagnetic (or something more complicated)

for ng . 1. This picture is confirmed by numerous mean-field studies [109, 46], but a rigorous

picture of the phase diagram is non-existent. A major outstanding challenge in KLM research is

to understand the quantum phase transition that separates these two regimes, and this challenge

could in principle be addressed by careful analysis of an optical lattice emulator.
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3.2 Advantages of alkaline-earth atoms

Recently it has been proposed that several unique properties of fermionic alkaline-earth atoms

(AEAs) make them particularly well suited for the simulation of a broad class of condensed matter

Hamiltonians describing the interplay between internal (spin) and external (orbital) electronic

degrees of freedom [68, 79, 21, 175, 52]. These two-electron atoms are more complicated than

their one-electron alkali counterparts, however in the last few years a great deal of progress has

been made in cooling a variety of bosonic and fermionic isotopes to quantum degeneracy [61, 60, 159,

103, 121, 166, 35]. There are two primary features of AEAs that make them suitable for simulation

of the KLM: (1) The long-lived 1S0 (g) and 3P0 (e) clock states can be trapped independently

by two different but spatially commensurate optical lattices [31]. (2) Both clock states have total

electronic angular momentum J = 0, and as a result there is essentially no coupling between the

different nuclear spin states and therefore no spin changing collisions (in contrast to alkali metal

atoms) [68]. This enables us to consider an ensemble where just two states in the hyperfine manifold

are populated, since to a very good approximation no transfer of states into the rest of the manifold

can occur, and these two states are identified with spin up and spin down of the electrons in the

KLM.

3.2.1 Independent lattices

The ability to engineer independent lattices for the 1S0 and 3P0 states of an AEA relies on

the optical frequency separations between these two states [31]. As a result, an optical lattice

of a given frequency can induce entirely different polarizabilities for these two states (since their

detunings from various other electronic levels are completely different), even in the limit where both

are far detuned from any transition. We denote the lattice potential for the atomic state α ∈ {g, e}

by Vα, and we note that, despite their different wavelengths, Ve and Vg can be made to have the

same periodicity by increasing the angle between the counter-propagating beams for the shorter

wavelength lattice. We denote the lowest Wannier orbital of the lattice Vα by wα, and then define
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hopping energies

Jα =
∫
dDrwα (ri − r)

(
− ~2

2m
∇2 + Vα

)
wα (rj − r) (3.7)

(m is the atomic mass, and (ri, rj) are the centers of two nearest neighbor lattice sites). The

situation we have in mind is when the lattice for the e atoms is very deep (driving these atoms into

a Mott insulator), while the independent lattice for the g atoms is kept shallow (though still deep

enough for the tight-binding approximation to be valid). In this arrangement, we can justify (see

the next section for details) the scenario where there is one e atom in each site of the lattice; these

will be our localized spins. The g atoms will be the equivalent of the conduction electrons in the

KLM.

3.2.2 Interactions

In order to understand the origin of the exchange coupling, it will suffice to consider the

s-wave scattering of two fermionic AEAs, one in the 1S0(α = g) electronic state and the other

in the 3P0(α = e) electronic state, where each can have any nuclear spin −I ≤ m ≤ I. Because

the collisional physics only depends on the electronic state, the possible collision processes can be

categorized by the two possible two-particle combinations of electronic states, 1√
2
(|ge〉± |eg〉) (note

that both are possible because the nuclear spins can still be used to properly antisymmetrize the

fermionic wavefunction). Each of these possibilities we’ll call a channel, and we denote the s-wave

scattering lengths in these channels by a±eg. At this level, the lack of coupling between the nuclear

spin and the electronic angular momentum appears as a lack of nuclear-spin dendence of these

scattering lengths. Defining g± = 4π~2a±eg
m , the total (unregularized) s-wave pseudopotential can be

written as

U(r) =
(
g+P+ + g−P−

)
δ(r), (3.8)

where P± is a projector on the electronic state 1√
2
(|ge〉 ± |eg〉).

If we temporarily employ a spin-1
2 description of the two-level system comprised of the elec-

tronic states,3 these projection operators can be written as P+ = 3
4 +S1 ·S2 and P− = 1

4 −S1 ·S2.
3 Note that these are not the spin operators that will appear in the context of the Kondo-exchange interaction
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Both of the two particle states we are considering have Sz1S
z
2 = −1

4 . Hence, remembering that

S1 · S2 = Sz1S
z
2 + 1

2

(
S+

1 S
−
2 + S−1 S

+
2

)
, we can write

U(r) =
[
g+ + g−

2

]
δ(r) +

[
g+ − g−

2
(
S+

1 S
−
2 + S−1 S

+
2

)]
δ(r) (3.9)

The first term is a density-density interaction, which in second-quantization can be written

Ud =
g+ + g−

2

∑

m,m′

∫
d3rψ̂†gm(r)ψ̂gm(r)ψ̂†em′(r)ψ̂em′(r), (3.10)

where ψ̂†αm(r) creates an atom in electronic state α and nuclear spin state m at position r.

The second term is an exchange term, which swaps the electronic state of the two interacting

atoms while leaving their nuclear spins untouched. In second quantization the operator S+ =
∑

m ψ̂
†
em(r)ψ̂gm(r), and the whole exchange term is given by

Uex =
g+ − g−

2

∑

m,m′

∫
d3rψ̂†gm(r)ψ̂†em′(r)ψ̂gm′(r)ψ̂em(r), (3.11)

In an e − g collision, if we restrict the nuclear spin Hilbert space to contain just two possible

values m =↑, ↓, the exchange term causes there to be a difference in energy between the states

1√
2
(| ↑↓〉 ± | ↓↑〉). If we treat the two nuclear spin degrees of freedom as our spin-1

2 (rather than

the electronic states), this term has the structure Sg · Se, and is the origin of the Kondo-exchange

in what follows. Note that, even for an atom with I > 1/2, it is possible to initially populate

just two nuclear-spin levels and thereby obtain a spin-1
2 model; the exchange interaction conserves

independently the population in each level mI , and so the spin 1
2 model will remain valid at any later

time. In the rest of the chapter, we will make the assumption that only two levels are populated,

and denote them by σ =↑, ↓.

Both the direct and exchange interactions above arise from the collision between a g-atom

and an e atom, but there can also be collisions between two e (or g) atoms in the s-wave channel.

These are exactly analogous to the interaction in Eq. (2.7), and are given by

Uαα =
gαα
2

∑

m,m′

∫
d3rψ̂†αm(r)ψ̂†αm′(r)ψ̂αm′(r)ψ̂αm(r), (3.12)

later on.



48

where gαα = 4π~2aαα/m, and aαα is the scattering length for collisions between two α atoms.

As in Chapter 2, to describe physics at temperatures much less than the lowest band gap (of

both lattices) we project these interactions into the lowest bands of the e and g lattices, and we

will ignore interaction terms involving atoms on more than one site. Defining creation operators

ĉ†αjσ =
∫
d3rψ̂†ασ(r)w∗α(rj − r) (3.13)

and the onsite interaction parameters

Vex =
g+ − g−

2

∫
d3r|wg(r)|2|we(r)|2 (3.14)

Vd =
g+ + g−

2

∫
d3r|wg(r)|2|we(r)|2 (3.15)

Vαα = gαα

∫
d3|rwα(r)|4, (3.16)

we obtain the (projected) interactions

Ũex = Vex
∑

j,σ,σ′

c†jgσc
†
jeσ′cjgσ′cjeσ (3.17)

Ũd = Vd

∑

j,σ,σ′

c†jgσcjgσc
†
jeσ′cjeσ′ (3.18)

Ũαα = Vαα
∑

j,σ,σ′

c†jασcjασc
†
jασ′cjασ′ (3.19)

We are interested in the case where Vee � Je and Vgg � Jg. Under these conditions, and

with a sufficiently weak confining potential Ω (i), the e atoms form a unit filled Mott insulator at

the center of the trap and the g atoms are to a good approximation non-interacting. We choose the

e atoms to represent the localized spins because they would otherwise suffer lossy collisions [68].

At temperatures well below Vee, to lowest order we can drop both Vee and Je and simply constrain

the Hilbert space to have one e atom per site. Certainly to higher order in Je/Vee there would be

super-exchange interactions, but we assume these to be negligible compared to all other terms in

the Hamiltonian. Neglecting terms (∝ Vd) which are constant in consideration of the constraint on
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the e atom density, what remains is an inhomogeneous version of the Kondo Lattice Hamiltonian:

HK = −Jg
∑

〈i,j〉,σ

c†igσcjgσ + Vex

∑

iσσ′

c†igσc
†
ieσ′cigσ′cieσ

+
∑

i

Ω (i) n̂ig. (3.20)

In Eq (3.20) n̂iα =
∑

σ c
†
iασciασ. In the rest of the chapter we will consider only D-dimensional

hypercubic lattices, with a particular focus on D = 2. In the first term of the Hamiltonian we have

used the convention that 〈i, j〉 restricts the summation to nearest-neighbor sites. It is important

to observe that satisfaction of the inequalities Vee � Je and Vgg � Jg places no fundamental

constraint on Vex/Jg. This independence of parameters is a unique feature of the alkaline earth

atom simulations proposed in Ref. [68]. Previous proposals to study the KLM using alkali-metal

atoms lack this tunability because they either populate multiple bands of a single lattice (Ref. [42],

in which case Vee, Vgg and Vex all scale with the lattice depth), or generate Eq (3.20) as an effective

Hamiltonian which necessarily operates at weak coupling (|Vex| /Jg � 1) [130]. In the present

scheme, Vex will vary from one isotope to another, and can be further adjusted by offsetting the

two lattices with respect to each other (to decrease the overlap between Wannier orbitals).

3.3 Mean-Field Theory

There is no nontrivial parameter regime in which Eq. (3.20) can be solved exactly, and

approximations have to be made. In the heavy Fermi liquid phase a qualitative understanding can

be gained by treating the interaction term at mean-field level [109]:

Vexc
†
igσc

†
ieσ′cigσ′cieσ → Vex

∑

σ′

Ṽi

(
c†igσ′cieσ′ + c†ieσ′cigσ′

)

−VexṼ
2
i (3.21)

where we have defined the on-site hybridizations

Ṽi =
1
2

∑

σ

〈
c†ieσcigσ + c†igσcieσ

〉
. (3.22)

This expectation value, along with all others in this section, is taken in the ground state of the

mean-field Hamiltonian [see Eq. (3.23) below]. Because the mean-field Hamiltonian is quadratic,
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the ground state is a Slater determinant of the lowest (Ne + Ng)/2 single particle states (half the

total number of atoms due to spin degeneracy), where Nα is the total number of α atoms. This

decoupling is not unique, for instance there could be terms that mix different spin states, but if

the KLM is generalized to allow the spin index σ to run from 1 to N (N = 2 for the KLM), then

the above decoupling is exact in the limit4 N → ∞ [28, 141]. One should keep in mind, however,

that the decision not to keep any spin mixing terms in the decoupling guarantees that this MFT

cannot capture a transition to a magnetically ordered state, and therefore cannot remain valid for

arbitrarily small v (where RKKY-induced magnetic order should exist). The resulting quadratic

Hamiltonian is

HM = −Jg
∑

〈i,j〉,σ

c†igσcjgσ +
∑

i

[Ω (i) n̂ig + µie (n̂ie − 1)]

+Vex

∑

iσ

Ṽi

(
c†igσcieσ + c†ieσcigσ

)
− Vex

∑

i

Ṽ 2
i , (3.23)

where the µie are local chemical-potentials needed to enforce the constraint of one e atom per site

on average (in the exact KLM we have the much stronger constraint 〈(n̂ie − 1)2〉 = 0, but in the

MFT this must be relaxed to nie ≡ 〈n̂ie〉 = 1). The theory is now paramagnetic, because HM does

not couple different spin states, and the eigenstates are created by quasiparticle operators:

α†qσ =
∑

i

(
uiqc
†
igσ + viqc

†
ieσ

)
. (3.24)

Here q ∈ {1, 2, ...} is an index that labels the different quasiparticle eigenstates, and not a wave

vector. Solving the MFT then means finding the above mode coefficients uiq and viq, but this

needs to be done self-consistently: As parameters in the Hamiltonian the Ṽi determine the mode

coefficients, but in turn the mode coefficients determine the Ṽi via the definition

Ṽi =
1
2

∑

σ

〈
c†ieσcigσ + c†igσcieσ

〉

=
(Ng+Ne)/2∑

q=1

(
uiqv̄

i
q + viqū

i
q

)
. (3.25)

4 In order not to obtain a trivial limit it is important to hold the proper quantities fixed as N →∞. In particular,
one should hold JN constant and adjust the filling of localized electrons such that ne/N = 1

2
.
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We sum over a number of modes equal to half of the total number of particles, but put two particles

in each mode to account for the degeneracy of spin. Similarly, the onsite g and e atom densities

are given by

nig =
∑

σ

〈
c†igσcigσ

〉
= 2

(Ng+Ne)/2∑

q=1

uiqū
i
q

nie =
∑

σ

〈
c†ieσcieσ

〉
= 2

(Ng+Ne)/2∑

q=1

viqv̄
i
q. (3.26)

If we define the ground-state energy E = 〈HM〉, the self-consistency condition and the local con-

straints nie = 1 can be written compactly as

∂E/∂Ṽi = 0 and ∂E/∂µie = 0 (3.27)

respectively.

3.3.1 Translationally Invariant Case

Before solving the MFT in the presence of a trap, it is useful to review known results for

the translationally invariant case (Ω = 0) [109]. It is common to assume that the hybridizations

and chemical potentials retain the discrete translational invariance of the exact KLM Hamiltonian

(Ṽi, µie → Ṽ , µe), in which case the Hamiltonian in Eq. (3.23) reduces to

HT = −Jg
∑

〈i,j〉σ

c†igσcjgσ + µe

(∑

i

n̂ie −N
)

+ Vex

∑

iσ

Ṽ
(
c†igσcieσ + c†ieσcigσ

)
−NVexṼ

2, (3.28)

N being the total number of lattice sites. It is common to include a g atom chemical potential by

adding a term −µg
∑

i n̂ig in Eq. 3.28, but we find it conceptually simpler to work at a fixed ng

for the time being (we will trade in ng for µg in the next section to apply the LDA). Due to the

translational invariance the nonconstant part of HT (those terms containing operators) can easily

be diagonalized for general Ṽ and µe by going to Fourier space. Defining ckασ = 1√
N
∑

j cjασe
irj ·k

(where rj is the position of site j and k is a quasi-momentum vector in the first Brillouin zone),
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we find quasiparticles

α†kσ = c†kgσu(k) + c†keσv(k) (3.29)

and the quasiparticle spectrum

E±(k, Ṽ , µe) =
ε (k) + µe

2
± 1

2

√
4V 2

exṼ
2 + (ε (k)− µe)2. (3.30)

Here ε (k) = −2Jg
∑D

i=1 cos(kia) (a being the lattice spacing) is the tight-binding dispersion for

the g atoms in a D-dimensional hyper-cubic lattice, and the two branches of the quasiparticle

spectrum are called the upper and lower hybridized bands. If N is large then the energy per site

of the translationally invariant system, given by E(Ṽ , µe, ng) = 〈HT〉 /N , can be written as an

integral over the Fermi volume F . For example, on a D dimensional lattice with ng < 1 the total

energy per site is:

E(Ṽ , µe, ng) = −VexṼ
2 − µe +

1
(2π)D

∫

F
dDk E−(k, Ṽ , µe), (3.31)

with the dependence on ng hidden in the limits of integration. Only the lower hybridized band is

populated because ng = 1 corresponds to completely filling the first Brillouin zone (since there is

also one localized atom per site). For 1 < ng < 2 the lower hybridized band will be completely

full and the upper band will be partially integrated over. For a given ng, the correct µe and self

consistent Ṽ can be found by solving the coupled equations

∂E(Ṽ , µe, ng)
∂Ṽ

= 0 and
∂E(Ṽ , µe, ng)

∂µe
= 0. (3.32)

It will be useful for later application of the LDA to appreciate that the only knob we can turn to

determine the MFT solutions (beyond the couplings Jg and Vex in the Hamiltonian) is a choice of

the g atom density. Once ng is chosen, the correct Ṽ and µe are fixed by Eq (3.32).

Defining the dimensionless coupling

v ≡ −2Vex/Jg, (3.33)

one finds that for small v the hybridization Ṽ will also be small. The two hybridized bands track

the e and g atom bands closely, however mixing due to finite Ṽ causes the crossing to be avoided
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Figure 3.3: Spectrum of the translationally invariant MFT for ng < 1 (a) and for ng = 1 (b), shown
in 1D for clarity. The blue dashed line is the e atom band (E = µe), and the red solid curve is
the g atom band (E = −2Jg cos(k)). The purple dotted lines are the hybridized bands E±, with
the thicker solid section covering the Fermi volume. In (b) the lower band is filled and separated
from the upper band by the hybridization gap ∆H (green slashed region), causing the system to be
insulating for ng = 1.

[Fig. (3.3)]. For less than unit filling of the g atoms, the ground state is obtained by filling the lower

hybridized band with quasiparticles out to the Fermi surface (kF = π
2 (1 + ng) in 1D). The part of

the lower hybridized band running nearly parallel to the line E = µe [blue line in Fig. 3.3(a)] holds

most of the e atom weight, which indicates that for decreasing ng we must pull µe down below the

center of the g atom band in order to satisfy ne = 1. This pins the Fermi surface to the flattened

part of the hybridized band (called the Kondo resonance), which is the origin of the quasiparticle

mass enhancement.

When ng = 1 the lower hybridized band is completely full, and µe = 0 because of a particle

hole symmetry [169]. The system is an insulator with a gap ∆H [Fig. 3.3(b)]. Despite having the

appearance of a band gap in the MFT, this gap should be understood as arising from correlation

effects: Filling the lower hybridized band means having one conduction atom per unit cell, so non-

interacting band theory of the conduction atoms would predict a metallic state. From Eqs. (3.23)

and (3.25) one can see that at v =∞ and µe = 0 we have Ṽ = 1. It then follows from Eq (3.30) that

the MFT predicts ∆H ∼ Jgv at strong coupling. At weak coupling, more careful analysis shows that

the MFT predicts a non analytic gap scaling ∆H ∼ Jge−1/v. This weak coupling expression should
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be understood as correct for v small but not less than some critical vc > 0. The critical coupling

vc marks the phase transition between the heavy Fermi liquid and a (presumably) magnetically

ordered phase, in which the MFT is not valid [see Fig. 3.2(b)].

It has been implicit in the discussion above that both the e and g atoms are to be included

in the Fermi volume of the MFT ground state. However, one should keep in mind that the actual

size of the Fermi surface is a subtle and important issue in the KLM [120, 169]. Looking at Eq.

(3.20), one might expect the volume of the Fermi sea in any KLM ground state to be determined

by the number of g atoms, since the e atoms represent localized spins with no charge degrees of

freedom. However, the KLM at small v is an effective model for the Periodic Anderson Model at

large U , for which Luttinger’s theorem [117] is expected to hold [120] (meaning that the Fermi

volume should be determined by the number of g and e atoms). These two scenarios are referred

to respectively as a small and large Fermi surface. The heavy Fermi liquid ground state, which is

described by our MFT, is known to have a large Fermi surface. The Kondo insulator is a cousin of

the heavy Fermi liquid, which arises when the density of g atoms increases to unity, and the large

Fermi surface of the heavy Fermi liquid completely fills the Brillouin zone. Our focus in this section

is on the heavy Fermi liquid and Kondo insulator, largely because we believe it is likely that the

heavy Fermi liquid and Kondo insulator phases will occupy a significant part of the paramagnetic

region of the phase diagram [PM in Fig. 3.2(b)]. Indeed, on the square lattice that we consider the

Kondo insulator is known to occur for v & 1.45 (when ng = 1) [7]. Given the close relationship

between heavy Fermi liquid and Kondo insulator, the heavy Fermi liquid most likely at least exists

nearby (i.e. for v & 1.45 and ng . 1).

3.3.2 Local-Density Approximation

The simplest way to extend the MFT to an inhomogeneous system is via the local density

approximation (LDA). The idea is that on a given site, we consider the trapping potential to be a



55

chemical potential in a translationally invariant system with Hamiltonian

HT − µjg
∑

iσ

c†igσcigσ, (3.34)

with µjg = µg−Ω(j). On physical grounds one might argue that the local chemical potential should

be applied to the e atoms as well. However this is unnecessary; the e atom density is fixed to be

one per site, so including the effect of the trap on them simply provides an overall constant energy

shift (more technically, if it were applied to the localized atoms as well the local µje would simply

readjust to absorb it). We now have one translationally invariant problem per lattice site, each of

which can be solved as described in Section 3.3. There is a minor complication owing to the choice

in Section 3.3 to work at fixed density, not fixed chemical potential. But this can be resolved easily

by remembering that at zero temperature the chemical potential is the energy required to add one

quasiparticle at the Fermi surface. Solving the translationally invariant model at fixed µjg simply

means finding the njg satisfying
dE(Ṽ , µe, njg)

dnjg
= µjg, (3.35)

since the left hand side is the energy cost of adding one quasiparticle at the Fermi surface. The

derivative on the left hand side can be expanded as

∂E

∂Ṽ

dṼ

dnjg
+
∂E

∂µe

dµe
dnjg

+
∂E

∂njg
, (3.36)

and the first two terms are zero for the MFT solution by Eq. (3.32). The last term is the change

in the energy, at fixed Ṽ and µe, due to the addition of a single quasiparticle at the Fermi surface,

so we conclude that

µjg = E±(kF (njg), Ṽ (njg), µe(njg)) (3.37)

Here kF is any vector falling along the Fermi surface consistent with the filling njg, and the ±

means to choose the branch that yields a solution: there will only be one, since both branches are

monotonic functions of ng and they are separated by a gap. Solving Eq. (3.37) for njg on each

lattice site, while adjusting µg to obtain the correct total number of particles, constitutes the LDA
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Figure 3.4: Schematic ground-state mean-field phase diagram of the KLM as a function of chemical
potential µg and dimensionless coupling v. The black dotted lines are given by µg = ±∆H/2, which
crosses over from Kondo like scaling (∆H ∼ Jge

−1/v) at small v to linear scaling (∆H = Jgv) at
large v.

solution. The LDA gives us immediate access to many important groundstate properties, such as

the real-space and momentum-space density distributions.

3.3.3 Real space g atom density distribution

In order to understand the qualitative features of trapped g atom density distributions it is

helpful to plot the ground-state mean-field phase diagram in the µg − v plane [Fig. 3.4]. Moving

from the outside of the g atom cloud towards the center of the trap corresponds to moving from the

bottom to the top of the phase diagram along a line of fixed v. For sufficiently small Ng, we will

reach the trap center before entering the region of Kondo insulator, and therefore we expect to be

everywhere in the ng < 1 heavy fermion metallic state. If, however, we choose Ng sufficiently large,

we will breach the ng = 1 Kondo insulator phase and a unit filling plateau should develop at the

center of the trap. Increasing Ng further we will find that near the center of the trap we exit the

Kondo insulator phase into the ng > 1 heavy fermion metallic phase. This behavior is very similar

to the Mott plateaus of the Hubbard model [18, 51], only here we have a Kondo insulator and not

a Mott insulator. We also emphasize an unusual feature of the shell structure, that it exists in the

density distribution of g atoms, which do not interact with each other directly.

In Fig. 3.5(a) we demonstrate such a plateau for a symmetric trap geometry Ω(i) = Ωr2
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(b) Ṽ
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Figure 3.5: (a) The formation of a Kondo plateau between r1 and r2 at high trap fillings, obtained
within LDA. (b) The hybridization also displays the plateau, but as the density increases past
ng = 1 the hybridization goes back down. In both (a) and (b) the parameters used are Ng ≈ 550,
Ω/Jg = 45/1000, and v = 8.
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Figure 3.6: (a) The first Brillouin zone of a 2D square lattice. The central white region (within the
dotted circle) is the small Fermi sea of the translationally invariant KLM with a conduction atom
density ng ≈ 0.19. The shaded green region (within the solid red line) fills out the large Fermi sea
(the red solid line is the large Fermi surface, as defined in Section 3.3.4). The red dotted line (just
outside of the red solid line) is the large Fermi surface corresponding to a uniform filling equal to
the density at the center of the trap. Even when there are no conduction atoms the large Fermi
sea occupies half of the zone (within the dotted diamond), since there is still one localized atom
per site contributing to the volume. (b) Quasi-momentum distribution of the conduction atoms
plotted over one quadrant of the Brillouin zone, showing a prominent feature at the large Fermi
surface (red ribbon). (c) A 1D cut along the line ky = kx in (b), ñLDA[kx, kx] is the blue solid line,
and the large Fermi surface is the red dotted line. For all plots the parameters used are Ng ≈ 116,
Ω/Jg = 5/1000, and v = 8.

(where r is the distance of site i from the origin, in lattice units). This result was obtained by
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exploiting the rotational symmetry and solving a simpler 1D problem in the radial coordinate r.

We are still solving Eq (3.37), but now instead of µjg we use µrg = µg − Ωr2, and we rotate the

solution around the axis of cylindrical symmetry to obtain the plot in Fig. 3.5(a). Of course for

this to work the g atom cloud radius must be relatively large in lattice units, otherwise the lack

of rotational symmetry of the lattice itself would be relevant. The plateau also shows up in the

hybridization profile [Fig. 3.5(b)], however near the center of the trap the hybridization dips back

down. Physically this occurs because for ng > 1 some g atoms are forced to pair with each other

into singlets, reducing the number available to hybridize with the localized atoms.

Defining r1(2) to be the interior (exterior) radius of the plateau, it is clear from the argument

used to link Fig. 3.4 to Fig. 3.5 that Ω
(
r2

2 − r2
1

)
= ∆H. More generally, in an exact treatment of

the KLM the LDA solution will predict Ω
(
r2

2 − r2
1

)
= 2∆qp, where ∆qp, called the quasiparticle

gap, is the difference in energy between the unit-filled ground state and the lowest energy state

with one g atom added or removed (these are both the same because of particle hole symmetry)

[169]. Physically this result reflects the LDA assumption that transfer of density from one site to

another does not affect the energy to first order (dE(njg)/dnjg + Ω(j) = µg is constant across the

trap). Therefore the energy needed to add a quasiparticle at r1 (∆qp−µg + Ωr2
1) must be opposite

to the energy needed to remove one at r2 (∆qp + µg − Ωr2
2), giving Ω

(
r2

2 − r2
1

)
= 2∆qp.

At strong coupling, where the plateau is most visible, the exact quasiparticle gap of the KLM

can be calculated by considering a single site (due to the relatively small hopping) [169]. If on one

site we have ng = ne = 1 initially, adding or subtracting a g atom costs (3/4)Jgv = ∆qp. Therefore

we can be certain that for large v the plateau size should satisfy Ω(r2
2 − r2

1) = (3/2)Jgv. In this

limit ∆H = Jgv, so the MFT underestimates the size of the plateau in the strong-coupling limit.

3.3.4 g atom quasi-momentum distributions

At mean-field level a large Fermi surface arrises by assumption: By assigning a nonzero value

to the hybridization matrix element Ṽ , the e atoms are liberated into the Fermi sea. This is well

known, and proves nothing about the Fermi surface in the actual KLM ground state. However,
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as an example of how the structure of the large Fermi surface survives in the trap, we proceed to

calculate the quasi-momentum distribution in the LDA [64]. In the translationally invariant MFT,

there is a unique g atom quasi-momentum distribution

ñ[k, ng] = f [k, ng] |u(k)|2 (3.38)

associated with every possible filling ng, where f [k, ng] is the zero temperature Fermi function

for non-interacting electrons at a filling 1 + ng. The LDA approximation to the quasi-momentum

distribution is then obtained by summing ñ over the densities on each lattice site

ñLDA[k] =
∑

j

ñ[k, njg], (3.39)

where the njg are calculated as discussed in the previous section.

The existence of the trap introduces an unavoidable ambiguity in the definition of the small

and large Fermi surfaces, since the filling is affected by what one chooses as the system size (i.e.

should the sites outside of the g atom cloud be included?). However we find it reasonable, for the

sake of comparison, to choose the system size to be defined by the diameter of the g atom cloud.

