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As part of a systematic study of approximations commonly made in solutions of the Boltzmann
equation for electrons in molecular gases, we have investigated the effects of anisotropic scattering
on electron transport coefficients in N, and have extended our study of the multiterm expansion
technique to higher E/n. A critical survey of published data yields a set of differential and integral
cross sections for electron energies from 0.003 to 10* eV. For electric-field-to-gas-density ratios
E/n between 10 and 500 Td (1 Td= 10—! V m?), the changes in the commonly measured transport
and reaction coefficients resulting from the introduction of anisotropic elastic and inelastic scatter-
ing, while keeping the elastic momentum-transfer cross section constant, are less than 1%. These
calculations were made with use of the multiterm spherical-harmonic expansion solution of the
Boltzmann equation. For 500 <E/n < 1500 Td the changes in scattering anisotropy cause changes
in transport and reaction coefficients which increase with E/n to about 10%. The errors in drift
velocity, mean energy, and the reaction coefficients resulting from the use of the two-term
spherical-harmonic expansion rather than a six-term expansion are less than 3% at 1500 Td. How-
ever, the errors in the diffusion coefficients become large ( > 25%) at our highest E/n. The calculat-
ed transport coefficients are in generally good agreement with experiment for E/n less than 300 Td,
but the differences increase at higher E/n. The importance of proper interpretation of ionization
and excitation experiments at high E/n is illustrated by calculations which model either an ex-
ponential growth of density in time or an exponential growth with position. The calculated ioniza-
tion coefficients are low compared to most experiments for E/n less than 200 Td. At E/n > 600
Td the agreement is good for the spatial growth experiments, but the calculated values are below ex-
periment from the temporal growth experiments. The calculated excitation coefficients are general-
ly higher than experiment at low and high E/n but in agreement with experiment at E/n near 150
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I. INTRODUCTION

The availability of differential scattering data for elec-
trons in N; and the development of the multiterm
spherical-harmonic expansion techniques for solution of
the electron Boltzmann equation’ make possible this in-
vestigation of the effects of anisotropic scattering on elec-
tron transport in N,. The present work is part of a sys-
tematic study’ ~* of the effects of various simplifying ap-
proximations on the solutions of the Boltzmann equation
for electrons in molecular gases, such as N,. Our primary
objective has been to develop and test techniques for im-
proving the accuracy of the calculated values of measured
transport and reaction-rate coefficients. Although this
series of papers has included some changes in electron col-
lision cross sections which improve the agreement be-
tween calculations and experiment, we are much more
concerned with the effects of the computational tech-
niques, secondary-electron distributions, and angular dis-
tribution on these calculated transport coefficients. The
initial paper,” which we will refer to as I, describes tech-
niques for adding higher-degree spherical harmonics
(Legendre polynomials) to the two-term or Lorentz ap-
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proximation when solving the electron Boltzmann equa-
tion. This work demonstrated the changes in calculated
transport and reaction, coefficients which occur when the
inelastic cross section becomes comparable with the elastic
momentum-transfer cross section, as in N, at energies
near 2 eV. In the second paper,* which will be referred to
as Il, we showed that at low E/n in N, the use of the
two-term approximation causes large errors in the calcula-
tion of excitation rate coefficients, but that for low and
moderate E/n the errors in transport coefficients are gen-
erally small, e.g., less than 8%. More recently3 in paper
111, we examined the effects of various approximations to
the distribution in energy of secondary electrons produced
in the process of electron-impact ionization. We found
that the primary consideration is to include the new elec-
tron in the Boltzmann equation. The results are suffi-
ciently insensitive to the details of the assumed
secondary-electron energy distribution so as to allow the
use of delta function secondary-electron energy distribu-
tions adjusted to satisfy energy and momentum conserva-
tion.

The question of the effects of anisotropic scattering on
solutions of the Boltzmann equation and on electron
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transport calculations has been considered for moderate
E/n and electron energies and for some model angular
distributions.*> These calculations show that for realistic
angular distributions the errors in the calculated transport
coefficients are small, i.e., less than 5%. In a preliminary
report on the present work® we assembled a set of aniso-
tropic cross sections for electrons in N, and applied it to
the calculation of electron-energy distribution functions
and transport coefficients at moderate E/n. In the
present paper we discuss these cross sections and extend
their application to higher electron energies and higher
E/n. At moderate E/n and mean energies, we find that
the calculated effects of anisotropic scattering are small
enough so as to be observed only in precision swarm ex-
periments. At higher E/n and higher electron energies
where electron scattering is known to be highly anisotro-
pic, we find increasingly important errors in the solutions
of the electron Boltzmann equation obtained using the
usual assumptions of momentum-transfer elastic scatter-
ing and isotropic inelastic scattering. We will limit E/n
to 3000 Td and below, since experiments’ and recent
theory® for N, indicate the onset of departures from the
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itial energy distribution. Note that the integrals over the
collision operator C[f7]in Egs. (4)—(7) were not present in
I and Il because electron production and loss were not in-
cluded in the Boltzmann equation.

Equations for f(v), g:(v), g,(v), h,(v), and hg,(v) are
obtained by substituting Eq. (2) into Eqg. (1) and setting
coefficients of n,(r, # ) and its derivatives equal to zero.
The equation for f(v)is

a-V f(v)=nC[f(v)]—vf(v). (9)

The vf(v) term accounts for the temporal growth and was
added in Il with the resultant requirement that Eq. (9) be
solved as an eigenvalue problem. The differential equa-
tion for g,(v) is

a'V,g,(v)=nC[g,(v)]—vg (v)—n(W —uv,)f(v) (10)

Integration of this equation over all velocities gives Eq.
(5). The solution of Eq. (10) has been discussed by Ta-
gashira et al.!! Because of difficulties* encountered in the
evaluation of g,(v) in the case of N, but not other gases,’
we will not present values of Dy, or of the second integral
of Eq. (5). We will assume that this correction to # can
be neglected in our evaluation of the effects of anisotropic
scattering or of the effects of the truncation of the
spherical-harmonic expansion. In this case the solution of
Eqg. (10) simplifies to the equations discussed in Il and IlI.
The differential equation for g,(v)

