Molecules between the Stars

The discovery of chemical compounds in interstellar space has led to the new field of astrochemistry and a rethinking of how stars are born.

Chemistry dominates existence on earth—it affects the weather, the flow of energy, and most important for us, it is essential to all life processes. But until about thirty years ago, astrochemistry, or the chemistry of regions beyond the solar system, was a largely neglected field of research. The main reason is that astronomy was then primarily dependent on optical instruments, and the objects in the universe under study were those giving off optical radiation. These are the visible stars and nebulae—the gas and dust clouds between the stars—which are typically so hot that chemical compounds cannot survive in them. Molecules there are torn apart into their atomic fragments as soon as they are formed. The spectra of most stars and nebulae accordingly show lines characteristic of free atoms but no indication of molecules.

There were, however, two notable exceptions. Optical spectra of cool red stars did show complex absorption bands indicating the presence of a few simple molecules such as carbon monoxide (CO) and titanium monoxide (TiO) in their atmospheres. And the spectra of certain other stars showed features resulting from absorption by such molecular fragments, or free radicals, as methylidyne (CH), ionized methylidyne (CH⁺), cyanogen (CN), and hydroxyl (OH). Analysis showed that these molecular fragments were not in the atmosphere of the stars but rather in the cool, diffuse clouds of interstellar gas that lie between the stars and the earth. Until 1963 these were the only interstellar molecules known, and few astronomers paid much attention to them.

Among the triumphs of astrophysics in the past few decades has been the discovery that stars burn by nuclear fusion in their cores with the resultant understanding of the details of the structure and evolution of these objects. We currently have a good idea of how long a star will last before it finally burns out and dies. Chemistry plays only a minor, almost negligible role in most of the lifetime of a star except at its birth—the condensation of a star from an interstellar gas cloud—when it clearly plays a crucial role. The observation thirty years ago of optical absorption lines due to the few simple molecules in interstellar clouds already mentioned was the first piece in a complicated jigsaw puzzle of interstellar chemistry. Thanks to radio astronomers, many more pieces have been turning up in recent years at an accelerating rate. At the time of this writing, some twenty-six different molecules have been identified in interstellar space. There is good reason to hope that when all the evidence is sorted and put together, it will complete our understanding of the full life cycle of the stars.

To comprehend the relation between chemistry and star birth, we must begin with a description of the relationship between the stars and the interstellar gas that makes up about 10 percent of the mass of our galaxy. This gas, like the matter in stars, is composed mostly of hydrogen and helium with small traces of most other elements. When stars approach the end of their normal lifetimes, they first become red giants, like Betelgeuse in the constellation Orion. These aging stars have huge atmospheres that are cool and dense enough to enable tiny grains of graphite, silicates, and other chemical compounds to form. The pressure of the radiation com-
Cristina found a friend

One who is helping her survive

Cristina Aguilar’s case is typical.
Her father works long hours as a sharecropper despite a chronic pulmonary condition that saps his strength. Her mother takes in washing whenever she can. Until recently, the total income of this family of six was about $13.00 a month. Small wonder that they were forced to subsist on a diet of unpolished rice, swamp cabbage, and tiny fish the children seine from a nearby river.

Now Cristina enjoys the support of a Foster Parent in Tennessee whose contribution of sixteen dollars a month assures Cristina and her entire family of better food and health care. And, when Cristina is old enough, the help of her Foster Parent will give her a chance for an education, an opportunity to realize whatever potential she has to offer to this world.

How can such a small monthly contribution do so much in the life of Cristina’s family? In the underdeveloped countries where Foster Parents Plan is at work, the need is so great, the poverty so deep, that very few dollars can make a tremendous difference. In fact, with PLAN programs and services in place, the very communities where Foster Children live are aided toward self-improvement.

To become a Foster Parent is a special responsibility . . . and a most rewarding one. You become an influence in shaping the life of your Foster Child. You come to know the child through photos and a regular exchange of letters. Progress reports show you vividly how much good your contribution is doing. Of the many fine causes that ask for your support, few can offer you such a tangible and immediate way to help others.

