Light scattering from dense cold atomic media

Bihui Zhu, John Cooper, Jun Ye, and Ana Maria Rey
JILA, NIST and University of Colorado, 440 UCB, Boulder, Colorado 80309, USA
and Department of Physics, University of Colorado, 440 UCB, Boulder, Colorado 80309, USA

(Received 20 May 2016; published 9 August 2016)

We theoretically study the propagation of light through a cold atomic medium, where the effects of motion, laser intensity, atomic density, and polarization can all modify the properties of the scattered light. We present two different microscopic models: the “coherent dipole model” and the “random-walk model”, both suitable for modeling recent experimental work done in large atomic arrays in the low-light-intensity regime. We use them to compute relevant observables such as the linewidth, peak intensity, and line center of the emitted light. We further develop generalized models that explicitly take into account atomic motion. Those are relevant for hotter atoms and beyond the low-intensity regime. We show that atomic motion can lead to drastic dephasing and to a reduction of collective effects, together with a distortion of the line shape. Our results are applicable to model a full gamut of quantum systems that rely on atom-light interactions, including atomic clocks, quantum simulators, and nanophotonic systems.

DOI: 10.1103/PhysRevA.94.023612

I. INTRODUCTION

Light-matter interactions are fundamental for the control and manipulation of quantum systems. Thoroughly understanding them can lead to significant advancements in quantum technologies, quantum simulations, quantum information processing, and precision measurements [1–7]. Over the past decades, cold-atom experiments have provided a clean and tunable platform for studying light-matter interactions in microscopic systems where rich quantum effects emerge, such as superradiance and subradiance, electromagnetically induced transparency, and nonclassical states of light [8–12]. However, in spite of intensive theoretical and experimental efforts over the years, long-standing open questions still remain regarding the propagation of light through a coherent medium, especially when it consists of large and dense ensembles of scatterers [13–29]. In fact, by studying small systems where analytical solutions are obtainable, it has been realized that atom-atom interactions can significantly modify the spectral characteristics of the emitted light. These effects yet need to be understood in large systems [30–34] where finite-size effects and boundary conditions become irrelevant. The situation is even more complicated when the coupling with atomic motion is non-negligible [35,36]. It is timely to develop theories capable of addressing these questions, given the rapid developments on cold-atom experiments and nanophotonic systems. The experiments are entering strongly coupled regimes, where atom-atom and atom-photon interactions need to be treated simultaneously and sometimes fully microscopically [30,37,38].

A widely adopted approach to describe light scattering consists of integrating out the atomic degrees of freedom and treating the atoms just as random scatterers with prescribed polarizability [39–42]. While this approach can successfully capture some classical properties of the scattered light, it does not fully treat the roles of atom-atom interactions and atomic motion [43–46]. An alternative route consists of tracing over the photonic degrees of freedom. In this case the virtual exchange of photons induces dispersive and dissipative dipole-dipole interactions between atoms, which can be accounted for by a master-equation formulation [13,14]. This approach has been used to study systems of tightly localized atoms where the dynamics only takes place in the atomic internal degrees of freedom. It has been shown to successfully capture quantum effects in light scattering [18,19,47–50]. However, due to the computational complexity, it has been often restricted to weak excitation and small samples [32,33,51,52], and a direct comparison with experiments containing a large number of atoms has been accomplished only recently [53,54]. In general, most theories have not properly accounted for atomic motional effects and atomic interactions on the same footing and many open questions in light-scattering processes remain.

Here, we present a unifying theoretical framework based on a coherent dipole (CD) model [see Fig. 1(a)] to study the light scattering from cold atoms with possible residual motion. In the low-intensity and slow-motion regime, we use the CD to investigate the collective effects in the light scattered by a large cloud and show the interplay of optical depth (OD) and density. These results are compared with the random-walk (RW) model [see Fig. 1(a)] that only accounts for incoherent scattering and thus ignores coherent dipolar interaction effects. To address the role of atomic motion, we perform different levels of generalization of the CD model. With these modified models, we show that atomic motion not only reduces phase coherence and collective effects but also impacts the line shape and line center of the spectral emission lines via photon recoils. Motivated by a recent experiment at the Joint Institute for Laboratory Astrophysics (JILA) [see Fig. 1(b)] [53], we focus our discussions on a $J = 0 \rightarrow J' = 1$ transition, but the methods presented here can be extended to more complicated level structures without much difficulty.

This paper is organized as follows. In Sec. II, we provide the mathematical description of the CD model, which treats atoms as coupled, spatially fixed dipoles sharing a single excitation. Its predictions on the collective properties of the emitted light such as the light polarization and density dependence of the line shape and peak intensity are discussed. In Sec. III, we introduce the RW model and compare its predictions on the linewidth and peak intensity of the scattered light to the ones obtained from the CD model. Those comparisons allow us to
This treatment also allows us to go beyond the low-excitation include atomic motion by means of a semiclassical approach. we go beyond the frozen model approximation and explicitly atoms sampled from a Maxwell-Boltzmann distribution. Then Doppler shifts. Those are accounted for in the frozen model drives an atomic transition with a spontaneous emission rate all atoms contribute to the fluorescence. (b) Experimental setup for explore the role of phase coherence in the atom-light interac-

Fig. 1. Scheme. (a) Microscopic models: random-walk model (left) and coherent dipole model (right). In the random-walk model, a photon is randomly scattered by the atoms. Scattering events are characterized by the incident and outgoing wave vectors of the photons and their corresponding polarizations. In the coherent dipole model, atoms are coupled by dipole-dipole interactions G_{ab}, and all atoms contribute to the fluorescence. (b) Experimental setup for measuring the fluorescence from a cloud of atoms. An incident laser drives an atomic transition with a spontaneous emission rate Γ. Atoms absorb and emit light. The detectors collect scattered photons at an angle θ measured from the incident beam direction.

II. COHERENT DIPOLE MODEL

A. Equations of motion for coherent dipoles

For an ensemble of N atoms with internal dipole transition $J = 0 \rightarrow J' = 1$, the Hamiltonian of the system that includes the interaction between atoms and the radiation field is [55]

$$H = \hbar \sum_{k,\alpha} \omega_k a_{k\alpha}^\dagger a_{k\alpha} + \hbar \sum_{i,\alpha} \omega_{i\alpha} b_{i\alpha}^\dagger b_{i\alpha}^\dagger + \sum_{i} \hat{D}_i \cdot \hat{E}(r),$$

$$\hat{b}_{i\alpha}^\dagger = d \left(\hat{b}_{i\alpha} + \hat{b}_{i\alpha}^\dagger \right),$$

$$\hat{E}(r) = \sum_{k\alpha} g_{k\alpha} \epsilon_k (e^{ikr} a_{k\alpha} + H.c.),$$

where we have used the notation $|\alpha\rangle$ to denote the excited levels and $|0\rangle$ for the lower state. For convenience, we choose the Cartesian basis, $|\alpha\rangle = |x\rangle, |y\rangle,$ or $|z\rangle$. $b_{i\alpha}^\dagger = |\alpha_i\rangle \langle 0_i|$ is the raising operator for transition to state $|\alpha\rangle$ of the ith atom, and d is the atomic dipole moment. The field coupling strength is denoted by $g_{k} = \sqrt{\frac{\omega_{k}}{2\pi r^3}}$, $k(\epsilon)$ is the wave vector (polarization) of the photons, ω_k is the frequency of the photons, ϵ_0 is the vacuum permittivity, and V is the photon quantization volume. Under the Born-Markov approximation, the photon degrees of freedom $\hat{\delta}_{k\alpha}$ can be adiabatically eliminated, leading to a master equation for the reduced density matrix $\hat{\rho}$ of the atoms [13,30,55] where the effective role of the scattered photons is to mediate dipole-dipole interactions between atoms. The master equation for $\hat{\rho}$ is

