JILA REPORT #88

RECENT WORK ON STELLAR INTERIORS:
A BIBLIOGRAPHY OF MATERIAL PUBLISHED BETWEEN
1958 AND MID-1966

prepared by

Edward Langer, Margaret Herz, and J. P. Cox

NOTICE

This report is NOT being published in any other form.

University of Colorado
Boulder, Colorado
December 9, 1966
This work was supported in part by the Advanced Research Projects Agency (PROJECT DEFENDER), monitored by the U.S. Army Research Office-Durham, under Contract DA-31-124-ARO-D-139, through the University of Colorado, and in part by National Science Foundation Grant No. GP4859, through the University of Colorado. One of us, Edward Langer, is grateful to the National Aeronautics and Space Administration for support by a NASA Traineeship.
RECENT WORK ON STELLAR INTERIORS:

A BIBLIOGRAPHY OF MATERIAL PUBLISHED BETWEEN
1958 AND MID-1966

prepared by

Edward Langer, Margaret Herz, and J. P. Cox
Joint Institute for Laboratory Astrophysics
INTRODUCTION

This bibliography of recently published material on stellar interiors and closely related subjects has been compiled in the hope that it might be useful to students and workers in the field. Since the review article on stellar evolution by Burbidge and Burbidge* contains a comprehensive bibliography on the relevant literature published before 1958, this report lists only articles (834) published between 1958 and mid-1966. Section I is the only exception. It contains most of the significant books (in the English language) relevant to the general problem of stellar interiors published to date.

The articles are listed alphabetically by author (by the first author in cases of multiple authorship, and by date in cases of several articles by the same first author) in several different categories. Each paper (with the exception of the paper by Hayashi, Hoshi, and Sugimoto (1962)) is entered only once despite the fact that many entries might have been properly fitted into more than one category. This makes the report shorter—and, unfortunately, a few things more difficult to find.

The mass, initial composition, construction technique, equation(s) of state, modes of energy transport, and kinds of energy sources included are summarized briefly for each stellar interior model that was actually constructed. A table of these models, arranged by mass and composition,

appears in the appendix. In general, the notation employed here follows conventional usage in stellar interior studies.* In particular, the X, Y, and Z that appear in the stellar model summaries are the usual fractional mass abundances of hydrogen, helium, and "heavy elements," respectively. Evolving models are designated by an (E). Only the title of the paper and a reference to the journal in which it appears is included for all other entries.

A list of abbreviations used in this report for the titles of journals is given immediately following this introduction.

The present bibliography was not intended to be complete, and some of the less readily available journals have not been searched. Essentially all of the articles entered in this report are written in English, French or German. We hope, however, that this compilation is comprehensive enough to be useful.

We wish to thank Drs. M. S. Vardya and T. N. Divine for their comments and for suggesting a number of ways of preparing a more useful bibliography.

*See, for example, Schwarzschild, The Structure and Evolution of the Stars, 1958.
ABBREVIATIONS

A. J.
Ann. d'Phys.
Ap. J.
B. A. N.
Doklady
Geophysical J. R. A. S.
JETP
J. Phys. Soc. Japan
Mém. Soc. R. Sci. Liège
Mem. of the R. A. S.

Advances in Astronomy and Astrophysics,
Astronomical Journal
Annales d'Astrophysique
Annales de Physique
Annals of Physics
Annual Review of Astronomy and
Astrophysics
Annual Review of Nuclear Science
Astrophysical Journal
Astrophysical Journal Supplement
Australian Journal of Physics
Bulletin of the Astronomical Institutes
do the Netherlands
Bulletin of the American Physical Society
Canadian Journal of Physics
Soviet Physics Doklady
Geophysical Journal of the Royal
Astronomical Society
Soviet Physics JETP
Journal of the Physics Society of
Japan
Mémoires de la Société Royale de
Science à Liège
Memoirs of the Royal Astronomical Society
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. N.</td>
<td>Monthly Notices of the Royal Astronomical Society</td>
</tr>
<tr>
<td>M. N. ASSA</td>
<td>Monthly Notices of the Astronomical Society of South Africa</td>
</tr>
<tr>
<td>Nuclear Phys.</td>
<td>Nuclear Physics</td>
</tr>
<tr>
<td>Observ.</td>
<td>The Observatory</td>
</tr>
<tr>
<td>Phys. Rev.</td>
<td>Physical Review</td>
</tr>
<tr>
<td>Prog. Theor. Phys.</td>
<td>Progress of Theoretical Physics</td>
</tr>
<tr>
<td>Rev. Mod. Phys.</td>
<td>Review of Modern Physics</td>
</tr>
<tr>
<td>Soviet Astr.</td>
<td>Soviet Astronomy</td>
</tr>
<tr>
<td>UCRL</td>
<td>University of California Lawrence Radiation Laboratory</td>
</tr>
<tr>
<td>Uspekhi</td>
<td>Soviet Physics Uspekhi</td>
</tr>
<tr>
<td>Contents</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>4</td>
</tr>
<tr>
<td>I. Texts and Other General Material</td>
<td>8</td>
</tr>
<tr>
<td>II. Astronomical Observations</td>
<td>10</td>
</tr>
<tr>
<td>III. Physical Conditions and Physical Processes in Stellar Interiors</td>
<td>20</td>
</tr>
<tr>
<td>A. Nuclear Processes in Stellar Interiors</td>
<td>20</td>
</tr>
<tr>
<td>B. Radiative Energy Transport and Radiative Opacities</td>
<td>28</td>
</tr>
<tr>
<td>C. Convection in Stellar Interiors</td>
<td>30</td>
</tr>
<tr>
<td>D. Matter at High (and Very High) Densities, Temperatures</td>
<td>32</td>
</tr>
<tr>
<td>E. Stellar Magnetic Fields and Stellar Rotation</td>
<td>34</td>
</tr>
<tr>
<td>IV. Proto-stars and Evolution prior to Nuclear Burning</td>
<td>39</td>
</tr>
<tr>
<td>V. Equilibrium Star Models and Evolution during Nuclear Burning</td>
<td>42</td>
</tr>
<tr>
<td>A. Techniques of Model Construction</td>
<td>42</td>
</tr>
<tr>
<td>B. Stellar Models</td>
<td>43</td>
</tr>
<tr>
<td>C. Commentary on Stellar Models and Stellar Evolution</td>
<td>73</td>
</tr>
<tr>
<td>VI. Evolutionary Stages Beyond Nuclear Burning</td>
<td>79</td>
</tr>
<tr>
<td>A. White Dwarfs</td>
<td>79</td>
</tr>
<tr>
<td>B. Neutron Stars</td>
<td>80</td>
</tr>
<tr>
<td>C. Collapsed Stars</td>
<td>81</td>
</tr>
</tbody>
</table>
Contents

VII. Rapidly Changing Stars
 A. Stellar Stability
 B. Variable Stars
 C. Novae and Supernovae

Appendix: Table of Stellar Models

Author Index
I. TEXTS AND OTHER GENERAL MATERIAL

12. **Stellar Interiors**, W. K. Bonsack, ASP Leaflet #374. 1960

20. The Ninth Herstmonceaux Conference (Rotating Stars) Observ. 85, 138. 1965

22. Relativistic Astrophysics I, Ya B. Zel'dovich and I. D. Novikov, Uspekhi, 7, 763. 1965

II. ASTRONOMICAL OBSERVATIONS

 Stellar Rotation in Galactic Clusters.

 Interscience Publishers, Inc.

 The Helium to Hydrogen Ratio in the Small Magellanic Cloud.

 A. G. W. Cameron eds., 431.
 Composition Differences between the Galaxy and the
 Magellanic Clouds.

 299.
 Studies of Stellar Rotation III. A Redetermination of Rotational
 Velocities in the Pleiades.

 The Globular Cluster M5.

 Magnetic Fields of the A-Type Stars.

 The 34-Kilogauss Magnetic Field of HD 215441.

 The Effective Temperatures and Gravities of \(A_p \), \(A_m \) and Normal
 A-Type Stars.

36. Bidelman, W. P. (1966) In Stellar Evolution, R. F. Stein and
 A. G. W. Cameron eds., 437.
 Element Abundances in Peculiar A Stars.

 Nuclear Composition and Rigidity Spectra of Solar Cosmic Rays.

 The Correlation between Metal Deficiency of Stars and Their Distance
 from the Galactic Plane.

 On the Distribution of Stellar Rotational Velocities.
 The Abundance of Lithium and Convective Mixing in Stars of
 Type K.

 The Abundance of Lithium in T-Tauri Stars and Related Objects
 (see also Ap. J., 133, 340).

 The Empirical Mass Luminosity Relation for Spectrophotometric
 Binary Systems.

 11, 307.

 A Superluminous B-Type Star in the Large Magellanic Cloud and
 its Galactic Counterpart.

 999.
 The Compositions of Main-Sequence Stars of Types A-F in the
 Hyades Cluster.

 The Early A Stars I. Rotation and Metallicism.

 The Eclipsing Variable δ Pectoris.

 Problems of Nucleosynthesis in the Subdwarfs Gamma Pavonis and
 Zeta Reticuli.

 On the Possibility of Determining the Helium Content of the
 Subdwarf μ Cassiopeiae.

 The Triple System of η Geminorum.

51. Deutsch, A. J. (1966) in Stellar Evolution, R. F. Stein and
 A. G. W. Cameron eds., 377.
 Mass Loss from Red Giants.

 On the Existence of Subdwarfs in the \((M_{\text{bol}}, \log T_{\text{e}})\) Diagram.

 Stellar Groups V. Luminosities, Motions, and Masses of the Late-
 Type Subgiants.
 Stellar Groups VII. The Structure of the Hyades Group.

 On the Existence of Subdwarfs in the \((M_{bol} - \log T_e)\) Plane. II.

 The Empirical Mass Luminosity Relation.

 Three-Color Photometry of the Components in 228 Wide Double and
 Multiple Systems.

 Luminosities, Colors, and Motions of the Brightest A-Type Stars.

 New Photometric Observations of Stars in the Old Galactic
 Cluster M67.

 Spectra, Colors, Luminosities, and Motions of the White Dwarfs.

 Masses, Luminosities, Colors, and Space Motions of 228 Visual
 Binaries.

 Cameron eds. 439.
 Stellar Groups and the Mass Luminosity Relation.

63. Feast, M. W., Thackery, A. D., and Wesselink, A. J. (1960) M. N., 121,
 337.
 The Brightest Stars in the Magellanic Clouds.

64. Fernie, J. D. (1964) A. J., 69, 258.
 The Period-Luminosity Relation for W Virginis Stars.

 Coupled Oscillations in VX Hydreae.

 The Solar Helium Abundance.

 The Abundances of the Elements in the Solar Atmosphere.

 The Central Stars of Planetary Nebulæ of Low Surface Brightness.
The Ionization Structure of Planetary Nebulae IV. Optical
Thickness of the Nebulae and Temperatures of Central Stars.

97.
Metal Abundances in the Subgiant ζ Herculis and Three Other dG
Stars.

Spectral Classification of Faint Members of the Hyades and
Plerides and the Dating Problem in Galactic Clusters.

Search for Residual Traces of the T-Tauri Phenomenon in
Normal Stars: Lithium in G-Type Dwarfs.

Apparent Lithium Isotope Ratios in F5-G8 Dwarfs.

Lithium Abundances in F5-G8 Dwarfs.

Cameron eds., 411.
Lithium in Main-Sequence Stars.

The Spectrum of Helium Stars II.

75.
The Color-Magnitude Diagram of the Hyades Cluster.

Infrared Photometry of M-Dwarf Stars.

Atmosphärenstruktur und Chemische Zusammensetzung des
Schnellläufers HD 161817.

