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The effects of the form of the distribution in energy of the electrons produced by ioniza-
tion on electron-energy distributions and transport coefficients are investigated theoretically
at high values of the ratio of the electric field to gas density, E/n. The calculations  are car-
ried out for N2 at E/n from 100x  lO-‘I to 3000x lo-21 Vm2  using previously determined
electron-collision cross sections and secondary-electron energy distributions. As the energy
of the secondary electrons and the energy lost by the higher~energy~  scattered electrons is in-
creased, the relative numbers of electrons at very low energies and at high energies in the
calculated steady-state distributions decreases. These changes are accompanied by decreases
in the calculated ionization coefficients, drift velocities, and mean energies and by an in-
crease in the characteristic energy. A simplified secondary-electron energy distribution is
proposed which gives distribution functions and transport coefficients in satisfactory agree-
ment with the those obtained using the published experimental dist~butions.

I. INTRODUCTION

The effect of the secondary electrons produced by
electron impact ionization of atoms or molecules on
electron transport and reaction rate coefficients is
important at high values of the ratio of the electric
field to the gas density, E/n. Recently, Brunet and
Vincent’ have investigated this problem theoretically
for H2 and N2 taking into account the energy distri-
bution of the seconda~  electrons measured by Opal,
Peterson, and Beaty.2 These calculations are an ex-
tension of calculations in which the distribution in
energy of the electrons resulting from ionization has
been approximated by 6 functions3-8  or by a uni-
form distribution.’ In this paper we compare the
electron-energy distributions, ionization coefficients,
and transport coefficients obtained by solving the
B o l t z m a n n  e q u a t i o n  u s i n g  t h e  expe~mental
secondary-electron dist~bution and various approxi-
mate energy distributions in common use. In addi-
tion, we introduce an empirical approximate
secondary-energy dist~bution which yields results in
agr~ment with results obtained with expe~mental
dist~butions but which is much simpler to use. We
will show that this simple approximate formula for
the secondary-electron energy distribution is satis-
factory for most solutions of the electron Boltzmann
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equation. The completion of a similar study utiliz-
ing Monte Carlo techniques has been reported by
Kunhardt and Tzeng. lo

Most calculations of electron-energy dist~butions
make use of the two-term spherical harmonic expan-
sion, i.e., the Lorentz approximation, to represent
the angular dependence of the electron distribution
in velocity space.3’4 This approximation was used
by Brunet and Vincent. A number of investiga-
tors9-14  have found that the convergence of the
coefficients of the spherical harmonics is slow at
high E/n and have questioned the validity of the
two-term approximation. However, several au-
thors14?  l5 find that ionization coefficients calculated
using the two-term approximation agree well with
coefficients calculated using more accurate calcula-
tions of the angular dependence of the electron-
energy dist~bution. We therefore have carried out
most of this investigation using modifications of a
computer program l6 based on the conventional two-
term approximation Here the term “conventional”
is taken to mean a steady-state solution in which in-
elastic collisions are omitted from the equation used
to obtain the dipole 

N2 from electron transport and scattering data.
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Rather than solve the spatially dependent,
study-state form of the Boltzmann equation con-
sidered by Brunet and Vincent, we will consider the
solution appropriate to a spatially independent elec-
tron density which is increasing exponentially with
time. We have considered this form of the problem
in order to facilitate compa~son  with solutions of
the Boltzmann equation given by the first term of
the density gradient expansion as applied to N2 by
Pitchford and Phelps.”  These approximations
mean that our results do not include the effects of
spatial gradients considered in several recent publi-
cations. 14?  I5 The kinetics of the ionization process
and the electron Boltzmann equation are discussed
in Sec. If. The results of the calculations are
presented and discussed in Sec. III.

II. THEORETICAL FORMULATION

This section contains a review of the kinetics of
electron impact ionization as required for applican
tion to the Boltzmann equation for electrons. We
then discuss the form of the Boltzmann equation
used in this investigation.

