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Ultra-cold Bose gases present an ideal environment for the study of many-body

physics. These systems can be prepared under various experimental conditions with

precise control. Techniques like Feshbach resonances allow us to dynamically tune the

inter atomic interaction, from strongly attractive to a strongly repulsive one.

In the first part of the thesis, we study the weakly interacting Bose gas in connec-

tion with the dynamics of an atom laser. Here we propose a possible optical pumping

model for loading the reservoir of a continuous wave atom laser. The finite temperature

effects like phase diffusion require a thorough understanding of the kinetic regime of the

dilute Bose gas. In this respect, we develop a non-Markovian quantum kinetic theory

and thereby show the emergence of different time scales for correlation and subsequent

relaxation to an equilibrium states. Using numerical simulations, we also predict the

damping rates and frequencies of collective modes.

In the second part, we study the strongly correlated regime where the interaction

energy is greater than any other (single particle) energy scale of the problem. Here,

in the presence of a Feshbach interaction we predict the generation of novel strongly

correlated paired states. Such states while similar to the one observed in a 5/2 fractional

quantum hall effect, are unique in symmetry to the Bose gas system.
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Chapter 1

Introduction

Dilute atomic gases present an ideal environment for studying various aspects of

many-body physics. These systems can be prepared with precise control and extreme

purity. Advancement in the techniques of trapping and cooling based on the detailed

understanding of atom-light interactions have allowed experimentalists to cool atomic

gases to ultra-low temperatures. This has opened new possibilities for the understanding

and investigation of many-body phenomena, for example the prediction of Bose-Einstein

condensation (BEC). BEC occurs in bosonic systems where the ground state acquires

a macroscopic population when cooled below a certain critical temperature Tc. While

first predicted by Bose and Einstein in 1924, it wasn’t until 1995 when it was confirmed

in the form in which it was originally posed by experiments in a trapped dilute atomic

vapor of Rb87, Na and Li7 [1, 2, 3]. Recently BEC has been achieved in dilute atomic

gases of H, He, K41,Cs and Yb, and has also been realized in micro-traps on chips [4]

and also in two dimensional surface traps [5].

Since 1995, dilute atomic gases have generated tremendous theoretical and exper-

imental interest and have led to the study of phenomena like atom lasers and vortices.

More recently with the advent of techniques based on Feshbach resonances, the interac-

tions between atoms can now be dynamically tuned by changing the external magnetic

field. While interactions in condensed matter systems could be modified, for example,

by doping a semiconductor material, dynamic control is typically limited. In fact, in
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some condensed matter systems such as those that give rise to the fractional quantum

Hall effect, there is virtually no control over interactions. Feshbach tuning allows the

inter-atomic interaction to be dynamically varied from a repulsive to an attractive one.

The ability to tune interactions has allowed us to stretch the scope of possibilities to

studying BCS superfluidity [6, 7, 8, 9], guiding of matter waves [10] and molecule forma-

tion in a Fermi gas [11]. Thus dilute atomic gases have provided us with a new setting

to answer some of the questions and test ideas that have previously been inaccessible

in the domain of condensed matter physics.

From a theory point of view, dilute atomic gases are extremely challenging since

the theoretical framework required to describe them can be very different in different

regimes based on the strength of interaction, temperature scale of interest and density

of the atomic gas. For example, in a dilute Bose gas with weak repulsive interactions

at T = 0 (BEC), a description in terms of mean fields given by the Gross-Pitaevskii

(GP) equation is sufficient to account for all the observable properties. However for

finite temperatures 0 < T < Tc, a quantum kinetic description that includes the effect

of binary collisions may be necessary. In another situation, a dilute Bose gas at T = 0

can be configured to be strongly correlated making the mean field description invalid.

In this case, as we will see in the later part of this thesis, an effective field theory picture

in terms of composite particles is convenient to completely account for the correlations

and predict the physical observables.

Given the richness of this area of research, in this thesis we theoretically investi-

gate some particular aspects of the trapped Bose gas system in two different regimes-

the weak interaction regime and the strong interaction regime.

(1) Weak interaction regime:

In this regime we focus on the behavior and working of a continuous-wave (cw) atom

laser. An atom laser is essentially a device that produces an intense coherent beam of

atoms. Since a BEC is a coherent superposition of atoms in the ground state, one could



3

simply think of an atom laser as a beam of Bose condensed atoms. The working of an

atom laser can be described in complete analogy to the optical laser. As in the case of

an optical laser, if a threshold condition is satisfied, the atom laser will operate far from

equilibrium in a dynamical steady state. In this dynamic state, the macroscopically

occupied quantum state is continuously depleted by loss to the output field, and contin-

uously replenished by pumping from an active medium. The threshold condition for an

atom laser is analogous to the critical point associated with the phase transition from

a normal gas to a BEC. A version of a “pulsed” atom laser was demonstrated [27, 28]

soon after the first experimental realization of BEC in dilute alkali gases. Therefore

one of the objectives of this thesis is to model a possible pumping scheme that would

continuously replenish the reservoir allowing the BEC to be generated in a dynamical

steady state and hence a cw- atom laser.

In order to study the coherence and phase diffusion properties of any such device,

it is very important to understand the collisional regime of the dilute trapped Bose gas.

While binary collisions is the necessary mechanism for the evaporative cooling technique

employed in the realization of a BEC, it is also responsible for the loss of coherence of

the condensed component due to collisions with the non-condensed atoms. In order to

better understand the effect of collisions, we discuss the dilute Bose gas in the quantum

kinetic regime (T > Tc, absence of a condensed component). Here, we derive a non-

Markovian generalization to the quantum kinetic theory described by Walser et al. [13]

for temperatures above the BEC temperature. We show that within this framework,

finite duration effects like quasiparticle damping arise naturally and lead to a systematic

Markov approximation from a non-Markovian Born theory. Using numerical simulation

we demonstrate the emergence of different time scales for correlation and relaxation as

well as predict damping rates and frequencies of collective modes [14]. This formulation

can be extended to the temperature regime, 0 < T < Tc, by including the condensed

component. Such a theory will be an important step towards a complete understanding
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of the cw- atom laser.

Figure 1.1: The total angular momentum of the stable ground state plotted as a function
of the rotational frequency for N = 6 atoms with two-body interaction potential in units
of harmonic oscillator quanta given by V = (1/N)δ(ri − rj). (Figure obtained from N.
K. Wilkins and J. M. F. Gunn, Phys. Rev. Lett. 84, 6 (2000))

(2) Strong interaction regime:

This regime is defined by the situation where the interaction energy is large compared

to any other single particle energy scale of the system. A dilute Bose gas can be config-

ured in this regime in various ways. One possibility is to tune the interactions by using

Feshbach resonance techniques. Another possibility is to introduce degeneracy in the

system, for example by using an optical lattice trapping potential as was used in the

experiment involving a superfluid to a Mott transition [89]. In this thesis we consider

a two dimensional trapped Bose gas but instead introduce degeneracy by rotating the

trap. At a certain critical rotational frequency the system is predicted to enter the

strongly correlated regime where the many-body ground state is given by the bosonic

variant of the Laughlin wavefunction. This is shown in Fig. 1.1 where the total angular

momentum of the stable ground state is plotted as a function of the rotational fre-

quency. The Laughlin state becomes stable only when the rotational frequency is close

to the trapping frequency. The Laughlin ground state is precisely the state responsible
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for the observation of the fractional quantum Hall effect in two dimensional electron

systems. Therefore in this thesis we will refer to this regime of the dilute Bose gas as

the fractional quantum Hall regime. Using the tunability of interaction made available

by Feshbach resonances, which as mentioned earlier is almost impossible to achieve in

an electronic fractional quantum Hall system, we study this regime of the dilute Bose

gas in the presence of Feshbach interaction. The importance of employing such resonant

interactions in the strongly correlated regime will be apparent from the possibility of

creating novel states as well as the opening of new possibilities for answering questions

related to the many-body physics of fractional quantum Hall effect.

Overview:

The general flow of topics covered in this thesis is shown in the figure below. In Ch. 2,

we discuss a model based on an optical pumping scheme to continuously load the reser-

voir of a continuous wave atom laser. Here we show that despite loss mechanisms, it is

possible to generate BEC in a steady state that is crucial to the working of a continuous

wave atom laser. In Ch. 3, we develop a non-Markovian quantum kinetic theory and

thereby derive a systematic Markov approximation that includes finite duration effects

such as quasiparticle damping. The remainder of the thesis is devoted to the strongly

correlated regime of the dilute Bose gas. In Ch. 4, we introduce the electronic fractional

quantum Hall effect and show how an analogous many-body state can be generated in a

trapped dilute Bose gas system. In Ch. 5, we develop a field theory picture required to

describe this regime. Within this picture the strongly correlated regime can be thought

of as a Bose condensed phase of composite bosons. The idea of composite particles and

its connection to the existence of fractional statistics is also discussed. The importance

of such a description will be apparent as it will allow us to theoretically study this

regime in the presence of Feshbach interactions. The implications of introducing reso-

nant interactions in this regime are discussed in Ch. 6. The main result of this chapter

is the prediction of a novel strongly correlated state unique to the trapped Bose system.



6

Figure 1.2: Flow chart of the chapters in this thesis. Figure also shows the opening of
new possibilities for further study as a result of this work.



Chapter 2

Loading a conitnuous wave atom laser by optical pumping techniques

Published in Physical Review A 62, 043604 (2000)

2.1 Introduction

An atom laser is a device which generates an atomic beam which is both intense

and coherent [16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. It is typically defined by direct

analogy with the optical laser. As in the case of an optical laser, if a threshold condi-

tion is satisfied the atom laser will operate far from equilibrium in a dynamical steady

state [26]. In this regime, the macroscopically occupied quantum state is continuously

depleted by loss to the output field, and continuously replenished by pumping from an

active medium. The threshold condition for the atom laser is analogous to the critical

point associated with the phase transition from a normal gas to a Bose-Einstein con-

densate (BEC). A version of the “pulsed” atom laser [27, 28] was demonstrated soon

after the first experimental realizations of BEC in dilute alkali gases [1, 2, 3, 29].

The three basic components of an atom laser are: a cavity (or resonator), an

active medium (or reservoir), and an output coupler. The cavity is typically a three-

dimensional magnetic trap which for containment uses the force on the atomic magnetic

dipole via an inhomogeneous potential. The active medium may be composed of a sat-

urated dilute thermal gas formed through evaporative cooling or other techniques. Sat-

urated in this context implies that the energy distribution function of the atoms is such

that thermodynamic relaxation of the gas through binary collisions would result in the
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stimulated accumulation of atoms into the ground state. The output coupler can be im-

plemented by either applying a short radio-frequency (RF) pulse to the condensate and

thereby separating the condensate into a trapped component and an un-trapped compo-

nent [27, 28, 30, 31], or alternatively by creating a situation in which the atoms tunnel

out through a potential barrier [32]. A recent demonstration of a quasi-continuous atom

laser used an optical Raman pulse to drive transitions between trapped and un-trapped

magnetic sublevels giving the output-coupled BEC fraction a non-zero momentum [33].

To date, no continuous wave (CW) atom laser has been demonstrated in which

there is replenishing of the reservoir in direct analogy with CW-optical laser. Replen-

ishing the reservoir is required in steady state to compensate for the loss due to output

coupling as well as to compensate for various intrinsic loss mechanisms such as colli-

sions with hot atoms from the background vapor and inelastic two-body and three-body

collisions between trapped atoms [16, 25, 34].

In this chapter we propose a scheme for loading the thermal cloud into a magnetic

trap by optically pumping atoms from an external cold atomic beam source. Optical

pumping is necessary since the magnetic potential is conservative and therefore a dissi-

pative process is required for confinement of the atoms to be achieved. When combined

with evaporative cooling, our approach may allow both steady state BEC and the CW

atom laser to be demonstrated. The crucial point is that while one is trying to obtain

a steady state BEC by injecting atoms into the magnetic trap, the loading mechanism

itself should not heat the system or destroy the delicate condensate component.

There have been related proposals to ours using single atom “dark states” for

reaching low temperatures by purely optical means—even well below the photon recoil

limit [35, 36, 37]. As shown by Castin et al. in Ref. [38], the main hurdle in achieving

BEC in all these schemes is that of photon reabsorption. Each reabsorption can remove

one atom from the dark state and increment the energy of the cloud on average by

one recoil energy. We engineer the analogous effect in our scheme to be negligible by
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Figure 2.1: Level scheme illustrating: the ground state |g〉, excited state |e〉, and trap
state |t〉. A laser is used to couple states |g〉 and |e〉 with an intensity characterized by
the Rabi frequency Ω. Spontaneous emission of photons occurs with rate Γe from |e〉 to
|t〉 and rate Γt from |t〉 to |g〉.

configuring the frequency of the emitted photons and adjusting the spatial geometry of

the system to reduce the probability of reabsorption by the condensate.

2.2 The Model

We consider atoms whose internal degrees of freedom are described by a three

level atomic system as shown in Fig. 2.1. Our description of the loading scheme is

motivated by the experimental setup in Ref. [39]. There the atoms were loaded from

a background vapor and precooled in a magneto-optical trap (MOT). They were then

launched into the second MOT, optically pumped to the desired internal atomic hy-

perfine state, and transfered to a magnetically confining potential in which evaporative

cooling was implemented. Here we study the possibility for loading the thermal cloud

into the magnetic trap directly and continuously. This would allow the evaporative

cooling to be carried out in steady state, which is the situation considered in Ref. [26].

Our scheme is illustrated in Fig. 2.2. Atoms are injected into the trap in state |g〉.

As the atoms enter the spatial region containing the thermal cloud they pass through

a laser field and are coherently pumped to the excited state |e〉 from which they may

spontaneously emit a photon and end up in the trap state |t〉.

As will be shown later the spontaneously emitted photons may be out of resonance

with the bare |t〉 → |e〉 transition and therefore reabsorption by atoms in the thermal

cloud is greatly reduced (the exception to this general statement is the negligible fraction
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Figure 2.2: Schematic diagram showing the proposed loading scheme for obtaining a
steady state BEC and CW atom laser. Atoms entering the laser field are in the ground
state. As the atoms pass through the laser field, the population is continuously trans-
ferred to the trap state by a sequence of coherent pumping and spontaneous emission.

of thermal atoms in the localized spatial region of the focussed laser beam.) Using this

approach atoms may be continuously loaded into the thermal cloud and be confined

by the trapping potential without prohibitive reabsorption of the spontaneous photons

emitted in the required dissipative process.

We use a master equation [40, 41] to study the evolution of this system. We define

the spontaneous emission rates between the excited state and trap state and between

the trap state and ground state as Γe and Γt respectively, and for simplicity neglect

spontaneous emission directly from |e〉 to |g〉. Assuming that the laser is on resonance

with the atomic transition frequency (detuning δ = 0), the coherent interaction can be

modeled by the Hamiltonian in the interaction picture

H =
Ω

2
h̄(σge

+ + σge
− ) (2.1)

where σge
+ , σ

ge
− are the raising and lowering operators respectively between the ground

state |g〉 and the excited state |e〉. The master equation for the reduced density op-
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erator of the atom includes terms due to both the spontaneous emission and a part

corresponding to the coherent driving source. In the interaction picture this takes the

form

∂ρ

∂t
= −iΩ

2
[σge

+ + σge
− , ρ] +

Γe

2
(2σet

−ρσ
et
+ − σet

+σ
et
−ρ− ρσet

+σ
et
−)

+
Γt

2
(2σgt

− ρσ
gt
+ − σgt

+σ
gt
− ρ− ρσgt

+σ
gt
− ), (2.2)

where σet
+ , σ

et
− are the raising and lowering operators respectively between the excited

and trap state and σgt
+ , σ

gt
− are the raising and lowering operators respectively between

the trap state and ground state. From the above master equation we obtain the cou-

pled differential equations for the evolution of matrix elements of ρ with the constraint

Tr[ρ] = 1. The atomic population in the three levels given by the matrix elements

ρgg(t), ρee(t) and ρtt(t) are obtained for values of Γe = 1 and Ω = 5 and initial condi-

tion given by ρgg(0) = 1, ρee(0) = ρtt(0) = 0. We consider two different values for Γt;

Γt = 2 and Γt = 0, which give qualitatively distinct dynamics. The zero value for Γt

corresponds to optically pumping the atom from the ground to trap state, and leads to

complete transfer of population at long times. The non-zero value of Γt gives a steady-

state solution for the level populations in which the atom cycles indefinitely, which will

be useful later for the calculation of the spectrum of the spontaneously emitted photons.

