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1. Magnetic Moment

Classically, the magnetic moment µ of a system of charges q at positions r moving with
velocities v is

µ =
1

2

∑
charges q

q r × v . (1.1)

When a magnetic moment µ is placed in a uniform magnetic field B, the energy associated
is, classically,

Hµ = −µ ·B . (1.2)

A point-like magnetic moment µ itself produces a magnetic field B given by

A = ∇×
(µ
r

)
=
µ× r̂
r2

, B = ∇×A =
3 r̂(µ · r̂)− µ

r3
(1.3)

where A is the vector potential. If the magnetic moment has finite size, then equation (1.3)
gives the magnetic field at distances from the magnetic moment large compared to its size.

For a system of nonrelativistic particles of the same charge q and mass m (for example,
electrons in an atom, where q = −e and m = me) the magnetic moment µ becomes

µ =
q

2m

∑
ptles

r × p =
q

2m
L (1.4)

where L is the total angular momentum of the particles.
Equation (1.4) motivates the definition of the Bohr magneton µB (NIST 2018)

µB ≡
e~

2me
= 9.274 010 0783(28)× 10−24 J T−1 =

α

2
atomic units , (1.5)

and the nuclear magneton µN

µN ≡
e~

2mp
= 5.050 783 7461(15)× 10−27 J T−1 =

α

2mp/me
atomic units (1.6)

with mp the mass of the proton.
It is found experimentally that particles with spin S have intrinsic magnetic moments

proportional to their spins. For electrons, the Landé g-factor ge is defined by

µe = ge
e

2me
Se , (1.7)

and is found both theoretically and experimentally to have a value close to −2, the minus
sign coming from the charge −|e| of the electron (NIST 2018),

ge = −2.002 319 304 362 56(35) . (1.8)

For nuclei, the Landé g-factor gnuc is customarily defined as the ratio of the magnetic mo-
ment to the spin of the nucleus, with the magnetic moment measured in nuclear magnetons,

µnuc = gnuc
e

2mp
Snuc . (1.9)
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2. Particles in an Electromagnetic Field

A powerful discovery of modern physics is that electromagnetism is a local gauge theory
based on the group U(1) of rotations about a circle. In the theory, one supposes that
elements of the group U(1) act on wavefunctions, rotating them by

ψ → e−iqθψ (2.1)

where q is the charge of the particle in dimensionless units ~ = c = 1 (the charge q in (2.1)

is really the dimensionless quantity q/(~c)1/2), and e−iqθ ∈ U(1) is a rotation. θ being
some angle. Electromagnetism emerges miraculously from the requirement that equations of
motion must remain invariant when the gauge is rotated by an angle θ(t,x) which is allowed
to vary arbitrarily over time t and space x. The required gauge invariance is accomplished
by defining gauge-covariant derivatives D/Dt and D/Dx to have the property that when
the wavefunction ψ undergoes a gauge rotation (2.1) by e−iqθ, the covariant derivatives are
similarly rotated by e−iqθ:

D

Dt
e−iqθψ = e−iqθ

Dψ

Dt
,

D

Dx
e−iqθψ = e−iqθ

Dψ

Dx
. (2.2)

The property (2.2) is equivalent to requiring that the covariant derivatives commute with
a gauge rotation [

D

Dt
, e−iqθ

]
= 0 ,

[
D

Dx
, e−iqθ

]
= 0 . (2.3)

To achieve gauge invariance, one introduces the electromagnetic potentials φ,A, and defines
the gauge-covariant derivatives D/Dt,D/Dx by (again in units ~ = c = 1)

i
D

Dt
≡ i ∂

∂t
− qφ , −i D

Dx
≡ −i ∂

∂x
− qA . (2.4)

The covariant derivatives (2.4) commute with a gauge transformation e−iqθ, equation (2.1),
provided that under such a gauge transformation the potentials φ and A simultaneously
change according to

φ→ φ− ∂θ

∂t
, A→ A+

∂θ

∂x
. (2.5)

