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Angular Momentum

1. Angular Momentum Operator

The definitive reference to angular momentum in quantum mechanics is A. R. Edmonds
(1960) “Angular Momentum in Quantum Mechanics”, Princeton University Press. Landau
& Lifshitz (1977) “Quantum Mechanics” is as always singularly enlightening.

For a single particle, the angular momentum operator L is defined to be

L ≡ r × p (1.1)

where p ≡ −i~∇ ≡ −i~∂/∂r is the momentum operator. More generally, for a system of
particles a, the total angular momentum operator L is the sum over angular momenta of
the particles,

L =
∑

ptles a

ra × pa . (1.2)

For simplicity, formulae below are written down for a single particle.
The properties of the angular momentum operator L are often conveniently expressed

in terms of its chiral components Lz, L+, L−, which are defined in terms of the Cartesian
components Lx, Ly, Lz in the same way as the chiral components of any vector quantity

L+ ≡ Lx + iLy , L− ≡ Lx − iLy . (1.3)

Expressions for the chiral components of the angular momentum L of a particle in terms
of its spherical coordinates θ, φ are

Lz = −i~ ∂

∂φ
, (1.4a)

L± = ~ e±iφ
(
± ∂

∂θ
+ cot θ

∂

∂φ

)
. (1.4b)

The square L2 ≡ L2
x +L2

y +L2
z of the angular momentum operator is, in terms of its chiral

components,

L2 = L2
z +

1

2
(L+L− + L−L+) , (1.5)

or, in terms of spherical coordinates θ, φ,

L2 = −~2
(

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
. (1.6)

It is evident from (1.4a) that the z-component Lz of the angular momentum operator
will commute with an operator A if and only if A is independent of the azimuthal angle
φ, that is, if and only if A has rotational symmetry about the z-axis. More generally,
all components of the angular momentum operator L will commute with an operator A if
and only if A is spherically symmetric. Thus it is apparent that conservation of angular
momentum is associated with rotational symmetry, as it should be.
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2. Commutation Relations

It is straightforward to check that the commutators of the Cartesian components Li of
the angular momentum operator L with the Cartesian components ri and pi of the position
and momentum operators r and p are

[Li, rj ] = i~εijkrk , (2.1a)

[Li, pj ] = i~εijkpk , (2.1b)

from which it can also be concluded that

[Li, Lj ] = i~εijkLk . (2.2)

Equations (2.1)–(2.2) are examples of the more general result that for any vector A,

[Li, Aj ] = i~εijkAk , (2.3)

which follows from the transformation properties of vectors and the fact that L/~ is the
generator of infinitesimal rotations, equation (9.3).

The chiral components of L satisfy the commutation relations

[Lz, L±] = ±~L± , [L+, L−] = 2~Lz . (2.4)

Equation (2.4) is a particular case of the more general result that the commutator of the
chiral components of L with those of any three-dimensional vector A, such as the position
operator r or the momentum operator p, are

[Lz, A±] = −[L±, Az] = ±~A± , [L+, A−] = −[L−, A+] = 2~Az . (2.5)

Although the components of the angular momentum operator L do not commute with
each other, they do all commute with its square L2

[L2, Li] = 0 . (2.6)

3. Spherical Harmonics

Since the components of Li of the angular momentum operator L do not commute with
each other, simultaneous eigenfunctions of all three components of L do not exist. However,
the square L2 of the angular momentum operator commutes with each component, so
simultaneous eigenfunctions of L2 and the component of L along any one axis, say Lz,
exist.

The complete orthonormal set of simultaneous eigenfunctions of L2 and Lz defines the
spherical harmonics Ylm(θ, φ). The eigenvalues are

L2Ylm = l(l + 1) ~2 Ylm , LzYlm = m ~Ylm , (3.1)

with l = 0, 1, ... ranging over all positive integral values, and m = −l,−l+1, ..., l ranging
over the 2l + 1 integral values in the interval [−l,+l]. Orthonormality of the Ylm means∫

Y ∗l′m′(r̂)Ylm(r̂) do = δll′δmm′ , (3.2)

where the integration over solid angle do is over the entire sphere.
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An explicit formula for the spherical harmonics Ylm(θ, φ) in terms of associate Legendre
polynomials Pml is

Ylm(θ, φ) = (−)(m+|m|)/2
[

(2l + 1)

4π

(l − |m|)!
(l + |m|)!