$$i \frac{d \hat{\rho}}{dt} = - \sum_{i,\alpha} \Delta_{\alpha} \left[\hat{b}_{i\alpha}^\dagger \hat{b}_{i\alpha}, \hat{\rho} \right] + \sum_{i,\alpha} \Omega_{\alpha} \left[\left(e^{ikr} \hat{b}_{i\alpha}^\dagger + H.c. \right), \hat{\rho} \right]$$

$$+ \sum_{i,\alpha,j,\alpha'} f_{ij}^{\alpha\alpha'} \left(2 \hat{b}_{i\alpha}^\dagger \hat{\rho} \hat{b}_{i\alpha}^\dagger - \left(\hat{b}_{i\alpha}^\dagger \hat{b}_{i\alpha}^\dagger, \hat{\rho} \right) \right),$$

where we have added the term describing the effect of an external driving laser with polarization α, wave vector k_0, and Rabi frequency Ω_{α}. The Hamiltonian is written in the rotating frame of the laser, with Δ_{α} denoting the detuning between the laser and the transition $|0\rangle \rightarrow |\alpha\rangle$. The dipole-dipole interactions are given by [13,30]

$$G_{ij}^{\alpha\alpha'} \equiv \frac{3\pi}{4} \left[\delta_{\alpha\alpha'} A(r_{ij}) + \hat{P}_i^\alpha \hat{P}_j^{\alpha'} B(r_{ij}) \right],$$

$$A(r) = -\frac{e^{ikr}}{k_0 r} - \frac{e^{ik\pi r}}{k_0 r^3} + \frac{e^{ik\pi r}}{k_0 r^3},$$

$$B(r) = \frac{e^{ikr}}{k_0 r} + \frac{3e^{ik\pi r}}{k_0 r^3} - \frac{3e^{ik\pi r}}{k_0 r^3},$$

$$g_{ij}^{\alpha\alpha'} = \text{Re} \left[G_{ij}^{\alpha\alpha'} \right],$$

$$f_{ij}^{\alpha\alpha'} = \text{Im} \left[G_{ij}^{\alpha\alpha'} \right],$$

where $\delta_{\alpha\alpha'}$ is the Kronecker delta symbol, r_{ij} is the relative separation between atoms i and j, and $\hat{P}_i^\alpha = r_i^\alpha / r$ denotes the component of the unit vector r/r along the direction $\alpha = x, y,$ or z. The real and imaginary parts describe the dispersive and dissipative interactions, respectively. The spontaneous emission rate is $\Gamma = \frac{k_0^3 d^2}{6\pi\epsilon_0}$, and $k_0 = 2\pi/\lambda$ is the wave vector of the dipole transition. The dipole-dipole interactions include both the far-field ($1/r$) and near-field ($1/r^2, 1/r^3$) contributions. The imaginary part encapsulates the collective dissipative process responsible for the superradiant emission in a dense sample. The real part accounts for elastic interactions between atoms which can give rise to coherent dynamical evolution. These elastic interactions compete with and can even destroy the superradiant emission [33,56].

When the atoms' thermal velocity v satisfies $k_0 v \ll \Gamma$, atoms can be assumed to be frozen during the radiation process. Moreover, in the weak-driving regime, $\Omega \ll \Gamma$, to an excellent approximation, the master-equation dynamics can be captured by the $3N$ linear equations describing the atomic coherences $b_{i\alpha}^\dagger = \langle \hat{b}_{i\alpha}^\dagger \rangle$ of an excitation propagating through the ground-state atomic medium. The corresponding steady-state
solution can be found from
\[b_j^n = \frac{\Omega^2 \delta_{a,j} e^{i k_0 r_j}}{\Delta^a + i \Gamma/2} + \sum_{n \neq j, a} G^{a\alpha}_{jn} b_n^{a\alpha}, \]
(10)
where we have specified the polarization of the driving laser to be along \(\gamma \). To obtain Eq. (10), we have assumed there is only one excitation in the system and ignored multiatom coherences (see Appendix A). This assumption is justified in the weak-driving-field regime [49,57]. The fluorescence intensity measured at the position \(r_j \) in the far field can be obtained by the summation [13]
\[I(r_j) \propto \sum_{jn} e^{-i k_0 r_j} \sum_{a,a'} (\delta_{a,a'} - \hat{r}^a_{r_j} \hat{r}^a_{r_j}) b_j^{a\alpha} b_n^{a\alpha}, \]
(11)
where \(b_n^{a\alpha} \) is the complex conjugate of \(b_n^{a\alpha} \), and \(r_{jn} = r_j - r_n \).

B. Collective effects in fluorescence

For dilute samples the dipolar interactions are weak, \(G \equiv \sum_{i,j,a,a'} |G^{a\alpha}_{ij}|^2 / (N \Gamma) \ll 1 \), and Eq. (10) can be solved perturbatively using \(G \) as an expansion parameter, \(b_j^a = b_j^{a,0} + b_j^{a,1} + b_j^{a,2} + \cdots (b_j^{a,n} \propto G^n) \), which results in
\[b_j^{a,n} = \sum_{l_1 \neq j} \mathcal{G}_{j,l_1}^{a\alpha} \cdots \mathcal{G}_{l_{n-1},l_n}^{a\alpha} \Omega^2 \delta_{\alpha,\alpha'} e^{i k_0 r_n} \]
\[\propto \left(\Delta^a + i \frac{\Gamma}{2} \right)^{\frac{n}{2}} \left(\Delta^a + i \frac{\Gamma}{2} \right)^{-\frac{n}{2}}. \]
(12)

In the expansion, terms of order \(n \) account for \(n \)-th-order scattering events. For simplicity, in the following we assume the atomic sample has a spherical shape, with density distribution \(n(r) = n_0 e^{-r^2/2 R^2}, \) unless otherwise specified. However, the conclusions can be generalized to other geometries. Here, \(n_0 = \frac{N}{\sqrt{4 \pi R^2}} \) is the peak density.

To the zeroth order, the atomic response is driven by only the external field and is not modified by the scattered light:
\[b_j^{a,0} = \frac{\Omega^2 \delta_{a,j} e^{i k_0 r_j}}{\Delta^a + i \Gamma/2}. \]
(13)
Substituting it into Eq. (11), the intensity of scattered light is
\[I \propto N + N^2 e^{-r^2/2 R^2}. \]
(14)

There are two contributions to the intensity; the first term \(\propto N \) represents the incoherent contribution, and the second term \(\propto N^2 \) is the collective emission resulting from coherent scattering processes [17,53]. The phase coherence is restricted to a narrow angular region around the incident laser direction, with \(\delta \theta \sim 1/k_0 R \). The enhanced emission arises from the constructive interference of the radiation from \(N \) dipoles [49]. Along other directions, the random distribution of atom positions randomizes the phases of the emitted light, smearing out the phase coherence after averaging over the whole sample [53].