Thus in the quantum mechanical U(1) gauge theory of electromagnetism, equations of
motion of particles in an electromagnetic field are obtained by replacing the energy and
momentum operators, which are the derivatives with respect to time and space, by the
corresponding gauge-covariant operators

i~
∂

∂t
→ i~

∂

∂t
− qφ , p→ p− q

c
A (2.6)

where now proper units have been reintroduced. The Schrödinger equation

i~
∂ψ

∂t
=

p2

2m
ψ (2.7)

for a free particle mass m is thus changed in the presence of an electromagnetic field φ,A
to the Schrödinger equation i~∂ψ/∂t = Hψ with Hamiltonian

H =
1

2m

(
p− q

c
A
)2

+ qφ . (2.8)
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The Hamiltonian (2.8) is valid for scalar particles, those with zero spin. However, particles of
spin 1

2 are described by the Dirac equation. In the nonrelativistic limit, the Dirac equation

for spin 1
2 particles of charge q (for an electron, q = −e) moving in an electromagnetic field

is the Pauli equation

H =
1

2m

(
p− q

c
A
)2

+ qφ− q

m
S ·B , (2.9)

which differs from the scalar Hamiltonian by the last term, in which S is the spin operator,
and B ≡ ∇×A is the magnetic field.

For a weak, uniform magnetic field, the vector potential is A = 1
2B × r. In this case the

Hamiltonian (2.9) reduces to

H =
p2

2m
+ qφ− q

2m
(L+ 2S) ·B . (2.10)

Since an isolated electron has spin 1
2 , one might have thought that electron would have

an intrinsic magnetic moment of minus one Bohr magneton. Equation (2.10) however shows
that a free electron, charge −e, in an external magnetic field has magnetic moment

µe =
−e~
me

(2.11)

which is twice the expected value. The factor of 2 in front of the spin shows that the Landé
g-factor of the electron is ge = −2. This has consequences amply confirmed by experiment:

• the fine-structure energy splittings in atoms;
• electron spin precesses twice as fast as it ‘should’ in an externally applied magnetic

field (Stern-Gerlach experiment).

3. Zeeman Effect

In the presence of a uniform external magnetic field B = Bẑ directed along say the
z-direction, the atomic Hamiltonian is perturbed by

HZ =
eB

2me
(Lz + 2Sz) (3.1)

in accordance with equation (2.10). The associated perturbation in the energy is

∆EZ =
eB

2me
〈ψ|Lz + 2Sz|ψ〉 . (3.2)

The perturbation (3.2) in the energy involves the average value of the operator Lz + 2Sz =
Jz + Sz, where J ≡ L + S is the total angular momentum. Now the isotropy of space
is broken by the magnetic field, but isotropy is preserved about the direction ẑ of the
magnetic field. Thus Jz is conserved, with a definite value MJ~. However, Sz is not in
general conserved, so that

〈ψ|Lz + 2Sz|ψ〉 = MJ~ + 〈ψ|Sz|ψ〉 . (3.3)

In practice, two cases can be distinguished, according to whether the Zeeman energy
splitting ∆EZ of levels in an atom is small or large compared to the fine-structure splitting,
∆EFS.
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3.1. Zeeman Effect: Weak Magnetic Field.
If the magnetic field is sufficiently weak that the Zeeman energy splitting of levels in an

atom is small compared to fine-structure splitting

∆EZ � ∆EFS , (3.4)

then the behavior of the orbital and spin angular momenta can be characterized as follows:

(1) spin-orbit interaction causes the orbital angular momentum L and spin S to precess
about the axis of total angular momentum J ;

(2) the orbital angular momentum J precesses, at a much slower rate, about the direc-
tion z of the magnetic field.

The precessions preserve L2, S2, and J2. The relatively rapid precession of the spin S
about the axis of total angular momentum J means that the average value of the spin
operator is equal to its value projected along J ,

〈ψ|S|ψ〉 =

〈
ψ

∣∣∣∣(J · S)J

J2

∣∣∣∣ψ〉 (3.5)

and in particular the mean value of the z-component of the spin is

〈ψ|Sz|ψ〉 =

〈
ψ

∣∣∣∣(J · S)Jz

J2

∣∣∣∣ψ〉 . (3.6)

Equation (3.6) can be reduced by the trick

J2 = (L+ S)2 = L2 + 2L · S + S2 (3.7)

whence

J · S = L · S + S2 =
1

2

(
J2 −L2 + S2

)
(3.8)

so that

〈ψ|Sz|ψ〉 =
J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1)
~MJ . (3.9)

It follows that the Zeeman energy splitting is

∆EZ = gZ
e~BMJ

2me
(3.10)

with Landé g-factor gZ

gZ = 1 +
J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1)
. (3.11)

In the particular case that S = 0, so J = L, then gZ = 1. Likewise if L = 0, so J = S, then
gZ = 2.

