FRONTIERS ARTICLE

Broadband velocity modulation spectroscopy of HfF+: Towards a measurement of the electron electric dipole moment

Kevin C. Cossel a,⇑, Daniel N. Gresh a, Laura C. Sinclair a,1, Tyler Coffey a, Leonid V. Skripnikov b,c, Alexander N. Petrov b,c, Nikolai S. Mosyagin b, Anatoly V. Titov b, Robert W. Field d, Edmund R. Meyer a,2, Eric A. Cornell a, Jun Ye a

a JILA, National Institute of Standards and Technology and University of Colorado, Boulder CO 80309, USA
b Petersburg Nuclear Physics Institute, Gatchina, Leningrad District 188300, Russia
b Petersburg Nuclear Physics Institute, Gatchina, Leningrad District 188300, Russia
b Quantum Mechanics Division, St. Petersburg State University, St. Petersburg 198904, Russia
c Department of Chemistry, MIT, Cambridge, MA 02139, USA

A R T I C L E I N F O

Article history:
Received 31 May 2012
In final form 19 June 2012
Available online 28 June 2012

A B S T R A C T

Precision spectroscopy of trapped HfF+ will be used to search for the permanent electric dipole moment of the electron (eEDM). Prior to this study, spectroscopic information necessary for state preparation, readout, and analysis of systematic errors was not available. We have developed a powerful technique for broadband, high-resolution survey spectroscopy of molecular ions that combines cavity-enhanced direct frequency-comb spectroscopy with velocity-modulation spectroscopy (vms) and used this to measure four bands in HfF+ over a 1000 cm−1 bandwidth near 800 nm. Additionally, we performed targeted scans with cw-laser vms to find 15 additional bands from 9950 to 14600 cm−1. We present a detailed analysis of these bands to obtain high-precision rovibrational constants, A-doublings, and isotope splittings for eight electronic states. We also use our results to improve theoretical predictions and discuss implications of our measurements to the eEDM experiments. These results demonstrate the application of frequency-comb and cw-vms for broadband, high-resolution spectroscopy of molecular ions.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The existence of a permanent electric dipole moment of an electron (eEDM) would have profound implications for fundamental physics since it violates parity and time reversal symmetries [1–3]. The current experimental limit of about 1 × 10−27 e cm [4,5] is many orders of magnitude larger than the predicted eEDM from the standard model [6], but extensions to the standard model (such as supersymmetry) predict a dipole moment on the order of 10−29–10−28 e cm [6]. This means that measurement of the eEDM provides a rigorous test of extensions to the standard model without having to disentangle new results from standard model predictions. HfF+ and the related ThF+ have been suggested as candidate species in such a measurement using trapped molecular ions [7–10]. The low-lying, metastable 3Δ1 states in HfF+ and ThF+ have high sensitivity to the eEDM due to the large effective electric field sensed by one of the unpaired electrons when the molecule is polarized in low laboratory electric fields. As initially shown by DeMille et al. for PbO, the level structure of Ω = 1 states provides valuable checks to reduce systematic errors [11]. Furthermore, the use of molecular ions makes trapping straightforward, thus enabling measurements with long coherence times.

The general approach for the eEDM experiment with HfF+ or ThF+ will be to perform a Ramsey-type spectroscopy measurement of the energy separation of two |mF| = 3/2 magnetic sublevels of the 3Δ1, J = 1 level (see Figure 1). In applied magnetic and electric fields these sublevels are split both by the Zeeman effect and by the interaction of the dipole moment of the electron (assumed to be parallel to the electron spin) with the internal electric field of the ion. The magnitude of this shift is given by 2dₑΔmF (using the convention of [9] instead of that in [10]), where dₑ is the eEDM to be measured and ΔmF is the effective internal electric field experienced by the electron (about 24 GeV/cm [9]). HfF+ will initially be formed and trapped in the X3Σ− state; then optical (and possibly microwave) transitions will be used to create a coherent superposition in the two desired mF sublevels of the 3Δ1 state. After a free-evolution period a readout pulse will be applied to measure the accumulated phase difference between the two sublevels, which is proportional to the energy difference between the sublevels. A detailed analysis of the proposed experiment can be found in [10]. For this scheme, optical transitions from the metastable 1Δ1 state will most likely be required for state-selective readout via

⇑ Corresponding author.
E-mail address: kevin.cossel@colorado.edu (K.C. Cossel).
1 Current address: National Institute of Standards and Technology, 325 Broadway, Boulder, CO, USA.
2 Current address: Department of Physics, Kansas State University, Manhattan, KS 66506, USA.
laser induced fluorescence or resonant multiphoton photodissociation (states b or c in Figure 1, respectively); in addition, transitions coupling the $^3\Sigma^+$ state with some excited state (state a in Figure 1) will be necessary for state preparation in the $^3\Delta_1$ state.

Prior to this Letter, very little spectroscopic information was available for either HfF$^+$ or ThF$^+$. The energies of the low-lying $^3\Delta_1$, $^3\Delta_2$, and $^1\Delta_2$ states were recently measured using pulsed-field ionization zero kinetic energy (PFI-ZEKE) spectroscopy [12,13]. Additionally, several isoelectronic species including TiO [14–16], TiF$^+$ and TiCl$^+$ [17,18] have been studied. Importantly though, there are no fully characterized optical transitions in either HfF$^+$ or ThF$^+$ at wavelengths below 1 µm (above 10^3 cm$^{-1}$) where laser-induced fluorescence detection is possible. Due to the large number of electrons involved, quantum calculations are challenging; current high-level calculations have errors of perhaps 1000 cm$^{-1}$ [9,19].

The combined lack of experimental data and large theoretical uncertainties necessitated precision spectroscopy over a very broad spectral range. To achieve this, we recently developed frequency-comb velocity-modulation spectroscopy (comb-vms), which provides simultaneously broad bandwidth, high resolution, high sensitivity, and ion specificity [20]. We were able to measure 1000 cm$^{-1}$ of continuous spectra around 12000 cm$^{-1}$ using comb-vms and observed four bands of HfF$^+$. This information, combined with PFI-ZEKE data and theoretical predictions, was then used to guide specifically targeted scans based on single-frequency (cw-laser) velocity-modulation spectroscopy, which resulted in 15 additional bands with origins ranging from 9590 to 14600 cm$^{-1}$. We obtained precise molecular constants for the $^1\Sigma^+$, $^3\Delta_1$, $^3\Pi_0^+$, $^3\Pi_1^+$, $^1\Pi_1$, $^3\Sigma^+_g$, and $^3\Phi_2$ states, many of which will be of use for the eEDM experiment. We were also able to measure the electronic contributions to isotope splittings. In this value is important for determining the necessary applied electric field to fully polarize HfF$^+$ as well as for estimating other systematic effects in the final eEDM experiment. Finally, the large amount of data enabled refinements in the ab initio calculations; we briefly discuss the modifications and compare the new theory with the measurements. This may help to improve the accuracy of other calculations involving high-Z atoms.