Including first-order corrections, the intensity of the scattered light is given by
\[I(r_j) \propto \frac{N \Omega^2}{(\Delta - \Gamma \text{Re}[\mathcal{G}])^2 + (\Gamma + 2 \Gamma \text{Im}[\mathcal{G}])^2/4} \]
(15)
for transverse directions, where we have denoted \(\Omega = \Omega^a \) and \(\Delta = \Delta^a \) and \(\mathcal{G} = \sum_{i,j,a,a'} G^{a\alpha}_{ij} e^{-i k_0 r_j} / (N \Gamma) \). For the forward direction, the intensity has the same form, except that the factor \(N \) is replaced by \(N^2 \) due to the phase coherence. Therefore, the line shape of the scattered light is Lorentzian, with its line-center frequency shifted by the elastic interactions [58] and the linewidth broadened by the radiative interactions. If we temporarily neglect the effect of polarization, when the atomic separation is large, the dipole-dipole interaction is dominated by far-field terms, i.e., \(G^{a\alpha}_{ij} \sim -\frac{e^{i k_0 r_j}}{r_j^3} \). In this limit analytical expressions for the linewidth broadening \(\Gamma \) and density shift \(\Delta \) can be obtained:
\[\Gamma = 2 \text{Im}[\mathcal{G}] = 3 N \Gamma / (8 k_0^2 R^2) = \frac{3}{4} \Gamma, \]
and \(\Delta = \Gamma \text{Re}[\mathcal{G}] = -\Gamma n_0 k_0^{-3}/4 \sqrt{2 \pi} \). Therefore, while the collectively broadened linewidth depends on the OD of the atomic cloud, the frequency shift depends on the density.

In a dense medium dipolar interactions are strong, \(G \gtrsim 1 \), higher-order scattering events become important, and the interplay between the radiative interactions and elastic interactions becomes non-negligible. As a consequence the above perturbative analysis is no longer applicable. In Figs. 1 and 2, we show the numerical solution of Eq. (10), which takes into account all the scattering orders. As shown in Fig. 2(a), most of the scattered light is distributed within a narrow peak around the forward direction (laser direction). Outside this narrow region fluorescence is almost uniformly distributed among all other directions [59]. The forward emission is collectively enhanced. For low OD it increases as \(N^2 \) [Fig. 2(b)], while the transverse intensity increases as \(\sim N \).

Dipolar interactions tend to suppress the rate at which the intensity grows with \(N \) [Fig. 2(c)]. This can be qualitatively understood from Eq. (15), which predicts that the intensity is reduced as OD increases. Despite the fact that the perturbative analysis is only valid in the weak-interaction limit, this tendency remains and becomes more pronounced in the large-OD regime, as shown by the numerical solution presented in Fig. 2(d). Broadly speaking, multiple-scattering events tend to suppress collective behavior [22,60]. Similar physics is also observed in the behavior of the linewidth. At small OD, the FWHM linewidth increases linearly with OD [Fig. 3(a)], and the line shape is well described by a Lorentzian [Fig. 3(b)], as expected from Eq. (15). However, when OD is large and the density is high, in addition to a significant broadening, the line shape becomes non-Lorentzian [Fig. 3(c)], and the FWHM increases slowly with OD [Fig. 3(a)]. To further illustrate this, in Fig. 3(a) we plot the FWHM for the same OD but with smaller density (by using a larger atom number). The figure shows that the linewidth indeed keeps increasing until saturation at a larger value of OD. Another interesting feature is the double-peak structure observed only at intermediate angles \(\theta \), which arises from the interplay between the stimulated photon emission driven by the probe field and the scattered photons emitted via dipolar exchange processes [Fig. 3(c)].

The drastic modifications of the perturbative expectations from multiple scattering are also present in the frequency shift of the scattered light. From a mean-field point of view, the line center of scattered light is shifted according to the Lorentz-Lorenz shift \(\pi n_0 k_0^{-3} \Gamma \) [61]. As shown by the
In contrast, if a constant OD is used to compute the frequency shift, the result would considerably overestimate the shift, e.g., by a factor of 10 when the N in numerical simulation is $1/100$ the atom number in experiment. The interplay of multiple scattering and density effects is more prominent for larger N values. To deal with the OD vs density scaling issues in comparing with experiments the most appropriate rescaling procedure that we found is the following: when computing the linewidth or peak intensity, the theory is rescaled accordingly with the experimental OD. However, the actual OD value is not exactly matched to the experimental one but to a slightly modified value, $\tilde{\tau} = \eta \tau$ to account for density effects [53]. For a moderate window of OD values, for example, achieved experimentally by letting the cloud expand for different times, η should be kept fixed. For the frequency shift the theory should be rescaled according to density.

C. Anisotropic features of scattered light

For independent atoms radiation along the polarization of the driving laser is forbidden. However, dipole-dipole interactions can generate polarization components different from the driven ones if the atoms exhibit internal level structure, e.g., degenerate Zeeman levels in the excited state. This is the case of a $J = 0 \rightarrow J' = 1$ transition, where, as shown in Fig. 6, the fluorescence emitted along the laser polarization direction (z direction, $\theta = \pi/2$) is nonzero. It is, however, much weaker than the intensity emitted along other directions. On the contrary, for two-level transitions
FIG. 3. CD model: collective broadening. (a) FWHM linewidth as a function of OD. At small OD, the FWHM increases linearly with OD, but as OD increases, density effects set in, multiple scattering events become relevant, and the linewidth dependence on OD is no longer linear. Two different atom numbers are used for the blue solid \((N = 1000) \) and black dashed \((N = 200) \) lines, and the OD is varied by changing the cloud size. For the blue solid line, \(n_0k_{\perp}^{-3} = 0.14 \) at \(\tau = 25 \) and 0.003 at \(\tau = 2 \). For the black dashed line, the density at the same OD is doubled. With smaller density, the linewidth increases to a larger value in the large-OD regime. (b) The line shape at small OD values \((\tau = 2, n_0k_{\perp}^{-3} = 0.002) \) for different angles \(\theta \) [\(\theta \) is defined in Fig. 1(a)] is mainly Lorentzian. Here, the intensity is normalized to the on-resonance intensity for each \(\theta \). (c) At large OD \((\tau = 20, n_0k_{\perp}^{-3} = 0.06) \), the fluorescence line shape significantly broadens and stops being Lorentzian. The brown dots for \(\theta = 0 \) show the Lorentzian fit, which fails to describe the line shape. At intermediate \(\theta \), a double-peak structure shows up. For all panels, the cloud shape is spherical.

the polarization of the scattered light is conserved, and thus, the emission parallel to the laser polarization is completely suppressed. The strong dependence of the scattered light on polarization and atomic internal structure is most relevant along the transverse direction. Along the forward direction those effects are irrelevant, as verified by our numerical simulations. From Eq. (12), the lowest-order contribution to the intensity detected along the laser polarization direction comes from the first-order scattering processes; thus, \(I \propto \frac{1}{(\Delta^2 + \Gamma^2/4)^2} \), which leads to a “subradiant” line shape (i.e., the

FIG. 4. CD model: frequency shift. For small density, the shift calculated from the coherent dipole model (blue solid line) increases linearly with density as predicted by the mean-field theory. However, when density is large, there is a significant deviation from the mean-field result. When motional effects are taken into account (red dotted line, Doppler width of \(5\Gamma \), see Sec. IV A), the nonlinear suppression of the frequency shift with density is less severe.

