APAS 5110. Internal Processes in Gases. Fall 1999.

Hydrogen Atom without Spin

1. Schrödinger Equation

Schrödinger's equation describes the time evolution of the wavefunction ψ in nonrelativistic quantum mechanics

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t} \psi=H \psi \tag{1.1}
\end{equation*}
$$

where H is a Hermitian operator called the Hamiltonian. Schrödinger's equation is linear in the wavefunction ψ, so that the sum of any two solutions of the equation is also a solution.

The Hamiltonian operator H of a single particle of mass m is postulated to be the sum of the kinetic energy operator $p^{2} / 2 m$ and the potential energy operator V

$$
\begin{equation*}
H=\frac{p^{2}}{2 m}+V=-\frac{\hbar^{2}}{2 m} \nabla^{2}+V \tag{1.2}
\end{equation*}
$$

If the Hamiltonian H is not explicitly dependent on time, then it commutes with the energy operator $i \hbar \partial / \partial t$

$$
\begin{equation*}
\left[i \hbar \frac{\partial}{\partial t}, H\right]=0 \tag{1.3}
\end{equation*}
$$

According to the general principle, this means that there exist eigenfunctions $\psi(t, \boldsymbol{x})$ which are simultaneously eigenfunctions of the energy operator $i \hbar \partial / \partial t$ and of the Hamiltonian H, with eigenvalue the energy E

$$
\begin{equation*}
i \hbar \frac{\partial \psi}{\partial t}=E \psi=H \psi \tag{1.4}
\end{equation*}
$$

Equation (1.4) implies that the eigenfunction $\psi(t, \boldsymbol{x})$ is separable into a factor $e^{-i \omega t}$ which depends on time, and a factor $\phi(\boldsymbol{x})$ which is independent of time

$$
\begin{equation*}
\psi(t, \boldsymbol{x})=e^{-i \omega t} \phi(\boldsymbol{x}) \tag{1.5}
\end{equation*}
$$

with $E=\hbar \omega$. Physically, the eigenfunction ψ has a definite energy E : its energy is conserved. This is an example of the general principle that a quantity is conserved if and only if the corresponding operator commutes with the Hamiltonian.

The spatial eigenfunction $\phi(\boldsymbol{x})$ in equation (1.5) satisfies the time-independent Schrödinger equation

$$
\begin{equation*}
H \phi=E \phi \tag{1.6}
\end{equation*}
$$

2. Conservation of Particle Probability

The quantity $\psi^{\dagger} \psi$ satisfies a conservation law (2.3), and can be interpreted as the probability density of a particle in space. The conservation law follows from Schrödinger's
equation (1.1) with the Hamiltonian (1.2), as follows:

$$
\begin{align*}
\frac{\partial}{\partial t} \psi^{\dagger} \psi & =\psi^{\dagger} \frac{\partial \psi}{\partial t}+\frac{\partial \psi^{\dagger}}{\partial t} \psi \\
& =\frac{1}{i \hbar}\left[\psi^{\dagger}(H \psi)-(H \psi)^{\dagger} \psi\right] \\
& =\frac{1}{i \hbar}\left\{\psi^{\dagger}\left[\left(\frac{p^{2}}{2 m}+V\right) \psi\right]-\left[\left(\frac{p^{2}}{2 m}+V\right) \psi\right]^{\dagger} \psi\right\} \\
& =\frac{i \hbar}{2 m}\left[\psi^{\dagger}\left(\nabla^{2} \psi\right)-\left(\nabla^{2} \psi^{\dagger}\right) \psi\right] \\
& =\frac{i \hbar}{2 m} \nabla \cdot\left[\psi^{\dagger}(\nabla \psi)-\left(\nabla \psi^{\dagger}\right) \psi\right] \\
& =-\nabla \cdot\left[\psi^{\dagger}\left(\frac{\boldsymbol{p}}{2 m} \psi\right)+\left(\psi^{\dagger} \frac{\boldsymbol{p}^{\dagger}}{2 m}\right) \psi\right] \\
& =-\nabla \cdot \frac{1}{2}\left[\psi^{\dagger}(\boldsymbol{v} \psi)+\left(\psi^{\dagger} \boldsymbol{v}^{\dagger}\right) \psi\right] \tag{2.1}
\end{align*}
$$

where \boldsymbol{v} is the velocity operator

$$
\begin{equation*}
\boldsymbol{v} \equiv \frac{\boldsymbol{p}}{m}=-\frac{i \hbar}{m} \frac{\partial}{\partial \boldsymbol{x}} \tag{2.2}
\end{equation*}
$$