81. Kraft, R. P., Camp, D. C., Fernie, J. D., Fujita, C. and Hughes, W. T.
Line Profiles for Classical Cepheid SV Vulpeculae and for
Supergiants Beta Aquarii and 9 Pegasi.
 Color Excesses for Supergiants and Classical Cepheids V. The
 Period-Color and Period-Luminosity Relations: A Revision.

 Color Excesses for Supergiants and Classical Cepheids VI. On the
 Intrinsic Colors and the Hess Diagram of Late-Type Supergiants.

 Cataclysmic Variables as Binary Systems.

 Studies of Stellar Rotation I. Comparison of Rotational Velocities
 in the Hyades and Coma Clusters.

 Studies of Stellar Rotation II. The Effect of Rotation on the
 Colors and Magnitudes of A- and F-Type Stars in the Hyades.

 Binary Stars among Cataclysmic Variables V. Photoelectric and
 Spectroscopic Observations of the Ultra Short-Period Binary
 Nova WZ Sagittae.

 On the Color-Magnitude Diagram of NGC 6940.

 Lithium in the Solar Disk Spectrum?
 (Letters to the Editor).

 Frequency of Ultraviolet Excuses among Late-Type Dwarfs in the
 Solar Neighborhood.

 Stellar Rotation and the Beta Canis Majoris Stars.

 Multicolor Photometry of Carbon Stars.

 Infrared Photometry of T-Tauri Stars and Related Objects.
 (Letter to the Editor).

 142, 790.
 The Lithium Isotope Ratio in Two Hyades F Stars.

 Beryllium in F and G-Type Dwarfs.
 (Abst. in A. J., 70, 684).
Studies in Spectral Classification I. The H-R Diagram of the
Hyades.

Studies in Spectral Classification II. The H-R Diagram of NGC 6530.

A Distance Scale for Planetary Nebulae Based on Emission-Line
Fluxes.

The Evolution of the Central Stars of Planetary Nebulae.

An Analysis of the Absolute Energy Distribution in the Spectrum
of δ Cephei.

R. F. Stein and A. G. W. Cameron, eds., 399.
The Analysis of Field Horizontal-Branch and RR Lyrae Stars.

129.
The Helium and Heavy-Element Content of Gaseous Nebulae and the
Sun.

103. Pagel, B. E. J. in Stellar Evolution, R. F. Stein and A. G. W. Cameron
eds., 431.
Abundance Differences Among Population I Stars.

A Revision of the Hertzsprung-Russell Diagram according to the
Data on Nearby Stars.

105. Parker, R., Greenstein, J. S., Helfer, H. L. and Wallerstein, G.
Abundances in G-Dwarf Stars IV. A Redetermination of the
Abundances in G-Dwarfs in the Hyades.

Spectroscopic Observations of VV Cephei.

Rediscussion of Eclipsing Binaries VII. WZ Ophiuchi and Other
Solar Type Stars.

The Masses of the Components of the Binary System γ Leonis.
 On the Existance of Subdwarfs in the (M_bol - Log T_e) Diagram.

 Color-Magnitude Diagram for the Disk Globular Cluster
 NGC 6356 Compared with Halo Clusters.

 Photometric Data for the Old Galactic Cluster NGC 188.

 Three-Color Photometry of the Metal-Rich Globular Cluster
 NGC 6171.

 Three-Color Photometry of the Bright Stars in the Globular
 Cluster M92.

 The Color-Magnitude Diagram of the Metal-Rich Globular Cluster
 NGC 6712.

 894.
 Photometry of the Variable Stars in the Globular Cluster NGC
 6712.

 A Possible Relationship between the Peculiar A Stars and the
 λ Boötis Stars.
 (Note).

 An Abundance Analysis of R Coronae Borealis.

 The Horizontal-Branch Stars of the Globular Cluster NGC 6397.

 The Ionization Structure of Planetary Nebulae, V. Radii,
 Luminosities, and Problems of Evolution.

 Bright Stars of Galactic Cluster NGC 188.

 On the Colors of T-Tauri Stars and Related Objects.

 Photometry and Spectroscopy of Long-Period Variables.

 The Problem of Beta Lyrae II. The Masses and the Shapes.

 New Cl3 Indicators in Stellar Spectra.
III. PHYSICAL CONDITIONS AND PHYSICAL PROCESSES IN STELLAR INTERIORS

A. Nuclear Processes in Stellar Interiors

 Non-Resonant Nuclear Reactions at Stellar Temperatures (Note).

 Neutrino Radioactivity and Its Role in Astrophysical Processes.

 The Origin of the Chemical Elements.

 Abundancies of the Rare-Earth Nuclei Produced by Rapid Neutron Capture in Supernovae.

 Photoneutrino Emission and Neutron Production in the $\gamma + p \rightarrow n + \gamma + e^+$ Process in Stars.

 Experimental Study of the $^17O(p,\alpha)^14N$ Reaction and a Calculation of the Rate of this Reaction in the CNO Cycle inStars.

 Energy Levels in 14N Pertaining to the Ratio $^{12}C/^{13}C$ Produced in the CNO Cycle.

 Nuclear Astrophysics.

 Nuclear Astrophysics.

 A Revised Table of Abundances of the Elements.

 Carbon Thermonuclear Reactions and the Formation of Heavy Elements (Ref. in A. J., 64, 125).

 Photobeta Reactions in Stellar Interiors.

 Neon and Oxygen Thermonuclear Reactions.

 Pycnonuclear Reactions and Nova Explosions. (Ref. in A. J., 64, 325).
The Mean Lifetimes of Carbon, Nitrogen, and Oxygen Nuclei in
the CNO Cycle.

Combined Hydrogen and Helium Burning in the Core of a Population
II Red-Giant Star.

380.
Computer Results on Combined Hydrogen and Helium Burning.

Approach to Equilibrium in the CNO Bi-Cycle.

The Fast CN Cycle (Abstract).

Neutrino Emission from Black Body Radiation at High Stellar
Temperatures.

Neutrino Emission Processes in Old Stars (Abstract).

Annihilation Process of Neutrino Production in Stars.

Neutrino Emission Processes, Stellar Evolution, and Supernovae I.

Neutrino Emission Processes, Stellar Evolution, and Supernovae II.

Emission of Photoneutrinos and Pair Annihilation Neutrinos from
Stars.

Neutrino Emission and a Possible Model for Pre-White Dwarf Stars
(Abstract).

Neutrino Processes and Red Giants.
(Ref. in A. J., 68, 70).

Surface X-Ray Emission from Neutron Stars.

Cameron, eds., 175.
Neutrinos in Astrophysics.

(p,n) and (p,2n) Reactions and the Origin of Bypassed Nuclei.

Emission of Neutrino Pairs by Electrons and the Role Played by
it in Stars.

The Reaction $\gamma + \gamma \rightarrow \nu + \bar{\nu}$.

Study of the Properties of the 4.97 MeV Level in Ne20 using the
F$^{19}(p,\gamma)$Ne20 Reaction.

Production of Neon in Stars.

Suppl. #16, 169.
Rapid Thermonuclear Reactions in Supernovae Explosion.

Stellar Synthesis of the α-Particle Nuclei Heavier than Ne20.

Role of the $\gamma + \gamma \rightarrow \gamma + \nu + \bar{\nu}$ Process in Neutrino Emission by
Stars.

The He$^{3}(\alpha,\gamma)$Be7 and He$^{3}(\alpha,\gamma)$Li7 Reactions and their Astrophysical
Importance.

Plasma Neutrino Emission From a Hot, Dense Electron Gas.
(Errata Ap. J., 143, 284 (1966)).

Stellar Synthesis of the Proton-Rich Heavy Elements.

On Spontaneous Fission Rates.

Proton Capture in Be7.

The $p + p \rightarrow d + e^{+} + \nu$ Reaction Rates in the Crystalline White-
Dwarf Interior.

 \(\text{He}^3(\alpha,\gamma)\text{Be}^7 \) Reaction.

 Termination of the Proton-Proton Chain in Stellar Interiors.

 Sur la reaction 3\(\alpha \) dans une etoile pulsante.

 Exclusion Principle Inhibition of Beta Decay in Stellar Interiors.

 Transport of s-Process Elements to the Surfaces of Stars.

 Some Neutrino Pair Production Processes in Stars.

 The Universal Fermi Interaction and Astrophysics.

 The Neutrino and its Role in Astrophysics.

 Nuclear Reactions in Stars.

 Carbon, Oxygen, and Neon Thermonuclear Reaction Rates.

 The Influence of Neutrino Processes on the Late Stages of Stellar Evolution.

 Positron-Capture Processes as a Possible Source of the p Elements.

The Effects of Neutrino Emission on Element Abundance in Stars.

Direct-Capture Model for the He$^{4}(\alpha,\gamma)$Be7 and T(\alpha,\gamma)Li7 Reactions.

Thermonuclear Reactions in Stars Involving Heavy Ions up to the Formation of Iron Nuclei.

Synthesis of Fe-Group Elements by the Rapid Nuclear Processes.

Synthesis of Elements in the Range A = 60 \sim 74 by the Rapid Nuclear Processes.

Synthesis of 4N- and Their Neighboring Nuclei by the Rapid Nuclear Processes.

Composition of Matter in Nuclear Statistical Equilibrium at High Densities.

Rates of Nuclear Reactions in Solid-Like Stars.

B. Radiative Energy Transport and Radiative Opacities

The Contribution of Absorption Lines to the Opacity of Matter in Stellar Interiors.

A Maximum Opacity Theorem.

The Continuous Opacity and Equations of State of Light Elements at Low Densities.

A General Formula for the Calculation of Atomic Photo-Ionization Cross Sections.

On the Continuous Absorption Coefficient of the Negative Hydrogen Ion V.
The Opacity Due to Compton Scattering At Relativistic Temperatures in a Semidegenerate Electron Gas.

Effects of Bound-Bound Absorption on Stellar Opacities.

Radiative and Conductive Opacities for Eleven Astrophysical Mixtures.

Stellar Absorption Coefficients and Opacities.

Radiative Absorption and Opacity Calculations.

Continuous State of H− and the Free-Free Absorption Coefficient.

Average Recombination Gaunt Factors.

The Free-Free Transitions of the Negative Hydrogen Ion in the Exchange Approximation.

Electron Radiative Transitions in a Coulomb Field.

Zur Frage der Beeinflussung des Strohungstransportes durch kollektive Effekte.

Radiative Thermal Conductivity of a Fully Ionized Plasma.

Relativistic Transport Theory.

Free-Free Absorption Coefficient of the Negative Hydrogen Ion.
 Computer Programs for Calculating Opacities.

 Continuous Absorption Coefficients for Non-Hydrogenic Atoms.

 The Opacity at High Temperatures due to Compton Scattering.

 Radiation Relaxation Times at High Temperatures.

 Note on the Opacity for the Interior of Main Sequence Stars.

 Negative Chlorine Ion and M-Spectral Type Stars.

 The Calculation of Opacities for Stellar Interiors.

C. Convection in Stellar Interiors

 Lifetime of Solar Granules.
 Abstract.

 The Depth of the Outer Convection Zone in Main-Sequence Stars.

 The Adiabatic Temperature-Gradient and the Specific
 Heat C in Outer Hydrogen-Helium Convection Zones.

 Beiträge Zur Theorie der Sonnengranulation.

 Über die Wasserstoffkonvektionzone in Sternen verschiedener
 Effectivtemperaturen und Leuchtkräfte.

 Unstable Modes in the Solar Hydrogen Convection Zone.

 The Mixing of Matter in the Layer Below the Outer Solar Convection
 Zone.
Hydrodynamics and Hydromagnetic Stability.