A. Ionization kinetics

Holstein3 shows that the contribution of collision-
al ionization to the rate of increase of the electron-
energy dist~bution  fc E) for energies between c and
;E +d~ is given by the expression

where 4 &,(  U& is the differential ionization cross
section for the process in which a primary electron
of energy u produces a “secondary’” electron of ener-
gy e, qiCa  ( U,E) is the differential cross section for the
production of a “scattered” electron of energy (I by a
primary electron of energy U,  IZ is the density of gas
molecules and Ui is the ionization potential. Here u
is the speed of an electron with energy E. The first
term of Eq. (1)  accounts for all of the secondary
electrons which reenter the distribution with ener-
gies betw~n  E and e +d c as the result of ionizing
collisions by primary electrons with energies be-
tween 24 =2e+tii  and 00. Similarly, the second
term accounts for scattered primary electrons which
reenter the dist~bution  at an energy E: as the result
of ionizing collisions by electrons with energies be-

tween u==E‘+u~  and u =2~+24.  The third term in
Eq.  (1) accounts for electrons leaving the distribu-
tion at e as the result of ionization collisions. Al-
though the two electrons produced by ionization are
indistinguishable, we use the conventional terms of
secondary and scattered primary to aid in bookkeep-
ing. The relationships among these energies are il-
lustrated in the energy map’* shown in Fig. 1. Here
the abscissa and ordinate are the energy u of the pri-
mary electron before ionization and the energies c of
the electrons produced by ionization. The secondary
electrons are defined as the low-energy product elec-
trons with energies below the dashed line. This line
corresponds to an energy of C= (U - ui ) /2. Product
electrons with energies between the dashed line and
the solid line at E= (U - Ui ) are designated as scat-
tered primary electrons or as scattered electrons.
Note that the indistinguishability of the electrons
and the conservation of energy leads to the require-
ment3 that the distribution in energy IE of electrons
produced by ionization be symmet~cal  about the en-
ergy e= (U - ui )/2. The limits of integration in Eq.
(1) can be recognized in Fig. 1 as the limits of the
energies for secondary and scattered electrons for a
fixed value of E.

Four different forms of the secondary-electron en-
ergy distribution &&,4 are considered in the
present work, As the most realistic form, the dif-
ferential ionization cross section dete~ined from
experiment by Opal, Peterson, and Beaty2 is adopt-
ed. Thus

-

60 80 ICI0
w ENERGY OF PRIMARY ELECTRON u (et,‘)

FIG. 1. Plot of energy of product electrons resulting
from electron impact ionization of N2 vs primary electron
energy. Secondary electrons are defined as those below
the dashed line, while scattered primary electrons are
those between the dashed line and the solid line.



2860 S. YOSHIDA, A. V. PHELPS, AND L. C. PITCHFORD 27

q:eJU,E)=

(2)

where Qj(  u) is the total ionization cross section and

6
= (u - uj )/2,  the distribution in energy of the scat-
tered electrons is related to the distribution for
secondary electrons q f,, ( u, E) by

Qj(u)-

-Warctan[y] 1 +  [ “1,, /1 l

(3)

For each secondary-electron energy distribution con-
sidered the differential ionization cross section is re-
lated to the total ionization cross section by

Qj(  u)= Ji” -Ui”2qb,c(U,E)dE  . (4)

It should be noted that in Eq. (4) qiec (u,d is in-
tegrated from 0 to (u -uj)/2,  rather than to u - uj,

so as to include only one of the product electrons.
Figure 2 shows plots of the distribution in energy

of the product electrons given by Eqs. (2)  and (3)
versus normalized energy for the recommended
value2 of w = 13 eV for N2 and for primary-electron
energies of 20, 50, and 200 eV.  Note that by making
w in Eq. (2) large compared to the largest value of
(u - ui )/2 encountered one can obtain an effectively
uniform product-electron energy distribution.

In addition to the realistic case, calculations were
performed for two extreme cases in order to see the
effect of differences in the sharing of energy among
the electrons produced by the ionization event. The
two cases are the following.

(a) The ionization process in which a secondary
electron appears with zero energy, i.e., along the
horizontal axis of Fig. 1, and a scattered electron is
produced with an energy equal to u - tlj, i.e., along
the solid sloping line in Fig. 1. This differential
cross section may be expressed in the form given by
Thomas,’ i.e., by Dirac 8 functions 6(e) at E=O and
at ECU -Uj. In general, the &function approxima-
tion may be represented by

qL(u,E)=Qj(u)h(E-?)

and

(54

X IO-**

1 . 4

S C A T T E R E D
~SECONDARIES  -v PRIMARIES -

NORMALIZED ELECTRON ENERGY ;ii-
I

FIG. 2. Differential ionization cross sections vs nor-
malized energy of the product electrons as calculated us-
ing the empirical approximation to experimental data
from Opal, Peterson, and Beaty (Ref. 2) for primary ener-
gies of 20, 50, and 200 eV.