Today, more than ever, people like you are needed to join in this wonderful work. Hundreds of children wait in desperate, often shocking, circumstances for a Foster Parent to offer them a hand toward a decent life.

Please join us if you can . . . or let us send you more details about how PLAN is working around the world.

FOSTER PARENTS PLAN, Inc.
Box 403, Warwick, Rhode Island 02886

YES, I would like to know more about becoming a Foster Parent.
Please send me the full facts □.
I am ready now to become a Foster Parent to a boy □ girl □ age ______ country ____________ or whoever you feel needs me most □.
Please send a photo and case history of the Foster Child. Enclosed is my first contribution □ $16 monthly, □ $48 quarterly, □ $192 annually.
I can’t become a Foster Parent now. I enclose a gift of $ ______

NAME ____________

ADDRESS ____________ DATE ____________

CITY ____________ STATE ____________ ZIP ____________

In Canada, write 153 St. Clair Ave. West, Toronto, Ontario M4V 1P8

PLAN operates in Bolivia, Brazil, Colombia, Ecuador, Peru, Indonesia, Korea, Haiti, Viet Nam, and the Philippines. PLAN is registered with the U.S. State Department Advisory Committee on Voluntary Foreign Aid. All contributions are tax deductible. Foster Parents Plan, Inc. is a non-political, non-profit, non-sectarian, independent relief organization.
ing from a star’s interior blows these grains out of the star’s atmosphere into interstellar space, and the grains drag along a good deal of the star’s gaseous atmosphere. This process is probably one of the mechanisms whereby vast regions of interstellar space are filled with cosmic dust and explains the dark areas seen in the Milky Way, especially in the constellations Sagittarius and Scorpius toward the center of the Galaxy. When stars finally die, they often do so with violent supernova explosions, which return most of their remaining gaseous material to interstellar space.

At the same time that some stars are dying, new stars are being born from the interstellar gas. The propensity of the gas to condense through the force of its own gravity causes it to fragment into interstellar clouds. These clouds collapse and fragment still further until the little fragments become hot and dense enough to begin burning as stars. Thus, the interstellar gas is a reservoir to which stars return much of their material at death and from which new stars are born in the Galaxy. An example of this process is found in the Great Nebula in the sword of Orion—a dense gas cloud illuminated by some very bright young stars. With infrared telescopes scientists can observe deep within the dark dust cloud behind the Orion Nebula from which visible light cannot escape. There one finds a number of luminous infrared sources that are probably newly forming protostars. Perhaps in another few million years enough young stars will form in this cloud to illuminate and heat a region of gas much larger than the present nebula. The resultant, spectacular display of hot fluorescent gas would

Lars-Eric Lindblad invites you on journeys to the great continent of South America. Here you may visit some of the most scenic areas in the world. Ethically and culturally they are also very exciting. For it was here that the proud and peace-loving civilization of the Incas spread their empire from shore to shore. And on Easter Island a pre-historic people erected huge stone statues that even today puzzle anthropologists. Seek out and witness the achievements of these amazing cultures. Perhaps you want to explore the headwaters of the mighty Amazon or visit Tierra del Fuego on an incredible Nature Tour. All of these expeditions are fully described in our ‘Lindblad in South America’ brochure. Write for it today or see your travel agent.

LINDBLAD TRAVEL, INC.
Dept. NHSA1274
133 East 55th Street, New York, N.Y. 10022
(212) 751-2300

POPULAR ARCHAEOLOGY

Popular Archaeology is a magazine that brings you the Mystery and Excitement of the Search and Excavation. The archaeology that is covered in each issue is on a worldwide basis with special emphasis on the prehistory and history of the United States.

Order from:

P.O. Box 4211
Arlington, Virginia 22204

Name

Address

City, State, Zip

☐ Payment of $9.50 is enclosed for one year.
☐ Payment of $18.00 is enclosed for two years.
☐ Payment of $25.00 is enclosed for three years.