The Effect of a Small Rotation on the Convective Stability
of Gaseous Masses.

La Generation d'Énergie dans un Noyau Convectif.

The Effect of the Variation of the Super-Adiabatic-Temperature
Gradient on the Convective Motion.

Differential Rotation in Stars with Convective Envelopes.

Turbulent Thermal Convection at Arbitrary Prandtl Number.

Convection Zones in Stellar Atmospheres.

On the Onset of Convective Instability.
(Note).

On the Spectrum of Turbulent Convection.

A Note on the Boundary of Convective Zones in Stars.

Theory of Thermal Convection.

Convection in Stars.

The Convective Instability of a Radiating Fluid Layer.

A Generalization of the Mixing Length Theory of Turbulent
Convection.

The Effect of Radiative Transfer on Convective Growth Rates.
Energy Transport by Turbulent Convection.

Validity in General Relativity of the Schwarzschild Criterion
for Convection.

Adiabatic Exponents of a Mixture of Radiation and Electrons.

On the Convective Stability in a Region of Variable Mean
Molecular Weight.

Hydrogen-Helium Adiabats for Late Type Stars.

Molecules and Late Type Stellar Models.

D. Matter at High (and Very High) Densities, Temperatures

The Degenerate Superdense Gas of Elementary Particles.

On Equilibrium Configurations of Superdense Degenerate Gas
Masses.

Internal Structure of Hyperon Configurations of Stellar Masses.

A Partially Degenerate, Relativistic, Ideal Electron Gas.

Remarks on Hyperdense Matter and the Final State of Supernovae.

Equations of State of Matter, at Supernuclear Density.
(Note).

de l'Univers, R. Stoops, ed., Buxelles, Solvay Conference Reports,
1958, 124.
Matter at High Density. End Point of Thermonuclear Evolution.

On the Non-Relativistic Theory of Superdense Stellar Configurations.

On the Possible Phase States of Matter at Extremely High Densities.

Basic Parameters of Baryon Configurations.

Matter at High Densities.

Energy and Pressure of a Zero-Temperature Plasma.

Nuclear Size Correction to the Thomas-Fermi Equation of State and
Its Effect on the Mass Limit of Completely Degenerate Configurations
(Note).

The Internal State of a Gravitating Gas.

Thermodynamics of a Solar Composition Gaseous Mixture.

Neutrinos in Thermodynamical Equilibrium with Electrons and
Protons, at High Temperatures.

Remarks on Statistics of Particles and Anti-Particles at High
Temperatures.

The Equation of State at Ultrahigh Densities and Its
Relativistic Limitations.

E. Stellar Magnetic Fields and Stellar Rotation

On the Origin of Cosmic Magnetic Fields.

227.
The Estimation of Stellar Magnetic Fields by Using the Virial
Theorem.

 Note on Magnetic Instabilities in Stellar Structure.

 Magnetic Stars.

 Problems Concerning Pleione.

 Rotational Behavior of the Main Sequence Stars and its

 On Highly Rotating Polytropes.

 On Highly Rotating Polytropes IV.

 The Structure and Stability of Rotating Gas Masses.

 Untersuchung über rotierende Sterne IV. Der Bewegungszustand
 der Wasserstoffionisationzone bei früher Spektraltypen.

 Differential Rotation in Stars with Convective Envelopes.

 Magnetic Field Structure in the Convective Zone of the Sun.

 A Variational Principle Governing the Equilibrium of a Uniformly
 Rotating Configuration in the Post-Newtonian Approximation.
 (Letter to the editor).

 Instability of the Equipartition State in a Fluid Sphere.

 On Highly Rotating Polytropes V.

 Stellar and Solar Magnetic Fields.

 A Note on Equatorial Acceleration in a Magnetic Star.
 On the Thermal Generation of Toroidal Magnetic Fields in
 Rotating Stars.

 Meridian Circulation in Stars.

 The Structure of Rapidly Rotating Polytropes.

 Magnetic Fields in Stellar Bodies, I. Magnetic Fields in
 Polytropes.

 Magnetic Fields in Stellar Bodies, II. Magnetic Fields in Upper
 Main Sequence Stars.

400. Porfir'ev, V. V. (1962) Soviet Astr., 6, 555.
 On the Stability of Stellar Rotation.

 The Stability of Stellar Rotation, I.

 The Pulsation of Rotating Stars.

 On the Superpotential and Supermatrix of a Heterogeneous Ellipsoid.

 On the Stability of a Maclaurin Spheroid of Small Viscosity.

 On Highly Rotating Polytropes I.

 On Highly Rotating Polytropes II.

 On the Thermal Instability of a Highly Rotating Fluid Sphere.

 Steady Meridian Circulation in Rotating Magnetic Stars.

 On Stellar Rotation, I. The Rotation of Upper Main Sequence
 Stars.

 On Stellar Rotation, II. The Rotation of Lower Main Sequence
 Stars.
On Models of Non-Spherical Stars, I. The Theory of Rapidly Rotating Main Sequence Stars.

On Stellar Rotation, III. Thermally Generated Magnetic Fields.

Magnetostatic Equilibrium of Polytropes.

Thermoelectric Phenomena on the Sun, II. Thermal Currents in the Central Parts of the Sun.

Stellar Toroidal Magnetic Fields.

Polytropic Models with Fast, Non-Uniform Rotation.

The Rotation of Main Sequence Stars.

Hydromagnetic Equilibria.

On the Shape of Magnetic Stars.

Hydromagnetic Equilibrium IV Axisymmetric Compressible Models.

A Magnetostatic Model for a Compressible Star.

On the Equilibrium and Oscillations of Magnetic Fluid Spheres.
IV. PROTO-STARS AND EVOLUTION PRIOR TO NUCLEAR BURNING

Contraction of a Protostar up to the Stage of Quasi-Static Equilibrium.

Pre-Main Sequence Stages of Stars.

Thermal and Dynamical Properties of a Protostar and its
Contraction to the Stage of Quasi-Static Equilibrium.

Cameron, eds., 193.
On Contracting Stars.

442. Herbig, G. H. (1962), Advances in Astronomy and Astrophysics,
The Properties and Problems of T-Tauri Stars and Related Objects.

The Distribution of Pre-Main Sequence Stars in the H-R Diagram.

Stellar Evolution, I. The Approach to the Main Sequence.

Stellar Formation Rates in Young Clusters.

Mass Loss from T-Tauri Stars.

Cameron, eds., 373.
T-Tauri Mass Ejection.

M-R-L Relation and Contraction Time Scale for Convective
Stars of Low Mass.
(Abstract).

The Helmholtz-Kelvin Time Scale for Stars of Very Low Mass.

The Early Evolutionary Phases of Stars of Small Mass.
Models of Massive Stars in Homologous Gravitational Contraction.

Angular Momentum of Eclipsing Binaries and the Fission Theory of Their Origin.

KO Aquilae as an Example of Systems with Undersize Subgiant Secondaries in Pre-Main-Sequence Contraction.

A Theory of the Role of Magnetic Activity during Star Formation.

Role of Magnetic Activity during Stellar Formation.

Schematic Pre-Main-Sequence Evolution.

V. EQUILIBRIUM STAR MODELS AND EVOLUTION DURING NUCLEAR BURNING

A. Techniques of Model Construction

Time-Dependent Method for Computation of Radiation Diffusion and Hydrodynamics.

A New Method of Automatic Computation of Stellar Evolution.

Sternentwicklung I. Ein Programm Zur Lösung der Zeithängigen Aufbangleichungen.

An Application of Henyey's Approach to the Integration of the Equations of Stellar Structure.

Homologous Solutions of the Equations of Stellar Structure.

Some Remarks Concerning the Integral Theorems on the Internal Structure of Stars.
B. Stellar Models

Initial Composition: $X = .596$, $Z = .02$.
Mass: 2.0, 2.5, 3.5 and 5.0 M_\odot.
Construction Technique: Fitting.
Equation of State: Ideal gas; radiation pressure (Model I).
These models are compared to models in which radiation pressure is ignored (Model II).
Energy Transport: Completely convective core; radiative envelope (electron scattering or bound-free and free-free Kramers type opacity).
Energy Sources: pp chain, CNO cycle.
 Structure and Evolution of Medium Mass Stars IV. The Early
 Evolution of a Star of 2 Solar Masses.

 Initial Composition: \(X = .596, Y = .384, Z = .02, X_{CN} = .20 \ Z. \)
 Mass: \(2(E) M_{\odot} \).
 Construction Technique: Fitting.
 Equation of State: Ideal gas, radiation pressure, electron
degeneracy.
 Energy Transport: Convective inner core, radiative outer
core, radiative envelope (Cox Tables),
and a surface convective region where
H I, He I and He II are partially ionized.
 Energy Sources: pp chain, CNO cycle, gravitational
potential energy changes.

 Structure and Evolution of Medium Mass Stars I. Main-Sequence
 Model of 2.5 Solar Masses.

 Initial Composition: \(X = .70, Y = .28, Z = .02, X_{CN} = .19 \ Z. \)
 Mass: \(2.5 M_{\odot} \).
 Construction Technique: Fitting.
 Equation of State: Ideal Gas.
 Energy Transport: Convective core; radiative envelope-Kramers
type opacity plus electron scattering
(as in Iben, Ehrman 1962).
 Energy Sources: pp chain, CN cycle; (interpolative fit to
Wrubel 1958) sources in the outer radiative
zone are included.

 A Model for a Homogeneous Star of Moderate Mass.

 Initial Composition: \(X = .73, Y = .25, Z = .02. \)
 Mass: \(1.48 M_{\odot} \).
 Construction Technique: Fitting.
 Equation of State: Ideal gas throughout.
 Energy Transport: Polytropic core (\(n = 1.5 \)); radiative zone
(opacities are an interpolative fit to
Keller-Meyerott 1955); convective envelope
(an E solution).
Energy Sources: pp, CN (interpolative fit to B^2FH 1957 and Fowler 1958) the ratio of the energy produced by pp to that produced by CN is the free parameter in the model. A value of .327472 gives the best fit to the empirical Main-Sequence.

Initial Composition:
\[X = .76, Z = .0025, X = .85, Z = .0025 \]
\[X = .93, Z = .0025, X = .99, Z = .0025 \]
Z is all CN.

Masses: 1(E), 2(E), 4(E), 8(E), 16(E), 32(E), 64(E), 128(E) M_☉ for each composition.

Construction Technique: Fitting.

Equation of State: Ideal gas, radiation pressure.

Energy Transport: Interpolative fit to Keller-Meyerott opacities in radiative zones.

Energy Sources: pp, CN interpolation formulae, early evolutionary stages are calculated for \(X = .85 \) for each mass.

(See Haselgrove and Hoyle, M. N. 1956).

Initial Composition:
I. \(H = .68, He^4 = .29, C^{12} = .0042, \]
\[C^{13} = 5.4(-5)*, N = 1.45(-3), O = 1.31(-2). \]
II. \(H = .68, He^4 = .29, C^{12} = .00016, \]
\[C^{13} = 5.4(-5), N = 5.49(-3), O = 1.31(-2). \]
III. \(H = .68, He^4 = .29, C^{12} = .00016, \]
\[C^{13} = 5.4(-5), N = 1.359(-2), O = 5(-3). \]
IV. \(H = .68, He^4 = .29, C^{12} = .0028, \]
\[C^{13} = 3.6(-5), N = 9.67(-4), O = 8.74(-3). \]

Mass: 2.3 M_☉.

Construction Technique: Henyey.

Equation of State: Ideal gas, radiation pressure, incomplete ionization, degeneracy.