Outside of the eEDM experiment, precision spectroscopy of molecular ions is useful in a wide range of fields including fundamental physics, chemistry, and astrophysics. In astrochemistry for example, at least 22 ions (both positive and negative) ranging in complexity from H$_2^+$ to H$_2$COH$^+$ and C$_4^+$ have been identified in interstellar and circumstellar gases [21]. Many of these ions are highly reactive and are believed to be intermediates in a variety of reactions; nonetheless, some rate constants and branching ratios are still not well known [22]. For example, the pathway for formation of a very simple molecular ion, CH$_2^+$, remains elusive [23]. Searches for new species, including efforts to identify the origin of the diffuse interstellar bands [24,25], benefit from laboratory measurements of optical transitions as well as measurements of rotational constants to aid microwave spectroscopy [26–28]. On the physical chemistry side, precision spectroscopy of H$_2^+$ above the barrier to linearity (near 9913 cm$^{-1}$) provides rigorous tests for ab initio theory [29–31]. Many other carbonocations are interesting for both their presence as intermediates in reactions such as combustion as well as the challenges they present to theory; for example, the spectrum of CH$_3^+$, a highly non-classical carbonocation, still remains unassigned due to both its complexity and spectral interference from other contaminant species [32–34]. A combination of comb-vms with a recently developed ion-beam spectrometer capable of sensitive, sub-Doppler vms of rotationally cold species [(35)] could enable mass-selective spectroscopy of ions over a broad bandwidth with many potential applications.

2. Experiments

2.1. Comb-vms

Comb-vms combines cavity-enhanced direct frequency comb spectroscopy [37–39] with velocity-modulation spectroscopy [40–43] for discrimination between ions and neutral species. This technique could also be readily extended to the detection of radicals by concentration modulation. By resolving every comb mode of a femtosecond Ti:sapphire laser (3 GHz mode spacing) simultaneously over a wide spectral bandwidth, we have high resolution and absolute frequency accuracy with over 1500 channels measured at once. Figure 2 provides an overview of the experimental setup, more details can be found in [20]. Briefly, we couple light from the comb into a ring cavity containing an ac discharge cell, which forms the HfF$^+$ and modulates the ions’ drift velocity. The resulting modulated Doppler shift produces an absorption signal that is modulated at the discharge frequency. The comb light transmitted through the cavity is then spectrally dispersed using a high-resolution (1 GHz), two-dimensional cross-dispersion system [39,44], which resolves every comb mode. We then image this onto...
images for each direction of propagation and also record the power per comb tooth by applying a calibrated amplitude modulation to the laser. In order to fully sample the spectrum, we interleave 30 measurements with the cw laser stepped over 3 GHz. This results in a spectrum that covers 150 cm$^{-1}$ sampled every 100 MHz (0.003 cm$^{-1}$) with an absolute frequency accuracy of 30 MHz (0.001 cm$^{-1}$, set by a rubidium D2 line referenced wavemeter). When the wavemeter was not calibrated for a particular measurement, we set the uncertainty at 100 MHz. For strong bands with fully resolved isotope structure, absolute accuracy of the determination of the band origin is limited predominantly not by statistical errors but by the absolute knowledge of the cw Ti:sapphire laser frequency we use as a reference. For our purposes we were satisfied with the 30–100 MHz (0.001–0.003 cm$^{-1}$) absolute accuracy of the wavemeter. This could be readily improved if needed. For analysis purposes we then interpolate the spectrum onto a fixed 0.001 cm$^{-1}$ grid. This allows us to easily average or combine a collection of different scans. One full scan takes about 30 min and results in a single-pass fractional absorption sensitivity of 3 \times 10$^{-7}$.

Since one scan contains 45 000 channels, this equates to a sensitivity of 4 \times 10$^{-8}$ Hz$^{-1/2}$ (spectral element) $^{-1/2}$, which is the sensitivity that a single-frequency laser system would need, in addition to being able to scan 150 cm$^{-1}$ continuously, to match the performance of the comb-vms system. We recorded spectra over 1000 cm$^{-1}$ with both the oven on and off to check for contamination.

2.2. Single-frequency vms

The information obtained from the comb scans, combined with theory predictions, allowed us to scan other bands using single-frequency velocity-modulation spectroscopy as sketched in Figure 3. For these measurements we removed the enhancement cavity and counter-propogated beams from the cw Ti:sapphire laser through the discharge tube. We then subtract these two beams...
using an auto-balanced photodetector [36]. Due to noise from the discharge, we reached a sensitivity of about \(5 \times 10^{-8} \text{ Hz}^{1/2}\) with 2 mW on the detector; this noise was found to be related to optical pickup from the discharge emission, which was reduced using irises, and to non-common-mode amplitude noise from acoustical pickup. Using this technique we were able to find 15 more bands ranging from 9950 to 14600 cm\(^{-1}\) (1050 – 685 nm) without having to scan the full spectral range. We can continuously scan about 0.5 cm\(^{-1}\) in 4 min, which is at least 30 times slower than the comb-vms system.

2.3. Coherent subtraction

We have also investigated a novel technique for differential detection that relies on coherent interference between the two counter-propagating laser beams instead of subtraction of photocurrents as discussed previously. This is accomplished by coherently splitting and recombining the two beams using one non-polarizing beamsplitter to form a Sagnac-type interferometer containing the discharge cell and cavity if desired (blue inset to Figure 4). The signal is then detected at the destructive interference, or ‘dark port’, of the interferometer. In the regime where laser intensity noise dominates, the signal-to-noise using coherent subtraction increases as the splitting ratio approaches 50:50 between the two beams until detector readout noise or shot noise dominates. Physically, the fractional signal is increasing while the fractional noise level remains constant and the dc power decreases. We have tested coherent subtraction versus a single direction of propagation using a photodiode and single-channel lock-in detector with our cw laser and demonstrate a factor of 10 gain in the signal-to-noise (blue data in Figure 4), which is the predicted improvement with the 52/48 beamsplitter that was used.

Coherent subtraction, unlike subtraction of photocurrents, is sensitive to phase as well as amplitude of the light field; thus, the resulting lineshape is dependent on both absorption (approximately first-derivative shaped) and dispersion (approximately second-derivative) and can vary if there are differential phase shifts between the two directions. We performed a simple simulation, shown as dashed lines in Figure 4, that reproduces the lineshape modification. These simulations were done by applying a cosine modulation in time to the center frequency for both the absorption (assumed Gaussian lineshape) and dispersion terms (obtained via Kramers–Kronig) and then selecting the appropriate frequency term from the Fourier cosine transformation. Repeating this at a variety of simulated laser frequencies generates the lineshape. The amplitude and linewidth of the single-direction simulation was scaled to the measured value and these values were used for the coherent-subtraction simulation. The constant phase offset (most likely due to the beamsplitter) added to the coherent subtraction simulation was chosen to fit the measured lineshape (about \(\pi/20\) radians). In addition to the phase sensitivity, which could be useful for some applications, coherent subtraction has several other advantages. First, the dark port can be used to reduce the optical power seen by the detector thus avoiding saturation while still maintaining a shot-noise limited signal-to-noise ratio. Second, the subtraction is performed prior to the detector and is wavelength independent. This means that coherent subtraction can be used with comb-vms or other dispersive detection systems for increased signal-to-noise. We did not implement coherent subtraction with the comb-vms system here because we were close to camera-noise limited, thus the gains would not have been very significant.