Then the trap can be considered as a perturbation on the translationally invariant system that is

sufficiently small as to not force the density to zero anywhere. The large Fermi surface then belongs

to a translationally invariant system of this size containing the same number of conduction atoms

as there are in the trap. Applying this definition to ∼ 116 conduction atoms in the symmetric trap

of Section 3.3.3 (this time with Ω = 5Jg/1000), we plot the large Fermi surface as a solid red line

in Fig. 3.6(a). In Fig. 3.6(b) we plot the quasi-momentum distribution ñLDA[k] for the trapped

system alongside the large Fermi surface of the translationally invariant system.

It is worth appreciating that the large Fermi surface actually survives smearing by the trap

better than it would for free fermions. This is in part because in the averaging over the trap

only Fermi surfaces between the black and red dotted lines of Fig. 3.6(a) contribute (for free

fermions the averaging would contain arbitrarily small Fermi surfaces). Another reason is that, as

we approach the edge of the conduction atom cloud and the local Fermi surface recedes toward the

line |kx|+ |ky| = π, the height of the discontinuity also decreases to zero.
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3.4 Self-Consistent Diagonalization

In order to probe mass enhancement in the heavy fermion state we would like to study

dynamics of the conduction atom cloud in response to a trap displacement. This type of dynamics

has been shown to be an excellent diagnostic tool for strongly correlated systems in experiments

using bosonic as well as fermionic atoms [48, 163, 123]. At mean-field level this requires us to know

the self-consistent ground state; we must move beyond the LDA and self-consistently diagonalize

HM. Analytic progress is made difficult by the necessity to maintain site dependent hybridizations,

and we proceed numerically. We start by making an initial guess for the Ṽi and µie using LDA.

We then diagonalize HM numerically, calculate new Ṽi from Eq. (3.22), and repeat until the Ṽi

converge to a self consistent value. This process is complicated by the need to repeatedly determine

the µie that satisfy the constraint of one e atom per site on average (these will change every time

the Ṽi are updated). A discussion of the procedure we use to determine the correct µie can be

found in Appendix C.

To simplify the numerics, we consider a geometry where the potential changes only in the

longitudinal direction (length aLl and g atom hopping Jl), while the transverse direction (length

aLt and g atom hopping Jt) is homogenous with periodic boundary conditions. The motivation

for this unusual geometry is to retain a number of constraint equations equal to the longitudinal

length, thereby accessing relatively large system sizes (up to ∼ 1000 sites is reasonable). Adopting

a notation c†mnασ for the creation operators, where m labels the site in the longitudinal direction

and n labels the site in the transverse direction, we define partially Fourier decomposed operators

c†mkασ =
1√
Lt

∑

n

e−iknc†mnασ. (3.40)

Rewriting the nonconstant part of the mea- field Hamiltonian [Eq. (3.23)] in terms of these new

operators, it decouples into the sum of Lt effectively 1D Hamiltonians, which we label by the
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transverse quasi-momentum k ∈
{

2π
Lta

, ..., 2π
a

}
:

HM =
∑

k

Hk

Hk = −Jl
∑

〈i,j〉σ

c†ikgσcjkgσ + Vex

∑

iσ

Ṽi

(
c†ikgσcikeσ

+ c†ikeσcikgσ − Ṽi/2
)

+
∑

iσ

(µie − 1) c†ikeσcikeσ

+
∑

iσ

(
−2Jt cos(ka) + Ωi2

)
c†ikgσcikgσ. (3.41)

One can give a simple physical interpretation to these new Hamiltonians: the energy gained by

a g atom dispersing with quasi-momentum k in the transverse direction [2Jt cos(ka)] has been

incorporated as a chemical potential in a 1D model describing hopping in the longitudinal direction.

The eigenstates are created by quasiparticle operators

α†qkσ =
∑

i

(
uiqkc

†
ikgσ + viqkc

†
ikeσ

)
. (3.42)

Similar to Eq. (3.24), here q ∈ {1, 2, ...} is an index labeling the eigenstates in order of increasing

energy (for a given k). Unless the transverse bandwidth is smaller than the level spacing of the

harmonic potential (4Jt < 2
√

ΩJl), the different k modes cannot be expected to have the same

occupation numbers, which leads us to define k-dependent Fermi levels qkF . For a given k, qkF is the

smallest q for which the mode labeled by q and k is unoccupied. The ground state is

|Ψ〉 =
∏

kσ

∏

q<qkF

α†qkσ |0〉 , (3.43)

and the expectation value in Eq. (3.22) becomes

Ṽi =
∑

k

∑

q<qkF

(uiqkv̄
i
qk + ūiqkv

i
qk). (3.44)

3.5 Dynamics

3.5.1 Single particle dynamics in a trap

Before introducing dynamics in the MFT, we briefly mention some important details of

single-particle dynamics in a lattice plus harmonic potential [144, 134, 83, 145]. If there are no
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interactions, the trapping potential is parabolic with curvature Ω, and we work in 1D for simplicity,

then the g atoms are described by the Hamiltonian

H0 = −Jg
∑

〈i,j〉,σ

c†igσcjgσ + Ω
∑

iσ

i2c†igσcigσ. (3.45)

A single particle eigenstate |ψnσ〉 =
∑

i ψ
n
i c
†
igσ |0〉 has coefficients ψni given by the Fourier

components of periodic Mathieu functions, with the corresponding eigenvalue En determined by

the function’s characteristic parameter [144]. The solutions are complicated, but in certain limits

they have a very simple form. We will exclusively consider the limit where q ≡ 4Jg/Ω � 1. Then

1/
√
q is a natural small parameter for expanding both the eigenfunctions and eigenvalues, and to

lowest non-trivial order one obtains:

ψni ∼
√ √

2

2nn! (qπ2)1/4
exp

(
−ξ

2

2

)
Hn (ξ)

En ∼ Ω
4

(
−2q + 4

√
q

[
n+

1
2

]
− (2n+ 1)2 + 1

8

)
, (3.46)

where ξ ≡ i (4/q)1/4 and Hn are Hermite polynomials. In this approximation the expectation value

for the center of mass (COM) of the ground state, evolving due to a small displacement δ (measured

in lattice units), can be obtained in closed form (the motion of excited states is similar but slightly

complicated by various combinatorial factors):

〈X (t)〉 = δ exp

[
− δ

2

x2
sin
(

Ωt
8~

)2
]
×

cos
[(
ω∗ − Ω

4~

)
t− δ2

2x2
sin
(

Ωt
4~

)]
. (3.47)

In the above x ≡ (q/4)1/4 is a characteristic oscillator length (in lattice units) and ω∗ ≡ Ω
√
q/~ is

the characteristic frequency. It is interesting to note that there is periodic (non-dissipative) damping

of the oscillation amplitude. In the absence of the lattice this damping would be forbidden by the

generalized Kohn theorem [101], according to which COM oscillations in a harmonic potential

should be undamped under fairly general conditions.

It is important for our purpose in what follows to observe that the tunneling matrix element

is inversely proportional to the lattice-effective mass m∗ = (2Jga2/~2)−1. Therefore, the effective
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oscillator period (at which, for sufficiently large q, all low lying single particle modes oscillate) is

related to the mass as τ∗ = 2π
ω∗ ∼

√
m∗. In what follows, we take the periodicity (τ̃) of oscillations

to define the effective mass for the interacting system (m̃): m̃/m∗ = (τ̃ /τ∗)2.

3.5.2 Dynamics in 1D

In 1D, there are two limits in which dynamics can be calculated exactly: (1) v = ∞, where

the model can be mapped onto free fermions, and (2) the extreme dilute limit, in particular Ng = 1.

For a finite system, the results for a single conduction electron can be applied for at weak coupling

even for Ng > 1, as we discuss below.

3.5.2.1 Strong coupling

When v =∞ the ground state is formed by pairing each g atom into a spin singlet with one

e atom. For ng < 1, the singlets become mobile at first order in Jg, and there is an exact mapping

of the unpaired e atoms to the fermions of a U = ∞ Hubbard model (the singlets are the holes)

[108]. Because nearest neighbor hopping cannot exchange up and down spins, we can think of the

fermions as spinless [128], perform a particle hole transformation (now the singlets are the spinless

fermions), and thereby arrive at a simple Hamiltonian describing the g atoms:

H∞ = −Jg
2

∑

〈i,j〉

c†igcjg + Ω
∑

i

i2nig. (3.48)

The reduction of the hopping energy is the result of projecting out the high energy triplet states.

To highlight this strong coupling behavior, we again consider dynamics ensuing from a sudden

displacement of the trap center. If the system is strongly interacting, Eq. (3.48) avails a simple

treatment of these dynamics based on the non-interacting solutions in Ref. [144]. There the authors

found that for q � 1 and Ng . 4
√

2Jg/Ω the dynamics involved delocalized, free space harmonic

oscillator like states with level spacing ω∗ = Ω
√
q. At v =∞ we effectively have Ng → 2Ng (because

the fermions become spinless) and Jg → Jg/2, therefore the inequality can be violated at strong

coupling even when satisfied for the non-interacting system; localized states become populated, and
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Figure 3.7: (a) The blue line shows non interacting dynamics of 16 g atoms after displacement
of the trap by 5 lattice sites. The red line shows the same dynamics except now with v = ∞
(calculated using H∞). (b) (q = 800, v = 0.02) Polaron COM (grey solid line) oscillating after trap
displacement by 2 lattice sites. For comparison we plot cos(Vext) (blue solid line), showing that the
energy gap determines the time scale of amplitude modulation. The overall decay is a finite size
effect, and eventually revives.

transport is strongly inhibited [Fig. 3.7(a)].

3.5.2.2 Weak coupling

Another limit which is well understood in the FM phase of the translationally invariant

model is Ng = 1. Sigrist et al. [155] proved that the ground state of the KLM with L sites and one

conduction electron has total spin S = 1
2 (L− 1) even in the absence of translational symmetry,

and they described the excitations for the homogenous case as bound states between the g atom

and a flipped spin in the deep lattice (spin polaron). For a weak trap (q � 1) and at sufficiently

small coupling (Vex � ω∗), we characterize the polaron spectrum to lowest order in degenerate

perturbation theory and find that one eigenvalue separates from the rest by a gap of approximately

|Vex|. As seen in Fig. 3.7(b), this energy scale is manifest in the COM oscillations of a single g

atom as strong modulation of the oscillation amplitude with periodicity τ ≈ 2π
|Vex| , as verified by

dynamics calculated from the exact eigenstates.

For the finite system under consideration, we expect this behavior will persist for Ng > 1

whenever Ng is odd. This can be seen by noting that a single unpaired g atom at the Fermi
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level gains energy at first order in perturbation theory when coupling to the e atoms is turned on,

whereas the doubly occupied levels below it do so only at second order. It is worth noting that

the condition Vex � ω∗ is equivalent to demanding the perturbation stay smaller than the finite

size gap. For fixed lattice depth and peak g atom density, the gap scaling is ω∗ ∼ 1/R, with R the

Thomas Fermi radius of the g atom cloud (R ∝
√
NgJg/ω∗). This means that the demonstrated

modulations will be washed out with increasing |Vex| or with increasing g atom number, and are

manifestly a finite size effect.

3.5.3 MFT dynamics

In D> 1, we study dynamics in mean-field theory with the intention of capturing the mass

enhancement of the heavy Fermi liquid phase. Once we have solved for the MFT groundstate,

calculating dynamics is relatively straightforward. One can easily write down a time dependent

Schrödinger equation for the mode coefficients. Just as ψq (x) → ψq (x, t) in continuum quantum

mechanics, here we have a discrete analogy ujqk → ujqk (t), and likewise for the vjqk. The time

dependent discrete Schrödinger Eq. reads

− i~
dujqk
dt

= Jl

(
uj−1
qk + uj+1

qk

)
− Ω (j − δ)2 ujqk

+ 2Jt [cos(ka)]ujqk − VexṼjv
j
qk

−i~
dvjqk
dt

= −Ω (j − δ)2 vjqk − µjev
j
qk − VexṼju

j
qk. (3.49)

Eq (3.49) can be obtained formally by considering the coefficients in Eq (3.42) to carry the time

dependence and then solving the Heisenberg equations of motion for the quasiparticles

~
d

dt
α†qkσ = i

[
Hδk, α†qkσ

]
(3.50)

(Hδk being a shift of Hk by δ lattice sites).

There is one subtlety in the time evolution: although the exact KLM Hamiltonian has a

local U(1) symmetry to conserve the e atom density distribution, the MFT we have used does not:

the occupation of the localized band will certainly evolve in time, which we cannot allow. The
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solution is to let the chemical potentials be time dependent.5 It is easy to check that the first

time derivative of the e atom density does not depend on the chemical potentials, and hence the

constraints dnie/dt = 0 cannot determine the µie. Instead they must be chosen to satisfy the second

order constraints d2nie/dt
2 = 0. It follows directly from Eqs. (3.49) that dnie/dt = 0 initially, since

all the mode coefficients can be chosen to be real. Keeping the second derivative zero at all times

means the first derivative does not change; it will always be zero and the local constraints will be

obeyed. To find an explicit formula for the chemical potentials we first express the constraints in

terms of the mode coefficients:

d2

dt2
nie = 2

∑

k

∑

q<qkF

(
v̈iqkv̄

i
qk + viqk ¨̄viqk + 2v̇iqk ˙̄viqk

)
. (3.51)

Using the Schrödinger equation to evaluate the time derivatives in Eq. (3.51), some algebra leads

to:

µie =
−2Vex< [di]

2 (ci − fi)− Jl< [di (ai + bi)] + < [dixi]
< [di]

2 −= [di]
2 , (3.52)

where < and = are the real and imaginary parts respectively. The latin letters are defined as:

ai = 1
Lt

∑′
v̄iqku

i−1
qk bi = 1

Lt

∑′
v̄iqku

i+1
qk

di = 1
Lt

∑′
v̄iqku

i
qk fi = 1

Lt

∑′
v̄iqkv

i
qk

ci = 1
Lt

∑′
ūiqku

i
qk xi = −2Jt

Lt

∑′
v̄iqku

i
qk cos(ka)

where
∑′ ≡∑k

∑
q<qkF

.

Using Eq. (3.44) and (3.52) to write the Ṽi and µie in terms of the mode coefficients reduces

Eq (3.49) to a system of 4LtL2
l coupled first order differential equations, which can be integrated

with standard methods. We calculate the dynamics resulting from displacement of the trap by

one lattice site for fixed Jl, Jt, and Ω at several different values of Vex, and extract the period of
5 The time dependence of the chemical potentials can be traced back to the choice to make the hybridizations real

[Eq. (3.22)], and amounts formally to a choice of gauge. See Ref. [141] for a detailed discussion of gauge symmetry
in the mean-field theory we are using.
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Figure 3.8: (a) Here we plot the time evolution of the COM after displacement of the trap by one
lattice site (red line). The blue dashed line is the noninteracting dynamics for comparison. The
parameters used in this plot are q = 235, v = 4, Lt = 8, Ng = 40, and Jl/Jt = 2. (b) The effective
mass scales like m̃/m∗ ∼ (τ̃ /τ∗)2 (see the vertical axis): by extracting the period of oscillation from
several traces like the one in (a) at several different values of v we find significant enhancement of
the effective mass as v ; 1. The red circles are from self-consistent diagonalization of the MFT,
and the blue line is a guide to the eye.

COM oscillations (see Fig. 3.8). Since m̃/m∗ = (τ̃ /τ∗)2, Fig. 3.8(b) demonstrates the emergence

of heavy quasiparticles as we decrease v.

In the thermodynamic limit of the translationally invariant MFT, the density-of-states effec-

tive mass truly diverges as v → 0. This divergence is not physical, because for sufficiently small

v RKKY interactions lead to the development of magnetic order, at which point the paramag-

netic MFT is no longer valid [40]. In the trap, however, the effective mass does not diverge in

the small v limit, even within the MFT. This follows from the discreteness of the spectrum in the

non-interacting theory; when the hybridization energy Ṽ Vex becomes smaller than the energy spac-

ing, it cannot significantly change the system properties. Instead, as we decrease v the relatively

fast free particle oscillations emerge on top of the slow quasiparticle oscillations. Eventually, the

dynamics converges to that of the noninteracting system, as shown in Fig. 3.9.
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Figure 3.9: COM oscillations for decreasing values of v, showing how the fast free-particle dynamics
emerge on top of the slow quasiparticle dynamics. The red solid line is from MFT dynamics, and
the blue dotted line is the noninteracting solution. The parameters used in this plot are q = 235,
Lt = 1, Ng = 6, and Jl/Jt = 2.

3.6 Experimental Considerations and Outlook

In order to obtain the heavy fermion metallic groundstate, it is necessary to prepare a Mott

insulator of e atoms coexisting with a dilute cloud of g atoms. To realize the SU(2) symmetry of the

KLM under consideration only two hyperfine states should be initially populated. In consideration

of the lossy nature of e-e scattering, the starting point we envision is a Mott insulator of g atoms

with doubly occupied sites in the center of the trap. Such a configuration can be obtained by

making the lattice for g atoms sufficiently deep and the parabolic trap sufficiently tight. The deep

lattice for the e atoms is unoccupied but already established. Taking advantage of the mean-field

energy shift associated with double occupied sites, it is in principle possible to make the transfer

|gg〉 → (|eg〉+ |ge〉) /
√

2 with high efficiency. The sites occupied by a single g atom (at the edge of
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the trap) can also be addressed independently, transferring the atoms on them into the e lattice.

If the g lattice is adiabatically lowered, we are left with the configuration desired. For sufficiently

large v this procedure can also yield a unit filling plateau at the trap center (the Kondo insulator),

but to observe the second layer in the shell structure discussed in Section 3.3.3 (which has 3 atoms

per site in the center of the trap, 1 e and 2 g), the trap should be adiabatically tightened until

ng > 1 at the trap center.

The observation of dipole oscillations over a small number of lattice sites (. 8) has precedent

in several experiments done with alkali-metal atoms [48, 163]. Usually the COM velocity of the

cloud as a function of time is measured directly by TOF imaging, and the COM position is inferred

from simple kinematics. There are also promising proposals to measure the COM expectation value

in a non-destructive and precise manner by coupling the atomic motion to unpumped cavity modes

[131] (the COM motion is inferred indirectly by its relationship to measurable quadratures of the

photon field.)

For the above mentioned experiments to be feasible, it is important that the requisite temper-

atures are within the reach of current technology. In real metals heavy fermion behavior develops

only below the Kondo temperature TK ∼ Jge
−1/v. For v � 1, which is always the case in heavy

fermion metals, the exponential suppression guarantees that TK is always well below the Fermi

temperature of the non-interacting conduction electrons, and that the mass enhancement (which

scales as T−1
K ) is extremely large. However one should not think of the smallness of TK as being fun-

damental to heavy fermion behavior, but simply as the result of the bare parameters (v � 1) which

happen to exist in real metals. A larger Kondo temperature can always be obtained by choosing

a larger v, at the cost of reducing the mass enhancement. By artificially creating the KLM in an

optical lattice and choosing v ∼ 1 the Kondo temperature could be estimated as TK ∼ Jg ∼ Vex.

Therefore the temperature need only be smaller than the interaction energy, which is a much better

situation than one encounters in proposals to observe super-exchange or RKKY type physics.



Chapter 4

A bosonic Kondo lattice model with alkali atoms

4.1 Introduction

In this chapter we will revisit a version of the KLM first proposed in Ref. [42], in which the

electrons are replaced by spin-1
2 bosons, with the spin degree of freedom encoded in two hyperfine

states of an alkali atom. There are primarily two reasons for doing so: (1) experiments with

bosonic alkali atoms are in many ways the most advanced of all ultracold atom experiments, and

the technologies involved in cooling and manipulating these atoms are the best developed. (2)

As we will see, obtaining an antiferromagnetic Kondo-like interaction using repulsively interacting

alkali atoms (being repulsive makes them stable against collapse or pairing) with only two internal

degrees of freedom demands that we use repulsively interacting bosons. Moreover, by using bosons

we might hope to retain some remnants of Kondo-like physics in a situation where calculations are

more tractable than for fermions.

Our primary new finding is that, for any small but nonzero Kondo coupling, the typically

continuous superfluid (SF) to Mott insulator (MI) phase transition becomes first-order. The qual-

itative difference between the pure Hubbard and Kondo-Hubbard model, even at arbitrarily weak

Kondo coupling, is reminiscent of similar results for the Fermi Kondo-Hubbard model obtained

in Ref. [7]. That the inclusion of small inter-band interactions (which are often relevant in real

materials) can have such a dramatic effect on the Bose Hubbard phase diagram underscores the

importance of generalizing optical lattice simulations to include orbital degrees of freedom.

The structure of this chapter is as follows. The experimental implementation of the Bose
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Kondo-Hubbard model is discussed in Sec. 4.2. This section deviates from the original proposal

[42] in that we emphasize the essential role of lattice non-separability in obtaining the model in

more than one spatial dimension. We begin our investigation of the model’s phase diagram in Sec.

4.3, where we derive effective spin Hamiltonians valid in the weak coupling (Sec. 4.3.1) and strong

coupling (Sec. 4.3.2) limits in order to understand the magnetic properties of the SF and MI phases.

We then employ an analytic treatment of Gutzwiller mean-field theory (MFT) in Sec. 4.4 to map

out the ground state phase diagram. At mean-field level, one can observe the interplay of two

competing tendencies: Superfluidity of the conduction bosons tends to spontaneously break SU(2)

symmetry, whereas the Kondo interaction prefers a rotationally symmetric ground state composed

of localized singlets. While the rigidity of the superfluid protects it from magnetic fluctuations,

we will see that these fluctuations give rise to a metastable MI of Kondo singlets, causing the

MI to SF transition to become first-order. Such a first-order transition has been realized—and

confirmed by Quantum Monte Carlo—in the spin-1
2 boson model of Ref. [34]. In Sec. 4.5.1 we

consider experimental details related to dynamically maintaining a two-band model. In particular

we discuss the implementation of the model, and the relevant parameter regimes, using the non-

separable lattice of Ref. [153]. In Sec. 4.5.2 we discuss the preparation of the unit-filled MI phase.

We then suggest the possibility of experimentally observing the first-order transition by ramping

down the lattice to enter the SF regime; due to the discontinuous nature of the phase transition,

even an arbitrarily slow ramp should excite collapses and revivals of the superfluid order parameter.

In Sec. 4.6 we summarize our findings and their relevance.

4.2 The model

Everything that follows assumes a three dimensional (3D) optical lattice I(r) + Iz(z) pop-

ulated by bosonic alkali atoms with mass m and s-wave scattering length as. Here r = {x, y}

is a vector living in the x-y plane. The model itself will be two dimensional (2D), which can be

achieved by choosing Iz(z) to be sufficiently deep (to freeze out tunneling in the z-direction), and

loading every atom into a Wannier orbital wz0(z) of the lowest band of Iz. With the exception
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of the integral χ ≡
∫
dz wz0(z)4, which will appear in the interaction matrix elements below, we

will from now on ignore the existence of the z-direction completely. We assume that all atoms are

initially in the F = 1 hyperfine manifold and have mf = ±1, in which case two colliding atoms

can have total F = 0, 2 (F = 1 is not allowed for s-wave interacting bosons because it implies a

wavefunction that is antisymmetric under particle exchange). In 87Rb, the similarity of scattering

lengths for total spin F = 0 and F = 2 collisions (denoted a0 ≈ a2 ≡ as), together with the ability

to offset the mF = 0 state via the quadratic Zeeman effect [2, 81], strongly suppresses spin changing

collisions into the mF = 0 state. This justifies considering only two internal states (mF = ±1) for

times long after the initial preparation, and we label these two internal (spin) degrees of freedom

by σ =↑, ↓. At sufficiently low temperatures, the full interatomic potential can be replaced with an

s-wave pseudopotential [47, 85] Vs(rrel) = δ(rrel)4πas~2/m, where δ(rrel) is the 3D delta function

and rrel is the (3D) relative vector between two colliding atoms.1 Neglecting nearest neighbor

interactions, but for the time being making no approximations for the band degree of freedom α,

the Hamiltonian describing this system is

H =
∑

ijασ

Jαijα
†
iσαjσ +

∑

jα

Uα
2
n̂jα(n̂jα − 1) +

∑

j,α>β

Vαβn̂jαn̂jβ (4.1)

+
∑

j,α>β,σσ′

Vαβα
†
jσβ
†
jσ′αjσ′βjσ +

∑

j,{α,β}6={γ,δ}

Wαβγδα
†
jσβ
†
jσ′γjσ′δjσ. (4.2)

In general there should also be a term accounting for the mean band-energies. However, in con-

sideration of the forthcoming approximation that there are no band changing collisions, which will

render such terms conserved quantities, we ignore them from the outset. In Eq. (4.1), α†jσ cre-

ates a spin-σ boson in a Wannier orbital wα(r − rj) belonging to the αth band of I(r), located

on the lattice site centered at rj . The density operator for bosons on site j in the αth band is

1 In general, the pseudopotential should be regularized and the scattering length should depend on momentum.
The regularization can be disregarded when treating the interaction in first-order perturbation theory, which is valid
for any lattice model truncated to bands in which the single-particle wave functions oscillate on a length scale lsp
that is large compared to the scattering length as (which is certainly the case for 87Rb in the first several bands of
an optical lattice). The momentum dependence can be ignored whenever the effective range of the true interatomic
potential is much smaller than lsp [13], which is also an excellent approximation.
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n̂jα =
∑

σ α
†
jσαjσ, and the various parameters are given by

Jαij =
∫

d2rwα(r − ri)
[
I(r)− ~2∇2

2m

]
wα(r − rj)

Uα =
4π~2asχ

m

∫
d2rwα(r)4

Vαβ =
4π~2asχ

m

∫
d2rwα(r)2wβ(r)2

Wαβγδ =
2π~2asχ

m

∫
d2rwα(r)wβ(r)wγ(r)wδ(r). (4.3)

The notation {α, β} 6= {γ, δ} means that these two sets of indices cannot contain identical elements,

and is introduced so that the final term inH contains all (and only) scattering processes that change

the band populations on a given site. The hoppings Jαij are so far unspecified; in order to obtain

a 2D model, we only require that, for a given α, all such hoppings emanating from one site to its

nearest neighbors are similar in magnitude. To set the overall scale of kinetic energy we define the

effective hopping strength Jα = 1
4

∑
i |Jαij |,2 which does not depend on the site index j.

We further restrict our attention to an initial state with one atom per site in the lowest

vibrational band (b band, or localized band) of I(r), and an average of n atoms per site in a

single excited band (a band, or conduction band). The assumption that these conditions will

be maintained dynamically, a necessary condition for obtaining a bosonic Kondo model, amounts

to disregarding all of the Wαβγδ terms in Eq. (4.1). In previous works [86, 125, 157], such an

approximation has been justified largely by the restricted density of states in an optical lattice.

Very roughly, the argument is that when interactions are small compared to typical band gaps,

and if the bands themselves are narrow, then band changing collisions tend to be off resonant and

strongly suppressed. Here we point out a notable exception to the validity of this reasoning, which

to our knowledge has not been previously described in the literature. This exception affects the

implementation of the Kondo-Hubbard model, and also of the multi-flavor models described in Ref.

[86].

For a lattice that can be written I(r) = Ix(x) + Iy(y), a Wannier orbital in the a band

2 The factor of 1
4

is so that Jα agrees with the usual hopping integral in the case of nearest neighbor hopping on
an isotropic square lattice.
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Figure 4.1: In (a) we plot an energy level diagram for states |00〉 (S band), |10〉 (Px band), |01〉 (Py
band), |20〉 (Dx2 band), |02〉 (Dy2 band), and |11〉 (Dxy band). The resonant scattering process
(due to the Wαβγδ terms in H) that transfers atoms from the initially populated S and Dxy bands
into the Px and Py bands is shown in (b).

can be written wa(r) = wxax(x)wyay(y), whereas a Wannier orbital in the b band can be written

wb(r) = wx0 (x)wy0(y). To have a 2D model, it must be true that hopping in both the x and

y directions is greater in the conduction band than in the localized band, and hence ax, ay > 0.

Because of the separability of the non-interacting part of the Hamiltonian in the x-y basis, the state

|00〉 ⊗ |axay〉 [describing a single site with one atom in wx0 (x)wy0(y) and one atom in wxax(x)wyay(y)]

is, even in the presence of interactions, exactly degenerate with the state |0ay〉⊗|ax0〉. Furthermore,

these states are connected by the interaction term W with a matrix element equal to twice the

exchange integral V between the conduction and localized orbitals (see Appendix D). The situation

is depicted graphically in Fig. 4.1 for the case where ax = ay = 1, and the states |00〉, |10〉, |01〉, and

|11〉 belong to the S, Px, Py, and Dxy bands respectively. The Px and Py bands will be populated

via collisions on a timescale τ = π/V ; this is unacceptable, since τ will turn out to be the timescale

for singlet formation, and one can’t expect to see Kondo like physics if the approximations yielding

the model break down so quickly. The way around this problem is to use an optical lattice potential

which cannot be separated in cartesian coordinates. In section 4.5.2 we will give an example of an

existing non-separable lattice which is favorable for avoiding this problem, but for the time being

we continue with the approximation that the Wαβγδ can be ignored.