Equation (3.10) shows that the 2J + 1 components of each J level are uniformly split,
with energy spacing gZe~B/(2me).
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3.2. Zeeman Effect: Strong Magnetic Field.
The opposite limit where the Zeeman energy splitting is large compared to fine-structure

splitting
∆EZ � ∆EFS , (3.12)

is called the Paschen-Back effect. Here the magnetic field is sufficiently strong that the
orbital and spin angular momenta L and S precess separately about the direction ẑ of the
magnetic field, with spin-orbit interaction causing only a mild perturbation. In this case the
z-components of the orbital and spin angular momenta are separately conserved to a good
approximation, so that ML and MS are good quantum numbers. The precessions preserve
L2, S2, but they no longer preserve J2 (unless L = 0 or S = 0), so J is not a good quantum
number, even though MJ = ML +MS is. In place of (3.9), the mean value of Sz is just

〈ψ|Sz|ψ〉 = MS~ . (3.13)

The Zeeman energy splitting is then given by

∆EZ =
e~B(MJ +MS)

2me
(3.14)

which is equation (3.10) with Landé g-factor

gZ = 1 +
MS

MJ
. (3.15)

According to the usual electric dipole selection rules, permitted transitions between two
Zeeman-split LS terms (which must of course belong to different electronic configurations,
because parity must change), must satisfy ∆MJ = 0 or ±1 and ∆MS = 0. These rules are
of course valid for both weak and strong magnetic fields.

4. Fine-Structure

To next order in powers of 1/c, the Dirac equation yields the Hamiltonian

H =
p2

2m
+ qφ− q

m
S ·B − p4

8m3c2
+

q

2m2c2
S .∇φ× p+

e~2

8m2c2
∇2φ (4.1)

The last three terms are relativistic corrections. Of these three terms, the first is the
correction to the dependence of relativistic energy on momentum, i.e. it’s the next order
in the expansion of

[
(p2 +m2c2)1/2 −m2c2

]
/2m; the second is the spin-orbit interaction

energy; and the last is known as the Darwin term, is caused by zitterbewegung, and
results in the Lamb shift.

For a spherically symmetric potential φ, the gradient of the potential is

∇φ =
r

r

∂φ

∂r
(4.2)

so the spin-orbit term of the Hamiltonian is

Hspin−orbit =
q

2m2c2
∂φ

r∂r
S . r × p =

q

2m2c2
∂φ

r∂r
S ·L . (4.3)

The potential of a multi-electron atom with L 6= 0 is not spherically symmetric about the
nucleus; but it is spherically symmetric in the hydrogenic approximation, and it remains
approximately spherically symmetric when the electrostatic repulsion between electrons is
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included. The electrostatic field of the electron cloud screens the charge of the nucleus,
reducing the effective field experienced by electrons at larger radii from the nucleus. The
approximation in which the electrons self-consistently orbit in the spherically symmetric
screened potential of the nucleus and its electron cloud is called the self-consistent field
model of the atom.

In the approximation of a spherically symmetric potential, the perturbation in energy
caused by spin-orbit interaction, equation (4.3) with q → −e and m→ me, is given by

∆Espin−orbit = − e~2

4m2
ec

2

〈
ψ

∣∣∣∣ ∂φr∂r
∣∣∣∣ψ〉 [J(J + 1)− L(L+ 1)− S(S + 1)] (4.4)

the angular part following from the trick (3.7), S · L = 1
2

(
J2 −L2 − S2

)
. Equation (4.4)

shows that the fine-structure levels J of a given LS term are split by

∆EJ+1 −∆EJ ∝ J + 1 . (4.5)

The linearly increasing spacing (4.5) of energy levels with J is called the Landé interval
rule.