3. Results and discussion

Figure 5a shows the spectrum of HfF\(^+\) acquired using the comb-vms system in blue (offset for clarity) as well as all data obtained with single-frequency vms in red. As illustrated in the zoomed region shown in the lower panel of Figure 5b, the spectrum from about 12 100–12 300 cm\(^{-1}\) is extremely congested due to the presence of many bands, each with five isotopes, and the high temperature of our oven, which results in observed \(J^v\) values up to about 70. The dynamic range of frequency-comb velocity-modulation spectroscopy is demonstrated by our ability to identify the overlapping \(1\Pi_1 \rightarrow 1\Sigma^+ (\nu' = 0, \nu'' = 1)\) and \(1\Pi_1 \rightarrow 1\Sigma^+ (3, 1)\) bands despite the difference in linestrengths and an offset in band origin of only \(\sim 1\) cm\(^{-1}\). Since 150 cm\(^{-1}\) sections are acquired simultaneously when using the comb, relative linestrengths within the region are not influenced by variability in oven and discharge conditions, which significantly helps to disentangle bands. The upper panel of Figure 5b shows predicted line positions from fits to three different bands (the fitting is discussed below), which illustrates our ability to resolve each isotope \((-o, 180\text{Hf}^+, -x, 179\text{Hf}^+, -s, 178\text{Hf}^+, +, 177\text{Hf}^+, -... 176\text{Hf}^+)\) for multiple bands. Figure 5b also demonstrates excellent overlap between the comb and cw spectra.

Since we were fitting a variety of different transitions with various combinations of Hund’s cases, we chose to fit each band with the general expression given in Eq. (1)

\[
v(\nu', \nu''; J^v, J^s, s') = v_0 + F_v (J^v, s') - F_v (J^s, s')
\]

where the rotational energies, \(F_v\) are

\[
F_v (J, s) = \left(B_v - \frac{k_v}{2} \right) J (J + 1) - \left(D_v - \frac{k_D v}{2} \right) J^2 (J + 1)^2.
\]

We include rotation (\(B\)), centrifugal distortion (\(D\)), \(\Lambda\)-doubling (\(k\)), and distortion of the \(\Lambda\)-doubling (\(k_D\)) for each vibrational level. \(\nu; s\) is an \(e/f\)-symmetry term where \(s = +1\) for e-symmetry and \(-1\) for f-symmetry. \(k\) and \(k_D\) are generic constants for the \(\Lambda\)-doubling since we have fit states with several different values of \(\Lambda\) and \(\Omega\). In \(\Sigma^+\) states, only one symmetry term is chosen and \(k\) and \(k_D\) are both set to 0. \(v_0\) includes both the electronic and vibrational energies.

Figure 4. Comparison of coherent subtraction and single direction measurements. The signal to noise for coherent subtraction (using a 52/48 beam splitter) surpasses that of single direction measurements by a factor of 10 when the noise is primarily technical light intensity noise. Both measurements of a single N\(_2\) line were made with the cw laser. The dashed lines are a calculation of the expected lineshape (see text). The modification in the lineshape for the coherent subtraction is due to a stray differential phase shift of approximately \(\pi/20\) between the two counter-propagating beams, which results in a sensitivity to both absorption and dispersion.
\[v_0 = T_x - T_e + E_{\text{vib}}, \]
\[E_{\text{vib}} \approx (\omega_{\nu}^2(v' + 1/2) - \omega_{\nu}X_{\nu}(v' + 1/2)^2) - \omega_{\nu}X_{\nu}(v'' + 1/2)^2. \]

Here \(T_x \) is defined as the energy difference between the minimum of the potential curve from the minimum of the \(^1\Sigma^+\) curve and \(\omega_{\nu} \) and \(\omega_{\nu}X_{\nu} \) are the usual vibrational constant and anharmonic correction, respectively.

Due to the congested nature of the spectra, fits were performed to a manually identified list of isolated lines (position only) for each band and for isotope in bands with well resolved isotope structure. Figure 6b shows the residuals from a representative fit: root-mean-square values for the residuals were typically < 0.005 cm\(^{-1}\) with no apparent structure. For most \(\Delta\nu = 0 \) transitions the fits were performed to estimated isotope averaged line centers and then the rotational constants were shifted by reduced mass to the \(^{180}\text{Hf}\) values. The \(^3\Phi_2 - \frac{1}{2}\Delta_1\) bands exhibited line doubling at high-J due to \(\Lambda \)-doubling (discussed in detail below), for these bands the center of the doublet was used for the fits.

Similarly, the \(^1\Pi_1 - \frac{1}{2}\Delta_1\) (0, 0) band exhibited doubling of every transition (i.e., 6 branches) due to large \(\Lambda \)-doubling in the \(^1\Pi_1\);
for this band all six branches were fit simultaneously by assuming the splitting of each transition was \(k' \times j'(j' + 1) \). A summary of the fitted constants for each band is given in Table 1.

Assignments of the observed bands were not particularly straightforward, partially because the presence or absence of low-\(j \) lines usually could not be determined due to the high temperature and complicating isotope structure. In fact, only for the \(^1\Pi_u \rightarrow ^1\Sigma^+ \) (0, 0) band near 13000 cm\(^{-1} \) were we able to directly establish that \(\Omega^1 = 1 \) and \(\Omega^2 = 0 \) since we observed an \(R \) (0) line but no \(P \) (1) line. We also measured several bands with no \(Q \)-branch, which were assigned as \(^3\Pi_u \rightarrow ^3\Sigma^+ \) and \(^3\Sigma_u^+ \rightarrow ^1\Sigma^+ \). This information, combined with data from [12], isotope shifts, and \(\lambda \)-doubling structure provided the assignments in Table 1. Due to possible ambiguities, several bands are still unassigned as indicated.

From the fitted constants for the 16 assigned bands, we can determine constants for the \(^1\Sigma^+, ^3\Lambda_i, ^1\Pi_u, ^3\Pi_u, ^1\Pi_i, ^3\Pi_i, ^3\Sigma_u, \) and \(^3\Phi \) states as given in Table 2. \(T_0 \) and \(\Delta G_{1/2} \) are directly obtained from the measurements: \(T_0 \) is defined as the energy of the \(\nu = 0 \) level of an excited state relative to the \(\chi X^2 \Sigma^+ \nu = 0 \) level, and \(\Delta G_{1/2} \) is the energy difference between the \(\nu = 0 \) and \(\nu = 1 \) levels. All other (equilibrium) constants are extracted from the data. The rotational constant for a given vibrational level is given in first order in \(\nu = 0 \) bands as \(B_0 = B_0^e - \omega_e (\nu + 1/2) \), where \(B_0^e \) is the equilibrium rotational constant. Since we have measured at least two vibrational levels for each state, we can determine \(z_0 \approx B_0 - B_n, \) and then use this to obtain \(B_n \) for each state. \(T_n, \omega_n, \) and \(\omega_n \chi_n \) are determined using Eqs. (3) and (4). For the \(^3\Pi_u \) state, we were able to calculate \(\omega_e \) and \(\omega_e \chi_e \) directly; for all other states we assumed a Morse potential so that \(\omega_n \chi_n = \sigma^2 \omega_e^2 \beta^2/36 \beta^2 \chi_e \beta, n = 0 \), \(\omega_e, \) and \(\chi_e \) the (i.e., the Pekeris relationship).

