A BIBLIOGRAPHY OF LOW ENERGY ELECTRON COLLISION CROSS SECTION DATA

1965

by

L. J. Kieffer

IMPORTANT NOTICE

The JILA maintains an Information Center for collecting and critically evaluating atomic collision data which are of interest to plasma physicists and astrophysicists. This report from the JILA Information Center contains material which is of transitory interest or which is of interest to a limited audience. Information which warrants wider circulation will be published in appropriate journals. Although the material in this report has been subjected to critical technical review, reproduction, quotation, or citation of it in the open literature is not permitted without express permission of the author or the Chairman of the JILA. If this constitutes a technical report to a sponsoring agency, that agency may reproduce this material for further distribution within the government and to agency contractors.

University of Colorado
Boulder, Colorado
April 1, 1966
This research was supported in part by the Advanced Research Projects Agency (Project DEFENDER), monitored by the U. S. Army Research Office-Durham, under Contract DA-31-124-ARO-D-139, and in part by the National Bureau of Standards through the National Standard Reference Data Program.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>v</td>
</tr>
<tr>
<td>BIBLIOGRAPHY: ELECTRON PAPERS</td>
<td></td>
</tr>
<tr>
<td>Total Elastic Scattering Experimental</td>
<td>1</td>
</tr>
<tr>
<td>Total Elastic Scattering Theoretical</td>
<td>1</td>
</tr>
<tr>
<td>Differential Elastic Scattering Experimental</td>
<td>2</td>
</tr>
<tr>
<td>Differential Elastic Scattering Theoretical</td>
<td>2</td>
</tr>
<tr>
<td>Electronic Excitation Experimental</td>
<td>3</td>
</tr>
<tr>
<td>Electronic Excitation Theoretical</td>
<td>4</td>
</tr>
<tr>
<td>Electron Detachment Theoretical</td>
<td>6</td>
</tr>
<tr>
<td>De-Excitation Experimental</td>
<td>6</td>
</tr>
<tr>
<td>De-Excitation Theoretical</td>
<td>6</td>
</tr>
<tr>
<td>Ionization Experimental</td>
<td>6</td>
</tr>
<tr>
<td>Ionization Theoretical</td>
<td>8</td>
</tr>
<tr>
<td>Dissociation Experimental</td>
<td>9</td>
</tr>
<tr>
<td>Dissociation Theoretical</td>
<td>9</td>
</tr>
<tr>
<td>Free-Free Emission Theoretical</td>
<td>9</td>
</tr>
<tr>
<td>Dissociative Ionization Experimental</td>
<td>9</td>
</tr>
<tr>
<td>Dissociative Ionization Theoretical</td>
<td>10</td>
</tr>
<tr>
<td>Radiative Attachment Experimental</td>
<td>10</td>
</tr>
<tr>
<td>Radiative Attachment Theoretical</td>
<td>10</td>
</tr>
<tr>
<td>Dissociative Recombination Experimental</td>
<td>10</td>
</tr>
<tr>
<td>Dissociative Recombination Theoretical</td>
<td>10</td>
</tr>
<tr>
<td>Radiative Capture or Recombination Experimental</td>
<td>10</td>
</tr>
<tr>
<td>Radiative Capture or Recombination Theoretical</td>
<td>10</td>
</tr>
<tr>
<td>Rotational Excitation Experimental</td>
<td>11</td>
</tr>
<tr>
<td>Rotational Excitation Theoretical</td>
<td>11</td>
</tr>
<tr>
<td>Vibrational Excitation Experimental</td>
<td>11</td>
</tr>
<tr>
<td>Vibrational Excitation Theoretical</td>
<td>11</td>
</tr>
<tr>
<td>Dissociative Attachment Experimental</td>
<td>11</td>
</tr>
<tr>
<td>Dissociative Attachment Theoretical</td>
<td>12</td>
</tr>
<tr>
<td>Total Scattering Experimental</td>
<td>12</td>
</tr>
<tr>
<td>Total Scattering Theoretical</td>
<td>13</td>
</tr>
<tr>
<td>Free-Free Absorption Theoretical</td>
<td>13</td>
</tr>
<tr>
<td>POSITRON PAPERS</td>
<td></td>
</tr>
<tr>
<td>Total Elastic Scattering Experimental</td>
<td>17</td>
</tr>
<tr>
<td>Total Elastic Scattering Theoretical</td>
<td>17</td>
</tr>
<tr>
<td>Differential Elastic Scattering Theoretical</td>
<td>17</td>
</tr>
<tr>
<td>Electronic Excitation Theoretical</td>
<td>17</td>
</tr>
<tr>
<td>Electron Detachment Theoretical</td>
<td>17</td>
</tr>
<tr>
<td>BIBLIOGRAPHIC REFERENCES</td>
<td>21</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>53</td>
</tr>
</tbody>
</table>
INTRODUCTION

This is the third updating of A Bibliography of Low Energy Electron Collision Cross Section Data (previously issued as JILA Reports #4 and #34). The format has been completely changed to make it more readable and useful. The current literature for this bibliography was searched through December 1965. (See the appendix for the journals currently being searched.) Because we rely upon the abstracting journals to obtain references from journals which do not in general contain information of interest, there may be some material from late 1965 issues of the latter journals which is not included in this bibliography. During 1966 we expect to publish this bibliography as a number in the National Standard Reference Data Series.

Electron Scattering Cross Section Bibliography

The criterion used in choosing the references for this bibliography is that the publication contain original measurements or calculations of electron cross sections in the energy range 0 to 10 KeV for specific atomic or molecular targets. The upper limit on the energy was not used as an absolute limit but indicates the order of magnitude of interest. This means that one should not expect to find electron collision cross sections in the range of 50 KeV and above.

Papers containing the following quantities, which are not explicitly cross sections, have also been collected:
1. phase shifts,
2. scattering lengths,
3. ionization efficiencies,
4. excitation efficiencies.

The reason for including these quantities is that under the proper conditions cross sections have been or can be simply derived from them.

Published manuscripts, theses, reports given at meetings, and company or agency reports which have been printed and circulated are included in the bibliography. However, reference is not made to material that is unavailable either through library facilities or government document centers. (No classified material is included.)

There is a tendency for authors to publish material which is identical to that which they have reported on at a meeting (which is printed and circulated) and also issued as a company or agency report. In some cases it is possible to verify that this is so and in those cases only one reference (the formal publication if there is one) is kept in our bibliography. In most cases it is not possible to make such a precise distinction among such documents, since only some of the material may have been made available before. Because of this, there may be cases of duplication in the sense that there may be more than one reference to the same original data. We have tried to keep this to a minimum consistent with our aim of collecting all published data.
Inclusion of a reference in this bibliography does not imply a value judgment about the accuracy of the information. We only assert that this reference reports a measured or calculated electron collision cross section (or the equivalent as described previously). The question of the accuracy of the data will be treated in separate published critical reviews. (See Reviews of Modern Physics, 38, 1, (1966).)

Description of the Bibliography Format

The Electron Cross Section Bibliography is divided into two main sections. The first section describes the data which are in the references included in the bibliography. The data are categorized by a hierarchy of descriptors in the following order:

1. Process (e.g., elastic scattering, electron excitation, etc.)
2. Experimental or Theoretical
3. Normalized or Relative
 (The data are considered normalized if given in absolute units.)
4. Atomic or Molecular Species including the degree of ionization of the species. (A negative ion is indicated by a minus sign; neutral unexcited species by a blank; neutral excited species by a star; and a positive ion by a number indicating the degree of positive ionization. All of these symbols follow the atomic species, which are listed in ascending order of nuclear charge, Z. Molecular species are listed in arbitrary order.)
5. The references in which the data described are found. The references are identified by an arbitrary file number, the first author and the year of publication (e.g., 63 implies 1963).

The second main section lists the title, authors and complete reference for the paper cited. These are ordered by their "file" number.

The abbreviations for journal titles are taken from Chemical Abstracts or if not abstracted there, from Science Abstracts, Section A: Physics Abstracts.

The following comments about categories (see Table of Contents) are necessary in order to use the bibliography properly. Category ELASTIC SCATTERING, for theoretical papers, includes all references to elastic scattering cross section computations except differential elastic scattering cross section references, which are given in a separate category. In the case of experimental papers only those references in which cross section measurements were reported with energy discrimination for the scattered electrons are included under ELASTIC SCATTERING.

Category TOTAL SCATTERING includes theoretical papers which give a total cross section which is the sum of elastic and inelastic cross sections.
It also includes any references to experimentally determined cross sections in which the experiment does not distinguish between elastically and inelastically scattered electrons even if the experiment is carried out in an energy range in which only elastic scattering is expected.