]1/2
P
|m|
l (cos θ)eimφ . (3.3)

Note that

Yl,−m = (−)mY ∗lm . (3.4)

The spherical harmonics Ylm(θ, φ) satisfy many recurrence relations. The computation-
ally useful one, stable in all cases, is the one which follows from applying the dipole operator
r̂z = cos θ, equation (5.2a):[

(l +m+ 1)(l −m+ 1)

(2l + 1)(2l + 3)

]1/2
Yl+1,m = cos θ Ylm −

[
(l +m)(l −m)

(2l − 1)(2l + 1)

]1/2
Yl−1,m , (3.5)

starting from

Yll = (−)lY ∗l,−l = (−)l
[

(2l + 1)!

4π

]1/2 sinl θ

l! 2l
eilφ . (3.6)

For stability, the recurrence (3.5) should always be applied in the direction of increasing l.

4. Effect of Angular Momentum Operator L on Spherical Harmonics

The action of the angular momentum operator L on the spherical harmonics Ylm is
especially relevant to the magnetic dipole selection rules for radiative transitions. The
relations are most conveniently given in chiral components:

Lz Yl,m = m ~Yl,m (4.1a)

L+ Yl,m = [(l +m+ 1)(l −m)]1/2 ~Yl,m+1 (4.1b)

L− Yl,m = [(l −m+ 1)(l +m)]1/2 ~Yl,m−1 . (4.1c)

The relations (4.1) can be derived entirely from the commutation relations (2.4) for the
chiral components of L, without invoking any explicit formula for the spherical harmonics.
Equations (4.1b) and (4.1c) show that L± act as ‘raising’ and ‘lowering’ operators, respec-
tively increasing and decreasing m by 1 while leaving l unchanged. A precisely analogous
set of formulae hold for the spin operator S acting on spin wavefunctions, equations (6.6).

5. Effect of Dipole Operator r̂ on Spherical Harmonics

The action of the dipole operator on spherical harmonics is especially relevant to the
electric dipole selection rules for radiative transitions. The dipole operator r̂ is the unit
vector in the radial direction. The Cartesian components of the vector are r̂x, r̂y, r̂z. The
chiral components of the vector are r̂z, r̂+, r̂−

r̂z = cos θ , (5.1a)

r̂± ≡ r̂x ± ir̂y = e±iφ sin θ . (5.1b)
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The action of the dipole operator r̂ on the spherical harmonics is most conveniently given
again in chiral components:

r̂z Yl,m = cos θ Yl,m (5.2a)

=

[
(l +m+ 1)(l −m+ 1)

(2l + 1)(2l + 3)

]1/2
Yl+1,m +

[
(l +m)(l −m)

(2l − 1)(2l + 1)

]1/2
Yl−1,m ,

r̂+ Yl,m = eiφ sin θ Yl,m (5.2b)

= −
[

(l +m+ 1)(l +m+ 2)

(2l + 1)(2l + 3)

]1/2
Yl+1,m+1 +

[
(l −m)(l −m − 1)

(2l − 1)(2l + 1)

]1/2
Yl−1,m+1 ,

r̂− Yl,m = e−iφ sin θ Yl,m (5.2c)

=

[
(l −m+ 1)(l −m+ 2)

(2l + 1)(2l + 3)

]1/2
Yl+1,m−1 −

[
(l +m)(l +m − 1)

(2l − 1)(2l + 1)

]1/2
Yl−1,m−1 .

And one more useful little relation:

sin θ
∂

∂θ
Yl,m =

1

2
(r̂−L+ − r̂+L−)Yl,m (5.3)

= l

[
(l +m+ 1)(l −m+ 1)

(2l + 1)(2l + 3)

]1/2
Yl+1,m − (l + 1)

[
(l +m)(l −m)

(2l − 1)(2l + 1)

]1/2
Yl−1,m .

6. Spin

The commutation properties (2.2) of the angular momentum operator are intimately re-
lated to the properties of the three-dimensional orthogonal rotation group O(3). Indeed, the
commutation properties (2.2) essentially define the local properties of O(3). The quantities
Li (or rather Li/~) are the generators of the group; their fundamental role in generat-
ing rotations will be seen in §9. However, the global topological properties of the rotation
group O(3) are not uniquely defined by the commutation relations (2.2), and in fact O(3)
does not have the simplest topological structure consistent with the commutation relations.
Specifically, a rotation by 360◦ about any axis defines a closed loop in O(3) which is not con-
tinously deformable to a point — one says that O(3) is not simply-connected. However, a
rotation by two turns, 720◦, about any axis defines a loop which is continuously deformable
to a point. The group which results from covering O(3) twice is simply-connected, and
is isomorphic to the special unitary group SU(2), the group of two-dimensional complex
unitary matrices of unit determinant. The group cannot be enlarged any further given the
commutation rules (2.2).