where Z is a function of u - ui. However, in the
present case Z= 0. Since this distribution minimizes
the energy of the secondary electron, it also mini-
mizes the energy loss by the scattered electron. This
secondary-electron distribution is equivalent to that
used in solutions of the Boltzmann equation3v4  in
which the secondary electron is accounted for by ad-
justing the flux of electrons entering the distribution
at E=O to equal the ionization frequency. The
product-electron energy distribution given by Eqs.
(5) can also be obtained by setting w in Eqs. (2)  and
(3) to a very small value, e.g., 0.1 eV in our calcula-
tions.

(b)  The ionization process in which both electrons
produced by ionization appear at the center of the
available energy range, i.e., at the energy
e= (u - uj )/2 indicated by the sloping dashed line of
Fig. 1. The differential ionization cross sections for
this case may be expressed in the form of Eqs. (5)
with

F=(U -Uj)/2  . 6)
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This case gives the maximum available energy to the
secondary electron and the largest possible energy
loss to the scattered electron. The distribution given
by Eq. (6)  is that used in the multiterm calculations
of ionization * 5 in N2 and is often identified as the
distribution in which the product electron share
equally the available energy.

Since the numerical solution of the Boltzmann
equation, when formulated using Eqs. (2) and (3), re-
quired considerably longer computer time than
when using Eqs.  (5); we have developed an empirical
product energy dist~bution utilizing 6 functions
which simulates the effects of the experimental
product electron-energy dist~bution.19 These distri-
butions are obtained by using Eqs. (7) and (8) for Z,
i.e.,

(U -Uj)/2 for U <2r+Uj (7)
&

ii fOrU>2C+Uj. (8)

Here u” is an energy chosen to give the best fit to cal-
culations using Eqs. (2)  and (3). In Sec. III we will
present the results of calculations using Eqs. (7)  and
(8) and a value of u4r= 13 eV.

B. Boltzmann equation

The Boltzmann equation for an electron density
which is spatially independent and exponentially in-
creasing with time may be written in the two-term
approximation3?4~  l6 as

6 afo eE a(Efl  )- - + --= -EfO(E)  c &(E)+  2 (E+Uk)eOko+Uk)fo(E+Uk)
vn at 3n ae k=l k=l

+
E af,(e)~$[~~Q~klf~k)]+--
vn at ion

and

E af eE afo*+---E- -
vn at - = -+f 1O Q;(E)+ c Q:kl+Qik)

n ae
I I

= -EQ;k)f l(E) 9
k=l

where n is the gas density, A4 and m are masses of
the gas molecule and of the electron, e is the elec-
tronic charge, Q~(~) is the elastic momentum
transfer cross section (k =O), Q~(~) is the total exci-
tation collision cross section for the kth excitation
process, Qk (4 is an effective momentum transfer
cross section, and f o(E)  and f i (4 are the isotropic
and the anisotropic or dipole components of the
electron energy distribution function. Equations (9)
and (10) also apply to the pulsed Townsend experi-
ment,12  i.e., to the spatially integrated solution of the
Boltzmann equation. In Eq. (9)  we have assumed
that the mean electron energy is large enough so that
terms proportional to the gas temperature3 can be
neglected. Note that in Eq. (10) we have neglected
the excitation and ionization reentry terms, e.g., the
tags Of the fOMI (~+Uk)Q~(E+Uk)f1(E+Uk),
where Q!(E) is the coefficient of the P+,cos@ term
of the spherical harmonic expansion of the differen-
tial cross section for the kth inelastic process. This
approximation has been suggested by several au-
thors’2P20 and is exact when the electron scatte~ng
during excitation and ionization is isotropic, e.g.,
when Q:(E)=O.  However, the electron scattering in

(9)

(10)

N2 is highly anisotropic at the higher energies of the
present calculations,‘~ so that the assumption is jus-
tified for slowly varying cross sections only when
f l(cr+uk  ) is small compared to f l(e). Thus, when
the af /at terms are small we have retained the orig-
inal form of the conventional two-term approxima-
tion15 in which, as pointed out by Baraff and Busch-
baum,21  Qk< )e contains effects due to inelastic col-
lisions.