5. Hyperfine splitting of the ground level of Hydrogen

Hyperfine structure in an atom is caused by the interaction between the magnetic mo-
ments of the nucleus and of the electrons. This interaction causes a hyperfine energy shift

∆EHFS = 〈ψ| − µe ·Bp|ψ〉 (5.1)

in first order perturbation theory. Because the nucleus is very small, the dipole approxima-
tion to the magnetic field Bp produced by the nucleus at a position r = rr̂ is good:

Bp =
3 r̂(µp · r̂)− µp

r3
. (5.2)

In the ground state of hydrogen, where the orbital angular momentum is zero, the magnetic
moment µe of the electron comes entirely from its spin

µe = µe
Se
~/2

= µeσe , µe = ge
e~

4me
=
ge
2
µB . (5.3)

The dimensionless operator σ = S/(~/2) denotes Pauli matrices, equations (5.20), and is
the same as the spin operator S but without the ~/2 factor for the eigenvalue. The magnetic
moment of the nucleus, a proton, is

µp = µp
Sp
~/2

= µpσp , µp = gp
e~

4mp
=
gp
2
µN . (5.4)

The ge and gp in equations (5.3) and (5.4) are the Landé g-factors of the electron and proton
(NIST 2018)

ge = −2.002 319 304 362 56(35) , gp = +5.585 694 6893(16) . (5.5)

Thus the hyperfine energy shift is

∆EHFS = µeµp

〈
ψ

∣∣∣∣σe · σp − 3σe · r̂ σp · r̂
r3

∣∣∣∣ψ〉 . (5.6)
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In equation (5.6), σp acts only on the spin part of the proton wave function, σe acts only on
the spin part of the electron wave function, r̂ acts only on the angular part of the electron
wave function, and r acts only on the radial part of the electron wave function. For the
ground state of hydrogen, the relevant wave function is

ψ = R10(r)Y00(r̂)χspin , (5.7)

where the spin part χspin of the wave function is, for the spin singlet,

χspin = 1√
2
(↑e↓p − ↓e↑p) . (5.8)

and, for the spin triplet,

χspin =


↑e↑p ,
1√
2
(↑e↓p + ↓e↑p) ,

↓e↓p .

(5.9)

Now the quantity σe · r̂ σp · r̂ in equation (5.6) contains cross terms like r̂xr̂y as well as
diagonal terms like r̂xr̂x. The cross terms necessarily average to zero because of the spherical
symmetry of the ground state orbital wavefunction

〈Y00|r̂xr̂y|Y00〉 = 0 . (5.10)

This leaves the diagonal terms. In view of spherical symmetry,

〈Y00|r̂2x|Y00〉 = 〈Y00|r̂2y|Y00〉 = 〈Y00|r̂2z |Y00〉 = 〈Y00|
r̂2

3
|Y00〉 =

1

3
. (5.11)

Hence

〈Y00|σe · r̂ σp · r̂|Y00〉 =
1

3
〈Y00|σe,xσp,x + σe,yσp,y + σe,zσp,z|Y00〉 =

σe · σp
3

. (5.12)

It follows that

〈Y00|σe · σp − 3σe · r̂ σp · r̂|Y00〉 = 0 , (5.13)

so it looks like the hyperfine energy shift ∆EHFS from equation (5.6) should be zero! This
conclusion is not quite true, however, since the 1/r3 piece in equation (5.6) leads to a
divergence at the origin, so it is possible that there may remain some finite contribution to
∆EHFS at the origin. The source of the difficulty is the r̂ operator, which is not well-defined
at the origin, so let me try to get rid of it. Now B = ∇×A where A is the vector potential,
so

− µe ·Bp = − µe · ∇ ×Ap = ∇ · µe ×Ap = ∇ ·
µe × (µp × r̂)

r2
, (5.14)

where the last step is appropriate for a dipole magnetic field. Since r̂/r2 = −∇(1/r),
equation (5.14) can be written as

−µe ·Bp = −∇ · µe ×
(
µp ×∇(1/r)

)
= µe · µp∇2(1/r)− (µe · ∇)(µp · ∇)(1/r) . (5.15)

The term ∇2(1/r) = −4πδ(r) in equation (5.15) is a delta function at the origin. The other
piece (µe·∇)(µp·∇)(1/r) in equation (5.15) contains cross terms like∇x∇y(1/r) = 3 r̂xr̂y/r

3

as well as diagonal terms like ∇x∇x(1/r). The cross terms must still vanish symmetrically,
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as in equation (5.10), notwithstanding the divergence at the origin. In view of spherical
symmetry,

〈R10Y00|∇2
x(1/r)|R10Y00〉 = 〈R10Y00|∇2

y(1/r)|R10Y00〉 = 〈R10Y00|∇2
z(1/r)|R10Y00〉

= 〈R10Y00|
∇2(1/r)

3
|R10Y00〉 = 〈R10Y00| −

4π

3
δ(r)|R10Y00〉 .