The enlarged group SU(2) admits eigenfunctions whose angular momentum quantum
numbers l and m take half-integral as well as integral values. Remarkably, nature seems to
know about this. Whereas orbital angular momentum appears always quantized in integral
units, the fundamental particles of nature also possess their own private intrinsic angular
momenta, called spin. Among the fundamental particles, electrons, neutrinos, and quarks all
have spin half, the smallest possible nonzero spin. Photons, vector bosons, and gluons, which
mediate the forces between the spin half particles, have spin one, while the graviton, which
mediates the force between particles’ energy-momenta — a vector, or spin one property
— alone has spin two. No other spins are observed in the fundamental particles, although
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Higgs bosons are conjectured (for simplicity) to have zero spin, and supersymmetry predicts
particles with spin 3

2 . It is thought that no fundamental particle can have spin higher than
two.

In nonrelativistic quantum mechanics, spin is introduced phenomenologically. A spin
operator S is defined, which operates only on the spin part of the wavefunction, not on the
spatial part, and which commutes with all spatial operators. Conversely, spatial operators
operate only on the spatial part of the wavefunction, not on the spin part. The spin operator
is itself a vector quantity, with Cartesian components Sx, Sy, Sz. The spin operator S
satisfies the same commutation rules (2.2) as the angular momentum operator L, namely

[Si, Sj ] = i~εijkSk . (6.1)

Its eigenfunctions χσ satisfy, in complete analogy to the spherical harmonics (3.1),

S2χσ = s(s+ 1) ~2 , Szχσ = σ ~ , (6.2)

with s taking integral or half-integral values, and σ = −s,−s+1, ..., s running over all 2s+1
integral (if s is integral) or half-integral (if s is half-integral) values in the interval [−s, s].

The wavefunction of a particle with spin s is a (2s+ 1)-component spinor, which can be
written

|ψ〉 =

s∑
σ=−s

ψ(σ,x, t)χσ . (6.3)

The spinor components ψ(σ,x, t) comprise a set of 2s + 1 complex numbers, one for each
component σ. In the case of a spin half particle, s = 1/2, the eigenfunctions χσ are spin up
|↑〉 or spin down or |↓〉, with eigenvalues σ = ±1/2, and the wavefunction is a two-component
spinor

|ψ(t,x)〉 = ψ
(
t,x,+1

2

)
|↑〉+ ψ

(
t,x,−1

2

)
|↓〉 . (6.4)

The chiral components Sz, S+, S− of the spin operator are defined in the usual way by

S+ ≡ Sx + iSy , S− ≡ Sx − iSy , (6.5)

in precise analogy to the chiral components of the angular momentum operator L, equa-
tion (1.3). Naturally, since the commutation rules of the spin operator S are by construction
the same as those of the orbital angular momentum operator L, the commutation rules of
the chiral components of S are the same as those, equation (2.4), for L. The matrix ele-
ments of the chiral components of S, acting on the eigenfunctions χsσ are the same as those,
equations (4.1a)–(4.1c), for the angular momentum acting on the spherical harmonics:

Sz χs,σ = σ ~χsσ (6.6a)

S+ χs,σ = [(s+ σ + 1)(s− σ)]1/2 ~χs,σ+1 (6.6b)

S− χs,σ = [(s− σ + 1)(s+ σ)]1/2 ~χs,σ−1 . (6.6c)
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7. Pauli Matrices

For some purposes it is convenient to represent the components of the spin operator S in
terms of an explicit set of matrices. In particular, for spin half particles, it can be convenient
to represent the spin operator S by a vector of Pauli matrices σ in SU(2)

S =
~
2
σ (7.1)

whose three components are 2 × 2 complex matrices which are Hermitian, unitary, and
traceless:

σx ≡
(

0 1
1 0

)
, σy ≡

(
0 −i
i 0

)
, σz ≡

(
1 0
0 −1

)
. (7.2)

Particularly useful formulae are

σ2 = 3

(
1 0
0 1

)
, (a.σ)(b.σ) = a.b+ ia× b .σ , (7.3)

where a and b are any vectors. By means of equations (7.3), any scalar function of σ can
be reduced to a constant plus a function linear in σ.