Acknowledgments

The author would like to gratefully acknowledge the assistance of the staff of the JILA Information Center. The computer programs used for this report were written by Patricía Ruttenberg. The manuscript was prepared by Mary Ann Lefler and Elizabeth Lovell.
BIBLIOGRAPHY: ELECTRON PAPERS
Differential Elastic Scattering

<table>
<thead>
<tr>
<th>Material</th>
<th>Theory</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg</td>
<td>1427 GeV, 95</td>
<td>1431 Stell, 95</td>
</tr>
<tr>
<td>Zn</td>
<td>1470 GeV, 30</td>
<td>1508 GeV, 30</td>
</tr>
<tr>
<td>Cu</td>
<td>0052 Ni, 30</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>Al</td>
<td>0052 Ni, 30</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>Ni</td>
<td>0052 Ni, 30</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>Ag</td>
<td>0052 Ni, 30</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>Au</td>
<td>0052 Ni, 30</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>Pb</td>
<td>0052 Ni, 30</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>Bi</td>
<td>0052 Ni, 30</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>Hg</td>
<td>0052 Ni, 30</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>Sn</td>
<td>0052 Ni, 30</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>Ti</td>
<td>0052 Ni, 30</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>Zr</td>
<td>0052 Ni, 30</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>Nb</td>
<td>0052 Ni, 30</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>Ta</td>
<td>0052 Ni, 30</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>W</td>
<td>0052 Ni, 30</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>Mo</td>
<td>0052 Ni, 30</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>Cr</td>
<td>0052 Ni, 30</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>Fe</td>
<td>0052 Ni, 30</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>Co</td>
<td>0052 Ni, 30</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>Ni</td>
<td>0052 Ni, 30</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>Cu</td>
<td>0052 Ni, 30</td>
<td>0052 Ni, 30</td>
</tr>
</tbody>
</table>

Theoretical

<table>
<thead>
<tr>
<th>Material</th>
<th>Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg</td>
<td>1427 GeV, 95</td>
</tr>
<tr>
<td>Zn</td>
<td>1470 GeV, 30</td>
</tr>
<tr>
<td>Cu</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>Al</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>Ni</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>Ag</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>Au</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>Pb</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>Bi</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>Hg</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>Sn</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>Ti</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>Zr</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>Nb</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>Ta</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>W</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>Mo</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>Cr</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>Fe</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>Co</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>Ni</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>Cu</td>
<td>0052 Ni, 30</td>
</tr>
<tr>
<td>NM</td>
<td>0251</td>
</tr>
<tr>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>ORG</td>
<td>1152</td>
</tr>
</tbody>
</table>

Differential Elastic Scattering

<table>
<thead>
<tr>
<th>RELATIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
</tr>
<tr>
<td>LE</td>
</tr>
<tr>
<td>U</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>CL</td>
</tr>
<tr>
<td>AH</td>
</tr>
<tr>
<td>AH</td>
</tr>
<tr>
<td>ML</td>
</tr>
<tr>
<td>ML</td>
</tr>
<tr>
<td>ML</td>
</tr>
<tr>
<td>CML</td>
</tr>
<tr>
<td>CML</td>
</tr>
</tbody>
</table>

Electronic Excitation

<table>
<thead>
<tr>
<th>NM</th>
<th>0251</th>
<th>Hartley, 30</th>
<th>1113</th>
<th>Rosen, 3A</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORG</td>
<td>1152</td>
<td>Aronin, 3A</td>
<td>1193</td>
<td>Smith, 40</td>
</tr>
</tbody>
</table>

Experimental

<table>
<thead>
<tr>
<th>RELATIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
</tr>
<tr>
<td>LE</td>
</tr>
<tr>
<td>U</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>CL</td>
</tr>
<tr>
<td>AH</td>
</tr>
<tr>
<td>AH</td>
</tr>
<tr>
<td>ML</td>
</tr>
<tr>
<td>ML</td>
</tr>
<tr>
<td>ML</td>
</tr>
<tr>
<td>CML</td>
</tr>
<tr>
<td>CML</td>
</tr>
</tbody>
</table>

Electronic Excitation

<table>
<thead>
<tr>
<th>NM</th>
<th>0251</th>
<th>Hartley, 30</th>
<th>1113</th>
<th>Rosen, 3A</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORG</td>
<td>1152</td>
<td>Aronin, 3A</td>
<td>1193</td>
<td>Smith, 40</td>
</tr>
</tbody>
</table>

Experimental

<table>
<thead>
<tr>
<th>RELATIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
</tr>
<tr>
<td>LE</td>
</tr>
<tr>
<td>U</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>CL</td>
</tr>
<tr>
<td>AH</td>
</tr>
<tr>
<td>AH</td>
</tr>
<tr>
<td>ML</td>
</tr>
<tr>
<td>ML</td>
</tr>
<tr>
<td>ML</td>
</tr>
<tr>
<td>CML</td>
</tr>
<tr>
<td>CML</td>
</tr>
</tbody>
</table>

Electronic Excitation

<table>
<thead>
<tr>
<th>NM</th>
<th>0251</th>
<th>Hartley, 30</th>
<th>1113</th>
<th>Rosen, 3A</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORG</td>
<td>1152</td>
<td>Aronin, 3A</td>
<td>1193</td>
<td>Smith, 40</td>
</tr>
<tr>
<td>NORMALIZED</td>
<td>IONIZATION</td>
<td>EXPERIMENTAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>--------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR 1326 F3X.60</td>
<td>1459 RAPP.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AK 0733 LATRO3.64</td>
<td>1459 RAPP.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR 0240 LAMPE57</td>
<td>1459 RAPP.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K 0240 ASMD1.64</td>
<td>1217 SHIMAX.84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K 1389 HAPPE65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RELATIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>H 1568 MCI1.65</td>
</tr>
<tr>
<td>M 0287 HAPPE2.65</td>
</tr>
<tr>
<td>N 0287 HAPPE3.65</td>
</tr>
<tr>
<td>O 0287 HAPPE4.65</td>
</tr>
<tr>
<td>P 0287 HAPPE5.65</td>
</tr>
<tr>
<td>S 0287 HAPPE6.65</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NORMALIZED</th>
<th>IONIZATION</th>
<th>EXPERIMENTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CZM 0340 LAMPE57</td>
<td>1459 RAPP.65</td>
<td></td>
</tr>
<tr>
<td>CZM 0340 LAMPE57</td>
<td>1459 RAPP.65</td>
<td></td>
</tr>
<tr>
<td>S 0240 ASMD1.64</td>
<td>1459 RAPP.65</td>
<td></td>
</tr>
<tr>
<td>C 0240 LAMPE57</td>
<td>1459 RAPP.65</td>
<td></td>
</tr>
<tr>
<td>O 0240 ASMD1.64</td>
<td>1459 RAPP.65</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EXPERIMENTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1459 RAPP.65</td>
</tr>
</tbody>
</table>
Dissociative Ionization

Experimental

Normalized:

C $^+$ 0948.6 Glick et al.
1410 Rapp et al.
1129 Englander-Golden et al.

Relative:

N $^+$ 027H Saha et al.
0241 Németh et al.
0212 Saha et al.
0212 Houdt et al.
0205 Gurney et al.
0458 Baul et al.
0205 Hall et al.
0212 Houdt et al.

O $^+$ 027H Houdt et al.
0241 Frost et al.
027H Frost et al.
027H Frost et al.

F $^+$ 0212 Houdt et al.

Cl $^+$ 0212 Houdt et al.
0241 Clouter et al.
0458 Frost et al.

N $^+$ 0241 Clouter et al.

O $^+$ 0212 Houdt et al.
027H Houdt et al.
0212 Houdt et al.
0458 Frost et al.

H $^+$ 0241 Finken et al.
0205 Houdt et al.

D $^+$ 0205 Houdt et al.

C $^+$ 0212 Houdt et al.
0241 Clouter et al.
0458 Frost et al.

C$^+$O$^+$ 0212 Houdt et al.

S $^+$ 0212 Finken et al.

Cl$^+$O$^+$ 0212 Stepan et al.

Cs$^+$ 0212 Stepan et al.

Dissociative Recombination

Experimental

Normalized:

O$^+$ 1234 Biondi et al.
0498 Fahey et al.
1341 Biondi et al.

N $^+$ 1270 Courtois et al.

O $^+$ 1219 Dominguez et al.

He$^+$ 1234 Biondi et al.

Ar$^+$ 1234 Biondi et al.

K$^+$ 1204 Richardson et al.

Cs$^+$ 1177 Hammer et al.

Na$^+$ 1234 Dominguez et al.

Dissociative Recombination

Theoretical

Normalized:

H 1194 Jena et al.
1300 Massey et al.
1219 Lochte-Holtgreven et al.

O 0241 Yamashita et al.
1194 Massey et al.
1187 Branscomb et al.

Na 027H Houdt et al.
1300 Massey et al.

Hg 1300 Massey et al.

Radiative Capture

Experimental

Normalized:

H 1194 Földi et al.
0184 Elm et al.
0184 Elm et al.

K$^+$ 1098 Mies et al.
1098 Mies et al.
1098 Mies et al.

Cs$^+$ 1213 Molen et al.

He$^+$ 0205 Jungen et al.

Relative:

Ar 1098 Mies et al.

K$^+$ 1098 Mies et al.

Cs$^+$ 1098 Mies et al.

Radiative Capture

Theoretical

Normalized:

H 0214 Bions et al.
0241 Bions et al.
0241 Bions et al.

Me 0151 Burgs et al.
0151 Burgs et al.
0151 Burgs et al.

He 0151 Burgs et al.
0151 Burgs et al.
0151 Burgs et al.

O 0241 Bions et al.
1194 Massey et al.

He 0495 Hill et al.

Ca 0490 Zirin et al.

Fe 13 0495 Hill et al.

Sr 0490 Zirin et al.