In addition, we have observed isotope shifts of the state origins, called \(\delta \chi_0 \) in Table 2, that we attribute to \(^3\Pi \) electronic isotope

Table 1

\(^1\Pi_u \rightarrow ^1\Sigma^+ (0, 1) \)	12217.369(2)	0.30335(2)	0.28115(3)	1.88(8)	1.81(8)	–	3.69(2)	9.7(7)
\(^1\Pi_u \rightarrow ^1\Sigma^+ (1, 2) \)	12136.012(3)	0.30180(5)	0.27973(5)	1.80(14)	1.74(14)	–	2.68(4)	7.4(1.3)
\(^3\Pi_u \rightarrow ^3\Sigma^+ (0, 0) \)	13002.189(12)	0.30474(20)	0.28104(20)	1.2(2)	1.2(2)	–	3.55(4)	0
\(^3\Pi_u \rightarrow ^3\Sigma^+ (2, 0) \)	12304.400(3)	0.30481(5)	0.28096(5)	1.78(12)	1.78(12)	–	–	–
\(^3\Pi_u \rightarrow ^3\Sigma^+ (3, 1) \)	12216.901(10)	0.30335(5)	0.27958(20)	1.8(3)	1.8(3)	–	–	–
\(^3\Pi_u \rightarrow ^3\Sigma^+ (0, 1) \)	10105.877(6)	0.30333(5)	0.28382(6)	1.9(5)	1.9(5)	–	–	–
\(^3\Pi_u \rightarrow ^3\Sigma^+ (0, 0) \)	10401.723(13)	0.30500(10)	0.28437(11)	2.3(12)	2.2(12)	–	–	–
\(^3\Pi_u \rightarrow ^3\Sigma^+ (1, 0) \)	11114.653(7)	0.30482(4)	0.28281(4)	1.71(14)	1.72(13)	–	–	–
\(^3\Sigma_u^+ \rightarrow ^3\Sigma^+ (0, 0) \)	13254.302(7)	0.30478(10)	0.28967(9)	1.7(5)	1.9(5)	–	–	–
\(^3\Sigma_u^+ \rightarrow ^3\Sigma^+ (1, 0) \)	13953.799(6)	0.30483(5)	0.28808(4)	1.78(12)	1.98(13)	–	–	–
\(^3\Phi \rightarrow ^3\Lambda_0 (0, 0) \)	13933.340(12)	0.29900(10)	0.27720(10)	2.2(3)	2.1(3)	–	–	–
\(^3\Phi \rightarrow ^3\Lambda_1 (0, 1) \)	14613.782(7)	0.29888(5)	0.27590(5)	1.7(15)	1.59(15)	–	–	–
\(^3\Phi \rightarrow ^3\Lambda_2 (2, 1) \)	14534.839(12)	0.29745(8)	0.27488(6)	1.7(4)	1.6(4)	–	–	–
\(^3\Phi \rightarrow ^3\Lambda_3 (1, 0) \)	10137.728(7)	0.29878(5)	0.28277(5)	1.70(20)	1.68(20)	–0.14(2)	–	–
\(^3\Phi \rightarrow ^3\Lambda_1 (1, 0) \)	9948.624(6)	0.29891(2)	0.28272(2)	1.85(5)	1.81(4)	0.123(6)	–	–
\(^3\Pi_u \rightarrow ^3\Sigma^+ (0, 0) \)	10852.757(13)	0.29915(9)	0.28102(9)	1.7(4)	1.7(4)	0	3.5(3)	0

Notes

1. \(^1\Pi_u \rightarrow ^1\Sigma^+ (3, 1) \) values assigned using a manual fit to multiple isopes due to challenges of determining the line centers of the weaker lines in the dense spectrum.
2. Individual isopes were not fully resolved, thus the fit was done to averaged line positions. We report isope correct values with the error due to the uncertainty in the isotope shifts.
3. Value fixed to the fitted value from \(^1\Pi_u \rightarrow ^1\Sigma^+ (0, 1) \) transition.
4. \(^3\Phi \rightarrow ^3\Lambda _0 \) transitions exhibited line-doubling at high \(j' \), but the doublets were not resolved well enough to accurately determine \(k' \).
5. Each transition was a doublet with a splitting given by \(k' \times j' \) due to \(\lambda \)-doubling in \(^3\Pi_u \).
shifts (due to the finite nuclear charge radius) [48–50]. We define the isotope shift between 180Hf$^+$ and 178Hf$^+$ for a given spectral line as

$$
\delta E = E^{180} - E^{178} \quad \left(1 - \left(1 - \mu_{180}/\mu_{178}\right) E_{rot}\right) + \left(1 - \left(1 - \mu_{180}/\mu_{178}\right) E_{vib} \right),
$$

(5)

Here μ_{180} and μ_{178} are the reduced masses, E_{rot} is the rotational energy in 180Hf$^+$ (i.e., offset from the band origin), and E_{vib} is the vibrational energy in 180Hf$^+$. For bands with well resolved isotope structure (i.e., $\Delta \sigma \neq 0$), $\delta \sigma_T = \sigma_{T_1} - \sigma_{T_2}$ was determined either by fitting both v_{180} and v_{178} or by measuring δE near the origin and then subtracting the vibrational contribution. For $\Delta \sigma = 0$ bands, we found the frequency where the lines were the sharpest, indicating that $\delta E = 0$ (as illustrated by the Q- and P-band lines in Figure 5(4); this location relative to the band origin is used for E_{rot} in Eq. (5), which then gave $\delta T_2 - \sigma_{T_2}$. Values of $|\delta T_2|$ were ±0.1 cm$^{-1}$ for all transitions. To obtain the δT_2 values given in Table 2, we set $\delta T_2(X^1 \Sigma^-) = 0$ and calculated relative shifts of the other states. The simplistic model of Eq. (5) neglects vibrational-band-specific perturbations or other more complicated level-dependent effects; however, results were consistent across different transitions, which supports the assignment of the effect to electronic states, not individual bands. Except for the X$^1 \Sigma^+$ state the isotope shifts are all fairly similar with an average value of about −0.057 cm$^{-1}$ (−1.7 GHz), which agrees well with the value for the Hf$^+$ 5d66s$^2 \rightarrow 5d^56d^6p$ of −1.8 GHz [50].