Please Print
bear witness to the formation of a new star cluster. The remaining gas would be so hot it would again dissipate and spread over a vast region of interstellar space. This action may currently be taking place near the young hot stars of the Pleiades cluster, which are bathed in a faint nebula that is probably the remnant of the gas cloud from which the cluster was formed.

Although we understand in general terms that gravity is responsible for the collapse of interstellar gas clouds and the formation of stars within them, the details of the star formation process remain obscure. The situation is analogous to the problem of rain—we know that all rain comes from clouds, but not all clouds produce rain. All stars come from interstellar gas clouds, but not all interstellar clouds produce stars. What are the necessary conditions for the condensation of stars, and what determines the masses of the resulting new stars?

Fortunately, astronomy is no longer limited to relatively short, visible wavelengths. Optically opaque interstellar clouds, within whose depths stars are born, become transparent to infrared telescopes at the longer infrared wavelengths. As have been mentioned, astronomers have observed infrared sources inside the Orion dust cloud and believe these to be protostars. But infrared astronomy is still in its infancy. So far it has provided some information on the temperature and luminosity of protostars, but little of the high-precision spectroscopic information that has yielded so much data about the structure and composition of optically visible stars.

Interstellar dust clouds are also transparent to radio waves, and in the past decade the technology of radio astronomy has developed to the level where high-precision radio spectroscopy is possible. A brilliant series of observations has resulted in the discovery that cool interstellar clouds are filled with molecules.

Unlike an atom, a molecule can tumble end-over-end; its component atoms can also vibrate with respect to each other in internal motions. When a molecule changes its internal motion, radiation is emitted or absorbed at a precise and characteristic frequency. Typically, these frequencies fall in the radio wave or

Catch 'em ALIVE 'n UNHURT

Official HAVAHART trap captures invading squirrels, rabbits, opossum, rats, mice, rats, snakes, and other vermin. Metal tops and covers protect from weather, make trap more effective. Can be set with one or both doors open. Fully adjustable. Set with sprigs to break. Extremely durable, many in use 20 years. Send 25c (credited to first order) for exclusive guide to good trapping and price list.

HAVAHART, 158 Water St., Ossining, N. Y. 10562
Please send new guide and price list.

A naturalist’s adventure in the heart of Europe:

The Swiss Safari
AUGUST 23 TO SEPTEMBER 6, 1975

The first and last nights of this innovative tour are at deluxe hotels for the main part of the safari we stay at inns that never advertise, a mountain refuge and a farmhouse; we visit Roman excavations and baroque churches, we choose being made, meet local people and savour local dishes and wines.

A highlight of the safari is the sunrise hike through the totally unspoiled Swiss National Park, teeming with wildlife.

Detailed brochure available from:
HANNIS EBENSTERN TRAVEL, INC.
55 WEST 42 STREET, NEW YORK, NY 10036
TELEPHONE (212) 564-8636

Weekends IN THE WILDERNESS

Adirondack, High Peaks, Catskills.
Instruction in mountaineering, survival, backpacking
On foot, snowshoes, ski, in canoes.
Also 9 to 13 day Concentrated Courses.
Write for Fall, Winter, Spring schedule. North American Wilderness Survival School 200 Cornwall Avenue, Upper Montclair, N.J. 07043. Tel: (201) 783-7711

NATURE ON STAMPS

The BIRDS & THE BEES & THE ANIMAL KINGDOM on GENUINE POSTAGE STAMPS.
SAMPLES & APPROVALS $1 Satisfaction Guaranteed

Mil Med Stamps
P.O. BOX 297-NH
AURORA, CO. 80015
infrared range. This circumstance gives each molecule a characteristic radio fingerprint by which astronomers can deduce molecular abundances deep inside an interstellar cloud, just as optical spectra are used to deduce the atomic composition of hot stars and nebulae.

A radio telescope used to identify the composition of interstellar clouds is like a cosmic nose that sniffs around where stars are born. What such a cosmic nose would smell would be the noxious vapors of such compounds as carbon monoxide (CO), hydrogen cyanide (HCN), methyl, or wood, alcohol (CH₃OH), ammonia (NH₃), ether (CH₃OCH₃), and various other molecules, all nicely preserved in formaldehyde (H₂CO). In addition to the twenty-six molecules that have already been seen and identified, a half-dozen or so radio spectral lines have been observed but have not yet been identified with known molecules.