Relative:

M 0295 Cailleau et al.
TOTAL SCATTERING

NORMALIZED
C2H4 0.005 BRUCHE+29
O2 0.005 FORESTER+63
H F 0.004 BRUCHE+29
O3B 0.009 BRUCHE+30
S 0 0.007 BAYES+62
C HCl 0.001 HOLST+31
M C N 0.007 BAYES+62

RELATIVE
He 0.009 NIMROD+35
Ne 0.012 HUSCHke+65
Ar 0.016 HUSCHke+65
Kr 0.016 PERL+62
Xe 0.016 HUSCHke+65
CO 0.018 HAWKINS+23
He 0.013 PEASE+63
Ne 0.018 HUSCHke+65
Ar 0.012 LAUTSCHEF+30
Kr 0.012 HUSCHke+65
Xe 0.017 ZACHARIAH+27
C 0.013 HERZBERG+61

TOTAL SCATTERING

THEORETICAL

NORMALIZED
He 0.004 GALEY+83
Li 0.010 DAMBURA+60
Na 0.010 DAMBURA+60
K 0.010 DAMBURA+60
Xe 0.009 GALEY+83
Ar 0.004 GALEY+83
Cl 0.010 DAMBURA+60
F 0.002 NOBISHITA+54

FULL-FREE ABSORPTION

THEORETICAL

NORMALIZED
H 0.007 VAINEH+63
O2 0.013 SOMERVILLE+64
Total Elastic Scattering

<table>
<thead>
<tr>
<th>ME</th>
<th>11.94</th>
<th>HARDER +56</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE</td>
<td>11.94</td>
<td>HARDER +56</td>
</tr>
</tbody>
</table>

Differential Elastic Scattering

<table>
<thead>
<tr>
<th>ME</th>
<th>11.94</th>
<th>HARDER +56</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE</td>
<td>11.94</td>
<td>HARDER +56</td>
</tr>
</tbody>
</table>

Theoretical

Normalized

<table>
<thead>
<tr>
<th>M</th>
<th>0026</th>
<th>SMITH +60</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE</td>
<td>0050</td>
<td>HASSET +58</td>
</tr>
<tr>
<td>C</td>
<td>1121</td>
<td>MALIK +61</td>
</tr>
<tr>
<td>D</td>
<td>1495</td>
<td>EUISC +66</td>
</tr>
<tr>
<td>F</td>
<td>1121</td>
<td>MALIK +61</td>
</tr>
<tr>
<td>HE</td>
<td>1195</td>
<td>EUISC +56</td>
</tr>
<tr>
<td>AK</td>
<td>1195</td>
<td>EUISC +56</td>
</tr>
<tr>
<td>H</td>
<td>2519</td>
<td>SIMON +62</td>
</tr>
<tr>
<td>N</td>
<td>0050</td>
<td>HASSET +58</td>
</tr>
</tbody>
</table>

Differential

<table>
<thead>
<tr>
<th>M</th>
<th>0499</th>
<th>SCHWARTZ +60</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE</td>
<td>0044</td>
<td>HUSEM +75 +59</td>
</tr>
<tr>
<td>C</td>
<td>0044</td>
<td>HUSEM +75 +59</td>
</tr>
<tr>
<td>D</td>
<td>1195</td>
<td>EUISC +56</td>
</tr>
<tr>
<td>F</td>
<td>1195</td>
<td>EUISC +56</td>
</tr>
</tbody>
</table>

Electronic Excitation

<table>
<thead>
<tr>
<th>ME</th>
<th>0026</th>
<th>SMITH +80</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE</td>
<td>0050</td>
<td>SMITH +80</td>
</tr>
</tbody>
</table>

Theoretical

Normalized

<table>
<thead>
<tr>
<th>M</th>
<th>0076</th>
<th>HUSEM +69</th>
</tr>
</thead>
</table>
0041 NEWALL M F
PROTON PRODUCTION BY ELECTRON COLLISIONS IN MOLECULAR HYDROGEN
PHYS REV. 62, 71 (1942).

0042 NEWELL W H.
MOBILITIES IN SOME FREE ELECTRON GASES
PHYS REV. 82, 44 (1948).

0043 NIXT J E
EXCITATION OF MOLECULAR VIBRATIONS BY ELECTRONS
PHYS REV. 71, 111 (1947).

0044 BURKE V M + CARROLL R H
ELECTRON SCATTERING BY ATOMIC HYDROGEN IN THE 1S, 2S OR 2P STATE. II PROC PHYS SOC LONDON: VOL 82, 627 (1962).

0045 BOSCHE R
THE EXCITATION OF THE HYDROGEN MOLECULE BY ELECTRON IMPACT
PHYS REV. 31, 949 (1938).

0046 BRODE R B
THE ABSORPTION COEFFICIENT FOR SLOW ELECTRONS IN THE VAPOURS OF MERCURY, AURUM AND ZINC.
PROC ROY SOC LONDON SER A Vol 109, 577 (1925).

0047 BRODE R B
THE ABSORPTION COEFFICIENT FOR SLOW ELECTRONS IN MERCURY VAPOUR
PROC ROY SOC LONDON SER A Vol 129, 194 (1930).

0048 MOSS W W
THE SCATTERING OF ELECTRONS BY ATOMS

0049 MOSS W W + WASSAY H M W
THE ELASTIC SCATTERING OF ELECTRONS IN ARGON
PROC ROY SOC LONDON SER A Vol 195, 574 (1949).

0050 AMOS F L
THE DIFFRACTION OF ELECTRONS IN MERCURY VAPOUR
PROC ROY SOC LONDON SER A Vol 130, 655 (1930).

0051 WASSAY H M W + KUMAR C O D
THE COLLISION OF ELECTRONS WITH SIMPLE ATOMIC SYSTEMS AND ELECTRON EXCHANGE
PROC ROY SOC LONDON SER A Vol 132, 605 (1930).

0052 AMOS F L
THE DISVAPOURATION OF ELECTRONS IN GASES
PROC ROY SOC LONDON SER A Vol 135, 674 (1934).

0053 BURKE V M + WASSAY H M W
THE ELASTIC SCATTERING OF SLOW ELECTRONS IN VAPOURS OF MERCURY, AURUM AND ZINC. II. PROC PHYS SOC LONDON: VOL 82, 627 (1962).

0054 WASSAY H M W + KUMAR C O D
THE COLLISION OF SLOW ELECTRONS WITH ATOMS. I. GENERAL THEORY AND ELASTIC COLLISIONS
PROC ROY SOC LONDON SER A Vol 139, 196 (1932).

0055 MCCORMAC
THE MOTION OF ELECTRONS IN THE STATIC FIELDS OF HYDROGEN AND MERCURY
PROC ROY SOC LONDON SER A Vol 135, 949 (1932).

0056 LEES J H
THE EXCITATION FUNCTION OF HYDROGEN ATOMS
PROC ROY SOC LONDON SER A Vol 137, 173 (1923).

0057 BROOKS J W + ROGGE H T H
THE INHIBITION OF HYDROGEN POSITIVE IONS BY ELECTRON IMPACT
PROC NEW SOC LONDON SER A Vol 27, 27 (1928).

0058 WASSAY H M W + OLINCOILY F H
INELASTIC ELECTRON SCATTERING II.
PROC ROY SOC LONDON SER A Vol 196, 229 (1949).

0059 WASSAY H M W + OLINCOILY F H
THE LARGE ANGLE SCATTERING OF ELECTRONS IN GASES. II.
PROC ROY SOC LONDON SER A Vol 138, 409 (1932).

0060 OSMANLY J F
EXTRACTION OF ELECTRON-BORE GAS ATOM (CROSS SECTIONS) TO ZERO ENERGY
PHYS REV. 170, 1026 (1967-68).

0061 WASSAY H M W + CUMMIS C O D
THE COLLISION OF SLOW ELECTRONS WITH ATOMS. III. THE EXCITATION AND IONIZATION OF HYDROGEN BY ELECTRONS OF MODERATE VELOCITY
PROC ROY SOC LONDON SER A Vol 142, 613 (1932).

0062 OSLER R H + WASSAY H M W
THE SCATTERING OF ELECTRON-BORE METAL VAPOURS. I. CADMIUM
PROC ROY SOC LONDON SER A Vol 147, 673 (1938).

0063 WASSAY H M W + WASSAY H M W
THE SCATTERING OF ELECTRONS IN GASES III.
PROC ROY SOC LONDON SER A Vol 142, 926 (1933).

0064 WASSAY H M W + WASSAY H M W
THE SCATTERING OF ELECTRONS BY METAL VAPOURS. II. ZINC
PROC ROY SOC LONDON SER A Vol 142, 909 (1933).

0065 AMOS F L
THE DIFFRACTION OF ELECTRONS IN THE HELIUM VAPOUR
PROC ROY SOC LONDON SER A Vol 144, 560 (1934).

0066 WASSAY H M W + OLINCOILY F H
THE SCATTERING OF ELECTRONS IN IONIZING COLLISIONS WITH GAS ATOMS
PROC ROY SOC LONDON SER A Vol 144, 598 (1934).

0067 WEIDELIIONEN E
SMALL ANGLE INELASTIC ELECTRON SCATTERING IN HELIUM, NEON, AND ARGEN
PROC ROY SOC LONDON SER A Vol 145, 616 (1934).

0068 WASSAY H M W + WASSAY H M W
THE COLLISIONS OF SLOW ELECTRONS WITH ATOMS. I.
PROC ROY SOC LONDON SER A Vol 144, 685 (1934).

0069 AMOS F L
ELASTIC AND INELASTIC CROSS-SECTIONS OF THE MERCURY ATOM
PROC ROY SOC LONDON SER A Vol 145, 269 (1934).

0070 BUCKNAM R + WASSAY H M W
A SELF-CONSISTENT FIELD FOR METHANE AND ITS APPLICATIONS
PROC ROY SOC LONDON SER A Vol 139, 234 (1932).

0071 BATES D W + WASSAY H M W
THE BASIC EQUATIONS IN THE UPPER ATMOSPHERE. I. THE THEORY OF DIFFUSION IN THE SATURATED LAYER
PROC ROY SOC LONDON SER A Vol 139, 274 (1932).

0072 BATTERS J G
THE DEPOLARIZATION OF POLARIZED LIGHT IN THE ATMOSPHERE, II. THE THEORY OF DIFFUSION IN THE SATURATED LAYER
PROC ROY SOC LONDON SER A Vol 139, 274 (1932).

0073 RAYHANER C
I. THE WINDING-QUANTUM-COUNTERS IN THE GAUMLERK角E GEMINER LANGER AND LANGEMELEK
ANN PHYSIK, 66, 513 (1921).

0074 RAYHANER C
I. THE WINDING-QUANTUM-COUNTERS IN THE GAUMLERK角E GEMINER LANGER AND LANGEMELEK
ANN PHYSIK, 66, 513 (1921).

