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Using the River Model to Draw Geodesics around Black Holes

Fancy creating a computer program, maybe a Java applet, to draw the orbits of particles
or photons around black holes? The river model provides a nice way to implement this.

Before doing so, you should be aware that general relativity admits arbitrary coordinate
systems, and the coordinate system of the river model is only one such coordinate system.
However, some coordinate systems reveal the physics more clearly than others, and I think
that the river model offers the most intuitively appealing coordinate system for black holes.

Because the coordinate systems of general relativity are arbitrary, the orbits you draw
cannot be considered as an absolute representation of reality. In general relativity one
says that the representation of orbits is “gauge-dependent”, i.e. it depends on the choice of
coordinate system. Nevertheless, the orbits you obtain in the river model will show all the
correct orbital structure: stable and unstable orbits, the photon sphere, and so on.

An example of a gauge-independent representation of orbits would be to show what an
observer would actually see watching a particle free fall around a black hole. However, this
would require not only following the orbit of the particle, but also ray-tracing light from the
particle to the observer, an altogether more complex problem.

1. Qualitative Summary

The river model of black holes is a mathematically rigorous description of stationary black
holes of arbitrary mass, electric charge, and spin. In the river model, space itself flows like
river through a flat background, while objects move through the river according to the rules
of special relativity.

For spherical black holes, the river falls radially inward, hitting the speed of light at the
horizon. Inside the horizon, the river falls faster than light, carrying everything with it.

For rotating black holes, one might have anticipated that the river would spiral inwards,
but this is not the case: the azimuthal component of the river velocity is zero. Instead,
the river possesses at each point not only a velocity, but also a twist. That is, the river
has a Lorentz structure, characterized by six numbers (velocity and rotation), not just three
(velocity). As an object moves through the river, it is Lorentz boosted by tidal changes in
the velocity of the river along its path, and spatially rotated by tidal changes in the twist of
the river along its path.

To implement this on a computer, set up a system of flat background coordinates, and
attach an imaginary inflowing river of space to the flat background. Then shoot particles,
each with whatever initial 4-velocity you like relative to the inflowing river. At each frame,
update the position of a particle according to its 4-velocity, and update the 4-velocity of a
particle by applying a small Lorentz transformation. The desired Lorentz transformation is
given by the tidal change in the velocity and twist fields of the river along the path of the
particle. That’s it!
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2. Spherically Symmetric Black Hole

Use geometric units c = G = 1. For a spherically symmetric black hole of mass M and
electric charge Q the river metric is, in spherical coordinates (tff , r, θ, φ),

ds2 = − dt2ff + (dr + v dtff)2 + r2(dθ2 + sin2θ dφ2) (1)

where v is the radial infall river velocity

v =
(2Mr − Q2)1/2

r
(2)

and tff is the proper time experienced by an object that free falls radially inward from zero
velocity at infinity. The river velocity is positive for a black hole (infalling), negative for a
white hole (outfalling). Horizons occur where the river velocity v equals the speed of light

v = ±1 (3)

with v = 1 for black hole horizons, and v = −1 for white hole horizons. The river metric (1)
was first pointed out in 1921, independently by Gullstrand and by Painlevé, for the case of
the Schwarzschild geometry (uncharged spherical black hole).

Rewrite the river metric (1) in Cartesian coordinates xµ
≡ (x0, x1, x2, x3) ≡ (tff , x, y, z)

with origin at the center of the black hole:

ds2 = ηµν(dxµ
− v

µdtff)(dxν
− v

νdtff) (4)

where ηµν ≡ diag (−1, 1, 1, 1) is the Minkowski metric, and v
µ are the components of the

river velocity

v
µ = v

(

0 , −
x

r
, −

y

r
, −

z

r

)

. (5)

Introduce a test particle, either a massive particle or a photon, that free falls around the
black hole. Later on you might consider allowing the particle to accelerate, perhaps by firing
its rockets (or perhaps by being electrically charged, if the black hole is also charged), but
for the moment let the test particle fall freely. Define τ to be the proper time experienced by
the particle. In one frame of your computer animation, you will want to advance the proper
time by some small constant interval δτ . Let uµ denote the 4-velocity of the test particle

uµ
≡

dxµ

dτ
≡

(

dtff
dτ

,
dx

dτ
,
dy

dτ
,
dz

dτ

)

. (6)

If in one frame the proper time of the particle advances by δτ , then the coordinates of the
particle advance by

δxµ = uµδτ . (7)

Observers who free-fall radially from zero velocity at infinity have 4-velocity

uµ
ff

= (1, v1, v2, v3) . (8)
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Such observers are comoving with the inflowing river of space. Introduce a set of locally
inertial frames, tetrads, attached to such radially free-falling observers. Associated with the
locally inertial frame at each point is a set of locally inertial coordinates ξm

≡ (ξ0, ξ1, ξ2, ξ3).
The convention adopted here is that latin indices m signify locally inertial tetrad frames,
while greek indices µ signify curved coordinate frames. Latin indices m are raised and
lowered with the Minkowski metric ηmn, while greek indices µ are raised and lowered with
the coordinate metric gµν . Whereas the coordinates xµ are globally defined over the whole
space, the locally inertial tetrad coordinates ξm are only locally defined within a small
(infinitesimal) neighborhood of each point.