(12)

where, for the number of terms in the density gradient ex-
pansion given in Egs. (2) and (3) the spatial growth con-
stant ¢; is the root of the equation

n.(z)=nge
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v i ’
——— W+ (nD;)=0. (13)
n n n

Equation (13), thus establishes the connection! * between
the density. gradient expansion coefficients v,

(14}

Use of this form” instead of Eqgs. (10) and (13) allows one
to considerably simplify the Boltzmann calculation for
steady-state experiments in which «; is determined from
the variation of n.(z) with position or with electrode spac-
ing as in the steady-state Townsend experiment.‘,”” Thus,
substitution of Eq. (14) into Eq. (1) yields

a'V /(¥ +v,0,f(v)=nC[ f,(v)] . (15)

The spatial ionization coefficient «; is obtained by in-
tegrating Eq. (15) over all velocities, i.e.,

a; [ Qbwifutvid®y Ky, 6
n fv,fss(v)a”v N

vy’
where Qc"(v) is the total ionization cross section. Equa-
tions (15) and (16) must be solved iteratively to obtain
Jfss(V), a;/n, etc. Note that the

and
h..(v)asin Egs. (5), (6), and (13).

The similarity of Egs. (9) and (15) leads us to define a
modified collision operator B[f (v}] and to consider the
equation

a-V f(v)+v,a; f(v)=nB[f(v)]

=nC[f(M)}—vf(v). amn
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We will consider only cases in which either v or «; is zero,
although one might well analyze experiments in which it
is a good approximation to assume that both v and «;
were nonzero. Note that in Egs. (15) and (17) the magni-
tude of «; is not restricted by the requirement of rapid
convergence of the density gradient expansion as in Eq.
13).

( \)Ne next make use of the spherical-harmonic expansion
technique for solving for the electron velocity or energy
distribution. In this discussion we will consider only Eg.
(17), since the extension of the method to equations such

as Egs. (10) and (11) is straightforward.” As in Il, the
]
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velocity distribution F(V) is written in the form
m - |
F="S f(e)P,(cosh) , (18)
j=o

where € is the electron energy, m is the number of terms
in the expansion, P;{cos®) is the zero-order Legendre po-
lynomial of degree j, and f(€) is normalized by

J.7 €7 otede=1. (19)

With these assumptions Eq. (9) can be written as a series
of coupled equations of the form

£ i U=l | B ULl | A G
n Q=1 [ de o RENCTIE I Sy
G i . G+D i
e [l (2] +3 Qi3+ [=BLGT 20
where 0 <j
I i 2e+u; .
+ZA’; JO—“[ “onle f0(6]+ fze*“ uq;e°(j’u’e)f/'(u)du+fe+u. uQéca(j,u,e)fj(u)du‘“%%fj(e). @

In Eqg. (21) the anisotropic angular distribution of the
electron scattering has been taken into account by express-
ing each of the differential scattering cross sections as an
expansion in zeroth-order Legendre polynomials. Thus, if

r4e0)= 3 LU ok (cos6) | 22)
j=0
then
ofe)=2m [ I*€,0)P,(cosh)sind b . (23)

Here the superscript K indicates the type of collision pro-
cess, the subscript j indicates the degree of the Legendre
polynomial and I*(¢,8) is the differential cross section'®
for electron scattering through an angle 8 for process k.
Thus, for Q3(e) the j =0 and k =0 designate the spheri-
cally symmetric component of the elastic scattering cross
section, i.e., the “total” elastic cross section. In Eq. (2) we
also define a total scattering cross section for all collisions
QT(E) by

2 .
re)="3 0ke)+0ie , (24)

k=0

an elastic momentum transfer cross section @,,(¢€)

(26)

In this paper we will compare results obtained for iso-
tropic and anisotropic scattering, while keeping the elastic
momentum-transfer cross section constant. The impor-
tance of the momentum transfer cross section in the
theory of electron transport can be seen by reviewing the
equations for the conventional two-term spherical-
harmonic expansion solution of the Boltzmann equation,
Egs. (20) and (21) for m = 2, and (in this paragraph only)
treating ionization as an excitation processes. For | =0
the collision operator is

Clfvte)]= — $ [e0kfo(e)
k=1

—(e+€)Q8(e+ex ) fole+ex)]
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CLf ()] = —eQl(e i ke)f1(e)

yd
+ 3 (e+e)Qfe+e)f (e +ep) . (28)
k=1

We see that in both of these equations the effects of elas-

tic collisions are represented by the momentum-transfer
cross section Q5 (e). In particular, in the usual appllca

tion of the conventional two-term approximation,?® where
the inelastic cross sections are assumed to be small com-
pared to the elastic cross section, the only cross section
entering Eq. (28) is Qo (€). For this reason we have
chosen to make comparisons of the isotropic and anisotro-
pic models of N, by keeping the elastic momentum-

transfer cross section constant rather than by keeping the
total elastic cross sectlon Qo €) constant as was done by
Kunhardt and Tzeng.® On the other hand, since we have
shown in Il that the term representing the reentry of an-
isotropic inelastic scattered electrons in Eq. (21) can often
be neglected, we will keep the total inelastic cross sections
0X(e) constant. Note that the inelastic momentum-
transfer cross section implied by Eq. (21) and analogous to
Eq. (25), is not the same as that needed for use in fluid
models of electron motion. See Appendix A.
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In summary, we will present results in this paper for
two models of electron scattering in N,. One model uses
the full set of anisotropic scattering cross sections and will
be referred to as the anisotropic model. In the second
model we will use the anisotropic factor Q%(e)/Q5(e) to
obtain the momentum transfer cross section for elastic
‘scattering Q2 (e). We will set all Qfe)/Qk(e) for j> 1
equal to zero. Thus, we use Q2 (e) for the elastic cross
section and the various Q’5 (€) or total cross sections for
inelastic scattering. This model will be referred to as the
isotropic inelastic model and is the model used in most
previous solutions of the electron Boltzmann equa-
tion.’>?° Note that this model does not assume isotropic
elastic scattering as is often stated.