The steady state spectrum of spontaneously emitted photons on the |e〉 → |t〉

transition is given by the Fourier transform of the two-time correlation function

K(t+ τ, t) = 〈σet
+ (t+ τ)σet

− (t)〉, (2.3)

the differential equation for which is obtained by combining the equation for ρtg and ρte

above along with the quantum regression theorem (QRT) [41].

The QRT states that for a set of operators Yi, which evolve in steady-state ac-

cording to

∂

∂τ
〈Yi(τ)〉 =

∑

j

Gij〈Yj(τ)〉, (2.4)
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Figure 2.3: Populations as a function of time; ground state |g〉 shown by a solid line,
excited state |e〉 shown by dashed and trap state |t〉 shown by dot-dashed line. The
parameters used were Ω = 5,Γe = 1 and (a) Γt = 2, (b) Γt = 0.

then two-time averages can be related to the one-time expectation values by

∂

∂τ
〈Yi(t+ τ)Yl(t)〉 =

∑

j

Gij〈Yj(t+ τ)Yl(t)〉, (2.5)

where the Gij ’s are the same coefficients in both Eq. (2.4) and Eq. (2.5). For a general

non-steady-state problem in which transient dynamics must be considered, application

of the QRT is typically more complicated. For simplicity our approach is to take a

fictitious non-zero value of Γt, and then consider the limit Γt → 0. The spectrum

defined as

S(ω) = lim
t→∞

∫ t

−t
dτK(τ)e−iωτ (2.6)

is then given by

S(ω) =
ρss

tt

πΩeff







(

iΓe

4 + Ωeff

2

)(

Γe

4 + Γt

2

)

(

Γe

4 + Γt

2

)2
+
(

ω + Ωeff

2

)2






+

ρss
tt

πΩeff







(

−iΓe

4 + Ωeff

2

) (

Γe

4 + Γt

2

)

(

Γe

4 + Γt

2

)2
+
(

ω − Ωeff

2

)2






(2.7)

where Ωeff =
√

Ω2 − Γ2
e/4
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Figure 2.4: Comparison of the |e〉 → |t〉 transition spectrum using the steady state
calculation (solid) and the quantum trajectory method (dash-dot).

In Fig. 2.4 we plot |S(ω)|2 shown by the solid curve for the limiting case of Γt → 0.

The spectrum is AC-Stark split into two Lorentzians separated by Ωeff . This spectrum

is commonly referred to as the Autler-Townes doublet [43, 44].

For comparison we now use the method described in Ref. [42] to provide an alter-

native calculation of the fluorescence spectrum, extending our treatment to include the

possibility for the time dependence of Ω. This involves the decomposition into “quantum

trajectories”, where the evolution is conditional on a certain record of dissipative events.

In the case of the evolution conditional on the spontaneous emission of no photons, the

quantum trajectory |ψ(t)〉, evolves according to

∂|ψ(t)〉
∂t

=
1

ih̄
Heff |ψ(t)〉, (2.8)

where Heff is the non-Hermitian Hamiltonian defined by

Heff = H − i
h̄Γe

2
σet

+σ
et
− . (2.9)

For the evolution conditional on the spontaneous emission of one photon, each quantum
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trajectory |ψωj
(t)〉 is labelled by the frequency of the photon ωj. If we consider a time

interval t ∈ [0, τ ], then according to the Fourier sampling theorem a complete description

requires choosing each ωj from a discrete but infinite set of frequencies spaced (2π/τ)

apart. The observed spectrum may then be defined as

S(ω) = 〈ψω(τ)|ψω(τ)〉 (2.10)

with (see Ref. [42])

d

dt
|ψωj

(t)〉 =

√

Γe

τ
σet
− |ψ(t)〉 +

1

ih̄
(Heff + h̄ωj)|ψωj

(t)〉. (2.11)

By solving the coupled Eqns. (2.8) and (2.11) we get

|ψωj
(t)〉 =

















0

0

fωj
(t)

















(2.12)

where

fωj
(t) = qMN−1

(

(iωj − Γe/4)
2 + Ω2

eff/4
)−1

M = sin

(

Ωefft

2

)

e−Γet/4(iωj − Γe/4)

−Ωeff

2
cos

(

Ωefft

2

)

e−Γet/4 +
Ωeff

2
e−iωjt

q =
4

Ω

√

Γe

τ

[

λ+λ−
λ+ − λ−

]

(2.13)

The single-photon spectrum which is so obtained, |S(ω)|2, is shown by dot-dashed curve

in Fig. 2.4. The normalization constant N is introduced so that |fωj
|2 → 1 as t → ∞.

We see a close agreement between the spectra calculated by the two methods, the

quantum regression theorem and the quantum trajectory approach of solving conditional

dynamics. The crucial observation is the absence of a significant contribution in the

zero-frequency region of the fluorescence spectrum where there would be strong photon

reabsorption by the thermal cloud. Virtually all of the spontaneous photons are off

resonance with the bare |t〉 → |e〉 transition which is the resonant frequency for all

thermal atoms out of the laser field focus.



15

2.3 Effect of time dependent Ω and finite detuning on the transient

spectrum

The assumed time independent nature of the interaction picture Hamiltonian (2.1)

may not be a realistic situation. In an actual experiment, as the atoms pass through

the laser beam they would see a continuously changing intensity and hence a changing

Ω. At the same time, existence of finite detuning δ (assumed previously to be zero for

simplicity), may result in the time dependence of the operators σge
+ and σge

− given by

σge
± (t) = σge

± e
±iδt (2.14)

Thus, in a more realistic situation the interaction picture Hamiltonian of Eq.(2.1) should

be replaced by the time dependent form

H(t) =
Ω(t)

2
h̄(σge

+ e
iδt + σge

− e
−iδt) (2.15)

Using this interaction Hamiltonian we now recalculate the AC-Stark split spec-

trum. Firstly we consider the δ = 0 case with the time dependence solely due to Ω(t).

Since the problem is a transient one in which population is completely transferred to

the trap state over a certain time scale, the variation of Ω over this time scale is crucial.

Also, from the calculations in the previous section it is clear that a large value of Ω is

favorable for our scheme. We therefore consider various time scales over which Ω reaches

its maximum value compared to the optical pumping time as shown in Fig. 2.5. The

corresponding spectrum shown in Fig. 2.6 is calculated using the method of conditional

dynamics discussed in the previous section. The calculation shows that the crucial re-

quirement for our model i.e. that the emitted photons cannot be resonantly absorbed

by the thermal cloud outside the laser focus,is only satisfied if the atom sees a field

increasing in intensity on a time scale which is short compared to the time it takes to

optically pump the population from |g〉 to |t〉. For a particular average velocity of the

atoms in the atom beam source, this gives the requirement for the spatial variation of
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Figure 2.5: Ω as a function of time, t. The three different curves correspond to different
time scales over which Ω reaches its maximum value.
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Figure 2.6: Transient spectrum for |e〉 → |t〉 transition for the different scenarios for
Ω(t) shown in Fig.2.5.

the laser intensity associated with the beam waist. Alternatively, the laser field could

be pulsed on and off to achieve a sufficiently rapid rise time.
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Figure 2.7: Figure shows the effect of detuning on the transient spectrum for |e〉 → |t〉
transition. Dashed for δ = 0, solid for δ = 1 and dot-dashed for δ = 2.

Now we consider the effect of finite detuning, δ, in addition to the time depen-

dence of Ω. For the case of constant Ω, a finite δ has the effect of transforming Ω to

√
Ω2 + δ2 [44]. Therefore, even if Ω depends on time, it is intuitive to expect a similar

effect resulting in an increased AC-Stark splitting. This is illustrated in Fig. 2.7 where

the spectrum is calculated for the case of Ω(t) shown by dot-dashed curve of Fig. 2.5

for various values of δ. Thus a large detuning may seem to be favorable for our purpose

since the spontaneous photons are emitted further away from resonance. On the other

hand, large detuning means slower optical pumping rate and hence a wider laser focus

will be required for the same Ω(t) as illustrated in the inset of Fig. 2.7. Therefore, it

is important to achieve an optimum set of parameters that would allow a maximum

possible splitting depending on the average atomic speed and line width of the atomic

levels under consideration.
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2.4 Conclusion

The AC-Stark splitting of the spectrum indicates that this scheme may potentially

be used to provide a method for continuous loading of the thermal cloud in an atom

laser. In the case of constant Ω the spectrum of the spontaneously emitted photons

consists of two peaks separated by Ωeff . Even for the realistic case of time varying Ω,

large splitting between the two peaks can be achieved provided that the rise time of

the laser field intensity is sufficiently small. The splitting can be further enhanced by

introducing a finite detuning.

Large splitting of the spectrum is essential to avoid heating due to inelastic mul-

tiple scattering of photons. Usually heating in an optical pumping scheme is caused

by photon reabsorption and re-emission. Each reabsorption can remove one atom from

the tr ap state and increment the energy of the cloud on average by one recoil energy.

This effect is significantly reduced in our model since the spontaneously emitted pho-

tons are off-resonance with the |t〉 → |e〉 transition and cannot be reabsorbed by atoms

outside the laser focus. Therefore the heating of the thermal component due to photon

reabsorption may be suppressed. One can also reduce the cross section for photon re-

absorption by designing the shape of the trap, for example a cigar shape or disc shape,

such that there is a limited solid angle for photon reabsorption. Another possibility

is to align the optical pumping laser and the geometry of the trap to use the intrinsic

dipole radiation pattern to reduce spontaneous emission into unfavorable directions.

Our model requires that the atoms be in the trap state before they are out of the

laser field, which may place a limit on the maximum speed of atoms in the atomic beam

source. However, the faster the incoming atoms, the smaller the rise time of Ω which as

previously discussed is required to avoid the emission of photons at zero-frequency. The

optimum speed of incoming atoms is therefore a balance between these two requirements.

Since our goal is to obtain BEC in a steady state and not just BEC, one possibility to
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obtain sufficiently slow speeds is to use a condensate prepared in another trap as a

source instead of just laser precooled atoms formed from a magneto-optical-trap.

For a typical alkali atom, the Zeeman level diagram is composed of many hyperfine

levels. Even though our three level system is a simplification of a real situation, most

of the omitted processes, such as imperfect optical pumping to the trapping state, will

lead to additional loss of atoms and modify the effective incident flux. This will impact

the possibility for achieving a sufficiently high pumping rate of cold atoms to allow the

CW atom laser and steady state BEC to be achieved, as discussed in Ref. [26].



Chapter 3

Memory effects and conservation laws in the quantum kinetic

evolution of a dilute Bose gas

Published in Physical Review A 66, 043618 (2002)

3.1 Introduction

In the mean-field approximation, a Bose-condensed phase is well described by the

Gross-Pitaevskii (GP) equation [45]. Examples of collective phenomena that arise at the

mean-field level include the formation of vortex states [46, 47, 48, 49, 50] and collective

excitations [51, 52, 53]. In this context, the GP equation is often sufficient to describe

the dynamics at T = 0. However, at finite temperatures, 0 < T < Tc, it is important

to include effects due to the presence of a thermal component. These thermal, non-

condensed atoms interact mutually and with the condensed atoms via binary collisions.

In fact, the collisional dynamics is the microscopic mechanism for evaporative cooling

and it leads to BEC. Finite temperature effects are also responsible for phenomena such

as phase diffusion and damping of collective excitations. In order to describe these

effects, the inclusion of collisions due to the thermal component becomes essential. A

generalized GP equation, for example the Hartree-Fock-Bogoliubov approach, includes

the effects of collisions only indirectly through their energy shifts and hence is valid only

at very low temperature (collisionless regime).

In the other limit, T > Tc, the condensate component is absent and the thermal

component completely determines the dynamics. This limit is well described by the
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quantum-Boltzmann (QB) equation. Thus, a non-equilibrium kinetic theory, which

interpolates between the GP and the QB limits corresponding to T = 0 and T > Tc,

respectively, is necessary to provide a such a complete description.

Currently, there exist a number of kinetic theories including those based on quan-

tum stochastics [54, 55], the Fokker-Planck equation [56], generalized single-time master

equations [57, 58, 59], a semiclassical hydrodynamic approach [60, 61] and a Green’s

function approach [62, 63, 64]. However, obtaining explicit solutions for the nonequilib-

rium dynamics has remained a challenge. In particular, the condensate growth dynamics

is still a very active area of research [65, 66]. More recently, Monte Carlo simulations

have provided an alternative approach to the solution of non-equilibrium master equa-

tions [67, 68, 69, 70]. In particular, Jackson and Zaremba [70] have shown good agree-

ment with experimental observations of decay rates and frequencies. However Monte

Carlo approaches suffer from the simulation noise which can lead to a spread in the

value of quantities that should be exactly conserved. Also the theory as formulated can

only be applied to situations in which the anomalous pair correlations are not important

(Popov approximation). Under certain conditions, typically when the interactions are

strong, anomalous densities can play a significant role. This was the case for example in

the recent observation of Ramsey type oscillations [71] and their subsequent theoretical

explanation [72].

Energy conservation in theories with Boltzmann type collision integrals is typi-

cally enforced by requiring exact energy conservation in each individual collision event.

From a fundamental perspective this is unsatisfactory as it would be preferable if energy

conservation would arise intrinsically from the theoretical formulation. The essential

point is that such an approach would allow off the energy shell collision events so long

as energy is conserved overall. In practice this requires including effects arising from

the finite duration of a collision and quasiparticle damping.

Another issue for consideration is the question of Markovian vs. non-Markovian
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dynamics in a inhomogeneous system. Even though, for a dilute Bose gas, memory

effects can be neglected under the principle of rapid attenuation of correlations, non-

Markovian behavior is intricately related to the conservation properties [73, 74, 75, 76,

77]. For example, the Markovian-Boltzmann type kinetic equations derived by Walser

et. al. [13] conserves energy only to first order [78]. Previous attempts to address

this issue have been limited to the discussion of systems with translational symmetry

[79, 80].

In this chapter, we generalize the kinetic theory derived in [13] in order to address

the problems discussed above. Presently, we limit our goal to the derivation of a sys-

tematic Markov approximation from the non-Markovian Born theory by including finite

duration effects and quasiparticle damping. Using the short and long time behavior

of the two time Green’s function, we obtain a damping function that gives improved

energy conservation to second order in the perturbation parameter.

We apply this theory to a simple model of an inhomogeneous Bose gas confined

in a spherical box above Tc with discrete basis states. The usual Born-Markov theory

gives a δ-function energy conservation which for any interacting system will result in

only exchange collisions. Therefore introducing finite duration effects facilitates the

calculation by relaxing the energy conservation condition. The simplicity of this model

allows us to study the real time evolution of the system from some initial state to a final

state of equilibrium. We perform a linear response calculation to study the stability and

damping rates for the steady-state solution. A calculation on similar lines with a more

realistic model of a harmonic trapping potential and non-vanishing condensate (α) and

pair-correlation (m̃) components will ultimately make comparison with experimental

observations of the frequency and damping rates of collective excitations possible.

This chapter is organized as follows. In Sec. 3.2 we derive a non-Markovian

generalization to the kinetic theory of Ref. [13] using the prescription of a nonequilibrium

statistical operator method [81]. Both quasiparticle damping and damping arising from
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the finite time of collision events are discussed in Sec. 3.3. This has implications for

the underlying symmetries of the theory and their associated conserved quantities. In

Sec. 3.4, we apply this generalized kinetic theory to a simple model of an inhomogeneous

dilute Bose gas confined in a spherical box and obtain a self consistent steady-state

solution to the second-order kinetic theory. Finally in Sec. 3.5, we study the response

of the system to a small perturbation. This allows us to determine the frequencies and

damping rates of collective modes.