The abundance of interstellar molecules was a great surprise to most astronomers. The environment of interstellar space is a hostile one for molecules. Ultraviolet light from stars destroys most molecules in a decade or so, much less time than that required for new molecules to form. Molecules can survive only in the cool opaque interstellar clouds where dust grains are dense enough to shield them from the high-frequency radiation of starlight.

Besides providing a sheltered environment for molecules, interstellar dust plays a vital role as a catalyst for molecule formation. Chemical reactions proceed extremely slowly at the densities and temperatures of interstellar clouds. By analyzing the radio spectrum lines from molecules, astronomers have determined that these clouds have low gas densities on the order of one million molecules per cubic centimeter, about equal to that in the best laboratory vacuum ever achieved on earth, and temperatures ranging from about -268°C. (5° above absolute zero) to -180°C. The time required under these conditions for two hydrogen atoms, for example, to collide with each other and stick to form a molecule of H₂, the ordinary hydrogen gas found on earth, is far greater than the estimated age of the universe. One hydrogen atom flying around in interstellar space might collide with

AN ORDINARY DOG IN AMERICA EATS BETTER THAN SHE DOES.

Cristina eats whatever she can find in the garbage. And that is far less than some prowling dog would find in your garbage cans.

For just $12 a month, you can save such a child.

Through our Children, Inc. "Adoption" program you can help provide a child with a better diet, new clothes and medical attention. Even an education.

But there's not a moment to lose. Every 60 seconds, five or six more children will die from starvation.

Write direct to Mrs. Jeanne Clarke Wood, Children, Incorporated, Box 5381, Dept. NH120, Richmond, Va. 23220.

I wish to "adopt" a boy ☐ girl ☐ in ______ Name of Country ______

I will pay $12 a month ($144 a year). Enclosed is my gift for ☐ a full year ☐ the first month. Please send me the child's name, story, address and picture.

I understand that I can correspond with my child, and continue the "adoption" longer than one year if I wish. Also, I may discontinue the "adoption" at any time.

☐ I cannot "adopt" a child, but want to help $________.

☐ Or, I will pledge $________ per month.

☐ Please send me further information.

☐ If for a group, please specify.

Name __________________________ Address __________________________

City __________ State __________ Zip __________

Church, Class, Club, School, Business, etc.

You can "adopt" a child from any of the following countries: Bolivia, Chile, Colombia, Guatemala, Honduras, Hong Kong, India, Iran, Japan, Korea, Lebanon, Mexico, Nigeria, Paraguay, Peru, Syria, Thailand, U.S.A., Appalachian children or American Indians. (Or a child of greatest need.) All gifts are fully tax deductible.

CHILDREN, INCORPORATED
Discover Galapagos
For the discriminating traveler who wishes to visit the unique Galapagos Islands at leisure, the only way is on our two-week cruises aboard the motor yachts Catharca and Laura Maria, with a naturalist guide.

Discover Belize
The British-owned 12-passenger schooner Golden Cachalot with its dedicated crew has moved to the little-known waters of the Gulf of Honduras, and operates two-week voyages of discovery, touching at landing places in Belize, Guatemala and Honduras, with visits to the barrier reefs and cays and forays inland; for naturalists, archaeologists and others of enquiring minds.

Both these cruises operate all year round and departures are scheduled until the end of 1975.

Brochures on both programs are available from:
HANNS EBERSTEIN TRAVEL INC
55 WEST 42 STREET, NEW YORK, NY 10036
TELEPHONE (212) 354 6634

another in a few weeks, but they would hardly ever stick together. For an H_2 molecule to form, the pair of atoms must emit radiation during the moment of collision. At the temperatures of interstellar gas clouds, atoms do not emit radiation when they collide with one another—they simply bounce off each other. Thus the chance for this radiative association reaction to take place is infinitesimally small. What is nearly impossible for atoms in flight, however, may not be so unlikely on a bed of graphite. Hydrogen atoms in the gas clouds are constantly running into the surfaces of the dust grains where they can stick until they find a mate and become molecules.