FIG. 5. CD model: finite-size scaling. (a) The linewidth is calculated for different numbers of atoms at the same OD \((\tau = 4 \) for \(N = 3000) \) by varying the density (blue line with circles). From \(N = 1000 \) to 5000 the linewidth is not obviously changed. In contrast, by keeping the same density \((n_0k_{\perp}^{-3} = 0.0037 \) for \(N = 3000) \) while varying the OD (magenta line with triangles), the linewidth keeps changing. (b) The frequency shift is calculated for different numbers of atoms. By keeping constant density (magenta line with triangles), the frequency shift remains almost constant, while for constant OD (blue line with circles), there is a significant variation of the frequency shift with \(N \). Here, the cloud aspect ratio is \(R_x : R_y : R_z = 2 : 2 : 1 \).
In this section we use the random-walk model to investigate the role of incoherent scattering processes in collective emission. We focus on the low-intensity regime. Classically, light transport in a disordered medium can be described by a sequence of random scattering events experienced by a photon [see Fig. 1(a)] \cite{41, 44, 60}. The expected number of scattering events is roughly given by τ_p^2, where τ_p is the peak optical depth, which depends on detuning Δ as $3N/|k_0^2 R^2(1 + 4 \Delta^2 / \Gamma^2)]$. For simplicity here we also assume a spherical cloud. The transmission of light is given by $e^{-\tau}$ \cite{63, 64}. For the $J = 0 \rightarrow J' = 1$ transition (degenerated $J' = 1$ states), the differential scattering cross section that defines a scattering event is given by \cite{41, 60}

$$\frac{d\sigma}{d\Omega_{\Sigma}}(\mathbf{k}_{\text{in}}, \mathbf{e}_{\text{in}} \rightarrow \mathbf{k}_{\text{out}}, \mathbf{e}_{\text{out}}) = \frac{3\sigma_0}{8\pi} |\mathbf{e}_{\text{in}} \cdot \mathbf{e}_{\text{out}}|^2, \tag{16}$$

where $\mathbf{k}_{\text{in, out}}$ are the incident and scattered wave vectors, $\mathbf{e}_{\text{in, out}}$ are the polarizations of the incident and scattered photons \cite{41, 60, 65}, and $\sigma_0 = 3\lambda^2 / (2\tau (1 + 4 \Delta^2 / \Gamma^2)]$, with λ being the wavelength of the driving laser.

To simulate the polarization-dependent scattering events as dictated by Eq. (16), it is convenient to use the Stokes-Mueller formalism \cite{66}. A photon in a given state of polarization can be described by a Stokes vector \cite{67}

$$\mathbf{S} = \begin{pmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{pmatrix} = \begin{pmatrix} |E_1|^2 + |E_r|^2 \\ |E_1|^2 - |E_r|^2 \\ E_1 E_r + E_r E_1^* \\ i(E_1 E_r^* - E_r E_1) \end{pmatrix}, \tag{17}$$

where E_1, E_r are the electric field components projected onto the two orthogonal axes \hat{e}_1 and \hat{e}_r in the plane perpendicular to the wave vector \mathbf{k}. For example, $\mathbf{S} = (1, 1, 0, 0)$ represents a photon linearly polarized along the reference axis \hat{e}_1. A scattering event $\mathbf{k}_{\text{in}}, \mathbf{e}_{\text{in}} \rightarrow \mathbf{k}_{\text{out}}, \mathbf{e}_{\text{out}}$ can be determined by two angles: θ and ϕ (see Fig. 7). The change of polarization can be obtained from the transformation $\mathbf{S}' = M(\theta) \mathbf{S} \mathbf{R}(\phi)$, where \mathbf{S}^in is the incident Stokes vector, \mathbf{S}' is defined with respect to the axes \hat{e}_1', \hat{e}_r', and then $\mathbf{S}^\text{out} = \mathbf{R}(\psi) \mathbf{S}'$, transforming back to the original frame \hat{e}_1, \hat{e}_r, and \hat{e}_3 \cite{68}, with \mathbf{S}^out being the scattered Stokes vectors. The scattering matrix that we use, M, is the scattering matrix that describes Rayleigh scattering \cite{60, 66}. It is given by

$$M(\theta) = \frac{3}{4} \begin{pmatrix} \cos^2\theta + 1 & \cos^2\theta - 1 & 0 & 0 \\ \cos^2\theta - 1 & \cos^2\theta + 1 & 0 & 0 \\ 0 & 0 & 2\cos\theta & 0 \\ 0 & 0 & 0 & 2\cos\theta \end{pmatrix}. \tag{18}$$

FIG. 6. CD model: effect of laser polarization. (a) Intensity distribution in the plane perpendicular to the laser propagation direction, i.e., $\theta = \pi/2$ for all ϕ's (inset shows the geometry). $\phi = 0$ is the z direction. Here, the incident laser is polarized along z. The intensity detected along the laser polarization is suppressed compared to other directions. (b) and (c) show the line shape and linewidth of light detected at $\theta = \pi/2$, $\phi = 0$. (b) At small OD, the FWHM linewidth is below the natural linewidth. (c) As OD increases, the linewidth is collectively broadened due to multiple-scattering processes [Fig. 3(a)]. For all panels, degeneracy in excited levels has been assumed.

FWHM, $\Gamma_{\text{FWHM}} = \sqrt{2 - 11} \Gamma < \Gamma$, is smaller than the one for independent particles. The analytic result agrees perfectly with the numerical simulation at low OD [Fig. 6(b)]. As the OD increases and interactions become stronger, higher-order scattering contributions lead to a collective broadening (linewidth larger than Γ) even along this “single-dipole-forbidden” direction, as shown in Fig. 6(c).

III. RANDOM-WALK MODEL

FIG. 7. RW: transformation of Stokes vectors. In the random-walk model, a scattering event is determined by two consecutive transformations of local coordinates: $[\mathbf{e}_1, \mathbf{e}_r, \mathbf{e}_3] \rightarrow [\mathbf{e}_r', \mathbf{e}_r, \mathbf{e}_3']$ via rotation ϕ and $[\mathbf{e}_r', \mathbf{e}_r, \mathbf{e}_3'] \rightarrow [\mathbf{e}_r', \mathbf{e}_r', \mathbf{e}_3'']$ via rotation θ \cite{68}.
value of OD [see Fig. 8(b)] and displays a polarization
dependence similar to the prediction of CD. Under this
classical treatment more scattering processes are expected
to occur with increasing τ_p, and those processes tend to
inhibit the transmission of light. As the scattering becomes
more frequent, forward scattering decreases, and more light is
scattered backwards [44]. Since τ_p is maximum at resonance,
$\Delta = 0$, the linewidth develops a “double-peak” profile as the
medium becomes denser [Fig. 8(c)]. Before the distortion
in line shape develops, the FWHM linewidth also linearly
increases with τ_p. We note that a similar double-peak structure
also appears in the coherent dipole model. However, there, it
only happens at specific small angles [see Fig. 3(c)] and never
happens along the forward direction, where the stimulated
photon emission dominates, or the transverse direction, where
the photons scattered via dipolar exchange dominate. We
attribute the appearance of the double-peak structure to the
interplay between these two types of emissions. In summary,
despite the fact that the RW model does not include coherent
emission mechanisms, it is able to reproduce the collective
broadening observed with increasing optical depth and the
subnatural linewidth present in the direction parallel to the laser
polarization at relatively small optical depths. The RW model,
on the other hand, ignores coherent elastic dipolar interactions
and thus does not predict a density shift.