3.2 Kinetic equations

We start with the many-body Hamiltonian for a weakly interacting Bose gas given

by

Ĥ = Ĥ(0) + Ĥ(1), (3.1)

where Ĥ(0) is the single particle Hamiltonian that is defined as

Ĥ(0) = ε12 â†1â2 (3.2)

using the implicit summation convention for repeated indices. The two-body energy

Ĥ(1) is given by

Ĥ(1) = φ1234 â†1â
†
2â3â4. (3.3)

The bosonic operators â1 and â†1 annihilate and create a particle in a single particle state

|1〉, respectively. The abbreviated notation |1〉 represents a state specified by a complete

set of quantum numbers for both the motional and electronic degrees of freedom.

We assume that the particles are confined by an external trapping potential Vext.

Thus, the matrix elements of the single particle Hamiltonian are given by

ε12 = 〈1| p̂
2

2m
+ Vext(x̂)|2〉, (3.4)

where m is the mass. The binary interaction is mediated by a short range repulsive
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potential Vbin. This gives the symmetrized (S) matrix elements

φ1234 = (S)〈1| ⊗ 〈2|Vbin(x̂⊗ I − I ⊗ x̂)|3〉 ⊗ |4〉. (3.5)

In the low energy limit Vbin can be approximated by a contact potential with the matrix

elements given by

φ1234 ≈ V0

2

∫ ∞

−∞
〈1|x〉〈2|x〉〈x|3〉〈x|4〉 d3x. (3.6)

The interaction strength V0, is related to the scattering length as by V0 = 4πh̄2as/m.

Here, we use the well-known nonequilibrium statistical operator method [81, 82] to

obtain an explicitly non-Markovian version of the kinetic theory [13]. In this approach,

the nonequilibrium state of a weakly interacting quantum gas is specified by a set of

single time master variables. For our system the most important master variable is the

single particle density matrix f(t),

f12(t) = 〈â†2â1〉 = Tr
{

â†2â1 σ(t)
}

, (3.7)

where 〈. . .〉 = Tr{. . . σ(t)} and σ(t) is the statistical many-body density operator. We

focus our studies on the temperature regime above and in close proximity to the critical

temperature for BEC. For this reason, we do not consider either symmetry breaking

fields, 〈â1〉, or the anomalous fluctuations, 〈â1â2〉. We therefore define {γ̂0 = I, γ̂k =

â†2â1|k ∈ {(1, 2)}} as our complete set of relevant operators. The expectation values of

these operators, γk(t) = 〈γ̂k〉, are the only quantities that will appear in the final kinetic

equations.

The time evolution of the nonequilibrium statistical operator σ(t) is described by

the Liouville equation with an extra source term on the right hand side:

d

dt
σ(t) +

i

h̄
[Ĥ, σ(t)] = −η

(

σ(t) − σ(0)(t)
)

. (3.8)

Such a source term breaks the time reversal symmetry of the Liouville equation and

represents a convenient way to incorporate the irreversible character of macroscopic
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processes. We will see later that this procedure leads to finite duration of collision

effects and quasiparticle damping. The relevant distribution σ(0)(t) given by

σ(0)(t) = σ
(0)
{γ(t)} = exp

{

γ̂kΥ
k(t)

}

, (3.9)

where Υk(t) are the Lagrange multipliers, represents a special solution that maximizes

the information entropy S′ = −Tr{σ′ log(σ′)} for the given averages γk(t). Furthermore,

at some initial instance t = t0 in the remote past, we can assume that σ(t0) corresponds

to its noninteracting value and therefore

σ(t0) = σ(0)(t0). (3.10)

The Lagrange multipliers Υk(t) are calculated from the self-consistency condition

γk(t) = Tr{γ̂k σ
(0)(t)} = Tr{γ̂k σ(t)}. (3.11)

This essentially enforces the Chapman-Enskog condition [83] for the restricted set of

relevant operators at all times.

From the Liouville equation (3.8) one can easily establish the basic equations of

motion for the average values,

d

dt
γk(t) =

i

h̄
Tr
{

[Ĥ(0), γ̂k]σ(t)
}

+
i

h̄
Tr
{

[Ĥ(1), γ̂k]σ(t)
}

. (3.12)

The form of Ĥ(0) enables us to express the first trace on the right hand side of the above

equation in terms of the averages γk(t). The second trace plays the role of the “collision”

term, the evaluation of which requires us to seek an integral solution of the Liouville

equation. But, before we proceed, it is instructive to repartition the total Hamiltonian

Eq. (3.1) into single particle and two-particle contributions,

Ĥ = ˆ̄H
(0)

(t) + ˆ̄H
(1)

(t)

=
[

Ĥ(0) + Q̂(t)
]

+
[

Ĥ(1) − Q̂(t)
]

. (3.13)
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This modification anticipates self-energy shifts

Q̂(t) = Q12(t)â†1â2, (3.14)

which will inevitably arise in the course of the calculation.

An integral solution for σ(t) can then be obtained easily from the Liouville equa-

tion (3.8), by using the single particle time evolution operator Û (0)(t, t1), the boundary

condition Eq. (3.9), and an additional partial integration. Thus, one finds

σ(t) = σ(0)(t) −
∫ t

t0
dt1 e

−η(t−t1)Û (0)(t, t1) ×
[

d

dt1
σ(0)(t1) +

i

h̄
[ ˆ̄H

(0)
(t1), σ

(0)(t1)]

+
i

h̄
[ ˆ̄H

(1)
(t1), σ(t1)]

]

Û (0)†(t, t1). (3.15)

Since the Hamiltonian ˆ̄H
(0)

(t) depends on time through the Q̂(t), the time evolution

operator Û (0) is in general a time-ordered exponent

Û (0)(t, t0) = T̂ exp

[

− i

h̄

∫ t

t0
dt1

ˆ̄H
(0)

(t1)

]

. (3.16)

To establish the time derivative dσ(0)(t1)/dt1 in Eq. (3.15), we recall from Eq. (3.9)

that the relevant operator depends only implicitly on time through the averages γk(t1).

Moreover by exploiting the transformation properties of a quantum Gaussian (see Ap-

pendix A), one finds that

d

dt
σ(0)(t) =

d

dt
γk(t) ∂γk

σ(0)(t)

= − i

h̄
[ ˆ̄H

(0)
(t), σ(0)(t)] +

i

h̄
Tr

{

[ ˆ̄H
(1)

(t), γ̂k]σ(t)

}

∂γk
σ(0)(t). (3.17)

Using these relations we eliminate the time derivative of σ(0)(t1) in Eq. (3.15), to obtain

the integral form of the statistical operator

σ(t) = σ(0)(t) − i

h̄

∫ t

t0
dt1e

−η(t−t1)Û (0)(t, t1) ×
[

Tr

{

[ ˆ̄H
(1)

(t1), γ̂k]σ(t1)

}

∂γk
σ(0)(t1)

+ [ ˆ̄H
(1)

(t1), σ(t1)]

]

Û (0)†(t, t1). (3.18)
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Since we are only interested in a weakly interacting gas, we seek a power series expansion

in the interaction strength

σ(t) = σ(0)(t) + σ(1)(t) + ... (3.19)

σ(1)(t) = − i

h̄

∫ t

t0
dt1e

−η(t−t1)Û (0)(t, t1) ×
[

Tr

{

[ ˆ̄H
(1)

(t1), γ̂k]σ
(0)(t1)

}

∂γk
σ(0)(t1)

+ [ ˆ̄H
(1)

(t1), σ
(0)(t1)]

]

Û (0)†(t, t1). (3.20)

With this explicit expression for the statistical operator, the evaluation of the equation

of motion (3.12) is straight forward and one obtains the quantum-Boltzmann equation

d

dt
f(t) = L[f ] + L[f ]†. (3.21)

Here, Wick’s theorem has been used to express the higher order averages in terms of

the single particle ones. The kinetic operator L consists of a reversible Hartree-Fock

(HF) part LHF and a collisional quantum-Boltzmann contribution LQB,

L[f ] = LHF[f ] + LQB[f ],

LHF[f ] = − i

h̄
HHF(t)f(t),

LQB[f ] = Γff(1+f)(1+f) − Γ(1+f)(1+f)ff .

HHF = ε+ 2Uf is the Hartree-Fock Hamiltonian, with U14
f = 2φ1234f32 the self energy,

while Γ’s are the collision integrals given by

Γ15
ABCD =

1

h̄

∫ t

t0
dt1

[

e−η(t−t1)φ1234φ1′′2′′3′′4′′

× K1′′1′(t, t1)K2′′2′(t, t1)K†
3′′3′(t, t1)K

†
4′′4′(t, t1)

× A31′(t1)B42′(t1)C4′2(t1)D3′5(t1)

]

. (3.22)

The propagators K(t, t0) are given by

K(t, t0) = T exp

[

− i

h̄

∫ t

t0
dt1HHF(t1)

]

. (3.23)

Therefore, unlike the collision terms of Ref. [13], the Γ’s defined above depend on the

past history of the system. Thus Eq. (3.21) represents a non-Markovian generalization

of the kinetic equation previously derived in Ref. [13].
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3.3 Conservation laws and Quasi-particle damping

The conserved quantities for a closed isolated system are the total energy E and

the total number N . These quantities then represent the constants of motion for the full

kinetic equation. The total number operator can be represented as a linear combination

of the relevant operators,

N̂ = â†1â1, (3.24)

and therefore the functional N(f), representing the total number is given by

N(f) = Tr{f}. (3.25)

The kinetic equation for N(f) can then be written as

d

dt
N(f) = Tr

{

L[f ] + L[f ]†
}

= Tr
{

LHF [f ] + LHF [f ]†
}

+ Tr
{

LQB[f ] + LQB[f ]†
}

. (3.26)

The first order term on the right-hand side involves the trace of a commutator and is

trivially equal to zero. The Γ’s associated with the second order terms have the following

property due to the symmetries of φ,

Tr
{

Γff(1+f)(1+f)

}

= Tr
{

Γ(1+f)(1+f)ff

}∗
. (3.27)

As a result, the second order contribution in Eq. (3.26) can also be shown to be zero.

Hence the total number N is a constant of motion. The important point here is that the

total number conservation is a result of the symmetries of φ and does not dependent on

the non-Markovian nature of the collision integral. Therefore a Markov approximation

would leave this conservation law unchanged.

While the number conservation is a natural consequence of the self-consistency

condition, the total energy conservation is not obvious as the Hamiltonian Ĥ cannot

be represented as a linear combination of the relevant operators. We start with writing
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the total energy functional E(f) as a perturbative expansion in φ,

E(f) = Tr{Ĥ(0)σ(0)}

+
[

Tr{Ĥ(1)σ(0)} + Tr{Ĥ(0)σ(1)}
]

+
[

Tr{Ĥ(1)σ(1)} + Tr{Ĥ(0)σ(2)}
]

+ ... (3.28)

= Tr {(ε+ Uf )f} +
i

2
Tr
{[

Γff(1+f)(1+f) − Γ(1+f)(1+f)ff

]}

+ .. (3.29)

Using the self-consistency condition Eq. (3.11) for the relevant operators, one can show

that the third and the fifth trace terms in the right-hand side of the above expression

drop out. The kinetic equation for the energy functional E(f) can then be written as

d

dt
E(f) = Tr

{

εḟ + Uf ḟ + Uḟf
}

(3.30)

+
i

2
Tr

{

∂

∂t

[

Γff(1+f)(1+f) − Γ(1+f)(1+f)ff

]

}

.

Again, we use the symmetry properties of φ, to write the simplified equation

d

dt
E(f) = −iη

2
Tr
{

Γff(1+f)(1+f) − Γ(1+f)(1+f)ff

}

.

(3.31)

One can now see that the energy is conserved only in the η → 0 limit. In this limit

the kinetic equation (3.21) represents the Born approximation. A finite value of η

could then be thought of as resulting in additional terms that are beyond the Born

approximation. Such terms model the duration of collision effects and quasi-particle

damping. In principle if this effect is treated self-consistently, η will be a time dependent

function at least of order φ. This means that the rate of change of E given by Eq. (3.31)

is of the order φ3.

Also, if one is only interested in times grater than the correlation time τcor, the

finiteness of η allows us to extend the lower limit of the collision integral to −∞. Now

we can approximate the f(t′) in the non-Markovian expression of Γ by its instantaneous



30

value f(t) to obtain the Markov form

Γ
(m)15

ABCD =
1

h̄

∫ t

−∞
dt1

[

e−η(t−t1)φ1234φ1′′2′′3′′4′′

× K1′′1′(t, t1)K2′′2′(t, t1)K†
3′′3′(t, t1)K

†
4′′4′(t, t1)

× A31′(t)B42′(t)C4′2(t)D3′5(t)

]

(3.32)

One can verify that the above Markov form results in an energy conservation, up

to the most significant order given by

d

dt
E(f) = Tr

{

HHF

(

L(m)
QB [f ] + L(m)

QB [f ]†
)}

. (3.33)

If we compare this with the expression for the correlation energy Ecor in Refs. [73, 74],

the right hand side of Eq. (3.33) is exactly −∂Ecor/∂t. This is not surprising and

can be understood more intuitively by writing the collision integral as a sum of two

contributions: correlation and collision

Γ = Γcor + Γcol =

∫ 0

−∞
...dt′ +

∫ t

0
...dt′. (3.34)

For a finite η, the Γcor contribution decays to zero as e−ηt. Therefore the decaying

correlation energy Ecor associated with this part shows up in the rate of change of the

total energy E. In the Born approximation Γcor is constant because η → 0.

The exponential damping results in a widened delta function and therefore the

rate of change of E(f) Eq. (3.33) can be shown to be of order ηΓ(m). Thus, by includ-

ing terms beyond the Born approximation, we have obtained a collision integral that

is Markovian and still conserves energy up to φ2 order. Now if we assume that the

equilibration time is of the order 1/Γ(m) , the total change in energy ∆E is therefore

∆E = E(f eq) − E(f in)

∼ η Γ(m) ×
(

1

Γ(m)

)

= η, (3.35)

where f in and f eq are the initial and equilibrium distributions, respectively.



31

The importance of the damping term becomes more obvious when one attempts to

solve the kinetic equation numerically. One no longer has to worry about the η → 0 limit

in the Born-Markov approximation, which for a finite system with discrete levels can

result in the nonphysical situation of only exchange collisions and hence no equilibration.

3.4 Application to a dilute Bose gas in a spherical box trap

In the previous section, we introduced the general methods and concepts to de-

scribe a weakly interacting Bose gas under nonequilibrium conditions. We will now

apply these to a simple model of a typical 87Rb experiment, as realized by many lab-

oratories around the world, for example Refs. [1, 51, 84]. The physical parameters are

usually quoted in the natural units for a harmonic oscillator trapping potential, i. e.,

the angular frequency ω = 2π 200Hz, the atomic mass m87 = 86.9092 amu, the ground

state size aH = [h̄/(ωm87)]
1/2 = 763nm, and the s-wave scattering length as = 5.82 nm.

However, in the present chapter, we do not pursue the usual harmonic confine-

ment, but rather explore the properties of a radial box as a particle trap. This choice is

motivated by previous studies of the self-consistent Hartree-Fock single-particle states

[78]. As soon as repulsive mean-field potentials are added to the bare harmonic trapping

potentials, the corresponding eigenstates widen in size and look remarkably close to the

eigenstates of a box, provided the spatial extensions of the box is chosen appropriately.

In particular, we pick a box of radius R = 1000 aS = 5.82µm.

Thus, our model is represented by a spherical trap with box potential given by

Vext(r) =















0, r < R

∞, r ≥ R,

(3.36)

The eigenfunctions are a product of spherical Bessel functions j(l) and spherical har-

monics Y(lm):

ψ(nlm)(r, θ, φ) =















N(nl) j(l)(r k(nl))Y(lm)(θ, φ), r < R

0, r ≥ R.

(3.37)
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Figure 3.1: Hartree-Fock energies as a function of particles number in the box ground
state, f11 with all other fij ’s equal to zero.