Energy Transport: Opacity: interpolative fit to Keller Meyerott Table updated to Cox and Eilers values. Includes electron conduction.

*Numbers in parentheses are the powers of 10 by which the corresponding entries are to be multiplied.

Studies in Stellar Evolution II. Lithium Depletion During the Pre-Main Sequence Contraction.

Initial Composition: $X = .66, Z = .0264$, $X = .38, Z = .015$

Mass: $1.0(E), 0.8(E), 1.2(E) M_{\odot}$, $0.5(E), 0.59(E), 0.68 (E) M_{\odot}$.

Construction Technique: Henyey.

Equation of State: Ideal gas, radiation pressure, incomplete ionization, degeneracy.

Energy Transport: Fully convective pre-main sequence contraction, mixing length theory is used in outer convection zone. The radiative opacity used upon the onset of the radiative core is from BFGH (1965).

Energy Sources: pp chain, CNO bi-cycle cf. BFGH (1965), Li7 (p,α)He4, Li7(p,α)He3 burning, gravitational energy release.

Modelés des étoiles composés d'hydrogène.

Initial Composition: $X = 1$.

Mass: $20 \leq M/M_{\odot} \leq 6650$.

Energy Transport: Convective core; outer radiative zone, electron scattering opacity.

Contribution à l'étude des étoiles formées initialement d'hydrogène pur.

Initial Composition: $X = 1.0$.

Masses: $174(E), 306(E), 611(E), 1515(E), 6645(E) M_{\odot}$.

Construction Technique: Fitting.

Equation of State: Ideal gas, radiation pressure.

Energy Transport: Convective core, radiative envelope (electron scattering opacity).

Energy Sources: pp chain, 3α reaction, CNO chain.

Initial Composition: \(X = 0, Y = 0.98, Z = 0.02 \).
Mass: \(2.9, 5.5, 9.0, 14.6, 24.3, 43.0, 85, 214 \) \(\text{M}_\odot \).
Construction Technique: Fitting.
Equation of State: Ideal gas, radiation pressure.
Energy Transport: Electron scattering opacity in envelope, convective core.
Energy Sources: 3\(\alpha \) alone—interpolation formula.

Initial Composition: \(X = 0, Y = 1.0 \).
Mass: \(0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 \) \(\text{M}_\odot \).
Construction Technique: Fitting.
Equation of State: Ideal gas.
Energy Transport: Convection in core \((n = 1.5)\), radiative envelope with electron scattering opacity.
Energy Sources: Entirely 3\(\alpha \) helium burning (Salpeter 1957).

Hydrogen rich envelopes are fitted to the previous models (Cox and Guili 1961). The main result is a greatly expanded radius and reduced effective temperature.

Initial Composition: \(X = 0, Y = 1.0 \).
Mass: \(0.31, 0.35, 0.40, 0.50, 0.75, 1.0, 1.25, 1.50, 2.0, 4.0, 8.0 \text{ \text{M}_\odot} \) initial models; \(0.31(\text{E}), 0.50(\text{E}), 1.0(\text{E}), 2.0(\text{E}) \text{ \text{M}_\odot} \) inhomogeneous evolving models.
Construction Technique: Fitting, radiative zero boundary conditions.

Equation of State: Non-relativistic, partially degenerate electrons, ideal ions.

Energy Transport: Convective core; electron conduction and electron scattering opacity in the radiative envelope.

Energy Sources: 3α reaction in homogeneous models; Cl2(α,γ)O16 added in inhomogeneous models (Reeves, 1964).

Initial Composition: \(X = 0, Y = 1.0. \)

Mass:
\[
0.4832, 0.9844, 2.292, 3.986(E), 6.588, 14.80(E), 32.10, 78.21(E), 387.7(E), 4705(E), \infty, M_\odot \text{ for homogeneous models.}
\]

Construction Technique: Fitting.

Equation of State: Ideal gas, radiation pressure. (Degenerate corrections made for small M).

Energy Transport: Electron scattering opacity.

Energy Sources
He burning, 3α reaction for initial homogeneous models (Salpeter 1957), Cl2(α,γ)O16, O16(α,γ)Ne20, Ne20(α,γ)Mg24, Mg24(α,γ)Si28 included for evolving inhomogeneous models. (Reeves 1964).

Models for Carbon-Burning Stars.

Initial Composition: \(X = Y = 0, Z = 1, \) Carbon burning models are consistent with \(X_c \sim 0.02 \text{ to } 0.03. \)

Masses:
\[
0.499, 0.454, 0.718, 0.963, 1.538, 5.22, 9.97, 26.73 (T_c = 3 \times 10^{8}\text{K, without neutrino}), 0.819, 0.796, 0.972, 1.623 (\text{with neutrinos}), 1.645, 5.58 (T_c = 5 \times 10^{8}\text{K, without neutrinos}), 19.4, 27.2 (\text{with neutrinos}), \text{ (for the gravitational contracting models).}
\]

Construction Technique: Fitting.

Equation of State: See Deinzer and Salpeter (above).

Energy Transport: See Deinzer and Salpeter (above), opacity includes relativistic correction to electron scattering.
Energy Sources: Carbon Burning (Reeves 1963) or gravitational potential energy release. Neutrino sink is included and these models are compared with identical models without neutrino losses.

Interior Models for Subdwarf Stars.
(Abstract in A. J., 64, 327).

Initial Composition: X = .75, Z = .001, X = .75, Z = .01,
X = .999, Z = .001, X = .99, Z = .01.
Mass: .6, .8, 1.0 M\(_{\odot}\).
Construction Technique: Fitting.
Equation of State: Perfect gas.
Energy Transport: Convective envelope; radiative core, opacity is an interpolative fit to Keller Meyerott.
Energy Sources: pp chain.

The Structure of Population II Stars.

Initial Composition: X = .999, Z = .001; X = .99, Z = .01;
X = .75, Z = .005; X = .75, Z = .001;
X = .75, Z = .01.
Mass: .6, .8, 1.0 M\(_{\odot}\).
Construction Technique: Fitting.
Equation of State: Perfect gas.
Energy Transport: Inner radiative zone-interpolative fit to Keller Meyerott opacities. Outer convective zone - adiabatic convection in inner part, mixing length theory in outer parts.
Energy Sources: pp chain \(\epsilon = \epsilon_0 \rho T^4\) interpolation formula.

Models for Lower Main Sequence Population II Stars.

For particulars see the paper above (Demarque 1960). These models just show the effect of changing the mixing length to 2x the pressure scale height in the convective zone.
Models for Red Giant Stars I.

Initial Composition: $X = .999, Y = 0, Z = .001$ (Both masses);
$X = .99, Y = 0, Z = .01$ (1.2 M_\odot);
$X = 1.0, Y = 0, Z = .0$ (1.2 M_\odot);
$X = .749, Y = .25, Z = .001$ (1.2 M_\odot).

Mass: $1.0(E), 1.2(E)M_\odot$.

Construction Technique: Fitting.

Equation of State: Partially degenerate electrons, ideal nuclei in core, ideal gas outside.

Energy Transport: Isothermal core; radiative zone-Keller Meyerott opacities with bound-bound neglected; outer convective zone - mixing length theory with $\xi \equiv$ pressure scale height.

Energy Sources: CN cycle, pp cycle 3He(3He,23He)4He; 3He(α,y)4Be(7Li,7Be)+7Li(p,y)8He - interpolation formula.

The Age of Galactic Cluster NGC 188.

Initial Composition: $X = .57, .67, .77, Z = .03$.

Masses: $.8(E), .9(E), 1.0(E), 1.1, 1.2, 1.3, 1.4 M_\odot$ (only the X = .67 models are evolutionary).

Construction Technique: Modified Henyey (Demarque and Larson 1964).

Energy Transport: Keller Meyerott fit in radiative zones, mixing length theory in convective zones, $\xi/H = 1.6, 2$.

Energy Sources: pp chain (three branches), CN chain -- Reeves 1964.

A series of Solar Models.

Initial Composition: $Z = .02$ for $X = .78, .76, .74, .72, .70$;
$Z = .025$ for $X = .74, .72, .70, .68, .66$;
$Z = .030$ for $X = .72, .70, .68, .66, .64$;
$Z = .035$ for $X = .70, .68, .66, .64$;
$Z = .040$ for $X = .68, .66, .64$.

Mass: 1 M_\odot.

Construction Technique: Modified Henyey.
Equation of State: Ideal gas, degenerate electrons.

Energy Transport: Fit to Keller-Meyerott opacities in radiative zone; mixing length theory in outer convection zone.

Energy Sources: Reeves (1964).

Structure and Evolution of Model Helium Stars.

Initial Composition: X = 0.0, Y = 0.999, Z = 0.001.

Mass: 0.4, 0.5(E), 0.620, 0.765, 0.8, 1.0(E), 1.25, 1.5, 2.0, 3.0, 4.0, 6.0(E), 8.0, 10.0, 12.5, 14.8, 20.0, 32.1, 40.0, 60.0 M_{\odot}.

Construction Technique: Henryey.

Equation of State: Radiation pressure; ideal ions; ionization of He; semi-relativistic, partially degenerate electrons.

Energy Sources: Gravitational Contraction; 3α, C^{12}(α,γ)O^{16}, O^{16}(α,γ)Ne^{20} Reactions.

Models of Massive Pure Hydrogen Stars.

Initial Composition: X = 1.0.

Mass: 1, 2, 5, 10, 20, 50, 100, 200, 300, 500, 750, 1000, 2000 M_{\odot}.

Construction Technique: Fitting.

Equation of State: Ideal gas, radiation pressure.

Energy Transport: Convective core (n = 1.5); Kramers opacity, interpolation for κ_0 in radiative zones.

Energy Sources: pp chain $(\text{He}^3(\text{He}^3,2p)\text{He}^4)$ interpolation formula B^2FH(1957) corrected by Fowler (1959).
A Study in Solar Evolution.

Initial Composition:
\[X = 0.739, \quad Y = 0.240, \quad Z = 0.021, \quad X_{12} = 4.618 \times 10^{-3}, \quad X_{14} = 0.97 \times 10^{-3}, \quad X_{016} = 1.0715 \times 10^{-2}. \]

Mass:
1.0 \(M_\odot \) (E).

Construction Technique:
Henyey Method.

Equation of State:
Radiative Zones; Los Alamos opacity tables.
Convective zones; mixing length theory.
\((\xi = 2H)\).

Energy Transport:
Gravitational Energy; \(H^2 \), \(He^3 \) burning, \(\alpha \) pp chains, CNO bi-cycle (interpolation formulae).

On the Nature of the Horizontal Branch, I. (Models for stars that have passed through the helium flash).

Initial Composition:
\[X = 0.9, \quad Z_{\text{CNO}} = 0.5, \quad Z = 10^{-5}, 10^{-4}, 10^{-3}, 10^{-2}. \]

Mass:
1.25 \(M_\odot \) (\(M_{\text{core}} = 0.4, 0.5 \ M_\odot \)).

Construction Technique:
Fitting.

Equation of State:
Ideal gas, radiation pressure.

Energy Transport:
Electron scattering, bound-free, free-free fit to Keller Meyerott. Central convection.

Energy Sources:
3\(\alpha \) reaction, CNO bi-cycle, pp reaction.

The Evolution of Population II Stars.

Initial Composition:
\[X = 0.65, \quad Z_{\text{CNO}} = Z/2 = 10^{-3}, 10^{-4}, 10^{-5}, 10^{-4}, 10^{-5}. \]

Masses:
0.65, 0.70, 0.75, 0.70, 0.75, 1.25(E), 1.0, 1.25(E), 1.0, 1.25(E).

Rest as in Iben (1965) except that electron degeneracy is included.