Il. CROSS SECTIONS

In this section we present the set of anisotropic collision
cross sections for electrons in N, which we have assem-
bled and used to investigate the effects of anisotropic
scattering on the electron energy distributions and on the
transport and reaction-rate coefficients. Because of the
importance of collisions at high electron energies, we have
examined much more thoroughly than previously the

TABLE |I. Ratios of spherical-harmonic components of differential scattering cross sections for N,.2

Process Qt/05§ 05708 04/0§ Qi/Q% 05/0%
0.262 __0.046 0.7¢ 0.61¢ 0.55¢
) 0.025 +-¢€'”? 0.01 +e€ 65-+¢ 2000+ €2 4000+ €
Elastic
scattering
(10-2—10%P + 1.2[16€! %+ €] 1.04€(2400+¢€) + 0.36 0.3% n 0.45¢
[100+16€"% + €] [ 60000+ 3000¢ -+ €2] 3000+ ¢ 5000+¢ 5000+€
Resonant
vibrational 5 8
o > 0 = 0
excitation 0 7 7
(1.7-3.6)
AT B, WA , 61
(7—50) - € o 0 0
1500+ €* 10* 4+ &
cn
(1 1-50) —0.2
1
a'lly
(8.5—500) 200000+ 160e* 4 ¢* & e & €
) 200 000+ 2600€* + ¢* 1600+ €2 3500+ ¢ 3500+ &% 35004 €%
“Sum of singlets”
& e e e 3
(13-500) EPTr ) EYTY ) T2 2 )
2500+¢€ 25004¢€ 35004-¢* 3500 + € 3500+¢
*Note that from Fig. 3 we would now choose somewhat lower values for D in some cases. e.g.. 1000 and 300 for 432}, B3I, and

w3A and for j = 1and 2, respectively.

®The numbers in parentheses give the energy range in eV of the data used to obtain the formulas in this table.

Only in the cases of the

singlet states are the formulas of significance outside these energy ranges.

“From Fig. 3-we would now take this entry to be —e*(5000+ €)%
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We discuss first the elastic scattering

data and then the inelastic scattering data.

A. Elastic scattering

The effective momentum-transfer cross sections Qy, (€)
of Engelhardt, Phelps, and Risk,?* to be referred to as
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FIG. 2. Ratios of spherical-harmonic components calculated
from elastic differential scattering cross-section data. Here we
have suppressed the superscript 0 on the Q}’ symbols. The
dashed curves are our empirical fits listed in Table I. The solid
points are from experiment, while the open points and solid
curve are from theory. Symbols and authors are the following:
B | DuBois et al. (Ref. 28); A, Jansen et al. (Ref. 23); ® | Srivas-
tava (Ref. 23); w, Shyn and Carignan (Ref. 23); [, Riley er al.
(Ref. 24); ——, Chandra and Temkin (Ref. 29); 0, Siegel et al.
(Ref. 29).

EPR, were retained at electron energies below 7 ¢V. The
elastic momentum-transfer cross section Q2 (e} was ob-
tained from Q,(e) by subtracting the sum of the vibra-

energies between 6 and

10* eV, while the smooth curves
show the values recommended by Hayashi.>> The open
and closed points are the total and momentum-transfer
cross sections, respectively. Note that Hayashi’s recom-
mendations are in good agreement with the values used in
several analyses®®2’ of swarm data.

In order to limit the amount of tabulated data required
and reduce the computation time for calculations which
take into account anisotropic scattering we have used tab-
ulated values of the momentum-transfer cross section®!
and simple analytic approximations to the ratios of the
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higher- degree spherical-harmonic components of the cross
sections QJ to the total elastic cross section Qo In terms
of these ratios and the tabulated values of Qm, the magni-
tude of the jth component of the elastic scattering cross
section is given by

0 _QJ(i 1 Q_(‘)
e
Here we have suppressed the dependence on electron ener-
gy €. The use of simple analytical approximations to the
Q /QO values averages through the structure present, for
example near 2 eV and is justified by the relatively slowly
varying electron energy distributions.

Flgure 2 shows values of the ratios Q1 /Qo, QZ/QO,
and Qi/QO determined from experiment*>?® and
theory.?*? In a few cases the theoretical results are avail-
able in a form equivalent to Qj, but in most cases it was
necessary to resolve plotted differential scattering cross-
section data into spherical-harmonic components with the
associated uncertainties resulting from incomplete data at
small and large scattering angles. The dashed curves of
Fig. 2 show the values of the analytical expressions given
in Table | and used to approximate the experimental and
theoretical data. In view of the structure in the theoreti-
cal curves near 2 eV and the scatter in the higher-energy
data shown in Fig. 2, it does not seem worthwhile to at-
tempt better fits to the data at this time. As listed in
Table I, we carried out the analysis to j = 5 in anticipation
of six-term solutions of the Boltzmann equation. Of some
concern to us is the tendency of the Q})/QS ratios to satu-
rate at values well below unity at high-electron energies.
This behavior may indicate a tendency of experiments
and/or our analyses to inaccurately represent the forward
scattering peak of the differential scattering cross section.
Accordingly, we used a smooth interpolation between ra-
tios determined from experimental data at energies below
300 eV and ratios determined from theory at energies
above 5keV.

~1

Q)= (29)

B. Rotational and vibrational excitation

Electron-beam experiment™ and theory?”3! have shown

that rotational excitation cross sections are very large in
the vicinity of 2 eV. Because of the shortage of cross-
section data and in order to reduce the computer space re-
quired to store and use the very large number of energy-
dependent rotational excitation cross sections in the reso-
nance region, we have used the single-level approximation
for the cross section for rotational excitation as derived
from gas-heating data. See Appendix B. This cross sec-
tion has a magnitude equal to the sum of the magnitudes
of the vibrational excitation cross sections discussed next
and is assigned an energy loss of 0.02 eV. Using this cross
section we find that for the E /n considered in this paper
the energy loss to resonance rotational excitation is as
much as 11% of the input energy at mean electron ener-
gies near 0.6 eV. The rotational excitation was assumed
to be isotropic, although now one could use the formulas
of Wong and Dubé®® for the resonance region.