A normalization constant is represented by N(nl). The eigenenergies are given in terms

of the wave-vectors k(nl), which can be obtained from the n-th nodes of the spherical

Bessel-functions of angular momentum l,

ε(nl) = (Rk(nl)/π)2 ε0. (3.38)

Here, ε0 represents the ground state energy and defines the energy scale of the problem

ε0 =
h̄2π2

2mR2
. (3.39)

All the physical parameters are scaled with respect to this energy unit ε0 and the radius

of the box R.

For simplicity, we assume all the atoms to be in the l = 0 state initially. One

therefore needs to consider only the l = 0 manifold and get for the normalization

constant N(n0) = n(π/(2R3))1/2 and radial wave-vector Rk(n0) = nπ. If the cloud is

relatively cold, then most of the population resides in the lowest few energy states.

Therefore, we can also limit the number of radial modes 1 ≤ n ≤ nmax. For the present
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case, we take nmax = 5. Obviously, all these simplifications reduce the number of

degrees of freedom significantly and thus we are able to study certain aspects of the

nonequilibrium dynamics of the trapped Bose gas in great detail.

With the above definitions, the bare single particle box Hamiltonian is given by

εpq = δpq q
2 (noimplicitsumover q). (3.40)

The interaction part Ĥ(1) involves the matrix elements of the interaction potential

defined by Eq. (3.6)

φpqrs =
4aS

π

∫ π

0
sin (p x) sin (q x) sin (r x) sin (s x)

dx

x2
,

(3.41)

which in general have to be computed numerically. Interestingly, in the case of a spher-

ical box this integral can be evaluated analytically and simplified to a finite sum of sine

integrals and cosine functions (see Appendix B for details).

The nonequilibrium state of the above system is represented by the single parti-

cle distribution function f with time dependence given by Eq. (3.21). Neglecting the

second order collision terms, the first order evolution is governed by the Hartree-Fock

Hamiltonian HHF and is given by

d

dt
f = LHF [f ] + LHF [f ]†. (3.42)

The energy eigenstates of the interacting system are therefore shifted from the bare box

states due to the self energy effect. These shifts can be significant depending on the

total particle number. This is clear from Fig. 3.1 where we plot the eigenenergies as a

function of f11, the total particle number in the box ground state (with all other fij’s

equal to zero).

Now note that the time dependent Hartree-Fock equation (3.42) for the density

matrix, f , is nonlinear and hence we seek a self consistent solution such that

f =
∑

i

P (εi)|εi〉〈εi|, (3.43)
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where HHF|εi〉 = εi|εi〉, and for a Bose-Einstein distribution P (ε) is given by

P (ε) =
1

exp((ε− µ)/kBT ) − 1
. (3.44)

For a given total particle number, N , and temperature, β = 1/kBT , a self-consistent

chemical potential, µ(β,N), and hence a self-consistent Bose-Einstein distribution is

obtained. For example, let us consider three different total particle numbers N =

10, 100, 500 at two different temperatures, β = 1/kBT = 0.01, 0.5, corresponding to hot

and cold clouds, respectively. In Figs. 3.2 and 3.3, we plot the self-consistent solution

and the self-energy density in the position space representation. We see that the self-

energy density is proportional to the number density only near the center of the trap

and drops off faster with increasing radius. This can be attributed to the restricted

number of basis states used in our calculation and effectively gives a finite range to the

two body potential Vbin.
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Figure 3.2: The scaled mean-field density, Uf (r, r)/ε0, as a function of the scaled radial
distance, r/R, at a relatively hot temperature, β = 0.01 is shown for three different
values of particle numbers: N = 10 (solid curve), N = 100 (dashed), and N = 500
(dot-dashed). Inset shows the corresponding number density as a function of scaled
radial distance.
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Figure 3.3: The scaled mean-field density, Uf (r, r)/ε0, as a function of the scaled radial
distance, r/R, at a relatively cold temperature, β = 0.5 is shown for three different
values of particle numbers N = 10 (solid curve), N = 100 (dashed), and N = 500 (dot-
dashed). Inset shows the corresponding number density as a function of scaled radial
distance.

Up to first order, the f equation is totally reversible. The inclusion of the second

order terms (collisions) break the reversibility, and therefore represents a relaxation of

the system from some initial state to a final equilibrium state. Here we will be using the

Markov form (3.32) for the collision integral. We take the Hartree-Fock self-consistent

state for the initial condition.

In the previous section, we interpreted the function exp(−ητ) to account for

duration of collision effects and quasi-particle damping. But the exponential form was

originally introduced to break the time reversal symmetry and it has the correct long

time behavior. However, an exponential damping will result in a Lorenzian line shape

for the final equilibrium distribution. Due to the long-reaching wings of the Lorenzian

curve, in the Markov limit, off-the-energy shell collisions get weighted strongly. To seek

an improved damping function that will have the correct short and long time behavior,
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we use the equivalence of kinetic theories based on the Green’s function approach [63]

and the non-equilibrium statistical operator method [81] as shown in Ref. [85]. The

behavior of the retarded Green’s function g(t, t1) for very large and very small time

scales is given by

g(t, t1) ∼















e−η(t−t1) t− t1 ≫ τcor

e−η(t−t1)2 t− t1 ≪ τcor.

(3.45)

Therefore, behavior over the intermediate time scale will be best represented by an

interpolating function. This is also true for the damping function. From Fig. 3.4 we see

that the function

F(t, t1) = 1/ cosh(η(t − t1)), (3.46)

has exactly this behavior and therefore represents a better choice than the exponential

form.

With either choice of the damping function, for a particular value of the parameter
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Figure 3.4: Comparison between different damping functions, exp(−ητ) (solid),
exp(−ητ2) (dot-dashed), and 1/ cosh(ητ) (dashed). Note that the hyperbolic secant
function asymptotes to an exponential form for large τ and a Gaussian form for small
τ .
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Figure 3.5: Evolution of the diagonal elements fnn (n = 1, 2.., 5) (shown with curves
from bottom to top) toward a self-consistent steady-state solution starting from an
approximate solution. Two different damping functions are used in the evaluation of
the Γ’s. Dashed and solid curves correspond to exponential and hyperbolic secant
respectively.

η, a time propagation results in a self-consistent steady-state solution, f eq. Figure

3.5 shows such a time evolution for N = 500 particles with an initial temperature

corresponding to β = 0.01. We have chose η to be of the order Re[Γ] ≈ 2.3. In principle

η should be obtained self-consistently at every time step. So long as one considers large

enough number of basis states, the final result is reasonable insensitive to the value of η

as long as η ≥ Re[Γ]. As mentioned earlier we see that the exponential damping function

results in significant transfer of population to the excited states. This effect is less with

the hyperbolic secant damping function. We get different steady-state solutions because

different damping functions correspond to different initial correlations. Also a plot of

θ(fnn) ≡ ln(1/fnn + 1) vs the Hartree-Fock energies εHF
n , shown in Fig. 3.6 shows that

the f eq is very close to a Bose-Einstein distribution. The slope, which represents the

self-consistent value of β, shows that the change in temperature is far greater for the
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Figure 3.6: Linear behavior of θ(fnn) as a function of εHF
n . Initial distribution shown

with diamonds. Final distribution shown with circles for the case of exponential damping
function, and squares for the case of hyperbolic secant damping function.

exponential damping function compared to the hyperbolic secant case, because off-the-

energy shell effects are larger as explained previously.

Thus we have obtained a self-consistent steady-state solution to the second order

kinetic equation. We emphasize here that the steady-state solution is a result of the real-

time non-equilibrium evolution of the system. Deriving such an equilibrium solution,

whose absolute value is plotted in Fig. 3.7, is a prerequisite step to the study of collective

modes and damping rates of a dilute gas.

3.5 Real time response to perturbation

The properties of the equilibrium solution f eq exhibit the expected characteristics

of a Bose-Einstein distribution. In order to verify the stability of this solution and to

study the damping rates of the collective excitations, we will now examine the real-time

response of the system to a perturbation. First, we will outline the linear response
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Figure 3.7: Absolute value of f eq, the self consistent steady-state solution for the second
order kinetic equation. The single particle density matrix is plotted in the Hartree-Fock
basis.

theory and discuss the structure of the modes, their frequencies, and the life-time of the

excitations. Subsequently, we will use these modes to initially prepare the system and

to evolve the full nonlinear quantum kinetic equation towards equilibrium.

One of the fundamental properties of the quantum kinetic equation (3.21)

d

dt
f(t) = L[f ] + L[f ]†, (3.47)

is its Hermitian structure. Thus, if we prepare a physical state initially, it will remain

Hermitian with f(t) = f(t)†, indefinitely. We will now consider a weak perturbation of

an equilibrium state,

f(t) = f eq + δf(t), (3.48)

and calculate the first order response of the system. As usual, we want to assume that

we can decompose a general perturbation into fundamental damped and/or oscillatory

eigenmodes of the system. Therefore, such a specific perturbation can be parameterized

as
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Figure 3.8: Non-negative frequency eigenvalues scaled with respect to ε0 shown with
crosses for the Hartree-Fock equation and squares for the quantum-Boltzmann equation.
The dotted lines correspond to difference energies (εHF
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j )/ε0. The modes labelled
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δf(t) = e−i ωtδf (+)
ω + h.c., (3.49)

δf (+)
ω = δf (c)

ω + i δf (s)
ω , (3.50)

where δf
(+)
ω denotes a positive frequency amplitude. It turns out to be useful to de-

compose it into quadrature components

δf (c)
ω =

1

2

[

δf (+)
ω

†
+ δf (+)

ω

]

, (3.51)

δf (s)
ω =

1

2 i

[

δf (+)
ω

† − δf (+)
ω

]

, (3.52)

and evaluate the kinetic operator L[f ] only for such Hermitian arguments. From a

Taylor series expansion of the kinetic operator around the equilibrium distribution, one

obtains finally the linear response equations for the fundamental modes

(−iω) δf (+)
ω = L(1)[δf (c)

ω ] + iL(1)[δf (s)
ω ] + L(1)[δf (c)

ω ]† + iL(1)[δf (s)
ω ]†, (3.53)
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Figure 3.9: The perturbation λδf s
ω (bottom) is shown in a rotated frame such that f eq

is diagonal; the resulting oscillatory and damped behavior (top) of the element f12 of
f in the box basis is due to the perturbation. The left and right figures correspond to
the points marked (a) and (b) in Fig. 3.8 respectively.

where we have defined a linear response operator through an appropriate centered dif-

ference limit

L(1)[δf ] = lim
λ→0

L[f eq + λδf ] − L[f eq − λδf ]

2λ
. (3.54)

We solve Eq. (3.53) as an eigenvalue problem. In general, the eigenvalues are

complex, with frequency and damping rate given by the real and the imaginary parts

respectively. The eigenvalues appear as complex conjugate pairs. The eigenmodes

corresponding to non-zero eigenvalues are Hermitian conjugates of each other and are

traceless with normalization given by

Tr{δf (+)
ω δf (+)

ω
†} = 1. (3.55)

The physical linear response mode is given by the quadrature components δf s
ω and δf c

ω.

There also exists a zero mode that has non vanishing trace. The damping rates are all



42

0 5 10 15 20
−48.5

−48.4

t (h/ε
0
)

f 12

1 2 3 4 5

1
2

3
4

5

0

0.1

0.2

nm

|δ
 f|

1 2 3 4 5

1
2

3
4

5

0

0.1

0.2

nm

|δ
 f|

0 5 10 15 20
−48.455

−48.45

−48.445

−48.44

−48.435

−48.43

t (h/ε
0
)

Figure 3.10: The perturbation λδf s
ω (bottom) is shown in a rotated frame such that f eq

is diagonal; the resulting damped behavior (top) of the element f12 of f in the box basis
is due to the perturbation. The left and right figures correspond to the points marked
(c) and (d) in Fig. 3.8, respectively.

negative, thus confirming the stability of the collective modes. In Fig. 3.8, we plot the

positive frequency eigenvalues. The dotted lines correspond to the difference frequencies

of the Hamiltonian HHF .

It is interesting to see how these different modes evolve in real time. For this we

use the equilibrium distribution obtained in the previous section and perturb it with

one of the quadrature components

f → f eq + λδf (s)
ω , (3.56)

where λ = 0.2 determines the smallness of the perturbation. In particular we will

consider the modes labeled by (a), (b), (c) and (d) in Fig. 3.8.

The real-time response is shown by plotting the off-diagonal matrix element f12

of the single particle density matrix in the box basis as shown in Figs. 3.9 and 3.10. In

Fig. 3.11, we plot the change in the total energy ∆E = E(f) − E(f eq) as a function
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Figure 3.11: The change in the total energy ∆E = E(f)−E(f eq) as the system relaxes
to its new equilibrium. In the top figure, the solid and dashed lines correspond to cases
(a) and (b), respectively. Similarly in the bottom figure, the solid and dashed lines
correspond to cases (c) and (d), respectively.

of time. In cases (a) and (b) we see that the ∆E oscillates about zero and eventually

goes to zero. This is expected because such a perturbation tends to create coherences,

resulting in an energy change by the amount of Ecoh (coherence energy) that would

eventually decay down to zero. Similar damped behavior is observed for case (d). Such

an oscillatory damped behavior of the total energy could be attributed to the Markov

approximation in the collision integral Eq. (3.32). On the other hand, perturbations of

the kind (c) increase the total particle number by the amount δN = Tr{λδf (s)
ω } and

hence result in a finite change in total energy.

3.6 Conclusion

A non-Markovian version of the quantum kinetic theory is derived using the pre-

scription of a nonequilibrium statistical operator method as outlined in Ref. [81]. This

theory is shown to conserve energy in the η → 0 limit. Inclusion of quasi-particle
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damping and duration of collision effects results in a description beyond the Born ap-

proximation with energy conservation to φ2 order even in the Markov limit. To obtain

collision integrals that involve quasi-particle damping and duration of collision effects

and conserves energy precisely, one will have to calculate the T -matrix in the full colli-

sion operator keeping terms of all orders in the interaction.

We applied the generalized second order kinetic theory to the nonhomogeneous

dilute Bose gas confined in a spherical box to numerically study the full non-equilibrium

evolution of the system towards equilibrium. The self-consistent distribution f eq thus

obtained is very close to the Bose-Einstein distribution as shown in Fig. 3.6. We also

observe a significant Hartree-Fock self energy shift which depends on the single particle

distribution function f . The form of the damping function is important in determining

the line shape. Particularly, the function with a 1/ cosh type of behavior is found to be

appropriate and gives improved energy conservation due to smaller initial correlation

effect.

The importance of such a real-time calculation is apparent from the full real-

time response calculation, where we have calculated the damping rates and frequencies.

These damping rates correspond to a shorter time scale compared to the equilibration

time scale, which depend on rates in and out of the various levels.

This simple model of a spherical trap can be easily extended to a more realistic

situation of a harmonic trap. As in Refs. [13, 86, 87], the condensed component can

be easily included by introducing a symmetry broken mean-field, αi = 〈âi〉, as one of

the relevant observables and Hartree-Fock-Bogoliubov quasi-particle excitations. Even

though this extension of the kinetic theory discussed in this chapter may seem simple,

the actual calculations are complicated and involved due to the presence of anomalous

fluctuations. Also the theory will need to be renormalized in order to ensure a gapless

spectrum. Such a calculation will allow us to make experimentally verifiable predictions

of damping rates of collective excitations. One can also explore the possibility of in-
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cluding a time dependent potential or an external force term to selectively excite one

or more of the collective modes.



Chapter 4

Bosonic fractional quantum Hall effect

4.1 Introduction

With the advancements in methods of trapping and cooling atomic gases, a whole

new frontier has opened up for the study of many body physics. Due to the extreme

control, purity and detailed theoretical understanding of interactions of dilute atomic

systems, these systems provide a perfect scenario to test many of the ideas previously

limited to condensed matter systems. Since the achievement of Bose-Einstein condensa-

tion in weakly interacting atomic gases [1, 2, 3], innumerable papers have been published

on the equilibrium properties and dynamical behavior of dilute Bose gases at temper-

atures above and below the Bose-Einstein condensation temperature, Tc. While many

new phenomena have been studied in the regime of weak interactions, the other limit

in which the atoms can be strongly correlated has remained unexplored. Strong corre-

lations between particles have shown to produce fascinating effects like the fractional

quantum Hall effect (FQHE) in condensed matter systems.