We make the assumption that the number of elec-
trons is increasing exponentially with time with a
growth constant vi so that the time derivatives in
Eqs. (9) and (10) are replaced by

afow
p=vjfO(E)at

and

afl-=vjfl(E).at

(1 la)

Solving Eqs. (10)  and (11)  for f 1 (~1,  substituting
into Eq. (9) and integrating from c to E= 00 yields
the equation
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Note that for the calculations reported in this paper
the 2m /2M term is negligible except at very low E.
Also note that, because of the use of the backward
prolongation techniques’ 5 for finding f o(E), we have
performed the integration leading to Eq. (12) from E
to w rather than’ from 0 to E. The distribution
function f 0( e) is normalized by

s~~~1’2f~(~)d~= 1 l (13)

Except for the ionization terms, Eq. (12) is very
similar to the Boltzmann equation solved16  at low
and moderate values of E/n. Note that the effects
of growth of electron density described by Eqs. (11)
are similar to those of a collision process which
lowers the magnitude of the dipole component of
the distribution and transfers energy between the
“old” electrons and the new electrons so as to pro-
duce new electrons with the correct mean energy?
Equation (12) is solved numerically using the same
techniques l6 as in the absence of ionization. Because
of the presence of the unknown vi coefficient in Eq.
(12),  it is necessary to obtain f&J by iteration as
discussed below.

In the case of a &function secondary-electron en-
ergy distribution, i.e., Eqs. (5), the ionization terms
of Eq. f 12) are given by

safe [alien

s
00

= 24 =XfC)+Ui ~Qi(~)f~(~)d~

Here x (E) is equal to the value of u -ui for the
desired e as obtained from e=Z(u  - Ui 1. Similarly,
y (E)  is the value of u -Z.Q at the g obtained from
(E=# -Ui  -F( U -Iii). For the case considered by
Thomas’ of Z= A(u -Ui  ), where A is a constant,
x(E)=E/A  andy(E)=E(l-A)-l.  The shorter com-
puter time required for the &function approxima-

I

tion is the result of the simpler integrals of Eq. (14)
compared to those of Eq. (12).

Once f&) is obtained, the following transport
coefficients and reaction coefficients can be calculat-
ed

(16)

(17)

(El= Sgm 3’2E f&Me 3 (18)

where ki is the ionization rate coefficient, W is the
electron drift velocity, Ek
ergy/

=D/p is characteristic en-
and (E) is average electron energy. The

iteration process used to obtain f&z) requires that
the input value of vi/n be adjusted until it is equal
the value of ki from Eq. (15). Often it is more satis-
factory to obtain the correct value of yi by observing
the convergence of the energy balance for the elec-
trons. ’ 5 Note that Eqs. (16) and (17) differ from the
conventional expressions394  for Ek and w because of
the inclusion of vi in the denominator of the in-
tegrands.

III. RESULTS AND DISCUSSION

The results of this investigation are seen from ex-
amination of the isotropic component of the
electron-energy distribution f 0(E),  the ionization
rate coefficient vi/n, the transport coefficients W
and ek, and the mean electron energy ( E). Most of
the calculations were carried out for an E/n of
1500x 1o-21 V m2,  for which the effects of changes
in the secondary distribution are large and for which
the two-term approximation yields values in reason-
able agreement with more detailed calculations.
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Figures 3-5 show calculated el~tron-energy  distri-
butions for the various secondary-electron energy
distributions discussed in Sec. IIA. The various
curves are labeled A through H and the conditions
for which they were calculated are listed in Table I.
Table I also lists the ionization and transport coeffi-
cients calculated from the dist~bution functions.
The last column of Table I shows the large fraction
of the input energy required to produce the new
electron and the positive ion.

A. Fixed E/n

The electron-energy dist~bution calculated when
the reentry of secondary electrons is omitted from
the Boltzmann equation, i.e., when &,(u,E)=O  and
ionization is treated as an excitation process, is
shown by curve A of Figs. 3 and 4. In this calcula-
tion and in the calculations for curves B-E, we as-
sume vjft ( E) =0 in Eq. (1 lb) and neglect vi in the
left-hand side of Eq. (12) and in Eqs. (16) and (17),
so that the assumptions are the same as for most
previous calculations for N2.12922  Note that these as-

z: J/c 1,
0 2 0 4 0 6 0

E L E C T R O N  E N E R G Y  e (eV)

FIG. 3. No~alized electron-energy dist~butions calcu-
lated for E/n = 1500X  10 -21 V m2  and various representa-
tive distributions in energy of secondary electrons. Curve
A is calculated neglecting the secondary electron. Curves
B and C are for values of the width parameter w of 0.1
and 13 eV,  respectively. Curve E is calculated assuming
that the product electrons share the available energy
equally. See Table I for further data for these cases.