If the atoms in the b band are deep in the unit-filled MI regime, and we drop terms that are
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therefore constant, then H can be reduced to a bosonic Kondo-Hubbard model [42]

HK = −
∑

ijσ

Jija
†
iσajσ +

U

2

∑

j

n̂ja(n̂ja − 1)

+ 2V
∑

j

Sja · Sjb − µ
∑

j

n̂ja. (4.4)

In Eq. (4.4) a chemical potential has been included to facilitate the forthcoming mean-field treat-

ment, and the spin operators are defined by Sjα ≡ 1
2

∑
σσ′ α

†
jστσσ′αjσ′ , with τ being a vector whose

components are the Pauli matrices. In order to avoid a clutter of indices, we have defined V ≡ Vab,

Jij ≡ Jija (and J ≡ Ja), and U ≡ Ua. Because V has the same sign as as, the Kondo interac-

tion is antiferromagnetic (AFM) for repulsive interactions, which is a manifestation of Hund’s rule

adapted for bosons: Antisymmetrization of the spin wave function for two identical bosons requires

the antisymmetrization of their spatial wave function, thus keeping them apart and lowering the

energy cost of repulsive interactions.

4.3 Effective spin models

In the presence of the Kondo term, one still expects the conduction bosons to undergo a MI

to SF phase transition at unit filling (n = 1) as the ratio U/J is varied. However, the magnetic

properties of these phases will be heavily influenced. The goal of this section is to study magnetic

ordering in the SF and MI phases by deriving effective spin Hamiltonians that are accurate in

either the weak coupling or strong coupling limits. The results presented are meant to reinforce

and complement the mean-field picture that will subsequently be developed.

4.3.1 Weak coupling

In the fermionic KLM at V = 0, the localized spins are decoupled from the conduction

electrons, giving rise to a large spin degeneracy in the ground state manifold. The lifting of this

degeneracy is the result of virtual excitations of the conduction electrons from below to above

the Fermi-surface, which mediate long ranged couplings between the localized spins known as the

Rudderman-Kittel-Kasuya-Yosida (RKKY) interaction [146, 93, 176]. In dimensions greater than
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one, the RKKY interaction is believed to stabilize long-range magnetic order in the KLM ground

state [93]. The primary difference in the bosonic model is that the V = 0 spin degeneracy extends to

the conduction band, where the ferromagnetic superfluid can point in any direction. Surprisingly,

this additional freedom actually simplifies the situation; the degeneracy will now be lifted at first

(rather than second) order in V , and at this order the effective Hamiltonian can be solved exactly.

Although we are not considering the presence of a confining potential in this chapter, in order

to preserve the greatest generality in the ensuing discussion we will state our results in terms of

arbitrary single particle eigenstates ψr(j) and eigenvalues εr for a lattice plus trap. At V,U = 0, the

ground state is formed by putting all conduction bosons in the single particle wavefunction ψ0(j)

and has a degeneracy of (Na + 1)× 2N , where N is the number of lattice sites (also the number of

b atoms), and Na is the number of a atoms. It is useful to define the functions Grjl = ψ∗r (j)ψr(l), in

terms of which the spin density operator for a conduction boson in the single particle groundstate

is

S0
a =

1
2

∑

jl

G0
jl

∑

σσ′

a†jστσσ′alσ′ . (4.5)

Projection ofHK onto the degenerate groundstate manifold yields an effective weak coupling Hamil-

tonian that is first order in the Kondo coupling V

H(1)
wc = 2V S0

a ·
∑

j

G0
jjSjb. (4.6)

The first order energy shift due to U has been dropped because it does not lift the spin degeneracy.

Equation (4.6) describes the so-called central spin model, which is familiar in the context of electron

spin decoherence in quantum dots [95]. In the application to quantum dots, the model describes

coupling between the spin of an electron in the dot and the nuclear spins of the atomic lattice in

which the dot sits, with a coupling function determined by the square of the electron’s wavefunction.

In the present case, the condensate atoms are Schwinger bosons representing the central spin S0
a,

which couples to the mutually non-interacting localized spins with a coupling function given by

the square of the condensate wavefunction. The central spin model has been studied extensively

in the literature, and exact solutions have been obtained by Bethe ansatz [63]. However, for a
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translationally invariant system H(1)
wc can easily be diagonalized by rewriting it in terms of the

conserved quantities sb, sa, and s, where sα is the total spin quantum number of Sα =
∑

j Sjα, and

s is the total spin quantum number of the combine spin Sa +Sb. The ground state is formed when

the localized spins align fully ferromagnetically (sb = N/2), and then their total spin Sb couples

as antiferromagnetically as possible to the condensate spin Sa (s = N
2 |n− 1|).

Second-order perturbation theory in the Kondo exchange generates a correction to the weak

coupling Hamiltonian

H(2)
wc = −nNV 2

∑

j,l

RjlSjb · Slb

+ 2V 2Sa ·
∑

j

RjjSjb, (4.7)

where Rjl =
∑

r GrjlG0
lj(εr)

−1 [see Appendix E for a derivation of Eq. (4.7)]. The first term in Eq.

4.7 is the bosonic analog of the RKKY interaction for fermions, and has the same physical origin;

a spin at site j scatters an a atom out of the condensate, which then re-enters the condensate upon

scattering off the spin at site l, and in this way the two spins talk to each other. The second term,

which renormalizes the spin couplings of H(1)
wc , reflects the ability of the scattered boson to return

to the condensate with its spin flipped. Such a term is absent for fermions because Pauli exclusion

principle prevents a conduction fermion from returning to the Fermi sea with its spin flipped.3

Unlike the RKKY term this correction is local in space, a property that can be attributed to the

cancellation of time reversed scattering processes involving more than one localized spin (the sign

for such a scattering process depends on whether the spin flip occurs when the conduction atom is

exiting or returning to the condensate).

Although the first term has the same physical origin as RKKY for fermions, an important

difference arrises due to the structure of the coupling function. In the fermionic case, the Fermi

surface introduces a length scale k−1
F , at which the long-range coupling oscillates. For noninteracting

bosons there is no such length scale, the coupling function R does not oscillate, and one can

show that it is strictly positive at any finite separation for a translationally invariant system in
3 This is strictly true in the thermodynamic limit. For a finite fermionic system an intensive central spin like term

exists whenever the number of conduction fermions is odd.
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the thermodynamic limit. Thus any groundstate of H(1)
wc automatically minimizes H(2)

wc , and the

polarization of the localized spins persists to second order in V (note also that the renormalization

of the central spin coupling constants by the second term in H(2)
wc is toward larger positive values).

It should be noted, however, that NRjj diverges logarithmically with the system size in 2D,

suggesting that the energy cannot actually be expanded in powers of V . Nevertheless, the existence

of exclusively ferromagnetic (FM) terms in the first two orders of perturbation theory strongly

suggests a FM ground state at weak coupling. We note that at unit filling, the true groundstate

of Hwc is a singlet (s = 0), but nevertheless the superfluid and the localized spins are aligned

ferromagnetically within themselves (sa = sb = N
2 ). That sb = N

2 means that all off-diagonal

elements of the correlation function

χjl = 〈Sjb · Slb〉 (4.8)

obtain the maximum value of 1
4 . Hence when we say that the n = 1 superfluid phase is FM,

we mean that ferromagnetism exists independently within the superfluid and within the localized

spins.

4.3.2 Strong coupling

We will take the strong coupling limit to be defined by U � J , for any V , and for simplicity

we will restrict our discussion to the case of commensurate filling in the conduction band. However,

we will see that a similar limit arrises for V � J and any U when the a atoms are at unit filling.

For integer n ≥ 1 the ground state is a MI with n conduction bosons per site. The eigenstates on

a single site follow from the addition of angular momenta Sja +Sjb ≡ Sj , and therefore have total

spin quantum number s±j = (n± 1)/2. Because the interaction is AFM, the eigenstate with lower

total spin is the ground state, and the MI phase with density n must have total spin (n − 1)/2

at each site. If on a single site we label the state by its total spin quantum number sj and the z

projection of total spin szj , then the n filling MI at J = 0 is given by

|MIn〉 =
⊗

j

|(n− 1)/2, szj 〉, (4.9)
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and it has energy per site En = U
2 n(n−1)− V

2 (2 +n). For n = 1 each site contains a singlet |0, 0〉j ,

spin excitations are gapped (∆s = 2V ), and the ground state is PM. We also note that for unit

filling the charge gap is ∆c = U +V , and does not vanish as U → 0. Hence the unit-filled MI exists

whenever either U or V is large compared to J .

States with n ≥ 2 can be obtained from the singlet by repeated application of the a atom

creation operators:

|s−j , szj 〉 ∝ (a†j↑)
s−j +szj (a†j↓)

s−j −s
z
j |0, 0〉j . (4.10)

It is interesting to note that for a MI phase with n ≥ 2 the charge gap is given by ∆c = U , and has

no dependence on V . Therefore the limit V � J alone does not yield a MI in this case. Because

the states |s−j , szj 〉 are degenerate (szj = −s−j , ..., s−j ), it is possible to derive an effective super-

exchange Hamiltonian between the total spins on neighboring sites by perturbation theory in the

hoppings Jij . The calculation—though complicated by the existence of virtual excited states with

two possible total spin quantum numbers—is straightforward, and yields an effective Hamiltonian

that only contains the total spin operators Sj

Hsc = −g(n)
∑

ij

J2
ij

U
Si · Sj . (4.11)

In Eq. (4.11),

g(n) =
4n+ 8

(n+ 1)2

(
V (n+ 1)2 + U(n+ 2)2

V n+ U

)
(4.12)

is a strictly positive, density dependent coupling constant, and we have dropped an overall density

dependent energy shift. The ground state is therefore FM with total spin N
2 (n − 1), and, unlike

for the n = 1 MI, there is no spin gap. Notice that this result for the total spin also holds for the

weak coupling case, although the nature of the FM state is completely different in the two limits.

While the inter-site spin correlations between the localized spins are maximized at weak coupling,

in the strong-coupling limit we find the diminished correlation χjl = 1
4(n−1
n+1)2, which vanishes when

n = 1.
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Figure 4.2: (a) Mott lobes in theM−J plane, with J plotted in units of Jc = (3 +
√

8)−1, which
is where the single band mean-field transition occurs at unit filling. The red solid lines depict the
boundaries of Mott lobes for V = U/2, given by MKH

n (J , 1/2). The blue dashed lines are the
boundaries of Mott lobes for the single band boson Hubbard model, denoted MH

n (J ). These have
been shifted up by V = 1/2 along the M-axis in order to more easily compare their widths with
those of the Kondo-Hubbard lobes. The red dotted line is the boundary MKH

1 (J , 0), which does
not agree with MH

n (J ). In Fig. 4.2(b) we plot the phase boundary of the n = 1 MI in the J -V
plane. The solid blue line demarks a continuos transition, while the red dotted line demarks a first-
order transition. Fig. 4.2(c) shows the superfluid order parameter ψ in the J -V plane, showing
the discontinuity along the first-order portion of the phase transition.

4.4 Mean Field Theory

As was shown by a numerical analysis of the Gutzwiller variational ansatz in Ref. [42], in

the presence of the localized spins the a atoms continue to exhibit a MI to SF phase transition

at commensurate filling. Here we adopt an alternate but equivalent description of the Gutzwiller

variational ansatz as a site-decoupled mean-field theory (MFT) [50], and obtain an analytical

description of the phase transition. The motivation for this mean-field treatment is that (1) it

semi-quantitatively describes the MI to SF phase transition of bosons in D > 1 and (2) the new

features of the present model—the Kondo term—are entirely local, and thus are included without

further approximation.

The starting point of Gutzwiller mean-field theory is the decoupling of the kinetic energy

term

a†iσajσ → 〈a
†
iσ〉ajσ + a†iσ〈ajσ〉 − 〈a

†
iσ〉〈ajσ〉 (4.13)

Assuming that the mean-field order parameter ψσ = 〈ajσ〉 is translationally invariant, and defining
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J = 4J/U , V = V/U , and M = µ/U , we can rewrite the exact Hamiltonian HK as a sum over

identical Hamiltonians defined at each site (any one of which we call the mean-field Hamiltonian):

HGA = −J
∑

σ

(ψσa
†
σ + ψ∗σaσ) + J

∑

σ

ψ∗σψσ

+
1
2
n̂a(n̂a − 1) + 2VSa · Sb −Mn̂a. (4.14)

The mean-field ground state is obtained by minimizing EGA(ψσ) ≡ 〈HGA〉 with respect to ψσ. The

order parameter describes the formation of superfluid coherence; if ψσ is finite, then by virtue of

having to point somewhere it describes a state that spontaneously breaks SU(2) symmetry, as the

superfluid should. On the other hand, ψσ = 0 is the signature of a Mott insulator phase, in which

number fluctuations are suppressed and phase coherence vanishes. Because HGA is invariant under

the U(1) gauge transformations aσ, ψσ → eiθσaσ, e
iθσψσ, we are justified to choose both components

of our spinor order parameter to be real. Physically, this choice amounts to confining any superfluid

that arrises to live in the x− z plane, since the y component of the (vector) superfluid density

ρ =
∑

σσ′

ψ∗στσσ′ψσ′ (4.15)

vanishes when ψ∗σ = ψσ. It should be understood in what follows that this apparent broken

symmetry is an artifact maintained for simplicity.

The mean-field Hamiltonian can easily be solved numerically by truncating the single-site

Hilbert space to contain no more than some finite number of a atoms. However, much insight

can be gained by proceeding as far as possible analytically. If one makes the assumption that the

SF to MI transition is continuous, then the mean-field phase boundary is described exactly by

perturbation theory in ψσ. We want to emphasize from the beginning that this assumption will

later be shown to break down in certain parameter regimes. Nevertheless, with this assumption in

mind one writes the mean-field energy as

EGA = A(J ,V,M) + B(J ,V,M)ψ2 +O(ψ4), (4.16)

where ψ2 ≡∑σ ψ
2
σ is the superfluid density, and the phase boundary is determined by the condition

B = 0. That EGA can be written as an even function of ψ follows from the symmetries of HGA.



82

For a Mott lobe of filling n, the groundstate at finite V is in general degenerate (see Sec. 4.3.2),

and B must be found by calculating the lowest eigenvalue of the effective Hamiltonian

Heff = J 2
∑

nσσ′

ψσψσ′
(a†σ + aσ)|n〉〈n|(a†σ′ + aσ′)

E0 − En
. (4.17)

When n = 1 the MI ground state is unique (the singlet), and while degenerate perturbation

theory is unnecessary it is not wrong (we simply end up finding the eigenvalue of a 1 × 1 matrix,

which is of course its only entry). Some algebra reveals that the above effective Hamiltonian can

be rewritten in the following sensible form

Heff = J 2c1(V,M, n)ρ− J 2c2(V,M, n)ρ · S, (4.18)

where S = Sa +Sb, the coefficients c1 and c2 (obtained by straightforward by tedious algebra) are

given by

c1 =
1

2n

(
n2 + 2n
M−V − n −

n2 − 1
1 +M−V − n −

1
1 +M−V + Vn− n

)
(4.19)

c2 =
−1

n2 + n

(
n2 + 2n
M−V − n −

(n+ 1)2

1 +M−V − n +
1

1 +M−V + Vn− n

)
, (4.20)

and the vector superfluid density ρ acts as a magnetic field. It is not hard to show that c2 is

strictly positive,4 and as a result minimization of Heff is achieved when S points along the magnetic

field. This result makes perfect sense, since it amounts to self consistency in the direction of the

order parameter. Because the quantum number of total spin in the unperturbed groundstate is

s = (n− 1)/2, we find

B(n) = J 2

(
1
J + c1(V,M, n)− c2(V,M, n)

n− 1
2

)
. (4.21)

B(n) = 0 determines the boundary of the n-filling Mott lobe, which we will denote byMKH
n (J ,V).

The first three lobes are shown in Fig. 4.2(a). Notice that the width of the n = 1 MI is increased

(from 1 to 1 +V along theM axis), while the widths of the higher filling lobes are unaffected. The

reason for this goes back to the discussion in Sec. 4.3.2, where we pointed out that the charge gap

is given by ∆c = U(1 + V) for the n = 1 MI and by ∆c = U for an n ≥ 2 MI.
4 For a given n > 1, the Mott lobe is bounded below by V + n − 1 and above by V + n, and it is within these

constraints that the coefficient c2 is strictly positive.
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Figure 4.3: Schematic illustration of the mean-field energy, demonstrating the mechanism that
drives the SF to MI phase transition first-order. (a) and (b) show the two forms that EGA can take
when V = 0, (a) in the MI phase and (b) in the SF phase, with the order parameter spontaneously
breaking SU(2) symmetry by choosing a particular direction. In (c) we show a possible scenario
for a small nonzero V. The superfluid is weakly affected (being rigid against spin fluctuations),
but when the order parameter is small magnetic fluctuations are allowed, reducing the energy and
causing the formation of a metastable MI phase.

At this point we are in a position to see that something is wrong with the phase boundaries

as they have been presented so far [the solid red lines in Fig. 4.2(a)]. Explicit calculation yields

the boundaries at zero Kondo coupling

2MKH
n (J , 0) = 2n− 1− J ±

√
(J − 1)2 − 4J n− 4J

n+ 1
(4.22)

whereas the mean-field phase boundaries for the single-band Bose Hubbard model are given by

2MH
n (J ) = 2n− 1− J ±

√
(J − 1)2 − 4J n, (4.23)

which only agree at J = 0. But the conduction bosons of the Kondo-Hubbard model certainly are

governed by the single band Bose Hubbard model at V = 0, since they don’t talk to the localized

spins. What has gone wrong? The problem is that Eq. (4.22) was derived by assuming that the

mean-field ground state in the MI phase has s = (n−1)/2, which is true whenever V > 0. However,

there are also the excited spin states with s = (n+ 1)/2, separated from the ground state manifold

by ∆n = V(n+ 1), which have been ignored. Formally, such a procedure is correct for any finite V,

so long as Jψ � ∆n is satisfied. As V → 0, the range of validity shrinks, until eventually at V = 0

the perturbative results break down for any finite ψ.
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Once this issue is understood, it becomes clear that the phase transition must in fact be

first-order, and the argument is as follows. If we sit somewhere in the red shaded region of Fig.

4.2(a), at V = 0 the system is a superfluid (since we are outside of the dashed blue line, which

is correct at V = 0), and so EGA looks like it does in Fig. 4.3(b). Now as we turn on small but

finite V, a local minimum of the energy must immediately develop at ψ = 0 [see Fig. 4.3(c)], since

perturbation theory has a finite range of validity in ψ and predicts B > 0 [a Mott insulator, see the

red dotted curve in Fig. 4.2(a)]. As V becomes larger, the range of validity for the perturbative

result Eq. (4.22) increases, until eventually the ψ = 0 minimum must be the global minimum;

at this point there is a first-order transition into a Mott insulator of Kondo singlets. Notice that

the first-order transition is not tied to the development of a cubic term in the energy, as is often

the case, but rather results from the negative contributions of even powers of ψ beyond ψ2. By

numerically solving the mean-field Hamiltonian we can obtain the first-order phase boundaries,

defined by where the metastable MI and the superfluid become degenerate. The boundary for the

first Mott lobe is shown in Fig. 4.2(b), whereas the discontinuous jump in the order parameter

across this boundary is shown in Fig. 4.2(c).

While the above argument is quite rigorous, it offers little physical insight into what is really

going on; there is a more intuitive argument that explains the existence of the metastable MI phase

and pinpoints the general features of our model that give rise to it. The superfluid ground state

has, in a sense to be made precise shortly, a certain rigidity against spin fluctuations. Denoting

the V = 0 mean-field ground state |〈Sb〉,ρ〉, and letting ρ̂ = ρ/ψ2 be a unit vector in the direction

of the superfluid, one might guess that turning on a small V causes the groundstate to be the

singlet-like | − 1
2 ρ̂,ρ〉 − |12 ρ̂,−ρ〉, gaining 3V/2 from the Kondo term. However, it can be seen that

such a state actually has ∼ Jψ2 more kinetic energy than the mean-field ground state at V = 0.

Hence when Jψ2 & V, rather than fluctuating its spin the superfluid will just anti-align with the

localized spin, gaining only V/2 from the Kondo term. Notice that this rigidity is purely kinetic in

origin, and that the mean-field ground state for small V agrees, both in form and energy, with the

lowest order results of Sec. 4.3.2. On the other hand, when Jψ2 . V, the superfluid gains more
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Figure 4.4: (a) Plot of I(x, x), with the wave functions wa and wb shown schematically. (b) A
contour plot of I(x, y), showing the primary hoppings. The resulting spectrum in the a band is
plotted as a function of quasi-momenta qx and qy (c), and can be fit to a tight-binding model with
hoppings Jx, Jy, and Jxy [see (b)].

energy from the Kondo term by fluctuating its spin than it looses in kinetic energy, and hence its

energy decreases by 3V/2. The tendency of the mean-field energy to be lowered more for small ψ

than for large ψ is what enables a local minimum at ψ = 0 to arise.5
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4.5 Experimental details

4.5.1 The optical lattice

As a specific example of how the approximations and parameters considered in this chapter

can be obtained in an optical lattice, we consider the 2D potential of Ref. [153]

I(x, y) = −4Io[cos kx+ cos ky]2

− Ii[2 cos(2kx− 2ϕ) + 2 cos 2ky], (4.24)

and a deep transverse confining lattice with potential Iz(z) = I⊥ cos2(kzz). Each unit cell consists

of a biased double well [Fig. 4.4(a)], and control of the bias allows for an adjustment of the overlap

integral
∫
d2r |wa(r)|2|wb(r)|2 and hence of V . This lattice offers a large parameter space to play

with, and here we give just one example of a lattice configuration that could facilitate our model.

Defining ER = h2

2mλ2 , we choose the parameters {Io, Ii, ϕ} = {0.9ER, 2.52ER, 0.3π}, for which the

deep well has a depth of ∼ 21ER and the shallow well has a depth of ∼ 11ER.

Using a transverse lattice with I⊥ = 40ER and λ = 2πk−1
z = 780nm, and the scattering

length of 87Rb, we find Ub/4Jb ≈ 2 × 103, Ua/4J ≈ 10, and V/Ua ≈ 0.1. Here Jb is the nearest

neighbor hopping matrix element for the b band. This is just inside the n = 1 mean-field Mott lobe,

with V/Ua in the correct range to observe the first-order phase transition, and these parameters

can be adjusted to exit the Mott insulator in the a band, or to change V/Ua. One consequence of

this geometry is that the bands are not isotropic. The effect is very small for the b band, but for

the a band, by fitting the numerically calculated dispersion [Fig. 4.4(c)] to a tight binding model,

we find primary hoppings Jx = Jy = 0.002ER and Jxy = 0.0035ER [Fig. 4.4(b)].

Other important energy scales are the band gaps, and for the parameters given above the

first 4 gaps (all those between the b band and the a band and the gap above the a band) are

all at least 1ER. This should be compared to the largest relevant interaction energy Ub, and for

the parameters given above we find Ub ≈ 0.28ER. It should be noted that this comparison is an
5 It is also essential that for a superfluid density ψ2, the depth of the superfluid minimum can become much

smaller than Jψ2 as B → 0 (i.e., as the Mott transition is approached). If this were not the case, the larger energy
gain from the Kondo term at small ψ might not induce a local minimum at ψ = 0.
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extremely conservative metric of how the interaction energies compare to the band gaps. After all,

Ub is the largest interaction energy in the model, and the band gap separating the b band from the

band directly above it is larger than 5ER.

4.5.2 Observation of the first-order transition

In order to probe the SF to MI phase transition, an ideal starting point would be a 2D (x−y

plane) MI of spin triplet pairs in the lowest vibrational level of the 2D lattice with Ii = 0. The

PM MI could then be achieved with high fidelity by ramping up Ii to establish an array of double

wells in the x − y plane, and then using either Raman pulses [125] or the population swapping

techniques of Refs. [2, 174] to populate the a band. Standard time-of-flight imaging, combined

with band-mapping techniques [2] and spin selective imaging, could be used to resolve both the

superfluid coherence and the magnetic ordering in either band.
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Figure 4.5: Dynamics during a slow ramp of V from the SF to the MI at fixed conduction band filling
n = 1 (through a first-order phase transition). The ramping function is V(t) = Vf (tanh(t/t0)+1)/2,
with t0 ≈ 5.7~/J . For a ramp to Vf = Vc + δ (Vf = Vc− δ), the lower blue solid (dotted) line is ψ2

and the upper red solid (dotted) line is 〈Sza〉. The fast oscillations of ψ2 in the non-adiabatic case
occur on a time scale of order 2π

U .

As we have discussed in Sec. 4.5.1, V can be tuned in a double well lattice. Therefore the

first-order phase transition should be observable by sitting just outside the unit-filled Mott insulator

lobe and increasing V from 0 to some value Vf large enough to support a Mott insulating ground

state. The discontinuous nature of the phase transition will cause a failure of adiabaticity for even
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an arbitrarily slow sweep of V. At the mean-field level, the effect of ramping V can be explored

with no further approximation by solving the time-dependent equations of motion that result from

minimization of the Lagrangian [88]

L = 〈i d
dt
−HGA〉, (4.25)

where the expectation value is taken in the single site Hilbert space (for practical calculations, this

space must be truncated by cutting off the maximum number of allowed bosons). Defining Vc to

be the value of V at which the metastable SF solution disappears (note that this is not where we

define the phase boundary in Sec. 4.4), we compare a slow ramp of V from 0 to Vf = Vc ± δ. For

Vf < Vc, we observe a nearly adiabatic reduction of the SF component, whereas for V > Vc we

observe collapses and revivals of the SF component. This is reminiscent of the behavior seen in

Refs. [71, 172], where a fast quench was studied in the single-band Bose Hubbard model, but here

the collapses occur even for very slow lattice ramps. Since the collapses are pinned to a rotation of

the magnetization [Fig. 4.5], it is not surprising that they repeat on a time scale ∼ 2π
V .

Regarding the experimental feasibility of the proposed dynamics around the MI to SF tran-

sition, the total time elapsed in Fig. 4.5 is 100~/J , which is comparable to the longest excited

band decay times measured in Ref. [125] for the n = 1 situation. This suggests that dynamical

evidence of the first-order transition, e.g. loss of adiabaticity or hysteresis, should be within reach

of current experiments. Hysteretic behavior will be limited to temperatures that are compara-

ble to or smaller than the energy barrier between the two metastable phases. This height is set

by V . 0.1U , suggesting that the required temperature is cold, but much more favorable than

that required for super-exchange physics. A more quantitative determination of the temperature

requirements necessitates a more rigorous (numerically exact, rather than mean-field) study, and

will be addressed in future research. We also note that the first-order phase transition could be

explored by measuring local and static observables in the trap, for instance it could manifest as a

discontinuity in the density profile.
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4.6 Summary and conclusions

In real metals, it is known that when conduction electrons interact with magnetic impurities

their behavior is drastically altered; in order to describe such systems, it is necessary to study

many-body Hamiltonians that include spin, charge, and orbital degrees of freedom, such as the

KLM. The bosonic analogues of such systems are experimentally accessible using ultracold alkali

atoms in non-separable optical lattices, motivating this fairly in depth study of the Bose Kondo-

Hubbard model. Our primary new finding is that the SF to MI phase transition of the conduction

bosons is qualitatively modified by the existence of an arbitrarily small Kondo coupling to a band

of localized spins. When approaching the MI, as the superfluid density of the conduction bosons

is reduced, magnetic fluctuations driven by the Kondo exchange induce a metastable MI of Kondo

singlets, and as a result the associated phase transition becomes first-order. We expect the first-

order phase transition to be observable in experiment, making this model a leading candidate for

observing entirely new, strongly correlated, multi-band phenomena in optical lattices.



Chapter 5

Ultra cold polar molecules in a 3D optical lattice

The creation of nearly-degenerate gases of polar molecules [126, 127, 27] has generated a

tremendous amount of excitement in the fields of quantum simulation, quantum information, and

ultracold chemistry. While the production of these molecules has required a number of severe

technical challenges to be surmounted, and achieving quantum degeneracy is much more difficult

than for atoms, they have several advantages over atoms that make these difficulties worthwhile.