8. Coupling of Angular Momenta

When two or more electrons are present in an atom, the electrostatic interaction between
the electrons destroys the spherical symmetry of the force field, so that the individual
angular momenta of electrons are no longer conserved. To the extent that spin-orbit coupling
can be neglected, the angular momenta of the individual electrons precess, preserving the
absolute values of their angular momenta, but changing in direction. The square L2 and
z-component Lz of the total angular momentum L,

L ≡
∑

electrons a

la , (8.1)

remain conserved, and the squares of the individual electronic angular momenta l2a are also
conserved, but the z-components la,z are not conserved. The angular eigenfunction of a
two-electron state is thus characterized by quantum numbers l1, l2, L,M corresponding to
the absolute values l1 and l2 of the angular momenta of two electrons, and the absolute
value L and z-component M of the total angular momentum.

Similarly, the interaction of electronic spins in a multi-electron atom causes the individual
spins to precess, preserving the square S2 and z-component Sz of the total spin S,

S ≡
∑

electrons a

sa , (8.2)

but not the z-components sa,z of the individual electron spins (the absolute values sa = 1
2 of

the individual electron spins, being fundamental properties of electrons, are also conserved).
Consider then a two-particle angular eigenfunction |j1j2 JM〉 where particles with spec-

ified absolute values j1 and j2 of their angular momenta couple to produce a total angular
momentum with absolute value J and z-projection M . The angular momenta j and J
here could denote either orbital angular momenta, or spin angular momenta, or perhaps
their sum; the formulae below are valid in all cases. The eigenfunction |j1j2 JM〉 can be
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written as a sum of products of 1-particle eigenfunctions |jama〉 [if j is an orbital angular
momentum, then |jama〉 = Yja,ma(θa, φa)]

|j1j2 JM〉 =
∑

m1+m2=M

〈j1m1 j2m2|j1j2 JM〉|j1m1|j2m2〉 . (8.3)

The fact that M = m1 + m2 follows immediately from the equality of operators Jz =
j1,z + j2, z. The quantities 〈j1m1 j2m2|j1j2 JM〉, often abbreviated 〈m1m2|JM〉, are called
Clebsh-Gordan coefficients

Clebsh-Gordan coefficients: 〈j1m1 j2m2|j1j2 JM〉 . (8.4)

Closely related are the Wigner 3j-symbols

Wigner 3j-symbols:

(
j1 j2 j3
m1 m2 m3

)
. (8.5)

Clebsh-Gordan coefficients are related to Wigner 3j-symbols by

〈j1m1 j2m2|j1j2 JM〉 = (−)j1−j2+M (2J + 1)1/2
(

j1 j2 J
m1 m2 −M

)
. (8.6)

The 3j-symbols, which are real-valued, are defined up to an overall ± sign by the symmet-
rical relation

|00〉 =
∑

m1+m2+m3=0

(
j1 j2 j3
m1 m2 m3

)
|j1m1〉|j2m2〉|j3m3〉 , (8.7)

in which three angular momenta with given absolute values j1, j2, j3 combine to produce
a total angular momentum of zero. In addition to the constraint m1 + m2 + m3 = 0, the
three ja must satisfy triangle inequalities, i.e. they should be able to form the sides of a
closed triangle, which means that j1 must satisfy the inequality

|j2 − j3| ≤ j1 ≤ |j2 + j3| , (8.8)

and similarly j2 and j3 must satisfy the inequalities obtained by permuting the indices
in (8.8). Exchanging any pair of columns of a 3j-symbol multiplies it by (−)j1+j2+j3 ,(

j2 j1 j3
m2 m1 m3

)
= (−)j1+j2+j3

(
j1 j2 j3
m1 m2 m3

)
, etc., (8.9)

which means the 3j-symbol changes sign under exchange of columns if j1 + j2 + j3 is odd.
A classic, but not necessarily numerically stable, way to evaluate Clebsch-Gordon coef-

ficients is to start with the wavefunction |j1j2 JJ〉 having the largest value of M , namely
M = J . The Clebsh-Gordon coefficients for this wavefunction are given by

〈j1m1 j2m2|j1j2 JJ〉 (8.10)

= (−)j1−m1

[
(2J + 1)!(j1 + j2 − J)!(j1 +m1)!(j2 +m2)!

(J + j1 + j2 + 1)!(J + j1 − j2)!(J + j2 − j1)!(j1 −m1)!(j2 −m2)!

]1/2
,

with the usual constraint m1 + m2 = J . Operating on the resulting expansion (8.3) of
|j1j2 JJ〉 in terms of the single particle eigenfunctions |j1m1|j2m2〉 with the lowering oper-
ator

J− = j1,− + j2,− (8.11)
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then yields |j1j2 JM〉 with M reduced by 1 at each operation.
To my knowledge, the best way to compute the Clebsch-Gordon coefficients numerically

is from the Wigner 3j-symbols, equation (8.6), as follows:

(1) The 3-j symbol with all m’s zero may be computed by the recursion method de-
scribed in §3.8 of Edmonds (1960).