Initial Composition: \(X = 0.0, Y = 0.98, Z = 0.02 \).
Mass: \(2.9 (E), 14.6(E) M_\odot \).
Construction Technique: Fitting.
Equation of State: Ideal gas, radiation pressure.
Energy Transport: Convective core; radiative envelope with electron scattering opacity.
Energy Sources: \(3\alpha, {\alpha + n}\gamma, {\alpha + p}\gamma, {\alpha + p}\gamma \) reactions.

Evolution is carried to helium exhaustion in the core. Abundances of the elements are followed and compared.

Initial Composition: \(\text{He}^4, \text{C}^{12}, \text{Mg}^{24}, \text{Si}^{28}, \text{S}^{32}, \text{or} \text{F}^{56} \), and one with equilibrium composition of these.
Masses:
\(\begin{align*}
\text{He}^4: & \ 0.154, 0.213, 0.305, 0.399, 0.499, 0.609, 0.734, 0.885; \\
\text{C}^{12}: & \ 0.147, 0.488, 0.597, 0.722, 0.872, 1.07, 1.206, 1.318, 1.366, 1.381, 1.396, 1.349, 1.174; \\
\text{Mg}^{24}: & \ 0.139, 0.196, 0.286, 0.378, 0.476, 0.584, 0.708, 0.857, 1.053, 1.19, 1.3, 1.348, 1.363, 1.282, 1.205; \\
\text{Si}^{28}: & \ 1.319, 1.343, 1.175; \\
\text{Si}^{32}: & \ 1.011, 1.169, 1.064, 1.067, 1.047; \\
\text{Fe}^{56}: & \ 0.007, 0.015, 0.015, 0.024, 0.046, 0.103, 0.149, 0.222, 0.298, 0.380, 0.471, 0.576, 0.703, 0.872, 0.991, 1.088, 1.112, 1.093, 1.028, 1.014, 0.990.
\end{align*} \)

Construction Technique: Numerical integration of the mechanical equilibrium equations.
Equation of State: Salpeter (1961) for matter at high densities.
Energy Transport: None, Zero temperature stars.
Energy Sources: None, Zero temperature stars.
Red Giants of Population II. III.

Initial Composition:
\[X = 0.9, \ Y = 0.099, \ Z = 0.001 \ (M = 1.0, 1.3); \]
\[X = 0.9, \ Y = 0.09, \ Z = 0.01 \ (M = 1.3). \]

Mass:
\[1.0(\text{E}), \ 1.3(\text{E}) \ M_{\odot}. \]

Construction Technique:
Henyey method.

Equation of State:
Isothermal degenerate core; convective envelope--interpolation formula at boundary.

Energy Sources:
See earlier paper (1962) for other assumptions--difference here is the Henyey method.

Giant Stars of Type II (see Haselgrove and Hoyle 1956, M. N.).

Initial Composition:
\[X = 0.9309, \ Y = 0.0666, \ Z = 0.0025. \]

Mass:
\[1.27 (\text{E}) \ M_{\odot}. \]

Construction Technique:
Fitting.

Equation of State:
Ideal gas, radiation pressure.

Energy Transport:
Conduction included, interpolated radiative opacity.

Energy Sources:
pp, CN cycles — interpolation formulae.

Main Sequence Stars.

Initial Composition:
I \[X = 0.75, \ Y = 0.24, \ Z = 0.01 \]
II \[X = 0.99, \ Y = 0.009, \ Z = 0.001 \]
III \[X = 0.75, \ Y = 0.249, \ Z = 0.001. \]

Masses:
I \[1.01, 1.09, 1.19, 1.29, 1.40, 1.46, 1.52, \]
\[1.97, 2.89, 3.44, 3.90, 5.97, 8.95, 13.4, \]
\[20.1, 30.2, 37.0, 55.5, 83.3, 125. \ M_{\odot}. \]
II \[1.06, 1.20, 1.25, 1.35, 1.47, 1.60, 1.74, \]
\[2.07, 2.46, 2.68, 2.91, 3.47, 4.00 \ M_{\odot}. \]
III \[.987, 1.02, 1.17, 1.34, 1.43, 1.52, 1.61, \]
\[1.94, 2.43, 3.05 \ M_{\odot}. \]

Construction Technique:
Fitting.

Equation of State:
Ideal gas, radiation pressure.
Energy Transport: Radiative zones--fit to Keller-Meyerott tables (10%), conduction was included and a special solution for the outermost zones is described.

Energy Sources: pp chain (three branches), CN cycle--interpolation formulae.

Initial Composition: \(X = 0.90, Y = 0.08, Z = 0.02, X_{CN} = Z/3 \).
Mass: \(15.6 \, M_\odot \) (E).
Construction Technique: Fitting.
Equation of State: Ideal gas, radiation pressure.
Energy Transport: Electron scattering opacity in radiative zones, convective core.
Energy Sources: \(3\alpha \) process in core
CN cycle in outer shell \(\text{interpolation formulae} \).

Initial Composition: \(X = 0.61, Y = 0.37, Z = 0.02, X_{CNO} = 0.008 \)
Model begins with \(X = 0 \) in core.
Mass: \(4 \, M_\odot \) (E).
Construction Technique: Fitting.
Equation of State: Ideal gas.
Energy Transport: Radiative zones--outer, B-F Kramers opacity; inner, electron scattering.
Energy Sources: CNO cycle \(\text{interpolation formulae} \) (B'FH 1957)
\(3\alpha \) reaction (Salpeter 1957).
 Evolution of the Stars.

 Includes many results for the 15.6 and 4.0 M\(_\odot\) stellar models described in the papers above. This paper also includes work on a 0.7 M\(_\odot\) model, on the pre-main sequence contraction, and on the white dwarf and pre-white dwarf stages of evolution.

 The Evolution of Massive Stars III. Hydrogen Exhaustion through the Onset of Carbon Burning.
 (Notes in A. J., 65, 490; 67, 577).

 Initial Composition: \(X = 0.90, Y = 0.08, Z = 0.02, X_{\text{CNO}} = Z/3,\)
 \((15.6 \, M_\odot \text{ evolution is carried to onset of Cl}_2 \text{ or Ne20 burning.}) \, X = 0.61, Y = 0.37, Z = 0.02, (10.1 \, M_\odot)\)
 Mass: \(15.6(\text{E}), 10.1(\text{E}) \, M_\odot.\)
 Construction Technique: Fitting.
 Equation of State: Perfect gas, radiation pressure.
 Energy Transport: Radiative opacity is electron scattering alone.
 Energy Sources: CNO, pp, 3\(\alpha\) interpolation formulae (Fowler 1960, Salpeter 1957); gravitational contraction included.

 Evolution with Neutrino Loss of a Massive Star until the Onset of Carbon Burning.
 (Abstract).

 (Continuation of Prog. of Theor. Phys. Suppl #22 by same authors).

 Evolution of Main Sequence Stars.

 Initial Composition: \(X = 0.68, Y = 0.31, Z = 0.01, \text{ evolution carried till } X \sim 0 \text{ in the core.}\)
 Mass: \(1.5(\text{E}), 2(\text{E}), 3.5(\text{E}), 6(\text{E}), 11(\text{E}), 20(\text{E}), 30(\text{E}).\)
Construction Technique: Henyey.

Equation of State: Ideal gas, radiation pressure, degeneracy (by interpolation formula).

Energy Transport: Convective cores; interpolative fit to Keller-Meyerott, (40%) opacities in radiative zones.

Energy Sources: pp chain completed by He3(He3,2p)He4—interpolation to fit Salpeter 1950; CN chain—interpolation to fit Bösemann-Crespin 1954 values.

Stellar Models with Isothermal Cores and Intermediate Convective Zones.

Initial Composition: $\mu_i/\mu_e = 1.0, 1.5788, 2.5, 2.6667$.

Mass: $1.82 M_\odot$ (E).

Construction Technique: Fitting.

Equation of State: Ideal Gas.

Energy Transport: $p = E^{2.5}$ in intermediate convective zone. Kramers opacity in outer radiative zones.

Energy Sources: Shell source; interpolation formula.

Sternentwicklung II. Die Wasserstoff-brennende Phase eines Sternes von 7.0 Sonnenmassen.

Initial Composition: $X = .602, Y = .354, Z = .044$.

Mass: $7 M_\odot$ (E).

Construction Technique: Henyey (see Hofmeister, Kippenhahn, Weigert 1964).

Equation of State: Ideal gas.

Energy Transfer: Outer Convective Zone: mixing length theory, $\ell = 1.5$ the pressure scale height. Outer radiative layers: opacities from tables by Baker (line absorption ignored). Inner Radiative layers: Opacity table derived from Keller-Meyerott tables (line absorption ignored), electron scattering, electron conduction included.

Energy Sources: CNO bi-cycle initially, pp cycles (in shell), 3a process (in core) are ignited in later stages—interpolation formulae used.
Sternentwicklung III. Die Helium-brennende Phase und die Cepheid-
enstadien eines Sterns von 7.0 Sonnenmassen.

See paper II above. This is a continuation through the Helium Burning Phase.

The Ages of Type I and Type II Subgiants.

Initial Composition:
X = .99, Y = .009, Z = .001 1.35 M₀;
X = .75, Y = .249, Z = .001 1.16 M₀;
X = .75, Y = .24, Z = .01 1.09 M₀;

Mass:
1.09(E), 1.16(E), 1.35(E) M₀.

See Haselgrove and Hoyle (1959) for details.

On the Main-Sequence Band and the Hertzsprung Gap.

Initial Composition:
X = .75, Y = .23, Z = .02, evolution to the point where X₞ < 0 is considered.

Mass:
1.52(E), 3.89(E), 8.94(E), 30.1(E) M₀.

See Haselgrove and Hoyle (1959) for the rest.

The Internal Structure of Middle Main Sequence Stars.

Initial Composition:
I. X = .8, Z = .02; II. X = .7, Z = .02;
III. X = .6, Z = .02; IV. X = .75, Z = .015;
V. X = .8, Z = .01; VI. X = .7, Z = .01;
XCN = .18 Z.

Mass:
Composition
I. 1.25, 1.581, 1.794, 2.10, 2.63 M₀;
II. .886, 1.05, 1.256, 1.354, 1.506,
1.866, 2.280, 2.864 M₀;
III. .0865, 1.21, 1.303, 1.563, 1.86, 2.26
M₀;
IV. 1.112, 1.44, 1.596, 1.87, 2.135, 3.078
M₀;
V. 1.175, 1.420, 1.706, 2.02, 2.32,
2.85 M₀;
VI. 2.172, 1.811, 1.470, 1.07 M₀.

Construction Technique:
Fitting.

Equation of State:
Ideal Gas.
Energy Transport: Radiative opacities are an interpolative fit to Keller-Meyerott values.

Energy Sources: pp chains, and CN cycle-interpolation formula.

Stellar Evolution II. The Evolution of a 3 M_\odot Star from the Main Sequence through Core Helium Burning.

Initial Composition: $X = 0.708$, $Z = 0.02$.
Mass: $3 (E) M_\odot$.
Construction Technique: Henyey.
Equation of State: Ideal gas; radiation pressure; electron degeneracy except in surface regions.
Energy Transport: Convective core; free-free, bound-free absorption, and electron scattering radiative opacity (cf. Iben and Ehrman 1962 (use in interior) and Iben 1963 (in regions of partial H-ionization)). Electron conduction is included.
Energy Sources: pp chain, CN cycle, gravitational contraction, Cl2 depletion.

Stellar Evolution III. The Evolution of a 5 M_\odot Star from the Main Sequence through Core Helium Burning.