Once molecules have been formed, they can swap partners in a chemical exchange reaction. For example, the ubiquitous hydroxyl radical (OH) might be formed when an oxygen atom trades places with one of the hydrogen atoms in the H_2 molecule in the reaction $O + H_2 \rightarrow OH + H$. Such reactions in the gas might build up a rich variety of molecules in the cloud even if only H_2 molecules are formed on cosmic dust grain surfaces. This kind of activity, however, is strongly inhibited by the chilly interstellar environment. For atoms and molecules to change partners, the chemical bond of the original pair must first loosen, and that requires some heat. The interstellar clouds are far too frigid for much chemical exchange to take place between ordinary molecules (that is, the molecules we are familiar with on earth) or even the highly reactive radicals. But not all atoms and molecules in interstellar space are ordinary. Along with gas and dust, interstellar space contains cosmic rays, electrically charged bare nuclei of atoms that streak through the gas at almost the speed of light and strip electrons off atoms and molecules. The legacy of the cosmic rays is a small fraction of ions and ion molecules—atoms and molecules that lack one or more pieces from their neutralizing shroud of electrons and thus have a net positive charge of electricity. The electrical influence of an ion is so strong that even at the lowest temperatures it can easily disrupt the bonding of a molecule and initiate chemical reactions. In contrast to neutral atoms and molecules, the ions are con-

BUSHNELL 7x35 CUSTOM
Mfg. List $149.50
Postpaid $89.50
This is an example of the deep discount prices on high quality optics that is found in our FREE catalog. This catalog lists and illustrates an outstanding selection of binoculars, telescopes, microscopes, telescopes, binoculars etc., plus valuable information on how to properly select them. Write for it today.

COURTHOUSE SQ., KNOXVILLE, ILL. 61448

DROLL YANKEES HUMMINGBIRD FEEDER has 3 feeding stations, a three year guarantee, and is simple, strong & easy to clean. $8.25 postpaid.
Write for free catalog of our bird feeders & bird song phono-recorders.
DROLL YANKEES INC., Box 98-N
Foster, Rhode Island 02825
Telephone orders: 401/647-2727

CRUISE INLAND FLORIDA
Relax 5 days on the Lazy Bones plus sightseeing and swimming jaunts in Everglades country, $187 complete. Mid-Dec. thru April. Featured on Jack Douglas TV series. For brochure and reservations write:
Capt. Stan Maurer SHANTY BOAT CRUISES
Box 3660, Fort Myers, Florida 33902

ATTENTION ANIMAL LOVERS
Ted and Pat Derby will conduct a 6 week course in their techniques of the care and handling of wild animals. Interested persons, call (805) 688-3634, or write P.O. Box 1786, Buellton, CA. 93427.

BOOK HUNTING?
Virtually any book located—no matter how old or long out-of-print. Fiction, nonfiction. All authors, subjects. Name the book—we'll find it! (Title alone is sufficient.) Inquire, please. Write: Dept. 65, OPTICS
BOOKS-ON-FILE
UNION CITY, NEW JERSEY 07087
stantly swapping and stealing atoms to build complicated molecules in an environment of simpler ones.

Radio and infrared observations indicate that stars form in the same dense regions of the sky in which most interstellar molecules are found. The molecules are therefore thought to play a vital role in initiating the star formation process. Gravity gives interstellar clouds a propensity to collapse, but that does not assure the formation of stars. There are many effects that resist gravity. Ordinary thermal pressure, for example, tends to make the gas clouds expand. Without some mechanism to radiate away their heat energy, interstellar clouds would reach an equilibrium between gravitational attraction and thermal pressure, and no stars would form. That mechanism may be interstellar molecules.