IV. ROLE OF ATOMIC MOTION

An assumption made in Sec. II is that the position of the
atoms remains fixed. This assumption is valid only when atoms
move at a rate slower than the radiative decay rate. When
motion is significantly faster, e.g., hot atomic clouds, the coher-
ence during radiation is smeared out, and classical approaches,
such as the RW model, are usually satisfactory [40,42] to de-
scribe collective light emission. However, many experiments
operate in an intermediate regime where coherences cannot be
completely disregarded, and it is not a good approximation to treat
atoms as frozen. For example, for the 8Sr atoms, the Doppler broadening at $\sim 1\mu K$, $\Delta_0 \approx 61^\circ$, and recoil frequency $\omega_R = \hbar k_0^2/2m \approx 0.61^\circ$, both comparable
to the natural linewidth [69,70]. Consequently, for a proper
description of light scattering one needs to account for both photon coherences and atomic motion on an equal footing.
Below we present two approximate ways to accomplish this.

A. Modified frozen dipole model

In this section, we discuss a simple way to include the effects of atomic motion on light scattering via a modified CD
model. For a single atom, to leading order, a major modification
from motion in the emitted light intensity is the Doppler shift, a
velocity-dependent modification of the effective laser detuning
experienced by an atom (see Appendix C). We include this
effect in the many-body system by introducing random detunings for each atom, i.e., $\Delta \to \Delta + \delta\nu$, and by sampling
them according to a Maxwell-Boltzmann distribution
$P(\delta\nu) = \frac{1}{\sqrt{2\pi \Delta_0}} \exp(-\frac{\delta\nu^2}{2\Delta_0})$ that accounts for the Doppler shifts [22].
Here, $\Delta_0 = \Delta_D/\sqrt{8\ln 2}$. We denote this approximation as the
modified frozen dipole model. The random detunings modify
atomic coherences as (for simplicity we assume a single beam
The motion-induced suppression of multiscattering Effectively, it brings the system closer to the small-OD regime and, as a consequence, promotes collective enhancement. It competes with dephasing since it suppresses multiple scattering, which keeps increasing until a larger value of density in the presence of motion.

B. Semiclassical approach

Laser-light-mediated forces on atoms are a fundamental concept in atomic physics and lay the foundations of laser trapping and cooling. They can be accounted for at the semiclassical level by explicitly including the position \(\mathbf{r} \) and the momentum \(\mathbf{p} \), degrees of freedom of the atoms and solving for their dynamics while feeding those back into the quantum dynamics of the internal degrees of freedom. An explicit description of this procedure is presented below.

For simplicity, we will assume a two-level transition. This condition is achievable in experiments, for example, by applying a large magnetic field to split apart \(|\Delta^a - \Delta'| \gg \Gamma\) the excited-state levels and thus energetically suppressing the population of the ones not directly driven by the laser. For driving the atoms, we will consider the case of two counterpropagating lasers with wave vector \(\pm k_0 \), propagating along \(x \), and Rabi frequency \(\Omega \). The internal atomic variables evolve according to (see Appendix A)

\[
\frac{db_j}{dt} = i\Omega \cos(k_0 \cdot \mathbf{r}_j) s_j - \frac{2}{\pi} \gamma + i \Delta b_j
\]

\[
\frac{ds_j}{dt} = 2i\Omega \cos(k_0 \cdot \mathbf{r}_j)(b_j - \text{H.c.}) - \Gamma s_j - 2i \sum_{l \neq j} (g_{jl} b_l^* b_j + 2i \sum_{l \neq j} (g_{jl} + i f_{jl})b_l^* b_j),
\]

where \(\Delta = \Delta^a \) and the last terms describe the effect of dipole-dipole interactions \(g(r) \) and \(f(r) \) (see Appendix A). In general the position of atoms can also change with time as

\[
\frac{d\mathbf{r}_j}{dt} = \frac{\mathbf{p}_j}{m},
\]

so the response to the local driving field and dipole-dipole interactions in Eqs. (24) and (25) change accordingly. The momentum changes due to not only the force exerted by the driving laser but also the long-range forces \(\mathbf{g}_{jl} = -\frac{\nabla g_{jl}}{\Gamma} \) and \(f_{jl} = -\nabla f_{jl} \), which originate from the dispersive and dissipative dipole-dipole interactions, respectively (see Appendix A), and depend on the instantaneous atomic coherences and positions:

\[
\frac{d\mathbf{p}_j}{dt} = -2\hbar k_0 \Omega \sin(k_0 \cdot \mathbf{r}_j) \text{Re}(b_j(t)) + \sum_{l \neq j} [g_{jl}(b_j b_l^* + \text{H.c.}) - i f_{jl}(b_j b_l^* - \text{H.c.})].
\]

The atomic coherence and external motion are now coupled together, so Eqs. (24)–(27) need to be solved simultaneously to obtain the dynamics. In deriving Eq. (27), we have ignored the role of momentum diffusion (see Appendix A). We have verified in our numerical simulations that it can be safely ignored for the parameters of interest presented in this work.
motion leads to a fast suppression of the frequency shift. Only when $\Delta_D \ll \Gamma$ can the frequency be increased by motion, and this is the regime where the modified frozen dipole model is qualitatively valid; recall that it predicts always an increase of density shift with Doppler broadening. We note that at $\Delta_D \to 0$ the frequency shift obtained using the modified frozen dipole model is slightly smaller than that obtained from the semiclassical approach. This is a consequence of the distortion caused by laser cooling or heating, which additionally shifts the spectral line. For $\Delta_D \gtrsim \Gamma$ motion needs to be properly accounted for, and the modified frozen dipole model is not reliable.

V. CONCLUSION

We theoretically studied the propagation of light through a cold atomic medium. We presented two different microscopic models, the coherent dipole model and the random-walk model, and analyzed how the light polarization, optical depth, and density affect the linewidth broadening, intensity, and line-center shift of the emitted light. We showed that the random-walk model, which neglects photonic phase coherence, can fairly capture the collective broadening (narrowing) of the emission linewidth but, on the other hand, does not predict a density shift. Due to the limitation of computation capacity, the numerical simulation of CD is usually restricted to $\sim 10^4$ atoms, which is much smaller than that in some cold-atom experiments [9,62]. Nevertheless, the understanding of the underlying physics allowed us to perform an appropriate rescaling in the cloud size which we used to compare with experiments [53]. We further developed generalized models that explicitly take into account motional effects. We showed that atomic motion can lead to drastic dephasing and reduction in the collective effects, together with a distortion in the line shape. While the modified frozen dipole model predicts a monotonic increase of the density shift with increasing motion, the semiclassical model, which properly accounts for recoil effects, predicts that this behavior holds only at slow motion $\Delta_D \ll \Gamma$. Instead, as atoms move faster, motional effects start to become dominant, the cloud expands, and the frequency shift decreases. None of the presented theoretical models, however, can explain the large density shift measured in the $^1S_0 \to ^3P_1$ transition of ^{88}Sr atoms [69]. It will be intriguing to determine what the actual physical processes are that cause this large shift.