Note that, by the definition of Hermitian conjugate as a transpose, the Hermitian conjugate operators such as \boldsymbol{p}^{\dagger} and \boldsymbol{v}^{\dagger} in equations (2.1) and (2.4) operate to the left. Equation (2.1) takes the form of a conservation law for the probability $\psi^{\dagger} \psi$

$$
\begin{equation*}
\frac{\partial}{\partial t} \psi^{\dagger} \psi+\nabla \cdot \boldsymbol{j}=0 \tag{2.3}
\end{equation*}
$$

where the probability current density \boldsymbol{j} is

$$
\begin{equation*}
\boldsymbol{j}=\frac{1}{2}\left(\psi^{\dagger} \boldsymbol{v} \psi+\psi^{\dagger} \boldsymbol{v}^{\dagger} \psi\right) \tag{2.4}
\end{equation*}
$$

3. One-Dimensional Motion

The Hamiltonian for one-dimensional motion of a particle of mass m moving in timeindependent potential $V(x)$ is, equation (1.2),

$$
\begin{equation*}
H=\frac{p^{2}}{2 m}+V(x) \tag{3.1}
\end{equation*}
$$

where $p=-i \hbar \partial / \partial x$ is the momentum operator in one dimension. The time-independent Schrödinger equation (1.6)

$$
\begin{equation*}
H \phi=E \phi \tag{3.2}
\end{equation*}
$$

then becomes an eigenvalue equation

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial x^{2}}-\frac{2 m}{\hbar^{2}}[V(x)-E] \phi=0 \tag{3.3}
\end{equation*}
$$

for the stationary states $\phi(x)$ and the energy E.

4. Motion in a Spherically Symmetric Field

The Hamiltonian for a single particle of mass m moving in a time-independent, spherically symmetric, three-dimensional potential $V(r)$ is

$$
\begin{equation*}
H=\frac{p^{2}}{2 m}+V(r) . \tag{4.1}
\end{equation*}
$$

The square $p^{2}=-\hbar^{2} \nabla^{2}$ of the momentum operator $\boldsymbol{p} \equiv-i \hbar \nabla$ can be written as the sum of radial and angular parts

$$
\begin{equation*}
p^{2}=p_{r}^{2}+\frac{L^{2}}{r^{2}}, \tag{4.2}
\end{equation*}
$$

where the radial momentum operator p_{r} is

$$
\begin{equation*}
p_{r} \equiv-i \hbar \frac{1}{r} \frac{\partial}{\partial r} r, \tag{4.3}
\end{equation*}
$$

with square

$$
\begin{equation*}
p_{r}^{2}=-\hbar^{2}\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}\right)=-\frac{\hbar^{2}}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial}{\partial r} \tag{4.4}
\end{equation*}
$$

It is not hard to determine that the angular momentum operator L commutes with both the radial operator r and its derivative $r \partial / \partial r=\boldsymbol{r} \cdot \partial / \partial \boldsymbol{r}$, and also with L^{2},

$$
\begin{equation*}
[\boldsymbol{L}, r]=0, \quad[\boldsymbol{L}, \boldsymbol{r} \cdot \boldsymbol{p}]=0, \quad\left[\boldsymbol{L}, L^{2}\right]=0, \tag{4.5}
\end{equation*}
$$

and thence to conclude that \boldsymbol{L} commutes with all the terms of the spherically symmetric Hamiltonian (4.1)

$$
\begin{equation*}
[\boldsymbol{L}, H]=0 . \tag{4.6}
\end{equation*}
$$

According to the general principle, this means that angular momentum (about the center of mass) is conserved, a not unexpected conclusion for a spherically symmetric potential. Now \boldsymbol{L} does not commute with itself, so the three components of \boldsymbol{L} are not separately conserved. However, the square L^{2} and component L_{z} in some arbitrary direction $\hat{\boldsymbol{z}}$ form a complete set of commuting operators for angular momentum. Thus a complete set of commuting operators for motion in a spherical symmetric potential is

$$
\begin{equation*}
H, \quad L^{2}, \quad L_{z}, \tag{4.7}
\end{equation*}
$$

with eigenvalues

$$
\begin{equation*}
E, \quad l(l+1) \hbar^{2}, \quad m \hbar . \tag{4.8}
\end{equation*}
$$

It follows that there exist wavefunctions which are products of a radial part $R(r)$ and an angular part $Y_{l m}(\hat{\boldsymbol{r}})$

$$
\begin{equation*}
\phi(\boldsymbol{r})=R(r) Y_{l m}(\hat{\boldsymbol{r}}) . \tag{4.9}
\end{equation*}
$$