The regime of strong correlations in dilute atomic gases can be achieved by two

ways. One possibility is to tune the interactions such that the interaction energy is

greater that any other (single particle) energy scale of the problem, for example by using

Feshbach resonance [88]. The other possibility is to make the interactions dominate by

creating degeneracies. This could be achieved for example by using a periodic trapping

potential. Under the conditions that the tunneling amplitude between wells is small
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compared to the typical interaction energy, the system has been predicted to undergo

a transition from a superfluid to a strongly correlated Mott state [89]. Another way of

achieving degeneracies is to rotate the harmonic trap that confines the dilute Bose gas.

At rotational frequencies close to the trapping frequency, the system is predicted to enter

the fractional quantum Hall regime where the ground state is given by the variational

Laughlin wavefunction [90]. This is precisely what we will focus in the remaining of this

thesis.

In this chapter, we will discuss the fractional quantum Hall effect (FQHE) in brief.

Then we will see how a dilute Bose gas can be prepared under conditions identical to

those required for observing the electronic FQHE. Having met the requirements, with

simple quantum mechanical arguments we will show that this bosonic system exhibits

single and many-particle states identical to that of the electronic FQHE system.

4.2 Fractional quantum Hall effect

The quantization of the Hall effect discovered by von Klitzing, Dorda, and Pep-

per [91] in 1980 is a remarkable macroscopic quantum phenomenon which occurs in

two-dimensional electron systems at low temperature and strong perpendicular mag-

netic field. Under these conditions the Hall-conductivity exhibits plateaus at integral

multiples of a fundamental constant of nature e2/h. This is the integer quantum Hall

effect (IQHE). The striking result is the accuracy of the quantization irrespective of the

impurities or the geometric details of the two-dimensional system. Each plateau is asso-

ciated with a deep minimum in the diagonal resistivity indicating a dissipationless flow

of current. This was followed by the discovery of fractional quantum Hall effect (FQHE)

by Tsui, Stormer, and Gossard [92] in higher mobility samples where the plateaus occur

at fractional multiples of e2/h as shown in Fig. 4.1. Despite the apparent similarity of

experimental results, the physical mechanism responsible for the IQHE and the FQHE

are quite different. In the former the random impurity potential plays an important role
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Figure 4.1: The FQHE in ultra high-mobility modulation-doped GaAs/AlGaAs. Many
fractions are visible.

while in the latter it is the collective effect arising from the coulombic electron-electron

repulsion. Also note that the fractional values originally observed as shown in Fig. 4.1

were all odd denominator fractions. While this is in fact related to the fermionic nature

of electrons, more recently [93, 94] even fractions like 5
2 have also been observed. Occu-

rance of such even fractions is rare, and their existence can be attributed to a Cooper

instability [95]; nevertheless, it is again a collective phenomenon due to the interaction

between electrons.

Regardless of the nature of the fractions, the many body physics that is important
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to the current discussion is that the fractional quantum Hall state is a liquid state

exhibiting a gap in the excitation spectrum. This has been very well understood by

methods based on exact diagonalization and trial wavefunctions. The variational ground

state proposed by Laughlin [90] has been very successful in explaining the FQHE and

predicts the existence of quasi-particles with fractional charge. In the forthcoming

sections we show that identical many body effect can be predicted for a rotating Bose

gas. In fact a bosonic variant of the many body Laughlin wavefunction can be written

down to describe the ground state of the system in this strongly correlated regime.

4.3 Electron system versus dilute Bose gas

While at first glance a rotating Bose gas may seem very different from the frac-

tional quantum Hall system, there exists an interesting symmetry with respect to the

measurable physical quantities between these systems. This is summarized in the table

below where we list the necessary conditions and physical quantities for a rotating Bose

gas corresponding to those which define the electronic fractional quantum Hall system.

Electronic FQHE system Rotating Bose gas

1 2-dimensional at interface be-
tween semiconductors

effective 2-dimensional due to
strong confinement along the
z direction compared to the x
and y directions

2 Repulsive coulombic interac-
tion

Repulsive two body potential

3 Vector potential A Velocity field u

4 Magnetic field B and magnetic
flux φ, B = ∇ × A; φ =

∫

B ·
n̂dS

Vorticity Ω and circulation Θ,
Ω = ∇× u; Θ =

∫

Ω · n̂dS

5 Landau levels Landau levels
fermionic-Laughlin state bosonic-Laughlin state

Table 4.1: Comparison between the electronic fractional quantum Hall system and the
rotating Bose gas.
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As mentioned previously, the FQHE occurs in a two-dimensional electron system

in the presence of a strong perpendicular magnetic field. Identical conditions can be

achieved for a dilute Bose gas by having the confinement in the z direction strong

compared to the x and y directions while the vorticity Ω of the rotating Bose gas

plays the role of the B field. The many body effects are generated by the repulsive

two-body inter-atomic potential which replaces the coulombic repulsion for electrons.

Thus, apart from the intrinsic statistics and charge of the particles, it is theoretically

possible to configure a dilute Bose gas to meet the requirements necessary for observing

a FQHE. Therefore in principle one could predict a strongly correlated ground state for

the rotating Bose gas.

To begin with we will first address the last row of the above table by showing

that the Landau levels describe the single particle spectrum of a rotating Bose gas in

complete analogy to the electronic case. By including inter-atomic repulsive interactions

we will also show that a bosonic variant of the Laughlin wavefunction can be written

down as the variational many body ground state of the rotating Bose gas.

4.4 Landau levels and the many-body Laughlin wavefunction

We start with writing the Hamiltonian for N interacting bosonic atoms confined

to a harmonic potential in the rotating frame. Also, we assume the confinement along

the axis of rotation to be strong enough that we can neglect the excitations in that

direction and consider the system to be essentially two dimensional:

H =
N
∑

j=1

{

p2
jx

2m
+
p2

jy

2m
+
mω2x2

j

2
+
mω2y2

j

2
− ΩLjz

}

+
∑

i<j

V (ri − rj). (4.1)

Here, m is the mass of the atoms, the angular momentum operator is given by Lz =

xpy −pxy, and Ω is the rotating frequency. The repulsive two body potential V depends

only on the relative coordinate of the individual atoms. Now if we make the following
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identification

Ajx =
mω

e
yj; Ajy = −mω

e
xj, (4.2)

the above Hamiltonian can be cast in a form very similar to the fractional quantum

Hall Hamiltonian

H =
N
∑

j=1

{

1

2m
(pjx + eAjx)2 +

1

2m
(pjy + eAjy)

2
}

+(ω−Ω)
N
∑

j=1

Ljz+
∑

i<j

V (ri−rj). (4.3)

To obtain the single particle spectrum we will first consider the non-interacting case,

i.e. V = 0. The Hamiltonian can then be rewritten in a more convenient form

H =
N
∑

j=1

(

a†jaj +
1

2

)

2h̄ω + h̄(ω − Ω)
N
∑

j=1

(b†jbj − a†jaj), (4.4)

where the operators a and b are defined in terms of the covariant momentum (Px, Py) =

(px +eAx, py +eAy) and the guiding center coordinate (X,Y ) = (x+ 1
2mωPy, y− 1

2mωPx)

aj =

√

1

4h̄mω
(Pjx + iPjy); a†j =

√

1

4h̄mω
(Pjx − iPjy) (4.5)

and

bj =

√

h̄

4mω
(Xj − iYj); b†j =

√

h̄

4mω
(Xj + iYi) (4.6)

obeying the following commutation relations

[ai, a
†
j ] = [bi, b

†
j ] = δij ; (4.7)

[ai, aj ] = [ai, bj ] = [a†i , bj ] = [bi, bj ] = 0. (4.8)

The operators a and a† annihilate and create a quanta in the Fock space, while the

operators b and b† are the usual angular momentum ladder operators. Now one can

easily see that in the absence of interactions, at a certain critical rotational(stirring)

frequency Ω = ω, the Hamiltonian depends only on the a’s and a†’s. The corresponding

single particle energy states are the Landau levels given by

|nj , lj〉 =

√

1

nj!(lj + nj)!
(a†j)

nj (b†j)
lj+nj |0〉 (4.9)
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Figure 4.2: Atomic density in the lowest Landau level: left - density in the lowest
Landau level with angular momentum quantum number l = 3 is sharply peaked at radius
r =

√

lh̄/mω, right - density is shown by a concentric ring of thickness ∆r =
√

h̄/4lmω
in the x-y plane.

with energy eigenvalues Enj
= (nj + 1

2)2h̄ω and angular momentum Lj = ljh̄, where

|0〉 is the Fock vacuum. Since the angular momentum operator commutes with the

Hamiltonian, each Landau level is degenerate with respect to the angular momentum

quantum number l. Now using the action of the operators a and b on the Fock states,

the configuration space wavefunction of the zero angular momentum lowest Landau

state can be easily shown to be given by

ψ0
0(x) =

√

mω

πh̄
exp

(

−mω|x|
2

2h̄

)

. (4.10)

Therefore using Eq.(4.9), the generic Landau wavefunction can then be written as

ψn
l (x) = 〈x|n, l〉 =

√

1

n!(l + n)!
(a†)n(b†)l+nψ0

0(x). (4.11)

The atomic density in the lowest Landau level given by |ψ0
l (x)|2 is sharply peaked at

radius r =
√

lh̄/mω as depicted in Fig. 4.2. The lowest Landau states are therefore

represented by concentric rings labeled by the angular momentum quantum number l

(Fig. 4.2). Thus the single particle spectrum for the rotating Bose gas shows Landau
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level structure identical to that of the electrons in a strong perpenticular magnetic field.

Now we include interactions in order to calculate the many-body ground state.

We start by writing the Hamiltonian (4.3) as

H = HLandau +HL + V (4.12)

Here HLandau is the quantum Hall single particle Hamiltonian whose single particle

states are the Landau levels separated by 2h̄ω. The Hamiltonian HL = (ω − Ω)Lz is

proportional to the z component of the total angular momentum Lz =
∑N

j=1 Ljz, and

V is the interaction term. From now on we would like to consider the limit in which

the energy scale characterizing the Hamiltonian HLandau and V is much greater than

the one corresponding to HL. This is possible when the stirring frequency is very close

to the harmonic trapping frequency. Also we will consider only contact interaction so

that V can be written as

V = η
N
∑

i<j

δ(xi − xj). (4.13)

In this limit, the ground states and elementary excitations of the system will lie in the

subspace of common zero energy eigenstates of HLandau and V . Thus the many body

wavefunction Ψ(z) must lie within the subspace generated by the tensor product of the

lowest Landau level single particle states

Ψ({z}) = P(z1, ..., zN )
∏

k

exp

(

−|zk|2
2

)

, (4.14)

where P(z) is a polynomial in each of the scaled complex atomic coordinates

zj =

√

mω

h̄
(xj + iyj). (4.15)

Now if Ψ(z) is also an eigenstate of V , then due to the delta function nature of V , the

polynomial P(z) has to satisfy the form

P({z}) = Q({z})
∏

i<j

(zi − zj)
2 (4.16)
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Here, the “2” in the exponent, is due to the even symmetry of bosons under exchange.

We can now diagonalize HL within the truncated Hilbert space of wavefunctions of

the form specified by (4.14) and (4.16). At the same time when P(z) is a homogeneous

polynomial in z, the state (4.14) is an eigenstate ofHL with eigenvalue EM = h̄(ω−Ω)M ,

where M is the homogeneous degree of P(z). Now since the ground state is the state

with the lowest angular momentum, we conclude that Q(z) = 1 and the ground state

wavefunction can be written as

Ψ({z}) =
∏

i<j

(zi − zj)
2
∏

k

exp

(

−|zk|2
2

)

. (4.17)

This is the essentially the bosonic variant of the Laughlin wave function [96, 97] originally

proposed for fractional quantum Hall electrons. The most generic Laughlin wavefunction

is represented by

Ψq({z}) =
∏

i<j

(zi − zj)
q
∏

k

exp

(

−|zk|2
2

)

(4.18)

where 1
q represents the fraction in the FQHE. Therefore as one can immediately notice

that, q has to be odd(even) for the case of electrons(bosons) to satisfy the Fermi(Bose)

symmetry. Physically the fraction 1
q , represents the number of electrons(bosons) per

flux-quanta(vortex) and is called the filling fraction. Thus the Laughlin wave function

(4.17) for the rotating Bose gas represents a 1
2 bosonic FQHE. The atomic density profile

in the 1
2 -Laughlin wavefunction is shown in Fig. 4.3.

4.5 Exact diagonalization

To confirm the validity of the arguments presented in the previous section we

numerically diagonalize the Hamiltonian (4.3) for a small system of five bosonic atoms.

As before we assume hard core interaction potential represented by a delta function.

Also in order to limit the basis states to the lowest Landau levels, the interaction

parameter η is chosen such that the interaction energy is small compared to the Landau

level spacing, 2h̄ω. We choose the stirring frequency to be smaller than but very close to
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Figure 4.3: The atomic density in the 1
2 - Laughlin state for N = 5 atoms.

the trapping frequency, 1−Ω/ω = 0.01. Such a choice allows us to see the effect of the

HL piece of the Hamiltonian while satisfying the assumptions of the previous section.

In Fig. 4.4 we plot the eigenenergies as a function of the total angular momentum Ltot.

We notice that there is a branch of states well separated from the rest of the spectrum.

These states are polynomial states of the form given by (4.14) and (4.16). The ground

state is the state with angular momentum Ltot = N(N − 1) = 20 and is the Laughlin

state corresponding to the bosonic 1
2 FQHE.

4.6 Quasiparticles

The Laughlin wavefunction (4.17) describes a bound state of atoms with even

number of zeros or vortices. Now if the area of the system is slightly increased, the

number of vortices increases, resulting in a change of the filling fraction from 1
2 . Now

consider the case where we introduce one extra vortex. The new wavefunction can then

be written as

Ψ2+ε(z) =
∏

i

zjΨ2(z) (4.19)
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Figure 4.4: Results of exact diagonalization for a small system of N = 5 bosonic atoms in
a rotating 2-dimensional harmonic trap. The stirring frequency is chosen to be smaller
than but very close to the trapping frequency, 1 − Ω/ω = 0.01. The parameter η is
chosen such that the interaction energy is very small compared to the Landau level
spacing, 2h̄ω. Such a choice allows us to use a truncated Hilbert space of lowest Landau
levels.

and possesses a zero at the origin. Physically, the above operation shifts the atomic

distribution corresponding to (l1, l2, ..lN ) to the one corresponding to (l1+1, l2+1, ..lN +

1). This can be verified trivially by expanding the above wavefunction and will be left

to the reader. From the experimental point of view, such a situation can be realized

by shining a laser at z = 0 as proposed by Paredes et al. in [97]. More generally we

could shine the laser at some point z0 (localized within an area ∼ h̄/(mω)) in which

case the Laughlin wavefunction will be multiplied by
∏

j(zj − z0) and hence reducing

the atomic density at that point to zero. Such an isolated zero acts like a quasi-hole

excitation with fractional statistics. This is very easy to see: consider a hypothetical

situation in which we introduce two zeros at the same point z0, and then pin an extra

atom to that point. Such an operation would return the ground state to the 1
2 Laughlin

wavefunction of the previous section except now for (N + 1) bosons. Thus two quasi-
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holes are annihilated by an atom and hence the quasi-hole corresponds to a particle

with 1
2 statistics. The rotating Bose gas can also be predicted to be incompressible.

This is because compressing or expanding the state would require removal or injection

of an atom requiring a finite amount of energy. In essence, it is not possible to induce

an infinitesimal change in the system by an infinitesimal change in the pressure.

4.7 Conclusion

In this chapter we showed that the rotating Bose gas under certain conditions

represents a strongly correlated system in complete analogy to the electronic FQHE

system. Here the ground state is given by the bosonic variational 1
2 - Laughlin wave-

function. The 1
2 - quasi-hole excitations can be created by shining a laser at some specific

point.