ACKNOWLEDGMENTS

The authors wish to acknowledge useful discussions with the JILA Ye group, A. Gorrškov, J. Javanainen, M. Havey, M. Holland, M. L. Wall, J. D’Incao, M. Davis, and J. Schachenmayer. We would like to especially thank R. Kaiser for helpful discussions and insightful comments. This work was supported by the NSF (Grants No. PHY-1211914, No. PHY-1521080, and No. PFC-PHY-1125844), AFOSR (Grant No. FA9550-13-1-0086), AFOSR MURI ADVANCED QUANTUM MATERIALS, and ARO (Grant No. W911NF-12-1-0228). Computations utilized the Janus supercomputer, supported by the National Science Foundation (Award No. CNS-0821794) and the University of Colorado Boulder.
APPENDIX A: LONG-RANGE DIPOLE-DIPOLE INTERACTION, FORCE, AND DIFFUSION

Here, we derive the form of dipole-dipole interactions and the corresponding forces for two-level moving atoms, with \(\omega_k = \omega_{0k} \) being the frequency of transition and \(\mathbf{d} \) being the dipole moment. We include motion in the dipolar coupling after eliminating the electromagnetic vacuum modes. The Hamiltonian, including the atoms and free-space electromagnetic field,

\[
H = \hbar \omega_k \sum_{j} \hat{b}_j^\dagger \hat{b}_j + \sum_{k, \epsilon} \omega_k \hat{a}_k^\dagger \hat{a}_k - \sum_j \sum_{k, \epsilon} g_{k, \epsilon} \epsilon \cdot \mathbf{e}_k \langle \epsilon | e^{i \mathbf{r}_j \cdot \mathbf{a}_k} (\hat{b}_j + \hat{H}.c.c.) \rangle.
\]

The atomic dipoles and field modes evolve according to

\[
\frac{d \hat{a}_k}{dt} = -i \omega_k \hat{a}_k + \frac{i}{\hbar} \sum_j g_{k, \epsilon} \langle \epsilon | e^{-i \mathbf{r}_j \cdot \mathbf{a}_k} (\hat{b}_j + \hat{H}.c.c.) \rangle,
\]

\[
\frac{d \hat{b}_j}{dt} = -i \omega_0 \hat{b}_j + i \sum_{k, \epsilon} g_{k, \epsilon} \langle \epsilon | e^{i \mathbf{r}_j \cdot \mathbf{a}_k} \hat{a}_k \hat{\mathbf{b}}_j + \hat{H}.c.c. \rangle,
\]

\[
\frac{d \hat{\mathbf{s}}_j}{dt} = -i \sum_{k, \epsilon} \frac{g_{k, \epsilon}}{\hbar} \langle \epsilon | e^{i \mathbf{r}_j \cdot \mathbf{a}_k} \hat{a}_k \hat{b}_j + e^{-i \mathbf{r}_j \cdot \mathbf{a}_k} \hat{a}_k \hat{b}_j - e^{-i \mathbf{r}_j \cdot \mathbf{a}_k} \hat{a}_k \hat{b}_j + e^{i \mathbf{r}_j \cdot \mathbf{a}_k} \hat{a}_k \hat{b}_j \rangle,
\]

where \(\hat{\mathbf{s}}_j = \hat{\mathbf{b}}_j \hat{\mathbf{b}}_j^\dagger - \hat{\mathbf{b}}_j^\dagger \hat{\mathbf{b}}_j \) and \(\hat{\mathbf{s}}_j = (\hat{\mathbf{s}}_j) \) gives the inversion of the \(j \)th atom. We have assumed that internal operators commute with external operators and neglected the diffusion of the atomic wave packet. Equation (A2) can be formally integrated to obtain

\[
\hat{a}_{k\epsilon}(t) = \hat{a}_{k\epsilon}(0) - i \sum_j \sum_{k, \epsilon} \frac{g_{k, \epsilon}^2}{\hbar} \langle \epsilon | e^{i \mathbf{r}_j \cdot \mathbf{a}_k} \hat{b}_j \rangle \int dt' e^{i \mathbf{r}_j \cdot \mathbf{a}_k} (t' - t)
\]

\[
\times (\hat{b}_j + \hat{H}.c.c.).
\]

Assuming the external motion is much slower than the internal dynamics relevant inside the integral, so that \(\mathbf{r}_j(t') \approx \mathbf{r}_j(t) \), and the interaction between atoms and the field modes is weak so that \(\hat{b}_j(t') \approx \hat{b}_j(t) e^{-i \omega_0 (t' - t)} \), and substituting Eq. (A5) into Eq. (A3), we obtain the equation for the quantum averaged quantities:

\[
\frac{d \hat{b}_j}{dt} = -i \omega_0 \hat{b}_j + \hat{\mathbf{s}}_j + i \sum_{k, \epsilon} \frac{g_{k, \epsilon}^2}{\hbar^2} \langle \epsilon | e^{i \mathbf{r}_j \cdot \mathbf{a}_k} \hat{b}_j \rangle \int dt' e^{i \mathbf{r}_j \cdot \mathbf{a}_k} (t' - t)
\]

\[
\times \left[e^{i \mathbf{r}_j \cdot \mathbf{b}/\hbar} \left(\pi \delta(\omega_k + \omega_0) - i P_{\omega_k + \omega_0} \hbar \right) \right.
\]

\[
+ \hat{b}_j \left(\pi \delta(\omega_k - \omega_0) - i P_{\omega_k - \omega_0} \hbar \right)
\]

\[
+ e^{-i \mathbf{r}_j \cdot \mathbf{b}/\hbar} \left(\pi \delta(\omega_k + \omega_0) + i P_{\omega_k + \omega_0} \hbar \right)
\]

\[
+ \hat{b}_j \left(\pi \delta(\omega_k - \omega_0) + i P_{\omega_k - \omega_0} \hbar \right)
\].

where we have utilized the fact that \(\langle \hat{a}_{k\epsilon}(0) \rangle = 0 \) and assumed that atomic motion is classical [73,74]. Changing \(\sum_k = \frac{\gamma}{(2\pi)^3} \int d\Omega dkk^2 \) and applying a rotating-wave approximation, we have

\[
\frac{d \hat{b}_j}{dt} = -i \omega_0 \hat{b}_j + i \sum_{l \neq j} \hat{\mathbf{s}}_l \hat{b}_l (g_{lj} - i f_{lj}) - \frac{\Gamma}{2} \hat{b}_j,
\]

(A7)

with \(f(0) = \Gamma \), and

\[
g(r) = -\frac{3\Gamma}{4} \left[z_1(\theta) \cos \theta \frac{\cos \theta}{k_0 r^3} + z_2(\theta) \left(\frac{\cos \theta}{k_0 r^3} + \frac{\sin \theta}{k_0 r^2} \right) \right],
\]

(A8)

\[
f(r) = \frac{3\Gamma}{4} \left[z_1(\theta) \sin \theta \frac{\sin \theta}{k_0 r^3} + z_2(\theta) \left(\frac{\sin \theta}{k_0 r^3} - \frac{\cos \theta}{k_0 r^2} \right) \right],
\]

(A9)

where \(z_1(\theta) = \sin^2 \theta \) and \(z_2(\theta) = (3 \cos^2 \theta - 1) \). These expressions can also be obtained from Eqs. (5)–(9) by keeping only a single \(\alpha \) component. We further assume that multiaxial correlations can be factorized, \(\langle \hat{\mathbf{s}}_j \hat{\mathbf{b}}_l \rangle \approx \langle \hat{\mathbf{s}}_j \rangle \langle \hat{\mathbf{b}}_l \rangle \), so that the atomic coherence evolves as

\[
\frac{d \hat{b}_j}{dt} = -i \omega_0 \hat{b}_j + i \sum_{l \neq j} \hat{\mathbf{s}}_l (g_{lj} - i f_{lj}) - \frac{\Gamma}{2} \hat{b}_j,
\]