Due to our ability to see high J lines, we were able to measure precise values for the A-doubling, parametrized by k_0 and k_6 in Eq. (2), in several different electronic levels. In Hund’s case (a) k can be related to the more standard A-doubling parameters defined in [51] for Π states (a, p, and q) and to δ_0 as defined in [52] for $^1 \Lambda$ states; k was not measurable in Φ states. The values of k and k_0 were useful in assigning many transitions and also provided some insight into inter-state interactions. For the eEDM measurement, the most important A-doubling parameter is the splitting of the J = 1 levels in the $^1 \Lambda$ states, as this goes into determining several different potential systematic effects. In a case (a) $^1 \Lambda_1$ state, the A-doubling is expected to be given by $\pm |\delta_0| \times J(J + 1)$, where the upper and lower signs refer to the two e/f-symmetry levels [52]. We can make a rough estimate the value of δ_0 by a simple scaling from that measured in TiO or WC [53]:

$$
\delta_0 \approx \left(\frac{\gamma(Hf^+)}{\gamma(TiO)} \right) \left(\frac{B(Hf^+)}{B(TiO)} \right) \times \delta_0(WC/TiO).
$$

(6)

This scaling relationship arises because the δ_0 term results from the application of two spin–orbit operators (which scale as the atomic spin–orbit, ζ) and two L-uncoupling operators, which scale as the rotational constant B [52,53]; however, it neglects changes in state order and spacing. Using this, with ζ obtained from [54], we predict $\delta_0 \approx 50$ kHz. The A-doubling in the $^1 \Lambda_2$ can be observed at high-J in the $^3 \Pi_2 \rightarrow ^3 \Lambda_1$ (0, 0) band by comparing neighboring P-, Q-, and R-branch lines, as shown in Figure 5(d). Since the R-branch lines have the highest J, there is noticeable doubling in these lines compared to the P- or Q-branch lines, which indicates that this doubling is not due to isotope splitting. In this band, the lines are not sufficiently well resolved to permit an accurate determination of the A-doubling constant, but by fitting the $^3 \Pi_2 \rightarrow ^3 \Lambda_1$ (1, 0) transition, we were able to precisely determine the sign and size of the A-doubling. As shown in Figure 6, the best fit was obtained with $k' < 0$, implying that the A-doubling goes mainly as $J(J + 1)$ as expected (adding k_0 to the fit with k' resulted in no improvement). This fit gives a value of $k' = -1.23(6) \times 10^{-5}$ cm$^{-1}$, which gives $\delta_0 = k'/2 = 6.23(3) \times 10^{-5}$ cm$^{-1} = 185(9)$ kHz. The precision on δ_0 is only about an order of magnitude worse than that obtained for TiO using pure rotational spectroscopy [15], illustrating the ability to obtain high-resolution spectroscopic information from broad-bandwidth ro-vibrionic spectra.

A-doubling in the $^3 \Pi_2$ can arise from interactions with both $^1 \Sigma^+$ and $^1 \Sigma^-$ states, which result in a splitting of the $\Omega = 0$ and $^1 \Omega$ levels that is independent of J. We measured this splitting to be 189.099(4) cm$^{-1}$ with the 0$^+$(e-symmetry) higher in energy than 0$^-$ (f). To the extent that the $X^1 \Sigma^+$ state is a pure (s\sigma)2 configuration, we can assume that this splitting is from a higher-lying $^3 \Sigma$ state with an (s\sigma^+_d) configuration. The spin–orbit interaction between the $^3 \Sigma^+$ (f) and the $^3 \Pi_2$ can be estimated by

$$
\left(\frac{\langle \sigma_1 | \text{p(J)} | \sigma_2 \rangle}{\Delta \Omega^2} \right)^2 \approx \frac{\gamma^2(5d)}{\Delta \Omega^2}.
$$

(7)

We have used $\langle \pi(\text{J}) | \sigma \rangle^2 \sigma_2(\text{J}) \approx \sqrt{6}$ in the pure-precession model [51,55]. Using the measured splitting and the atomic spin–orbit coefficient, we estimate $\Delta \Omega = 11000$ cm$^{-1}$, which gives an approximate location of the $^3 \Sigma^+$ state to be 21 200 cm$^{-1}$. This is close to the predicted position of 21 694 cm$^{-1}$ from the new calculations (see Section 4). In a Hund’s case (a) basis, this splitting corresponds to the more familiar $2(e + p + q)$ [51].

The cause of the A-doubling in the $^3 \Pi_1$ state is primarily interaction with the $^3 \Sigma^+$ state through the $^3 \Pi_0$. This type of interaction is characterized by the parameter p in [51]. With e-symmetry above f in $^3 \Pi_0$ and $^3 \Pi_2$ located below $^3 \Pi_1$, we would expect e above f in $^3 \Pi_1$, which corresponds to a negative value of k as
observed. The magnitude of \(k \) is expected to be about 4 8 \(\text{B}/\text{A} \), where \(A \) is the spin–orbit parameter for the \(^1 \Pi \) manifold and

\[
p \approx \frac{C^{\text{IB}} \text{I}|B\ell|^2 |\Sigma_0^+\rangle \langle \Sigma_0^+| |\text{I} \cdot \mathbf{S}|^2 |\Pi_0\rangle/(E_{\Pi_1} - E_{\Xi})}{C^{\text{IB}}(5\delta |\ell|^2 |\sigma_2|^2/(E_{\Pi_1} - E_{\Xi})},
\]

Here, \(C \) is a numerical factor dependent on the spin [51]. Again using the pure–prescription model, we estimate \(k \approx 8 \times 10^{-4} \text{ cm}^{-1} \), in reasonable agreement with experiment.

We attribute most of the A-doubling in the \(^1 \Pi_1 \) to interaction with the nearly-degenerate nominal \(^1 \Sigma^+ \) state. It is reasonable that the \(^1 \Pi \) and \(^1 \Sigma^+ \) are not pure \((\text{sad} \pi)\) and \((\text{do})^2 \) configurations, which would lead to increased spin–orbit interaction between \(^1 \Pi_1 \) and \(^1 \Sigma^+ \). Estimating the magnitude of the A-doubling in this case is difficult due to uncertainty in the purity of the configurations. Qualitatively though, we would expect the effect of a \(^1 \Sigma^+ \) state above the \(^1 \Pi_1 \) state would be to push \(e\)-symmetry below \(f \) as observed. In addition we observed A-doubling that was strongly vibrational-level dependent (3.69 \(\times 10^{-4} \text{ cm}^{-1} \) for the \(v = 0 \) compared with 2.68 \(\times 10^{-4} \text{ cm}^{-1} \) for the \(v = 1 \)), which is indicative of nearly-degenerate interacting states. We also measured a A-doubling term proportional to \(J^3 \) (denoted \(k_{\text{01}} \)). This term can be explained by substituting \(\Delta E \rightarrow \Delta E + (\mathbf{B}_1 - \mathbf{B}_2)[J(J + 1)] \) in the A-doubling denominator; the first two terms in the Taylor expansion give the \(J(J + 1) \) and the \(J^3(J + 1)^2 \) components. From this we can estimate that \(k_{\text{01}} \approx 3k(\mathbf{B}_1 - \mathbf{B}_2)/(E_{\Pi_1} - E_{\Xi}) \), which gives \(k_{\text{01}} \approx 2 \times 10^{-4} \text{ cm}^{-1} \).