First of all, diatomic molecules have an extremely rich internal structure: beyond the usual

electronic and nuclear-spin degrees of freedom found in atoms, molecules can also vibrate and rotate.

These extra degrees of freedom make possible, for instance, the implementation of condensed matter

models with both spin- and orbital- electronic degrees of freedom (much as alkaline earth atoms

can). In addition, experimentally achievable DC electric fields can induce extremely large dipole

moments in heteronuclear molecules. Using low-lying rotational levels as spin degrees of freedom,

these dipolar interactions can give rise to long-ranged quantum spin models as proposed in Ref.

[70]. These spin-models are highly tunable, long-ranged, controllably anisotropic (both in spin

space and real space), and have temperature scales that can be orders of magnitude larger than

those relevant to spin-models arising from super-exchange in neutral atoms.

The creation of groundstate polar molecules, as realized in [126] for 40K87Rb, involves a

two-step process: (1) magneto-association of the atoms into weakly bound Feshbach molecules

[142], and (2) coherent transfer of these Feshbach molecules into the rotational, vibrational, and

electronic groundstate, via stimulated Raman adiabatic passage (STIRAP) [126]. Under 3D har-
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monic confinement, the efficiency of molecule production is primarily limited by step (1). While

the reasons for this inefficiency are not completely understood at this time, the poor phase-space

overlap between bosons and fermions at low temperatures is almost certainly a contributing factor.

One might guess that the detrimental effects of low efficiency are limited to low molecule yield,

and therefore could be overcome by simply starting with more atoms. However, low efficiency of

Feshbach molecule creation has a more fundamentally detrimental effect. Imagine, for the sake

of simplicity, that both the potassium and rubidium are at zero temperature and have perfect

spatial overlap. The pairing of one potassium atom and one rubidium atom will in general result

in a Feshbach molecule having approximately the momentum of the potassium atom (because the

rubidium atoms, which are bosons, will have a much narrower momentum distribution at low tem-

peratures). If the potassium atoms that get paired into molecules are drawn somewhat uniformly

from their initial momentum distribution, then typical KRb momenta (and hence energies) are set

by the initial Fermi momentum of the potassium distribution, which has no dependence on the

creation efficiency. The Fermi temperature of the KRb molecules, on the other hand, does scale

with the number of molecules created as TFKRb ∼ N
1/3
KRb. Defining the molecule creation efficiency

relative to the initial potassium number NK, η = (NKRb/NK), and assuming that the temperature

of the molecules is set by their typical kinetic energy (which is certainly true for sufficiently small

efficiency) we obtain
TKRb

TFKRb

∼ η1/3. (5.1)

By this argument, it is not possible to directly obtain a degenerate gas of fermionic molecules from

a degenerate gas of atoms unless the molecule creation efficiency is large.1

One possible route toward a degenerate Fermi gas of molecules is to accept these low efficien-

cies, and then attempt to remove the resulting entropy via forced evaporation. There are reasons to

be optimistic that this might work [138, 139], however it is certainly not clear that it will. Efficient

evaporation relies on a large separation of timescales between elastic and inelastic collisions. In an
1 In which case the above argument breaks down, since there is no reason to expect the temperature of the

molecules to be determined by their kinetic energy.
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atomic gas, inelastic collision processes typically require the participation of at least three atoms

(three-body recombination) in order to conserve energy and momentum, and thus the ratio between

elastic (two-body) and inelastic collision rates can be driven up by decreasing the density. KRb

molecules, on the other hand, suffer from inelastic two-body collisions,2 and hence the scaling cannot

be improved by changing the density. On these fairly general grounds, one expects the competition

between inelastic and elastic collision rates in reactive molecules to be less favorable than for atoms.

The actual outcome of this competition, of course, depends on the detailed microscopic physics of

elastic and inelastic collisions. For KRb there is reason to believe that, at low temperature, the

ratio is actually quite large, and efficient evaporation may indeed be possible.

Another possible route to quantum degeneracy is to create Feshbach molecules in a 3D optical

lattice [59] (rather than in a harmonic trap). The ideal starting point is achieved if the rubidium

atoms form a unit filled Mott insulator, which is well overlapped with a unit-filled band insulator of

potassium atoms. Then each lattice site has exactly one potassium and one rubidium on it (up to

whatever thermal fluctuations persist in the deep lattice limit), and in a deep lattice the efficiency

of magneto-association is determined by a single site problem. The creation of Feshbach molecules

on a single site can be studied theoretically [99], and there is good reason to believe that it can

be extremely efficient. In particular, the adiabaticity time scale through the Feshbach resonance

should be set by the harmonic oscillator level spacing on a single site, which can be many kHz.

Experimentally, this efficiency for KRb has been shown to exceed 80%, and to be consistent with

100% [27].

5.1 Efficiency of Feshbach molecule creation

The goal of this section is to estimate the creation efficiency for Feshbach molecules in a 3D

optical lattice, as realized in Ref. [27]. As mentioned above, a near unity conversion efficiency

between two atoms on a single lattice site and a Feshbach molecule has been demonstrated experi-
2 Two body inelastic collisions occur because two KRb molecules can release binding energy while still separating

into two pieces at large distances (one 2Rb molecule and one 2K molecule), thereby satisfying energy and momentum
conservation.
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mentally. It is therefore appropriate to estimate the efficiency of Feshbach molecule creation in a 3D

lattice by calculating the number of sites containing exactly one rubidium atom and one potassium

atom (a preformed pair). Both below and above the rubidium condensation temperature Tc, we

calculate the initial entropy of the combined potassium and rubidium clouds in the optical dipole

trap, and extract the equilibrium properties of atoms in the 3D lattice by assuming conservation of

entropy until the final lattice depth is reached. However, given the wide temperature range covered

by the experimental data, it is convenient to carry out two different calculations, one to capture

the physics at temperatures below Tc and one to capture the physics above Tc.

Below Tc we take Rb-Rb interactions into account, but ignore the hopping of atoms between

lattice sites3 as well as the K-Rb interaction. The inclusion of Rb-Rb interactions at these temper-

atures is critical, because they greatly suppress the number of sites with more than one rubidium,

which are not expected to yield molecules. In the presence of differential sag, we expect the at-

tractive K-Rb interaction to pull the clouds slightly closer together, which would push the theory

prediction for the number of preformed pairs slightly up at low temperatures [59]. Because the

tunneling is ignored, we can focus on the Hilbert space of a single site, which we restrict to have at

most four rubidium atoms, and then calculate the energies εα on that site by assuming the usual

s-wave pseudopotential approximation and integrating over the appropriate Wannier orbitals in

each band. The grand canonical potential for rubidium, ΩRb = −β−1
∑

j log[ZRb(j)], is obtained

from the partition functions at each site

ZRb(j) =
∑

α

e−β(εα+V (rj)−µ), (5.2)

where β is the inverse temperature, and V (rj) is the final confining potential resulting from the

gaussian beam profiles, evaluated at site j. The grand canonical potential for potassium is obtained

trivially, since they are non-interacting and we are ignoring the hopping between lattice sites.

Above Tc it is necessary to retain a large number of bands; at the highest temperature data
3 This approximation is reasonable when all of the atoms are in the lowest band, since at the final lattice depths

the lowest band tunneling is always effectively zero on experimentally relevant timescales. In general, we calculate
the final distribution at a lattice depth of 20ER for Rb, since at this point we do not expect any further transport of
the atoms to be possible.
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point, adiabatic heating during the lattice ramp yields a final temperature that is comparable to

the first band-gap for potassium. However, because the gases are quite dilute at this temperature,

with peak densities of rubidium and potassium being approximately 0.6 and 0.1 per lattice site,

respectively, we do not expect interactions between the atoms to play an important role. We there-

fore model the final distribution in the lattice assuming no interactions, but keeping as many bands

as are needed for convergence at each data point. In order to efficiently calculate thermodynamic

quantities, we evaluate the grand canonical potential in the local density approximation (LDA)

Ω = ±β−1

∫
d3r

∫
dε ρ(ε) log[1± eβ(µ−ε−V (r))], (5.3)

where + is for potassium and − is for rubidium, and the integral over r approximates the LDA

sum over lattice sites. The r integration can be done analytically, and the remaining integral over

energy is carried out by choosing a coarse-grained density of states

ρ(ε) =
∑

α

gαδ(ε− εα), (5.4)

with δ(ε − εα) the Dirac delta function, gα the number of states in the αth band per unit cell of

the lattice, and εα once again being the average energy of the αth band. This approach has the

advantage of yielding asymptotically correct results in the deep lattice limits, and agrees very well

with exact expressions in the case of no lattice (in which case εα ∼ ERα
2 is the average energy

of a free particle with momentum between αhλ and (α + 1)hλ , with λ the wavelength of the lattice

beams).

From these thermodynamic calculations, we extract the final chemical potential and temper-

ature by assuming conservation of particle number and entropy, respectively. With the temperature

and chemical potential in hand, we can extract the distribution of sites (indexed by j) with exactly

one rubidium (potassium), denoted P
Rb(K)
1 (j), from the associated Boltzmann weights. In terms

of the PRb(K)
1 (j), the total number of preformed pairs is given by

NK,Rb =
∑

j

PRb
1 (j)PK

1 (j). (5.5)
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Figure 5.1: Preformed pairs: Purple solid curve is the number of preformed pairs obtained with a
no-free-parameter theory, and the black dotted curve below (above) it assumes a differential sag
of one lattice site more (less) than the calculated value. The purple circles are experimentally
measured numbers of Feshbach molecules in the 3D lattice. The red dashed-dotted line shows the
expected number of preformed pairs in the absence of a differential sag. Inset: Slice in the x-z
plane of the distribution of sites with a single Rb (blue, lower) and single K (red, upper), with the
n = 1 Mott insulator shell manifest as a ring of singly occupied Rb sites (the hollow area within the
ring has mostly sites with two Rb atoms). The offset along z of about 11a, where a is the lattice
spacing, is caused by the differential gravitational sag in the initial optical dipole trap, and is an
important source of inefficiency in the molecule creation.

In Fig. 5.1 we plot the calculated NK,Rb (with no free parameters), and we show the theory

predictions for NK,Rb if there were no differential sag between the clouds. This procedure of

counting preformed pairs breaks down at sufficiently high temperatures, for reasons that can be

understood semi-classically: Once more highly dispersive bands—with greater velocities—become

populated, two atoms must be nearby in momentum space, as well as in position space, in order to

form a molecule. Before moving on to discuss molecule loss rates, we note that the low temperature

results suggest that the JILA experiments are already close to producing large numbers of densely

packed molecules in a 3D optical lattice: The current decrease in efficiency at low temperatures

appears to be due almost entirely to differential gravitational sag between potassium and rubidium

(due primarily to their different masses).
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5.2 Loss rates from ground-state molecule collisions in a corrugated 1D tube

In Ref. [27], the lifetime of groundstate KRb molecules in a 3D optical lattice was probed

as a function of the lattice depth in the z direction, with the x and y lattices held at a constant

depth (large enough to completely freeze out motion in the x and y direction). By tuning the z

lattice depth continuously between zero (an array of 1D tubes) and ∼ 100ER (where motion in

all three directions is completely frozen out), a crossover was observed between: (1) low z-lattice

behavior, where the lifetime increased with the lattice depth, and (2) high z-lattice behavior, where

the lifetime decreased with the lattice depth. For large lattice depths, the decreasing lifetime was

shown to be consistent with inelastic light scattering (which increases with intensity of the lattice

beams). For low lattice depths, there is strong evidence that the molecular gas lifetime becomes

limited by molecule-molecule inelastic collisions, as we now discuss.

It was observed experimentally that the lifetime of molecules in an array of 1D tubes is

sensitive to the strength of an applied electric field. This electric field dependence is expected

for collisions between identical dipolar fermions [139, 127], and hence implicates molecule-molecule

collisions as the loss mechanism. It was also observed that, at zero electric field, the addition of

a weak corrugating lattice along the tubes greatly enhances the molecule lifetime. In order to

understand this effect, here we study lossy molecule-molecule collisions in a tube, at zero electric

field and in the presence of a lattice along the z direction.

At low temperatures (µK) and in zero electric field, a collision between two ground-state

fermionic molecules in the same nuclear spin state occurs primarily in the p-wave channel. We model

the lossy part of the molecule-molecule interaction with a p-wave pseudopotential, parametrized by

a strictly imaginary p-wave scattering volume [90, 24]:

D = i
6π~2Vp
m

∫
d3r ψ†

(
~∇ψ†

)
·
(
~∇ψ
)
ψ. (5.6)

Everywhere else in this thesis we have considered only s-wave scattering, and the above expression

warrants some discussion (for more details about p-wave pseudopotentials, see for example Ref.

[90]). First of all, one might naively guess that an operator such as ψ(r)~∇ψ(r) would vanish (due
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to the anticommutation relations for the annihilation operators), but this is not the case. One way

to deal with the derivative of a field operator is to expand it in some complete set of wavefunctions

ϕα(r) as

ψ(r) =
∑

α

ϕα(r)cα, (5.7)

in which case we have

ψ(r)~∇ψ(r) =
∑

α,β

cαcβϕα(r)~∇ϕβ(r) (5.8)

=
∑

α>β

cαcβ

[
ϕα(r)~∇ϕβ(r)− ϕβ(r)~∇ϕα(r)

]
. (5.9)

Notice that if we had calculated ψ(r)ψ(r) in this way, i.e. we had ignored the derivative, the term

in square brackets would have given [ϕα(r)ϕβ(r) − ϕβ(r)ϕα(r)] = 0, as it should. While we will

not give a rigorous justification for the form of this pseudopotential, we mention that it does make

a lot of sense, for the following reason. For two particles who’s relative wavefunction is a plane

wave of momentum k, ψrel(r) ∝ eikr, the expectation value of the s-wave pseudopotential of Sec.

2.2 is proportional to the low-energy scattering amplitude as. The expectation value of the p-wave

pseudopotential in Eq. (5.6), however, is proportional to Vpk2 (because of the two derivatives). This

is consistent with the Wigner threshold law for p-wave scattering in a Van der Waals potential,

which states that the low energy scattering amplitude in the p-wave channel should scale as k2 as

k → 0 [147].

The magnitude of the imaginary scattering volume, Vp ≈ 350 nm3, is obtained by comparing

ab initio calculations of the loss rate for two molecules in an isotropic 3D harmonic trap [116] to

results using the pseudopotential. Assuming that most molecules are in the transverse ground-state

of a tube, two representative loss processes for molecules in the same tube (on two adjacent lattice

sites) are shown in Fig. 5.2. The loss rate for two nearest-neighbor molecules within the lowest

band (γ00) is rapidly suppressed by Pauli blocking for increasing z-lattice depth. The loss rate for

one molecule in the lowest band and one molecule in the first excited band on the same site (γ01)

grows with increasing z-lattice depth, due to the increasing localization of the lowest band and first

excited band Wannier orbitals [w0(z) and w1(z), respectively].
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Figure 5.2: Loss processes within the lowest two bands of the z lattice. (a) Lowest band loss rate
for two molecules on neighboring lattice sites (γ00). (b) Onsite loss rate for one molecule in the
lowest band and one in the first excited-band on the same site (γ01). The offset ∆ is in general
present, due to the gaussian profile of the lattice beams.

We now address the question of whether the loss rates in Ref. [27] can be understood in

terms of the fundamental two-body loss processes shown in Fig. 5.2, and their associated rates γ00

and γ01. Two molecules in the lowest band should be lost at a rate proportional to γ00, where the

constant of proportionality is determined in a semiclassical picture by the fraction of time those

two molecules spend on neighboring sites. Since this fraction is clearly less than one—being driven

down both by low density and by single particle localization due to the energy offsets between

sites (∆)—γ00 is an upper bound to the actual loss rate of two molecules in the lowest band.

As shown in Fig. 5.4, γ00 is too small to explain the measured loss rates, so collisions between

molecules within the lowest band are clearly not the loss mechanism. When one molecule is in

the lowest band and one molecule is in the first excited band, the loss rate is proportional to γ01,

so long as ~γ01 � J1,∆ is satisfied. It is still possible, however, that the loss rate can decrease

with increasing lattice depths, since even as γ01 is becoming larger the molecules are becoming

more localized. When ~γ01 � J1,∆, in the so-called Zeno suppression regime, the loss rate can

actually be inversely proportional to γ01 [165] (see the next section for a detailed discussion of Zeno

suppression). However, for the experimental data taken at low z-lattice depths (the first four data

points in Fig. 5.4), the Zeno suppression scenario can be ruled out, and interband collisions should

result in a loss rate that is proportional to γ01.

This result is, however, inconsistent with the experimental observation that losses in corru-
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Figure 5.3: Relevant rates for molecules confined to the lowest two bands in the z-direction, as a
function of the z-lattice depth. The black dashed-dotted curve is γ00, the red solid curve is J1/~,
and the green dotted curve is γ01. It is clear that γ00 is too small to explain the measured loss
rates (red circles, the error bars are smaller than the plot markers). The rate γ01 increases with the
z-lattice depth due to the increasing confinement of the lowest two Wannier orbitals, and eventually
becomes larger than the first excited-band hopping rate (J1/~) at a z-lattice depth of around 23
ER. For even larger z-lattice depths (green shaded region) one expects Zeno suppression to affect
the loss rate of two molecules in different bands.

gated tubes do not exhibit the electric field dependence of losses in uncorrugated tubes: When

dipole-dipole interactions are taken into account, both γ00 and γ01 should increase with electric

field strength. The most likely explanation for this lack of electric field dependence is that, in the

presence of the z-lattice, collisional physics does not determine the molecule lifetime, despite being

ultimately responsible for the loss. Instead, a heating mechanism that promotes molecules from

localized to mobile single-particle levels is what sets the time scale for the loss. If the promotion

rate into mobile states is slower than the collisional loss rate for the mobile molecules, but faster

than the collisional loss rate for the localized molecules—which is suppressed by the diluteness

of the molecular gas—then it will determine the molecule lifetime, thereby rendering the lifetime

independent of electric field.
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Figure 5.4: Schematic of the loss model: A ground band molecule is essentially completely demo-
bilized by a combination of narrow bandwidth and energy offsets between lattice sites (J0 � ∆).
Lattice instabilities couple molecules into higher bands (in this example the first excited band),
and if this bandwidth is sufficiently large (J1 ∼ ∆) the molecule becomes mobile. Once mobile, a
molecule is rapidly lost due to inelastic collisions (rate γ01).

To model this process phenomenologically, we assume that a heating mechanism imparts

energy to the molecules at a fixed rate, and hence the promotion rate between successive bands is

inversely proportional to the band gap between them. Microscopically, this picture is motivated by

the following reasoning. Fluctuations in the transverse lattice beams—which provide a potential

that is only approximately decoupled from the z-direction—should be the dominant source of

heating at low z-lattice depths. While a detailed knowledge of these fluctuations is absent, one can

in complete generality assume that to first order in z, the motion of a molecule along z couples

to a time-dependent perturbation of the form I(z, t) = I⊥f(t)z, where the intensity I⊥ depends

primarily on the transverse lattice strength. The resulting transition rate from a localized state |α〉

(Wannier orbital of the αth band along z) to a localized state |α+ 1〉 (Wannier orbital of the next

higher band along z) on the same lattice site is given by [149]

Γα,α+1 =
πS(ωα)I2

⊥
~2

|〈α+ 1|z|α〉|2. (5.10)

In the above, S(ωα) is the power spectrum of the noise f(t), evaluated at the transition frequency

ωα between |α〉 and |α + 1〉. For a power spectrum that is relatively flat over frequency ranges

∆ω ∼ ER/~, the matrix element |〈α+ 1|z|α〉|2 ∼ ω−1
α gives the dominant scaling of the transition

rate on the z-lattice depth, and thus we expect interband transitions of this variety to be suppressed

by the band gaps. On a single site, if we take the energies of localized states to be the band centers
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εα(v) (where v is the z-lattice depth measured in ER), then we can define interband transition rates

Γα,α+1(v) = E [εα+1(v)− εα(v)]−1, (5.11)

where E is a constant heating rate.

The loss rate for a given molecule can then be obtained by deciding on a localization criteria;

for a molecule in the αth band sitting s sites from the trap center (in the z-direction), we consider

that it is mobile whenever the bandwidth 4Jα provides enough kinetic energy for it to reach the

trap center [83]. This criteria sets a critical lattice depth vc(α, s) in the αth band, below which a

molecule at site s is mobile and above which it is localized. Our primary assumption is that, once

mobile, a molecule in any excited band suffers lossy collisions on a time scale much shorter than

the inter-band transition time, in which case the loss rate of the molecule is given by

γα(s, v) = LΘ(v − vc(α, s)), (5.12)

with Θ the step function, and with the collisional loss rate L chosen to be effectively infinite. Because

the current experimental conditions are such that the molecules are very dilute, it is reasonable

to think of any remaining molecules (in the same tube) as a dissipative bath for the mobilized

molecule, and hence this is really a one-body loss problem, despite the eventual loss mechanism

being distinctly two-body. In the ground band we retain the loss rate γ00, calculated using the

exact eigenstates of the lattice plus harmonic confinement, in order to capture the correct behavior

in the weak z lattice limit. These considerations lead to a model for the decay of probability that

a molecule initially at site s is still there after a given time, denoted Ps(t). Truncating to the

lowest three bands along z, and denoting the probability for the molecule to be in band α by Psα,

Ps =
∑

α Psα is governed by the rate equations

Ṗs0 = −γ00(v)Ps0 − Γ01(v)(Ps0 − Ps1)

Ṗs1 = −γ1(s, v)Ps1 − Γ01(v)(Ps1 − Ps0)− Γ12(v)(Ps1 − Ps2)

Ṗs2 = −γ2(s, v)Ps2 − Γ12(v)(Ps2 − Ps1). (5.13)
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For a given lattice depth, the ensemble loss rate, which is the rate measured in the experiment, is

extracted by averaging the solution to Eq. (5.13) over s

P ∝
∑

s

e−2s2/ξ2Ps, (5.14)

and then fitting P to a decaying exponential decay e−t/τ(v) with lifetime τ(v). Here we assume

that the initial distribution of molecules in the z direction is gaussian with a 1/e2 radius of ξ = 14

lattice sites, which is based on experimental measurements of the molecule cloud; the qualitative

features of the results are not particularly sensitive to this quantity. We find that heating rates

between E = 1 ER/s (66 nK/s) and E = 2 ER/s (132 nK/s) are consistent with the experimental

data at low z lattice depths. It should be noted that once the z lattice is sufficiently deep, and

molecules remain localized for times comparable to the inelastic light scattering time, this model

is no longer valid.

5.3 Microscopic justification of the loss model

In section 5.2, we considered the loss of molecules in a corrugated tube formed by deep optical

lattices in the x and y direction and a weak lattice along z. Based on experimental observations,

it was inferred that the loss of molecules is most likely due to the promotion of localized molecules

into higher bands of the lattice (heating). Once in higher bands, they become deconfined and seek

out other molecules, leading to loss via chemical reactions. The primary underlying assumption in

the model presented is that it is possible to couple a discrete level (the localized molecule) into a

lossy continuum (higher bands), and have the loss rate be independent of γ when γ is much larger

than the coupling strength Ω. Notice that it is not immediately obvious that such a situation

can occur: If the coupling Ω were to a discrete level, which had a loss rate γ, the actual rate of

populations loss is either proportional to γ (in the limit γ � Ω) or proportional to Ω2/γ (in the

limit γ � Ω, the so called Zeno-suppressed regime). In neither case is the loss rate independent of

γ.
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5.3.1 Review of Zeno suppression: coupling to a lossy discrete level

Before tackling the more complicated case of coupling to a continuum, we consider the cou-

pling of a discrete level to a single level with loss rate γ. In order to be concrete, let’s take a

two-level atom with groundstate |a〉 and an excited state |b〉 having a finite decay rate γ. To make

the most direct connection with particle loss, we assume the system is not closed under spontaneous

emission, and that the excited state relaxes to some state outside of the two level system (never to

return). We will start with the atom in its groundstate, and couple it to the excited level with a

Rabi frequency Ω, with Ω� γ. We assume that the two levels are coupled on resonance, and work

in the dressed state basis so that |a〉 and |b〉 are degenerate. One way to obtain the dynamics is to

solve a master equation describing the dynamics of this open system. It turns out, however, that

we can obtain the exact same results by simply evolving the initial wavefunction with an effective

Hamiltonian4

Heff =




0 Ω

Ω −iγ/2


 (5.15)

Instead of just solving the dynamics by brute force, we take advantage of γ � Ω to calculate the

loss rate of population from the two-level system perturbatively. For Ω = 0, there is of course no

loss. If we turn on a small Ω� γ, the eigenstates remain the same to zeroth order, and therefore

the loss rate will be determined by the imaginary part of the energy shift to the |a〉 level. This

shift can be calculated in second order perturbation theory, giving a loss rate

Γ ≡ −2Im
(〈a|Heff |b〉〈b|Heff |a〉

iγ/2

)
(5.16)

=
4Ω2

γ
. (5.17)

The loss of population occurring at a rate Γ that is inversely proportional to the microscopic loss

rate γ is what we mean by Zeno suppression of losses.
4 The equivalence between solving the master equation and time evolution with an effective Hamiltonian of this

form is not general. It holds in this case because of the particularly simple structure of the problem. In particular,
the jump operators occurring in the master equation do not couple states within the subsystem we consider, and we
do not care about the details of the population that leaves this subspace.
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There is another very simple way to understand why Γ has this form. The emission of photons

at a rate γ from the excited level (when it is populated) can be thought of as successive projective

measurements discerning whether the atom is in state |a〉 or state |b〉. After all, we could set up a

photodetector to tell us when these photons are emitted, and each time the detector clicks it tells

us that the system was in the excited state. At short times, the probability of the atom being in

the groundstate begins to evolve (due to the coupling Ω) as Pa ≈ (1 − Ω2t2). A measurement of

the state is made at time γ−1, at which point the probability of being in the groundstate (and not

having emitted a photon) is Pa ≈ (1 − Ω2/γ2). If the system is in the groundstate, the dynamics

then start over; after a time t = Nγ−1, with N large, the probability of the atom still being in the

groundstate is given by

Pa(t) ≈ (1− Ω2/γ2)N (5.18)

= (1− tΩ
2

γ

1
N

)N (5.19)

= exp[−t(Ω2/γ)]. (5.20)

5.3.2 Coupling to a lossy continuum

Transitions between two degenerate states |a〉 and |b〉, induced by a coupling Ωab, are sup-

pressed if the initially unoccupied state has a loss rate γ � Ωab. If there are other states around,

this picture remains true when the spectrum is discrete, and when there are no other states within

Ωab of this degenerate pair. We now turn to the case where, instead of the single state |b〉, we

have a continuum of states, and we explain the various behaviors that result in different parameter

regimes. As one might guess, since tunneling into a continuum is an inherently incoherent (irre-

versible) process, the laborious calculation below leads to simple classical rate equations describing

loss from the discrete level into the continuum, followed by loss out of the continuum. These rate

equations (which, in particular, allow for loss rates Γ ∝ Ω when Ω� Γ) are the formal justification

for Eqs. (5.13) in the previous section.
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The model:

two-body loss

ρ(ε)

Ωεd
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Figure 5.5: The left pannel shows the physical system we would like to study: Initially immobile
(and hence long-lived) molecules are coupled to higher bands, where they become mobile and
therefore susceptible to reactive collisions. The right pannel distills the essential mathematical
structure of the problem: A discrete level is coupled to a continuum, with all states in the continuum
being lossy.

We consider a single discrete level |d〉 with energy εd, coupled to a continuum of states |k〉 with

complex energies ε(k) = ω(k)− iγ(k)/2 by coherent couplings Ω(k). Defining creation operators c†k

for the states |k〉 and a creation operator c†d for a particle in the state |d〉, in second quantization

the Hamiltonian can be written

H = εdc
†
dcd +

∫
dk
(

Ω(k)c†dck + Ω(k)∗c†kcd + ε(k)c†kck
)
. (5.21)

Whether the particles are fermions or bosons is irrelevant, because we will only consider the dy-

namics of a single particle. In the spirit of Section 5.2, we’ll take as our continuum an lattice with

tight binding dispersion and bandwidth D. There are three regimes of interest here:

(I) The bandwidth is the largest energy in the problem, and the loss rate is large compared to the

coupling (D � γ � Ω). In this case we might expect Zeno suppression to occur, but we will see

that it does not.
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(II) The bandwidth is the largest energy in the problem, and the loss rate is small compared to

the coupling (D � Ω� γ). In this case there are two distinct possibilities: Depending on whether

γ is small or large compared to Ω2ρ, with ρ the density of states in the continuum, the loss rate

will be limited either by γ (loss rate from the continuum) or by Ω2ρ (loss rate into the continuum,

which will remain essentially empty).