While theoretical understanding of the occurence of such a strongly correlated

state is quite clear, experimental realization seems difficult. The main difficulty is due

to the extreme low temperature required to access this state. Typically the temperature

required is such that [97]

kT

h̄ω
≪ 1

N
,
η

N
. (4.20)

The remainder of this thesis will be devoted to precisely address this issue. We will be

considering an alternative approach, where along with creating degeneracies by rotating

the trap, we increase the interaction energy by applying Feshbach resonance. The

motivation for this approach can be understood from the numerical results of Fig. 4.4

and the nature of the Laughlin wavefunction. The strongly correlated Laughlin state

corresponds to the lowest energy state in the separated branch of states. This is because,

the Laughlin wavefunction is annihilated by the delta function interaction potential.

Therefore, except for the states in this branch, eigenenergies of all the other states have

a contribution corresponding to the interaction energy. Therefore, naively, increasing
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the interaction energy would increase the gap between the separated branch and the

continuum resulting in an increased temperature for observing the ground state.

However, in implementing such an approach, an alternative formulation of the

rotating Bose gas is required. This is because, while the physics of such resonances is

well formulated in a mean field picture, mean field theories fail to describe the strongly

correlated regime. The order parameter describing for example the Laughlin state is no

longer given by the expectation value of the atomic field operator. This difficulty can

be resolved in a gauge transformed Chern-Simons approach [98, 99]. Here the problem

can be formulated in terms of mean fields of composite particles. In the next chapter,

we discuss the basic ideas behind this effective field theory picture. Then continuing

along the same lines, in Ch. 6 we predict novel strongly correlated states in the presence

of Feshbach resonance.



Chapter 5

Chern-Simons theory for a strongly correlated rotating Bose gas

5.1 Introduction

The quasi-hole excitations in the bosonic Laughlin state are 1
2 bosons as argued

in the last chapter. Therefore a field theory model appropriate for the Bose gas in the

strongly correlated Laughlin regime should exhibit vortex solutions corresponding to

such quasi-holes. Initial ideas of a field theory appropriate to describe such a strongly

correlated state were put forth by Girvin and MacDonald [100] in relation to the elec-

tronic FQHE. A related model was developed by Zhang, Hansson, and Kivelson (ZHK)

[98] directly from the microscopic Hamiltonian. While the starting points were different,

both these theories involved coupling of a scalar field to a gauge potential (a0,a) with

a Chern-Simons action (or topological mass term). To understand the necessity of such

a gauge term and its relevance to the strongly correlated Bose system that we wish to

study, we first need to understand the origin of fractional statistics in a two-dimensional

space.

We begin by discussing the origin of anyons, particles with statistics intermediate

between Fermi and Bose statistics in two-dimensional space. In fact it is possible to

change the statistics of particles in two-dimensional space, for example by attaching

fictitious magnetic flux in the case of electrons. The ZHK theory uses precisely this

transformation property associated with the gauge term of the Chern-Simons theory

to describe the strongly correlated fractional quantum Hall state as a Bose condensed
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Figure 5.1: Statistics associated with the exchange of two identical particles. The net
effect of making the interchange twice is to take one particle around another in a closed
loop. In 3-dimensions the loop can be deformed without crossing the other particle
which is not possible in two dimensions.

state of bosonized electrons (composite bosons). Within this view point, we show that

the atomic Laughlin state of previous chapter can be described as a Bose condensed

state of composite bosons.

5.2 Statistics in 2-dimensions

In 3-dimensional space there are only two types of particles, bosons and fermions.

They are distinguished by the following properties: (a) intrinsic spin of bosons is sh̄; s =

0, 1, 2.. while that of fermions is sh̄; s = 1
2 ,

3
2 , ..., (b) when two identical particles are

exchanged, the wavefunction changes its overall sign for fermions but not for bosons,

and (c) any number of bosons can occupy a single quantum state, but a single state

cannot be occupied by more than one fermion. The non-Abelian algebra,

[Si, Sj] = ih̄εijkSk for i, j, k = x, y, z (5.1)



61

is responsible for the quantization of spin in 3-dimensions. To the contrary, fractional

spin is possible in a 2-dimensional space because there is only one way of rotation, which

is around the z axis by embedding the 2-dimensional space into the 3-dimensional space

and identifying it with the xy plane. Here the spin operator is Sz with an arbitrary

eigenvalue since the rotational group is Abelian. Now for the exchange statistics, as

shown in Fig. 5.1, if we move one particle around the other in a closed loop, in 3-

dimensions, the loop can be continuously deformed to a point which in 2-dimensional

space is not possible without crossing the second particle. Hence in 2-dimensional space,

the exchange statistics depends on the loop contrary to 3-dimensional space, where it

is an intrinsic property of the particles. Thus particles in 2-dimensions can act like

fermions or bosons under exchange depending on the geometry of exchange. Lastly, the

Pauli exclusion principle can be interpolated from fermions to anyons (particles in two

dimensions with fractional spin) by introducing a statistical interaction g [101] defined

by

g =
dN − dN+∆N

∆N
, (5.2)

where N is the number of particles and dN is the dimension of the one-particle Hilbert

space obtained by holding the coordinates of N − 1 particles fixed. We have g = 0 for

bosons, g = 1 for fermions and g = m for the composite particles in the 1
m fractional

quantum Hall state.

5.3 Berry phase

Consider a system in which the Hamiltonian depends on some external parameter

represented by a vector R. Also assume that the Hamiltonian has a non-degenerate

eigenstate ΨR

H(R)ΨR = ERΨR (5.3)
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Figure 5.2: Trajectory of the vector R(t) in the parameter space. The vector R(t) rep-
resents a set of parameters that define the Hamiltonian at some time t. The parameters
are changed adiabatically from their initial value at time ti such that the vector moves
in a closed loop and comes back to its original position at some final time tf

.

Now we start at some initial time ti and change the parameters such that the vector

R moves in a closed loop C in the parameter space as shown in Fig. 5.2 and returns to

its initial value at some final time tf , R(tf ) = R(ti). If the change is sufficiently slow

the state changes continuously and remains an eigenstate at all times. Since we have

assumed the state to be non-degenerate, the state at time tf should be the same as that

at ti except for a multiplicative phase factor. In fact, the states are related by

ΨR(tf )(tf ) = exp

(

− i

h̄

∫ tf

ti
dt′E(R(t′)) + iγ(C)

)

ΨR(ti)(ti). (5.4)

The first part of the phase factor is the dynamical phase and is due to the eigenenergy

of the state. The second part depends on the contour C and is independent of tf − ti

and is referred to as the geometric phase. This phase can be expressed as

γ(C) = i

∮

C
〈ΨR(t)|∇R(t)ΨR(t)〉 · dR(t) (5.5)

and is called the Berry phase [102]. A typical example is the Aharonov-Bohm (AB)

phase [103], which appears when an electron moves in a magnetic field. The AB phase

is given by γ(C) = eBS/h̄, where BS is the flux passing through the contour C. In the

next section we will see how this extra geometric phase is associated with the idea of
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Figure 5.3: Left figure: two-dimensional two-electron system. The electron is localized
separately potential valleys V 1 and V 2. The valleys are separated such that there is
negligible overlap between the electronic wavefunctions. Right figure: the same situation
as on the left except now the electrons are independently attached to magnetic flux φ
and the flux moves along with the electrons.

anyons, the particles with statistics intermediate between Fermi and Bose statistics.

5.4 Anyons

One can change the statistics of the particles in a two-dimensional system based

on the fact that the AB phase arises in the presence of magnetic flux. For example,

consider a two-electron system, in which each of the electrons are localized in separate

potential valleys at R1 and R2 as shown in Fig. 5.3. We assume that the valleys are

separated so that the overlap of the wavefunctions is negligible. The two electron wave
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function can then be written in terms of their bound state wavefunctions ΨR(r)

ΨR1,R2
(r1, r2) =

1√
2

[ΨR1
(r1)ΨR2

(r2) − ΨR2
(r1)ΨR1

(r2)] (5.6)

Now if we exchange the position of the potential wells adiabatically, the Hamiltonian

returns to its original form, but due to the Fermi statistics of the electrons, the total

wave function acquires an extra minus sign. Next we consider the situation in which

each of the electrons is attached to an infinitesimally thin magnetic flux φ as shown in

the right figure of Fig. 5.3 and also assume that the flux moves along with the electrons.

Again we exchange the position of the potential wells as before, but now there is an

extra contribution eφ/(2h̄) to the phase due to the flux attachment. We can choose the

flux to be such that the additional phase cancels the minus sign due to Fermi statistics.

Thus the electrons behave like bosons when a certain amount of flux is attached to

them. Since the choice of φ is arbitrary, it is possible to make particles with statistics

intermediate between that of Fermi and Bose or anyons.

5.5 Composite particle mean field theory

Having introduced the key concepts behind exchange statistics in two-dimensions,

we now show how these ideas can be combined into building a field theory applicable

in the strongly correlated regime of the rotating Bose gas described by the bosonic-

Laughlin wavefunction. We start by defining a unit quantum of flux by φ0 = h/|e|.

Then bosons and fermions can be transformed into fermions and bosons respectively by

attaching an odd number of flux quanta to each particle. On the other hand the statis-

tics remains unchanged by attaching an even number of flux quanta. This is shown in

Fig. 5.4. Thus electrons in a 1
q ; q = odd FQHE, can be considered as composite bosons

with extra qφ0 fictitious flux in the opposite direction. The mean field of the fictitious

flux cancels with the real flux, and the system can be considered as a system of inter-

acting composite bosons in a zero magnetic field. Thus in the mean field picture, the
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Figure 5.4: Composite particle picture. A boson is transformed to a composite bo-
son(fermion) by attaching an even(odd) number of magnetic flux quanta. The extra
fictitious flux cancels the real flux in the mean field approximation resulting in free
composite bosons/fermions.

interaction experienced by the composite bosons is just the repulsive coulomb interac-

tion. At the same time we know that a repulsive bosonic system in two dimensions

undergoes Bose condensation at zero temperature. Hence in this picture, an odd frac-

tional quantum Hall state can be thought of as a Bose condensed phase of composite

bosons.

The same argument holds for our case of bosonic 1
2 FQHE in rotating Bose gases.

Since q = 2 = even, the rotating Bose system can be reduced to a system of interacting

composite bosons with zero rotational frequency. The composite bosons still experience

the repulsive two-body potential; therefore, the strongly correlated bosonic Laughlin

state can be considered as a Bose condensed state of composite bosons.
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5.6 Chern-Simons Ginzburg-Landau theory

The starting point of this theory is the second quantized Hamiltonian for atoms(bosons)

in the rotating frame. Since we have already made the mapping between the vorticity

and magnetic field, we write the second quantized Hamiltonian in terms of the vector

potential A instead of rotating frequency Ω. Also here we specialize to the case of

Ω = ω, so that HL = 0 in (4.3). Thus

Ĥ =

∫

ψ̂†(r)

[

1

2m
(−iD)2

]

ψ̂(r)d2r +
1

2

∫ ∫

ψ̂†(r)ψ̂†(r′)V (r − r′)ψ̂(r)ψ̂(r′)d2rd2r′

(5.7)

where Dµ = ∂µ + ieAµ and ψ̂(r) =
∑∞

l=0 alψ
LL
l (r) where al is the annihilation operator

for a particle in the lth single particle lowest landau state. As discussed in the previous

section, we would like to work in a composite boson picture. The composite boson field

operator ϕ̂ is defined by (see App.C)

ϕ̂(r) = e−J(r)ψ̂(r) (5.8)

where the operator J is given by

J(r) = iq

∫

d2r′ρa(r
′)θ(z − z′) (5.9)

In the composite picture the second quantized Hamiltonian retains the same form as

given above with the operators ψ̂ and ψ̂† replaced by the corresponding composite boson

operators ϕ̂ and ϕ̂† and D replaced by D,

Dµ = Dµ + ieaµ(r) (5.10)

where aµ is the fictitious Chern-Simons gauge field. The Chern-Simons field is an auxil-

iary field subject to certain constraints rather than a dynamical field obeying Maxwell’s

equation. In order to derive the constraint equation and the stationary solution it is

convenient to use the Lagrangian formulation. In the semi-classical approximation,
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the Lagrangian density corresponding to the full second quantized Hamiltonian written

above is given by

L = La + Lcs (5.11)

where

La = ϕ∗(r)(iD0)ϕ(r) +
1

2m
ϕ∗(r)D2ϕ(r)

− 1

2

∫

ϕ∗(r)ϕ∗(r′)V (r − r′)ϕ(r)ϕ(r′)d2r′ (5.12)

Lcs = − e2

4qπ
εµνλaµ(r)∂νaλ(r) (5.13)

This Lagrangian has the usual form except for the last term called the Chern-Simons

term. Here µ is the chemical potential and εµνλ is the complete antisymmetric tensor

with the convention ε012 = 1. Therefore the action is given by

S =

∫

Ld2rdt (5.14)

In the rest of the thesis we consider the interaction potentials to be local V (r − r′) =

V δ(r−r′). The ground state is the state that minimizes the action S. This implies that

the action be invariant under small fluctuations of ϕ. But first we consider the variation

of the action with respect to the zeroth component of the gauge field, ∂S/∂a0 = 0, which

results in the constraint equation

∇× a|z = −2qπ

e
(ϕ∗ϕ), (5.15)

which is essentially the Chern-Simons condition. The extremum condition ∂S/∂ϕ∗ = 0

results in the following classical equation of motion for the field ϕ

(iD0 + µ)ϕ(r) +
1

2m
D2ϕ(r) − ϕ∗(r)V ϕ(r)ϕ(r) = 0. (5.16)

The most simple solution to the above equation is the one where the Bose field is uniform

in space and time ϕ =
√
ρ̄. Also since the system is homogeneous, to avoid infinite mean
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field contribution we shift the zero of energy to this mean field energy. Now we see that

the uniform solution is possible only if

A + a = 0 and a0 = 0 (5.17)

This implies that B = (2qπ/e)ρ̄ or the filling fraction is ν = 1/q. Thus a uniform

solution can exist only when a Laughlin wavefunction can be written down. Thus a

bosonic Laughlin state of a rotating Bose gas can be thought of as the Bose condensed

phase of composite bosons formed from atoms attached to an even number of vortices.

5.7 Feshbach resonance

From the discussion of the Chern-Simons field theory of the previous section, it is

clear that, within this picture, Feshbach interaction can be systematically introduced to

tune the inter-atomic interaction. In a typical Feshbach resonance illustrated in Fig. 5.5,

the properties of the collision of two atoms are controlled through their resonant coupling

to a bound state in a closed channel Born-Oppenheimer potential. By adjusting an

external magnetic field, the scattering length can be tuned to have any value. The

field dependence of the scattering length is characterized by the detuning ν and obeys

a dispersive profile given by

a(ν) = abg

(

1 − κ

2ν

)

, (5.18)

where κ is the resonance width, and abg is the background scattering length. In fact, all

the scattering properties of a Feshbach resonance system are completely characterized

by just three parameters

U0 =
4πh̄2abg

m
, g =

√

κU0, and ν. (5.19)

Physically, U0 represents the energy shift per unit density on the single particle eigenval-

ues due to the background scattering processes, while g, which has dimensions of energy

per square-root density, represents the coupling to the Feshbach resonance connecting

the open and closed channel potentials.
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Figure 5.5: A Feshbach resonance results when a closed channel potential possesses a
bound state in proximity to the scattering energy in an open channel potential. The
detuning of the bound state from the edge of the collision continuum is denoted by ν0.