The cross sections for electron excitation from the
v” =0 vibrational level of X'2; of N, to higher vibra-

tional levels (»'= 1 to 8) of the X!Z state come from a
variety of sources. The cross section for excitation of the
v'=

of N,. The mag-
nitude of the resonance vibrational excitation cross sec-
tions was made adjustable through the use of a scale fac-
tor multiplying the input or reference set. Except as not-
ed, the multiterm calculations reported in this paper used
a scale factor of 1.5 for the resonance portion of the vibra-
tional cross section since this gives a better fit to
electron-transport data than the value of 1.9 appropriate
to the earlier two-term calculations.” The cross section
for excitation of the v'=1 level at energies above 3.7 eV is
based on the experimental results of Pavoli¢ et al. and
Truhlar et al.*® The excitation of vibrational levels with
v’ > 1 was neglected for energies above 3.6 eV. For calcu-
lations in which vibrational excitation resulting in aniso-
tropic scattering was considered, we used the approximate
angular distribution given by Polak and Slovetskii.>” See
Table 1. Since this formula gives Q7=0 for all u’, the use
of Q5= + > Q¢ in the j = 1 equation for the electron
energy distribution, as discussed in Ill, is exact in the re-
gion of the 2-eV resonance.

C. Electronic excitation

Since the N,(4 33 ) state is the lowest energy electron-
ic state we have made an approximate allowance for the
spread in energies of the various vibrational levels, i.e., the
cross sections have been separated into three groups
representing transitions from v’ =0 of the X state to lev-
els with v'=0—4, v'=5-9, and v’> 10 of the A state.
For incident electron energies above 11 eV we have used a
common energy dependence and total magnitude based on
Cartwright et al.*® (CTCW) and have weighted the partial
cross sections using Franck-Condon factors determined
from optical spectra.’®> The energy dependences of the
cross sections at energies below 11 eV are such that the to-
tal N, triplet cross section is consistent with the energy
dependence40 of Olmsted, Newton, and Street and of
Borst.

The cross section used for the C°I1, state at energies
between 15 and 50 eV is from CTCW, while at energies
below 15 eV the cross section is based on an average of re-
cent measurements.*! The area under the resonant peak
portion of the E32+ cross section is from Borst, Wells,
and Zipf,* while the Iocatlon |n energy is from more re-
cent experiments.*! The E> E cross section for energies
between 15 and 50 €V is from CTCW. ‘The cross sections
for excitation of the BIl, W3A, B'2,, a '3, a'll,,
w A us and a” ’2; states for energies below 50 eV are
based on CTCW. The triplet cross sections just described
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are based on electron beam data. Agreement between cal-
culated and measured C3I1, excitation coefficients'® and
ionization coefficients’ at E/n < 300 Td, was found!® by
adjusting the magnitudes of these cross sections. We use
factors of 2.0 for the C°II, state and 0.67 for all other
triplet states. ]

The choice of cross sections for excitation of the impor-
tant states at the higher-electron energies is based on the
analyses of Zipf and McLaughlin*

state of CTCW were extended to higher energies
using the energy dependences of Jackman et a/.*

The ionization cross section used is based on Rapp and
Englander-Golden and Schram et al.,*® while the secon-
dary energy distribution is a delta function with half of
the available energy as indicated by Eq. (26). A better ap-
proximation would have been a delta function with the
correct mean secondary electron energy.>4’

The ratios of the spherical-harmonic components of the
differential scattering cross sections for electronic excita-
tion at energies from 10 to 50 eV are based on the data of
Cartwright et al*® and of Chutjian et al.** Representa-
tive spherical-harmonic components of the cross sections
for the A33] and b I, states are shown in Fig. 3. The
differential scattering data of Lassettre and co-workers*
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FIG. 3. Spherical-harmonic components of differential cross
sections for electron excitation of 4°Z; and b 'I1, states. The
points of € < 100 eV are calculated from the experimental data
of Ref. 38 for the values of j indicated in the inset. The points
for 500 eV are from Ref. 49. The smooth curves are calculated
for various values of D. The formulas adopted are listed in
Table I.

has been used to obtain the cross-sections ratios shown in
Fig. 3 for the b1, state at 500 eV. We have used the re-
sults for the b 'II, state as representative of the group of
allowed singlet excitation cross sections. Of particular
importance in our calculations is the pronounced forward
scattering *° for the sum of singlet states. Our fits to these
and similar plots for other states are listed in Table I. It
should be kept in mind that these formulas may be mean-
ingful only over the energy range for which the cross sec-
tions are large enough to allow measurement of I*(€,0),
i.e.,, the energy ranges shown in parentheses in Table I.
We have not attempted to convert the predicted phase
shifts of theory” into spherical-harmonic components of
the excitation cross sections. A notable feature of the
lower triplet states is the tendency for backward scatter-
mg, ie., the Q'f/Qéc values are negative. Also note that
we would have obtained somewhat better fits to experi-
ment in Fig. 3 if we had written the empirical formulas in
terms of (e—¢;) instead of ¢, i.e., for many of the excited
states of N, the experimental electron scattering ap-
proaches isotropy at threshold.

The amount of detail required to satisfactorily represent
the experimental angular distributions*” for the two elec-
trons produced in electron-impact ionization is not clear.
Approximate angular distributions have been given®? by
Jackman and Green and by Wilhelm and Winkler. We
have adopted a similar approximation in which the low
energy or secondary electron® is assumed to be produced
with an isotropic angular distribution, while the high en-
ergy or scattered primary electron is given the same angu-
lar distribution as for the sum of the singlet states.

A test for consistency among our set of cross sections is
given in Fig. 4 where the curves show values of the total
cross section Qr(e€), the total elastic cross section Qg, the

CROSS SECTION (m2)

ELECTRON ENERGY (eV)

FIG. 4. Total electron scattering cross sections for N,. The
uppermost curve is our sum of all total cross sections @%. Our
total elastic, total ionization, and sum of the total inelastic cross
sections are labeled Qf, @4, and 3 @# for k=0, i, respectively.
Symbols and authors are the following: B, Blaauw et al. (Ref.
53); A, Kennerly (Ref. 53); @ Dalba et al. (Ref. 53); ¥, Hoff-
man et al. (Ref. 53).
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sum of the excitation cross sections Qg for all k not equal
to 0 or i, and the total ionization cross section @g. The
solid points show experimental values of the total cross
section.”® Note that the elastic, excitation, and ionization
cross sections become comparable at the higher-electron
energies and that the sum of these cross sections, as
shown by the upper solid line, is equal to the total cross
section to within the combined uncertainties. At electron
energies above about 50 eV these curves agree reasonably
well with the model of Jackman and Green.*? It is not
clear which of the cross sections should be reduced in or-
der to improve the agreement with the total cross-section
measurements. The excitaton cross sections would seem
to be the most subject to error, although there is some
disagreement among the measured ionization cross sec-
tions.*

