ASTR 5110 Atomic and Molecular Processes Fall 2023. Problem Set 4. Due Wed 27 Sep.

The first problem is from the notes; the second is not.
35.1. (10 points) Basic application of the Saha equation. To do this, you will need to figure out the single-particle partition function of a free, nonrelativistic, Boltzmann species, which is an analytically doable integral. All the particles here are spin- $1 / 2$, therefore fermions, and therefore (being also massive), have 2 spin states each.
35.4. (20 points) (Not from notes). Longer but useful. Write a computer program to compute the populations of the $n=1,2$, and 3 levels of neutral H , and of protons p in thermodynamic equilibrium as a function of temperature T, at a given total hydrogen number density $n_{\text {tot }}=n_{\mathrm{H}}+n_{p}=n_{1}+n_{2}+n_{3}+n_{p}$ (including for simplicity only the $n=1$, 2 , and 3 levels of neutral H ; apologies that n for level gets the same symbol as n for number density; it is the standard convention in both cases). Assume all species are Boltzmann, and assume overall charge neutrality $n_{e}=n_{p}$. Plot your results for some representative densities, and comment on them. Why is $n_{\text {tot }} \approx 10^{30} \mathrm{~m}^{-3}\left(\approx 10^{24} \mathrm{~cm}^{-3}\right)$ an interesting choice? [The nth energy level of H has degeneracy $2 n^{2}$, and energy $\epsilon_{n}=-\chi /\left(n^{2}\right)$ relative to the energy of the just ionized ion, where $\chi=13.6 \mathrm{eV}$ is the ionization energy of H . In your calculation, you will find it necessary to solve a certain quadratic equation. There is a numerically stable and a numerically unstable way to solve the quadratic, and you should of course use the stable solution (if you are puzzled by that statement, ask in Math Methods).]

