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Collisions
Atoms and molecules are excited and deexcited by collisions with particles. In ionized

or moderately ionized environments, the colliding particles are most commonly electrons,
since electrons are the lightest and therefore fastest moving particles around. Collisions
with protons and other ions can be important for some processes, such as 2s − 2p in H,
or in some energetic environments. In molecular environments, collisions with a variety of
abundant species may be important. In what follows, the colliding particle will be taken
for simplicity and definiteness to be an electron, although much of what is said generalizes
immediately to other colliders.

If the colliding particles are nonrelativistic, their velocity distribution is almost invariably
Maxwellian, since cross-sections for momentum-changing elastic collisions — for charged
particles, these are Coulomb collisions — between like particles (or particles of similar mass)
are generally much larger than cross-sections for inelastic collisions. Elastic collisions are
those in which the atom or molecule remains in the same atomic eigenstate (although its
momentum is changed), while inelastic collisions are those in which the atom or molecule
changes its eigenstate.

1. Detailed Balance between Excitation and Deexcitation

Consider the mutually inverse processes of collisional excitation and deexcitation between
lower (L) and upper (U) states of an atom X by colliding electrons

e+ XL ↔ e+ XU . (1.1)

For simplicity, assume that the colliding electrons are nondegenerate and nonrelativistic.
The generalizations to the cases of partially degenerate and partially relativistic electrons are
the subjects of Questions 1.1 and 1.2 at the end of this section. The collisional excitation
and deexcitation rate coefficients C↑ and C↓, with units volume/time, are defined so that

number of excitations

time . volume
= nenLC↑ , (1.2)

number of deexcitations

time . volume
= nenUC↓ , (1.3)

where ne is the number density of electrons, and nL and nU are the number densities of
atoms in the lower and upper levels.

The principle of detailed balance, or microscopic reversibility, is a statement of time-
reversal invariance, or T symmetry. It asserts that the rate at which a system in a state
A transforms into another state B is equal to the inverse rate at which the time-reversed
state B∗ transforms into the time-reversed state A∗

rate(A→ B) = rate(A∗ → B∗) . (1.4)
1
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The time-reversed states differ from the originals by a change of sign of all momentum and
spin components1. An equivalent statement is that when a system is in thermodynamic
equilibrium, all processes are individually precisely balanced by their inverses.

Consider then collisions between electrons and atoms in mutual thermodynamic equilib-
rium at temperature T . In thermodynamic equilibrium, the number of excitations balances
the number of dexcitations, so that

nenLC↑(T ) = nenUC↓(T ) . (1.5)

But in thermodynamic equilibrium the ratio of number densities in the upper and lower
states is

nU
nL

=
gU
gL
e−∆E/kT , (1.6)

where gU and gL are the degeneracies of the upper and lower levels, and ∆E ≡ EU −
EL is their energy difference. It follows from equations (1.5) and (1.6) that the ratio of
excitation to deexcitation rate coefficients by collisions with a population in thermodynamic
equilibrium at temperature T is

C↑(T )

C↓(T )
=
gU
gL
e−∆E/kT . (1.7)

Equation (1.7) is the detailed balance relation between the collisional excitation and de-
excitation rate coefficients in the case where the colliding particles are nondegenerate and
nonrelativistic, i.e. they have a Maxwellian distribution of collision velocities. The rela-
tion (1.7) is independent of the actual number densities of atoms in the upper and lower
levels, or of the number density of electrons.

Detailed balance requires that the balance between excitation and deexcitation hold not
just averaged over thermal populations, as in equation (1.5), but in detail. In thermody-
namic equilibrium, the distribution of electron and atomic velocities is a joint Maxwellian

dnednX = nenX
2

π

(me

kT

)3/2 (mX

kT

)3/2
e−mev2e/2kT v2

e dve e
−mXv2X/2kT v2

X dvX (1.8a)

= nenX
2

π

( m
kT

)3/2
(
M

kT

)3/2

e−mv2/2kT v2 dv e−MV 2/2kTV 2 dV , (1.8b)