The principal improvements in the magnitudes and en-
ergy dependences of cross sections discussed in this paper
from those of our previous work!”'#22 are (a) the signifi-
cantly larger electronic excitation cross sections at high
energies, (b} more accurate representations of electron-
beam data for excitation of the C*Il, and E*3; states
while retaining consistency with excitation coefficient
data, and {c) the introduction of an effective resonance ro-
tational excitation cross section. We have not attempted
to optimize the cross sections by comparison with trans-
port and excitation coefficient data, although we will
show in Sec. V that the agreement of calculated and ex-
perimental swarm data is generally good.

IV. CALCULATED TRANSPORT COEFFICIENTS
AND DISTRIBUTION FUNCTIONS

A. Effects of anisotropic scattering

The transport and reaction-rate coefficients calculated
using the procedures of Sec. Il and the cross sections of
Sec. Il were used to obtain the data of this section. As
an example of these results, the calculated spherically
symmetric components of the electron energy distribu-
tions f4(€) for E/n = 1500 Td are shown in Fig. 5. Start-
ing from the uppermost curve at high energies the curves
show the calculations for six-term anisotropic, six-term
isotropic, two-term anisotropic, and two-term isotropic
models. We see that at high energies, € > 80 eV, the aniso-
tropic models yield about 20% more high-energy elec-
trons than do the isotropic models. However, at these
high energies the largest change is the result of including
more terms in the spherical-harmonic expansion, as will
be discussed in Sec. IV B. Note that for the two-term ap-
proximation the fact that the elastic momentum-transfer
cross section was kept constant means that the changes
observed in the distribution functions as the result of the
change from isotropic to anisotropic scattering are due to
the effects of the dipole (j = 1) components of the inelastic
scattering. The somewhat larger change in fy(€) observed
when changing the scattering model with the six-term ap-
proximation includes the effects of higher-degree com-
ponents of the elastic and inelastic scattering. Although
not readily seen in Fig. 5, the curves of fy(e) for the an-
isotropic and isotropic models cross such that at energies
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FIG. 5. Spherically symmetric component of electron energy
distribution functions showing effects of anisotropic scattering

1%. However, calculated changes in the coefficients
with cross-section sets should be more accurate, e.g.,
+0.5%. These estimates are based on tests of the sensi-
tivity of the calculations to the choice of energy grid, etc.
Note that for E/n =20 Td, but not for 10 or 40 Td, the
changes in coefficients with energy grid were comparable
with the small changes in coefficients produced by
changes in the scattering model or the number of spheri-
cal harmonics.

The calculations of changes in transport and rate coeffi-
cients made using the six-term approximation for the an-
isotropic and isotropic models are summarized in Fig. 6.
The curves of Fig. 6 show the values of the fractional
change in the transport or reaction coefficient when the
scattering is changed from the isotropic model to the an-
isotropic model, e.g., W= Wiso — Waniso)/ W aniso- We see
that for E/n below 500 Td or mean energies below 9 eV
the errors in the coefficients resulting from the isotropic
scattering assumption are less than about 2% as found in
previous analysis of model atoms and molecules.*® Of
course even these errors are important for the analyses of
precision transport data.!* For E/n above 500 Td the
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FIG. 6. Percentage change in transport and reaction coeffi-
cients caused by change from isotropic to anisotropic scattering
models. Coefficients and symbols are the following: &, average
energy; k4, triplet excitation; k;, ionization; Dy, transverse dif-
fusion; W, drift velocity. The lines simply connect calculated
values.

curves of Fig. 6 show that most of the errors increase rap-
idly with E/n. The large difference in the errors for the
triplet excitation coefficient and the ionization coefficient
at high E/n occurs because of the crossover of the elec-
tron energy distributions with and without anisotropic
scattering shown in Fig. 5 and because the triplet excita-
tion cross-sections peak at energies near the crossover
while the ionization cross section peaks at energies above
the crossover. The higher mean electron energy found
with anisotropic scattering is consistent with the larger
number of high-energy electrons shown in Fig. 5, while
the higher-electron drift velocity is consistent with a lower
contribution of inelastic scattering to the momentum-
transfer cross section in this case. The much larger trans-
verse diffusion coefficient Dz for the anisotropic model at
1500 Td is at first surprising in view of the decrease in
Dy /v found by Kiiciikarpaci and Lucas’® for N, and by
Haddad et al.’ for H,. However, it is accompanied by a
much larger increase in Dy so that the relative increases
are as expected. We have not shown the errors for the
longitudinal diffusion coefficient since questions have
been raised™ regarding the accuracy of the multiterm cal-
culations of Dy for N, and because of erratic results ob-
tained in the present calculations. Unfortunately, the is-
sue is clouded by the question of runaway effects, i.e.,
Kunhardt and Tzeng® find that their set of anisotropic
cross sections results in the failure of the calculated dif-
fusion coefficients to reach steady-state at E/n= 1500 Td
as required for the validity of the hydrodynamic model.
At lower E/n their results show changes with the scatter-
ing model which are similar to ours in sign but usually
larger in magnitude. An important question here is the
precision of their Monte Carlo calculations. The changes

in W and {e) shown in Fig. 6 are significantly smaller
than those calculated by Kiiciikaparci and Lucas® using
less accurate differential scattering data.

B. Effects of two-term approximation

In the course of the present calculations we have ex-
tended the comparisons of results obtained using the two-
term and six-term spherical-harmonic expansions to
higher E/n for electrons in N,. Representative results for
the electron energy distributions at high E/n (1500 Td)
are shown in Fig. 5, where at high energies the lower pair
of curves were calculated using the two-term approxima-
tion and the upper pair were calculated using the six-term
approximation. The relatively large change in the num-
bers of high-energy electrons is ascribed to the failure of
the two-term spherical-harmonic approximation when the
ratio of the inelastic cross section to the elastic cross sec-
tion is large. This tendency toward streaming in the
direction of the acceleration is in part due to decreasing
inelastic cross sections with increasing electron energy at
high energies. We have verified the relation between large
fractional excitation cross sections and the error in fy{€)
for the two-term approximation using model cross sec-
tions and a simplified Boltzmann equation.® Note that
for the high E/n of Fig. 5 the energy gained per elastic
collision by low-energy electrons is about 10 eV.

