
ASTR 3740 Relativity & Cosmology Spring 2023. Problem Set 4.
Due Wed 8 Mar

Warning: this problem set is quite lengthy, so please do not wait until the last day to start
it.

1. Trajectories of particles in the Schwarzschild geometry

In this problem you will find it helpful to visit John Walker’s web site at

http://www.fourmilab.to/gravitation/orbits/ .

The most fun part of the site is the Java applet, so you will probably want to seek out a
Java-enabled computer, although you can also use John Walker’s site without Java.

In what follows, the time t, radial coordinate r, polar angle θ, and azimuthal angle φ are
the usual Schwarzschild coordinates in the Schwarzschild metric (with c = 1 as usual)

ds2 = −
(

1− rs
r

)
dt2 +

dr2(
1− rs

r

) + r2
(
dθ2 + sin2 θ dφ2

)
, (1.1)

with rs the Schwarzschild radius
rs = 2GM . (1.2)

Without loss of generality, the trajectory of a particle falling freely in the Schwarzschild
geometry may be taken to lie in the equatorial plane, θ = π/2. For a particle of finite
(nonzero) mass, the trajectory satisfies the equations(

1− rs
r

) dt

dτ
= E , (1.3a)

r2dφ

dτ
= L , (1.3b)(

dr

dτ

)2

+ Veff = E2 , (1.3c)

where τ is the proper time of the particle, and E and L are constants, the particle’s energy
and angular momentum per unit mass. The quantity Veff is the effective potential given by

Veff =
(

1− rs
r

)(
1 +

L2

r2

)
. (1.4)

(a) Check

Are John Walker’s equations the same as the ones given above (aside from possible differences
in notation)?

(b) Velocity at infinity

Argue from equations (1.3) that relative to the rest frame of the Schwarzschild geometry,
the radial velocity vr ≡ dr/dt and the transverse velocity v⊥ ≡ rdφ/dt (the ≡ sign means “is
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defined to be equal to”) of the particle at extremely large distances from the Schwarzschild
geometry, r →∞, are related to E and L by

v2
r = 1− 1

E2
− L2

E2r2
, (1.5a)

v⊥ =
L

Er
, (1.5b)

(note that L can be extremely large at large r, so L/r is not necessarily zero in the limit
r →∞). Hence show that the velocity v∞ ≡ (v2

r + v2
⊥)1/2 of the particle as r →∞ is related

to its energy E by

E =
1

(1− v2
∞)1/2

. (1.6)

What does it mean if E < 1?

(c) Extrema of the effective potential

Find the radii at which the effective potential Veff is a maximum or a minimum, i.e. dVeff/dr =
0, as a function of angular momentum L. You should find that extrema exist only if the
absolute value |L| of the angular momentum exceeds a certain critical value Lc. What is
that critical value?

(d) Sketch

Sketch what the effective potential looks like for values of L (i) less than, (ii) equal to, (iii)
greater than the critical value Lc. Make sure to label the axes clearly and correctly. Describe
physically, in words, what the possible orbital trajectories are for the various cases. [Hint:
You will need to experiment with different choices of axes to make the graph look good. I
found it clearer not to start the effective potential at zero. For cases (i) and (iii), values near
the critical value Lc showed the distinction most clearly.]

(e) Circular orbits

Circular orbits, satisfying dr/dτ = 0, occur where the effective potential is a minimum
(stable orbit) or a maximum (unstable orbit). Show (from your equation for the extrema of
the effective potential) that the angular momentum L of a particle in circular orbit at radius
r satisfies

|L| = r(
2r

rs
− 3

)1/2
, (1.7)

and hence show also that the energy E in this circular orbit is

E =
21/2(r − rs)

[r(2r − 3rs)]1/2
. (1.8)

(f) Orbital period
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Show that the orbital period t, as measured by an observer at rest at infinity, of a particle in
circular orbit at radius r is given by Kepler’s 3rd law (yes, it’s true even in the fully general
relativistic case!)

GMt2

(2π)2
= r3 . (1.9)

[Hint: The time measured by an observer at rest at infinity is just the Schwarzschild time t.
Argue that the azimuthal angle φ evolves according to

dφ

dt
=
L(r − rs)
Er3

. (1.10)

The period t is the time taken for φ to change by 2π.]

(g) Infall time

Calculate the proper time τ for a particle with L = 0 and E = 1 to fall from a finite radius
r to the singularity at zero radius. What is the physical significance of the choice L = 0 and
E = 1? [Hint: Write down the equation for dr/dτ for L = 0 and E = 1, and then solve it.]

(h) Infall time — numbers

Use your answer to part (g) to show that the proper time to fall from the Schwarzschild
radius r = rs to the singularity (for L = 0 and E = 1) is, in units including c,

τ =
4GM

3c3
. (1.11)

Evaluate your answer, in seconds, for the case of a black hole of mass 4×106 M�, such as may
be in the center of our Galaxy, the Milky Way. [Constants: https://physics.nist.gov/cuu/
Constants/ c = 299,792,458 m s−1; G = 6.6743× 10−11 m3 kg−1 s−2; 1 M� = 1.99× 1030 kg.]
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2. Photons in the Schwarzschild geometry

The orbit equations (1.3) would appear to break down for photons, which have zero mass,
hence infinite energy per unit mass E (cf. equation [1.6] for v∞ = 1) and infinite angular
momentum per unit mass L. Another way of looking at this is that photons follow null
geodesics, dτ = 0, so that τ , which does not change, is not a very useful time coordinate for
expressing the equations of motion of photons.

The difficulty is cured by introducing an “affine parameter” λ = Eτ , which functions
as a good scalar coordinate along null geodesics. In terms of the affine parameter λ, the
equations of motion (1.3) for freely falling massless particles, such as photons, become(

1− rs
r

) dt

dλ
= 1 , (2.1a)

r2dφ

dλ
= J , (2.1b)(

dr

dλ

)2

+ Veff = 1 , (2.1c)

where J = L/E is the photon’s angular momentum per unit energy, and Veff = Veff/E is the
effective potential given by

Veff =
(

1− rs
r

) J2

r2
. (2.2)

(a) Circular orbits

Circular orbits, occur where the effective potential Veff is a minimum (stable orbit) or a
maximum (unstable orbit). At what radius can photons orbit in circles? Is the orbit stable
or unstable?
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