The second quantized Hamiltonian for a dilute Bose gas with binary interactions

is given by

H =

∫

d3x ψ†
a(x)Ha(x)ψa(x) +

∫

d3xd3x′ ψ†
a(x)ψ†

a(x
′)U(x,x′)ψa(x

′)ψa(x) (5.20)

where Ha(x) is the single particle Hamiltonian, U(x,x′) is the binary interaction po-

tential, and ψa(x) is the atomic field operator. In cold quantum gases, where the atoms

collide at very low energy, we are only interested in the behavior of the scattering about

a small energy range above zero. There exist many potentials which replicate the low

energy scattering behavior of the true potential; therefore, it is convenient to carry out

the calculation with the simplest one, the most convenient choice being to take the

interaction potential as a delta-function pseudo potential when possible.

For a Feshbach resonance this choice of pseudo potential is generally not available

since the energy dependence of the scattering implies that a minimal treatment must

at least contain a spread of wave-numbers which is equivalent to the requirement of a
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nonlocal potential. Since the solution of a nonlocal field theory is inconvenient, we take

an alternative but equivalent approach. We include in the theory an auxiliary molecular

field operator ψm(x) which obeys Bose statistics and describes the collision between

atoms in terms of two elementary components: the background collisions between atoms

in the absence of the resonance interactions and the conversion of atom pairs into

molecular states. This allows us to construct a local field theory with the property that

when the auxiliary field is integrated out, an effective Hamiltonian of the form given

in Eq. (5.20) is recovered with a potential U(x,x′) = U(|x − x′|) which generates the

form of the two-body T -matrix predicted by Feshbach resonance theory [104]. The local

Hamiltonian which generates this scattering behavior:

H =

∫

d3x ψ†
a(x)

(

− h̄2

2m
∇2

x + Va(x) − µa

)

ψa(x)

+

∫

d3x ψ†
m(x)

(

− h̄2

4m
∇2

x + Vm(x) − µm

)

ψm(x)

+
U

2

∫

d3x ψ†
a(x)ψ†

a(x)ψa(x)ψa(x)

+
g

2

∫

d3x ψ†
m(x)ψa(x)ψa(x) (5.21)

has the intuitive structure of resonant atom-molecule coupling. Here Va,m are the exter-

nal potentials and µa,m are the chemical potentials. The subscripts a,m represent the

atomic and molecular contributions, respectively. The Feshbach resonance is controlled

by the magnetic field which is incorporated into the theory by the detuning ν = µm−2µa

between the atomic and molecular fields. The Hamiltonian in equation (5.21) contains

the three parameters U0, g, and ν which account for the complete scattering properties

of the Feshbach resonance.

Thus in order to introduce Feshbach interaction within the framework discussed

earlier in this chapter, we will have to define composite bosons for the molecules exactly

in the same way as we did for the atoms, except that the composite molecular bosons

will be attached to twice the number of flux quantaas that for the atoms. All these

ideas will be put to work in the next chapter.



Chapter 6

Resonant formation of novel strongly correlated paired states in

rotating Bose gases

Published in Physical Review A 69,053603 (2004)

6.1 Introduction

Recently, there has been considerable interest from both the experimental and

theoretical perspective in the behavior of rotating Bose gases confined to an effective two-

dimensional space [105, 106, 107, 96, 97, 108]. One goal has been to understand and to

create strongly correlated states, such as the Laughlin state generated by the fractional

quantum Hall effect (FQHE), within ultracold atomic gases. A major challenge to

realizing such a state is the need to reach extremely low temperatures in order to

resolve the lowest Laughlin state from the first excited state. The size of this energy gap,

however, is directly related to the strength of interatomic interactions, so by increasing

the interactions it would seem natural that one could increase the gap, making the

system more accessible to experiment.

Atomic systems can now be created which allow the microscopic interactions to be

dynamically tuned [109, 110]. Feshbach resonances have proven very successful at doing

this, allowing one to tune the interactions by adjusting the resonant detuning ν (for

example, by varying a magnetic field), and would seem an excellent tool for increasing

the gap within a FQHE system. To account for the full effects of the resonance, however,

we cannot simply scale the mean-field energy but must incorporate the entire resonant
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Figure 6.1: The Feshbach resonance pairing mechanism is illustrated by the above
Born-Oppenheimer curves. Pairs of composite atoms composed of single atoms and
an associated number of quanta of angular momentum (represented by the arrows)
approach each other within an open channel potential of background value U(x,x′).
They may form a composite molecule due to the presence of a closed channel bound
state, at a detuning ν from the scattering continuum, which is coupled to the open
channel with strength g(x,x′).

structure into our model. This means that we must include the process of molecular

formation generated by the introduction of a bound state within the open channel of

scattering states [111, 112, 113].

By introducing a bound state, however, we not only modify the relative interaction

strength, but we also introduce a physical mechanism for generating pair correlations

between particles (see Fig. 6.1). In the context of two-dimensional condensed matter

systems, such a mechanism, although arising from a very different source [114], can have

a significant effect on the ground state properties. Before we can study the resonant

behavior of the gap, we must first understand the effect of resonant interactions on the

ground state wavefunction. We will find that as we approach the Feshbach resonance

the Laughlin state transforms into a unique, strongly correlated state.
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6.2 Inclusion of Feshbach resonance in the Chern-Simons theory

We begin by writing down an effective Hamiltonian, in second quantized form, for

a resonant gas of Bosons of mass m rotating in two dimensions with stirring frequency

Ω approaching the trapping frequency ω, i.e. ω − Ω → 0+:

Ĥ =

∫

d2x ψ̂†
a(x)

[−1

2m
(∇− iA(x))2

]

ψ̂a(x) (6.1)

+
1

2

∫

d2x′
∫

d2x ψ̂†
a(x)ψ̂†

a(x
′)U(x,x′)ψ̂a(x

′)ψ̂a(x)

+

∫

d2x ψ̂†
m(x)

[−1

4m
(∇− 2iA(x))2 + ν

]

ψ̂m(x)

+
1

2

∫

d2x′
∫

d2x

[

ψ̂†
m(

x + x′

2
)g(x,x′)ψ̂a(x)ψ̂a(x

′) + H.c.

]

.

Here ψ̂†
a,m(x), ψ̂a,m(x) are the creation and destruction operators for atoms and molecules

which satisfy the commutation relations [ψ̂1(x), ψ̂†
2(x

′)] = δ(3)(x,x′)δ1,2, where 1, 2 ∈

{a,m}. We define the two-dimensional vector potential A(x) = (mωy,−mωx), U(x,x′)

is the two-particle background scattering potential, g(x,x′) is the resonant coupling be-

tween the open and closed channel potentials, and ν is the detuning of the open channel

continuum from the level of the bound state in the closed channel.

Recently, it has been noted that there is a direct mapping between the Hamilto-

nian for a rotating two-dimensional gas, the first two terms of Eq. (6.1), and that of the

FQHE [96]. The analog of the magnetic field is realized by the angular rotation and the

Coulomb interaction is replaced by the two-particle scattering. Therefore, if we were to

neglect resonant effects we would expect the many-body ground state to be described

by the Laughlin wavefunction [90]

ΨL(x1,x2, ...xN ) =
∏

i<j

(zi − zj)
2
∏

k

exp
(

−|zk|2/2
)

, (6.2)

where the products run over the indices i, j, k = (1, 2, ...N) at position z = x + iy

for N particles. We will see that the inclusion of the resonant terms in Eq. (6.1) can
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significantly modify the form of Eq. (6.2) due to the growth of two-particle correlations.

We approach this problem by an extension of the Chern-Simons theory [115] which

allows us to develop a mean-field theory for the rotating system that has removed the

complications of the associated rotation. This is done by constructing a composite

particle composed of the original particle and an artificially attached number of flux

quanta. The composite particle is designed so that the attached flux quanta cancel

the total rotation of the original system leaving a system of non-rotating, interacting

composite particles. For the resonant system, the composite particles can formally be

obtained by the following transformation:

ϕ̂a,m(x) = exp

[

−i q

∫

d2x′θ(x− x′)

× [ρa(x
′) + 2ρm(x′)]

]

ψ̂a,m(x), (6.3)

where ρa(x
′) and ρm(x′) are the atomic and molecular spatial densities, respectively,

and θ(x− x′) is the topological phase. To guarantee that the resulting composite par-

ticle is a Boson, with no loss of generality we set q = 2.

In the composite picture, we replace the ψ̂ operators in Eq. (6.1) with the corre-

sponding composite operators ϕ̂ and introduce the statistical Chern-Simons field a(x)

through the gauge transformation

A(x) → A(x) + a(x) (6.4)

These modifications generate the Hamiltonian formulation of our composite atom/molecule

theory. The composite picture can be shown to be equivalent to the single particle pic-

ture of Eq. (6.1).

We will now shift to a functional representation of the composite atom/molecule

system to clarify the resonant modifications of the Chern-Simons theory and then return
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to the Hamiltonian formulation to derive the ground state wavefunction. Defining the

action within one temporal and two spatial dimensions

S =

∫

d3x
∑

σ=a,m

ϕ∗
σ(x)i∂0ϕσ(x) −

∫

dx0Ĥ, (6.5)

we generate a Chern-Simons term which couples to the statistical vector field aµ(x)

SCS = −
∫

d3x
1

8π
ǫµνλaµ(x)∂νaλ(x), (6.6)

where the indices of µ, ν, and λ run over the three dimensions (0, 1, 2) and the summation

convention over repeated indices is invoked. We have also introduced the antisymmetric

tensor ǫ012 = 1. To simplify the following calculations we assume contact interactions of

the form U(x,x′) = Uδ(x,x′) and g(x,x′) = gδ(x,x′). Any complications arising from

this replacement of the true potentials with contact potentials should be remedied as

explained in Ref. [104]. We next perform the lowest order variation of the action.

Varying with respect to the zeroth component of the gauge field, ∂S/∂a0 = 0,

reproduces the Chern-Simons condition

∇× a(x)|z = −4π
(

|ϕa(x)|2 + 2|ϕm(x)|2
)

. (6.7)

Equation (6.7) is a statement of Gauss’s law for the statistical gauge field associating

an even number of rotational flux quanta with each particle. This relation is simply a

restatement of our choice of quasiparticle.

Since we will be interested in the ground state properties of the atom/molecule

system, let us assume that the fields ϕa(x) and ϕm(x) are uniform. By minimizing the

action with respect to the atomic and molecular fields, i.e. ∂S/∂ϕa = 0, ∂S/∂ϕm = 0,

we generate the following constraint equation for the molecules:

ϕm =
gϕ2

a

2[ν + |A + a|2/m]
. (6.8)
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Equation (6.8) allows us to eliminate the molecular field from the theory and arrive at

a self-consistent relationship for the gauge field

|A + a|2 =

(

U +
g2

4(ν + |A + a|2/m)

)

2m|ϕa|2. (6.9)

Equation (6.9) is the usual result relating the gauge field to the background density

only now it is dependent upon the detuning from the resonance.

6.3 Pairing in the strongly correlated ground state

We now switch back to the Hamiltonian form of our theory to derive the ground

state wavefunction. After Fourier transforming the composite form of Eq. (6.1) by sub-

stitution of the field operators ϕ̂a(x) =
∑

k âke
ik·x and ϕ̂m(x) =

∑

k b̂ke
ik·x , we follow

the usual Hartree-Fock-Bogolubov (HFB) approach to construct a quadratic Hamilto-

nian which accounts for the lowest order pairing. As before, we assume contact interac-

tions and now make the additional assumption that we may neglect the excited modes

of the molecular field keeping only the lowest condensed mode b̂k = b0. The resulting

Hamiltonian for the composite system can be written in the form

H = H0 +
∑

k 6=0

A†
kMkAk. (6.10)

H0 is composed of all terms of less then quadratic order in the operator âk, we define a

column vector Ak = (âk, â
†
−k), and Mk is the self-energy matrix. For our purposes we

need only concern ourselves with the structure of the second term in Eq. (6.10). Here

the self-energy matrix is expressed as

Mk =









Ek ∆

∆∗ E−k









(6.11)

with the additional definitions for the diagonal and off-diagonal terms
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Ek = E0
k + U(|ϕa|2 + n) (6.12)

∆ = U(ϕ2
a + p) + gϕm. (6.13)

Equations (6.12) and (6.13) are expressed in terms of the pairing-field p =
∑

k′ 〈âk′ â−k′〉,

the normal-field n =
∑

k′ 〈â†k′ âk′〉, and E0
k is the effective kinetic term which contains

the contribution from the gauge field A(x).

Eq. (6.10) can be rewritten in terms of the quasiparticles

α̂k =
1

√

(Ek + ωk)2 + |∆|2
(

(Ek + ωk)âk + ∆â†−k

)

(6.14)

α̂†
−k =

1
√

(Ek + ωk)2 + |∆|2
(

(Ek + ωk)â−k + ∆†âk

)

(6.15)

which result in the diagonal Hamiltonian

H = H0 +
∑

k 6=0

ωkα̂
†
kα̂k, (6.16)

where H0 contains the ground state contribution to the energy and the excitations are

given by the spectrum of frequencies ωk =
√

E2
k − |∆|2.

Since there are no quasiparticles present in the ground state |gs〉 , which is what

one would expect from an interacting bosonic system at T = 0, the ground state must

satisfy the condition α̂k|gs〉 = 0. Substitution of Eqs. (6.14) and (6.15) for the quasi-

particle operators result in the relation

(Ek + ωk)âk|gs〉 = −∆â†−k|gs〉. (6.17)

Because âk and â†k are canonically conjugate variables there is no loss of generality

in making the replacement âk → ∂/∂â†k [116]. This converts Eq. (6.17) into a simple

differential equation for the ground state with the solution
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|gs〉 = exp

[

∑

k

−∆

Ek + ωk

â†−kâ
†
k

]

|0〉. (6.18)

To derive the many-body wavefunction we must now move from second to first quan-

tization. The relationship which links the second quantized ground state |gs〉 with the

first quantized wavefunction ΨCB can be written for an even number of noncondensed

particles 2N as

ΨCB(x1,x2, ...x2N ) = 〈0|ϕ̂a(x2N )...ϕ̂a(x2)ϕ̂a(x1)|gs〉, (6.19)

where it should be noted that ΨCB is the full-many body wavefunction for the composite

Bose particles. If we are able to assume that Ek + ωk ≫ ∆ , an assumption which

will remain valid as long as we are not too close to resonance, we may truncate the

power expansion of the exponent in Eq. (6.18). This results in the composite boson

wavefunction

ΨCB(x1,x2, ...x2N ) = S(ψ12ψ34...ψ(2N−1)2N ) (6.20)

comprised of a symmetrized product S of paired wavefunctions

ψij =
∑

k

−∆

Ek + ωk

eik·(xi−xj). (6.21)

If we were dealing with a system of fermions, equation (6.20) would be antisymmetrized

and would result in a Pfaffian wavefunction [6, 117]. Here, because of the statistics of the

particles, we generate a bosonic analogue to this result. The many-body wavefunction

for the bare particles can now be extracted from the composite wavefunction [118]

resulting in

ΨMB = ΨCB(x1,x2...,x2N ) × ΨL(x1,x2...,x2N ) (6.22)
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which is a product of the composite particle wavefunction of Eq. (6.20) and the Laughlin

wavefunction of Eq. (6.2).

Equation (6.22) is the final result for the ground state wavefunction of the reso-

nant rotating Bose system. This result has important consequences for the generation

of the FQHE within a resonant atomic gas. It would imply that an increase of interpar-

ticle interactions by a resonant tuning of the interactions simultaneously generates an

increase in 2-particle correlations between composite particles resulting in a modifica-

tion to the ground state wavefunction. As is clear from the form of Eq. (6.20), for large

detuning from the resonance, corresponding to small pairing and molecular field, the

many-body wavefunction reduces to the Laughlin wavefunction. As one moves nearer to

the resonance, however, the off-diagonal part of the self-energy matrix, ∆, grows. This

results in an increasing modification of the many-body wavefunction from the Laughlin

wavefunction. The ability to tune a Feshbach resonance therefore allows for the direct

study of this crossover from a Laughlin wavefunction to a paired wavefunction.