The results of the calculations of the errors in transport
and rate coefficients for the two-term approximation rela-
tive to the six-term approximation are summarized in Fig.
7. These calculations are for the anisotropic model. At
low and moderate E/n these results are similar to those
of | for isotropic scattering. Particularly noticeable are
the increasing errors in the triplet excitation coefficients
and the ionization coefficients as E/n decreases. These
errors are caused by the systematic deficiency in
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and spatial coefficients, discussed in Sec. Il. For
the latter purposes, it is particularly important to properly
classify the various ionization and excitation experiments
at very high E/n before attempting comparisons with
theory, rather than to use relationships valid at lower E/n
to convert from one coefficient to the other as is common-
ly done. We will see that there remain significant
discrepancies between theory and experiment at very high
E/n. It appears that both theory and experiment need
improvement.

Figures 8-10 show comparisons of calculated and ex-
perimental transport, excitation, and ionization coeffi-
cients for electrons in N, at moderate and high E/n. The
solid curves show the results of the calculations made us-
ing the anisotropic cross section set discussed in Sec. 11

10 102 103
E/n {(Td)

FIG. 8. Electron drift velocity W and characteristic energy
e Kversus E/n for N,. The anisotropic cross section set from
Sec. 111 and the six-term solution of the Boltzmann equation
were used to calculate the solid curves. The isotropic inelastic
set and the two-term approximation were used to obtain the
dashed curves. The points show selected experimental data.
Symbols and authors are the following: @ Lowke (Ref. 55); A,
Fletcher and Reid (Ref. 55); ¥, Warren and Parker (Ref. 56); B,
Crompton and Sutton (Ref. 56); 4+, Schlumbohm (Ref. 55); x,
Kontoleon et al. (Ref. 56);V, Roznerski and Leja (Ref. 56).
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FIG. 9. Comparison of theoretical and experimental tem-
poral growth constants v/n for the electron density in N, at
high E/n. The calculated curves are designated as in Fig. 8.
The points show experimental data with the following symbols
and authors: @, Frommhold (Ref. 57); 4+ , Dibbem (Ref. 57); A,
Felsenthal and Proud (Ref. 57).

and the six-term spherical-harmonic expansion, while the
dashed curves show the results of calculations made using
the isotropic inelastic model and the two-term spherical-
harmonic expansion form discussed in Sec. Ill. The
points are from experimental data selected as the most ac-
curate and/or recently available data in the various E/n
ranges.

For E/n below 100 Td there is generally good agree-
ment between our calculations and experimental®® time-
of-flight drift velocities shown in Fig. 8. It must be kept
in mind that our drift velocities are calculated without the
ionization corrections given by the second term in Eq. (5)
and the resultant iteration implied by Eq. (10). From the
calculations of Taniguchi et @2 we expect that our cal-
culated drift velocities will be lower than the experimental
time-of-flight velocities when ionization effects are impor-
tant. Thus at E/n near 400 Td in Fig. 8, the two-term re-
sults of Taniguchi et al. and our approximate calcula-
tions show that the second term of Eq. (5) increases the
drift velocity by about 10% and so improves agreement
with experiment. However, the lower experimental values
observed at higher E/n are not predicted®® by the theory
of Sec. Il and may be the result of inapplicability of the
hydrodynamic model or of the difficulties of measure-
ment of such high drift velocities. Because of the com-
mon application of the two-term, isotropic inelastic
model, we show the results of this model by the dashed
curve. As is also indicated by Figs. 5 and 6 this model is



are usually determined by fitting steady-state
solutions of the hydrodynamic equation Eq. (3) to mea-
surements of current ratios in a drift tube with a restricted
area cathode.!®> The comparison in Fig. 8 of calculated
values of characteristic energy shows reasonable agree-
ment with experiment®® at E/n below 40 Td. For E/n
between 40 and 200 Td the comparison is made difficult
by the differences among experiments and the large uncer-
tainties assigned to some of the data. This is unfortunate
since it is this E/n range which is important in compar-
isons of measured excitation and ionization coefficients,
such as shown in Figs. 9 and 10. Also noticeable are the
differences in the ex values calculated using the isotropic
cross-section set and the two-term expansion versus the
anisotropic set with the six-term spherical-harmonic ex-
pansion. As shown in Sec. IV most of the differences
arise from the use of the different spherical-harmonic ap-
proximations. The decrease in the measured ex values
below our calculated values at E/n above 300 Td may be
caused by our failure to include ionization effects in the
calculations for the mobility and transverse diffusion
coefficient or may be caused by departures from the hy-
drodynamic limit. The values of ex for high E/n calcu-

lated by Taniguchi et al.2 using the two-term approxima-
tion including the ionization correction of Eq. (7) lie be-
tween the curves of Fig. 8.

The temporal growth constant v found by the solution
of the Eq. (9) describes the growth of electron density
when the effects of electron-density gradients are negligi-
ble as when observing the spatially integrated growth of
light output or of electron current in a pulsed Townsend
experiment'"'57 or the growth of ionization in magneti-
cally confined discharge with a toroidal electric field.*® In
Fig. 9 we compare measured and calculated temporal
growth constants. At the lower E/n the experimental
values lie somewhat above the two-term, isotropic calcula-
tions as expected from the systematic errors in the two-
term calculations.® At high E/n the fact that the experi-
mental results are too high may be the result of difficul-
ties of interpretation of the measurements.”” Runaway ef-
fects, if present, would be expected to reduce the temporal
growth constant below the maximum value of the ioniza-
tion rate coefficient for monoenergetic electrons indicated
by the chain line.