The 4-velocity υm of the test particle with respect to the locally inertial tetrad frame at
the position of the particle is

υm
≡

dξm

dτ
(9)

and is related to the coordinate 4-velocity uµ by

υ0 = u0

υi = ui
− v

iu0 (i = 1, 2, 3) . (10)

Physically, the 4-velocity υm is the 4-velocity of the particle relative to the inflowing river
of space. For example, the spatial components υi of the 4-velocity are zero if the particle is
becalmed in the river, flowing inward with the river. Equations (10) say that if the particle
moves a distance δxµ = uµδτ in the coordinate frame, then it moves a distance δξm = υmδτ
in the tetrad frame

δξ0 = δtff

δξi = δxi
− v

iδtff (i = 1, 2, 3) . (11)

In words, the spatial distance δξi moved relative to the river frame is the distance δxi in the
coordinate frame minus the distance v

iδtff moved by the river in proper time δτ .
Since the 4-velocity υm is relative to a locally inertial frame, the rules of special relativity

apply. The 4-velocity squared υmυm = ηmnυmυn is a scalar, and is constant along the path
of the particle. For a massive particle

υmυm = −1 (12)

while for a massless photon
υmυm = 0 . (13)

You know how to update the position of the particle from its 4-velocity, but how do
you update the 4-velocity? This is determined by the equations of motion, which a general
relativistic calculation shows to be

dυ0

dτ
=

∂vi

∂xj
υjυi

dυi

dτ
=

∂v
i

∂xj
υjυ0 (i = 1, 2, 3) . (14)

3



Equations (14) have the following interpretation. In an interval δτ of proper time, a particle
moves a spatial distance δxi = uiδτ . The velocity v

i of the infalling river at the new position
differs from the velocity at the old position by δxj ∂v

i/∂xj . However, in the river model, a
particle moving in the river sees not the full change in river velocity relative to the background
coordinates, but only the tidal change

δvi = δξj ∂v
i

∂xj
(i = 1, 2, 3) (15)

in the river velocity relative to the infalling locally inertial river frame. For example, if the
particle is becalmed in the river, infalling with it, then δξj = 0, and the particle sees no
change in the river velocity. The infinitesimal tidal change δvi in the river velocity induces
a Lorentz boost in the 4-vector υm

υ0
→ υ0 + δvi υ

i

υi
→ υi + δvi υ0 (i = 1, 2, 3) . (16)

Equations (15) and (16) reproduce the equations of motion (14).

3. Rotating Black Hole

The river model for a rotating black hole is similar to that for a spherical black hole, with two
major differences. First, the natural coordinate system is spheroidal rather than spherical.
Second, the infalling river of space is characterized not only by a velocity, but also by a
twist. That is, the river has a Lorentz structure, characterized by six numbers (velocity and
rotation), not just three (velocity). As a test particle moves in free-fall around the black
hole, it changes its velocity and rotation in response to tidal changes in the velocity and
twist of the river along its path.

For a rotating black hole of mass M , electric charge Q, and angular momentum a per
unit mass, the river metric is, in oblate spheroidal coordinates (tff , r, θ, φ),

ds2 = − dt2
ff

+

[

ρdr

R
+

vR

ρ
(dtff − a sin2θ dφff)

]2

+ ρ2dθ2 + R2 sin2θ dφ2

ff
(17)

where v is the river velocity

v =
(2Mr − Q2)1/2

R
(18)

and R and ρ are
R ≡ (r2 + a2)1/2 , ρ ≡ (r2 + a2 cos2 θ)1/2 . (19)

Horizons occur where the river velocity v equals the speed of light

v = ±1 (20)

with v = 1 for black hole horizons, and v = −1 for white hole horizons. The metric (17)
for the Kerr-Newman geometry was discovered by Doran (2000). Oblate spheroidal coordi-
nates (r, θ, φ) are not the same as spherical coordinates, but rather are related to Cartesian
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coordinates (x, y, z) by

x = R sin θ cos φff

y = R sin θ sin φff (21)

z = r cos θ .