E L E C T R O N  E N E R G Y  (eV)

FIG. 4. Normalized electron-energy distributions calcu-
lated for various distributions in energy of the scattered
primary electrons. Curves are those of Fig. 1 and are
identi~ed in Table I. E/n = 1500  X 10e2*  V m2.

sumptions are not made in some of the more de-
tailed recent N2 calculations’5P23  and in cases G and
H discussed below. When the secondary electrons
are included, the relative number of very-low-energy
electrons E < 10 eV is significantly increased as
shown by comparison of curves B, C, and E with
curve A in Fig. 3. Curve B shows the electron-
energy distribution obtained when the secondary
electrons reenter the dist~bution with essentially
zero energy, e.g., ut =O.  1 eV in Eq. (3). The same
distribution is obtained when ionization is treated
like excitation in Eqs. (1)  and the normalized growth
constant Y&Z  in Eq. (1 la) is adjusted to equal the
ionization rate coefficient kj, i.e., when Eqs. (5) are
used with 7=0.  In this case the flux of reentering
electrons determines the strength of the integrable
singularity3*4 in f&) at E=O.

Curves B, C, D, and E in Figs. 3 and 4 show the
effects of progressively increasing the mean energy
of the secondary electrons and, as required by energy
~onse~ation,  of incr~sing the energy lost by the
scattered electrons. As the mean energy of the
secondary electrons increases in going from curve B
to curve E there is a decrease in the number of
very-low-energy electrons. In addition, the high-
energy portions of the calculated distribution func-
tions also decrease as the scattered electron loses
more energy. Thus, the maximum possible energy



S. YOSHIDA, A. V. PHELPS, AND L. C. PITCHFORD 27

100 2 0 0

E L E C T R O N  E N E R G Y  (eV)

FIG. 5. Comparison of normalized electron-energy dis-
tributions calculated using experimental distribution
(curve C), empirical S-function approximation (curve F),
and including the ionization frequency in the fl k) equa-
tion (curves G and H). Squares show the effects of aniso-
tropic inelastic collisions in the two-term approximation,
while the circles show the six-term results with anisotro-
pit scattering. E/n = 1500 X 10e2*  V m2.

loss for the scattered electron and the smallest rela-
tive number of high-energy electrons occur when the
two product electrons share the available energy, i.e.,
when E=(U - ui )/2 as for curve E. Also of interest

is the change in slope of the energy distributions of
Fig. 4 which occurs at electron energies from 100 to
200 eV. At energies above this range the cross sec-
tions for energy loss decrease with increasing energy
and the electrons tend to undergo runaway,24  partic-
ularly when the energy loss to ionization by the scat-
tered electrons is small as for curve B. Because of
the incipient runaway effects shown by experimental
Townsend ionization coefficient measurements25  for
N2, we have  l imi ted  our  ca lcu la t ions  to
E/n <3ooOx  10q21  Vm2.

Cu&e F of Fig. 5 and the corresponding entries in
Table I show the results of calculations using the
empirically adjusted 6 function approximation to
the product electron-energy distribution given in
Eqs. (7) and (8). In this case the reaction and trans-
port coefficients are within 5% of those calculated
with the Opal, Peterson, and Beaty distribution and
shown by curve C. The other electron-energy distri-
butions of Fig. 5 show the effects of refinements in
the Boltzmann equation used for the calculations.
Thus, curves G and H show the effect of including
the exponential growth of the electron distribution
as represented by vi in Eq. (10) for the dipole com-
ponent of the energy distribution fl< E) and are to be
compared with curves C and E, respectively. Curve
G and the corresponding transport coefficients in
Table I are the most accurate of the results obtained
with the two-term approximations presented in this
paper. A comparison of the entries for curves C and
G and for curves E and H in Table I shows changes
in the ionization and transport coefficients of less
than 10% with the largest changes occurring in the
drift velocities, i.e., in coefficients where vi enters
directly into the calculation through Eqs. ( 16) and
(17). The r 1 t’e a ive changes in fO(  ~1 caused by

TABLE I. Calculated ionization and transport coefficients for electrons in N2 at
E/n =1500X 10A2’ Vm2.