Since most measurements of excitation and ionization
coefficients are made using the steady-state drift-tube
technique, Fig. 10 shows calculated and measured spatial
growth coefficients as a function of E/n. The normal-
ized spatial ionization coefficients a;/r shown by the
smooth curves of Fig. 10 were calculated from the values
of v and W neglecting the aiDy term in Eq. (13). The
a; /n values calculated using Eq. (13) are higher by as
much as a factor of 1.6 at E/n = 1500 Td. In order to
test these simplified calculations of the spatial growth
constant «;/n, we have solved Egs. {17)—(21) with
v/n =0, m =2, and isotropic scattering for E/n= 1500
Td. This result is indicated by the open circle in Fig. 10
and is to be compared with the result obtained with
a; =v/W as indicated by the open triangle. The ratio of
1.2 is indicative of the expected difference between the
solid curve of Fig. 10 and the exact calculation. These
comparisons show that there is a cancellation of the ef-
fects of the increase in a;/n caused by the {(a; /n )A(nDy )
and higher terms in Eq. (13) and the decrease in «;/n



2944 A.V.PHELPSAND L. C. PITCHFORD 31

using the two-term isotropic model (dashed curve) and ex-
periment, but that at low E/n the values calculated using
the anisotropic six-term model (solid curve) model are too
high. As shown in Sec. IV the difference is largely due to
errors introduced by the two-term model rather than to
errors from the isotropic scattering assumption. The
better fit for the two-term model is the result of the ad-
justment of the magnitude of the vibrational excitation
cross sections so as to fit the excitation coefficient data
rather than to fit transport data. These trade-offs have
been examined previously” using the two-term approxi-
mation. We note that because of the higher excitation
coefficients obtained with the six-term approximation, the
scaling factor which multiplies the reference set of reso-
nance vibrational cross sections could be raised from 1.5
to 1.9 so that the calculated A 3Z] excitation coefficients
fit the experimental values. Evidence for such large vibra-
tional excitation cross sections has been obtained by
Schulz® using electron-beam techniques. However, this
change results in eg values which are about 3% below the
values shown in Fig. 8. This seems outside the spread of
the experimental results and the discrepancy found ear-
lier” is unresolved. (See Note added in proof.) The effect
of the spatial gradient on the calculated spatial excitation
coefficient at 1500 Td, as calculated using Eq. (16) with
Q{, replaced by the sum of the triplet Q’é values, is indi-
cated by the difference between the dashed curve and the
open square. At this E/n the excitation rate coefficient
kiss IS relatively insensitive to changes in the electron-
density distribution caused by the density gradient®® since
the mean electron energy is about equal to the energy of
the cross-section maximum. Therefore, the higher a4 /n
value is caused principally by the lower value of the ¥,
used in the analog to Eq. (16) compared to the value of W
used to calculate the smooth curves.

Figure 10 shows curves of the spatial excitation coeffi-
cients for the C°II, state as calculated using the same
procedure as for the A 32 state. Here we include the small
contribution of cascading from the E3Z,’;F state. The ex-
perimental data from several experiments are shown by
the points. Although the calculated curves for C*IT, ex-
citation agrees in shape with the results’® of Tachibana
and Phelps and the lower E/n data of Legler, it is higher
by 1.3 to 1.9 for low E/n, depending on the technique for
solving the Boltzmann equation. This difference between
calculation and experiment could be removed by lowering
the cross sections for C*I1, and E3):;r excitation. On the
other hand, the lower E/n data of UroSevi¢ et al.'® lies
above the calculation at the lower E/n and below it at the
higher E/n. The effect of the spatial gradient on the cal-
culated excitation coefficient at 1500 Td is indicated by
the difference between the dashed curve and the inverted
open triangle. Judging from this calculation and from the
calculated corrections to the excitation coefficients for
spatial gradient and ionization effects of Taniguchi
et al.,”® we cannot explain the deviations from the E/n
dependence of our calculations observed in the data of
Legler and of Urosevi¢ et al. at high E/n. Note that the
excitation coefficients calculated®® for the C°II, state at
high E/n by Taniguchi et al. and by Tagashira et al. are
much lower than ours for E/n > 200 Td.

V1. DISCUSSION

The results of this paper show that when the electron
Boltzmann equation is solved using realistic approxima-
tions to the differential cross sections for electron scatter-
ing by N, the transport and reaction coefficients for
moderate and low E/n ( < 500 Td) differ by less than 2%
from those in which the inelastic scattering is assumed
isotropic and the elastic momentum transfer or diffusion
cross section is unchanged. At high E/n ( > 500 Td) the
importance of anisotropic scattering increases with E/n.
We have shown that for most transport and reaction coef-
ficients it is more important to allow for the anisotropy of
the electron energy distribution beyond the dipole term
than to include anisotropic scattering. For the analysis of
precision measurements it is necessary to include anisotro-
pic scattering and to use more than two-terms in the
spherical-harmonic expansion of the electron energy dis-
tribution. Also of considerable importance at high E/n
are the corrections to the transport and reaction coeffi-
cients arising from the combined effects of electron-
density gradients and ionization. In the course of this
work we have improved the set of collision cross sections
for N, at high energies and, through the inclusion of reso-
nance rotational excitation, at low energies.

In this paper we have followed the lead of Blevin'® by
minimizing the number of transport and reaction coeffi-
cients calculated for comparison with experiment. We
have also attempted to maintain a clear distinction be-
tween coefficients calculated using various approxima-
tions to the Boltzmann equation and coefficients derived
from experimental data. Thus, application of the density
gradient expansion to the Boltzmann equation in the hy-
drodynamic limit yields a rate equation for the electron
density and a differential equation for each of what we
have called the density gradient expansion transport and
reaction coefficients. Appropriate solutions of the rate
equation for the electron density can be used to analyze
experiments performed using time-of-flight techniques or
current growth experiments in time or space. The trans-
port coefficients determined from analyses of these experi-.
ments are labeled by the experimental technique and can
be compared with the calculated density gradient expan-
sion coefficients. For the analysis of ‘parallel-plane,
steady-state, or time-integrated experiments the assump-
tion of an exponential spatial dependence for the electron
energy distribution and the electron density reduces signi-
ficantly the number of velocity-dependent differential
equations to be solved. The hydrodynamic spatial growth
constant obtained from the solution of this equation can
be compared directly with that obtained from experiment.
The spatial growth constant can be also calculated from
the density gradient expansion transport coefficients
when the growth constant is small enough.