0075 RAYHANER C
I. THE WINDING-QUANTUM-COUNTERS IN THE GAUMLERK角E GEMINER LANGER AND LANGEMELEK
ANN PHYSIK, 66, 513 (1921).

0076 RAYHANER C
I. THE WINDING-QUANTUM-COUNTERS IN THE GAUMLERK角E GEMINER LANGER AND LANGEMELEK
ANN PHYSIK, 66, 513 (1921).

0077 RAYHANER C
I. THE WINDING-QUANTUM-COUNTERS IN THE GAUMLERK角E GEMINER LANGER AND LANGEMELEK
ANN PHYSIK, 66, 513 (1921).

0078 BUCKNAM R
THE DIFFUSION OF ELECTRON-BORE GAS ATOMS (CROSS SECTIONS) TO ZERO ENERGY
PHYS REV. 170, 1026 (1967-68).

0079 WASSAY H M W + WASSAY H M W
I. THE WINDING-QUANTUM-COUNTERS IN THE GAUMLERK角E GEMINER LANGER AND LANGEMELEK
ANN PHYSIK, 66, 513 (1921).

0080 WASSAY H M W + WASSAY H M W
I. THE WINDING-QUANTUM-COUNTERS IN THE GAUMLERK角E GEMINER LANGER AND LANGEMELEK
ANN PHYSIK, 66, 513 (1921).

0081 WASSAY H M W + WASSAY H M W
I. THE WINDING-QUANTUM-COUNTERS IN THE GAUMLERK角E GEMINER LANGER AND LANGEMELEK
ANN PHYSIK, 66, 513 (1921).
0161 PALMER H R
THE EFFECT OF RESOLVING POWER ON MEASUREMENTS OF THE ABSORPTION COEFFICIENT OF ELECTRONS IN GASES
PHYS REV VOL 137 A 1965 PAGES 162

0162 BURKE P J KOYAMET W WAPENHUIZEN T E
ELECTRON SCATTERING BY ATOMIC HYDROGEN IN THE 1s 2s OR 2p STATES J
PROC PHYS SOC LONDON VOL 80 A 1958 PAGES 633

0163 PEARN J M
THE ANGULAR DISTRIBUTION OF ELECTRONS SCATTERED BY MERCURY VAPOR
PHYS REV VOL 137 A 147 PAGES 1965

0164 SAGI A P
MAGNETIC DEFORMATION METHOD FOR ANGULAR DISTRIBUTION OF ELECTRONS SCATTERED BY GAS MOLECULES
PHYS REV VOL 44 A 909 PAGES 1943

0165 MORRIS F L BROMLEY J M
ELASTIC ELECTRON SCATTERING IN HELIUM
PHYS REV VOL 44 A 914 PAGES 1943

0166 MUNCHETZ S F
FORMATION OF NEGATIVE IONS IN GASES BY SECONDARY COLLISION PROCESSES
J APPL PHYS VOL 137 A 1965 PAGES 1

0167 RANDOLPH P H JERNIGAL R
A MASS SPECTROMETRIC STUDY OF NEGATIVE ION FORMING REACTIONS IN GASES
TECHNICAL REPORT NO 6 UNIVERSITY OF WASHINGTON DEPARTMENT OF PHYSICS PREPARED UNDER OFFICE OF ORDNANCE RESEARCH CONTRACT DA-36-039ORD-454A 1958 PAGES 90

0168 SARAF KHATIB M
AN IONIZATION-MEASUREMENT METHOD FOR ATOMIC SCATTERING PROBLEMS IN PHYSICAL REVIEW VOL 44 A 907 PAGES 1943

0169 BARTON J L
MODEL WAVE FUNCTION STUDY OF NEGATIVE ION PHOTODETACHMENT IN OXYGEN
J APPL PHYS VOL 44 A 907 PAGES 1943

0170 ORNERSKJOLD I
ELECTRON BOILING IN GAS 6 UNTERSUCHUNGEN VOM WASSERSTOFF
ANN PHYS VOL 76 A 821 PAGES 1929

0171 ZUCKERMANN E
ÜBER DIE DISSIPATION LANGSAMER ELECTRONEN 12-50 VOLTS IN WASSERSTOFF UND ARGON
ANN PHYS VOL 44 A 907 PAGES 1943

0172 REUTER H
ÜBER DAS VERHALTEN LANGSAMER ELECTRONEN IM QUICKSILBERDAMPF
ANN PHYS VOL 44 A 907 PAGES 1943

0173 VAN VOORHES S N
SMALL ANGLE INELASTIC SCATTERING OF ELECTRONS IN HELIUM 15IN 1944 PAGES 907

0174 KOLLATH K
ÜBER DIE IONISIERUNG LANGSAMER ELECTRONEN AUS GASMOLEKULEN
ANN PHYS VOL 76 A 821 PAGES 1929

0175 GAMSI H
WIRKUNGSWEISE DER negative IONEN AN AR Offer UND WASSERSTOFF Gegenüber
ANN PHYS VOL 44 A 907 PAGES 1943

0176 JORDANS M
MEASUREMENTS OF OPTICAL EXCITATION PROBABILITIES OF THE MERCURY ATOMIC LINE
PHYS REV VOL 44 A 907 PAGES 1943

0177 HAMER J H
RESEARCH ON THE REDUCTION OF Cesium TON
PHYSICAL REVIEW 1943 PAGES 907

0178 KOSISZKOWSKI W
ÜBER DIE FREIE WEGLÄNGE LANGSAMER ELECTRONEN IN GAS
Z PHYSIK VOL 137 A 1965 PAGES 907

0179 HANLE W
DIE ANGEBAN-FUNKTION DER QUARKSILBERIONENLINIE 2357
Z PHYSIK VOL 44 A 907 PAGES 1943

0180 HANKE W
ÜBER DIE FREIE WEGLÄNGE LANGSAMER ELECTRONEN IN HE 15 UND Cd-40-41 2
Z PHYSIK VOL 137 A 1965 PAGES 907

0181 PRUS L JAEGER V
ROTATIONAL EXCITATION AND MOMENTUM TRANSFER CROSS SECTIONS FOR ELECTRONS IN 1H AND 2H FROM TRANSFER COEFFICIENTS
PHYS REV VOL 44 A 907 PAGES 1943

0182 KEEN C L
COLLISION CROSS SECTION OF 12N ELECTRONS AND IONS WITH CEDTRI ATOMS
PHYS REV VOL 44 A 907 PAGES 1943

0183 ELSASER W
ZUR THEORIE DER STOFFPROFISSE BEI WASSERSTOFF
PHYS REV VOL 44 A 907 PAGES 1943

0184 WALSLEY N H W
THE EXCITATION OF MOLECULAR VIBRATION BY IMPACT OF SLOW ELECTRONS
TRANS PARADYSK Vol 57 356 PAGES 1943

0185 HOLSTEN J
ZUR THEORIE DER STRICKING LANGSAMEN ELECTRONEN
ANN PHYSIK Vol 44 A 907 PAGES 1943

0186 KUMMER T
ÜBER DIE UNRIECHENBARKEIT DER EREDUN MOLARITÄTZWANG LANGSAMEN ELECTRONEN
JPHYS KURZABT ELEKTRO Vol 44 A 907 PAGES 1943

0187 BERMAN A
ELASTIC AND INELASTIC SCATTERING OF ELECTRONS BY ARGON AND HEAT
OSRA DEPARTMENT UNIVER 1944 88 PAGES 1943

0188 BERMAN T
THE SCATTERING OF ELECTRONS FROM THE LIGHTER ELEMENTS
J PHYSIC REV Vol 44 A 907 PAGES 1943

0189 ELMWYR W
A STUDY OF THE ELASTIC AND INELASTIC SCATTERING OF 15 TOP ELECTRONS IN METHANE AND ETHANE
PHYS REV VOL 44 A 907 PAGES 1943

0190 ELMWYR W
THE SCATTERING OF ELECTRONS IN METHANE
PHYS REV VOL 44 A 907 PAGES 1943

0191 ANTON T L
ELECTRON SCATTERING IN MERCURY VAPOR
PROC ROY SOC LONDON VOL 44 A 907 PAGES 1943

0192 FRANCES S A
THE SCATTERING OF ELECTRONIC MOLECULES BY ELECTRON IMPACT
OSRA DEPARTMENT UNIVER 1944 88 PAGES 1943

0193 WERNER
ELECTRON SCATTERING IN HELIUM
PROC ROY SOC LONDON VOL 44 A 907 PAGES 1943

0194 MILLS D C T
THE SCATTERING OF ELECTRONS FROM MOLECULES
PROC ROY SOC LONDON VOL 44 A 907 PAGES 1943

0195 TOBIAS J E LAZAR V A
THE MOTION OF ELECTRONS IN GASES
PHYS REV VOL 44 A 907 PAGES 1943

0196 TOBIAS J E LAZAR V A
THE MOTION OF ELECTRONS IN ARGON
PHYS REV VOL 44 A 907 PAGES 1943

0197 DEWIRE P F
THE MOTION OF ELECTRONS IN CARBON DIOXIDE
PHYS REV VOL 44 A 907 PAGES 1943

0198 TOBIAS J E LAZAR V A
THE MOTION OF ELECTRONS IN ARGON AND HYDROGEN
PHYS REV VOL 44 A 907 PAGES 1943

0199 DEWIRE P F
THE MOTION OF ELECTRONS IN CARBON DIOXIDE
PHYS REV VOL 44 A 907 PAGES 1943

0200 DEWIRE P F
THE MOTION OF ELECTRONS IN CARBON DIOXIDE AND HYDROGEN
PHYS REV VOL 44 A 907 PAGES 1943

0201 TOBIAS J E LAZAR V A
THE MOTION OF ELECTRONS IN HELIUM
PHYS REV VOL 44 A 907 PAGES 1943

0202 TOBIAS J E LAZAR V A
THE MOTION OF ELECTRONS IN HELIUM
PHYS REV VOL 44 A 907 PAGES 1943
0423 CARTER C A X-RAY AND ELECTRON SCATTERING BY MOLECULAR HYDROGEN
PROC PHYS SOC LONDON A vol. 71, p. 20 (1958)