(III) The bandwidth is small compared to the coupling (D � Ω). This case is not directly relevant

to the heating and subsequent loss of molecules discussed in section 5.2, but we include it for the

sake of completeness.

Case I: D � γ � Ω

This is the case we have in mind when applying the phenomenological loss model of Sec. 5.2.

It appears superficially to be directly analogous to the Zeno suppression regime described above for

a discrete spectrum, in that the coupling to any particular level in the continuum is Zeno suppressed

by virtue of Ω(k)� γ(k). However, we will see that the loss rate is not Zeno suppressed, and is in

fact independent of γ(k) all together. Instead, the loss rate is determined by Fermi’s golden rule as

the tunneling rate into the continuum. This is the result one might guess without any knowledge

of Zeno suppression: The loss rate hinges on two processes, tunneling into the continuum and then

being lost, and the tunneling limits (and therefore sets) the rate for this process when Ω(k)� γ(k).

This result can be derived in time-dependent or time-independent perturbation theory. Unlike

in the absence of losses, where Fermi’s golden rule is normally derived, here the time-independent

derivation is actually easier. Moreover, it will make explicit why Zeno suppression—as derived

above—does not occur when coupling to a continuum. Because |ε(k)− εd| ≥ γ(k)/2, the impurity

level will remain an eigenstate to zeroth order in Ω(k) (i.e. there are no degeneracies when the imag-

inary part of the continuum energies are taken into account). Therefore, the survival probability
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of a particle initially in the discrete level is approximately given by

Pd(t) = exp[−Γt]

Γ = 2Im[ε̃d] (5.22)

The factor of two in Γ comes from calculating the norm squared of the wave function, and ε̃d is the

energy of the discrete state in the presence of the couplings. The shift in energy of the impurity

level can be controllably expanded whenever Ω(k) � γ(k). This should be contrasted with the

usual situation of γ = 0, where the discrete level is approximately degenerate with part of the

continuum. To second order, we find

ε̃d = εd +
∫ |Ω(k)|2dk

εd − ε(k)
+O(Ω4). (5.23)

By introducing the density of states ρ(ω) = (dω/dk)−1, this integral becomes

ε̃d = εd +
∫ |Ω(ω)|2ρ(ω)dω
εd − ω + iγ(ω)/2

+O(Ω4). (5.24)

For γ � D5 this integral can be evaluated using the well known relation

lim
γ→0+

1
εd − ω + iγ/2

= −iπδ(εd − ω) + P 1
εd − ω

, (5.25)

In order to obtain the imaginary part of the energy shift, we can ignore the principle part integral

P, and obtain the simple result

Im[ε(2)
d ] = −π|Ω(εd)|2ρ(εd). (5.26)

According to Eq. (5.22), we find that to second order in Ω(k) a particle initially occupying the

discrete level will be lost at a rate

Γ = 2π|Ω(εd)|2ρ(εd). (5.27)

This is the same as the tunneling rate into a lossless continuum given by Fermi’s golden rule (more

on this later).
5 Really the criteria should be that both ρ(ω) and Ω(ω) vary on energy scales that are large compared to γ. In

that case, the integral is well approximated by taking the limit γ → 0.
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The technical manipulations above can also be described in a simple picture. By coupling to

a particular continuum level labeled by k, the discrete level gets an energy shift ∼ Ω(k)2/[iγ(k)/2+

(ω(k)− εd)], the imaginary part of which is simply

1
2

(
γ(k)|Ω(k)|2

γ(k)2/4 + (ω(k)− εd)2

)
. (5.28)

This function is a Lorentzian peaked around ω(k) = εd, with height 2|Ω(k)|2/γ(k) and width γ(k)/2.

To obtain the total shift in energy to the discrete level, we must take into account the coupling to

all ∼ γρ(εd) states that fall within the peak: hence we have ∼ γ states that contribute an imaginary

energy ∼ γ−1, causing the dependence of the loss rate on γ to drop out of the problem.

Case II: D � Ω� γ

If we were working with a single final state rather than a continuum, it is clear that γ would

set the loss rate. Here, however, it is not so clear. In fact, γ(k)� Ω(k) is not sufficient to determine

the dependence of the loss rate on γ(k): one should really compare γ(k) to Ω(k)2/D, since in the

absence of losses the latter quantity sets the time scale for tunneling out of the discrete level. And

indeed, since D � Ω(k), it is possible to have either γ(k)� Ω(k)2D−1 or γ(k)� Ω(k)2D−1 while

simultaneously satisfying γ(k)� Ω(k).

In this limit the γ(k) are not large enough to justify non-degenerate time-independent per-

turbation theory as above, so we will proceed as one does for Fermi’s golden rule. This derivation

actually subsumes the discussion in the last section, in that it recovers the behavior of the large

γ(k)� Ω(k) limit, but it connects more weakly with the Zeno suppression picture.

We begin by writing down the time dependent Schrödinger equation

ψ̇d = i

∫
dk Ω(k)ψk

ψ̇k = −iε(k)ψk + iΩ(k)ψd, (5.29)

where the meaning of the ψ’s is self evident. Setting εd = 0 for notational simplicity, these equations
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are equivalent to integro-differential equations that read

ψk(t) = iΩ(k)
∫ t

0
ψd(τ)eiε(k)(τ−t)dτ (5.30)

ψ̇d(t) = −
∫ t

0
dτ ψd(τ)

∫
dk Ω(k)2eiε(k)(τ−t). (5.31)

An approximation necessary to continue is that the k integral in Eq. (5.31) is very sharply peaked in

time around τ = t (this will be true if both the bandwidth and the energy range of the couplings Ω(k)

are large). In that case, and choosing to keep γ(k) = γ independent of k, we can set ψd(τ) = ψd(t)

and eγ(τ−t) = 1, and complete the time integration to obtain

ψ̇d(t) = iψd(t)
∫
dk Ω(k)2

(
1− eiω(k)t

ω(k)

)

= iψd(t)
∫
dω ρ(ω)Ω(ω)2

(
1− eiωt

ω

)
(5.32)

The imaginary part of the term in parentheses is sin(ωt)/ω, and becomes πδ(ω) in the limit t→∞.

Restoring εd we obtain the result

ψ̇d(t) = −ψd(t)πΩ2(εd)ρ(εd), (5.33)

which leads to Fermi’s golden rule for decay of probability to be found in the discrete state:

Pd(t) = |ψd(t)|2 = e−Γt, (5.34)

Γ = 2πΩ(εd)2ρ(εd). (5.35)

Now it remains to calculate the time dependence of the continuum population

Pc(t) =
∫
dk |ψk(t)|2. (5.36)

To do this we return to Eq. (5.30) and, plugging in the result for ψd(t), obtain

ψk(t) = iΩ(k)
∫ t

0
e−Γτ/2eiε(k)(τ−t)dτ. (5.37)

Here we are ignoring that the discrete level, in addition to a lifetime, also inherits a real energy

shift from coupling to the continuum. At the end of the calculation this will shift the point at
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Figure 5.6: Plots of discrete level population Pd(t) (blue line), continuum population Pc(t) (red
line), and total population P (t) = Pd(t) + Pc(t) (black dotted line). In (a) γ � Γ: the continuum
population is suppressed at all times (just as we deduced in the previous section for γ � Ω) and
the discrete level population decays at the limiting rate Γ. In (b) γ � Γ: population is quickly
transferred into the continuum, where it then decays at the limiting rate γ.

which we evaluate the density of states by an amount which is, by assumption, small compared to

the energy scale on which it varies, and hence this shift can be ignored from the outset. Evaluating

the time integral we have

ψk(t) = iΩ(k)e−iε(k)t

(
eiω(k)te(γ−Γ)t/2 − 1
iω(k) + 1

2(γ − Γ)

)
, (5.38)

leading to

Pc(t) = e−γt
∫
dω ρ(ω)Ω(ω)2

(
1 + e(γ−Γ)t − 2 cos(ωt)e(γ−Γ)t/2

ω2 + 1
4(γ − Γ)2

)
. (5.39)

It is tempting to evaluate this integral by approximating the Lorentzian as a delta function. While

this is OK for the first two terms in the numerator, it fails for the third term because, for times

∼ Γ−1, the cosine term has variations on a scale δω ∼ Γ. This term, however, can be evaluated as

a contour integral, and contributes decaying exponentials of argument (γ−Γ) as might be guessed

from the poles. Doing the contour integral and some further algebra, we finally arrive at an equation

governing the time dependence of the continuum population:

Pc(t) =
Γ

γ − Γ
(
e−Γt − e−γt

)
. (5.40)
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Eqs. (5.34) and (5.40) satisfy the coupled rate equations

Ṗd = −ΓPd

Ṗc = ΓPd − γPc, (5.41)

which justify the rate equations used to model molecule loss in section 5.2. The solutions to these

equations for the cases γ � Γ and γ � Γ are plotted in Fig. 7.1 to help emphasize the behavior of

the system in these two regimes.

Case III: D � γ(k),Ω(k)

In the above we have always assumed that the bandwidth is large compared to all other

energy scales, but that will not always be the case. If D � Ω(k), and εd − ε(k)� Ω(k), there will

be a coherent oscillation between the discrete level and the continuum. To see this, let’s take the

limit D → 0 while keeping the continuum levels centered on εd. In this case, the Hamiltonian reads

H =
∫
dk
[
Ω(k)c†dck + Ω(k)∗c†kcd

]
. (5.42)

By inspection, unnormalized eigenstates of this Hamiltonian are either of the form

|ϕ±〉 =
(
c†d ± α

∫
dk Ω(k)c†k

)
|vac〉 (5.43)

or of the form

|ϕα〉 =
(∫

dk fα(k)c†k

)
|vac〉, (5.44)

where the functions fα(k) satisfy
∫
dk fα(k)Ω(k) = 0. Acting on |ϕ±〉 with the Hamiltonian reveals

that α−2 =
∫
dk |Ω(k)|2, which results in eigenvalues for |ϕ±〉

ε± = ±
√∫

dk |Ω(k)|2. (5.45)

Despite the continuum of states coupled to |d〉, there are only two eigenvectors with any weight

in the discrete level. Dynamics are restricted to this two-dimensional Hilbert space, and hence

coherent oscillations are observed (between |d〉 and the continuum).
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A clear example of the above scenario is a particle tunneling (with matrix element Ω) from

a discrete level into one site of an N -site lattice with vanishing bandwidth. Then Ω(k) = Ω/
√
N ,

ε± = ±Ω, and the eigenstates |ϕ±〉 are given by:

|ϕ±〉 =
(
c†d ±

1√
N

∫
dk c†k

)
|vac〉 (5.46)

The integral in this expression just generates the localized state into which the particle is tunneling.

The physical picture is that the particle hops back and forth between the discrete level and the

lattice site to which it couples, and never diffuses out into the lattice, which for vanishing bandwidth

is obviously correct. A (perhaps) surprising result is that, even in the presence of a finite bandwidth

(i.e. a finite hopping t between sites of the lattice), the particle still does not diffuse out into the

lattice over time. The reason is that the coupling of one lattice site to a discrete level shifts its energy

by an amount Ω� t, and hence the coupling of that one site to the rest of the lattice is energetically

suppressed. In other words, strong coupling to the discrete level causes the formation of a localized

state within the continuum, which never diffuses. If we now add losses in the continuum, the loss

dynamics will proceed as they would for a two level system, and hence we have an effective loss

rate Γ ∼ γ when γ � Ω and Γ ∼ Ω2/γ when Ω� γ.



Chapter 6

Generation of strong correlations via reactive collisions

Many-body entangled states are known to be useful for quantum computing, quantum tele-

portation and cryptography protocols [84], and precision metrology [66]. With these applications

as motivation, the physics community has invested tremendous effort in preparing, stabilizing, and

measuring entangled systems. Much of this effort has relied on coherent (Hamiltonian) dynamics to

arrive at entangled states starting from less exotic states with only classical correlations. However,

these approaches typically suffer from the necessity to either carefully engineer interactions between

particles or to prepare extremely pure and specific initial states (or both). A bottom up imple-

mentation of coherent control has yielded entangled states of up to 14 atoms with relatively high

fidelity [124] (in ion experiments), and a top down approach has yielded weakly entangled states

in a Bose Einstein condensate of ∼ 104 neutral atoms [115]. A promising alternative to coherent

control is the collective-nondemolition measurement of some observable with a finite variance in

an initially classical state. Such approaches have been used to generate entanglement (in the form

of spin squeezing) amongst as many as 106 cold thermal atoms [22]. However, collective and co-

herence preserving measurements are generically difficult to make, and the induced non-classical

correlations are typically weak.

In this chapter, we show that two-component spin-incoherent fermionic gases can be driven

by reactive, s-wave, two-body collisions into steady-state spin configurations that—for a given value

of the saturated particle number—are pure and highly entangled. The entanglement comes in the

form of Dicke states [36], in which the spin-wavefunction is fully symmetric under interchange of
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the particles (with the burden of fermionic antisymmetry being taken up entirely by the motional

degrees of freedom). Such states have been sought in experiments with ultra-cold bosons for use

in Heisenberg-limited phase measurements [82], however these approaches typically suffer from the

necessity to reach extremely cold temperatures (for the validity of a two-mode approximation in

a double-well potential) or to employ Feshbach resonances [75] (to enhance spin exchange inter-

actions for two-component Bose Einstein condensates). The only requirements to achieve such

entanglement in the steady-state of lossy non-degenerate fermions are to have an SU(2) invariant

single-particle Hamiltonian (in the pseudo-spin degrees of freedom) and a significant separation

of timescales between s-wave and p-wave collisions, with the second requirement typically being

satisfied for temperatures in or below the µK range.

Because the desired property (i.e. the Dicke type of spin-entanglement) persists in the steady-

state of dissipative dynamics, we do not rely on the highly controlled coherent manipulation that

is typical of spin-squeezing experiments with bosons. Driven, dissipative preparation of nontrivial

steady-states has been considered before in the context of many-body atomic systems [104, 39, 37],

and has been achieved recently in [10, 105]. In contrast to these examples, the mechanism described

here is intrinsic and generic to a variety of interesting and experimentally relevant systems, such as

fermionic alkaline-earth atoms (AEAs) and fermionic dipolar molecules, and does not require any

special engineering of the system-reservoir coupling. After presenting calculations in support of our

claims, we discuss the possible realization of such steady states in an experiment. In particular,

we will propose a simple proof of principle experiment in which the steady-state entanglement can

be revealed via Ramsey spectroscopy of the 1S0 to 3P0 clock transition of an AEA [16, 164]. In

this case, we will see that the interferometric precision stays relatively constant even as most of

the particles are lost (all but ∼
√
N in the long time limit), signaling the development of quantum

correlations and the pursuant violation of the standard quantum-limit. The total loss of precision

(due to loss of particles) exactly cancels the gain due to the growth of quantum correlations.

However, a persistent precision under loss of particles can provide enhanced spectroscopic accuracy.

In particular, interrogation of an atomic clock with fewer atoms will reduce p−wave elastic[112]
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and inelastic[116] collisions, which are a leading source of inaccuracy for states immune to s-wave

interactions [11] (e.g. spin-polarized fermions).

Our description of spin-1
2 fermions with two-body reactive collisions relies on the formalism

detailed in Refs. [43, 62, 165], generalized for fermions, where we assume the temperature to be

sufficiently low that losses are dominantly in the s-wave channel. As in Ref. [43], large kinetic energy

of fermions in the outgoing channels (which for reactive molecules can correspond to temperatures

in the 10K range) guarantees they will be rapidly lost from any typical atom trap, justifying a

Born-Markov approximation. Given a density matrix % for the system (fermions, Hilbert space

S ) plus reservoir (outgoing channels of the inelastic collisions, Hilbert space R), the Born-Markov

approximation leads to a master equation for the system reduced density matrix ρ = TrR [%] [62]:

~ρ̇ = i[ρ,H]− κ

2

∫
d3r

(
J †J ρ+ ρJ †J − 2J ρJ †

)
. (6.1)

The system Hamiltonian H = H0 + g
∫
d3rJ †J is composed of an unspecified single-particle term

H0 and an interaction term with coupling constant g = 4π~2aR/m, where m is the particle mass

and a = aR+ iaI (aI < 0) is the complex s-wave scattering length. The jump operators are defined

by J (r) = ψ↑(r)ψ↓(r) (their explicit r dependence is suppressed in the integrals above), where

ψσ(r) annihilates a fermion located at position r in internal state σ ∈ {↑, ↓}, and κ = −4π~2aI/m.

Assuming without loss of generality that the initial number of particles N is even, the relevant

system Hilbert space can be written as a direct sum over spaces with well defined particle number,

S = S N ⊕S N−2⊕· · ·⊕S 0, between which coherence never develops. Hence, the density matrix

can be decomposed into a sum of density matrices in each particle-number sector, any one of which

we label by ρn once normalized. Furthermore, any Hilbert space S n can be decomposed into a

direct product between motional (m) and spin (s) degrees of freedom, S n = S n
m ⊗S n

s , and we

can define a reduced spin density matrix by ρns = TrSm [ρn]. For what follows, it will be useful to

define a fidelity in a given Dicke state1 of the spin degrees of freedom of n particles, |S = n/2, Sz〉,
1 The Dicke state of n spins having total z projection of spin Sz is obtained by acting on the state with maximal

z-projection of total spin (n/2− Sz) times with the total spin lowering operator S−.
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given by the population of ρns in the Dicke state

FS,Sz ≡ 〈S, Sz|ρns |S, Sz〉. (6.2)

Here S and Sz are quantum numbers for the total spin and its projection along the z-axis, respec-

tively.

6.1 Simple example with two particles in a double well

To make the physics clear in a simple context, we begin by considering two fermions in a

single double well potential (which could be formed in an optical super-lattice [2, 168]). We consider

a single wavefunction ϕα(r) in each well (α ∈ {L,R}), denote the creation operator for a fermion

in spin state σ and wavefunction ϕα by ψ†σα, and choose an initial state ψ†↑Lψ
†
↓R|vac〉 without spin

correlations. Within a tight binding model for these two wavefunctions, the Hamiltonian is

H = −J
∑

σ

(ψ†σLψσR + ψ†σRψσL) + U
∑

α=L,R

J †αJα, (6.3)

and the master equation reads

~ρ̇ = i[ρ,H]− γ

2

∑

α=L,R

(
J †αJαρ+ ρJ †αJα − 2JαρJ †α

)
. (6.4)

Here J is the inter-well hopping, Jα = ψ↑αψ↓α, U = g
∫
d3r|ϕα(r)|4 is the onsite interaction

energy, and γ = κ
∫
d3r|ϕα(r)|4 is the onsite loss rate. The initial state can be decomposed into

an evenly weighted superposition of triplet and singlet [(ψ†↑Lψ
†
↓R ± ψ

†
↓Lψ

†
↑R)|vac〉, with plus for the

triplet], and the spin wave function of the triplet is the entangled Dicke state |1, 0〉. The triplet,

|t〉, having a spin wavefunction that is symmetric under exchange, has an orbital wavefunction that

is antisymmetric under exchange, and therefore it is “dark” to s-wave losses, by which we mean

simply that JL|t〉 = JR|t〉 = 0. It also happens to be an eigenstate of H, and so it is stationary

under propagation of the master equation (6.4). On the other hand, there are no dark eigenstates

in the singlet sector, and as a result ρ2
s is pure at long times and satisfies F1,0 = 1. In other words

the steady state of our system, when restricted to the subspace with two particles, is the entangled
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Figure 6.1: The solid red line is the fidelity of the final density matrix (after post-selection for a
non-vacant well) with respect to the Sz = 0 Dicke state, and approaches 1 (black dotted line) at
times long compared to γ−1. The oscillations imposed over the exponential decay are due to the
inter-well hopping.

Dicke state |1, 0〉. It should be noted that there is also a 50% probability of obtaining the vacuum,

and hence in an array of double wells the entanglement fidelity is only unity after post-selection of

the non-vacant wells. In this simple example we see an important general feature of the physics

we will discuss, that even purely local (intra-well) dissipation, when coexisting with Hamiltonian

dynamics that delocalizes the particles, generates non-local (inter-well) spin correlations in the

steady state.

6.2 Extension to many particles

Solving Eq. (7.20) exactly for initial states with N > 2 initial particles quickly becomes

impossible, but strong statements can nevertheless be made regarding the steady state. It is crucial

to observe that the jump operators only remove spin singlets from the system, which follows from

Fermi statistics combined with the even exchange symmetry of the spatial part of any two-particle

wave function susceptible to s-wave scattering. Intuitively, this suggests that losses do not decrease

the expectation value of the total spin, S = 1
2

∫
d3rψ†σ(r)τσσ′ψσ′(r) (τ being a vector whose

components are the Pauli matrices). Mathematically, we say that d
dt〈S ·S〉 = Tr[ρS ·S] = 0, which

can easily be verified in the case when H is SU(2) invariant by checking that [S · S,J (r)] = 0.
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A stronger consequence of the commutation of all J (r) with S · S is that population in any

sector of total spin, PS , is also conserved. Because any state with well defined total spin S must

have 〈N̂〉 ≥ 2S particles (where N̂ =
∫
d3rψ†σψσ is the total number operator), an immediate

consequence is that the loss of particles can only yield the vacuum deterministically at long times

if the initial state is a total spin-singlet. For an uncorrelated spin state, such as a non-degenerate

thermal distribution of N fermions in a balanced incoherent mixture of ↑ and ↓, it can be shown

that [6]

N(t) ≡ Tr[ρN̂ ] ≥
∑

S

2SPS =
π1/2Γ

[N
2 + 1

]

Γ[N2 + 1
2 ]

− 1, (6.5)

which places a lower bound on the steady-state expectation value for the number of particles N(t).

This expectation value determines the particle number in a typical steady-state configuration, and is

achieved (on average) without any post selection, but variations of the steady-state particle number

will occur from shot to shot. Taking Stirling’s approximation for large N yields an approximate

bound N(t) &
√
πN/2. For the chosen restriction on the initial state, the validity of Eq. (6.5)

depends only on the SU(2) invariance of H, and not on its precise form. Whether the bound (6.5)

is saturated in the steady-state, however, is an important and delicate issue. The bound is only

saturated when, in every sector of total spin S, there are exactly NS = 2S particles. Because the

latter condition is only satisfied by Dicke states, saturation of Eq. (6.5) guarantees that all of the ρns

describe pure Dicke states in the steady-state. Demonstrating that this bound is indeed saturated

in certain experimentally relevant situations, namely a 1D harmonic trap and a 1D Hubbard chain

(optical lattice), is a central technical result of this chapter.

Saturation of the bound in Eq. (6.5) is guaranteed if, for any fixed value of n and Sz, the

pure density matrix |n/2, Sz〉〈n/2, Sz| is the unique steady-state reduced spin density matrix. This

uniqueness, in turn, is equivalent to requiring that any dark-state with quantum numbers n and Sz

has a well defined spin wavefunction given by the Dicke state |n/2, Sz〉. In Appendix F we prove

this to be true for a 1D harmonic oscillator potential, and we have verified it numerically for a

1D Hubbard chain (section 6.2.1). It is worth noting at this point that, while the equivalence of
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Figure 6.2: Calculation of particle number [N(t), solid red line] and average Dicke state fidelity
[F(t), dashed blue line] for an 8-site Hubbard chain via quantum trajectories. For the number, the
shaded region is an estimate of the statistical error from sampling of a finite number of trajectories.
The black dotted line is the analytic bound in Eq. (6.5).

dark-states with the Dicke states is intuitive, there are natural Hamiltonians for which this intuition

is incorrect. In particular, all Hamiltonians in D > 1 that are separable in cartesian coordinates

do have dark-states with FS,Sz < 1.

6.2.1 Numerics for a finite Hubbard chain

In order to verify the above statements numerically, we have performed quantum trajectories

simulations for an 8-site Hubbard chain with open boundary conditions, an initial filling of one

particle per site, and zero polarization (N = 8 and Sz = 0). In general we have lower-densities

in mind for any experimental application, but using one particle per site allows us to stretch the

numerics to the largest N possible. In Fig. 6.2 we show the calculated particle number and average

Dicke state fidelity, F(t) = 1
4

∑4
S=1FS,0, and one can see that the former saturates the bound

Eq. (6.5) while the latter approach unity at long times. For this calculation we solve for O(104)

trajectories with no approximation.
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6.3 Experimental implementation

Dicke states are known to be useful for a variety of quantum information protocols, including

but not limited to quantum secret sharing [137], teleportation [96], and sub shot-noise limited

precision spectroscopy [82]. Here we give a brief description of how the proposed Dicke state

preparation could be used in precision spectroscopy of the clock transition in alkaline-earth atoms.

For a fixed interrogation time, spectroscopy on N uncorrelated atoms has a phase sensitivity δϕ &

1/
√
N , a bound known as the standard quantum limit (SQL). This bound can be understood as the

minimum tipping angle needed to cause a coherent spin state (CSS) to have an uncertainty cone

that precludes its initial position [15] (to one standard deviation). On the other hand, spectroscopy

on a Dicke state of N particles with spin Sz = 0 has the potential to approach the Heisenberg

limit (HL) of phase sensitivity, δϕ ∼ 1/N [82, 15]. It is important to realize that the production of

Dicke states with
√
N fermions via two-particle loss does not actually enhance the phase sensitivity

relative to the initial state with N fermions; the enhancement in phase sensitivity between the

SQL and HL exactly compensates the reduction of particle number. However, the reduced particle

number in the Dicke state and darkness to real s-wave interactions (which if present generate clock

shifts), can render the accuracy of the final Dicke state superior to that of the initial N fermion

uncorrelated state.

Rather than allowing losses amongst a macroscopic sample of atoms, for which the approach

to the steady state could be quite slow, we imagine an array of T 1D tubes created by a 2D optical

lattice. Although there will be variations in the atom number from tube to tube, for simplicity we

take each tube to have exactly N fermionic AEAs in the 1S0 electronic state and Iz = I nuclear-spin

state, denoted |1S0, I〉. For the analysis in this chapter to be valid, the temperature should be small

compared to the vibrational level-spacing in the transverse tube direction, and also low enough that

only the harmonic part of the trapping potential along the tube axis is sampled by the atoms. A

π/2-pulse on the spin degrees of freedom [|1S0, I〉 → 1√
2
(|1S0, I〉+ |1S0, I − 1〉)], followed by single
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particle dephasing,2 generates a statistical mixture of the two spin states (Iz = I and Iz = I − 1).

Losses can be initiated by applying a π-pulse on the clock transition (|1S0, I
z〉 → |3P0, I

z〉). We

estimate that this π-pulse3 can be achieved on the . 100µs timescale without exciting transverse

excitations in the tubes (which, if present, violate the assumption of a 1D geometry and destroy

the uniqueness of the steady-state). Thus the transfer into 3P0 is sufficiently fast that it can be

considered instantaneous on the initial timescale of reactive collisions—which, based on universal

considerations for a Lieb-Liniger gas, we estimate to be & 1ms for experimentally relevant 1D

densities [43]—such that it suddenly initiates strong 2-body s-wave losses.

The steady state of the system is a statistical mixture of Dicke states in the different tubes,

each having some value of Dj particles (centered around D0 ≈
√
N ) and spin projection Szj (centered

around zero). Spin selective transfer of |3P0, I−1〉 into |1S0, I〉maps the spin degree of freedom onto

the clock states, leaving a spin-polarized sample, and Ramsey spectroscopy on the clock transition

can then be performed [15]. Despite the fluctuation of both Dj and Szj from one tube to another, it

can be shown (see Appendix G) that the minimum resolvable rotation angle in a Ramsey experiment

scales as

δϕmin ∼ 1/D0

√
T . (6.6)

This result can be interpreted as the existence of Heisenberg scaling (∼ 1/D0) of phase-sensitivity

for each tube, which is then combined between tubes in a statistically independent manner (hence

the 1/
√
T ). In order to utilize this phase sensitivity, the initial value of Sz =

∑
j S

z
j for the

entire ensemble must be accurately known. Because Sz is conserved by the losses, it can be

measured before transfer to the 3P0, and hence the measurement does not need to preserve any

inter-particle correlations (since these develop during the losses). Accurate measurements of this

type and precision for ∼ 100 atoms in an optical cavity have recently been demonstrated [177].