(As above (Iben, 1965) except the mass is 5 M_\odot (E) and variations in the Cl$^2 (\alpha,\gamma)$O16 cross section are considered).

Stellar Evolution IV. The Evolution of a 9 M_\odot Star from the Main Sequence through Core Helium Burning.

(As above (Iben, 1965) except the mass is 9 M_\odot).

Stellar Evolution V. The Evolution of a 15 M_\odot Star from the Main Sequence through Core Helium Burning.

(As above (Iben 1965) except the mass is 15 M_\odot. The evolution is compared to that of the less massive stars above and the 15.6 M_\odot model of Hayashi et. al., (1962)).
Evolutionary Model Sequence of a Star of Ten Solar Masses.

The Internal Structure of M Dwarf Stars.

Initial Composition:
- \(X = 0.664, Z = 0.008 \)
- \(X = 0.500, Z = 0.029 \)
- \(X = 0.56, Z = 0.01 \)
- \(X = 0.50, Z = 0.03 \)
- \(X = 0.48, Z = 0.009 \)

Mass: \(0.162, 0.209, 0.269 \, M_\odot \).

Construction Technique: Fitting.

Equation of State: Ideal gas, degenerate electrons.

Energy Transport: Convective envelope \((n = 1.5)\); radiative core-modified Kramer's opacity (Morse 1940).

Energy Sources: pp cycle, interpolation (B"FH 1957).

Sternmodelle I. Die Entwicklung der Sterne der Population II.

Initial Composition: \(X = 0.9, Y = 0.1, X_{\text{CN}} = 0.0005 \).

Mass: \(1.2 \, M_\odot \) (E).

Construction Technique: Fitting.

Equation of State: Ideal gas, electron degeneracy, radiation pressure.

Energy Transport: Convective (Mixing length theory) plus radiation in outer layers; the radiative opacity includes the effects of the negative \(\mathrm{H} \) ion, neutral hydrogen, \(\mathrm{H} \) ionization, \(\mathrm{f} \) and higher ionization and electron scattering by various interpolation formulae.

Energy Sources: pp, CN chain, interpolation formulae (Hoyle-Schwarzschild 1955).

Sternentwicklung IV. Zentrales Wasserstoff-und Heliumbrennen bei einem Stern von 5 Sonnenmassen.

Initial Composition: \(X = 0.602, Y = 0.354, Z = 0.044 \).

Mass: \(5 \, M_\odot \) (E).
See papers II, III, (Hofmeister, Kippenhahn, Weigert, 1964). Follow the evolution through helium exhaustion in the core. The results are compared with those for the $7 M_\odot$ Star of papers II and III.

Initial Composition:
\begin{align*}
X &= .70 \\
Z &= .05 \\
X_{\text{CNO}} &= Z/7 \\
X_{\text{CNO}} &= Z/7.
\end{align*}

Mases:
\begin{align*}
20, 30 M_\odot (E) \\
15.6 M_\odot (E).
\end{align*}

Construction Technique: Henyey.

Equation of State: Ideal gas, radiation pressure.

Energy Transport: Free-free and bound-free transitions, electron scattering in radiative opacity. Convective core, intermediate radiative zone as core contracts.

Energy Sources: pp chain, CN cycle, gravitational energy.

Initial Composition:
\begin{align*}
\text{I.} & \quad X = .90, Y = .09, Z = .01, \\
\text{II.} & \quad X = .62, Y = .35, Z = .03.
\end{align*}

Mass:
\begin{align*}
.04, .05, .06, .07, .08, .09.
\end{align*}

Construction Technique: Integrate equations for a polytrope.

Equation of State: Non-relativistic, partially to completely degenerate electrons (see Kumar 1962).

Energy Transport: Completely Convective ($n = 1.5$) electron conduction ignored.

Energy Sources: Gravitational Contraction; H^2, Li^6, Li^7, Be^9, B^{10}, B^{11} burning during contraction.

Initial Composition:
\begin{align*}
X &= .899, Y = .100, Z = .001, \\
X &= .891, Y = .099, Z = .01.
\end{align*}

Mass:
\begin{align*}
1.2 M_\odot (E).
\end{align*}
Construction Technique: Fitting.

The Structure of M Dwarf Stars, II.

Initial Composition: $X = .75, Y = .23, Z = .02$.
Mass: $0.0912, .1, .11, .126, .158, .251, .398, .631, 1.00$.
Construction Technique: Completely convective models--fitting unnecessary.
Equation of State: Partially degenerate electrons, ideal ions.
Energy Transport: Adiabatic convection in partially degenerate material.
Energy Sources: $\text{pp chain} - \varepsilon = \varepsilon_0 \rho T^\nu, \quad 4 \leq \nu \leq 6.5$ fit to Salpeter 1952.

The Structure of the Sun.

Initial Composition: $X = .995, Y = .003, Z = .002$.
Mass: $1.0 M_\odot$.
Construction Technique: Fitting.
Equation of State: Ideal gas.
Energy Transport: Convection in core, Kramers plus electron scattering opacity in radiative zone -- fit to Morse 1940.
Energy Sources: $\text{pp chain in outer layers, CN chain in core--interpolation formulae}$.

Initial Model of a Massive Star.

Initial Composition: $X = .75, Y = .22, Z = .03$.
Mass: $28 M_\odot$.
Construction Technique: Fitting.
Equation of State: Ideal gas, radiation pressure.
Energy Transport: Convective core, radiative envelope-Kramers's opacity fit to Keller-Meyerott opacities plus electron scattering.
Energy Sources: pp chain, CN chain; interpolation formulae from Haselgrove and Hoyle.

On Stellar Models with Double Energy Sources.

Initial Composition: \(X = 0.90, Y = 0.10, X_N = 0.0005 \) initial and envelope; begins with pure helium core.

Mass: \(1.2 \, M_\odot \).

Construction Technique: Fitting.

Equation of State: Ideal gas.

Energy Transfer: \(ff \) opacity in outer envelope; electron scattering in inner envelope—no contribution from anything other than \(H, \ He \). Also has a pure \(He \) convective core \((n = 1.5)\) and an intermediate \(He \) radiative zone.

Energy Sources: \(3\alpha \) in \(He^{4} \) core, CN cycle in thin shell; interpolation formulae (Hayakawa).

Evolution of Population II Stars in Helium-Burning Phase.

See above (Nishida 1960) for details.

Model for a Helium Star of One Solar Mass.

Initial Composition: \(X = 0, Y = 0.999, Z = 0.001 \).

Mass: \(1 \, M_\odot \).

Construction Technique: Fitting.

Equation of State: Ideal gas.

Energy Transport: Convective core; outer radiative zone, opacity on interpolation to fit Keller-Meyerott tables.

Energy Sources: \(3\alpha \) \(He \) burning in core above, \(\rho^{2+30} \) interpolation formula.
 Evolution of Helium Burning Stars of .8 Solar Masses.

 Initial Composition:
 I. $Y = 1$; II. $Y = 1$ for $0 \leq M_r / M \leq .85$, $X = .9$, $Y = .099$, $Z = .001$ in envelope.
 III. $Y = 1$ for $0 \leq M_r / M \leq .85$, $X = .9$, $Y = .099$, $Z = .001$ in envelope.

 Mass: .8 M_\odot (E).

 Construction Technique: Fitting.

 Equation of State: Ideal gas, degenerate electrons.

 Energy Transport: Convective core ($n = 1.5$); electron scattering opacity alone in the radiative envelope.

 Energy Sources: 3a reaction, $\frac{3}{2}^2 T^{30}$ interpolation formula.

 Structure and Evolution of Medium-Mass Stars II. The Extent of the Convective core in Middle Main Sequence Stars.

 Initial Composition:
 I. $X = .8$, $Z = .02$, $X_{CN} = .19 Z$
 II. $X = .8$, $Z = .01$, $X_{CN} = .19 Z$
 III. $X = .7$, $Z = .02$, $X_{CN} = .19 Z$
 IV. $X = .7$, $Z = .01$, $X_{CN} = .19 Z$
 V. $X = .6$, $Z = .02$, $X_{CN} = .19 Z$.

 Mass: $0.9 M_\odot \leq M \leq 2.0 M_\odot$.

 Construction Technique: Fitting.

 Equation of State: Ideal gas.

 Energy Transport: Convective core; radiative envelope.

 Energy Sources: pp chain, CN cycle - includes energy generation in the envelope.

 A Revised Solar Model with a Solar Neutrino Spectrum.

 Initial Composition: $X = .68$, $Y = .276$, $Z = .044$, $X_{CN} = .0091$.

 Mass: 1 M_\odot.

 Construction Technique: Henyey.

 Equation of State: Ideal Gas.

 Energy Transport: Interpolated opacity - fit to Los Alamos opacities (Cox and Stewart) in radiative zones. Convective envelope has $\log K = -2.25$ chosen to give correct radius.

 Energy Sources: H burning - from Reeves 1964.
Variation of the Gravitational Constant and the Evolution of the Sun.

Initial Composition: \(0.68 \leq X \leq 0.81\) Variable with variation in \(G\) to give correct present sun. \(Z = 0.04\).

Mass: \(1\ M_\odot (E)\).

Construction Technique: Henyey method.

Equation of State: Ideal gas throughout.

Energy Transport: Interpolation formula for opacity in envelope; convective core with \(K\) chosen to give fit to radius.

Energy Sources: pp, CN chains - interpolation formulae.

The Transition from Hydrogen-Burning to Helium-Burning in a Star of 5 Solar Masses.

Initial Composition: \(X = 0.74, Y = 0.24, Z = 0.02, X_{CN} = Z/7\).
Evolution carried until \(X \sim 0\) in core and He burning begins.

Mass: \(5\ M_\odot (E)\).

Construction Technique: Fitting.

Equation of State: Ideal gas.

Energy Transport: convective core (usual tabulated solution); electron scattering plus modified Kramer's opacity in radiative envelope.

Energy Sources: Carbon cycle, \(\rho X_{CN} T^{16}\) interpolation formula; gravitational energy release in evolution of core.

Calculations of Main Sequence Stellar Models.

Initial Composition: \(X = 0.70, Z = 0.03, X_{CNO} = 0.6\ Z\).

Mass: \(6(E), 10(E), 15(E) M_\odot\).

Construction Technique: Fitting.

Equation of State: Ideal gas, radiation pressure.

Energy Transport: radiative opacity tables include bound-free, free-free, and electron scattering contributions.

Energy Sources: pp chain, CNO cycle (interpolation to Reeves 1964); gravitational energy release.
A New Solar Model.
(Abstract).

Initial Composition: \(Y = 1.0 \).
Mass: \(.4, .5, .75 \, M_\odot \).
Construction Technique: Henyey.
Equation of State: Ideal gas, electron degeneracy.
Energy Sources: \(3\alpha \) reaction (Cox and Salpeter, 1964).

Evolution of Massive Stars I.

Initial Composition: \(X = .90, Y = .08, Z = .02, X_{\text{CN}} = Z/3 \).
Mass: \(15.6 \, M_\odot \, (E) \).
Construction Technique: Fitting.
Equation of State: Ideal gas, radiation pressure.
Energy Transport: Electron scattering alone in radiative zones, convective core.
Energy Sources: \(\text{CN cycle, } \rho T^{16} \) interpolation formula.

Internal Structure and Evolution of Very Massive Stars.

Initial Composition: \(X = .9, Y = .08, Z = .02 \).
Mass: \(46.8 \, M_\odot \, (E) \).
Construction Technique: Fitting.
Equation of State: Ideal gas, radiation pressure.
Energy Transport: Electron scattering opacity in envelope, semi-convective intermediate zone and fully convective core.
Energy Sources: \(\text{CN cycle, } \epsilon \rho T^{16} \) interpolation formula to fit (B2FH 1957).
Internal Structure of Very Massive Stars.
See previous paper (Sakashita and Hayashi (1959)).