0422 SEATON M J THE USE OF EXTRAPOLATED QUANTUM DEFECTS AS A CHECK ON CALCULATED PHASES FOR SCATTERING BY ELECTRONS OF NEGATIVE IONS
PROC PHYS SOC LONDON A vol. 70, p. 620 (1957)

0423 GATES G R ELECTRON COLLISION PARTIAL CROSS SECTIONS FOR THE 1S-2S AND 1S-3S TRANSITIONS OF ATOMIC HYDROGEN
PROC PHYS SOC LONDON A vol. 70, p. 594 (1957)

0424 MCCARRON B THE EXCITATION OF THE DISCRETE LEVELS OF ATOMIC HYDROGEN BY FAST ELECTRONS
PROC PHYS SOC LONDON A vol. 70, p. 460 (1957)

0425 BRANDENburger H A VARIATIONAL CALCULATION OF THE CROSS SECTION FOR THE 1S-2S EXCITATION OF HYDROGEN BY ELECTRON IMPACT
PROC PHYS SOC LONDON A vol. 70, p. 308 (1957)

0426 MARSHALL D THE EXCITATION OF RHEITABLE HEAT FROM THE SINGLET TO THE TRIPLET STATE BY ELECTRON COLLISION
PROC PHYS SOC LONDON A vol. 70, p. 288 (1957)

0427 REEVES J D ELECTRON EXCITATION OF 3P LEVELS OF O
PROC PHYS SOC LONDON A vol. 70, p. 241 (1957)

0428 MASIET P H N APPLICATION OF VARIATIONAL METHODS TO THE THEORY OF THE SCATTERING OF SLOW ELECTRONS BY HYDROGEN MOLECULES
PROC PHYS SOC LONDON A vol. 47, p. 874 (1942)

0429 BRANDENburger H THE 1S-2S EXCITATION OF HYDROGEN BY ELECTRON IMPACT
PROC PHYS SOC LONDON A vol. 47, p. 627 (1942)

0430 SWAN P THE IONIZATION OF ELECTRONS OF 1850 AND 2000 MEV ATOMIC HYDROGEN
PROC PHYS SOC LONDON A vol. 68, p. 115T (1948)

0431 SEATON M J CROSS SECTIONS FOR 25-2P TRANSITIONS IN H AND 35-3P TRANSITIONS IN H Na PROCESSED BY ELECTRON AND BY PHOTON IMPACT
PROC PHYS SOC LONDON A vol. 68, p. 415 (1948)

0432 DAVIES U A SIMPLE APPROXIMATION FOR THE TREATMENT OF COLLISIONS OF ELECTRONS WITH ATOMIC HYDROGEN
PROC PHYS SOC LONDON A vol. 68, p. 477 (1948)

0433 SWAN P THE 1S-2S AND 2S-2P EXCITATION OF ELECTRONS OF 1850 AND 2000 MEV ATOMIC HYDROGEN
PROC PHYS SOC LONDON A vol. 67, p. 1084 (1946)

0434 CARSON T J THE IONIZATION AND EXCITATION OF MOLECULAR HYDROGEN BY ELECTRON IMPACT
PROC PHYS SOC LONDON A vol. 67, p. 904 (1946)

0435 POTHegenstein W THE SECOND BORN APPROXIMATION IN INELASTIC COLLISIONS OF ELECTRONS WITH ATOMIC HYDROGEN
PROC PHYS SOC LONDON A vol. 67, p. 673 (1946)

0436 BRANDENburger H A VARIATIONAL METHODS TO SCATTERING BY 1S-2S, 1S-1S, THE DISTURBED WAVE APPROXIMATION AND THE 1S-2S EXCITATION OF HELIUM ATOM BY ELECTRON IMPACT
PROC PHYS SOC LONDON A vol. 66, p. 107 (1947)

0437 BLAKE M EXCITATION OF H AToms BY ELECTRON COLLISIONS
BULL ATOM INST CHESCHIOLANDICA vol. 15, p. 81 (1946)

0438 MASIET P H N AND WILDEITZIETH R L EXCITATION OF THE 1S-2S ELECTRON EXCITATION CROSS SECTION OF HYDROGEN BY A VARIATIONAL METHOD
PROC PHYS SOC LONDON A vol. 66, p. 404 (1945)

0439 PAGE J L EXPERIMENTAL DRIFT VELOCITIES OF SLOW ELECTRONS IN KRYPTON, SODIUM, DEUTERIUM, HELIUM, NITROUS OXIDE, CARBON DIOXIDE, WATER VAPOR, NITROUS OXIDE, AND AMMONIA
PHYS REV vol. 78, p. 1204 (1950)

0440 BRANDENburger H J A SIMPLE APPLICATION OF VARIATIONAL METHODS TO SCATTERING BY ELECTRON IMPACT OF HYDROGEN ATOMS
PROC PHYS SOC LONDON A vol. 69, p. 384 (1954)

0441 MASIET P H N AND WILDEITZIETH R L ELECTRON EXCITATION OF HYDROGEN ATOMS AT LOW ATOMIC HYDROGEN
PROC PHYS SOC LONDON A vol. 67, p. 673 (1946)

0442 Czapka G ON THE CALCULATION OF ELECTRON EXCITATION CROSS SECTIONS FOR HYDROGEN ATOMS COLLAPSING IN GAS DENSITY STUDIES ATOMIC COLLISION PROCESSES By R B PLEMIK Editor NORTH-HELAND PUBLISHING COMPANY LONDON, PAGE 215 1953 PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON THE PHYSICS OF ELECTRONIC AND ATOMIC COLLISIONS 22-26 JULY 1953

0443 SCHWARZI S J A R DEPARTMENT OF NUCLEAR AND THE HYDROGEN ATOM AND ITS APPLICATION IN THE FIELD OF NUCLEAR RESEARCH
PHYS REV vol. 78, p. 384 (1954)

0445 FISHER L H L W OVER AND STEPHEN B W THE CALCULATION OF ELECTRON EXCITATION CROSS SECTIONS FOR HYDROGEN ATOMS COLLAPSING IN GAS DENSITY STUDIES ATOMIC COLLISION PROCESSES By R B PLEMIK Editor NORTH-HELAND PUBLISHING COMPANY LONDON, PAGE 215 1953 PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON THE PHYSICS OF ELECTRONIC AND ATOMIC COLLISIONS 22-26 JULY 1953

0446 WOOD N C AND L R MARSHALL B THE USE OF ELECTRON EXCITATION OF HYDROGEN ATOMS AT LOW ATOMIC HYDROGEN
PHYS REV vol. 78, p. 384 (1954)

0447 KERL B THE USE OF ELECTRON EXCITATION OF HYDROGEN ATOMS AT LOW ATOMIC HYDROGEN
PHYS REV vol. 78, p. 384 (1954)

0448 KERL B THE USE OF ELECTRON EXCITATION OF HYDROGEN ATOMS AT LOW ATOMIC HYDROGEN
PHYS REV vol. 78, p. 384 (1954)

0449 WOOD N C AND L R MARSHALL B THE USE OF ELECTRON EXCITATION OF HYDROGEN ATOMS AT LOW ATOMIC HYDROGEN
PHYS REV vol. 78, p. 384 (1954)

0450 WOOD N C AND L R MARSHALL B THE USE OF ELECTRON EXCITATION OF HYDROGEN ATOMS AT LOW ATOMIC HYDROGEN
PHYS REV vol. 78, p. 384 (1954)

0451 KERL B THE USE OF ELECTRON EXCITATION OF HYDROGEN ATOMS AT LOW ATOMIC HYDROGEN
PHYS REV vol. 78, p. 384 (1954)

0452 WOOD N C AND L R MARSHALL B THE USE OF ELECTRON EXCITATION OF HYDROGEN ATOMS AT LOW ATOMIC HYDROGEN
PHYS REV vol. 78, p. 384 (1954)

0453 WOOD N C AND L R MARSHALL B THE USE OF ELECTRON EXCITATION OF HYDROGEN ATOMS AT LOW ATOMIC HYDROGEN
PHYS REV vol. 78, p. 384 (1954)

0454 WOOD N C AND L R MARSHALL B THE USE OF ELECTRON EXCITATION OF HYDROGEN ATOMS AT LOW ATOMIC HYDROGEN
PHYS REV vol. 78, p. 384 (1954)

0455 WOOD N C AND L R MARSHALL B THE USE OF ELECTRON EXCITATION OF HYDROGEN ATOMS AT LOW ATOMIC HYDROGEN
PHYS REV vol. 78, p. 384 (1954)

0456 WOOD N C AND L R MARSHALL B THE USE OF ELECTRON EXCITATION OF HYDROGEN ATOMS AT LOW ATOMIC HYDROGEN
PHYS REV vol. 78, p. 384 (1954)

0457 WOOD N C AND L R MARSHALL B THE USE OF ELECTRON EXCITATION OF HYDROGEN ATOMS AT LOW ATOMIC HYDROGEN
PHYS REV vol. 78, p. 384 (1954)

0458 WOOD N C AND L R MARSHALL B THE USE OF ELECTRON EXCITATION OF HYDROGEN ATOMS AT LOW ATOMIC HYDROGEN
PHYS REV vol. 78, p. 384 (1954)