1It is of interest here to note that while T symmetry is found experimentally to be respected by the
electromagnetic and strong interactions, there is a small violation of T symmetry in the quark sector of the
weak interactions, manifested in the decay of K and B mesons. The T violation occurs in the mass matrix
which couples the three different quark flavors, and is associated with the interaction of the quarks with the
Higgs field which breaks the electroweak symmetry, and which gives the quark flavors their different masses.
Although T symmetry is thus sometimes violated, a theorem of relativistic quantum field theory asserts
that the combination CPT is always a good symmetry. The operation C represents charge conjugation, the
change of sign of all charges, while P represents parity reversal, the change of sign of all spatial coordinates.
The CP -conjugate of a particle A is its anti-particle, denoted Ā. Thus CPT symmetry asserts that the rate
at which a state A transforms into another state B is equal to the inverse rate at which the time-reversed
state of the antiparticle, B̄∗, transforms into the time-reversed state of the antiparticle, Ā∗,

rate(A → B) = rate(Ā∗ → B̄∗) .
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where m ≡ memX/(me +mX) and M ≡ me +mX are the reduced and total masses of the
colliding pair, v ≡ ve− vX is the collision velocity, and V ≡ (meve +mXvX)/(me +mX) is
the velocity of the center of mass. The (de)excitation rate coefficients can depend only on
the collision velocity v, not on the velocity V of the center of mass. Thus in thermodynamic
equilibrium, the rate of excitation of XL by electrons which enter at collision velocity v↑
relative to the atom and exit at velocity v↓, must precisely balance the rate of deexcitation
of XU by electrons which enter at velocity −v↓ and exit at velocity −v↑. If the electron and
atom have no preferred direction in space, or if one is interested only in the (de)excitation
rates averaged over orientations of the electron and atom, then the (de)excitation rate will
depend only on the magnitudes v↑ and v↓ of the collision velocities. In general however
an orientation may be set by the spin of the incident electron, or by the total angular
momentum of the atom, or by an externally applied field, and in this case the direction
of the collision velocity may be relevant. Energy conservation requires that the collision
excitation and deexcitation energies E↑ ≡ mv2

↑/2 and E↓ ≡ mv2
↓/2 differ by the excitation

energy ∆E = EU − EL

E↑ = E↓ + ∆E . (1.9)

Thus detailed balance requires

dnednL
dE

C↑(v↑) =
dnednU
dE

C↓(v↓) . (1.10)

Correctly, the energy E is the collision energy in the center of mass frame of the colliding
electron and atom. For nonrelativistic particles, E = mv2/2 where m ≡ memX/(me +mX)
is the reduced mass and v is the relative velocity of the colliding particles. Usually the
electron mass is much less than the atomic mass, memX, so the reduced mass m and
collision velocity v are nearly equal to the electron mass and velocity, m ≈ me and v ≈ ve.
In any case, the distribution of collision energies is a Maxwellian

dne = ne

(
2

π

)1/2 ( m
kT

)3/2
e−mv2/2kT v2 dv . (1.11)

It follows from equation (1.11) that ratio of number of collisions at energy E+ ∆E to those
at energy E is

dne(E+∆E)/dE

dne(E)/dE
=
v↑
v↓
e−∆E/kT , (1.12)

where v↑ and v↓ are the excitation and deexcitation collision velocities, corresponding to
collision energies E + ∆E and E

v↑ ≡
(

2(E+∆E)

m

)1/2

, v↓ ≡
(

2E

m

)1/2

. (1.13)

It follows from the balance equation (1.10), together with (1.6) and (1.12), that the ratio
of excitation to deexcitation rate coefficients is

C↑(E+∆E)

C↓(E)
=
v↓
v↑

gU
gL

. (1.14)
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Again, equation (1.14) is a relation between the excitation and deexcitation rate coefficients,
and is true independent of the actual number densities of atoms in the lower and upper levels,
and irrespective of whether or not the colliding particles are in thermodynamic equilibrium.

Question 1.1: In the more general case where the colliding electrons are partially degen-
erate, argue that the rates for (de)excitation of particles X by electrons with initial and
final velocities vi and vf should be modified to

number of excitations

time . volume
= ne(vi) [1−Ne(vf )] nXC(vi) , (1.15)

where Ne(v) is the occupation number of electrons at velocity v. Show that in thermo-
dynamic equilibrium, detailed balance implies the same relation (1.7) between collisional
excitation and dexcitation rates as before.

Question 1.2: Show that if the electrons are partially relativistic, then equation (1.14) is
modified to

C↑(v↑)

C↓(v↓)
=
v↓γ

2
↓

v↑γ
2
↑

gU
gL

, (1.16)

where γ = (1− v2/c2)−1/2 is the relativistic gamma factor.