Early Evolution at Mass Ten.

Initial Composition: \(X = .70, Y = .27, Z = .03 \).
Mass: \(10 M_\odot \) (E).
Construction Technique: Fitting.
Equation of State: Ideal gas, radiation pressure.
Energy Transfer: Electron scattering plus Kramers opacity in radiative zones.
Energy Sources:

Evolution of Very Massive Stars.

Initial Composition: \(X = .75, Y = .22, Z = .03 \).
Mass: \(28.2(E), 62.7(E), 121.1(E), 218.3(E) M_\odot \).
Construction Technique: Fitting.
Equation of State: Ideal gas, radiation pressure.
Energy Transport: electron scattering opacity in radiative zones; convective core - variable \(\gamma \)-radiation pressure included.
Energy Sources: Carbon cycle-interpolation formula (82FH 1957).

Red Giants of Population II. I

Initial Composition: \(X = .900, Y = .099, Z = .001 \)
\(X = 0, Y = .999, Z = .001 \) in core as the evolution begins.
Mass: \(1.3 M_\odot \) (E).
Construction Technique: Ideal gas, complete degeneracy in core (abrupt transition).
Energy Transport: The degenerate core is isothermal; electron scattering plus Kramers opacity in radiative zones.

Red Giants of Population II. II.
(Note in A. J., 66, 45).

Direct continuation of the paper above (Schwarzschild and Selberg 1962) through the Helium flash. Two interpolation formulae were used for the 3α reaction at different temperatures.

An Evolutionary Sequence of Solar Models.

Initial Composition: $X = .75, Y = .235, Z = .015$ evolution is carried until $X = .423$ in the center.

Mass: $1 M_\odot$ (E).

Construction Technique: Fitting.

Equation of State: Ideal gas.

Energy Transfer: Convective Envelope (adiabatic convection $p = kT^{2.5}$); opacity in the radiative core is an interpolative fit to Keller Meyerott (10%).

Energy Sources: pp chain $(3^3\text{He} \rightarrow 3^2\text{He} \rightarrow 4^4\text{He})$ interpolation formula to fit B^2FH 1957.

An Evolutionary Sequence of Solar Models with Revised Nuclear Reaction Rates.

Helium Content and Neutrino Fluxes in Solar Models.

Initial Composition: variable, $X = .71, Y = .27, Z = .02$ gives the best model for the sun.

Mass: $1 M_\odot$ (E).

Construction Technique: Fitting.
Equation of State: Ideal gas, partial degeneracy.

Energy Transport: Convective envelope \(P = XT^{2.5} \) at boundary; Interior opacity is a fit to the opacity tables of Keller-Meyerott (as in Iben and Ehrman 1962); Conduction has been included.

Energy Sources: Gravitational contraction; pp, CN chains - interpolation formula to fit Fowler 1960, Parker, Bahcall, Fowler 1964.

Initial Composition: \(X = 0.9, Y = 0.1 \) in convective envelope and radiative intermediate zone \((X_{CN} = 0.0005 \text{ or } 0.005);\) \(X = 0, Y = 1 \) in isothermal core.

Mass:

I. \((X_{CN} = 0.0005) 2.48, 1.48, 0.94, 0.58, 0.62, 0.99, 2.83, 2.20, 1.82, 1.09, 1.07, 1.26, 1.60, 2.49, 2.28, 2.29, 3.11 \text{ M}_\odot.\)

II. \((X_{CN} = 0.005) 2.20, 1.31, 0.84, 0.53, 0.56, 0.88, 2.52, 1.94, 1.61, 0.97, 0.96, 1.13, 1.43, 2.22, 2.03, 2.04, 2.78 \text{ M}_\odot.\)

Construction Technique: Fitting.

Equation of State: Ideal gas, partially degenerate electrons.

Energy Transport: Electron scattering opacity in radiative zones; \(p = E T^{2.5} \) in convective envelope.

Energy Sources: CN cycle in shell outside core, \(pT^{15} \) interpolation formula.

Initial Composition: \(X = 0.70, Y = 0.27, Z = 0.03, X_{CN} = Z/2 \) throughout. Carried to the point where \(X = 0.07 \) in the core.

Mass: \(30 \text{ M}_\odot \) (E).

Construction Technique: Fitting.
Equation of State: Ideal gas, radiation pressure.
Energy Transport: Electron scattering radiative opacity. Adiabatic convection in the core.
Energy Sources: Full CNO cycle - interpolation formula to Reeves 1963 good to 15% - sources restricted to the core.

As above (Stothers 1963) except gravitational contraction is added as an energy source when the hydrogen becomes exhausted in the core.

Evolution of O Stars, III. Helium Burning.

As above (Stothers, 1963, 1964). The distribution of energy sources varies in the Helium ignition, helium depletion and Helium exhaustion phases. Helium burning is added as an energy source.

The Semi-Convective Zone in Very Massive Stars.

As above (Stothers 1963-1966). The extent of the semi-convective zone and convective core are investigated during hydrogen burning.

Initial Composition: \(X = .70, Z = .03, X_{\text{CNO}} = Z/2 \).
Masses: 45, 60, 100, 200, 400, 1000 \(M_\odot \).

Stellar Models with Partially Degenerate Isothermal Cores.

Initial Composition: \(X = .90, Y = .09, Z = .01 \) in envelope. \(X = 0, Y = .99, Z = .01 \) in core.
Mass: \(1(\text{E}), 1.2(\text{E}), 1.52(\text{E}), 2.0(\text{E}), 3.0(\text{E}), 4.0(\text{E}) \) \(M_\odot \).
Construction Technique: Fitting.
Equation of State: Ideal gas, partially degenerate electrons.
Energy Transport: Kramers opacity in outer radiative zones.
Energy Sources: CN cycle alone in shell at interface.
On the Properties of Stellar Models with Double Energy Sources, I.

Initial (envelope) Composition:
- I. $X = 0.900$, $Z = 0.001$, $X_{\text{CNO}} = (Z/7)/40$
- II. $X = 0.80$, $Z = 0.001$, $X_{\text{CNO}} = (Z/7)/40$
- III. $X = 0.9$, $Z = 0.001$, $X_{\text{CNO}} = (Z/2)/40$

Masses:
- I. 1.3, 1.0, 0.7 M_\odot
- II. 1.3 M_\odot
- III. 1.0 M_\odot

Construction Technique: Fitting.

Equation of State: Ideal gas.

Energy Transport: Opacity due to free-free transitions of H and He plus bound-free transitions of metallic ions in outer H envelope. Electron scattering opacity in the deeper envelope and intermediate radiative He zone, convective He core.

Energy Sources: CNO cycle at bottom of H-rich envelope, 3a reaction in the core.

Evolution of Very Massive Stars with Mass Loss.

Initial Composition: $X = 0.90$, $Z = 0.02$, $X_{\text{CNO}} = Z/3$.

Mass: 15.6, 46.8 M_\odot

Construction Technique: Fitting.

Equation of State: Ideal gas, radiation pressure.

Energy Transport: Electron scattering in radiative envelope; convective core.

Energy Sources: CNO Cycle.

Stellar Models with Isothermal Cores and Intermediate Convection Zones.

Massive Stars with Uniform Composition.

Initial Composition: Pure helium, or pure hydrogen.

Mass:

Construction Technique: Fitting, an approximate solution for massive stars with constant composition.
Equation of State: Ideal gas, radiation pressure.

Energy Transfer: Convection in core, electron scattering opacity in radiative zones.

Energy Sources: 3α interpolation formula for He model, pp, CN interpolation formula for "pure" hydrogen models.

The Evolution of Massive Stars Initially Composed of Pure Hydrogen.

Initial Composition: X = 1, Y = Z = 0, but there's already significant carbon by the time the model reaches the main sequence.

Mass: 40(E), 60(E), 80(E), 120(E) M_☉.

Construction Technique: Fitting.

Equation of State: Electron scattering opacity in the radiative envelope.

Some Models of Internal Structure of Subdwarfs.

Initial Composition: 1. X = .7, Y = .3, Z < 10^{-4}.
2. X = .7, Y = .2965, Z < 10^{-4}.
4. X = .7, Y = .299, Z = .001.
5. X = .7, Y = .292, Z = .001, X_C = .007.
7. X = .8, Y = .200, Z < 10^{-4}.
8. X = .8, Y = .196, Z < 10^{-4}, X_C = .004.
10. X = .99, Y = .01, Z < 10^{-4}.

Mass: 0.7, 0.9, 1.1, 1.3, 1.5, 1.7 M_☉.

Construction Technique: Fitting.

Equation of State: Ideal gas.

Energy Transport: Opacity is an interpolation to Keller-Meyerott (1955) or Reiz (1954) (12%) in radiative zones.
Energy Sources: CN cycle, pp chain-interpolation formula to B²FH corrected for He abundance.

On the Properties of Stellar Models with Double Energy Sources, II. Stellar Models of 1.3 M_☉ for Various CNO Contents.

Initial Composition:
1. X = .9, Y = .099, Z = .001, X_CNO = Z/7
2. X = .9, Y = .099, Z = .001, X_CNO = (Z/7)/40
3. X = .9, Y = .09, Z = .01, X_CNO = Z/7.

Mass: 1.3 M_☉.

See Suda and Virgopia, 1966.

C. Commentary on Stellar Models and Stellar Evolution

Nuclei of Planetary Nebula and the Late Stages of Stellar Evolution.

Diffusion in the Sun.

A Time Scale for the Mixing Process in S-Type Stars.

Approximate Evaluation of the Fermi-Dirac Functions.

Stabilité et évolution dans le voisinage de la séquence d'étoiles massives formées à partir d'hydrogène pur.

Pre-Supernova Evolution (Neutrino Stars).

Neutrino Production in Massive Helium Star Models.

 Evolution of Population II Stars.
 (Abstract).

 Cameron, eds., 231.

 Cameron, eds., 319.
 Stellar Evolution with Varying G.

 Some Observational Aspects of Stellar Evolution.

 A Note on the Onset of Helium Burning in Degenerate Stars.

 Solar Evolution with Varying G.
 (Abstract).

 On the Surface Boundary Conditions for Stars.

 Erratum, 1104.
 Massive Stars, Relativistic Polytropes, and Gravitational
 Radiation.

 The Outer Envelope of Giant Stars with Surface Convection
 Zone.

 Cameron, eds., 253.
 Advanced Stages in Stellar Evolution.

 Berechnung äussern Konvektionszonen mit nicht-lokalem
 Mischungswege.

 Evolution, R. F. Stein, A. G. W. Cameron, eds, 263.
 The Evolution of a Star of Seven Solar Masses.

 On the Nature of Strong Radio Sources.
A Stellar Model of Mixed Opacity and Its Variations with Mass, Chemical Composition, Opacity Coefficients, and Energy Generation Coefficients.

A Suggestion Concerning the Boundary Conditions of B Stars.

Massive Stars in Quasi-Static Equilibrium.

A Comparison between Homogeneous Stellar Models and the Observations.

The Surface Ratio of 14N to 12C during Helium Burning.

The Early Evolution of Stars between One and Three solar Masses.

Unified Origin and Evolution of Star Clusters.

Internal Structure of the Stars and Apsidal Motions.

The Interpretation of the Spectrum-Luminosity Diagram for the Pleiades.

Stellar Rotation and Stellar Evolution among Cepheids and Other Luminous Stars in the Hertzsprung Gap.

Expected Shape of the Mass Spectrum for Stars formed by Gravitational Contraction.