The primary limitations on the final state fidelity achievable in experiments is likely to be
2 Dephasing of nuclear spins is typically extremely slow, but can be briefly enhanced with large magnetic field

gradients or by scattering photons on a cycling transition.
3 This transfer needs to be of high fidelity, since any atoms remaining in the 1S0 state can undergo s-wave collisions

with 3P0 atoms that do reduce the system spin. In principle, the purity of this transfer could be enhanced by using
an optical pumping scheme.
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Figure 6.3: (a) An array of T 1D tubes, each having Dj atoms in a Dicke state. (b) Bloch sphere
representation of a Dicke state in a particular tube.

a combination of finite p-wave losses (which the Dicke states are not dark to) and magnetic field

gradients. At sub µK temperatures, the s-wave losses in a spin mixture of 87Sr are expected to be

about an order of magnitude faster than the p-wave losses [11]. For reactive molecules (or 171Yb),

where the inelastic collisions are expected to more fully saturate the unitarity bound [116], this

separation of rates will most likely be even larger. Magnetic field gradients couple sectors of different

total S, all of which are separated from the Dicke manifold by a gap for finite systems and nonzero

aR, so in principle their adverse effects can be suppressed to first order [143]. Furthermore, if the

two components of the Fermi gas are two nuclear spin states of an AEA, they will be extremely

insensitive to magnetic field gradients: We estimate that typical gradients (1mG/cm) will cause spin

dephasing on a 100s timescale for a linear system size of 100µm. This timescale is several orders of

magnitude longer than the initial two-body loss rate in tightly confined 1D tubes, which we estimate

to be on the order of 10ms for 87Sr (assuming a 50ER 2D lattice and scaling the density dependent

loss rate from Ref. [11]), and even faster for 171Yb [116]. A more quantitative analysis of the effects

of both magnetic field imperfections and finite p-wave losses requires numerical simulations beyond

the scope of this work, and is left for future study.



Chapter 7

Long-ranged Ising models with decoherence

7.1 Introduction

In the previous chapter, we specifically sought out atomic and molecular systems with strong

dissipation, and we saw a concrete example of how the competition between dissipation and co-

herent dynamics can result in robust entanglement[104, 37, 52]. However, because no physical

system is truly closed to the environment, there is a much broader sense in which this competition

is important. While decoherence generally tends to degrade correlations in quantum systems, it is

now widely appreciated that it can also give rise to many-body physics not possible with strictly

coherent dynamics [38, 32, 111]. Regardless of whether one’s intention is to minimize or to har-

ness decoherence, determining its effect on interacting many-body systems is central to quantum

simulation[12], quantum information [84], and quantum metrology [66].

So far, this understanding has been hindered by the computational complexity of numerical

techniques for open systems and the scarcity of exact analytic solutions. Exact solutions for dynam-

ics of interacting quantum systems in dimensions greater than one are rare even in the absence of

decoherence, and to our knowledge no such solutions have been obtained in the presence of local de-

coherence. In this chapter, we describe a comprehensive toolbox for calculating far-from-equilibrium

dynamics in open spin-systems with arbitrary Ising interactions. These results are applicable to

a broad range of important quantum systems, including trapped ions [17, 97, 87], polar molecules

[126, 70], Rydberg atoms [171, 114], neutral atoms in optical cavities [67, 162], optical lattice

clocks [164], superconducting qubits[26], quantum dots[77], and nitrogen vacancy centers[136]. In
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particular, we will focus on applications of these results to trapped ions because: (1) the relative

importance of decoherence and coherently driven quantum correlations is controllable, (2) the tun-

able long-ranged interactions are generically frustrated, making large-scale numerical simulations

impractical, and (3) these experiments are the most developed, with non-equilibrium dynamics

already being explored [17].

Taking the Penning trap experiments at NIST [17] as an example, but keeping in mind

the generality of these models, the proceeding sections make incremental progress toward an exact

solution for both the transverse spin length and spin-spin correlation functions for a spin system that

is (1) initialized in an arbitrary uncorrelated state (2) interacting via long-ranged Ising-interactions,

and (3) coupled to the environment via the most general form of local Markovian decoherence

allowed by nature. The extension to arbitrary initial product states provides significantly more

general comparison with the standard Ramsey-type experiments that are used to probe these ions,

and the dynamics of correlation functions is crucial to the calculation of spin-squeezing, which is

of significant practical importance for precision-metrology. In general, the calculations presented

open the possibility of benchmarking trapped-ion quantum simulators—with nearly all of their

imperfections accounted for—in parameter regimes where the mean-field description is completely

inadequate.

We will begin in Sec. 7.2 by discussing the dynamics of both the transverse (xy-plane) spin-

components (the longitudinal spin component is preserved in coherent dynamics) and arbitrary

spin-spin correlation functions. In Sec. 7.3, we will describe how (within the Born-Markov approx-

imation) these same observables can be calculated along particular quantum-trajectories, where

spontaneous photon-scattering events are taken into account via random applications of “quantum

jump operators”. Even though these jumps do not commute with the Ising dynamics, we will

show how a particular trajectory can nevertheless be dealt with analytically. In Sec. 7.4 stochastic

averaging over the occurrences of such jumps will be carried out analytically, yielding a closed-form

solution for the spin-length and correlation functions. As an example of the experimental relevance

of these calculations, in section 7.5 we discuss how they will enable a careful benchmarking of the
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9Be+ ion quantum simulator at NIST [17] in the strongly interacting regime. In that experiment,

the time scale at which quantum correlations become important, τc, typically scales with some

power of the ion number N (e.g. ∼ N 1/3 for spin-squeezing, or ∼ N 1/2 for transverse-spin relax-

ation). And, under current operating conditions, this scaling ensures that quantum fluctuations

become important on timescales comparable to the spin-decoherence time. It is crucial, therefore,

to approach these experiments with a theory that treats quantum fluctuations and dissipation on

an equal footing, and the present work accomplishes precisely that goal.

7.2 Coherent dynamics for arbitrary initial product states

Though our main goal is to study dynamics in the presence of decoherence, we will begin

more simply by considering strictly coherent dynamics. Such a strategy will enable us to introduce

notation more slowly, and also to gain intuition for why the problem remains tractable when

decoherence is included. Moreover, there is quite a bit of new physics to be described even for

the strictly coherent evolution; the form of the correlation functions we derive was not previously

known, and the types of initial states to which the calculation can be applied are significantly more

general than was previously realized [45, 140, 92].

There is also a close connection between coherent and incoherent dynamics which we will

exploit throughout the chapter. While we often study decoherence effects by describing the time

evolution of a master equation, this is only an ensemble-averaged description of reality. Real dy-

namics of systems coupled to environments is often better thought of as Hamiltonian-like evolution

disrupted by random projective measurements (made by the environment). This point of view

is formally encapsulated in the quantum trajectories method, and naturally it would be hard to

proceed with a calculation based on this perspective without first developing an understanding of

the coherent evolution of the system.
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7.2.1 Hamiltonian and initial conditions

We consider dynamics under a Hamiltonian of the form

H =
1
N
∑

i>j

Jij σ̂
z
i σ̂

z
j +

∑

j

hj σ̂
z
j , (7.1)

which arrises naturally in the context of trapped ion experiments. The creation of such a Hamil-

tonian for ions is an elaborate and beautiful story in its own right, and there are many excellent

references for the interested reader [135]. Here we just mention the essential physical ingredients:

(1) The spin states correspond to the 2 qubit levels of an alkaline-earth ion, (2) these two spin states

can be addressed via Raman lasers in such a way as to create spin dependent forces on the ions,

(3) the spin-dependent motion of a single ion couples to the rest of the ions through the coulomb

interaction, and hence an effective spin-spin interaction is realized. We consider initial pure states

of the form

|ψ(0)〉 =
⊗

j

[
cos (θj/2) eiϕj/2| ↑〉j + sin (θj/2) e−iϕj/2| ↓〉j

]
. (7.2)

When all of the θj and ϕj are equal, this state can easily be created in experiments via optical

pumping of all ions to the north (or south) pole of the bloch sphere and then applying a strong Rabi

drive to rotate the ions into their final configuration. The generalization to spatially dependent

angles could be useful in modeling the effects of a slightly inhomogeneous Rabi drive, which would

cause the initial spin direction to vary in space. Because it is the simplest non-trivial observable,

we will begin by computing the transverse spin-length in the x direction (because of the arbitrary

azimuthal angle in the initial state, the restriction of measurements to the x axis causes no loss of

generality):

〈Sx(t)〉 ≡
∑

j

〈ψ(t)|σ̂xj |ψ(t)〉. (7.3)
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7.2.2 Calculation of transverse spin length

We’re actually going to calculate 〈ψ(t)|σ̂+
j |ψ(t)〉, and at the end we’ll obtain

〈Sx(t)〉 = Re


∑

j

〈ψ(t)|σ̂+
j |ψ(t)〉


 (7.4)

First some notation, let’s write the state of a single spin as

|ψ〉j =
∑

σzj

fj(σzj )|σzj 〉, (7.5)

where σzj is an index that takes on the eigenvalues of the operator σ̂zj . So fj(1) = cos (θj/2) eiϕj/2

and fj(−1) = sin (θj/2) e−iϕj/2. Now we can write the (time-dependent) wavefunction as

|ψ(t)〉 =
∑

σz1 ,...,σ
z
N

exp


it


 1
N
∑

i>j

Jijσ
z
i σ

z
j +

∑

j

hjσ
z
j




 f1(σz1)× · · · × fN (σzN )|σz1 , . . . , σzN 〉. (7.6)

Let’s imagine, in particular, calculating 〈ψ(t)|σ̂+
1 |ψ(t)〉 (there is nothing special about the first spin,

this just makes the notation in what follows less confusing). Because the wavefunction enters twice,

this would involve two sums like the one in Eq. (7.34), over σzj and σ̃zj , but very few terms survive:

We need σz1 = −1, σ̃z1 = 1, and for all j 6= 1 we must have σzj = σ̃zj , so the matrix element is

〈ψ(t)|σ̂+
1 |ψ(t)〉 = f∗1 (1)f1(−1)

∑

σz2 ,...,σ
z
N

|f2(σz2)|2× · · ·× |fN (σzN )|2 exp


−2it


 1
N

N∑

j=2

J1jσ
z
j + h1




 .

(7.7)

The exponential simply factors into products

〈ψ(t)|σ̂+
1 |ψ(t)〉 = f∗1 (1)f1(−1)e−2ith1

∑

σz2 ,...,σ
z
N

|f2(σz2)|2×· · ·×|fN (σzN )|2e−2itJ12σz2/N×· · ·×e−2itJ1Nσ
z
N /N .

(7.8)

Therefore, we can write

〈Sx1 (t)〉 = Re


f∗1 (1)f1(−1)e−2ith1

N∏

j=2

∑

σzj

|fj(σzj )|2e−2itJ1jσ
z
j /N


 , (7.9)

or, for the expectation value 〈Sx(t)〉,

〈Sx(t)〉 = Re



N∑

i=1

f∗i (1)fi(−1)e−2ithi
∏

j 6=i

∑

σzj

|fj(σzj )|2e−2itJijσ
z
j /N


 . (7.10)
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This expression can easily be evaluated for a large number of spins. In the case when all of the

spins point in the +x direction initially, we have fi(−1) = fi(1) = 1/
√

2, and this result simplifies

to

〈Sx(t)〉 =
1
2

Re



N∑

i=1

e−2ithi
∏

j 6=i

∑

σzj

1
2
e−2itJijσ

z
j /N


 ,

=
1
2

N∑

i=1

cos(2thi)
∏

j 6=i
cos(2tJij/N ). (7.11)

7.2.3 Extension to quenched disorder

In many potential realizations of quantum Ising models in cold-atoms context, such as with

polar molecules or Rydberg atoms, relatively large defect density will most likely need to be taken

into account [78](this is typically not a concern with ions). Shot-to-shot averaging in an experiment

(or even a single shot if the observable is self-averaging and the system is large) really measures the

disorder average of observables. If the distribution of defects is uncorrelated from site to site, they

can be taken into account by assigning probabilities pj of having a spin on site j and a probability

1− pj of having no spin on site j. This probability is kept site-dependent; it might arise, e.g. from

the spatial variation of chemical potential in an local-density-approximation. We assign a variable

to each site, ηj , with ηj = 0 when the jth site is empty and ηj = 1 when the jth site is full. We can

write discrete probability distributions for the variables ηj , Pj(ηj), such that

Pj =





pj if ηj = 1;

1− pj if ηj = 0.
(7.12)

For a given realization of the ηj , direct application of Eq. (7.10) yields

〈Sx(η1, . . . , ηN )〉 = Re



N∑

i=1

ηif
∗
i (1)fi(−1)e−2ithi

∏

j 6=i

∑

σzj

|fj(σzj )|2e−2itJijσ
z
j ηj/N


 . (7.13)

We have suppressed the explicit time dependence of 〈Sx(t)〉 in order to emphasize the dependence

on the ηj . Notice that the ηi inside the first sum enforces that when summing 〈Sxi 〉 over all sites

only sites with spins on them contribute. The ηj in the exponent enforces that a spin flip on site i
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only affects the system energy due to the coupling Jij if there is also a spin on site j. The ensemble

averaged spin length is then given by,

〈Sx(t)〉 ≡
∑

η1,...,ηN

P1(η1)× · · · × PN (ηN )〈Sx(η1, . . . , ηN )〉,

= Re


 ∑

η1,...,ηN

P1(η1)× · · · × PN (ηN )
N∑

i=1

ηif
∗
i (1)fi(−1)e−2ithi

∏

j 6=i

∑

σzj

|fj(σzj )|2e−2itJijσ
z
j ηj/N




= Re



N∑

i=1

∑

ηi

Pi(ηi)ηif∗i (1)fi(−1)e−2ithi
∏

j 6=i

∑

σzj ,ηj

Pj(ηj)|fj(σzj )|2e−2itJijσ
z
j ηj/N




= Re



N∑

i=1

pif
∗
i (1)fi(−1)e−2ithi

∏

j 6=i

∑

σzj ,ηj

Pj(ηj)|fj(σzj )|2e−2itJijσ
z
j ηj/N


 . (7.14)

As before, this expression can easily be evaluated for a large number of spins.

7.2.4 Extension to products of operators (spin-spin correlation functions)

In addition to calculating the spin length, it is useful for a variety of purposes to calculate

arbitrary off-diagonal (i 6= j) spin-spin correlation functions of the form

G+−
ij = 〈ψ(t)|σ+

i σ
−
j |ψ(t)〉

G−+
ij = 〈ψ(t)|σ−i σ+

j |ψ(t)〉 = (G+−
ij )∗

G++
ij = 〈ψ(t)|σ+

i σ
+
j |ψ(t)〉

G−−ij = 〈ψ(t)|σ−i σ−j |ψ(t)〉 = (G++
ij )∗

G+z
ij = 〈ψ(t)|σ+

i σ
z
j |ψ(t)〉

G−zij = 〈ψ(t)|σ−i σzj |ψ(t)〉 = (G+z
ij )∗ (7.15)

Diagonal correlation functions (i = j) can always be rewritten in terms of single-spin expectation

values using identities for Pauli matrices, and so we do not calculate them here.

Let’s start with G+−
ij . In this case, the operators in the expectation value only connect two states

if σ̃zi = −σzi = 1, σ̃zj = −σzj = −1, and σ̃zk = σzk whenever k /∈ {i, j}. Therefore, much as before we
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have

G+−
ij = f∗i (1)fi(−1)f∗j (−1)fj(1)e−2it(hi−hj)

∏

k/∈{i,j}

∑

σzk

|fk(σzk)|2e−2itσzk(Jik−Jjk)/N (7.16)

Similar considerations lead us to

G++
ij = f∗i (1)fi(−1)f∗j (1)fj(−1)e−2it(hi+hj)

∏

k/∈{i,j}

∑

σzk

|fk(σzk)|2e−2itσzk(Jik+Jjk)/N (7.17)

Correlation functions such as G+z
ij are an even simpler extension of the single-spin expectation

values from the last section, since they just require an insertion of σzj into the sum

G+z
ij = f∗i (1)fi(−1)e−2ithi


∑

σzj

σzj |fj(σzj )|2e−2itJijσ
z
j /N


 ∏

k/∈{i,j}

∑

σzk

|fk(σzk)|2e−2itJikσ
z
k/N (7.18)

7.3 Effects of decoherence

7.3.1 Introduction

In addition to considering dynamics induced by the Hamiltonian

H =
1
N
∑

i>j

Jij σ̂
z
i σ̂

z
j , (7.19)

we would ultimately like to understand spin-dynamics in the presence of both Rayleigh (Γel) and

Raman (Γr = Γud + Γdu) decoherence, which are both present and in general non-negligible in

the Penning trap experiments. The effect of these different decoherence mechanisms is shown

schematically in Fig. 7.1. Because of the decoherence the system-reduced density operator does not

remain pure; equivalently, the system becomes entangled with the environment, and any description

of the system alone must therefore be statistical in nature (beyond the usual sense in which the

system wavefunction has a statistical interpretation). Making the Born-Markov approximation,

which physically means that we assume photons leave quickly on the time-scale of system dynamics
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Γud

Γdu

Γel

σ̂−

Γud

σ̂+

Γdu

σ̂z

Γel

Figure 7.1: Schematic illustration of the NIST experiment, where 100’s of 9Be+ ions reside in a
2D triangular lattice. Off resonant light scattering via intermediate P electronic levels gives rise to
both Raman scattering (red and blue arrows, rates Γud and Γdu, respectively) and elastic dephasing
(green arrow, Γel).

and never return,1 the density matrix obeys a master equation in the Lindblad form

~ρ̇ = −i [H, ρ]

+
Γdu

2

∑

j

(
2σ̂+

j ρσ̂
−
j − ρσ̂−j σ̂+

j − σ̂−j σ̂+
j ρ
)

+
Γud

2

∑

j

(
2σ̂−j ρσ̂

+
j − ρσ̂+

j σ̂
−
j − σ̂+

j σ̂
−
j ρ
)

+
Γel

8

∑

j

(
2σ̂zj ρσ̂

z
j − 2ρ

)
. (7.20)

The second and third lines of Eq. 7.20 account for the effects of spontaneous excitation and spon-

taneous relaxation, respectively. The fourth line has a similar structure2 with the jump operators

σ̂± being replaced by the jump operator σ̂z. Because the application of σ̂z to a spin-wavefunction

rotates it by π radians in the xy plane, this term gives rise to pure dephasing, i.e. a loss of coherence

without any change in population.

We will approach the solution to Eq. 7.20 in the quantum trajectory formalism [133]. Here

one imagines a particular trajectory where the system remains in a pure state, but undergoes jumps
1 For spontaneous emission of photons by an atom, this approximation is generally extremely well satisfied. Typical

atom sizes are . 10−10m, which means that emitted photons are “gone” in 10−10m/c ∼ 10−18s, much faster than
any other relevant atomic-physics timescales.

2 The difference in structure is superficial, and is remedied be remembering that σ̂zσ̂z = 1 and then rewriting
2ρ→ (ρσ̂zσ̂z + σ̂zσ̂zρ).



132

(sudden changes to its state-vector) due to the decoherence processes. The desired observable is

computed as a function of time along many such trajectories, and then these results are averaged.

This procedure yields results that converge (with an error given by statistical fluctuations that

vanish in the limit of infinite trajectories) to the exact solution of the master equation.

7.3.2 General prescription for calculating a trajectory

Operational aspects of the quantum trajectories method are described in detail in Ref. [133],

but there are some special features of this particular application of the method that warrant dis-

cussion. Equation (7.20) is often rearranged as

ρ̇ = i
(
Heffρ− ρH†eff

)
− Γdu

2

∑

j

2σ̂+
j ρσ̂

−
j −

Γud

2

∑

j

2σ̂−j ρσ̂
+
j −

Γel

8

∑

j

2σ̂zj ρσ̂
z
j , (7.21)

where the effective (non-Hermitian) Hamiltonian Heff is given by

Heff = H+ i
∑

j

(
Γdu

2
σ̂−j σ̂

+
j +

Γud

2
σ̂+
j σ̂
−
j +

Γel

8

)
. (7.22)

= H+ i
∑

j

(
Γr

4
+ γσ̂zj +

Γel

8

)
. (7.23)

Here we have defined Γr = Γud + Γdu and γ = 1
4(Γud − Γdu). A quantum trajectory is obtained

by time-evolving the initial pure state |ψ〉 under Heff , with the time evolution interspersed with

sudden applications of the jump operators σ̂−j , σ̂+
j , and σ̂zj . The prescription for applying the jump

operators is as follows:

(1) Time evolve |Ψ〉 under Heff , stopping when 〈ψ|ψ〉 = r, with r a random number between 0 and

1. This defines the time t1 at which the first jump occurs. Note that this only makes sense because

Heff is non-Hermitian, and hence the norm of |ψ〉 decays in time.

(2) To choose which decoherence process occurs, we assign to each jump operator a probability
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given by

P+
j =

Γdu

2
〈ψ(t1)|σ̂−j σ̂+

j |ψ(t1)〉
P

P−j =
Γud

2
〈ψ(t1)|σ̂+

j σ̂
−
j |ψ(t1)〉

P
P zj =

Γel

8
〈ψ(t1)|σ̂zj σ̂zj |ψ(t1)〉

P
,

(7.24)

where P =
∑

j(P
+
j +P−j +P zj ) provides a normalization of the total probability to unity, and then

select a jump operator according to this distribution.

(3) Take the jump operator selected in (2), let’s call it J , and apply it to |ψ(t1)〉 to obtain a new

(normalized) wave function immediately after the jump

|ψ〉(t1 + ε)〉 =
J |ψ(t1)〉√

〈ψ(t1 + ε)|J†J |ψ(t1 + ε)〉
. (7.25)

This new wavefunction is then fed back into step (1), and the process continues until the final time

is reached. It is very important that the jump times and jump operators selected by repeating

steps (1) through (3) do not depend on the phases of the wavefunction components in the Ising

basis. This is because both Heff and the operators whose expectation values are calculated in step

(2) are diagonal in this basis. As a result, whether or not H is included in Heff has no bearing

on the selection of jump times or jump operators. Therefore, when choosing trajectories (sets of

random jumps) it is perfectly legitimate to ignore the coherent evolution completely. In this case,

we truly have a single particle problem: If we want a single trajectory for N spins, we can create

N trajectories for a single spin, and then assign each trajectory to a particular spin in the lattice.

As a result, the time required to select a trajectory scales linearly with the number of ions, and

never poses any difficulty.

7.3.3 Analytic calculation of a single trajectory for uniform Jij and Γud = Γdu

In this section, we describe how the expectation value 〈Sx(t)〉 can be calculated analytically

along a particular trajectory. To introduce the essential simplifications that allow us to proceed

with this calculation, we focus initially on the case of all to all coupling (Jij = J), all initial spins



134

pointed in the x-direction, and Γud = Γdu. The generalization to arbitrary couplings, arbitrary

initial product states, and Γud 6= Γdu will be considered in the next section.

From Sec. 7.2 we have an exact solution for the dynamics ofN initially pointing in the +x-direction,

evolving coherently under the Hamiltonian

H(h,N ) =
J

N
N∑

i>j

σ̂zi σ̂
z
j + h

N∑

j

σ̂zj . (7.26)

In particular, the expectation value 〈Sx(t)〉 ≡ Re
[∑

j〈ψ(t)|σ̂+
j |ψ(t)〉

]
is given by

〈Sx(t)〉 =
N
2

cos(2ht) cos (2Jt/N )N−1 . (7.27)

It turns out that it is possible to use this expression to calculate the dynamics along a trajectory

exactly, which we now show.

A particular trajectory for N spins consists of a set of jumps due to the Rayleigh and Raman

processes (Fig. 7.2(a) for N = 2). The Rayleigh processes involve the application of some σ̂zj to the

t1 t2 t3 t40 t

= (t2 − t1) + (t4 − t3) = t1 + (t3 − t2) + (t− t4)τup
j τdown

j

σ̂+
j σ̂+

jσ̂−j σ̂−j

Figure 7.2: A series of Raman flips of the spin on site j can be formally accounted for as a magnetic
field of strength 2Jjk/N acting for a time τup

j − τdown
j .

wave function, which changes the sign on any states in the σz = −1 configuration, and hence turns

|+x〉 into |−x〉. The Raman terms flip spins either from up to down or from down to up (along z).

Raman and Raleigh processes on different sites obviously commute, but they do not commute on

the same site. However, this turns out to be irrelevant: since a Raman process for spin j projects

it either into |σzj = 1〉 or into |σzj = −1〉, whether a Rayleigh process on that site occurs—and
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whether it happens before or after the Rayleigh process—can only determine the overall sign of the

wavefunction. Hence, if in the trajectory a Rayleigh process occurs on the same site as a Raman

process, the Rayleigh process can be ignored completely. All Rayleigh processes that occur on sites

for which there is no Raman process commute with the dynamics (both due to Raman flips and

the coherent evolution), and hence can be implemented at t = 0, yielding an equivalent trajectory.

Now the Raman terms do not commute with the coherent dynamics, and it may seem important to

keep track of when they happened, but this is only partially true. Consider the spin flip at time t1 in

Fig. 7.2. The application of σ̂+
j projects out all parts of the wave function that, immediately before

t1, had σz1 = 1, and also enforces that all parts of the wavefunction immediately after t1 have σz1 = 1.

It is as if the spin 1 pointed down before t1 and down after t1, and since both states are eigenstates

of σz1 , this spin has not participated in the coherent dynamics. It does, however, have an influence

on the remaining spins, since it couples to them via the spin-spin coupling as an effective magnetic

field h, which pointed up before t1 and down after t1. Now, the effect of a field along z that switches

from down to up is straightforward to take into account: Because at all times the dynamics induced

by this field commutes with that induced by the Ising coupling, all that matters is the total time

that the field spends pointing in a particular direction. When there are multiple spin flips to spin

j [see Fig. 7.2(b)], such as σ̂+
j (t1) × σ−j (t2) × σ+

j (t3) × σ−j (t4), similar reasoning can be applied.

Now spin j spends a time τdown
j = t1 +(t3− t2)+(t− t4) in the down configuration (remember that

we can think of it as having pointed down before the first spin flip) and time τup
j = (t2−t1)+(t4−t3)

in the up configuration. Assuming that τup
j −τdown

j = −t+2t4−2t3+2t2−2t1 > 0, this is equivalent

to a magnetic field of strength η = J/N that has pointed up for a time τj = τup
j − τdown

j .

The R spins which have been affected at least once by a Raman process do note contribute to

〈Sx(t)〉 (since they have a well-defined value of σz), and so they are really just spectators that

induce dynamics in the remaining N −R spins (as time dependent fields of strength 2J/N , acting

for a total time τ =
∑

j τj). The remaining spins evolve in time according to Eq. 7.27, and therefore
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〈Sx(t)〉 can be calculated explicitly:

〈Sx(t)〉 =
N −R− 2F

2
cos(2Jτ/N ) cos (2Jt/N )N−R−1 . (7.28)

If we want to obtain Sx(t) ≡ Tr [Sxρ] as given by the master equation, we need to average the

result obtained by Eq. (7.28) over many random realizations of these trajectories.

There is one subtlety that hasn’t been mentioned yet, which is that time evolution under

the effective Hamiltonian in general changes the magnitude of the wavefunction coefficients in the

Ising basis, whereas the solutions up until now only account for the time evolution of the phases

(assuming the magnitudes are constant). For Γud = Γdu = Γr/2, this is no problem: The effective

Hamiltonian given in Eq. (7.23) simplifies to

Heff = H+ i
∑

j




Γr

4

Identity︷ ︸︸ ︷[
σ̂−j σ̂

+
j + σ̂+

j σ̂
−
j

]
+

Γel

8


 .

= H+ i
∑

j

(
Γr

4
+

Γel

8

)
. (7.29)

The anti-Hermitian part which decays the wavefunction norm is proportional to the identity op-

erator, and hence reduces the magnitude of all wavefunction coefficients at the same rate. Since

the wavefunction is always normalized when calculating expectation values along a trajectory, the

effect of this decay can be ignored. The situation for Γud 6= Γdu is more complicated, but still

tractable, as we will discuss in the next section.