2. Collision Strength

The rate coefficient C(v) for excitation or deexcitation is the product of the collision
velocity v with an appropriate collisional cross-section σ

C = vσ . (2.1)

Collisional rate coefficients are frequently quoted in terms of the dimensionless collision
strength Ω defined by

σ↑(v↑) = π

(
~
mv↑

)2 Ω↑(v↑)

gL
, σ↓(v↓) = π

(
~
mv↓

)2 Ω↓(v↓)

gU
, (2.2)

which is so defined that Ω is essentially the same quantity for both excitations and deexci-
tations, in view of the detailed balance relation (1.14),

Ω↑(v↑) = Ω↓(v↓) . (2.3)

The quantity ~/mv = λ/2π in the definition (2.2) can be recognized as the de Broglie
wavelength λ of the collision momentum divided by 2π.

For collisions with a population in thermodynamic equilibrium at temperature T , the
collision strength Ω(T ) is defined analogously by

C↓(T ) = 〈v↓σ(v↓)〉 = π

(
~
m

)2

〈v−1
↓ 〉

Ω(T )

gU
=

~2(2π)1/2

m3/2(kT )1/2

Ω(T )

gU
, (2.4)

where the mean inverse collision velocity 〈v−1〉 = (2m/πkT )1/2 is an average over a Maxwellian
distribution.
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3. Born Approximation

Calculation of collision cross-sections is in general complicated. However, if the path of
the colliding electron is only mildy perturbed by the collision, then the collision process
can be treated by perturbation theory. The result is the Born approximation to collision
cross-sections. The Born approximation applies to both elastic and inelastic collisions. The
condition for the Born approximation to hold is that the collision velocity vi change by a
small amount

∆v ≡ |vf − vi| � vi . (3.1)

In the standard Born approximation, the initial and final wavefunctions χi and χf of the
colliding particle are taken to be those of free particles.

In first order perturbation theory, the rate, the number of transitions per unit time, at
which an atom in eigenstate φi transforms into eigenstate φf as the result of collisions with
electrons which start in eigenstate χi and finish in eigenstate χf is given by Fermi’s Golden
Rule (see the notes on Perturbation Theory):

nvσ =
2π

~
dn(Ef )

dE
|〈φfχf |Vint|φiχi〉|2 . (3.2)

The interaction potential energy Vint here is the electrostatic Coulomb energy between the
colliding electron and the nucleus and electrons of the atom. For an atom with nuclear
charge Z, the interaction energy is

Vint =
−Ze2

|r − rZ |
+

∑
atomic

electrons a

e2

|r − ra|
, (3.3)

where r, rZ , and ra are the positions respectively of the colliding electron, the nucleus, and
the atomic electrons. In the Born approximation, the eigenstates χ of the initial and final
states of the colliding electron are taken to be free wavefunctions,

χ = eik.r , (3.4)

with momentum p = ~k and energy E = p2/2m. The normalization of the free wavefunc-
tions (3.4) is such that the number density n of particles is unity,

n = V −1

∫
V
|χ|2 d3r = 1 , (3.5)

the integration being taken over some (large) volume V . Note that the total number of
colliding particles tends to infinity as the volume V →∞. In other words there is an infinite
train of particles incident on the atom, with a constant finite flux of nv = v (since n = 1)
colliders per unit area per unit time. The normalization of the free wavefunctions (3.4) with
respect to momenta is, in the limit of infinite volume,∫

χ′
†
χd3r =

∫
e−ik

′.reik.r d3r = (2π)3δ(k′ − k) , (3.6)
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which means that there is one particle per interval d3k/(2π)3 of momentum, so the number
of states in an interval of momenta is

dn =
d3k

(2π)3
=
d3p

h3
=
m2v

h3
dE do . (3.7)

Fermi’s Golden Rule (3.2) with n = 1 on the left hand side from equation (3.5), and number
of states dn/dE = m2vfdo/h

3 on the right hand side from equation (3.7), thus implies that
the differential cross-section dσ for scattering electrons into an interval do of solid angle is,
in the Born approximation,

dσ =
m2

(2π)2~4

vf
vi
do

∣∣∣∣∣
〈
φfχf

∣∣∣∣∣ −Ze2

|r − rZ |
+

∑
atomic

electrons a

e2

|r − ra|

∣∣∣∣∣φiχi

〉∣∣∣∣∣
2

. (3.8)

The part of the matrix element in (3.8) involving the free wavefunctions χ can be done
analytically:∫

χ†f
1

|r − ra|
χi d

3r =

∫
e−ikf .r

1

|r − ra|
eiki.r d3r =

∫
e−iq.r

|r − ra|
d3r =

4π

q2
e−iq.ra (3.9)

where q is the momentum transfer q defined by

q ≡ kf − ki . (3.10)