0459 WOOD N C AND L R MARSHALL B THE USE OF ELECTRON EXCITATION OF HYDROGEN ATOMS AT LOW ATOMIC HYDROGEN
PHYS REV vol. 78, p. 384 (1954)

0460 WOOD N C AND L R MARSHALL B THE USE OF ELECTRON EXCITATION OF HYDROGEN ATOMS AT LOW ATOMIC HYDROGEN
PHYS REV vol. 78, p. 384 (1954)

0461 WOOD N C AND L R MARSHALL B THE USE OF ELECTRON EXCITATION OF HYDROGEN ATOMS AT LOW ATOMIC HYDROGEN
PHYS REV vol. 78, p. 384 (1954)
0757 KISMOGI S. M. PHOTOELECTRIC DETERMINATION OF THE EXCITATION FUNCTIONS OF THE BANDS OF THE NEGATIVE SYSTEM (621) OF SPECTRO USN ENGLISH TRANSL, VOL. 5, 544 (1960)

0759 ROBERC F. SPECTROSCOPIC STUDY OF ELECTRON RECOMBINATION WITH MONOTOMIC IONS IN A HELIUM PLASMA PHYS REV, VOL. 162, 2656 (1966)

0760 NADINE I. THE SCATTERING OF SLOW ELECTRONS BY HELIUM ATOMS, WITH EXCITATION OF THE 2S, 2P, 2S 3S, 2S 3P6, AND 2S 3S 3S LEVELS OBTAINED USING USN ENGLISH TRANSL, VOL. 9, 374 (1966)

0764 BUCKERCHILOV T. SCATTERING OF ELECTRONS BY IONS AND THE MOBILITY OF ELECTRONS IN A CARBON DISBARISCHE PHYS REV, VOL. 19, 195 (1955)

0765 MFACE T. MONTE-CARLO CALCULATIONS OF THE MOTIONS OF ELECTRONS IN HELIUM J. APPL. PHYS. VOL. 31, 1546 (1960)

0766 BUCKELNOVA T. CROSS SECTIONS FOR THE CAPTURE OF SLOW ELECTRONS BY O2 AND O3 MOLECULES AND MOLECULES OF HALOGEN COMPOUNDS JETP ENGLISH TRANSL, VOL. 31, 787 (1959)

0768 MILEZER C. J. DESTRUCTION OF ELECTRON DENSITY AND MOBILITY IN SLIGHTLY IONIZED HELIUM J. APPL. PHYS. VOL. 31, 1546 (1960)

0771 DUNLOP J. H. TOWNSEND'S IONIZATION COEFFICIENT FOR HELIUM NATUR, VOL. 6, 815 (1964)

0773 FELDMAN AUTOMATING STATES IN THE ALKALI ATOMS WITH MICROSECOND LIFETIMES PHYS REV, VOL. 112, 107 (1959)

0775 HELY OWEN HIKERSTEIN H. LUCASION DES ATOMES PAR CHOC ELECTRONIQUES APPLICATION A L'EXCITATION DES TRANSITIONS DE RESONANCE DANS LES SERIES ELECTRONIQUES DU LI-7 ET DU NID-79 Ann Phys, VOL. 5, 299 (1964)

0776 FOR E. E. RELATIVE ION FORMATION IN Mo O2 BY ELECTRON ATTACHMENT J. CHEM. PHYS. VOL. 31, 1546 (1960)

0777 BRIGE D. THE IONIZATION OF HELIUM AND ARGON BY ELECTRON IMPACT REPORT, LAWRENCE RADIATION LABORATORY, UNIVERSITY OF CALIFORNIA, LIVERMORE, CALIFORNIA (1952-1961), 6 PAGES

0778 OSWALD F. H. HAMMOND J. P. THERMIONIC IONIZATION FOR THE PROBABILITY OF EXCITATION BY ELECTRON IMPACT J. CHEM. PHYS. VOL. 32, 378 (1960)

0781 FOX E. IONIZATION IN ARGON AND AERON BY ELECTRON IMPACT J. CHEM. PHYS. VOL. 32, 200 (1960)

0783 YAVOOGSKY Z. IONIZATION OF MERCURY BY ELECTRON IMPACT COMPT REND. ACAD SCI URSS, VOL. 59, 207 (1947)

0785 ROBINDO C. THE ELECTRICAL RESISTIVITY OF A PARTIALLY IONIZED CESIUM PLASMA AVRAM ENERGY CONVERSION, VOL. 3. 69 (1963)

0787 HUGHES H. M. EXCITATION OF THE H II (LAMBERT-668 ANGSTROM) LINE BY ELECTRON IMPACT PHYS REV, VOL. 132, 104 (1963)

0792 VARAHAYL C. SOME ATOMIC PARAMETERS FOR ULTRAVIOLET LINES

0794 LASSITER E. N. ZELDENBACH J. L. SILVERMAN S. M. ELECTRON SPECTROSCOPIC STUDY OF THE INELASTIC ELECTRONIC CROSS SECTIONS J. CHEM. PHYS. VOL. 103, 1852 (1966)

0795 RAMELOV C. J. ON THE COLLISION OF SLOW MOLECULES JV VYSOTKOM UCHEM ZAVODI FIZ, VOL. 3, 42 (1961)

0799 LASSITER E. N. ZELDENBACH J. L. SILVERMAN S. M. ELECTRONIC COLLISION CROSS SECTIONS AND DISSOCIATION STRENGTHS FOR OXYGEN IN THE SCHRADEN-HARBURG REGION J. CHEM. PHYS. VOL. 40, 1853 (1964)

0799 SILVERMAN S. M. LASSITER E. N. ADDITIONAL COLLISION CROSS SECTIONS FOR HELIUM ESPECIALLY IN THE IONIZED CONTINUUM J. CHEM. PHYS. VOL. 40, 1853 (1964)

0800 LASSITER E. N. ZELDENBACH J. L. SILVERMAN S. M. INELASTIC SCATTERING OF ELECTRONS BY HELIUM J. CHEM. PHYS. VOL. 40, 1242 (1964)

0801 LASSITER E. N. ZELDENBACH J. L. HULL J. M. JONES T. ELECTRONIC SCATTERING OF ELECTRON COLLISION CROSS SECTIONS FOR THE 1 ST SINGLET TO 2 SINGLET P TRANSITION IN HELIUM J. CHEM. PHYS. VOL. 40, 1242 (1964)

0802 HENSON R. J. OHYI T. ELECTRON REMOVAL IN HELIUM AFTERGLOWS PHYS REV, VOL. 80, 331 (1951)

0803 LASSITER E. N. ZELDENBACH J. L. SILVERMAN S. M. INELASTIC SCATTERING OF ELECTRONS CROSS SECTIONS OF CARBON MONOXIDE J. CHEM. PHYS. VOL. 40, 1242 (1964)

0804 LASSITER E. N. ZELDENBACH J. L. SILVERMAN S. M. DETERMINATION OF GENERALIZED OSCILLATOR STRENGTHS FOR MOLECULAR HYDROGEN BY ELECTRON IMPACT J. CHEM. PHYS. VOL. 40, 1242 (1964)

0806 PREDN S. E. ZELDENBACH J. L. COLLISION OF ELECTRONS WITH MOLECULAR STATES OF STERILE GROUND AND HYDROGEN BY OPTICAL EXCITATION FUNCTION CORR. ACAD. NUKAR 12 (1957), 971 (1964)

0809 HELLMANN F. A. CALCULATION OF COLLISION CROSS SECTIONS BY USE OF RELAXATION TECHNIQUES J. CHEM. PHYS. VOL. 21, 1969 (1953)

0810 DAVISOK H. estimation of the effective scattering cross sections by alkali elements taken into account the strong coupling 1034 ACAD. NUKAR 125 (1958), 671 (1964)

0811 DAVISOK H. estimation of the effective scattering cross sections by alkali elements taking into account the strong coupling 1034 ACAD. NUKAR 125 (1958), 671 (1964)

0816 VARAHAYL C. ATOMIC PARAMETERS FOR FIVE TIMES IONIZED OXYGEN PLANETARY SPACE 51, 113 (1965)

0818 KIERZELLER L. LEHR DIE STRUKTUR DER ANGEBENFUHION VON QUECKSILBER LINEN 2 PHYS. VOL. 44, 505 (1948)

0819 MARYKENOVY M. EXCITATION OF SLOW ELECTRONS ON ION. SOVIET PHYS. JETP ENGISH TRANSL, VOL. 17, 110 (1967)

0819 ROWE J. C. TRANSPORT COLLISION CROSS SECTIONS FROM ELECTRON DRIFT VELOCITY DATA PHYS. REV. VOL. 114, 1465 (1969)

0873 PEACH I, MODDILIE M R C, CALCULATION OF LUMINOUS ELECTRONS. PHYS REV. VOL 87, 396 JULY 1952.

0876 ALLEN L H, SADDLES FOR THE COLLISIONAL EXCITATION OF低能 LUMINOUS ELECTRONS. PHYS REV. VOL 111, 1607 SEPTEMBER 1958.

0883 ABRABNOV I, A MORE ACCURATE APPROXIMATION TO THE SCATTERING OF ELECTRONS BY HYDROGEN. PHYS REV. VOL 127, 1760 1962.

0886 UIPPEN P O, POLARIZATION AND CORRELATION OF ELECTRON SPIN IN LOW-ENERGY ELECTRONS. PHYS REV. VOL 126, 176 1962.

0890 ROTT D, FIELD DEPENDENT APPLIED TO ELECTRON-HYDROGEN SCATTERING. PHYS REV. VOL 127, 434A 1960.

0892 JONES E, A GENERALIZED OPTICAL-POPTICAL METHOD AND ITS APPLICATION TO THE SCATTERING OF ELECTRONS BY HYDROGEN. PH.D. DISSERTATION. UNIVERSITY OF CALIFORNIA, BERKELEY, 1963, 71 PAGES.