When molecules collide with each other, the internal motions of which they are capable are excited. Thus, unlike interstellar atoms, colliding molecules can emit radiation and are therefore able to rid interstellar clouds of their heat energy. The radio emission lines astronomers have observed, those from carbon monoxide molecules, for example, may be the very radiation by which a gas cloud gets rid of its heat energy and begins to fragment into a cluster of stars.

Although the study of interstellar chemistry is still in its infancy, it has already indicated that molecules probably play a vital role in initiating the gravitational collapse that leads to the birth of a star. It also seems likely that the chemistry of charged ions plays an important role in the formation of molecules. These ions are made by cosmic rays in interstellar space. The rays probably come from supernova explosions that occur in our galaxy every century or so when a massive star runs out of fuel and collapses. In this parting shot, a dying star sprays the interstellar medium with radiation, thereby insuring that the Milky Way remains a fertile place, where star birth can continue for eons to come.

Richard McCray is an associate professor of physics and astrophysics and a fellow of the Joint Institute for Laboratory Astrophysics of the University of Colorado and the National Bureau of Standards at Boulder, Colorado.
LIVE IN THE WORLD OF TOMORROW...TODAY!
And our FREE 164 PAGE CATALOG is packed with exciting and unusual values in ecological and physical science items—plus 4,500 finds for fun, study or profit—for every member of the family.

A BETTER LIFE STARTS HERE

ACTUAL WORKING SOLAR HOME PLANS
Learn all about the most fascinating possible home of the future. It can be your "now" answer to today's energy crisis in housing. Expert Dr. Harry E. Thomason tells advantages, problems, savings, and more in his important 20-pg fact-filled booklet. Also includes 8-page oversize insert of basic, actual solar home plans, a valuable guide-line to you and your architect in fitting space requirements, design ideas, and local area building codes.

No. 9440E (Solar House Plans) $10.00 Ppd.

PRO ELECTRONIC SOUND CATCHER
Parabolic mike w/16½° reflecting shield & 2 I.C.'s in amplifier magnifies signals 100X that of semi-directional mikes. Catch a lounging ½ mile off; QB's huddle strategy; sounds never before heard. Super-directivity gives strongest signal to noise ratio pos. Safe; auto; cuts off ear damaging noises; earphones; tape recorder output; tripod socket. Req. two 6v trans. batt. (not incl.)

No. 1649E (5½LB.) $299.00 Ppd.
BIG EAR "TOY" MODEL #80,176E $32.25 Ppd.

MYSTERY OF ENERGY AND AGING
Science fact or farce? Can our Great Pyramid unlock the mysteries of energy & aging—show that the ancient Egyptians contradicted nature? Did someone really get 85 shaving from a blade kept in a pyramid? Test claims for meat rotting steel, things not rusting! Users of exact scale of strange phenomena based on resonating science project—does everything but pump water. Heavy gauge steel, dural outdoors finish; aluminum color w/red trim.

Stock No. 71,817E $20.00 Ppd.

NEW! KIRLIAN PHOTOGRAPHY KIT!
Experiment in the fascinating new field of "Kirlian electrophotography—images obtained on film without camera or lens by direct recording of electric charge transmitted by animate & inanimate objects." Each aura differs; animate aura said to change corresponding to physical changes. Kit includes darkroom, double transformer isolated from power source; instrs.

Stock No. 71,938E $49.95 Ppd.
"HIGH VOLTAGE PHOTOGRAPHY" by H. S. Dakin
No. 9128E (50-PG. PPBK BK.) $5.00 Ppd.
DELUXE KIRLIAN PHOTOGRAPHY SET
Stock No. 72,053E $399.00 Ppd.

GREAT INT'L. PAPER PLANE BOOK!
Official fly-them-yourself book of paper airplanes from SCIENTIFIC AMERICAN'S "1st International Competition." Includes plans of all winning entries, time-alt record, photos, technical data, commentaries. Has 20 unusual designs on perforated pages for easy tear-out. You won't believe how some of them fly!

Amusing, entertaining. 128 pages, 9"x11¼".

Stock No. 9331E $2.95 Ppd.