(2) The 3-j symbol with nonzero m’s may be computed from the recursion formulae
(3.7.13) of Edmonds.

One final useful formula: the integral of a product of three Ylm’s over all directions is∫
Yl1m1(r̂)Yl2m2(r̂)Yl3m3(r̂)do

=

[
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

]1/2(
l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 m2 m3

)
. (8.12)

9. Operator of Rotations

Under the action of an infinitesimal rotation δφ about the z-axis, a spatial wavefunction
ψ transforms to

ψ → ψ + δφ
∂ψ

∂φ
= (1 + iδφLz/~)ψ . (9.1)

More generally, an infinitesimal rotation by δα about an arbitrary unit direction n trans-
forms a wavefunction ψ to

ψ → ψ + δα
∂ψ

∂α
= (1 + iδαn.L/~)ψ . (9.2)

Thus the operator
1 + iδαn.L/~ (9.3)

produces an infinitesimal rotation by angle δα about axis n. In mathematical group theory,
one says that L/~ are the generators of the rotation group. Applying the infinitesimal
operator (9.3) infinitely many times, one concludes that the operator of a finite rotation by
angle α about unit direction n (not necessarily in the ẑ direction) is

exp(iαn.L/~) . (9.4)

In the same way, a spin wavefunction χ is transformed by an infinitesimal rotation by δα
about an arbitrary unit direction n to

χ→ (1 + iδαn.S/~)χ , (9.5)

and the operator of a finite rotation by α about direction n is

exp(iαn.S/~) . (9.6)

In general, a rotation will affect both spatial and spin parts of a wavefunction at once, so
that the operator of a finite rotation by α about direction n becomes

exp(iαn.J/~) , (9.7)

where the total angular momentum J is the sum of spatial and spin angular momenta

J = L+ S . (9.8)
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Consider then a finite rotation of an angular wavefunction |jm〉, where j and m are
integral or half-integral quantum numbers which could represent either orbital angular mo-
mentum, or spin angular momentum, or their sum. A finite rotation transforms |jm〉 into
linear combinations of other angular wavefunctions |jn〉 with the same j, which follows from
the fact that L (or S) acting on Ylm (or χsσ) leaves l (or s) fixed, equations (4.1a)–(4.1c)
[or (6.6a)–(6.6c)]. The sets of |jm〉 with constant j, which are transformed into each other
by rotations, form the irreducible representations of the rotation group.

Define the rotation matrix Dj
mn to be the matrix elements of a finite rotation:

exp(iαn.J/~)|jm〉 =

j∑
n=−j

Dj
mn|jn〉 . (9.9)

This rotation matrix can be evaluated explicitly as follows. Any rotation in three-dimensional
space can be defined in terms of three Euler angles, a rotation of φ about the z-axis, followed
by a rotation of θ about the y-axis, followed by another rotation of φ′ about the z-axis.
Thus the finite rotation operator (9.7) can be written

exp(iαn.J/~) = exp(iφ′Jz/~) exp(iθJy/~) exp(iφJz/~) , (9.10)

and the rotation matrix Dj
mn becomes

Dj
mn = eiφ

′mΘj
mn(θ)eiφn . (9.11)

The matrix Θj
mn(θ) of a rotation by angle θ about the y-axis is real, and is given by the

stable (for increasing j) recurrence relation

l [(j + n+ 1)(j − n+ 1)(j +m+ 1)(j −m+ 1)]1/2 Θj+1
mn (9.12)

= (2j + 1) [j(j + 1) cos θ −mn] Θj
mn − (j + 1) [(j + n)(j − n)(j +m)(j −m)]1/2 Θj−1

mn ,

starting from

Θj
jm = (−)j−mΘj

mj =

[
(2j)!

(j +m)!(j −m)!

]1/2
cosj+m

θ

2
sinj−m

θ

2
. (9.13)

The finite rotation operator (9.7) is unitary, and so therefore also is the rotation matrix

Dj
mn, and likewise the rotation matrix Θj

mn. Since Θj
mn is real as well as unitary, it is an

orthogonal matrix, and since its inverse must also be equivalent to a rotation of −θ about

the y-axis, it follows that the inverse of Θj
mn is

Θj
nm(−θ) = Θj

mn(θ) . (9.14)

The inverse of the rotation matrix Dj
mn is its Hermitian conjugate

Dj†
nm = e−iφnΘj

mn(θ)e−iφ
′m . (9.15)