(5.16)

So the correct expression for the hyperfine energy shift is

∆EHFS = µeµp 〈ψ| −
8π

3
δ(r)σe · σp|ψ〉

= µeµp

∫
(R10Y00χspin)∗

−8π

3
δ(r)σe · σpR10Y00χspin d

3r . (5.17)

With R10 = 2e−r in atomic units, and Y00 = (4π)−1/2, equation (5.17) reduces to

∆EHFS = −8µeµp
3a30

〈χspin|σe · σp|χspin〉 , (5.18)

I will now give two separate ways to figure out the matrix elements of σe · σp in equa-
tion (5.18). The first is pedestrian (but educational); the second uses a trick. The first,
direct approach is easiest to carry out with σe · σp expressed in its chiral form

σe · σp = σe,zσp,z + 1
2(σe,+σp,− + σe,−σp,+) . (5.19)

Note that the chiral components of the Pauli matrices are

σz =

(
1 0
0 −1

)
, σ+ = σx + iσy =

(
0 2
0 0

)
, σ− = σx − iσy =

(
0 0
2 0

)
. (5.20)

Operating on the singlet, σe · σp has eigenvalue −3,

σe ·σp (↑e↓p − ↓e↑p) = − (↑e↓p + ↓e↑p) + 1
2(2 ↓e 2 ↑p −2 ↑e 2 ↓p) = −3 (↑e↓p − ↓e↑p) (5.21)

while operating on the triplet, σe · σp has eigenvalue 1, for example,

σe · σp ↑e↑p = ↑e↑p . (5.22)

The fact that σe · σp is a scalar (independent of rotations of space) implies that it has the
same eigenvalue for each of the three triplet components, which you can check explicitly
if you like. A cleverer way of finding the eigenvalues of σe · σp is to write (with ~ = 1
momentarily for simplicity)

σe · σp = 4Se · Sp = 2
[
(Se + Sp)

2 − S2
e − S2

p

]
= 2 [S(S + 1)− Se(Se + 1)− Sp(Sp + 1)] ,

(5.23)
which yields the same eigenvalues as equations (5.21) and (5.22), −3 for the singlet, +1 for
the triplet. It follows that the singlet hyperfine state lies below the triplet (remember µe is
negative), and the hyperfine splitting from (5.17) is

∆EHFS =
32µeµp

3a30
=

2gegpα
2

3mp/me
atomic units = 2.162425× 10−7 atomic units . (5.24)
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The corresponding wavelength is

λ =
hc

∆EHFS
=

3πmp/me

gegpα3
atomic units = 21.0705 cm , (5.25)

which differs from the observed wavelength 21.106 114 054 18(1) cm by about 1 part in 600. I
do a bit better if I use the reduced mass instead of the electron mass in the atomic unit. The
atomic unit of length is inversely proportional to the atomic unit of mass, so is 1 +mp/me

larger than the Bohr radius if the reduced mass is used, giving

λ = 21.0820 cm (5.26)

which is now out by 1 in 900. Presumably the remaining discrepancy is from of higher
order relativistic effects, the above derivation having assumed the nonrelativistic hydrogenic
wavefunction.

The 21 cm transition is magnetic dipole, and the transition probability, from equa-
tion (3.3) of the notes on Transition Probabilities and Selection Rules, is

A21 cm =
∑
L

4ω3

3c3~
|〈φL|µe|φU 〉|

2 . (5.27)

In the present case the electron has zero orbital angular momentum L, so only the electron’s
spin contributes to the magnetic moment µe. Inserting the electron magnetric moment (1.7)
into the transition probability (5.27) yields

A21 cm = 2.88× 10−15 s−1 , (5.28)

or approximately 1/(107 yr).