A similar, yet distinct, paired wavefunction as in Eq. (6.22) was found for elec-

tronic FQHE systems [114, 117, 119]. This has been used to explain the previously

unresolved even denominator filling fractions which result from a pairing instability,

such as the observed incompressibility of the 5/2 filling. In this case, a straightforward

generalization of the Laughlin wavefunction would result in a symmetric wavefunction,

violating the asymmetry of the fermions. However, the generation of an antisymmet-

ric Pfaffian wavefunction which multiplies the generalized Laughlin state allows the

overall ground state to be correctly antisymmetrized. For the bosonic system we have

treated, the overall wavefunction must remain symmetric, so the corresponding paired

wavefunction is symmetric in comparison to the antisymmetric Pfaffian wavefunction.
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6.4 Conclusion

In conclusion, because of the extreme diluteness of trapped atomic gases, if

strongly correlated effects such as the FQHE are to be observed in these experiments,

the interatomic interactions will most likely need to be resonantly enhanced. Feshbach

resonances are a convenient method for increasing the interactions, but the molecular

processes involved in such a resonant system force one to account for the effects of

atomic pairing. The growth of pair correlations among the composite particles leads to

a modification of the expected ground state for a rapidly rotating Bose gas. The new

ground state wavefunction, which is generated by the Feshbach resonance, exists as a

strongly correlated state unique to trapped Bose gases. The tunability of the resonance

opens the possibility for the direct study of the crossover transition between the paired

state and the Laughlin state.

These results have important implications for the production of the FQHE within

atomic gases since the use of a Feshbach resonance results in a state quite different from

a rapidly rotating gas where the interactions are quantified by only a large scattering

length. For instance, many of the observeable properties of the gas may be modified

such as the density profile for both atoms and molecules and the nature of collective

excitations. It should also be noted that the crossover transition we have discussed is

only a part of a much more general crossover theory made accessible by the tunability

of a Feshbach resonance. Although the methods presented here are invalid close to the

resonance, one could imagine extending these ideas to describe the resonant system as

one passes from a gas of interacting rotating atoms, through the resonance, to a system

of tightly bound, rotating molecules.



Chapter 7

Summary

To summarize, in this thesis we have obtained some interesting results for the

dilute Bose gas in different regimes.

In the first part, we studied the weak interaction regime. Here we discussed the

working of an atom laser and also proposed an all optical method for continuously

loading the thermal component (reservoir) of a cw- atom laser. We showed that despite

the presence of spontaneously emitted photons, it is possible to configure the trapped

system such that the probability of photon re-absorption is small and hence negligible

heating of the atomic cloud.

Another essential component is the continuous evaporative cooling mechanism.

This would have the effect of pumping thermal atoms into the condensate mode to

compensate for the loss due to output coupling as well to compensate for other intrinsic

loss mechanisms. Therefore, a proper understanding of a cw- atom laser would require

a model satisfying all three basic requirements– loading, evaporative cooling and output

coupling. Such a model will then allow us to calculate the phase diffusion properties

of the cw- atom laser. Our discussion of the quantum kinetic regime in the second

chapter would be very crucial to understanding the collisional contribution to the phase

diffusion and hence the line width of the cw- atom laser.

In the second part of this thesis, we showed that under certain conditions a dilute

Bose gas can enter the strongly correlated regime. In fact in this regime the Bose sys-
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Figure 7.1: Origin of different possible fractions in the fermionic- and bosonic- fractional
quantum Hall effect. The tuning of interactions via Feshbach resonance may result in
generation of fractions, the underlying mechanism could be compared to that of the
even FQHE.

tem showed fractional quantization quite analogous to that in the FQHE. The relevant

fraction was found to be 1
2 with the corresponding ground state given by the bosonic

Laughlin wavefunction. Field theory method based on the Chern-Simons gauge was

found to be extremely useful in treating the Feshbach mechanism for tuning the inter-

atomic interactions in this regime. While controlling interactions is virtually impossible

in the condensed matter fractional quantum Hall systems, our study of the dilute Bose
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gas in this regime has opened a whole new set of possibilities for investigating many

body effects previously inaccessible in condensed matter systems. The most interest-

ing example would be the existence of even fractions in electronic FQHE. In fact the

only observed fraction is 5
2 and its origin is still an active area of research. From this

perspective, a rotating Bose gas with tunable interactions would be very useful. As

depicted in the flow chart of Fig. 7.1, an identical mechanism in the Bose case would

result in odd bosonic FQHE. Therefore, observing such strongly correlated phases with

odd fractional statistics may help enhance our understanding of the even FQHE.
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[5] D. Rychtarik, B. Engeser, H.-C. Nägerl, and R. Grimm; cond-mat/0309536.

[6] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957); J. R.
Schrieffer in Theory of Superconductivity, (Perseus Books, Reading, MA 1999).

[7] M. Holland S.J.J.M.F. Kokkelmans, M. L. Chiofalo, and R. Walser, Phys. Rev.
Lett. 87, 120406 (2001).

[8] K. M. O’Hara, S. L. Hemmer, S. R. Granade, M. E. Gehm, and J.E. Thomas,
Science 298, 2127 (2002).

[9] J. N. Milstein, S.J.J.M.F. Kokkelmans, and M. J. Holland, Phys. Rev. A 66,
043604 (2002).

[10] K. E. Strecker, G. B. Partridge, A. G. Truscott, and R. G Hulet, Nature 417, 150
(2002).

[11] C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, Nature (2003); cond-
mat/0305028.

[12] S. G. Bhongale and M. J. Holland, Phys. Rev. A 62, 043604 (2000).

[13] R. Walser, J. Williams, J. Cooper, and M. Holland, Phys. Rev. A 59, 3878 (1999).

[14] S. G. Bhongale, R. Walser, and M. J. Holland, Phys. Rev. A 66, 043618 (2002).

[15] S. G. Bhongale, J. N. Milstein, and M. J. Holland, submitted to Phys. Rev. Lett.;
cond-mat/0305399.



85

[16] M. Holland, K. Burnett, C. Gardiner, J. I. Cirac, and P. Zoller, Phys. Rev. A 54,
R1757 (1996).

[17] H. Wiseman, A. Martins, and D. Walls, Quantum. Semiclassic. Opt.8, 737 (1996).

[18] R. J. C. Spreeuw, T. Pfau, U. Janicke and M. Wilkens, Europhysics Letters 32,
469 (1995).

[19] R. J. Ballagh, K. Burnett, and T. F. Scott, Phys. Rev. Lett. 78, 1607 (1997).

[20] H. Steck, M. Naraschewski, and H. Wallis, Phys. Rev. Lett. 80, 1 (1998).

[21] A. M. Guzman, M. Moore, and P. Meystre, Phys. Rev. A 53, 977 (1996).

[22] H. M. Wiseman, Phys Rev. A 56, 2068 (1997).

[23] G. M. Moy, J. J. Hope and C. M. Savage, Phys Rev. A 55, 3631 (1997).

[24] H. M. Wiseman and M. J. Collett, Physics Lett. A 202, 246 (1995).

[25] W. Ketterle and Hans-Joachim Miesner, Phys. Rev. A 56, 3291 (1997).

[26] J. Williams, R. Walser, C. Wieman, J. Cooper, and M. Holland, Phys. Rev. A
57, 2030 (1998).

[27] M. -O. Mewes et al., Phys. Rev. Lett. 78, 582 (1997).

[28] M. R. Andrews, C. G. Townsend, H. -J. Miesner, D. S. Durfee, D. M. Kurn, and
W. Ketterle, Science 275, 637 (1997).

[29] C. C. Bradley, C. A. Sackett, and R. G. Hulet, Phys. Rev. Lett 78, 985 (1997).

[30] I. Bloch, T. W. Hansch, and T. Esslinger, Phys. Rev. Lett. 82, 3008 (1999).

[31] G. B. Lubkin, Physics Today, 52, 17 (1999).

[32] B. P. Anderson and M. A. Kasevich, Science 282, 1686 (1998).

[33] E. W. Hagley et al., Science 283, 1706 (1999).

[34] J. J. Hope, Phys. Rev. A 55, R2531 (1997).

[35] D. Boiron, A. Michaud, P. Lemonde, and C. Salomon, Phys. Rev. A 53, R3734
(1996).

[36] H. J. Lee, C. S. Adams, M. Kasevich, and S. Chu, Phys. Rev. Lett. 76, 2658
(1996).

[37] J. Lawall, S. Kulin, B.Saubamea, N. Bigelow, M. Leduc, and C. Cohen-Tannoudji,
Phys. Rev. Lett. 75, 4194 (1995).

[38] Y. Castin, J. Cirac, and M. Lewenstein, Phys. Rev. Lett. 80, 5305 (1998).

[39] E. A. Cornell, C. Monroe, and C. E. Wieman, Phys. Rev. Lett. 67, 2439 (1991).



86

[40] C. W. Gardiner, Quantum Noise (Springer, Berlin, 1991).

[41] D. F. Walls and G. J. Milburn, Quantum Optics, (Springer, Berlin, 1994).

[42] M. Holland, Phys. Rev. Lett. 33, 5117 (1998).

[43] S. H. Autler and C. H. Townes, Phys. Rev. 100, 703 (1955).

[44] Claude Cohen-Tannoudji,Jacques Dupont-Roc, and G. Grynberg, Atom–Photon
Interactions (John Wiley and Sons, New York, 1992).

[45] F. Dalfovo, S. Giorgini, L. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 71, 463
(1999).

[46] J. E. Williams and M. J. Holland, Nature 401, 568 (1999).

[47] B. P. Anderson, P. C. Haljan, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett.
85, 2857 (2000).

[48] C. Raman, J. R. Abo-Shaeer, J. M. Vogels, K. Xu, and W. Ketterle, Phys. Rev.
Lett. 87, 210402 (2001).

[49] J. R. Abo-Shaeer, C. Raman, and W. Ketterle, Phys. Rev. Lett. 88, 070409 (2002).

[50] K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Phys. Rev. Lett. 84,
806 (2000).

[51] D. S. Jin, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Phys.
Rev. Lett. 77, 420 (1996).

[52] M. Edwards et al., Phys. Rev. Lett. 77, 1671 (1996).

[53] S. Stringari, Phys. Rev. Lett. 77, 2360 (1996).

[54] C. W. Gardiner and P. Zoller, Phys. Rev. A 55, 2902 (1997); C. W. Gardiner and
P. Zoller, Phys. Rev. A 58, 536 (1998); C. W. Gardiner and P. Zoller, Phys. Rev.
A 61, 033601 (2000).

[55] Y. Castin and R. Dum, Phys. Rev. A 57, 3008 (1998).

[56] H. T. Stoof, J. Low. Temp. Phys. 114, 11 (1999).

[57] T. R. Kirkpatrick and J. R. Dorfman, Phys. Rev. A 28, 2576 (1983); J. Low.
Temp. Phys. 58, 308 (1985); ibid., 399 (1985).

[58] N. P. Proukakis and K.Burnett, J. Res. NIST, 101, 457 (1996); N. P. Proukakis,
K. Burnett, and H. T. C. Stoof, Phys. Rev. A 57, 1230 (1998).

[59] M. Rusch and K. Burnett, Phys. Rev. A 59, 3851 (1999).

[60] E. Zaremba, T. Nikuni, and A. Griffin, Phys. Rev. A 57, 4695 (1998).

[61] E. Zaremba, T. Nikuni, and A. Griffin, J. Low. Temp. Phys. 116, 69 (1999).

[62] P.O. Fedichev and G. V. Shlyapnikov, Phys. Rev. A 58, 3146 (1998).



87

[63] L. Kadanoff and G. Baym, Quantum Statistical Mechanics (W. A. Benjamin, Inc.,
New York, 1962).

[64] M. Imamovic-Tomasovic and A. Griffin, J. Low. Temp. Phys. 122, 617 (2001).

[65] M. D. Lee and C. W. Gardiner, Phys. Rev. A 62, 033606 (2000).

[66] M. J. Bijlsma, E. Zaremba, and H. T. C. Stoof, Phys. Rev. A 62, 063609 (2000).

[67] D. Jaksch, C. W. Gardiner, and P. Zoller, Phys. Rev. A 56, 575 (1997).

[68] A. Sinatra, C. Lobo, and Y. Castin, Phys. Rev. Lett. 87, 210404 (2001).

[69] I. Carusotto and Y. Castin, J. Phys. B 34, 4589 (2001).

[70] B. Jackson and E. Zaremba, cond-mat/0205421.

[71] E. A. Donley, N. R. Claussen, S. T. Thompson, and C. E. Wieman, Nature 417,
529 (2002).

[72] S.J.J.M.F. Kokkelmans and M. J. Holland, Phys. Rev. Lett. 89, 180401 (2002).
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Appendix A

Reference distribution

The reference distribution σ
(0)
{f} of Eq. (3.9) is parameterized through its expec-

tation values in Eq. (3.11). From the structure of this quantum Gaussian operator, it

follows that

σ
(0)
{K(t,t0) f K†(t,t0)}

= Û †(t, t0)σ
(0)
{f} Û(t, t0). (A.1)

In the above, Û represents the single particle propagator of Eq. (3.16) acting in many-

particle Fock-space and K is the corresponding single particle Hilbert-space propagator

of Eq. (3.23). This condition implies that

∂γk
σ(0)Tr{[Ĥ(0), γ̂k]} = −[Ĥ(0), σ(0)] (A.2)

and was used to obtain Eq. (3.17).
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Appendix B

Matrix elements

The matrix element of Eq. (3.41) can be evaluated easily by expanding the sin

functions into co- and counter-propagating complex exponents and by an additional

partial integration. This results in eight separate terms, i.e.,

φijkl/aS =
4

π

∫ π

0
sin (i x) sin (j x) sin (k x) sin (l x)

dx

x2
,

= F (i+ j + k − l) + F (i+ j − k + l)

+ F (i− j + k + l) + F (i− j − k − l)

− F (i+ j − k − l) − F (i− j + k − l)

− F (i− j − k + l) − F (i+ j + k + l), (B.1)

where

F (n) =
1

2π2
[cos (nπ) + nπ Si(nπ)], (B.2)

Si(z) =

∫ z

0

sin(t)

t
dt. (B.3)

An asymptotic expansion of the sine integral leads to the following approximation that

is correct at the 1% level, i.e.,

F (0) =
1

2π2
, (B.4)

F (n > 0) ≈ 1

2π2
[
π

2
|nπ| − sin (nπ)

nπ
+

2cos (nπ)

(nπ)2
].



Appendix C

Anyon field operator

The anyon field operator φ̂an(t,x) is represented by

φ̂an(t,x) = eiαξ̂(t,x)ψ̂b(t,x) (C.1)

in terms of the boson operator ψ̂b(t,x) with the phase field

ξ̂(t,x) = α

∫

d2yθ(x− y)ρ(t,x). (C.2)

where ρ(t,x) = ψ̂†
b(t,x)ψ̂b(t,x). The Chern-Simons field is expressed as

ak(x) =
αh̄

e

∫

d2y∂kθ(x− y)ρ(y). (C.3)

We now examine how the exchange phase arises theoretically. We start with the com-

mutation relation

[ξ̂(y), ψ̂b(x)] =

∫

d2zθ(x − y)[ρ(z), ψ̂b(x)] = −θ(y − x)ψ̂b(x). (C.4)

Now, we use the Hausdorff formula

eABe−A = B + [A,B] +
1

2
[A, [A,B]] + ..., (C.5)

by setting A = iαξ̂(y) and B = ψ̂b(x) we find that

e−iαξ̂(y)ψ̂b(x)eiαξ̂(y) = eiαθ(y−x)ψ̂b(x). (C.6)
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With this formula we get

φ̂an(x)φ̂an(y) = eiαθ(y−x)eiαξ̂(x)eiαξ̂(y)ψ̂b(x)ψ̂b(y) (C.7)

φ̂an(y)φ̂an(x) = eiαθ(x−y)eiαξ̂(y)eiαξ̂(x)ψ̂b(y)ψ̂b(x). (C.8)

Now using ψ̂b(x)ψ̂b(y) = ψ̂b(y)ψ̂b(x) and θ(x − y) = θ(y − x) + π, we compare (C.7)

and (C.8) to find that

φ̂an(y)φ̂an(x) = eiαπφ̂an(x)φ̂an(y) (C.9)

This is the operator version of the interchange of two anyons.