Equation (3.10) implies that q2 = k2
f + k2

i − 2kfki cos θ, so that the interval of solid angle
do can be expressed in terms of an interval dq of momentum transfer

do = 2π sin θdθ =
2πq dq

kfki
=

2π~2q dq

m2vfvi
. (3.11)

Thus the differential cross-section (3.8) may be rewritten

dσ = 8π

(
e2

~vi

)2
dq

q3

∣∣∣∣∣
〈
φf

∣∣∣∣∣− Z +
∑

atomic
electrons a

e−iq.ra

∣∣∣∣∣φi
〉∣∣∣∣∣

2

, (3.12)

where the nucleus has been taken to lie at the center of mass, the origin, rZ = 0. The total
collision cross-section is an integral over the differential cross-section (3.12)

σ = 8π

(
e2

~vi

)2 ∫ q+

q−

dq

q3

∣∣∣∣∣
〈
φf

∣∣∣∣∣− Z +
∑

atomic
electrons a

e−iq.ra

∣∣∣∣∣φi
〉∣∣∣∣∣

2

, (3.13)

where q− and q+ are the minimum and maximum momentum transfers

q± = |kf ± ki| =
m

~
|vf ± vi| =

(2m)1/2

~

∣∣∣E1/2
f ± E1/2

i

∣∣∣ . (3.14)
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The Born approximation is valid for small momentum transfer q, equation (3.1). Taylor
expanding the exponentials e−iq.ra in the matrix elements of the Born cross-sections (3.12)
and (3.13) gives

〈φf |e−iq.ra |φi〉 = 〈φf |1− iq.ra + . . . |φi〉 = 〈φf |φi〉 − iq.〈φf |ra|φi〉+ . . . . (3.15)

The condition for the leading order terms of the Taylor expansion (3.15) to dominate is
that q � (ra)−1, or equivalently

∆v ≡ |vf − vi| � vatom , (3.16)

where vatom ∼ Zc/137 is the characteristic velocity of electrons in the atom.
The condition (3.16) is not necessarily the same as the condition ∆v � vi, equation (3.1),

for the validity of the Born approximation. In particular, if the collision velocity is much
larger than the characteristic velocity of atomic electrons, vi � vatom, then the Born ap-
proximation cross-section (3.12) remains valid for collisions of moderate momentum transfer,
vatom

<∼ ∆v � vi, but the exponentials e−iq.ra in the matrix element are not dominated by
the leading terms of the Taylor expansion (3.15).

Collision with momentum transfer exceeding the typical momentum of atomic electrons,
∆v >∼ vatom, are usually associated with close collisions of the colliding electron either with
the nucleus or with one of the atomic electrons. In the latter case, the atomic electron
may well be knocked out of the atom, i.e. the atom is ionized. Close collisions between fast
electrons and one of the atomic electrons are called knock-on collisions, and their cross-
section approximates that of Coulomb collisions between free electrons.

4. Elastic Scattering

For elastic collisions, the initial and final atomic wavefunctions are the same, φi = φf .
Here the Z (nuclear) term in the matrix element in the cross-section (3.12) simplifies to
〈φi| −Z|φi〉 = −Z. Thus the Born approximation to the differential cross-section (3.12) for
elastic scattering may be written

dσelastic = 8π

(
e2

~vi

)2
dq

q3

∣∣Z − F (q)
∣∣2 , (4.1)

where F (q) is the atomic form factor

F (q) ≡

〈
φi

∣∣∣∣∣ ∑
atomic

electrons a

e−iq.ra

∣∣∣∣∣φi
〉

, (4.2)

which is independent of the direction q̂ of the momentum transfer if the atom is randomly
oriented.

For small momentum transfer q, the exponentials in the matrix element (4.2) are domi-
nated by the leading term in their Taylor expansion, 〈φi|e−iq.ra |φi〉 ≈ 〈φi|φi〉 = 1, so that
the form factor approximates the number of electrons in the atom

F (q)→ Nelec (∆v � vatom) . (4.3)
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Thus for small momentum transfer the differential cross-section (4.1) for elastic scattering
approximates

dσelastic → 8π

(
Z∞e

2

~vi

)2
dq

q3
(∆v � vatom) , (4.4)

where Z∞ ≡ Z−Nelec is the net charge of the atom as seen at infinity. The cross-section (4.4)
coincides exactly2 with the classical Coulomb collision cross-section for an electron scattering
off a charge Z∞e.