4. Theory

In earlier theoretical study of HFF+ [19], the correlation calculations of the spectroscopic constants were performed in two different ways: in the first series 10 electrons from 5d, 6s shells of Hf and 2s, 2p of F were correlated while in the second series 5s, 5p outer core electrons of Hf and 1s of F were also correlated. The rest of the 1s–4d inner-core electrons of Hf were excluded from the explicit treatment using the generalized relativistic effective core potential (GRECP)\(^3\) method [72]. While it was shown that the inclusion of the additional electrons in the 20-electrons case contributed significantly to the excitation energies, such 20-electron calculations were carried out in order to consider electronic states that were not investigated in [19], as well as to overcome the bottlenecks of the present Letter a new 20-electron relativistic correlation calculation was carried out in order to consider electronic states that were not investigated in [19] as well as to overcome the bottlenecks of the previous studies of HFF\(^+\). Eventually 23 electronic states (with excitation energies up to 22,000 \text{ cm}^{-1} \) were considered in the present Letter instead of ten states in [19].

Some modifications were made in the computational procedure to achieve better accuracy. We used a direct multi-reference configuration-interaction approach accounting for spin–orbit effects (SODCI) [56,57] as a method to treat both correlation and relativistic effects simultaneously. One-component basis functions (orbitals) are required in this method to construct many-electron wavefunctions. Instead of the orbitals obtained within the complete active space self-consistent field method (used in [19]), the natural orbitals of a one-electron density matrix averaged over the density matrices of the states of interest were used. The latter density matrices were calculated within the scalar-relativistic coupled-clusters method with single and double cluster amplitudes (CCSD) using the cfour code [58]. From numerical investigation [59] it is known that the use of natural orbitals can provide faster convergence in terms of the number of SAF’s required to account for a given part of correlation energy.

In the SODCI calculation the same atomic basis sets for Hf and F were used as in our previous study [19], i.e., a generally-contracted basis set for Hf consisting of 6 s-, 5 p-, 5 d-, 3 f- and 1 g-type contracted functions (denoted as (6,5,5,3,1)) and an ANO-L (4,3,2,1) basis set for F ([60]). However, a correction on the extension of the basis set was applied additionally in the present Letter. To evaluate the correction, two scalar-relativistic calculations were performed using the coupled clusters method with single, double and perturbative triple cluster amplitudes: (i) in the same basis set that was used at the SODCI stage, and (ii) with an extended basis set for Hf (produced by uncontracting d- and adding g-, h-, i-type basis functions) and an ANO-L (7,7,4,3) ([60]) basis set for F.

To compute potential curves the described calculations were performed at 14 points in the range of 3.0–4.2 \text{ a.u.}. As shown in Table 3, the new calculations are in remarkable agreement with all of the experimental results. These improvements should enable more accurate calculations in other species with heavy atoms, where relativistic effects are extremely important.

5. Outlook and conclusions

As shown in Figure 1 and discussed in the introduction, several different optical transitions may be necessary for the eEDM experiment. We have measured suitable candidates for all of these: (a) \(\Lambda \) can be accomplished using the \(^1 \Pi_1 \) intermediate, (b) could use the \(^3 \Phi_2 \) level, and (c) could use one of the \(^1 \Pi_1 \) levels or the \(^3 \Phi_2 \) level. Another important value for the eEDM measurements is the size of the A-doubling in the \(^3 \Delta_1 \) \(J = 1 \) level; it is the opposite parity levels in this state that are mixed in an electric field to polarize the molecule. The necessary electric field for full polarization, \(\delta_{\text{pol}} \), is approximately where the Stark energy is larger than the energy difference between the two parity states: thus \(\delta_{\text{pol}} \approx \omega_{\text{eff}}/2\Delta_{\text{dag}} \) [7], where \(\omega_{\text{eff}} \) is the A-doubling splitting (in angular frequency) and \(\Delta_{\text{dag}} \) is the molecular-frame electric dipole moment of the molecule (4.3 Debye for HFF\(^+\) [10]). We can use our measurement of \(\delta_{\text{01}} \) to estimate that \(\omega_{\text{eff}} \approx 2\pi \times 40 \approx 2\pi \times 740 \text{ kHz} \), which is at least an order magnitude larger than previously predicted [10]. Nonetheless, this means that \(\delta_{\text{pol}} \) is still under 1 V/cm, which is important for the eEDM experiment as larger fields tend to lead to more issues with systematic errors. As can be seen in Figure 7, numerical results for \(^3 \Delta_1 \) \(J = 1 \) hyperfine levels confirm that at 1 V/cm the splitting in the \(|m_f = 3/2| \) levels due to eEDM related Stark shift is almost saturated at 2 \(\delta_{\text{pol}} \). This saturation occurs as the molecule becomes fully polarized. These results were obtained as described in [61].

We can also use the improved theory calculations to better estimate the radiative lifetime, another important consideration for the eEDM experiment. Using the measured energy separation and calculated dipole moments, we estimate the lifetime of \(^3 \Delta_1 \) \(v = 0 \) to be about 2 s [19]. This is encouraging, as it sets the ultimate limit on the coherence time achievable in the experiment. The high precision that we obtain for rotational constants should enable microwave spectroscopy with minimal searching, which will then be able to resolve the fine and hyperfine structure in the \(^3 \Delta_1 \) level. These measurements are important for estimating systematics and for checking the accuracy of the calculated effective electric field that the electron experiences (\(\delta_{\text{int}} \)). We predict that the \(^1 \Sigma^+ (v=0) \) \(J = 1 \) transition in HFF\(^+\) will be at 18,290(2) GHz and the \(^3 \Delta_1 (v = 0) \) \(J = 2 \) transition dipole will be at centered at 35.869(2) GHz. To get these frequencies, we used the best measurements of \(B_\ell \) and \(\omega_{\text{eff}} \) from Table 3 to calculate \(D_\ell = 4B_\ell/\omega_{\text{eff}}^2 \), then used the measured \(B_\ell \) and calculated \(D_\ell \) to determine the microwave frequencies.

\(^3\) 60-electron core GRECP for Hf is available at www.qchem.pnnl.sphb.ru.
Summary of states. Comparison of derived molecular constants from this Letter and from the experiments of Barker et al. [12] with the old theoretical calculations of Petrov et al. [19] and the improved theory discussed here. The theoretical values of B_u from [19] were computed from the equilibrium bond length. Experimental uncertainties are converted to 95% (2σ).