The radial part $R(r)$ satisfies the eigenvalue equation

$$
\begin{equation*}
\left[\frac{1}{2 m}\left(p_{r}^{2}+\frac{l(l+1) \hbar^{2}}{r^{2}}\right)+V(r)-E\right] R(r)=0, \tag{4.10}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\left[\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}-\frac{l(l+1)}{r^{2}}-\frac{2 m}{\hbar^{2}}[V(r)-E]\right] R=0 . \tag{4.11}
\end{equation*}
$$

With the substitution

$$
\begin{equation*}
R(r)=\chi(r) / r, \tag{4.12}
\end{equation*}
$$

the radial equation (4.11) becomes

$$
\begin{equation*}
\frac{d^{2} \chi}{d r^{2}}-\left[\frac{l(l+1)}{r^{2}}+\frac{2 m}{\hbar^{2}}[V(r)-E]\right] \chi=0, \tag{4.13}
\end{equation*}
$$

which looks like the Schrödinger equation for one-dimensional motion of a particle, equation (3.1), in an effective potential

$$
\begin{equation*}
V_{\mathrm{eff}}(r)=\frac{l(l+1) \hbar^{2}}{2 m r^{2}}+V(r) \tag{4.14}
\end{equation*}
$$

The effective potential $V_{\mathrm{eff}}(r)$ is the sum of the potential $V(r)$ with a repulsive centrifugal potential proportional to $1 / r^{2}$. For bound state wavefunctions, unit normalization of the wavefunction $\int \phi^{\dagger} \phi d^{3} r=1$ is accomplished by

$$
\begin{equation*}
\int_{0}^{\infty}|R|^{2} r^{2} d r=\int_{0}^{\infty}|\chi|^{2} d r=1 \tag{4.15}
\end{equation*}
$$

5. The Two-Body Problem

The problem of two nonrelativistic particles, masses m_{1} and m_{2}, interacting through a potential energy $V(r)$ which depends only on the separation r between the two particles can be reduced, as in classical mechanics, to the problem of a single particle of reduced mass $m=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$ moving in a spherically symmetric potential $V(r)$. The two-particle Schrödinger equation is

$$
\begin{equation*}
H \phi\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=E \phi\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right), \tag{5.1}
\end{equation*}
$$

with Hamiltonian

$$
\begin{equation*}
H=\frac{p_{1}^{2}}{2 m_{1}}+\frac{p_{2}^{2}}{2 m_{2}}+V(r), \tag{5.2}
\end{equation*}
$$

where $\boldsymbol{p}_{i} \equiv-i \hbar \partial / \partial \boldsymbol{r}_{i}$ are the respective momenta of the two particles. In terms of the separation vector \boldsymbol{r} and center of mass vector \boldsymbol{R},

$$
\begin{equation*}
\boldsymbol{r} \equiv \boldsymbol{r}_{2}-\boldsymbol{r}_{1}, \quad \boldsymbol{R} \equiv \frac{m_{1} \boldsymbol{r}_{1}+m_{2} \boldsymbol{r}_{2}}{m_{1}+m_{2}} \tag{5.3}
\end{equation*}
$$

the Hamiltonian (5.2) becomes

$$
\begin{equation*}
H=\frac{P^{2}}{2 M}+\frac{p^{2}}{2 m}+V(r) \tag{5.4}
\end{equation*}
$$

where $\boldsymbol{P} \equiv-i \hbar \partial / \partial \boldsymbol{R}$ and $\boldsymbol{p} \equiv-i \hbar \partial / \partial \boldsymbol{r}$ represent the momenta of the motion of the center of mass and of the relative motion of the particles, and $M \equiv m_{1}+m_{2}$ and $m \equiv$ $m_{1} m_{2} /\left(m_{1}+m_{2}\right)$ are the total and reduced mass. The Hamiltonian (5.4) is the sum of a part $P^{2} /(2 M)$ which describes the free motion of the center of mass as a particle of mass M, and a part $p^{2} /(2 m)+V(r)$ which is equivalent to one-dimensional motion of a particle of mass m in a spherically symmetric field $V(r)$.

It is apparent that \boldsymbol{P} commutes with the Hamiltonian

$$
\begin{equation*}
[\boldsymbol{P}, H]=0, \tag{5.5}
\end{equation*}
$$

so that the momentum of the center of mass is conserved, as might be expected. The two-particle wavefunction can be written as the product

$$
\begin{equation*}
\phi\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=\phi_{\text {free }}(\boldsymbol{R}) \phi(\boldsymbol{r}) \tag{5.6}
\end{equation*}
$$

of a wavefunction $\phi_{\text {free }}(\boldsymbol{R})$ which describes the free motion of the center of mass, with a wavefunction $\phi(\boldsymbol{r})$ which descibes the relative motion of the particles.