The spheroidal radial coordinate r is given implicitly in terms of x, y, z by

r4
− r2(x2 + y2 + z2

− a2) − a2z2 = 0 . (22)

Rewrite the river metric (17) in Cartesian coordinates xµ = (x0, x1, x2, x3) = (tff , x, y, z),
with the rotation axis along the z-direction:

ds2 = ηµν(dxµ
− v

µακdxκ)(dxν
− v

ναλdxλ) . (23)

Here the components v
µ of the river velocity are

v
µ =

vR

ρ

(

0 , −
xr

Rρ
, −

yr

Rρ
, −

zR

rρ

)

(24)

and αµdxµ = dtff − a sin2θ dφff has components

αµ =
(

1 ,
ay

R2
, −

ax

R2
, 0
)

. (25)

The azimuthal vector αµ is related to the 4-velocity of the horizon. Its spatial components
point in the (negative) azimuthal direction, in the direction opposite to the rotation of the
black hole.

As in the spherical case, introduce a set of locally inertial tetrad frames, and associated
locally inertial coordinates ξm

≡ (ξ0, ξ1, ξ2, ξ3), attached to observers who free-fall radially
from zero velocity (with zero angular momentum) at infinity. Such freely-falling observers
are comoving with the infalling river of space, and have coordinate 4-velocity

uµ
ff

= (1, v1, v2, v3) . (26)

The 4-velocity υm of a test particle with respect to the locally inertial tetrad frame at
the position of the particle is

υm
≡

dξm

dτ
(27)

and is related to the coordinate 4-velocity uµ by

υ0 = u0

υi = ui
− v

iαµu
µ (i = 1, 2, 3) . (28)

Equations (28) say that if in an interval of proper time δτ the particle moves a coordinate
distance δxµ = uµδτ , then relative to the tetrad frame, that is, relative to the locally inertial
frame of an observer who is comoving with the infalling river, the particle moves a distance

δξm = δxm
− v

mαµδx
µ . (29)
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Figure 1: The velocity and twist fields for an uncharged (Kerr) black hole with angular
momentum per unit mass a = 0.95. The arrowed lines show the magnitude and direction
of the river velocity, while the unarrowed lines emerging from the arrowed lines show the
magnitude and axis of the river twist. The confocal ellipses show the outer and inner horizons,
and the large dots at the foci of the ellipses indicate the ring singularity. In the vacuum Kerr
solution, the river velocity goes to zero at the horizontal disc bounded by the ring singularity,
then turns around and rebounds through a white hole into a new universe.
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One recognizes the right hand side of equation (29) as having the same form as a factor of
the Doran-Cartesian metric (23).

The big difference between rotating and spherical black holes is that the river is charac-
terized by a twist as well as a velocity. The velocity and twist are together specified by a
single bivector (antisymmetric tensor) river field ωkn

ωkn = αkvn − αnvk + ε0kni ζ
i (30)

where the vector ζ i is

ζ i = (0, 0, 0, ζ) , ζ = a
∫

∞

r

v dr

R2
(31)

which points vertically upward along the rotation axis of the black hole. The river field defines
a velocity and a rotation, or twist, at each point of the black hole geometry. Components
of ωkn in which one of the indices k or n is 0 (time) define a velocity, while components in
which both indices k and n are 1, 2, 3 (space) define a spatial rotation, or twist. The velocity
is just the river velocity vn

ω0n = vn , (32)

while the angle and axis of the river twist are given by the rotation vector

µi =
1

2
εikn ωkn = εikn αkvn + ζ i (i, k, n = 1, 2, 3) . (33)

Like the velocity vector vi, the twist vector µi at each point lies in the plane of constant
free-fall azimuthal angle φff , since it is a sum of two vectors εikn αkvn and ζ i both of which
are orthogonal to the azimuthal vector αk.

The equation of motion of an unaccelerated test particle in the river frame is

dυk

dτ
= ηkl ∂ωln

∂xm
υmυn . (34)

The equation of motion (34) can be interpreted as follows. In an infinitesimal interval δτ of
proper time, a particle moves a distance δξm = υmδτ relative to the infalling river of space.
As a result of its motion through the river, the particle experiences a tidal change

δωkn =
∂ωkn

∂xm
δξm (35)

in the river field, which generalizes equation (15) for spherical black holes. The tidal change
δωkn in the river field is an infinitesimal Lorentz transformation, and it induces a Lorentz
boost and rotation in the 4-vector υk

υk
→ υk + δωk

n υn . (36)

Equations (35) and (36) reproduce the equations of motion (34).
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