<table>
<thead>
<tr>
<th>State</th>
<th>Constant</th>
<th>This work</th>
<th>[12]</th>
<th>[19]</th>
<th>New theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^1\Sigma_v^+$</td>
<td>T_e</td>
<td>991.83(74)</td>
<td>993(2)</td>
<td>1599</td>
<td>1229</td>
</tr>
<tr>
<td></td>
<td>B_0^*</td>
<td>0.29963(5)</td>
<td>0.300(10)</td>
<td>0.2994</td>
<td>0.301</td>
</tr>
<tr>
<td></td>
<td>ω_x</td>
<td>760.9(1.5)</td>
<td>761.2(2.0)</td>
<td>718</td>
<td>754</td>
</tr>
<tr>
<td>$^3\Delta_1$</td>
<td>T_e</td>
<td>2149.432(16)a</td>
<td>2151.7(20)a</td>
<td>2807</td>
<td>2394</td>
</tr>
<tr>
<td></td>
<td>B_u</td>
<td>0.29915(9)b</td>
<td>0.300(10)</td>
<td>0.2997</td>
<td>0.302</td>
</tr>
<tr>
<td></td>
<td>ω_x</td>
<td>–</td>
<td>762.3(2.0)</td>
<td>719</td>
<td>766</td>
</tr>
<tr>
<td>$^3\Delta_3$</td>
<td>T_e</td>
<td>–</td>
<td>3951(2)</td>
<td>4324</td>
<td>3995</td>
</tr>
<tr>
<td></td>
<td>B_u</td>
<td>–</td>
<td>0.30(10)</td>
<td>0.3004</td>
<td>0.301</td>
</tr>
<tr>
<td></td>
<td>ω_x</td>
<td>–</td>
<td>761.5(2.0)a</td>
<td>721</td>
<td>757</td>
</tr>
<tr>
<td>$^1\Lambda_1$</td>
<td>T_e</td>
<td>–</td>
<td>–</td>
<td>11519</td>
<td>10610</td>
</tr>
<tr>
<td></td>
<td>B_u</td>
<td>–</td>
<td>–</td>
<td>0.2981</td>
<td>0.298</td>
</tr>
<tr>
<td></td>
<td>ω_x</td>
<td>–</td>
<td>696</td>
<td>747</td>
<td></td>
</tr>
<tr>
<td>$^3\Pi_v^*$</td>
<td>T_e</td>
<td>10248.34(36)</td>
<td>–</td>
<td>11910</td>
<td>10400</td>
</tr>
<tr>
<td></td>
<td>B_u</td>
<td>0.28517(17)</td>
<td>–</td>
<td>0.2848</td>
<td>0.286</td>
</tr>
<tr>
<td></td>
<td>ω_x</td>
<td>–</td>
<td>–</td>
<td>689</td>
<td>716</td>
</tr>
<tr>
<td>$^3\Pi_u^*$</td>
<td>T_e</td>
<td>10437.44(36)</td>
<td>–</td>
<td>12196</td>
<td>10658</td>
</tr>
<tr>
<td></td>
<td>B_u</td>
<td>0.28518(13)</td>
<td>–</td>
<td>0.2854</td>
<td>0.285</td>
</tr>
<tr>
<td></td>
<td>ω_x</td>
<td>719.5(7)</td>
<td>–</td>
<td>699</td>
<td>724</td>
</tr>
<tr>
<td>$^1\Pi_1$</td>
<td>T_e</td>
<td>10933.77(3)</td>
<td>–</td>
<td>12686</td>
<td>11058</td>
</tr>
<tr>
<td></td>
<td>B_u</td>
<td>0.28454(8)</td>
<td>–</td>
<td>0.2835</td>
<td>0.285</td>
</tr>
<tr>
<td></td>
<td>ω_x</td>
<td>712.382(17)</td>
<td>–</td>
<td>687</td>
<td>712</td>
</tr>
<tr>
<td>$^1\Pi^*$</td>
<td>T_e</td>
<td>–</td>
<td>–</td>
<td>14438</td>
<td>13452</td>
</tr>
<tr>
<td></td>
<td>B_u</td>
<td>–</td>
<td>–</td>
<td>0.2848</td>
<td>0.287</td>
</tr>
<tr>
<td></td>
<td>ω_x</td>
<td>–</td>
<td>703</td>
<td>745</td>
<td></td>
</tr>
<tr>
<td>$^3\Sigma_u^-$</td>
<td>T_e</td>
<td>13046.31(3)</td>
<td>–</td>
<td>14784</td>
<td>13493</td>
</tr>
<tr>
<td></td>
<td>B_u</td>
<td>0.28186(5)</td>
<td>–</td>
<td>0.2805</td>
<td>0.283</td>
</tr>
<tr>
<td></td>
<td>ω_x</td>
<td>702.9(4)</td>
<td>–</td>
<td>679</td>
<td>699</td>
</tr>
<tr>
<td>$^3\Sigma_u^-$</td>
<td>T_e</td>
<td>13296.92(28)</td>
<td>–</td>
<td>–</td>
<td>13773</td>
</tr>
<tr>
<td></td>
<td>B_u</td>
<td>0.29046(14)</td>
<td>–</td>
<td>–</td>
<td>0.292</td>
</tr>
<tr>
<td></td>
<td>ω_x</td>
<td>705.5(5)</td>
<td>–</td>
<td>–</td>
<td>716</td>
</tr>
<tr>
<td>$^3\Sigma_u^-$</td>
<td>T_e</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>14757</td>
</tr>
<tr>
<td></td>
<td>B_u</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.292</td>
</tr>
<tr>
<td></td>
<td>ω_x</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>711</td>
</tr>
<tr>
<td>$^3\Sigma_u^-$</td>
<td>T_e</td>
<td>14963.15(33)</td>
<td>–</td>
<td>–</td>
<td>15284</td>
</tr>
<tr>
<td></td>
<td>B_u</td>
<td>0.27778(14)</td>
<td>–</td>
<td>–</td>
<td>0.278</td>
</tr>
<tr>
<td></td>
<td>ω_x</td>
<td>684.5(7)</td>
<td>–</td>
<td>–</td>
<td>671</td>
</tr>
<tr>
<td>$^3\Phi_1$</td>
<td>T_e</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>17457</td>
</tr>
<tr>
<td></td>
<td>B_u</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.277</td>
</tr>
<tr>
<td></td>
<td>ω_x</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>658</td>
</tr>
<tr>
<td>$^1\Gamma_4$</td>
<td>T_e</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>18312</td>
</tr>
<tr>
<td></td>
<td>B_u</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.289</td>
</tr>
<tr>
<td></td>
<td>ω_x</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>641</td>
</tr>
<tr>
<td>$^3\Pi_2$</td>
<td>T_e</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>19167</td>
</tr>
<tr>
<td></td>
<td>B_u</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.276</td>
</tr>
<tr>
<td></td>
<td>ω_x</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>691</td>
</tr>
<tr>
<td>$^3\Pi_2$</td>
<td>T_e</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>19332</td>
</tr>
<tr>
<td></td>
<td>B_u</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.279</td>
</tr>
<tr>
<td></td>
<td>ω_x</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>698</td>
</tr>
</tbody>
</table>

We are currently working on improving the comb-vms system and applying it towards characterization of ThF+, which has several advantages over HfF+ for the eEDM experiment. However for this species, the $ab\text{ initio}$ calculations are even more challenging, leading to larger theoretical uncertainties. The first spectroscopy of ThF+ using PFI-ZEKE plus some LIF (unassigned) has recently been published [13], but, as was the case with HfF+, the higher excited states remain uncharacterized. By using highly non-linear fiber to broaden the comb spectrum [62] and a high repetition rate Ti:sapphire amplifier [63], we hope to cover over 2000 cm$^{-1}$ with comb-vms. This ability to rapidly cover thousands of cm$^{-1}$ with high sensitivity and high resolution will be a powerful new tool for the study of ions and radicals for many applications. In addition, applications to many other spectral regions are possible by using different comb sources combined with non-linear optics for

![Figure 7](image-url)
covering the near-IR [64,65] or mid-IR [66–70]. These sources plus readout systems using different cameras or optical up-conversion [71] create the possibility of ion spectroscopy anywhere from the visible to the mid-IR.