6. Coulomb Units and Atomic Units

The attractive Coulomb potential is

$$
\begin{equation*}
V(r)=-\frac{C}{r} \tag{6.1}
\end{equation*}
$$

where C is some constant. A hydrogenic, or \mathbf{H}-like, atom is an atom having a single electron orbiting a nucleus of charge Z. In the nonrelativistic approximation, the potential $V(r)$ of a hydrogenic atom is the Coulomb potential (6.1) with

$$
\begin{equation*}
C=Z e^{2} \tag{6.2}
\end{equation*}
$$

Schrödinger's equation for a particle mass m moving in the spherically symmetric Coulomb potential (6.1) is characterized by three dimensional constants, which are m, \hbar, and C. In the hydrogenic atom, these constants are the reduced mass $m=m_{e} m_{i} /\left(m_{e}+m_{i}\right)$, \hbar, and $Z e^{2}$. If the nuclear mass m_{i} is large compared to the electronic mass m_{e}, then $m \approx m_{e}$ to a good approximation, but this is not invariably the case - for example, positronium, in which a positron and electron temporarily form a bound state, has a reduced mass $m=m_{e} / 2$.

Units of mass, length and time in which $m=\hbar=C=1$ are called Coulomb units, while units in which $m_{e}=\hbar=e=1$ are called atomic units, often abbreviated a.u.

Property	Coulomb Unit	Atomic Unit	Value of a.u.
Mass	m	m_{e}	$9.1093897(54) \times 10^{-28} \mathrm{gm}$
Length	$\frac{\hbar^{2}}{m C}$	$a_{0} \equiv \frac{\hbar^{2}}{m_{e} e^{2}}$	$0.529177249(24) \times 10^{-8} \mathrm{~cm}$
Time	$\frac{\hbar^{3}}{m C^{2}}$	$\frac{\hbar^{3}}{m_{e} e^{4}}$	$2.41888434 \times 10^{-17} \mathrm{~s}$
Velocity	$\frac{C}{\hbar}$	$\frac{e^{2}}{\hbar}$	$2.18769142 \times 10^{8} \mathrm{~cm} \mathrm{~s}^{-1}$
Energy	$\frac{m C^{2}}{\hbar^{2}}$	$\frac{m_{e} e^{4}}{\hbar^{2}}$	$4.3597482(26) \times 10^{-11} \mathrm{erg}$
Angular momentum	\hbar	\hbar	$1.05457266(63) \times 10^{-27} \mathrm{erg} \mathrm{s}$

The atomic unit of length a_{0} is called the Bohr radius. A Rydberg is half an atomic unit of energy,

$$
\begin{equation*}
1 \text { Rydberg }=1 / 2 \text { a.u. }=\frac{m_{e} e^{4}}{2 \hbar^{2}}=2.1798741(13) \times 10^{-11} \mathrm{erg}=13.6056981(40) \mathrm{eV} \tag{6.3}
\end{equation*}
$$

and is equal, modulo relativistic correction effects, to the ionization energy of H . The Coulomb unit of velocity in a hydrogenic atom, call it $v_{\text {atom }}$, can be written

$$
\begin{equation*}
v_{\text {atom }} \equiv \frac{Z e^{2}}{\hbar}=Z \alpha c \tag{6.4}
\end{equation*}
$$

where α is the dimensionless fine-structure constant

$$
\begin{equation*}
\alpha \equiv \frac{e^{2}}{\hbar c}=\frac{1}{137.0359895(61)} \tag{6.5}
\end{equation*}
$$

Thus the characteristic velocities of electrons in hydrogenic atoms, $v_{\text {atom }} \approx Z c / 137$, are nonrelativistic for small Z, justifying a nonrelativistic treatment to lowest order. Relativistic effects become increasingly important as Z increases.