(A10)

where \(\hat{\mathcal{O}} = \langle \hat{\mathcal{O}} \rangle \) for any atomic operator \(\hat{\mathcal{O}} \). It is coupled to \(\hat{\mathcal{S}}_j \), the equation of which can be derived in a similar way and is given by

\[
\frac{d \hat{\mathcal{S}}_j}{dt} = -\Gamma \hat{\mathcal{S}}_j - 2i \sum_{l \neq j} \langle \hat{\mathcal{S}}_l \hat{\mathcal{S}}_j - i f_{lj} \rangle \hat{b}_l^\dagger \hat{b}_j
\]

\[
+ 2i \sum_{l \neq j} \langle \hat{\mathcal{S}}_l \hat{\mathcal{S}}_j + i f_{lj} \rangle \hat{b}_l \hat{b}_j^\dagger.
\]

(A11)

If we consider very low external driving field and \(\hat{\mathcal{S}}_j \approx -1 \), Eq. (A10) is decoupled from \(\hat{\mathcal{S}}_j \) and can be reduced to the form of Eq. (10). For the momentum,

\[
\frac{d \hat{\mathbf{p}}_j}{dt} = -\nabla \hat{H}
\]

\[
= -\sum_{k, \epsilon} g_{k, \epsilon} (\mathbf{k} e^{i \mathbf{r}_j \cdot \mathbf{a}_k} \hat{b}_j + i \mathbf{ke}^{-i \mathbf{r}_j \cdot \mathbf{a}_k} \hat{a}_k \hat{b}_j)
\]

\[
+ i \mathbf{ke}^{i \mathbf{r}_j \cdot \mathbf{a}_k} \hat{b}_j - i \mathbf{ke}^{-i \mathbf{r}_j \cdot \mathbf{a}_k} \hat{b}_j^\dagger \hat{b}_j).
\]

(A12)

After substituting Eq. (A5), taking the quantum average, and performing an integration procedure similar to that above, we obtain

\[
\frac{d \hat{\mathbf{p}}_j}{dt} = \sum_{l \neq j} \langle \mathbf{g}_{lj} (\hat{b}_l \hat{b}_j + \text{H.c.}) - i f_{lj} (\hat{b}_l \hat{b}_j^\dagger + \text{H.c.}) \rangle,
\]

(A13)

with \(\mathbf{g}_{lj} = -\nabla g_{lj} \) and \(f_{lj} = -\nabla f_{lj} \). As the dispersive force \(g_{lj} \) is a steep function of \(\mathbf{r}_{lj} \), it dominates at short distances, and atoms are drastically accelerated or decelerated. Both the dispersive and dissipative forces are anisotropic and couple motion along different directions.

Due to the presence of spontaneous emission and radiative interactions, the atomic momentum also diffuses over time, which can be described by including classical noise \(d\xi_{\gamma}^j(\hat{\mathbf{b}}) \) in the
The equation of motion for p^α_x. The components of these noises are correlated and are characterized by the diffusion matrix

$$E \left[d\xi^\alpha_x(t) d\xi^\beta_y(t') \right] = \delta_{\alpha,\beta} \frac{2 - \delta_{\alpha,\beta} \hbar^2 k_0^2 \Gamma(s_i + 1) \delta(t - t')}{10},$$

(A14)

$$E \left[d\xi^\alpha_x(t) d\xi^\beta_y(t') \right] = -2\hbar^2 k_0^2 \nabla_a \nabla_b f(r_{ij}) \text{Re}(b_i^* b_j) \delta(t - t'),$$

(A15)

where $E[\cdot]$ denotes the expectation value.

The momentum diffusion matrix can be found from

$$\mathcal{D}_f = \frac{d\langle \hat{p}_j \rangle}{dt} - \langle \hat{p}_j \rangle \frac{d\langle \hat{p}_j \rangle}{dt} - \langle \hat{p}_j \rangle \frac{d\langle \hat{p}_j \rangle}{dt}$$

$$= \sum_{\mathbf{k}, r_1, r_2} g_{\mathbf{k}, r_1} \langle \mathbf{d} \cdot \mathbf{e} \rangle \langle \mathbf{d} \cdot \mathbf{e} \rangle (i\mathbf{k}_1 e^{i\mathbf{r}_1 \cdot \mathbf{R}_\mathbf{k}_1} \hat{b}_j)
- i\mathbf{k}_1 e^{i\mathbf{r}_1 \cdot \mathbf{R}_\mathbf{k}_1} \hat{b}_j
+ i\mathbf{k}_1 e^{i\mathbf{r}_1 \cdot \mathbf{R}_\mathbf{k}_1} \hat{b}_j
- i\mathbf{k}_1 e^{i\mathbf{r}_1 \cdot \mathbf{R}_\mathbf{k}_1} \hat{b}_j
\times \langle \mathbf{d} \cdot \mathbf{e} \rangle \langle \mathbf{d} \cdot \mathbf{e} \rangle (i\mathbf{k}_2 e^{i\mathbf{r}_2 \cdot \mathbf{R}_\mathbf{k}_2} \hat{b}_j)
+ i\mathbf{k}_2 e^{i\mathbf{r}_2 \cdot \mathbf{R}_\mathbf{k}_2} \hat{b}_j
- i\mathbf{k}_2 e^{i\mathbf{r}_2 \cdot \mathbf{R}_\mathbf{k}_2} \hat{b}_j
$$

(A16)

$$= -2\hbar^2 k_0^2 \nabla \cdot \nabla f_{ij} \text{Re}(b_i^* b_j).$$

(A17)

In dense clouds momentum diffusion from radiative interactions can give rise at long times to significant heating. This heating was reported to be one of the main limiting mechanisms in laser cooling [74,75]. At short times, $\Gamma \sim 1$, with low densities and weak probes, $\Omega < \Gamma$, the momentum diffusion is not prominent, and since this is the regime we are interested in this work, we ignore momentum diffusion in our calculations presented in the main text.

APPENDIX B: OPTICAL DEPTH OF A CLOUD WITH GAUSSIAN DISTRIBUTION

We consider an atomic cloud with a Gaussian distribution $n(x, y, z) = n_0 e^{-\frac{(x-x_c)^2}{2\sigma_x^2} - \frac{(y-y_c)^2}{2\sigma_y^2} - \frac{(z-z_c)^2}{2\sigma_z^2}}$, where n_0 satisfies $\int dxdydz n(x, y, z) = N$ and N is the total number of atoms. Along the line of observation, e.g., \hat{z}, the on-resonance optical depth is related to the resonant scattering cross section, which for the $J = 0 \rightarrow J' = 1$ transition is $\sigma_{xc} = \sigma_0(\Delta = 0) = \frac{\sigma_0}{\pi^2}$, and the column density averaged over the profile perpendicular to this direction [19,47],

$$\tau = \left[\int dydz n(x, y, z) \right]^{-1} \int dydz n(x, y, z) \tau(y, z)$$

$$= \left[\int dydz n(x, y, z) \right]^{-1} \int dydz n(x, y, z) \int dx n(x, y, z) \sigma_{xc}$$

$$= \left[\int dydz n(x, y, z) \right]^{-1} \int dydz n(x, y, z) e^{-\frac{(y-y_c)^2}{2\sigma_y^2} - \frac{(z-z_c)^2}{2\sigma_z^2}}$$

$$\times \int dx n_0 e^{-\frac{(x-x_c)^2}{2\sigma_x^2} \sigma_{xc}}$$

(A18)

With laser detuning Δ, the optical depth is $\tau/(1 + 4\Delta^2/\Gamma^2)$.