Acknowledgments

Funding for the work at JILA was provided by the NSF, NIST and the Marsico Foundation. We thank R. Stutz, H. Loh, F. Adler, and M.J. Thorpe for many useful discussions. RWF acknowledges support from NSF Grant CHE-1058709. Funding for the work at PNPI was provided by Russian Ministry of Education and Science, contract #07.514.11.4141 (2012–2013). LS is grateful also to the Dmitriy Zimin “Dynasty” Foundation. The molecular calculations were performed at the Supercomputer “Lomonosov”.

References

Kevin Cossel received his B.S. degrees in Physics and Chemistry from the California Institute of Technology in 2007. His undergraduate research was on a precision THz source for Geoff Blake. He has also worked on gas-phase studies of uranium-ligand binding at the Idaho National Lab for Dr. Gary Groenewold. Currently he is a PhD student at JILA working for Jun Ye and Eric Cornell. His research interests include applications of frequency-comb spectroscopy in chemistry and physics and tests of fundamental physics using precision measurements.

Daniel Gresh obtained his B.S. degrees in Physics and Applied Math from the University of Rochester in 2011 where he worked at the Laboratory for Laser Energetics and on Prof. Nicholas Bigelow’s BEC experiment. He is currently a second-year PhD student under the supervision of Profs. Eric Cornell and Jun Ye. His research interests include frequency combs and precision metrology.

Laura Sinclair received her Ph.D. from the University of Colorado Boulder in 2011 under the supervision of Eric Cornell and Jun Ye. She is currently a postdoc at the National Institute of Standards and Technology in Boulder, CO. Her research interests include precision metrology, optical time transfer, and frequency comb development.
Nikolai S. Mosyagin graduated with honours from the Chemistry Department of St. Petersburg State University in 2000. He received his Ph.D. in Chemical Physics from B.P. Konstantinov Petersburg Nuclear Physics Institute (PNPI) in 2009. His research interests include the relativistic effective core potentials and electronic structure of heavy-atom molecules after the pseudopotential calculation as well as restoration in cores of heavy atoms containing molecules. His basic research interests include the relativistic pseudopotentials and electronic structure restoration in cores of heavy atoms containing molecules after the pseudopotential calculation as well as correlation and relativistic effects, variation principles, hyperfine structure, chemical shifts, and P,T-parity nonconservation effects.

Tyler Coffey is currently pursuing his MS in Mechanical Engineering at the University of Colorado, Boulder. He worked as a lab assistant in Eric Cornell’s lab in JILA from 2009 to 2012. He currently works for Simutech, an ANSYS distributor that does finite element analysis consulting.

Alexander N. Petrov received his Ph.D. in Physical Chemistry from St. Petersburg State University, Russia in 2000. He is a senior researcher in the Neutron Research Department of PNPI and an Assistant Professor in the quantum mechanics division at St. Petersburg State University, Russia. He was a visiting researcher at Temple University, USA and at the National Institute of Standards and Technology, USA. His research covers theory and high-precision calculations of molecules with emphasis on P,T-parity non-conservation, relativistic effects and hyperfine structure.

Leonid V. Skripnikov graduated with honours from the Chemistry Department of St. Petersburg State University in 2009. He received his Ph.D. in theoretical physics from B.P. Konstantinov Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia in 2012. His research interests are in the precise correlation calculations of electronic structure of heavy-atom molecules for experiments towards the search for P,T-parity nonconservation effects and variation of the fine structure constant. Presently he is a research scientist at PNPI.

Robert Field received his 1972 Ph.D. in Physical Chemistry from Harvard University with William Klemperer. After postdoctoral research in the Quantum Institute at the University of California, Santa Barbara, with Herbert P. Broida and David O. Harris, he joined the Chemistry faculty at MIT in 1974. He is currently the Haslam and Dewey Professor of Chemistry at MIT. His research specialties include dynamics encoded in frequency domain spectra of small, gas phase molecules, at high excitation, where all standard energy level patterns are broken: spectroscopic perturbations, Rydberg states, and unimolecular isomerization. Favorite experimental techniques include Stimulated Emission Pumping and Chirped Pulse Millimeter Wave spectroscopy.

Edmund R. Meyer is currently a postdoctoral researcher at Kansas State University. He earned his Ph.D. in Physics from the University of Colorado, Boulder in 2010 under the guidance of John Bohn. His scientific interests include precision measurements, controlling chemical reactions, and ultracold molecular physics.

Eric Cornell received his B.S. from Stanford University in 1985, and his Ph.D. from MIT in 1990. His doctoral research, with Dave Pritchard, was on precision mass spectroscopy of single trapped molecular ions. Cornell went to JILA in Boulder, Colorado in 1990. Since 1992 he has been a senior scientist with the National Institute of Standards and Technology. He is a Fellow of JILA and Professor Adjunct in the Physics Department of the University of Colorado. Research interests include various aspects of ultracold atoms, in particular Bose-Einstein condensation and chip-based atom traps. He is also working on using precision molecular spectroscopy to explore possible extensions to the Standard Model of particle physics.

Jun Ye received his undergraduate degree in applied physics at Jiao Tong University in Shanghai, M.S. in physics at the University of New Mexico; and Ph.D. from the University of Colorado. He is currently a Fellow of JILA and NIST and an Adjunct Professor of Physics at the University of California as well as a guest professor at Jiao Tong and East China Normal Universities. Research interests include precision measurement and quantum metrology, ultracold atoms and molecules, and ultrafast science and quantum control.

Tyler Coffey

Robert Field

Edmund R. Meyer

Jun Ye

Robert Field received his 1972 Ph.D. in Physical Chemistry from Harvard University with William Klemperer. After postdoctoral research in the Quantum Institute at the University of California, Santa Barbara, with Herbert P. Broida and David O. Harris, he joined the Chemistry faculty at MIT in 1974. He is currently the Haslam and Dewey Professor of Chemistry at MIT. His research specialties include dynamics encoded in frequency domain spectra of small, gas phase molecules, at high excitation, where all standard energy level patterns are broken: spectroscopic perturbations, Rydberg states, and unimolecular isomerization. Favorite experimental techniques include Stimulated Emission Pumping and Chirped Pulse Millimeter Wave spectroscopy.

Edmund R. Meyer is currently a postdoctoral researcher at Kansas State University. He earned his Ph.D. in Physics from the University of Colorado, Boulder in 2010 under the guidance of John Bohn. His scientific interests include precision measurements, controlling chemical reactions, and ultracold molecular physics.

Eric Cornell received his B.S. from Stanford University in 1985, and his Ph.D. from MIT in 1990. His doctoral research, with Dave Pritchard, was on precision mass spectroscopy of single trapped molecular ions. Cornell went to JILA in Boulder, Colorado in 1990. Since 1992 he has been a senior scientist with the National Institute of Standards and Technology. He is a Fellow of JILA and Professor Adjunct in the Physics Department of the University of Colorado. Research interests include various aspects of ultracold atoms, in particular Bose-Einstein condensation and chip-based atom traps. He is also working on using precision molecular spectroscopy to explore possible extensions to the Standard Model of particle physics.