7. Coulomb, or hydrogenic, Wavefunctions

Since the Coulomb potential (6.1) is spherically symmetric, the wavefunctions of particles orbiting in such a potential can be separated into radial and angular parts

$$
\begin{equation*}
\phi(\boldsymbol{r})=R(r) Y_{l m}(\hat{\boldsymbol{r}}) . \tag{7.1}
\end{equation*}
$$

In Coulomb units $m=\hbar=C=1$, the radial part $R(r)$ of the Coulomb wavefunction satisfies, equation (4.12),

$$
\begin{equation*}
\left[\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}-\frac{l(l+1)}{r^{2}}+\frac{2}{r}+2 E\right] R=0 \tag{7.2}
\end{equation*}
$$

The substitutions

$$
\begin{equation*}
x=\frac{2 r}{n}, \quad E=-\frac{1}{2 n^{2}}, \quad R=e^{-x / 2} x^{l} w(x) \tag{7.3}
\end{equation*}
$$

transform equation (7.2) into

$$
\begin{equation*}
\left[x \frac{d^{2}}{d x^{2}}+(2 l+2-x) \frac{d}{d x}+(n-l-1)\right] w=0 \tag{7.4}
\end{equation*}
$$

which looks like Kummer's differential equation. The solutions which remain well-behaved at infinity (they do not blow up exponentially) are Kummer functions

$$
\begin{equation*}
w(x) \propto M(-n+l+1,2 l+1, x) \tag{7.5}
\end{equation*}
$$

Kummer functions $M(a, b, x)$, also known as confluent hypergeometric functions ${ }_{1} F_{1}(a, b, x)$, are defined by the series expansion

$$
\begin{equation*}
M(a, b, x)={ }_{1} F_{1}(a, b, x)=1+\frac{a}{b} x+\frac{a(a+1)}{b(b+1)} \frac{x^{2}}{2!}+\ldots, \tag{7.6}
\end{equation*}
$$

which converges for all finite (complex, in general) x, provided that b is not zero or a negative integer (unless a is zero or a negative integer, in which case b may be a negative integer less than a). If a is zero or a negative integer, then the series (7.6) terminates, and the Kummer functions reduce to polynomials. Up to a normalization constant and a fiddling around of
the indices, Kummer functions are also the same as associated Laguerre functions ${ }^{1}$ (Abramowitz \& Stegun 1972)

$$
\begin{equation*}
L_{\nu}^{\lambda}(x)=\frac{\Gamma(\nu+\lambda+1)}{\Gamma(\nu+1) \Gamma(\lambda+1)} M(-\nu, \lambda+1, x) . \tag{7.7}
\end{equation*}
$$

If ν is zero or a positive integer, the associated Laguerre functions become the associated Laguerre polynomials.

For bound states, those with negative energy E, the radial Coulomb wavefunctions are, normalized per (4.15),

$$
\begin{equation*}
R_{n l}(x)=C_{n l} e^{-x / 2} x^{l} L_{n-l-1}^{2 l+1}(x), \tag{7.8}
\end{equation*}
$$

with normalization constants

$$
\begin{equation*}
C_{n l}=\frac{2}{n^{2}}\left[\frac{(n-l-1)!}{(n+l)!}\right]^{1 / 2} . \tag{7.9}
\end{equation*}
$$

The radial wavefunctions converge exponentially at infinity provided that $n-l-1$ is zero or a positive integer (otherwise, the radial wavefunctions diverge exponentially), so that the radial quantum number n can take values

$$
\begin{equation*}
n=l+1, l+2, \ldots . \tag{7.10}
\end{equation*}
$$

The associated Laguerre polynomials $L_{\nu}^{\lambda}(x)$ can be evaluated using the stable recurrence relation
$(\lambda+1)(\nu+1)(\nu+\lambda) L_{\nu+1}^{\lambda-2}(x)=\lambda[(\lambda-1)(\lambda+1)-(2 \nu+\lambda+1) x] L_{\nu}^{\lambda}(x)-(\lambda-1) x^{2} L_{\nu-1}^{\lambda+2}(x)$
starting from

$$
\begin{equation*}
L_{-1}^{2 n+1}=0, \quad L_{0}^{2 n-1}=1 . \tag{7.11}
\end{equation*}
$$

The bound-state Coulomb wavefunctions can be extended into the continuum regime of unbound states by taking $n=-i / k$ to be imaginary. Thus the continuum Coulomb wavefunctions are proportional to Kummer functions of imaginary argument. Their numerical evaluation is more complicated than the bound wavefunctions.

[^0]
[^0]: ${ }^{1}$ Some authors use other notations. Landau \& Lifshitz (1977) Quantum Mechanics and Shu (1991) use generalized Laguerre functions $\mathrm{L}_{\nu}^{\lambda}$ (roman symbol L) related to the associated Laguerre functions L_{ν}^{λ} (italic symbol L) here by

 $$
 \mathrm{L}_{\nu+\lambda}^{\lambda}(x)=(-)^{\lambda} \Gamma(\nu+\lambda+1) L_{\nu}^{\lambda}(x) .
 $$