There is satisfactory to good agreement between calcu-
lated and measured transport coefficients for E/n less
than about 100 Td. At higher E/n the difference between
calculations and experiment become large, e.g., 30%. At
the present time it is not clear whether the source of the
discrepancy is in the approximations we used in solving
the Boltzmann equation, in the cross section set, or in the
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experimental data. From the theoretical side it is ‘impor-
tant that better techniques be developed for predicting the
behavior of electrons at higher E/n where departures
from the hydrodynamic model become important. Tech-
niques discussed in the present paper are limited to those
for solution of the Boltzmann equation when perturba-
tions caused by spatial gradients are small or when the
spatial or temporal gradients can be expressed as an ex-
ponential growth. It is important to define the range of
validity of these techniques by solving the Boltzmann
equation without restrictions as to the variation in space
or time. At present such solutions are usually obtained by
the Monte Carlo simulation method,*%** although a few
authors®! have discussed other approaches. Such tech-
niques would also be useful in the treatment of problems
where the initial conditions or boundary conditions exert a
large influence on the solution, e.g., the backscattering or
injected electrons at moderate and low E/n.

The extrapolation of the present results to other gases is
difficult because of our lack of knowledge of the range of
anisotropic scattering parameters. For example, for H, it
appears'* that anisotropic scattering effects are small at
low and moderate E/n, but that they may well be larger
than for N, at high E/n because of indications®»% of
greater anisotropy and a more rapid decrease in Q,,(¢)
with € at high electron energies for H, than for N,. An-
isotropic scattering at low energies and low E/n may well
be of considerable importance in gases, such as H,O and
other polar gases, where the highly anisotropic inelastic
rotational excitation cross section is dominant.%?
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harmonic and the velocity-moment approaches® the
momentum-transfer cross section for elastic scattering of
electrons is given by Eq. (25). For inelastic scattering the
spherical-harmonic technique leads to a definition impli-
cit in Egs. (21) and(28), i.e,
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(A1)

As was discussed in Ill, at moderate E /n, the ratio of the
distribution functions is often small enough so that the
second term in Eqg. (Al) can be neglected and QX (e)
equals its upper limit, i.e., QX (e)=Q&(e). *
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| is the dipole-matrix
element. Here we have used the approximations of Ref.
65, p. 140 in order to obtain a simple closed form. We
find the magnitude of QF in Eq. (A2) to be a sensitive
function of the approximations made. Equation (A2)
shows that the lower limit to Q% (e) behaves like elastic
scattering at high energies. See Strickland et al* Note
that the transition between the limiting forms of Q,’,‘,(e)
discussed here is automatically included in the multiterm
Boltzmann code used in this paper when anisotropic in-
elastic scattering is considered.

The velocity moment method of solving the Boltzmann
equation® leads to a second definition of the momentum-
transfer cross section for inelastic collisions which is
sometimes cited in the literature.®® According to this pro-
cedure the contribution of the kth inelastic process to the
momentum equation, e.g., Eq. (2-38b) of Ref. 64, can be
written as
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E/n. In this calculation we assume
that gas heating occurs as the result of the rapid relaxa-
tion to the gas temperature of rotationally and electroni-
cally excited states. We assume that, while vibrational ex-
citation may be redistributed within the vibrational mani-
fold, vibrational relaxation to translational energy is too
slow to change the gas temperature on the time scale of
the experiments. The experiments shown for E/n below
about 35 Td involved measurements of the increase in
temperature of the flowing gas during a known excitation
time.%® The experiments shown for E/n > 40 Td were
carried out in the positive column of a steady-state glow
discharge® in which the degree of vibrational relaxation is
unknown. The solid curve was calculated using the cross
section set discussed in Sec. lll and using the two-term
spherical-harmonic expansion with isotropic inelastic
scattering. Rotational excitation is the dominant source
of gas heating for E/n below 40 Td. The shape of the ro-
tational excitation cross section used is based on the sum
of the vibrational excitation cross sections of Sec. III B,
the threshold is chosen as outlined in Ref. 70, and the
magnitude is adjusted to fit the experimental data of Fig.
11 for E/n below 40 Td.

E/n {Td)

FIG. 11. Short-time heating efficiency for electrons in N,
versus E/n. The solid curve is the result of our fitting the
resonant rotational excitation to the experimental points. Sym-
bols, authors, and references are the following: B | Culick et al.
(Ref. 68); ®, Napartovich et al. (Ref. 68); A, Londer et al. (Ref.
68); o, Kosoruchkina (Ref. 69); &, Krymanski and Walter (Ref.
69).

For E/n between 20 and 80 Td there is a significant
correction to the calculated gas heating because of gas
cooling or heating during the process of anharmonic vi-
brational relaxation to the vibrational temperature.”! 72
The net anharmonic heating H for molecules initially in
the ground vibrational levels is given by

o

3 v (v)
H= 2% 3 oy = S vk(v)
W(E -
E/m 5 3 op(v) °=1
ve=1

(B

where w, and x, are the vibrational constant and anhar-
monic constant for ground state N, k (v) is the excitation
rate coefficient for vibrational level u, and p (v} is the fi-
nal probability distribution for the vibrational levels. For
our assumed low final vibrational temperature of < 500 K
the ratio

e

S vpw)/ 3 upw)
v=1 p=1

equals 1 and the effect of anharmonic relaxation is to cool
the N,. This cooling is indicated by the fact that for E/n
below 50 Td the final result (solid curve) is below that for
heating by rotational excitation (short dashes). If the en-
ergy stored in vibration were as high as in recent
discharge models,”? then this ratio might be as large as 20
and gas heating by vibrational redistribution would raise
the minimum of the solid curve of Fig. 11 to about 12%.

The curve marked EPR is the sum of the calculated
direct rotational excitation and electronic excitation calcu-
lated by Engelhart e al.,”since their analysis did not in-
clude resonance rotational excitation. The short solid line
is obtained from calculations by Alexandrov et ql.’#
which included resonant rotational excitation cross sec-
tions from Oksyuk.

For E/n above 40 Td there is poor agreement between
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g (v)
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10*  sec™ . (24)

, u (23) eE /3N. The last
two terms in Eq. (19) should be multiplied by j and j + 1,
respectively.
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