Case q:,(U,E)
ki

(m3/sec)
W ck

h/set) (eV)

Percentage
energy to
ionizationb

A None 4.01(  - 14)” 8.40(5) 22.9 34.1 75.7

B
z=o

Eqs.  (2) and (3) 1 0.1
2.44(  - 14) 9.52(5) 15.2 23.8 66.9

C ’ E&. (2) and (3) ’ 13 2.33(  - 14) 9.17(5) 15.5 23.2 65.3
D Eqs. (2) and (3) 500 2.28(  - 14) 9.10(5) 15.6 23.1 64.6
E Eqa 6) 2.22(  - 14) 8.94(5) 15.8 23.0 63.7
F Eqs. (7) and (8) c=13 2.24(  - 14) 9‘00(5) 15.8 23.1 64.3
GC Eqs. (2) and (3) 13 2.17(  - 14) 8.56(5) 15.0 22.4 63.9
HC Eq. (6) 2.09(  - 14) 8.41(5) 15.2 22.2 62.5

a4.01(  - 14) means 4.01 X 10-14.
qhis  is equal to lOO(~i/n)(~i  + (c) )( WeE/n)-‘.  See, for example, Eq. (12) of Ref. 5.
‘Note that the vi term was included in Eqs. (lo), (16), and (17) for these cases.
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changes in qieC (u,E) are nearly the same when vi is
included in Eq. (10)  as the changes shown in Figs. 3
and 4 for calculations when vi is omitted.

We now compare the electron-energy distribution
and associated transport coefficients obtained using
the present techniques with the results obtained us-
ing the techniques for solution of the Boltzmann
equation which are described in Ref. 17 for N2. The
electron-energy distribution fO( E) calculated using
the latter techniques for the conditions of curve H
of Fig. 5, i.e., for an equal sharing of energy by the
product electrons, the inclusion of the time deriva-
tive in the dipole equation and treating inelastic
scattering as isotropic in a two-term spherical har-
monic approximation, is virtually indistinguishable
from curve H for the range of the calculations
(cc 170 eV). Goo agreement between the two pro-d
cedures is also obtained for the conditions of curve
E of Fig. 4. The transpo~ c~f~Gients in both cases
differ by 3% or less from those listed in Table I.
These comparisons show the consistency of the
present calculational procedure with that of Ref. 17
and show the usefulness of the effective momentum
transfer cross section defined by Eq. (10)  when the
electron scattering is isotropic.

Finally, we briefly consider the effects of aniso-
tropic electron scattering. Thus, the solid squares
and circles of Fig. 5 show the results of calculations
of j’*(e) in which the complete set of anisotropic
scattering cross sections of Ref. 15 were used for
two-term and six-term calculations.  In particular,
the differences between the squares and curve H
show the errors resulting from the approximation of
Eq. (10) in which the terms involving the asym-
metric components of the inelastic cross sections,
e.g., the Q:(E), are neglected. The ionization coeffi-
cient and drift velocity are 8% higher and the
characteristic energy is 3% lower for the anisotropic
scattering calculation than for curve H. The higher
drift velocity results from the reduction in the con-
tribution of collisions to the multiterm version of
Eq. (10) at energies above about the mean electron
energy. Similarly, the larger ionization coef~cient
results from the larger f*(E) for e > (c). The differ-
ences between the circles and the squares show the
effect on fo< E) of changing from a two-term solu-
tion to a six-term solution,” e.g., the results show
the expected” 20% decrease in the slope of fo( e )
when the larger number of spherical ha~onics  is
used. On the other hand, the ionization coefficient,
drift velocity, and mean electron change by less than
0.5% from the two-term, anisotropic scattering re-
sults. This unexpectedly small change in the ioniza-
tion coefficient is the result of the changes in f&1
due to changes in slope and renormalization, i.e., a

decrease in ionization by electrons with e < 50 eV
and an increase in ionization by electrons with E > 50
eV. A similar cancellation of changes occurs for the
other coefficients.

We conclude that when the same secondary-
electron energy distribution and angular scattering
dist~bution is used in both calculations, the ioniza-
tion coefficient, drift velocity, and mean electron en-
ergy are reasonably accurately given by the two-term
approximation described in this paper. However,
accurate calculations of the high-energy portion of
fo(~) and of ok require the multiterm solutions. It
will be recalled” that the situation is similar at low
E/n in Nz,  where the errors in the calculated distri-
bution function at the higher electron energies and
in the excitation coefficients can be large. The rela-
tion between two-term and higher multiterm solu-
tions with isotropic and anisotropic scattering at
high E/n is considered in more detail elsewhere?