Combined with averaging over stochastically generated trajectories, these results constitute an

(essentially) exact numerical prescription for calculating 〈Sx(t)〉 in the presence of Raman and

Rayleigh decoherence, which can be evaluated with fairly high precision (relative uncertainties of

. 10−4 are feasible). It should be noted, however, that while the scaling of the solution difficulty

with ion number is favorable, the scaling with desired precision is not (exponential in the number

of digits). Therefore, it could be useful in some situations to have expressions that do not rely on
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stochastic sampling of trajectories. The task of obtaining such expressions, by carrying out the

stochastic averaging analytically, will be taken up in Sec. 7.4.

7.3.4 Dynamics along a trajectory when Γud 6= Γdu and for arbitrary Jij

Now that we have described how 〈Sx(t)〉 can be calculated for all-to-all coupling and equal

up/down Raman flipping rates, we will generalize the calculation to accomodate:

(1) A discrepancy between the up and down scattering rates (Γud 6= Γdu).

(2) Arbitrary couplings between the various spins (rather than the all-to-all coupling of the previous

section).

(3) Arbitrary initial product states.

The considerations of the previous section regarding selection of jump times and jump operators

along a trajectory remain valid, so the generalization requires only that we can actually calculate

〈Sx(t)〉 along an arbitrary trajectory. The effective Hamiltonian for which dynamics must be

computed is

Heff =
1
N
∑

i>j

Jij σ̂
z
i σ̂

z
j +

∑

j

ηj σ̂
z
j + i

∑

j




Γr

4

Identity︷ ︸︸ ︷[
σ̂−j σ̂

+
j + σ̂+

j σ̂
−
j

]
+

Γel

8


 . (7.30)

Here Jij are the arbitrary spin-spin Ising couplings, ηj = 1
N t
∑

k Jjkτk is an inhomogeneous magnetic

field that arrises from the Raman flipped spins and their coupling to the unflipped spins (just as

before, but now the field is inhomogeneous because the Jij are inhomogeneous). Dropping anti-

Hermitian parts of Heff that are proportional to the identity, and defining γ = (Γud − Γdu)/4, we

can rewrite this as

Heff =
1
N
∑

i>j

Jij σ̂
z
i σ̂

z
j +

∑

j

ηj σ̂
z
j + iγ

∑

j

σ̂zj . (7.31)
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The discrepancy between Γud and Γdu shows up as an imaginary magnetic field along z, which

causes the spins to drift out of the xy-plane.

Because the couplings (and possibly the initial state) are now inhomogeneous, it will be

necessary to keep track of the number of Rayleigh and Raman jumps for each individual site (Fj

and Rj), rather than just the total number of such jumps for the entire system. It will also be

useful to define local variables

αj = δRj ,0 βj = (−1)Fj . (7.32)

As before, we write the state of a single spin as
∑

σzj
fj(σzj )|σzj 〉, where σzj is an index that takes on

the eigenvalues of the operator σ̂zj , fj(1) = cos (θj/2) eiϕj/2, and fj(−1) = sin (θj/2) e−iϕj/2. The

initial state of the entire system is taken to be a direct product of states for each individual spin

|ψ(0)〉 ≡
⊗

j

∑

σj

fj(σj)|σj〉 (7.33)

=
∑

σz1 ,...,σ
z
N

f1(σz1)× · · · × fN (σzN )|σz1 , . . . , σzN 〉.

Evaluating all or the Rayleigh jumps at t = 0 can be accomplished by changing ϕj → ϕj + πFj ,

which rotates the spin on site j by an angle π if it has undergone an odd number of Rayleigh

jumps. Raman jumps can be incorporated at t = 0 by setting θj = 0(π) if the final Raman jump

on site j was σ̂+
j (σ̂−j ). We therefore define f̃j(σzj ) to be the modification of fj(σzj ) under those

transformations. We also note that, as discussed in Sec. 7.3.3, spins having undergone one or

more Raman jumps are treated as an effective magnetic field, and not included in the spin-spin

coupling term of the Hamiltonian. In addition to the inclusion of magnetic fields ηj , this requires

that we change Jij → αiαjJij in the Hamiltonian. Therefore, we can write the (time-dependent)

wavefunction |ψ̃(t)〉 evolving under the effective Hamiltonian as

|ψ̃(t)〉 =
∑

σz1 ,...,σ
z
N

exp


−it


 1
N
∑

i>j

αiαjJijσ
z
i σ

z
j +

∑

j

(ηj − iγ)σzj




f̃1(σz1)× · · · × f̃N (σzN )|σz1 , . . . , σzN 〉.

(7.34)

Here, and everywhere that follows, the tilde over the wavefunction indicates that the jumps per-

taining to some particular trajectory have been applied to the initial state. In order to calculate
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the transverse spin-length we will first calculate σ̃+
j = 〈ψ̃(t)|σ̂+

j |ψ̃(t)〉/〈ψ̃(t)|ψ̃(t)〉, and at the end

obtain

S̃x(t) = Re


∑

j

σ̃+
j


 (7.35)

Let’s imagine, in particular, calculating 〈ψ̃(t)|σ̂+
1 |ψ̃(t)〉 (there is nothing special about the

first spin, this just makes the notation in what follows less confusing). Because the wavefunction

enters twice, this would involve two sums like the one in Eq. (7.34), over σzj and σ
′z
j , but very few

terms survive: We need σz1 = −1, σ
′z
1 = 1, and for all j 6= 1 we must have σzj = σ

′z
j , so the matrix

element is given by

〈ψ̃(t)|σ̂+
1 |ψ̃(t)〉 = (7.36)

f̃∗1 (1)f̃1(−1)
∑

σz2 ,...,σ
z
N

|f̃2(σz2)|2 × · · · × |f̃N (σzN )|2 exp


2it


η1 +

N∑

j=2

1
N α1αjJ1jσ

z
j + iαjγσ

z
j




 .

If αj = 0, the jth spin always has a well defined value of σzj and the choice to include the term

γσzj in the exponentiated sum (or not) affects only the overall normalization of the wavefunction.

By multiplying γ by αj (in the exponentiated sum), we have chosen to not include the term γσzj ,

and this is properly accounted for when normalizing this expectation value below. In order to

obtain 〈σ̂+
1 〉 we must divide by the (non-conserved) normalization of the wavefunction 〈ψ̃(t)|ψ̃(t)〉.

Defining gj(x) =
∑

σ |fj(σ)|2e−σx, we obtain

〈σ̂+
1 〉 =

f̃∗1 (1)f̃1(−1)
g1(2γt)

∑

σz2 ,...,σ
z
N

|f̃2(σz2)|2
g2(2α2γt)

× · · · × |f̃N (σzN )|2
gN (2αNγt)

× exp


2it


η1 +

N∑

j=2

1
N α1αjJ1jσ

z
j + iαjγσ

z
j




 . (7.37)

This expression can be simplified by making the following set of observations: (1) f̃∗1 (1)f̃1(−1) =

α1β1e
iϕ1 sin(θ1)/2, (2) the α1 in the exponent is irrelevant, because if it takes the value 0 the entire

expression for〈ψ̃(t)|σ̂+
1 |ψ̃(t)〉 vanishes, and (3) the summand factorizes into a product where each

term contains only local (i.e. on a single site) variables, and hence the sum of products can be
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exchanged for a product of sums. Taking (1-3) into account we obtain

〈σ̂+
1 〉 =

sin(θ1)eiϕ1

2g1(2γt)
α1β1

N∏

j=2


∑

σzj

|f̃j(σzj )|2
gj(2αjγt)

exp
[
2itαjσzj (J1j/N + iγ)

]
e2iJ1jτj/N


 . (7.38)

=
sin(θ1)eiϕ1

2g1(2γt)
α1β1

N∏

j=2

(
e2iJ1jτj/N gj [2αjt(γ − iJ1j/N )]

gj(2γtαj)

)
. (7.39)

Therefore, we can write

〈Ŝx〉 = Re
N∑

j=1


sin(θj)eiϕ1

2gj(2γt)
αjβj

∏

k 6=j

(
e2iJjkτk/N gk[2αkt(γ − iJjk/N )]

gk(2γtαk)

)
 . (7.40)

The calculation of correlation functions follows from extremely similar considerations. For

instance, let’s consider G−+
jk ≡ 〈σ̂−j σ̂+

k 〉. In this case, the operators in the expectation value only

connect two states if −σ′zj = σzj = 1, σ
′z
k = −σzk = 1, and σ

′z
l = σzl whenever l /∈ {j, k}. Therefore,

much as before we have

G−+
jk =

sin(θj) sin(θk)ei(ϕk−ϕj)

4gj(2γt)gk(2γt)
αjαkβjβk

∏

l /∈{j,k}

(
e2i(Jkl−Jjl)τl/N gl[2αlt(γ − i[Jkl − Jjl]/N )]

gl(2γtαl)

)
.

(7.41)

Computing correlation functions involving a single σ̂z, such as Gz+jk ≡ 〈σ̂zj σ̂+
k 〉 can be achieved by

inserting σzj into the sum in Eq. (7.37), yielding

Gz+jk =
sin(θk)eiϕkαkβk

2gk(2γt)

[
αj

cos2(θ/2)e−2γt − sin2(θ/2)e2γt

gj(2γt)
+ (1− αj)κj

]

×
∏

l /∈{j,k}

(
e2iJklτl/N gl[2αlt(γ − iJkl/N )]

gl(2γtαl)

)
. (7.42)

Assuming one or more Raman flip occurred, the variable κj takes on the values ±1 if the final

Raman jump is σ̂±j .

7.4 Analytic evaluation of stochastic averages

At this point in the calculation, for clarity of presentation, we set ϕj = 0 and θj = π/2 (for all j),

so all spins point along the x axis at t = 0. Defining P(R,F , τ) to be the probability distribution

of the variables R, F , and τ on a single site (it is the same on every site), the trajectory averaged
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expectation value is given by

〈σ̂+
j 〉 =

∑

all R

∑

all F

∫
dτ1 . . .

∫
dτN 〈σ̂+

j 〉
∏

k

P(Rk,Fk, τk). (7.43)

To begin, we note that the probability distribution can be decomposed as

P(R,F , τ) = Pel(F)Pr(R, τ), (7.44)

which is valid because the probability of Rayleigh jump is independent of whether a Raman jump

has occurred (and vice versa). The occurrence of random processes follows a Poissonian distribution,

so

Pel(F) = e−Γelt/4(Γelt/4)F/F !, (7.45)

and we have also calculated Pr. The result depends on whether R is even or odd (the proof is

simple but requires some careful reasoning, and we do not give it here). We parameterize the R-

odd solution by µ = (R−1)/2 (which will run over all non-negative integers), and we parameterize

the R-even solutions by µ = (R− 2)/2 (once again running µ over all nonnegative integers), and

obtain

Podd
r (µ, τ) =

Γr

4
e−Γrt/2 (ΓudΓdu/4)µ

(µ!)2
e−2τγ(t2 − τ2)µ (7.46)

Peven
r (µ, τ) =

ΓudΓdut

4
e−Γrt/2 (ΓudΓdu/4)µ

µ!(µ+ 1)!
e−2τγ(t2 − τ2)µ. (7.47)

By evaluating the sum
∞∑

F=0

Pel(F)eiπF = e−Γelt/2, (7.48)

we obtain

〈σ̂+
j 〉 =

e−Γelt/2

2 cosh(2γt)

∑

R1,...RN

∫
dτ1 . . .

∫
dτN (7.49)

×


P(Rj , τj)αj

∏

k 6=j
e2iJjkτk/N cosh[2αkt(γ − iJjk/N )]

cosh(2γtαk)
Pr(Rk, τk)




=
e−Γelt/2

2 cosh(2γt)


∑

Rj

∫
dτjαjP(Rj , τj)


 (7.50)

×


∏

j 6=k

∑

Rk

∫
dτke

2iJjkτk/N cosh[2αkt(γ − iJjk/N )]
cosh(2γtαk)

Pr(Rk, τk)


 .
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Because αj gives 1 if there have not been any Raman flips at site j and 0 otherwise, the term in

the first square bracket is just the probability that there has been no Raman flip on site j, which

is given by e−Γrt/2 cosh(2γt) [this comes from evolving the wavefunction of a single spin pointing

along x with the effective Hamiltonian Eq. (7.30)]. Defining Γ = 1
2(Γel + Γr), we have

〈σ̂+
j 〉 =

1
2
e−Γt ×


∏

j 6=k

∑

Rk

∫
dτke

2iJjkτk/N cosh[2αkt(γ − iJjk/N )]
cosh(2γtαk)

Pr(Rk, τk)


 (7.51)

Defining s = 2iγ + 2J/N , the trick is now to evaluate the quantity

Φ(J, t) =
∑

R

∫
dτP(R, τ)e2iJτ/N cosh(istα)

cosh(2γtα)
(7.52)

= e−Γrt/2 cosh(ist) +
∞∑

R=1

∫
dτP(R, τ)e2iJτ/N .

The second equality follows from pulling off the R = 0 term in the sum, which represents the

probability of having no Raman flip (and so we can set τ = 0 and α = 1 in this term). The second

term represents the probability for any finite number of Raman flips, and hence we must keep τ

arbitrary but can set α = 0. The integral over τ can be evaluated by using the identity

∫ t

−t
dτ(t2 − τ2)µe−ixτ = (2t)µ+1 jµ(xt)µ!

(x)µ
, (7.53)

where j is a spherical Bessel function. The remaining sum over R can be recognized as a generating

function for the spherical Bessel functions (or a derivative thereof). Defining parameters λ = Γr/2

and r = ΓudΓdu, and functions

F (x, y) = sinc(
√
x2 − y) (7.54)

G(x, y) =
cos(

√
x2 − y)− cos(x)

x
, (7.55)

we obtain

Φ(J, t) = e−λt cos(st) + λte−λtF (st, rt) + ste−λtG(st, rt) (7.56)

= e−λt
[
cos
(
t
√
s2 − r

)
+ λtsinc

(
t
√
s2 − r

)]
(7.57)
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Figure 7.3: Plots of Φ(J, t) for γ = 0 and Γr/Γc
r ∈ {0, 1/4, 1/2, 3/4, 1}, showing a transition from

oscillatory to damped behavior.

We can now write out the exact solution

〈Ŝx〉 =
e−Γt

2
Re
∑

j

∏

k 6=j
Φ(Jjk, t). (7.58)

For spin-spin correlation functions, similar calculations to those described above lead us to obtain

us to obtain

〈σ̂aj σ̂bk〉 =
1
4
e−2Γt

∏

l /∈{j,k}

Φ(aJjl + bJkl, t) (7.59)

〈σ̂aj σ̂zk〉 =
1
2
e−ΓtΨ(aJjk, t)

∏

l /∈{j,k}

Φ(aJjl, t), (7.60)

where a, b = ±1 and

Ψ(J, t) = e−λt(is− 2γ)t sinc(t
√
s2 − r). (7.61)

These correlation functions, along with similar ones obtained by interchange of the site in-

dices, completely determine the spin-spin correlations. Each instance of σ̂x or σ̂y in an observable

generates an overall multiplicative factor of e−Γt; this is the effect of decoherence at the single-

particle level. The structure of Φ(J, t) captures the effect of decoherence on the many-body physics,

and could not have been deduced without our exact treatment.

We note that for γ = 0 the function Φ(J, t) undergoes a qualitative transition from oscillatory

(s2 > r) to damped (s2 < r) behavior when Γr = Γc
r ≡ 4J/N [Fig. 7.3]. Therefore, when there
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is only one coupling strength J , for instance in the case of all-to-all or nearest-neighbor couplings,

dynamics of the transverse spin-length and correlation functions undergoes the same transition.

More generally, for nonzero γ and any ζ, correlation functions exhibit a series of Hopf bifurcations

as Γr is tuned. We note that the factors of e−Γt in Eqs. (7.58-7.60) may make this transition

difficult to observe experimentally, since the correlations are rapidly suppressed at the critical Γc
r .

7.5 Application to trapped-ion experiments

Trapped ion systems can simulate the Hamiltonian in Eq. (7.1), and can accurately measure

the decoherence rates Γel, Γud, and Γdu. We note that both the Born-Markov approximation and

the assumption of uncorrelated decoherence processes are extremely well justified for trapped ion

systems [170]. Sample averaged spin-length and spin-spin correlation functions are easily measured

in these experiments by looking at the length (and its shot-to-shot fluctuations) of various projec-

tions of the Bloch vector. In the trapped ion experiments discussed in Ref. [17], when ζ = 0 the

time scale at which quantum correlations become important for these observables, τc, scales with

some power of the ion number: τc ∼ N 1/3 for spin-squeezing, ∼ N 1/2 for transverse-spin relax-

ation, and ∼ N for the creation of macroscopic superposition states (MSS’s). Taking N = 100 and

Γ = 0.06J , as is typical in that experiment, we expect the proper incorporation of decoherence to be

quantitatively important even for spin-squeezing, despite it being a relatively short-time indication

of entanglement.

Equations (7.59) and (7.60) allow us to exactly calculate the effect of decoherence and the

finite range of interactions on the maximum spin squeezing achievable in experiment. Figure 7.4(a)

shows the expected maximal squeezing and anti-squeezing as a function of angle ψ in the yz plane

for ζ = 0, 3, with Γ = 0.06J and Γel = 8Γud = 8Γdu (typical experimental numbers in [17]). The

effects of decoherence are more pronounced for shorter range interactions due to the longer time

scales for maximal squeezing. For this calculation the spins are assumed to be initialized (prior to

the Ising dynamics) in a coherent state pointing along the x-axis, and we define the spin squeezing
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Figure 7.4: (a) Example of how spin squeezing is affected by decoherence (dashed lines are Γ =
0.06J , solid lines are for Γ = 0) for long-ranged (red, ζ = 0) and short-ranged (blue, ζ = 3)
interactions. (b) Transverse spin relaxation and revivals for ζ = 0, with parameters corresponding
to expected experimental capabilities in [17] (blue solid line). The dotted blue line is obtained
by treating decoherence at the single-particle level, and underestimates the detrimental effect of
Raman decoherence by about a factor of 35. Inset: transverse-spin fluctuations peaking at time
τr/2. Experimental parameters, exact treatment (red solid line); experimental parameters, single-
particle treatment (red-dotted line); no decoherence (black dashed line).

parameter

ξ(ψ) =
√
N∆Sψ

〈Ŝx〉
, (7.62)

with

∆A =
√
〈Â2〉 − 〈Â〉

2
, (7.63)

Ŝψ =
1
2

∑

j

σ̂ψj , (7.64)

and

σ̂ψj = cos(ψ)σ̂yj + sin(ψ)σ̂zj . (7.65)

For the current experimental parameters there is essentially no spin revival, and no indication

of a MSS at τr/2. However, assuming 97 ions and expected improvements in the experiment [17]

(a roughly 50-fold increase in the ratio J/Γ), in Fig. 7.4(b) we show that transverse spin revivals

begin to appear. In that figure, the dotted line is obtained by treating the decoherence at the

single-particle level, which amounts to attaching a decaying exponential e−Γt to the operators
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σ̂x and σ̂y. We note that this treatment would be exact if the decoherence were only of the

Rayleigh type (Γr = 0). The solid line is the full solution from Eq. (7.58); the large (∼ 35-fold)

discrepancy between the single-particle and exact results indicates that our theory will be essential

for understanding the behavior of this experiment.3 In the inset of Fig. 7.4(b) we plot the

transverse spin fluctuations ∆Sx at times near τr/2. The peak in these fluctuations (which would

achieve unity in the absence of decoherence) is a result of strong transverse-spin correlations in an

emerging MSS, indicating that the expected improvements to the experiments will bring within

reach the production of MSS’s of ∼ 100 ions in the near future.

3 The significant additional decoherence beyond what is predicted at the single-particle level can be understood
from a simple physical picture: We have said that the Raman flipped spins couple to the unflipped spins as a
longitudinal magnetic field, but this magnetic field is “fluctuating” (in the sense that its strength varies from trajectory
to trajectory). This fluctuating longitudinal magnetic field gives rise to additional dephasing, beyond what is induced
by the Rayleigh decoherence.
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Appendix A

Second quantization

In this thesis we will need to describe the behavior of large collections of atoms, and therefore

will work almost exclusively in the notation of second-quantization. There are many excellent

references that derive the equivalence between second-quantization and first-quantization, and here

we only make some very general statements to clarify notation and motivate its use. Just as in

first quantization, we choose some convenient set of single particle wavefunctions ϕα(r) to span

the relevant Hilbert space. An N particle state having nα particles in each wavefunction ϕα(r)

is created from the vacuum by applying creation operators ϕ̂†α to the vacuum state (which has no

particles)1

|Ψ〉 =

(
ϕ̂†1

)n1

√
n1!

×

(
ϕ̂†2

)n2

√
n2!

× . . . |vac〉. (A.1)

Note that if we take ψ̂†(r) to create a particle at the point r, we can create a particle in state ϕα(r)

by taking an appropriate linear superposition of states with a particle in a well defined location,

i.e.

ψ̂†α =
∫
d3rψ̂†(r)ϕ∗α(r). (A.2)

This generalizes in the obvious way to any other change of basis. If we also want to describe some

internal degrees of freedom of these particles, we give these creation operators an additional index

to specify what internal state a particle is created in. For instance, we might want to describe

alkaline earth atoms in one of two electronic states, denoted g (ground) and e (excited), so now we

1 The factors of
p
nj ! in the denominators are necessary for proper normalization, as can easily be checked by

explicitly evaluating 〈Ψ|Ψ〉 using the commutation relations.
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can create atoms in the single particle state ϕα(r) and internal electronic state g(e) by applying

ϕ̂†αg(ϕ̂
†
αe) to the vacuum.2 The key piece of mathematics that causes bosons to have symmetrized

wavefunctions and fermions to have anti-symmetrized wavefunctions are the defining commutation

(anti-commutation) relations for bosonic (fermionic) operators. Writing these in the position basis,

and including an index for possible internal degrees of freedom, we have

[
ψ̂†α(r), ψ̂β(r′)

]
= δαβδ(r − r′), (A.3)

[
ψ̂α(r), ψ̂β(r′)

]
= 0. (A.4)

for bosons and

{
ψ̂†α(r), ψ̂β(r′)

}
= δαβδ(r − r′), (A.5)

{
ψ̂α(r), ψ̂β(r′)

}
= 0. (A.6)

for fermions, where {a, b} = ab+ ba and [a, b] = ab− ba.

We point out, in passing, that just because second-quantization is often used to describe

many-body systems, it should not be misconstrued as containing any essential ingredients of many-

body physics. It is strictly a notation, and it does not describe anything that can’t also be (and

historically often was) described with first-quantization. One way of viewing its notational advan-

tage is that it explicitly incorporates the symmetrization requirements imposed on a wavefunction

by the Bose- or Fermi- statistics of the particles being described. In the notation of first quanti-

zation, each particle is assigned an index, and one can try to describe N particles by associating

with each particle index a well defined state. But this would simply be wrong; a proper bosonic

wavefunction should be symmetric under interchange of any two particle indices. The problem is

that first quantization naturally describes too big a Hilbert space, and we need to go out of our way

(through explicit symmetrization of the wavefunctions) to constrain it to the physical (symmetric)

Hilbert space. In second quantization, there is simply no way of making the above mistake.
2 Because any n level system has a formal connection to a spin-n/2 object, we might refer to this two level atom

as being a spin-1/2 particle. It’s important to remember that, because our description of atoms is non-relativistic,
there is no difficulty caused by violating the spin-statistics connection. We will regularly talk about spinless fermions,
spin-1/2 bosons, etc., all of which would be nonsense in relativistic field theory.
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Effective Hamiltonians

For systems that are only weakly interacting, it is common to take interactions into account

perturbatively. In lattice physics, however, we often encounter the situation where interactions are

the largest energy scale in the problem, and there is no reason to expect such a (weak-coupling)

perturbative treatment to be useful, or even correct. In this strongly interacting regime, the problem

can be simplified by recognizing that large parts of the Hilbert space are inaccessible at low energies.

For example, for spin-1
2 fermions in an optical lattice, at unit filling and with U � J , the low lying

eigenstates of the system should have almost no weight in any many-body state where two fermions

reside on the same site. This motivates defining a low-energy Hilbert space, Hg, consisting of only

the many-body states with one fermion per site (for a lattice with L sites, there are 2L such states,

since each fermion can occupy one of two spin states). The high energy Hilbert space He consists

of everything else, and the full Hilbert space is a direct sum of these H = Hg ⊕He.

In the above example, for U finite and J = 0, Hg is the degenerate groundstate manifold

of H. A natural question to ask is: If we add in a small J � U as a perturbation, how is this

degeneracy lifted? In particular, we might want to know what the spectrum looks like, or whether

the groundstate develops any interesting correlations. These questions can be answered by deriving

an effective Hamiltonian. Because the low-energy Hilbert space Hg is formally identical to that of a

spin−1
2 lattice model, it is natural to expect that the effective Hamiltonian will describe interacting

spins, and we will verify this below.

Motivated by the above example, here we will consider situations where the first-order energy
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shifts vanish (this happens at unit filling because the hopping does not connect states in Hg to

first order), and one must proceed to second-order. There are a number of ways to derive the

effective Hamiltonian to second-order, for instance by using Brillouin-Wigner perturbation theory

[58] or a canonical transformation [152]. But here, we will just motivate the correct result by

analogy to something more familiar: first-order degenerate perturbation theory. When doing first-

order degenerate perturbation theory in a perturbation V, the lesson learned is that we can’t just

choose some arbitrary basis for Hg, denoted |gα〉, and then write down the first-order energy shifts

E
g(1)
α = 〈gα|V|gα〉. Instead, we must compute the matrix elements Vαβ ≡ 〈gα|V|gβ〉, and then find

the eigenvalues of the matrix Vαβ. An unnecessarily complicated perspective would be to define

an effective Hamiltonian Heff as the (unique) operator acting in Hg with matrix elements given

by 〈gα|Heff |gβ〉 = Vαβ. Note that Heff is really just the projection of the operator V onto the low

energy Hilbert-space. Now the first(zeroth)-order perturbative result for the energies (eigenstates)

in Hg are the same as the exact eigenvalues (eigenstates) of Heff .

When the perturbation doesn’t have any matrix elements between states in Hg, and if the

states |gα〉 were non-degenerate, then we would calculate the ground state energy shift to second

order by summing over all states |eβ〉 in He as

Eg(2)
α =

∑

β

〈gα|V|eβ〉〈eβ|V|gα〉
E
g(0)
α − Ee(0)

β

(B.1)

= 〈gα|


∑

β

V|eβ〉〈eβ|V
E
g(0)
α − Ee(0)

β


 |gα〉. (B.2)

The second line has been written in a suggestive way: If the states |gα〉 are all degenerate, and we

define Eg(0)
α = E

g(0), then (just like in first-order degenerate perturbation theory) in order to find

the energy splitting due to the perturbation we define an effective Hamiltonian

Heff =
∑

β

V|eβ〉〈eβ|V
E
g(0) − Ee(0)

β

(B.3)

and find its eigenvalues. This formalism allows us to derive, for instance, a superexchange Hamil-

tonian in the strong coupling limit of the Hubbard model, or the Kondo Hamiltonian in the strong

coupling limit of the Anderson model (see Chapter 3 for a discussion).
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B.1 Application to the Hubbard model at large U/J

As a concrete example of the above procedure, we imagine a two-site Hubbard model, with

two spin-1
2 atoms in the strong coupling limit U/J � 1 (for now, these can be either Bosons or

Fermions). The Hamiltonian is given by H = H0 + V, with

H0 = U
∑

j=1,2

∑

σσ′

â†jσâ
†
jσ′ âjσ′ âjσ and V = −J

∑

σ

(
a†1σa2σ + a†2σa1σ

)
. (B.4)

When J = 0, our low energy Hilbert space Hg contains just four vectors, | ↑↑〉, | ↓↓〉, | ↑↓〉, and

| ↓↑〉, all of which have zero energy. The high energy Hilbert space He consists of states where

one well has two atoms in it and the other has none, all of which have an energy U . Exactly what

states are available depends on whether the atoms are bosons or fermions, and in order to leave

this unspecified we will just denote these states by |eα〉, as before.