0923 WOOLEY R.

THE CORNU PALM E MISSION SPECTRUM.
MONTHLY NOTICES ROY ASTRON SOC. V 108, 292. (1948)

0924 WARD W. H., WRIGHT J. T.

THE IONIZATION AND DISSOCIATION OF WATER VAPOR AND AMMONIA BY ELECTRON IMPACT.
PHYS REV. V 58, 340. (1940)

0925 MITRA S. K.

CROSS-SECTION OF ATOMIC OXYGEN FOR ELASTIC COLLISION WITH ELECTRONS, AND REGION II ABSORPTION.
NATURE V 164, 303. (1949)

0926 BELLOUARD, M.

THE DISTRIBUTION OF ATOMS AMONG THE EXCITED LEVELS IN A LOW PRESSURE H2-NE GAS MIXTURE.
OPT SPECTRY USUR ENGLISH TRANSL. V 10, 206. (1961)

0927 SCHULTE G. J.

STUDY OF THE ANDRO UREA USING ELECTRON BEAMS.
J CHEM PHYS V 39, 1778. (1963)

0928 COWY A. J., JAMESON N. H. S., WOOLFTH R.

THE ELECTRONIC AND IONIC STATES OF HYDROGEN ATOMS.
PHYS REV SOC LONDON SECT A V 21, 671. (1948)

0929 GREEN E.

DEOXYGENATION CROSS SECTION FOR OXYGEN.
J CHEM PHYS V 35, 629. (1961)

0930 GROHM V.

COLLISIONS OF SLOW ELECTRONS WITH HYDROGEN ATOMS.
VESP LINING UNIV 52 P 32 Z 1. KON. VI, V 44, 53. (1954)
TRANSLATION AVAILABLE FROM ATOMIC PHYSICS DATA CENTER, NATIONAL BUREAU OF STANDARDS, WASHINGTON, D.C.

0931 SCHULTZ S.

CROSS-SECTION FOR THE EXCITATION OF THE METAStABLE 2S STATE OF ATOMIC HYDROGEN.
THESES, COLOMBIA UNIVERSITY, NEW YORK, 1960, 83 PAGES

0932 AUGUST R. B., CRAGGS J. D.

ELECTRON ATTACHMENT AND IONIZATION IN OXYGEN, CARBON MONOXIDE AND CARBON DIOXIDE.
PHYS REV SOC LONDON V 82, 967. (1962)

0933 GREEN B. S.

FREE-FREE CONTINUUM OF NITROGEN.
J OPT APPL V 51, 659. (1961)

0934 AUGUST R. B., CRAGGS J. D.

ELECTRON CAPTURE AND IONIZATION PHENOMENA IN S F6 AND C6F8.
PHYS SOC LONDON V 83, 81. (1964)

0935 FREEMAN G.

EFFECTS OF ELECTRON IMPACT ON C USING A LOZIER APPARATUS.
J CHEM PHYS V 36, 275. (1962)

0936 ST JOHN R. M., LINN CHU J.

PRODUCTION OF EXCITATION AND IONIZATION IN HELIUM BY SINGLE-ELECTRON IMPACT.
J CHEM PHYS V 39, 379. (1963)

0937 THOMSON J. B.

THE ATTACHMENT OF SLOW ELECTRONS IN AIR AND OXYGEN.
PHYS SOC LONDON V 79, 824. (1957)

0938 PRENDEL P.

ELEKTROPHORETISCHE UHERN ELECTRON DE VTESSE NULLE PAR L'ATOME DE NITROGEN (EPRASSEMENT DU CHAP CENTRAL).
THESES, UNIVERSITY OF PARIS, 1960, 57 PAGES

0939 ELLE R.

IONIZATION CROSS SECTIONS FOR DISSOCIATIVE ELECTRON-MOLECULE COLLISIONS.

0940 SULLAN M., SULLAN J. D.

MEASUREMENT OF IONIZATION AND ATTACHMENT COEFFICIENTS IN CARBON DIOXIDE IN UNIFORM FIELDS.
PHYS SOC LONDON V 86, 369. (1960)

0941 MARSHALL J. R., MARSHALL S. E., CRAGGS J. D.

NEUTRON TRAC IN 13, 16 AND 18.
PHYS SOC LONDON V 87, 363. (1959)

0942 SITWART D. T.

ELECTRON EXCITATION FUNCTIONS OF IMPRA-BRED NITROGEN SPECTRA.
PHYS SOC LONDON A V 88, 704. (1955)

0943 SARAHN H.

CROSS-SECTION FOR N TO m1 TRANSITIONS IN HYDROGEN PRODUCED BY ELECTRON IMPACT.
PHYS REV SOC LONDON V 83, 163. (1964)

0944 AHMED V.

FORMATION OF NEGATIVE H- IONS IN COLLISIONS OF ELECTRONS WITH HYDROGEN MOLECULES.
SOVIET PHYS JETP ENGLISH TRANSL. V 6, 457. (1958)

0945 MELTON C. D.

IONIZATION AND EXCITATION PROCESSES IN ARGON, KRYPON, AND THE C2 MOLECULES PRODUCED BY VARIOUS MEANS.
J CHEM PHYS V 37, 562. (1962)

0946 GABRETT A. R.

ELASTIC SCATTERING OF SLOW ELECTRONS FROM ALKALI ATOMS.
PHYS REV. V 135 A, 590. (1964)

0947 IZIK N.

PHYSICAL CONDITIONS IN LUMP FLARES AND ACTIVE PROMINENCES, IONIZATION AND IONIZATION OF HELIUM AND METALS.
ASTROPHYS J. V 139, 521. (1962)

0948 CHEH J. C. Y.

EXCITATION OF MOLECULAR VIBRATION BY SLOW ELECTRON IMPACT.
J CHEM PHYS V 39, 1047. (1963)

0949 JEFFRIES J. F.

SOME ELECTRON IMPACT CROSS SECTION OF CA 1.
AUST. J PHYS V 72, 224. (1964)

0950 JAHN E.

THEORY OF ELECTRON IMPACT SCATTERING OF MOLECULES.
J CHEM PHYS. V 39, 1576. (1963)

0951 KASE B.

THEORETICAL CONSIDERATIONS IN THE DESIGN OF AN ELECTRON TUBE AND THE EVALUATION OF MEASURED EXCITATION FUNCTIONS.
PHYS REV SOC KANSAS STATE COLLEGE, 1960, 77 PAGES

0952 GREENBERG J. H.

A VARIATIONAL CALCULATION OF THE SCATTERING CROSS SECTION OF NEARLY ZERO-ENERGY ELECTRONS BY HYDROGEN ATOMS.

0953 HERLIHY A.

THE DESIGN OF AN ELECTRON SOURCE AND ITS APPLICATION TO THE STUDY OF ELECTRON IMPACT SPECTRA AT ZERO-ENERGY ANGLE.
THESIS, OHIO STATE UNIVERSITY, 1966, 123 PAGES, UNIVERSITY MICROFILMS. INC., ANN ARBOR, MICHIGAN, NO. 60-4135

0954 NIES F. V.

ELECTRON RADIATION FROM IONIZED RARE GASES IN REFLECTED NAKED WAVE REPORT, BROWN UNIVERSITY, COMBUSTION DYNAMICS DIVISION, AIR FORCE OFFICE OF SCIENTIFIC RESEARCH, ARMY, WASHINGTON 25, D.C., AFOSR-TR-1953, 1961, 38 PAGES

0955 BELY O.

EXCITATION CROSS SECTIONS FOR SLOW ELECTRONS (CAN 0 V)
COMPT. REND. V 254, 7075. (1962)

0956 CURBON R. R.

LOW-ENERGY PROCESS FOR 2- FORMATION IN S F6.
J CHEM PHYS V 39, 1046. (1963)

0957 PROMNOLO L.

ZUM ÜBERSEHRGANG DER ELEKTRONENKOMPONENTE VON ELECTRONKATHODEN.
Z PHYSIKA V 125, 144. (1959)

0958 BARTON J.

THE EXPERIMENTAL DETERMINATION OF IONIZATION CROSS SECTIONS OF GASES AND LIQUIDS.
THESIS, THE CATHOLIC UNIVERSITY OF AMERICA, WASHINGTON, D.C., 1960, 40 PAGES

0959 LARSEN R. N.

POLARIZATION EFFECTS IN THE ELASTIC SCATTERING OF ELECTRONS FROM HELIUM.
PHYS REV. V 135 A, 5199. (1964)

0960 MURPHY E. T.

THE ELASTIC SCATTERING OF SLOW ELECTRONS BY HELIUM ATOMS.
OPT SPECTRY USUR ENGLISH TRANSL. V 12, 68. (1963)
1051 GILBRETH R A \& STEBBINGS R P \& \textit{W L COULOMBS OF ELECTRONS WITH HYDROGEN ATOMS XI. ANGULAR DISTRIBUTION IN ELASTIC SCATTERING} \textit{PHYS REV} VOL 121 174 (1961)

1052 LIPPMANN B \& AN OPTICAL-DISPLACEMENT ANALYSIS OF LOW-ENERGY ELECTRON-HYDROGEN SCATTERING \textit{PHYS REV} VOL 121 331 (1961)

1053 FISHER S N \& STRUCTURE IN THE IONIZATION NEAR THRESHOLD OF RARE GASES BY ELECTRON IMPACT \textit{PHYS REV} VOL 122 512 (1961)

1054 HUMER D J \& GLEASON W J \& ELECTRON DIFFERENTIAL CROSS-SECTIONS OF HYDROGEN BY ELECTRON IMPACT \textit{PHYS REV LETTERS} VOL 8 471 (1961)