In the opposite limit of large momentum transfer q, the exponentials in (4.2) are rapidly
oscillating, and the form factor tends to zero

F (q)→ 0 (vatom � ∆v � vi) . (4.5)

Here the cross-section goes over to that of Coulomb scattering of an electron off a charge
Ze:

dσelastic → 8π

(
Ze2

~vi

)2
dq

q3
(∆v � vatom) . (4.6)

Physically, elastic collisions with small momentum transfer correspond to distant colli-
sions in which the colliding electron feels only the net charge Z∞ at infinity, while elastic
collisions with large momentum transfer correspond to close collisions with the nucleus of
the atom.

Evidently the form factor F (q) is a measure of the distribution of charge inside the
atom. The form factor can be measured experimentally, providing a probe of the charge
distribution.

5. Inelastic Collisions

For inelastic collisions, the initial and final atomic wavefunctions are different. Among
other things, this means that the Z (nuclear) term in the Born approximation cross-
section (3.12) vanishes, 〈φf | − Z|φi〉 = 0, because of the orthogonality of the atomic
wavefunctions, 〈φf |φi〉 = 0. For inelastic collisions, one often sees the Born collisional
cross-section (3.13) written in the form

σinelastic =
2πe4

Ei∆E

∫ q+

q−

f(q)
dq

q
, (5.1)

where Ei = 1
2mev

2
i is the collision energy, and f(q) is the dimensionless generalized os-

cillator strength (not to be confused with the form factor [4.2]) defined by

f(q) ≡
∑
f

2me∆E

~2q2

∣∣∣∣∣
〈
φf

∣∣∣∣∣ ∑
atomic

electrons a

e−iq.ra

∣∣∣∣∣φi
〉∣∣∣∣∣

2

, (5.2)

which is averaged over initial states i and summed over final states f .

2It is remarkable that the classical, Born approximation, and exact nonrelativistic cross-sections for
Coulomb scattering are all the same.
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The generalized oscillator strength is so-called because, in the limit of small momentum
transfers q, it goes over to the usual absorption oscillator strength f for radiative dipole
transitions,

f(q)→ f ≡
∑
f

2me∆E

~2

∣∣〈φf |r̂z|φi〉∣∣2 (∆v � vatom) , (5.3)

again averaged over initial states i and summed over final states f . For dipole forbidden
transitions, the oscillator strength between the initial and final atomic states is zero, f = 0,
and it is necessary to go to the next order in the expansion of the matrix element in (5.2)
to get a finite result.

The collision cross-section in the limit of collision energies much greater than the tran-
sition energy, Ei � ∆E, is called the Bethe-Born approximation. For Ei � ∆E, the
minimum and maximum momentum transfers q− and q+, equation (3.14), are

q− ≈
∆E

~vi
, q+ ≈

2mevi
~

. (5.4)

With ra ∼ ~/(mevatom) ∼ ~/(me∆E)1/2, one has q−ra ∼ (∆E/Ei)
1/2 � 1, so the minimum

momentum transfer q− is small enough that equation (5.3) is satisfied.
If the small momentum transfer limit (5.3) were taken as valid over the full range of

momentum transfers q− to q+ (which is not true), then the integrated cross-section (5.1)
would be

σ =
2πe4

Ei∆E
f ln

(
q+

q−

)
=

πe4

Ei∆E
f ln

(
4Ei

∆E

)
, (5.5)

where the last equality follows because equation (5.4) implies that q+/q− = 4Ei/∆E for
Ei � ∆E. Now in reality equation (5.3) breaks down for larger momentum transfers.
Conventionally, the difference between the true integral (5.1) and the approximation (5.5)
is allowed for by introducing an extra factor of C into the argument of the logarithm. Thus
the Bethe-Born approximation is typically written

σBethe−Born =
πe4

Ei∆E
f ln

(
4CEi

∆E

)
. (5.6)

In the Bethe-Born approximation, the collision cross-section is proportional to the dipole
oscillator strength f of the transition, multiplied by a logarithmic factor.

6. More

Collision theory is a complicated subject. A few of the simpler developments are as
follows.

If the atom is charged (an ion), so that the electric potential at far distances from the
ion approximates a Coulomb field, ∝∼ 1/r, then a better approximation is to take the initial
and final wavefunctions of the collider to be unbound Coulomb functions. This is called the
Coulomb-Born approximation.

Including the effects of exchange between the colliding and atomic electrons leads to the
Born-Ochkur approximation. This is important for example in collisions that change
the spin of the atom, which can only occur through electron exchange. It can be shown that
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the cross-section for collisions with exchange goes as σ ∝∼ E−3
i for Ei � ∆E, in contrast to

the normal σ ∝∼ E−1
i high energy behavior of collisions without exchange.