According to Eq. (B.3), the effective Hamiltonian is (to second order in J)

Heff =
∑

β

V|eβ〉〈eβ|V
0− U (B.5)

= −J
2

U

∑

β

∑

σ,σ′

(
a†1σa2σ + a†2σa1σ

)
|eβ〉〈eβ|

(
a†1σ′a2σ′ + a†2σ′a1σ′

)
(B.6)

= −J
2

U

∑

σ,σ′

(
a†1σa2σ + a†2σa1σ

)(
a†1σ′a2σ′ + a†2σ′a1σ′

)
(B.7)

= −J
2

U

∑

σ,σ′

(
a†1σa1σ′a2σa

†
2σ′ + a†2σa2σ′a1σa

†
1σ′

)
(B.8)

The third equality follows because
∑

β |eβ〉〈eβ| is just a completeness identity in He (note that this

simplification only occurred because all intermediate states in this example have the same energy),

and the fourth equality follows from recognizing that two of the four terms from the previous line

annihilate all states Hg, and then doing some rearranging of the operators (which, in this case,

is valid for either bosons or fermions). Now we can switch the operators around so that they

are normal ordered on each site (using the commutation relations for bosons or anticommutation
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relations for fermions)

Heff = −J
2

U

∑

σ,σ′

(
a†1σa1σ′

[
δσσ′ ± a†2σ′a2σ

]
+ a†2σa2σ′

[
δσσ′ ± a†1σ′a1σ

])
(B.9)

= ±−J
2

U

∑

σ,σ′

(
a†1σa1σ′a

†
2σ′a2σ + a†2σa2σ′a

†
1σ′a1σ

)
. (B.10)

Here the + is for bosons, − is for fermions, and in the last line we have dropped terms that just

amount to an overall energy shift in Hg. At this point, one can just evaluate all of the matrix

elements by brute force. However, knowing in advance what we’re looking for, we can do a little

better. Using the convention that repeated indices are summed over, and changing some indices,

we can rewrite the last line above as

Heff = ±−J
2

U

(
a†1αa1βa

†
2γa2δ

)
2δαδδβγ (B.11)

= ±−J
2

U

∑

i

(
a†1ασ

i
αβa1β

)(
a†2γσ

i
γδa2δ

)
. (B.12)

In the second line, σiαβ are Pauli matrices (with α, β the matrix indices), we have used the common

identity
∑

i σ
i
αβσ

i
γδ = 2δαδδβγ − δαβδγδ, and again dropped terms that are constant when acting

in Hg. Now, we recognize that 1
2a
†
jασαβajβ can be rewritten as a spin operator sj (switching

from index notation to bold font for vectors). There’s nothing obvious about that; the equivalence

can be viewed as a statement that the above operators (in terms of bosons or fermions) have the

same matrix elements as the spin-1
2 operators when restricted to Hg. Alternatively, one can view

the equivalence as a statement that the spin operators and the quadratic bosonic or fermionic

operators obey the same (Pauli algebra) commutation relations.1 Now we can rewrite the effective

Hamiltonian as

Heff = −4J2

U
s1 · s2 for bosons OR Heff =

4J2

U
s1 · s2 for fermions, (B.13)

and we call this the Heisenberg Hamiltonian. If we were to say something like: “The antiferro-

magnetic Heisenberg model governs the low energy physics of the spin-1
2 Fermi-Hubbard model, at a

1 For bosons, this equivalence is an example of the Schwinger boson representation of spin. For fermions, I think
this representation goes by the name of Abrikosov-pseudo fermion representation. It’s not surprising that the spin
representation works for fermions just as well as for bosons. When applying the operators â†jσâjσ′ to singly occupied
sites, double occupancies never occur (even between applications of the two operators involved), and hence it just
doesn’t matter whether the particles are bosons or fermions.
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(a)

Ja†2↓a1↓ Ja†1↑a2↑ U

U

2
V a†c↓af↓ V a†f↑ac↑

s+
1 s−2

s+
f s−c

(b)

Ja†2↓a1↓ Ja†1↑a2↑ U

U

2
V a†c↓af↓ V a†f↑ac↑

s+
1 s−2

s+
f s−c

Figure B.1: Diagrammatic illustration of the types of perturbative process contributing to Heff for
the Hubbard model (a) and the Anderson model (b), illustrating their formal similarity. The spin
operators and green arrow are meant to show the corresponding action of the effective Hamiltonian,
which directly couples the two low-energy states.

filling of one particle per site, and in the limit U/J →∞”, the above equivalence is what we have

in mind. Notice that, had we chosen a model with many sites, we would have arrived instead at

Heff = ±4J2

U

∑

〈i,j〉

si · sj . (B.14)

This is still a highly non-trivial model (in general, groundstate properties for + cannot be obtained

analytically in D > 1), but at least it alerts that, for fermions, we should expect anti-ferromagnetic

ordering in the groundstate, whereas for bosons we should expect ferromagnetic ordering.

It’s worth pointing out that, up to the overall factor of 4 and the correct sign, we could have

guessed this result. The J2/U comes from the general structure of second order perturbation theory,

and the product s1 · s2 is the only combination of spin operators that is SU(2) invariant [since H

is SU(2) invariant, we expect the effective Hamiltonian to preserve this symmetry order-by-order

in perturbation theory], quartic in the underlying creation and annihilation operators (as it should

be from second order perturbation theory in J), and not proportional to the identity operator.2

In fact, we could even have guessed the sign on physical grounds: For fermions, the energy is

lowered to second-order by virtual transitions through doubly occupied states which, thanks to the

Pauli exclusion principle, can only occur if the two spins are anti-aligned. For bosons, these virtual

transitions lower the energy more when the two spins are aligned than when they aren’t, due to
2 We dropped overall energy shifts anyway, so we’re not getting the ground-state energy right, but we are getting

the energy splittings in the low energy spectrum correct, which is much more important.



164

Bose enhancement of the tunneling.

B.2 Application to the Anderson model at large U/V

In chapter 3 we consider the Kondo lattice model, which in some situations arrises from the

periodic Anderson model as an effective Hamiltonian (just as the Heisenberg model emerges from

the Hubbard model). On a single site, the periodic Anderson model describes the hybridization

(V ) of two orbitals, labeled f and c, when one of those orbitals has a large interaction energy U .

The single-site Hamiltonian can be written

HA = U
∑

σσ′

â†fσâ
†
fσ′ âfσ′ âfσ + V

∑

σ

(
a†cσafσ + a†fσacσ

)
+ εf

∑

σ

a†fσafσ. (B.15)

If we choose εf = −U/2 (sometimes called the symmetric condition), and V = 0, and there is one

atom per orbital, we find a low energy Hilbert space consisting of | ↑↑〉, | ↓↓〉, | ↑↓〉, and | ↓↑〉, where

here the first entry indicates the spin of the atom in the f -orbital and the second entry indicates the

spin of the atom in the c-orbital. All of these states are degenerate with an energy −U/2, whereas

the two states in He (two atoms in either the f -orbital or the c-orbital) have an energy 0. This

problem has the exact same structure as the one we just solved! Mapping J → V , and U → U/2,

we can read the effective Hamiltonian directly from the result for the Hubbard model:

Heff ≡ HK = ±8V 2

U
sf · sc. (B.16)

This Hamiltonian describes (one site of) the Kondo lattice model, and in transition metal oxides

exhibiting heavy-fermion behavior (see chapter 3), this is exactly how it emerges. It was first

derived by Schrieffer and Wolff [152] using a canonical transformation.
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Implementation of local constraints in mean-field theory

For the initialization of the self-consistent diagonalization procedure used in Section 3.4,

and anytime during the procedure immediately after the Ṽi have been updated, it is necessary to

determine the µie that satisfy the local constraint on the e atom density (nei = 1). Finding the

correct µie amounts to finding a root of the vector-valued function:

∆j (µie) = 1− 2
∑

k

∑

q<qkF

∣∣∣vjqk
∣∣∣
2
, (C.1)

since ∆j is the deviation from 1 of the number of localized atoms at site j. The dependence of ∆

on the chemical potentials is implicit in the vjqk, because they are obtained by diagonalizing the Hk,

in which the µie appear explicitly. We proceed to solve ∆j (µie) = 0 via Newton’s method, where

the gradient is calculated in first order perturbation theory (this is just linear response theory)[79]:

∂∆j

∂µie
=

2
Lt

∑

k

∑

q<qkF

∑

q′>qkF

<
[
v̄iqkv

i
q′kv̄

j
q′kv

j
qk

εq − ε′q

]
, (C.2)

< being the real part. Newton’s method amounts to making successive linear approximations

to the nonlinear equation ∆j (µie) = 0: we choose a starting point µ0
ie from the local density

approximation, and then solve

∆j

(
µ0
ie

)
−
∑

i

δµie

(
∂∆j

∂µie

)∣∣∣∣
µ0
e

= 0 (C.3)

for the δµie by inverting the matrix ∂∆j/∂µie. We then change µ0
ie → µ0

ie + δµie, and repeat until

the constraints are satisfied to within a desired tolerance.
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This procedure works wherever the hybridizations Ṽi are finite, but breaks down, for instance,

near the edge of the trap. In general, we initiate the self-consistent diagonalization with a trap

strength that is sufficiently weak to allow finite g atom density at the trap edges, and then turn

up the trap slowly throughout the iteration. Whenever the hybridization at the edges begins to

vanish, the Fermi level is flanked by two nearly degenerate combinations of a single e atom at the

leftmost or rightmost lattice site. The gradient defined in Eq. (C.2) becomes badly behaved at this

point, because the degenerate states split the Fermi level, and they must be excluded from the sum

(one can avoid the resulting divergences by exploiting the reflection symmetry about the center of

the trap, but inclusion of these degenerate states nevertheless increases the precision necessary to

reliably invert the gradient matrix).
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Scattering between P and D bands in a separable optical lattice

Here we explain in more detail the problem of having 2D Kondo-like physics in a separable

lattice I(r) = Ix(x) + Iy(y); these considerations also apply to the D > 1 multi-flavor models

discussed in Ref. [86]. Though we are interested in spin-1
2 bosons, for simplicity we will ignore the

spin degree of freedom (or alternatively restrict ourselves to the fully polarized states in our spin-1
2

model). Projecting the spinless version of the Hamiltonian in Eq. (4.1) onto the Hilbert space of

a single site, we obtain

H̃ =
∑

α

Eαn̂α +
∑

α

Uα
2
n̂α(n̂α − 1) + 2

∑

α>β

Vαβn̂αn̂β +
∑

{α,β}6={γ,δ}

Wαβγδα
†β†γδ, (D.1)

where the site index has been dropped and the mean band energies Eα have been accounted for.

Because the noninteracting part of the Hamiltonian is separable in x-y coordinates, a generic

Wannier function can be labeled by independent band indices for the x and y directions, and so we

introduce a vector band index α = {αx, αy}. In this notation, a Wannier function is given by

wα(r) = wxαx(x)wyαy(y), (D.2)

and has single-particle energy Eα = εxαx + εyαy , where

εxαx =
∫
dx wxαx(x)

[
Ix(x)− ~2∂2

x

2m

]
wxαx(x) (D.3)

(and likewise for εyay). We assume all of these Wannier functions to be real. The lowest energy

single particle state |00〉, with α = {0, 0}, is both the most stable (against vibrational decay) and

the least mobile, and hence is the obvious candidate for the localized spins in the Kondo-Hubbard
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model. The lowest energy state that has an enhanced hopping in both spatial directions is |11〉,

with α = {1, 1}, and we choose it for the conduction atoms.

The two-particle state with one boson in |00〉 and one boson in |11〉 is, at the single particle

level, degenerate with the two-particle state in which one boson is in |10〉 (α = {1, 0}) and one boson

is in |01〉 (α = {0, 1}), both states having energy E0 = εx0 + εx1 + εy0 + εy1. Therefore, the minimal

Hilbert space for an interacting model that contains both |00〉 and |11〉 must also contain |10〉 and

|01〉. Defining the two particle states |1〉 = |00〉⊗ |11〉 and |2〉 = |10〉⊗ |01〉, it is straightforward to

check that 〈1|H̃|1〉 = 〈2|H̃|2〉 = 2V , where

V =
4π~2asχ

m

∫
d2rwx0 (x)2wy0(y)2wx1 (x)2wy1(y)2 (D.4)

is the same Kondo exchange defined in the manuscript. In other words, in addition to having the

same single particle energy, the states |1〉 and |2〉 have the same interaction energy, and remain

degenerate at the many-body level. Furthermore, |1〉 and |2〉 are connected by the W terms in H̃,

with matrix element 〈1|H|2〉 = 2V . Because |1〉 and |2〉 are degenerate at the many-body level,

and are connected by an interaction with the same strength as the Kondo exchange, a site initially

in state |1〉 will scatter into the state |2〉 in a characteristic time τ = π/V .

For implementation of the multi-flavor models of Ref. [86] in D > 1, some non-separability

of the lattice would need to be present in order to prevent the above mentioned collision channels

from populating states outside of the Hilbert space considered (which includes the state |2〉 but

excludes the state |1〉).
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Derivation of the weak coupling Hamiltonian for the boson Kondo Hubbard

model

Here we derive the second order weak-coupling effective Hamiltonian via perturbation theory

in the Kondo term HV = 2V
∑

j Sja · Sjb

H(2)
wc =

∑

n,Σ

HV |n,Σ〉〈n,Σ|HV
ε0 − εn

. (E.1)

The state |n,Σ〉 above has one conduction boson in the single particle state ψn(j), the rest of the

conduction bosons in ψ0(j), and a spin configuration labeled by the index Σ; only states of this

form contribute at this order. Because the energy denominators have no dependence on Σ, the sum

over Σ is a completeness identity in spin space and can be dropped. Using the basis transformation

a†jσ =
∑

m a
†
mσψm(j) we can rewrite the Kondo coupling as

HV = 2V
∑

jmn

Sbj · Samnψm(j)ψn(j), (E.2)

where Samn =
∑

σσ′ a
†
mστσσ′anσ′ . For expectation values within the degenerate ground state mani-

fold we have the equivalence

H(2)
wc = 4V 2

∑

mjl

(
Sbj · Sa0m

) (
Sbl · Sam0

)
G0
jlGmjl

ε0 − εm
. (E.3)

Taking advantage of common identities for Pauli matrices, within the ground state manifold we

can rewrite
(
Sbj · Sa0m

)(
Sbl · Sam0

)
=
Na
4
Sbj · Sbl −

δjl
2
Sa00 · Sbj , (E.4)
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which leads to

H(2)
wc = −nNV 2

∑

j,l

RjlSjb · Slb

+ 2V 2Sa ·
∑

j

RjjSjb. (E.5)



Appendix F

Uniqueness of the steady state

Here we show that for a 1D harmonic oscillator, in a particular sector of Hilbert space S n

and for a particular value of Sz, the unique steady-state reduced spin density matrix is given by

ρns = |n/2, Sz〉〈n/2, Sz|. (F.1)

The extension of what follows to the 1D Hubbard chain is fairly straightforward, and will be

described in more detail in future work. As discussed in the text, it is sufficient to prove that all

dark eigenstates of the non-interacting Hamiltonian

HHO =
∫
dx ψ†σ(x)

(
∂2
x

2m
+

1
2
mω2x2

)
ψσ(x) (F.2)

have a maximally symmetric spin wavefunction. To understand the properties of its dark eigenstates

under particle exchange, we will actually work in first quantization writing an eigenstate for N

particles as

Ψ =
∑

~σ

A~σ Φ~σ(r1, . . . , rN )|~σ〉. (F.3)

Here the jth component of the vector ~σ, σj ∈ {↑, ↓}, labels the spin orientation of the jth particle

(along some arbitrary quantization axis, which we’ll call z), and the total spin wavefunction in any

term of the sum is

|~σ〉 = |σ1〉 ⊗ |σ2〉 ⊗ · · · ⊗ |σN 〉. (F.4)

The sum over ~σ should be understood as independent summations over each index

∑

~σ

=
∑

σ1

∑

σ2

· · ·
∑

σN

, (F.5)
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the coefficients A~σ are arbitrary, and Φ~σ is a normalized orbital wavefunction for the N particles.

Dark states of s-wave losses have zero expectation value in the interaction operator

U =
∑

m<n

Umn = g
∑

m<n

δ(rm − rn), (F.6)

and this expectation value can be evaluated as

U =
∫

Dr Ψ∗ U Ψ

=
∑

~σ

|A~σ|2
∫

Dr Φ∗~σ U Φ~σ, (F.7)

with Dr ≡∏j drj . The last equality holds because the interaction is spin-independent. It is crucial

to realize that the operator U is positive-semidefinite, which means that satisfying U = 0 actually

implies the stricter constraint
∫

Dr Φ∗~σ U Φ~σ = 0 ∀~σ. (F.8)

In addition to the operator U being positive-semidefinite, the constituent pairwise interaction op-

erators are as well. Hence, the condition
∫

Dr Φ∗~σ U Φ~σ = 0 actually implies that

∫
Dr Φ∗~σ Umn Φ~σ = 0 ∀ m 6= n. (F.9)

The above set of equalities can now be used to pin down properties regarding the exchange symmetry

of the wave functions Φ~σ.

F.1 Implications for the exchange symmetry of the orbital wave functions

Let’s choose two particles, say particle 1 and particle 2, and define relative and center-of-mass

coordinates for them as r = r1 − r2 and R = (r1 + r2)/2. We can then expand the wavefunction

Φ~σ in a way that makes the symmetrization with respect to exchange of particles 1 and 2 explicit:

Φ~σ =
∑

βs

B~σβs × ϕα(β,s)(r)ϕβ(R)ψs(r3, . . . , rN ). (F.10)

In the above ϕα are harmonic oscillator wavefunctions, the ψs are a complete and orthonormal

set of eigenfunctions for the remaining N − 2 particles, and the notation α(β, s) implies that the
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relative wavefunction of particles 1 and 2 is uniquely determined by β and s. This point is crucial,

and relies on the observation that for Ψ to be an eigenstate, when expanded in terms of eigenstates

Φσ all of the eigenstates must have the same eigenvalue. Hence the energies of states α, β, and s

are constrained to add to some fixed value. From now on we’ll drop this explicit dependence. The

interaction energy between particles 1 and 2 is given by

U12 =
∫

Dr Φ∗~σ U12 Φ~σ

= g
∑

βs

B~σβsϕα(0)× B∗~σβsϕ∗α(0)

=
∑

βs

∣∣B~σβsϕα(0)
∣∣2 , (F.11)

and hence U12 = 0 implies that

B~σβsϕα(0) = 0 ∀ β, s (F.12)

So B~σβs must be zero for all even wave functions (all of which are finite at the origin), implying

that Φ~σ is strictly odd under interchange of particles 1 and 2. By repeating the above argument

for two arbitrary particles m and n, it is easy to see that Φ~σ is strictly odd under interchange of

any two particles.

F.2 Implications for the spin wavefunction

We can now ask what the antisymmetry of Φ~σ implies for the full wave function

Ψ =
∑

~σ

A~σ Φ~σ(r1, . . . , rN )|~σ〉. (F.13)

Under interchange of two arbitrary particles we have |~σ〉 → |~σ′〉, and we obtain the new wave

function

Ψ′ = −
∑

~σ

A~σ Φ~σ(r1, . . . , rN )|~σ′〉

= −
∑

~σ

A~σ′ Φ~σ′(r1, . . . , rN )|~σ〉

= −Ψ

= −
∑

~σ

A~σ Φ~σ(r1, . . . , rN )|~σ〉, (F.14)
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implying that

A~σ Φ~σ(r1, . . . , rN ) = A~σ′ Φ~σ′(r1, . . . , rN ). (F.15)

The second equality follows because switching σ ↔ σ′ in the summand just changes the order of the

terms in the sum, and the third equality follows from the antisymmetry of the total wavefunction

under particle exchange. By repeated permutations of various particles, this chain of logic can be

used to demonstrate that all of the A~σ Φ~σ(r1, . . . , rN ) are equal, and hence we have

Ψ = AΦ(r1, . . . , rN )
∑

~σ

|~σ〉. (F.16)

Now A is just some normalization, which is related to the total z projection of the spin, and it

is clear that Ψ breaks up into the product of a completely antisymmetric orbital wavefunction

multiplied by a completely symmetric spin wavefunction.



Appendix G

Phase sensitivity of the steady-state

In order to estimate the phase measurement sensitivity of an array of 1D tubes in the steady

state, we begin by considering just the jth tube, with initial particle number N , final particle

number Dj after relaxing to steady state via collisional loss, and initial (and final) spin projection

Szj . The initial N atoms can most easily be prepared in an incoherent mixture of spin up and

spin down by simply allowing a coherent state initially prepared along the x-direction to undergo

single particle dephasing (which could be briefly enhanced via a myriad of methods). For the

coherent state, the probability of a given Szj is given by a binomial distribution, which for large N

is approximated by the continuous probability distribution

P(Szj ) =

√
2
Nπe

−2(Szj /
√
N )2 . (G.1)

Note that without dephasing into a mixture, a coherent state of fermions does not undergo s-wave

collisions. In the sense that such a distribution is easily prepared experimentally, we take this to

be a worst-case scenario; a distribution of Szj more sharply peaked around Szj = 0 will enhance

the phase sensitivity. The probability distribution of steady-state particle numbers in the jth tube,

conditioned on a particular value of Szj , is given by

P(Dj |Szj ) = Θ(Dj − |2Szj |)
2Dj
N e−(Dj/

√
2N )2e2(Szj /

√
N )2 . (G.2)

For Szj = 0, this distribution is peaked around D0 ≈
√
N (giving the expected value of n(∞) quoted

in the text). For |Szj | > 0, the step function Θ reflects the fact that as particles are lost (remember

that Szj is conserved by the losses), the remaining particles are maximally spin polarized once
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Dj = 2|Szj |. The second exponential provides the proper normalization, 1
2

∫∞
0 dDj P(Dj |Szj ) = 1,

where the factor of 1
2 comes from converting sums into integrals while respecting our assumption

of even particle number.

For this single tube, small rotations about the x-axis by an angle δϕ cause a standard devi-

ation in the final distribution of Szj given by [15]

σ(δϕ,Dj , Szj ) ≈ δϕ

√
(Dj − 2Szj )(Dj + 2Szj )

8
. (G.3)

for large Dj . For Szj = 0 (before the rotation), this demonstrates that a discrepancy in Szj (after the

rotation) of order unity is expected for δϕ ∼ 1/Dj , hence the Heisenberg scaling of phase-sensitivity

(about ϕ = 0) within a single tube. The phase uncertainty for arbitrary ϕ can be determined by

the more general criterion [115, 82]

δϕ =

√
〈(Szj )4〉 − 〈(Szj )2〉2

∂〈(Szj )2〉/∂ϕ , (G.4)

and reproduces the previous result in the limit of small rotations.

Our estimation of the phase sensitivity for an array of tubes relies only on the assumption

that the initial (i.e. before the losses) value of Sz =
∑

j S
z
j is known to within an uncertainty Σ,

but does not require any knowledge of Szj in the individual tubes, greatly relaxing the experimental

requirements. This uncertainty Σ guarantees that, in principle, rotations causing deviations in Sz

of order Σ can be detected. For T tubes with well defined (i.e. measured) total spin projection Sz,

the expected standard deviation in Sz (denoted σtot) due to a rotation by angle ϕ about the x-axis

satisfies

σ2
tot =

T times︷ ︸︸ ︷∫ ∞

−∞
. . .

∫ ∞

−∞

∏

j

dSzj

T times︷ ︸︸ ︷∫ ∞

0
. . .

∫ ∞

0

∏

j

dDj
∏

j

[
1
2
P(Dj |Szj )P(Szj )

]
× (G.5)

∑

j

σ(δϕ,Dj , Szj )2 δ(Sz −
∑

j

Szj ). (G.6)

Here δ is the Dirac δ-function, reflecting the correlations established between the various Szj by

the knowledge of Sz, and the factors of 1
2 again come from converting sums into integrals while
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respecting the assumption of even particle number. If we ignore this δ-function constraint, which

is valid in the large T limit, the integral simplifies greatly to

σ2
tot ≈

T
2

∫ ∞

−∞
dSzj

∫ ∞

0
dDjP(Dj |Szj )P(Szj )σ(δϕ,Dj , Szj )2. (G.7)

Equation (G.7) can be evaluated explicitly to reveal

4σ2
tot ≈ T N δϕ2 ≈ T D2

0δϕ
2. (G.8)

Setting the total standard deviation to Σ gives a minimum phase sensitivity of

δϕmin ≈
2Σ
D0

√
T
. (G.9)

As has been demonstrated recently in Ref. [177], Σ ∼ 1 is possible for ∼ 100 atoms in an optical

cavity, as long as measurements that do not preserve coherence between the atoms are acceptable.

Such measurements certainly are acceptable before the losses take place, since we require no inter-

particle correlations in the initial state (they develop dynamically due to the losses). Therefore,

as quoted in Sec. 6.3, we expect a minimum phase sensitivity that scales as δϕmin ∼ 1
D0

√
T to be

achievable in experiment.



Appendix H

Derivation of distribution functions P(R,F , τ)

In Section 7.4, we gave the probability distributions P(R,F , τ) of trajectories with (1) R

Raman jumps and (2) F Rayleigh jumps, and (3) satisfying τup − τdown = τ . We showed that

P(R,F , τ) can be decomposed as

P(R,F , τ) = Pr(R, τ)× Pel(F) (H.1)

= Pr(R, τ)× e−Γelt/4(Γelt)F

F !
. (H.2)

Here we derive the distribution Pr(R, τ) in detail.

We will divide trajectories up into two categories, those with R odd and those with R even,

and we’ll treat the odd case first. We assume that the spin initially points in the x direction, in

which case the probability of pointing up or down at t = 0 is equal. Let’s imagine the spin points

up at t = 0 (with probability 1
2), then the probability of a sequence of R (time labeled) jumps such

as

σ̂−(t1)σ̂+(t2)× · · · × σ̂+(tR−1)σ̂−(tR) (H.3)

is given by

P (t1, t2, . . . , tR) =
1
2
e−Γudt1(dt1Γud)e−Γdu(t2−t1)(dt2Γdu)× · · · × e−Γud(tR−tR−1)(ΓuddtR)e−Γdu(t−tR)

=
1
2
e−Γudτ

up
e−Γduτ

down
(dt1 × · · · × dtR)Γ(R+1)/2

ud Γ(R−1)/2
du . (H.4)

(H.5)

We can now obtain Podd
r (R, τ) by integrating P (t1, . . . , tR) over the time variables t1, . . . , tR, under

the constraints that τup − τdown = τ and dt1 < dt2 < · · · < dtR−1 < dtR. Defining µ = (R− 1)/2,
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t1 t2 t30 t

σ̂+ σ̂− σ̂+

t10 τup 0 t1 τdown

= ×

Figure H.1: Diagrammatic representation for the factorization of the integral in Eq. (H.8) for
a trajectory with three spin flips. The key point is that the total volume of configuration space
spanned by changing the location of times t1, t2, and t3, subject to the constraint on τ . is the same
as the product of the unconstrained volumes accessible to the configurations on the bottom.

and also adding in the contribution from trajectories where the spin starts pointed down (which is

obtained by switching Γud ↔ Γdu in the expressions above) we obtain

Podd
r (R, τ) =

1
2

Γre
−Γudτ

up
e−Γduτ

down
(ΓudΓdu)µ

∫ t

0
dt1

∫ t

dt1

dt2 . . .

∫ t

dtR−1

dtRδ(τup − τdown − τ).

(H.6)

The key step is to realize that the constraint renders this chain of integrals a product between two

ordered volume integrals:

∫ t

0
dt1
∫ t

dt1

dt2 . . .

∫ t

dtR−1

dtRP (t1, t2, . . . , tR)δ(τup − τdown − τ) (H.7)

=

(∫ τup

0
dt1 . . .

∫ τup

tµ−1

dtµ

)
×
(∫ τdown

0
dt1 . . .

∫ τdown

tµ−1

dtµ

)
. (H.8)

The above equality is shown schematically in Fig. H.1. Ordered volume integrals can easily

be taken on symmetry grounds as

∫ τup

0
dt1 . . .

∫ τup

tµ−1

dtµ =
(τup)µ

µ!
, (H.9)

and hence we have

Podd
r (µ, τ) =

1
2

Γre
−Γudτ

up
e−Γduτ

down
(ΓudΓdu)µ

(τup)µ

µ!
(τdown)µ

µ!
(H.10)

=
Γr

2
e−Γrt/2e−2γτ (ΓudΓdu/4)µ

(t2 − τ2)µ

(µ!)2
. (H.11)
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When R is even, we instead define µ = (R+1)/2, and from extremely similar considerations obtain

Peven
r (µ, τ) =

ΓudΓdut

2
e−Γrt/2e−2γτ (ΓudΓdu/4)µ

(t2 − τ2)µ

µ!(µ+ 1)!
. (H.12)
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