1055 KANAY \& \textit{IONIZATION EFFICIENCY CURVES FOR Ar, Kr, Xe And C on ELECTRON IMPACT} \textit{J PHYS SOC JAPAN} VOL 16 441 (1961)

1056 KANAY \& \textit{SINGLE AND DOUBLE IONIZATION OF Ar, Kr, Xe And Ne By ELECTRON IMPACT} \textit{J PHYS SOC JAPAN} VOL 16 2258 (1961)

1057 ARDOLINO J P \& \textit{IONIZATION OF THE SPECTRAL LINES OF CESIUM IN OPTICAL SPECTRA USING ENGLISH LANGUAGE} \textit{PHYS REV} VOL 16 504 (1961)

1058 BUCHECZ S M \& \textit{ELECTRON-MULTIPLE AND ELECTRON-IONIZATION CROSS SECTIONS FROM A COLUMBUS RESONANCE STUDY OF FLAME GASES} \textit{J CHEM PHYS} VOL 39 385 (1963)

1059 GORDON L J \& \textit{ELECTRON MULTIPLICATION IN HYDROGEN AND NITROGEN FROM ELECTRON SIMULATION STUDIES} \textit{PHYS REV A} VOL 1 1170 (1961)

1060 LIEBLER A \& \textit{SOME IMPLICATIONS OF THE FIFTH INTERNATIONAL CONFERENCE ON IONIZATION IN GASES: ELECTRON IMPACT} \textit{PHYS REV} VOL 19 70 (1961)

1061 BORBERNA M \& \textit{CALCULATION OF THE CROSS SECTIONS FOR MULTIPLE IONIZATION IN ATOMS AND ION} \textit{PHYS REV} VOL 126 1656 (1962)

1062 GORDON L J \& \textit{ELECTRON-ATOM MULTIPLE AND ELECTRON-IONIZATION CROSS SECTIONS FROM A COLUMBUS RESONANCE STUDY OF FLAME GASES} \textit{J CHEM PHYS} VOL 39 385 (1963)

1063 DENNIS B S \& \textit{THE CROSS-SECTION OF THE ELECTRON-INDUCED SERAP TRANSITION IN CESIUM} \textit{PHYS REV} VOL 12 475 (1961)

1064 BORBERNA M \& \textit{SOME IMPLICATIONS OF THE FIFTH INTERNATIONAL CONFERENCE ON IONIZATION IN GASES: ELECTRON IMPACT} \textit{PHYS REV A} VOL 1 1170 (1961)

1065 RODERICH HAGEGER J \& \textit{ANGULAR MODULATION OF MULTIPLE IONIZATION IN NITROGEN} \textit{PHYS REV A} VOL 1 1170 (1961)

1066 BORBERNA M \& \textit{NEGATIVE ION FORMATION IN DIAMM} \textit{PHYS REV A} VOL 1 1170 (1961)

1067 BORBERNA M \& \textit{SOME IMPLICATIONS OF THE FIFTH INTERNATIONAL CONFERENCE ON IONIZATION IN GASES: ELECTRON IMPACT} \textit{PHYS REV A} VOL 1 1170 (1961)

1068 BORBERNA M \& \textit{SOME IMPLICATIONS OF THE FIFTH INTERNATIONAL CONFERENCE ON IONIZATION IN GASES: ELECTRON IMPACT} \textit{PHYS REV A} VOL 1 1170 (1961)

1069 BORBERNA M \& \textit{SOME IMPLICATIONS OF THE FIFTH INTERNATIONAL CONFERENCE ON IONIZATION IN GASES: ELECTRON IMPACT} \textit{PHYS REV A} VOL 1 1170 (1961)

1070 BORBERNA M \& \textit{SOME IMPLICATIONS OF THE FIFTH INTERNATIONAL CONFERENCE ON IONIZATION IN GASES: ELECTRON IMPACT} \textit{PHYS REV A} VOL 1 1170 (1961)

1071 BORBERNA M \& \textit{THE CROSS-SECTION OF THE ELECTRON-INDUCED SERAP TRANSITION IN CESIUM} \textit{PHYS REV A} VOL 1 1170 (1961)

1072 BORBERNA M \& \textit{SOME IMPLICATIONS OF THE FIFTH INTERNATIONAL CONFERENCE ON IONIZATION IN GASES: ELECTRON IMPACT} \textit{PHYS REV A} VOL 1 1170 (1961)

1073 BORBERNA M \& \textit{SOME IMPLICATIONS OF THE FIFTH INTERNATIONAL CONFERENCE ON IONIZATION IN GASES: ELECTRON IMPACT} \textit{PHYS REV A} VOL 1 1170 (1961)
1587. SALMON A.
CALCUL DES SECTIONS DE CHOC DE LA COLLISION ELECTRON-SODIUM
COMPT. REND. VOL. 262, 2645 a (1966).

1588. DEHARDOY H.
UNEQUAL SIZES FOR LOW-ENERGY ELECTRONS IN H2.
PROJEX UNO MESEPTA Z NATURFORSCH., VOL. 20a, 989 a (1965).

1589. TAKAYANAGI K.
BEHAVIOR OF LOW-ELECTRONS IN ATMOSPHERIC GASES. PART 1. GENERAL
CONSIDERATION OF ROTATIONAL EXCITATION AND APPLICATION TO THE
OXYGEN MOLECULE.
J. PHYSICS SPACE RES., JAPAN, VOL. 17, 7 a (1965).

1590. WILLIAMSON H.
A NEW COLLISION CROSS SECTION FOR VELLUS.
PHD. THESIS, UNIVERSITY OF TEXAS, AUSTIN FEBA 1860, 63 PAGES.
UNIVERSITY MICROFILMS, INC., ANN ARBOR, MICHIGAN, NO. 62-5776.

1591. KOLLOV S. I.
DETERMINATION OF COLLISION CROSS-SECTIONS OF ELECTRONS WITH ATOMS
AND MOLECULES OF CERTAIN GASES BY A DOUBLE-BEAM RADIO FREQUENCY
SPECTROSCOPY TECHNIQUE.
TRANS. VOL. 15, 972 a (1965).

1592. SCHULZ E. J.
FORMATION OF NO BY ELECTRON IMPACT ON H2 AT LOW ENERGIES
PHYS. REV. LETTERS, VOL. 21, 794 a (1967).

1593. KLEINPERA M.
ON THE NARROW RESONANCE IN THE SCATTERING OF ELECTRONS BY ATOMIC
HYDROGEN.
PHYS. LETTERS, VOL. 38, 24 a (1965).

1594. JUSINS L.
APPROXIMATE CROSS SECTIONS FOR OPTICALLY ALLOWED EXCITATION
OF ATOMS BY ELECTRONS.
PHYSICA, VOL. 51, 135 a (1967).

1595. DICKEL, HABERMANN, ETTLEFSD, H.
ELEKTRONENMECHANISCHER RESONANZBEREICH UNTERM 50 E V DURCH
SPUREN AN ELEKTRONEN IM METALL.

1596. SEGER J.
ENERGY LOSSES OF FAST ELECTRONS IN NITROGEN.
J. CHEM. PHYS., VOL. 43, 4559 a (1965).
APPENDIX

JOURNALS SEARCHED REGULARLY
FOR ELECTRON SCATTERING DATA

Annalen der Physik
Annals of Physics (New York)
Astrophysical Journal, The
Australian Journal of Physics
Bell System Technical Journal, The
British Journal of Applied Physics
Bulletin of the Academy of Science of the USSR, Physical Series (English Translation of Izvestiya Akademii Nauk SSSR, Seriya Fizicheskaya)
Canadian Journal of Chemistry
Canadian Journal of Physics
Chemistry Abstracts
Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences
Current Contents
Dissertation Abstracts
Indian Journal of Physics and Proceedings of the Indian Association for the Cultivation of Science
Journal of the American Chemical Society, The
Journal of Applied Physics
Journal of Atmospheric and Terrestrial Physics
Journal of Chemical Physics, The
Journal of Electronics and Control, The
Journal of Geophysical Research
Journal of the Optical Society of America
Journal of Physical Chemistry, The
Journal de Physique et le Radium, Le
Journal of Quantitative Spectroscopy and Radiative Transfer
Monthly Notices of the Royal Astronomical Society
Nature
Naturwissenschaften, Die
Nuclear Fusion
Nuovo Cimento, Il
Nuovo Cimento Supplemento, Il
Optics and Spectroscopy (USSR) (English Translation of Optika i Spektroskopiya)
Philosophical Magazine, The
Philosophical Transactions of the Royal Society of London, Series A: Mathematical and Physical Sciences
Physica
Physical Review, The
Physical Review Letters
Physics of Fluids, The
Physics Letters
Proceedings of the Cambridge Philosophical Society (Mathematical and Physical Sciences)
Proceedings of the National Academy of Sciences of the United States of America
Proceedings of the Physical Society (London)
Proceedings of the Royal Society (London), Series A: Mathematical and Physical Sciences
Progress of Theoretical Physics (Kyoto)
Reviews of Modern Physics

Review of Scientific Instruments, The

Science Abstracts, Section A: Physics Abstracts

Soviet Physics JETP (English Translation of Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki)

Soviet Physics - Technical Physics (English Translation of Zhurnal Tekhnicheskoi Fiziki)

Soviet Physics "Doklady" (English Translation of the "Physics Section" of Doklady Akademiya Nauk SSSR)

Zeitschrift fuer Naturforschung, Pt. a: Astrophysik, Physik und Physikalische Chemie

Zeitschrift fuer Physik
ERRATA

JILA Information Center Report No. 2

PAGE 1, COLUMN 1

Sub-heading TOTAL ELASTIC SCATTERING THEORETICAL:

The following reference was garbled in the printout:

0151 BURKE, 62

The following three references were inadvertently suppressed:

0162 BURKE, 62
0393 BOYET, 54
0398 MASSEY, 50