APPENDIX C: EFFECT OF MOTION ON SINGLE-ATOM FLUORESCENCE

Here, we derive the fluorescence intensity emitted by a weakly driven atom, using a full quantum approach with the motional effect included. We consider the states including at most one excitation, and label the relevant quantum states by $|\mathbf{p}_x, 0 \rangle$, $|\mathbf{p}_x, k_\alpha \rangle$, with $\alpha = [e, g]$, \mathbf{p} being the momentum of the atom, and $k(\epsilon)$ being the momentum (polarization) of the photon in vacuum ($|\mathbf{p}_x, 0 \rangle$ stands for no photon). For generality we assume here that two counterpropagating lasers are used to drive the atoms, carrying momenta \mathbf{k}_0 and $-\mathbf{k}_0$, respectively. The Hamiltonian is [76]

$$\hat{H} = \hat{P}_x^2 \frac{2m}{\hbar^2} + \hbar \mathbf{a}_0 \hat{b}^\dagger \hat{b} + \hbar \Omega [\cos(|\mathbf{k}_0 \cdot \mathbf{r}|) e^{-i\omega_0 t} \hat{b}^\dagger + \text{H.c.}]
+ \sum_{\mathbf{k}, \epsilon} \hbar \omega_0 \hat{a}_{\mathbf{k}, \epsilon}^\dagger \hat{a}_{\mathbf{k}, \epsilon} - \hbar \sum_{\mathbf{k}, \epsilon} (\mathbf{d} \cdot \hat{e}_\mathbf{k}) \mathbf{g}_{\mathbf{k}} e^{i\mathbf{k} \cdot \mathbf{R}_\mathbf{k} \hat{b}^\dagger + \text{H.c.}}.$$ (C1)

The state vector of the system is

$$|\psi\rangle = \sum_\alpha \int d\mathbf{p} |\mathbf{p}_x, 0 \rangle A_{\mathbf{p}_x}(\mathbf{p}, t) e^{-i(E_a + E_p)t/\hbar}
+ \sum_{\mathbf{k}, \epsilon} \int d\mathbf{p} |\mathbf{p}_x, k_\alpha \rangle B_{\mathbf{k}_\alpha}(\mathbf{p}, t) e^{-i(E_a + E_p + \hbar \omega_0)t/\hbar},$$ (C2)

where $E_a = \omega_0 \sigma_{xc}$, $E_p = \frac{\hbar^2}{2m}$, $|A_{\mathbf{p}_x}(\mathbf{p}, t)|^2$ represents the population in the state α possessing momentum \mathbf{p}, and $B_{\mathbf{k}_\alpha}(\mathbf{p}, t)$ is the amplitude of having a photon \mathbf{k} with polarization ϵ. The state of the system evolves according to

$$i \frac{dA_{\mathbf{p}_x}(\mathbf{p}, t)}{dt} = \Omega A_{\mathbf{p}_x}(\mathbf{p} + k, t) e^{i(\omega_0 - \omega_0) t} e^{-iE_{\mathbf{p} + \mathbf{k}}t/\hbar}
+ \Omega A_{\mathbf{p}_x}(\mathbf{p} - k, t) e^{i(\omega_0 - \omega_0) t} e^{-iE_{\mathbf{p} - \mathbf{k}}t/\hbar},$$ (C3)

$$i \frac{dA_{\mathbf{k}_\alpha}(\mathbf{p}, t)}{dt} = \sum_{k, \epsilon} (\mathbf{d} \cdot \hat{e}_\mathbf{k}) \mathbf{g}_{\mathbf{k}} B_{\mathbf{k}_\alpha}(\mathbf{p} - k, t)
\times e^{i(\omega_0 - \omega_0) t} e^{-iE_{\mathbf{p} + \mathbf{k}}t/\hbar}
+ \Omega A_{\mathbf{p}_x}(\mathbf{p} + k, t) e^{i(\omega_0 - \omega_0) t} e^{-iE_{\mathbf{p} + \mathbf{k}}t/\hbar}
+ \Omega A_{\mathbf{p}_x}(\mathbf{p} + k, t) e^{i(\omega_0 - \omega_0) t} e^{-iE_{\mathbf{p} + \mathbf{k}}t/\hbar},$$ (C4)
The steady-state solution is
\[i \frac{d A_{\phi}(\mathbf{p}, t)}{dt} = B_{\phi \mathbf{e}}(\mathbf{p}, t) - (\mathbf{d} \cdot \mathbf{e}) A_{\phi}(\mathbf{p} + \mathbf{k}, t) \]
\[= \varepsilon (\omega_{\phi} - \omega_{\phi_{0}}) \delta \left(\frac{\mathbf{p} \cdot \mathbf{k}}{m} \right) e^{-i E_{\phi \mathbf{e}} \mathbf{k} \cdot \mathbf{r} / \hbar} , \]
where \(E_{\phi_{1}, \phi_{2}} = \frac{p_{r}^{2}}{2m} \). The first term in Eq. (C4) describes the effect of vacuum photons, which, according to the Wigner-Weisskopf approach, leads to the spontaneous decay with rate \(\Gamma \) and can be rewritten as \[i \frac{d A_{\phi}(0, t)}{dt} = \frac{\Gamma}{2} A_{\phi}(t) + \frac{\Omega^{2}}{2} \left(1 - |\alpha_{L}|^{2} \right) A_{\phi}(t) , \]
with \(\Gamma = \omega_{r} - \omega_{a} \). Thus, the atomic excitation \(A_{\phi} = \int d\mathbf{p}|A_{\phi}(\mathbf{p}, \infty)|^{2} \) indicates two Lorentzians with FWHM equal to \(\Gamma \) and centered at \(\omega_{\phi} = \frac{k_{\phi} \mathbf{p}_{\phi}}{m} \). The photon emission rate along a given direction \(\mathbf{k} \) is
\[I_{\mathbf{k}} = \frac{V_{\phi}}{(2\pi)^{3}} \int d\mathbf{k} d^{3}k \int_{-\infty}^{\infty} \frac{1}{t} \int_{t}^{\infty} d\tau \frac{|B_{\phi \mathbf{e}}(\mathbf{p}, t)|^{2}}{t} , \]
with \(\mathbf{k} = \kappa \mathbf{k} \). We consider the transverse intensity case, where \(\mathbf{k} \cdot \mathbf{k}_{0} = 0 \), and for atomic transitions \(\omega_{\phi}, \mathbf{p}_{\phi}, \mathbf{k}_{0}/m \ll \omega_{L} \); then
\[I_{\mathbf{k}} \approx \frac{\omega_{\phi}^{4}}{c^{3}} \frac{d^{2} \Omega}{8 \pi^{2} \varepsilon_{0}} \left[\frac{1}{(\Delta - \omega_{r} + \frac{k_{\phi} \mathbf{p}_{\phi}}{m})^{2} + \frac{c^{2}}{4}} \right] \]
\[+ \frac{1}{(\Delta - \omega_{r} - \frac{k_{\phi} \mathbf{p}_{\phi}}{m})^{2} + \frac{c^{2}}{4}} \]
(9)
The emitted light intensity exhibits the same profile as the atomic excitation \(A_{\phi} \).

As indicated by the above expression, motion modifies the emitted light intensity by adding two natural corrections: a Doppler shift \(\propto \frac{k_{\phi} \mathbf{p}_{\phi}}{m} \), modifying the effective laser detuning, and a velocity-independent recoil shift \(\omega_{r} \), which physically accounts for the fact that to compensate for the energy imparted to the atom via photon recoil, the incident laser needs to have a higher frequency to be resonant with the atomic transition.