DO DRINK THE WATER, ANYWHERE!
Enjoy safe, delicious water from your home tap or wherever in the world you are! Compact 9½" dia. purifier removes harmful poisonous, bad tasting foreign substances, kills bacteria that ord. charcoal filters don't. Pour water in top, make a qt. of pure water in a min.; up to 1500 gal. for less than 1 gal. cost. rugged, portable; reading pressure wind speed ind.; 11° rain gauge; holosteric barometer (inches, etc.); hi-lo self register thermometer; wet-dry bulb hygrometer; More!

No. 71,676E (INCLS TRAVEL CASE) $39.95 Ppd.
LOW COST FAUCET-TYPE WATER FILTER $7.95 Ppd.
Stock No. 61,234E (ATTACH TO TAP) $29.95 Ppd.
BEGINNER'S KIT: COMPL., LOW COST $69.50 Ppd.

ERECT A "PRO" WEATHER STATION
Match your forecasting skill with anyone! Set up permanent meteorology sta. for reliable readings: wind speed; pressure; barometric pressure; temp.; humidity; get wind-chill, cloud types. Top qual. eqpt.; rooftop remote reading pneumatic wind speed ind.; 11° rain gauge; holosteric barometer (inches, etc.); hi-lo self register thermometer; wet-dry bulb hygrometer. More!

No. 80,216E (w/372 PG. LOG) $69.50 Ppd.
BEGINNER'S KIT: COMPL., LOW COST $18.95 Ppd.

AUTHENTIC SCALED WINDMILLS
Real thing replicas show wind direction; wheel silently revolves on ball bearings. Give your grounds unique rural charm! Great centerpiece for planter, flowers. Use to hold yard light, house number, sign or as mailbox. For school, a fine "energy crisis" science project—does everything but pump water. Heavy gauge steel, dural outdoors finish; aluminum color w/red trim.

No. 71,922E (17" DESK MODEL) $10.95 Ppd.
4' FOOT-14 LB. No. 71,924E $32.50 Ppd.
8 FOOT-46 LB. No. 85,229E $44.95 FOB

3" ASTRONOMICAL REFLECTING TELESCOPE
See stars, moon, planets close-up 30 to 90X. Famous Mt. Palomar Type. Aluminized & over-coated 3" diameter f/10 primary mirror, ventilated cell. Fork type equatorial mount. Dual speed, rack & pinion. Fully adjustable for height. Includes 3x30X finder scope, hardwood tripod. FREE: "STAR CHART," "HOW TO USE" book.

Stock No. 85,240E $49.95 Ppd.
DELUXE 3" REFLECTOR TELESCOPE #80,162E $79.95 Ppd.
4½" REFLECTOR (45X to 135X) #85,105E $114.95 FOB
6" REFLECTOR (48X to 360X) #85,167E $249.95 FOB

COMPLETE & MAIL WITH CHECK OR M.O.
EDMUND SCIENTIFIC CO. 300 Eds corp Building, Barringtn, N.J. 08007
New Order Stock No. Description Price Each Total

Mail Coupon for Giant Free Catalog!

164 PAGES • MORE THAN 4500 UNUSUAL BARGAINS

COMPLETELY NEW CATALOG contains over 4500 unique items—clocks, watches, intergalactic spaceships, microscopes, rock samples, telescopes, models, magnets, magnets, prisms, photo components, etc., etc., etc. Everything you need—parts, kits, accessories—many hard-to-get surplus bargains. 100% of charts, illustrations. For hobbyists, teachers, schools, industry.

EDMUND SCIENTIFIC CO. 300 Eds corp Building, Barringtn, N.J. 08007
Please rush Free Giant Catalog "E".

Mail Today!

PLEASE SEND GIANT FREE CATALOG "E"

Complete Name
Address
City State Zip

30 DAY MONEY-BACK GUARANTEE
If you are not completely satisfied with our product, return it for a full refund of the purchase price.

Add Handling Chg.: $1.00. Orders Under $5.00, 50C; Orders Over $5.00, 75C.

Invoice Total

Name
Address
City State Zip

TOTAL $