B. Variable E/n

The calculations discussed in the preceding para-
graphs for 1500x 10s21 V m2 have also been carried
out for 100X 10e2’ Vm2<E/n  <3OOOX1O-21  Vm2- -
and for several of the secondary-electron distribu-
tions listed in Table I. Figures 6 and 7 show the cal-
culated values of the ionization coefficient, the elec-
tron drift velocity, and the characteristic energy Ek
for the cases in which the secondary electron was
neglected (curves A); in which the secondary elec-
tron was given zero energy (curves B);  and the ex-
perimental distribution in energy of Eqs. (2)  and (3)
(curves C). These results show that the effects of
secondary electrons on all three coefficients are
negligible for E /n < 300 x 10m21  V m2, as assumed
by Engelhardt, Phelps, and Risk.22  The calculated
ionization coefficients in Fig. 6 are only moderately
sensitive to the detailed form of the secondary-
electron energy distribution provided the secondaries
are included. Note that these calculated ki values
are significantly higher than the values calculated
from the measurements of the spatial growth of
electron current by Folkhard and Haydon which
are shown by the points in Fig. 6. According to the
calculations of Taniguchi, Tagashira, and Sakai23
for N2 this difference is approximately that expected
between calculations which take into account the
temporal growth of the electron density and calcula-
tions which take into account the spatial growth of
electron density.

The changes in electron drift velocity with
changes in secondary-electron energy distribution
shown in Fig. 7 are small. Also, the agreement with
the expe~mental  values26-28  is reasonably good.
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FIG. 6. Ionization coefficients for N2 calculated using
various approximations for the distribution in energy of
the secondary electrons (curves A-C). Experimental data
from Ref. 24 are shown by the points for comparison with
theory.

The calculated values of the characteristic energy
are very sensitive to whether or not the secondary
electron is included in the Boltzmann equation but
are relatively insensitive to the details of the distri-
bution in energy of the secondary electron. We note
that the average electron energies in Table I show
m u c h  t h e  s a m e change with the assumed
secondary-electron distribution as do the charac-
teristic energies. Both of these energies rise very
rapidly with E/n at high E/n, as expected when the
runaway condition is approached25  at E/n near
3400x lo-*l Vm*.  As shown in Fig. 7, the calcu-
lated values of the characteristic energy at E/n
values above 400x  lO-*l V m* are much larger than
the experimental data taken from Kontolen, Lucas,
and  Virr.29 As mentioned above, the calculated
values of Q are expected to be somewhat in error
because of the failure of the calculations shown in
Fig. 7 to take into account density gradients.‘7923
However, the characteristic energy calculated at
E/n =1500x  lo-*l Vm* us ing  the  mul t i t e rm
spherical harmonic technique*’ is also significantly
larger than the experimental data.

IV. SUMMARY

The calculations of electron-energy distributions
and of ionization and transport coefficients present-
ed in this paper confirm previous conclusions that it

E / n  (V m2)

FIG. 7. Electron drift velocities and characteristic ener-
gies calculated using various approximations to the distri-
bution in energy of secondary electrons. The points are
the results of experiment, i.e., Cl, Ref. 26; & Ref. 27; 0,

Ref. 28; l , Ref. 29.

is necessary to include the effects of the production
of new electrons by collisional ionization. In addi-
tion, we found that the number of very-low-energy
and of high-energy electrons is a sensitive function
of the distribution in energy of the scattered and
secondary electrons. While the calculated ionization
and transport coefficients are less sensitive functions
of the secondary-electron distribution, accurate cal-
culations require a reasonably accurate representa-
tion of the secondary distribution. In order to sim-
plify the numerical calculations we have developed
an empirical h-function representation of the distri-
bution in energy of the product electrons which
yields solutions to the electron Boltzmann equation
and transport coefficients which are in good agree-
ment with calculations based on the experimental
secondary-electron distributions. Now that simple
and reasonably accurate representations of the ef-
fects of realistic secondary and scattered electron-
energy distributions have been found for gases such
as N2,  we can concentrate our efforts to obtain reli-
able solutions of the electron Boltzmann equation at
high E/n on problems such as the high degree of
anisotropy of the distribution function at high-
electron energies.
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