Kumar, S. S. (1964) Observ., 84, 18.
 An Attempted Explanation of the Horizontal Branch.

 L'evolution Stellaire.

 The Structure of the M Dwarf Stars I.

 Some Peculiar Stars Found Below the Main Sequence on the
 H-R Diagram.

 On the Late Stages of Stellar Evolution.

 Evolution of Stars Decreasing in Mass.

 An Evolutionary Interpretation of the H-R Diagram for the
 Orion-Nebula Cluster.

 Extended Main-Sequence of Some Stellar Clusters.

 Introductory Report (A survey of factors affecting stellar
 stability).

 A. G. W. Cameron, eds., 381.
 Mass Loss in the Planetary Nebula Stage.

 Solar Evolution and Brans-Dicke Cosmology.
 (Abstract in A. J., 70, 689).

 The Ages of M67, NGC 188, M 3, M 5, and M 13 according to
 Hoyles 1959 Models.

 Overshooting from Stellar Convective Cores.

 Stellar Evolution with Mass Loss.
 (Brief Note).

 The Evolutionary Status of Dwarf Emission B Stars.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Author(s)</th>
<th>Year</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>626</td>
<td>Strömgren, B.</td>
<td>1965</td>
<td>Stars and Stellar Systems</td>
<td>8</td>
<td>269</td>
<td>Stellar Models for Main Sequence Stars and Subdwarfs.</td>
</tr>
<tr>
<td>630</td>
<td>Vardya, M. S.</td>
<td>1966</td>
<td>Observ.</td>
<td>86,32</td>
<td>32</td>
<td>Electron Pressure, Negative Ions and M-Spectral Type Stars.</td>
</tr>
</tbody>
</table>
VI. EVOLUTIONARY STAGES BEYOND NUCLEAR BURNING

A. White Dwarfs

 On Chandrasekhar's Limiting Mass for Rotating White Dwarfs.

 Electrostatic Interactions in White Dwarfs.

 Dynamical Instability of White Dwarfs in the General Relativity
 Frame Work.

 The Critical Mass of a Hot Isothermal White Dwarf with
 Allowance for General Relativity Effects.

 The Dynamical Instability of the White Dwarf Configurations
 Approaching the Limiting Mass.

 253.

 White Dwarfs and Stellar Evolution.

 White Dwarfs.

 The Theory of White Dwarfs.

 The Structure of Rapidly Rotating White Dwarfs.

 Secular Stability Condition and Entropy-Temperature Variation in
 Degenerate Stars.

 On Models of Non-Spherical Stars II. Rotating White Dwarfs.
Note on the Total Energy of White Dwarf Models.

Cooling of White Dwarfs.

L'enfluence de l'accrétion sur l'évolution des naines blanches.

Sur la période de pulsation radiale des naines blanches.

B. Neutron Stars

The Mass Defect of Baryon Stars.

Neutron Stars.

An Observational Test of Theories of Neutron Star Cooling.
(Note).

Neutron Stars I. Properties at Absolute Zero Temperature.

Neutron Stars II. Neutrino Cooling and Observability.

Are There Magnetic Fields around a Neutron Star?

Neutron Star Models.

Cosmic Ray Production by Vibrating Neutron Stars.

Selected Topics in Modern Theoretical Physics (Neutrino Processes,
Stellar Collapse, Neutron Stars).
 Neutrino Emission by the "Urca" Process in Neutron Stars.

 The Neutron Star Hypothesis.

 Cooling of a Neutron Star by the "Urca" Process.

 Baryon Star Models.

 High Density Behavior and Dynamical Stability of Neutron Star Models.

 Neutron Stars as X-Ray Sources.

 Size of a Superdense Star and Interactions between Elementary Particles.

 Equilibrium for Neutron Stars.

 Comments on a Paper by A. Cameron.

 Oscillation Period of Neutron Stars.

 Lack of Homology in the Oscillations of Neutron Stars.

C. Collapsed Stars

 Gravitational Collapse and Relativistic Magnetohydrodynamics.

 Gravitational Collapse of Nonsymmetric and Rotating Masses.

677. Gurovich, V. Ts. and Guseinov, O. Kh. (1965) JETP Letters, 2, 70.
 Rotation of Superdense Configurations.
 The Gravitational Field of Rotating Superdense Configurations.

 Gravitation Theory and Gravitational Collapse, University of
 Chicago Press.

 On Relativistic Astrophysics.

 Superdense Stars of Large Size.

 Multi-Baryons and Many Body Forces.

 137, B1364.
 Vaidya's Radiating Schwarzschild Metric.

 Hydrodynamic Calculations of General Relativistic Collapse.

 Gravitational Collapse to a Small Volume.

 Collapse of Massive Stars.

 Relativistic Equations for Adiabatic, Spherically Symmetric
 Gravitational Collapse.

 Relativistic Equations for Spherical Gravitational Collapse with
 Escaping Neutrons.

 On the Problem of Gravitational Collapse.

 A Simple and Well-Adjusted Exterior Metric for a Collapsing
 or Anti-Collapsing Star.

 Adiabatic Fluid Spheres in General Relativity.

 An Analytical Solution for Gravitational Collapse with
 Radiation.
 Neutrino Luminosity of a Star in Gravitational Collapse in the
 General Theory of Relativity.

 Conversion into Neutrons of Matter under Collapse and the
 Neutrino Spectrum.

 Collapsed Stars in Binaries (Letter to editor).
VII. RAPIDLY CHANGING STARS

A. Stellar Stability

Stability of Polytropic Gas Spheres.

The Points of Bifurcation along the Maclaurin, the Jacobi,
and the Jeans Sequences.

The Equilibrium and Stability of Darwin Ellipsoids.

The Calculation of Stellar Pulsation.
(See also A. J., 68, 275, 534).

La stabilité vibrationelle de Kruger 60A et des naines rouges.

Binary systems with Decreasing Mass.

The Relativistic Instability of Polytropic Spheres.

On Schwarzschild's Criterion for the Stability of Gaseous Masses.

Thermal Instability in Non-Degenerate Stars.

Stellar Stability.

Critical Mass Limit and Stability of Some Relativistic Stellar
Models.

On the Maximum Mass of Stable Stars.

Stability Criterion for Hydrostatic Equilibrium.
B. Variable Stars

Auto-Oscillations of Variable Stars.

The Influence of Hydrogen and He I Ionization Zones on Cepheid
Pulsation.

The Virial Theorem for Radiating and Gravitating Gaseous Systems.

The Pulsations of Models of δ-Cephei Stars.
(Reference in A. J., 66, 278).

Pulsating Instability of Cepheid Models.
(Abstract).

The Pulsating Models of Delta Cephei Stars, II.

Cameron, eds., 333.
Simplified Models for Cepheid Instability.

Interpretation der Phasenbeziehungen zwischen Geswindigkeits-und
Leuchtkraft Kurve bei δ Cephei-Sternen.

On the Beat Phenomenon in δ Cephei Stars.

Belgique (5), 47, 543.
Modes élevés d'oscillation radiale du Modèle standard et
stabilité vibrationelle des étoiles.

Effets de la convection sur la stabilité vibrationelle des
étoiles massives.

Stabilité vibrationelle des étoiles de Hélium pur.

A Speculation Concerning the Evolutionary State of Eta Carinae
(Note).

 Pulsation Models of Delta Cephei and Eta Aquilae.
 (Note).

 The Radial and Non-Radial Oscillations of Slowly Rotating
 Gaseous Masses.

 Non-Radial Oscillations and the Beta Canis Majoris Stars.

 On the Exact Splitting of the Pulsation Modes in Connection
 with the Beta Canis Majoris Stars.
 (Letter to editor).

 Computer Program for Stellar Pulsation.
 (Abstract).

 Non-Adiabatic Stellar Pulsation, I.

 Stellar Pulsation IV. A Semi-Theoretical Period-Luminosity
 Relation for Classical Cepheids.

 Stellar Pulsation V. A Semi-Theoretical Period-Luminosity
 Relation for Cepheids with Radiative Envelopes.

 A Preliminary Analysis of the Effectiveness of Second Helium
 Ionization in Inducing Cepheid Instability in Stars.

 On Second Helium Ionization as a Course of Pulsational Instability
 in Stars.

 Comments on Zhevakin's Paper, "One Common Error in the
 Theory of Stellar Variability".

 Self-Excited Pulsations in Stellar Envelopes.
 (Abstract).

 Cameron, eds., 347.
 Excitation and Growth of Radial Pulsations.

The Effects of Radiative Breaking on Free Periods of stellar Pulsations.

Color Excesses for Supergiants and Classical Cepheids III.
The Color-Magnitude Array for Cepheids in the Vicinity of the Sun.

Einige Bemerkungen über Pulsierende Gaskugeln.

Über pulsierende Gaskugeln: Antwort auf eine Kritik.

The Virial Tensor and its Application to Self-Gravitating Fluids.

Sur la forme Asymptotique des pulsations radiales adiabatiques d'une étoile.

The Propagation of Disturbances and Shock Waves in the Inside of Stars, I.

The Propagation of Shock Waves in the Inside of Stars, II.

Gravitational Effects of Luminosity.

On Convective Overstability.
(Abstract).

A Thermally Excited Non-Linear Oscillation.

Note on the Nature of ßC Ma Variables.
Radial Pulsations of the Polytrope \(n = 2 \).

The Calculation of Pulsation Constants for the RR Lyrae Stars in M3.

The Intrinsic Dispersion of the Period-Luminosity Relation of Classical Cepheids.

Cepheid Vibration.

Transfer of Mass in Close Binary Stars.

An Evolutionary-Significant Group of Eclipsing Variables.

Radial Oscillations of the Generalized Roche Model.

On the Periods of Long Period Variables in Globular Clusters.

On the Evolutionary State of \(\beta \) Cephei Stars.

Sur les conditions aux limites de la pulsation non-adiabatique d'étoile.

The Influence of Atmospheric Layers on the Pulsation of the Cepheid Variable.

Über die Stabilität der Radialen Pulsation der Sterne.

Anharmonic Pulsations of an Early Main-Sequence Star.

The Shock-Wave Model for the Population II Cepheids.
 Initial Motions of a Jacobi Ellipsoid Away from Its Unstable Form.

 The Dissipation of the Energy of Oscillation of a Pulsating Star.

 On the Calculation of Non-Adiabatic Stellar Pulsations by Use
 of a Discrete Model.

 On the Pulsation Theory of Stellar Variability V.

 The Pulsational Theory of Stellar Variability VI.

 Phase and Amplitude Variations in Radiation Traversing a Non-Adiabatic
 Envelope of a Pulsating Star.

 One Common Error in the Theory of Stellar Variability.

 The Incorrectness of Cox and Whitney's Simplified Criterion for
 the Pulsational Instability of a Star.

 Physical basis of the Pulsation Theory of Variable Stars.

C. Novae and Supernovae

 Californium 254, Iron 59, and Supernovae of Type I.

 On the Lower Mass Limit for Implosion Type Supernovae.

 Radioactivity in Supernovae Remnants.

 Hydrodynamic Origin of Cosmic Rays.

APPENDIX: TABLE OF STELLAR MODELS

<table>
<thead>
<tr>
<th>M/M☉</th>
<th>Initial Composition</th>
<th>Reference</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td><1.4</td>
<td>He⁴, C¹², Mg²⁴, Si²⁸, S³², or Fe⁵⁶ plus an equilibrium composition of these</td>
<td>503, Hamada, et al.</td>
<td>1961</td>
</tr>
<tr>
<td>0.04</td>
<td>I X = .90, Y = .009, Z = .01 II X = .62, Y = .35, Z = .03</td>
<td>530, Kumar</td>
<td>1963</td>
</tr>
<tr>
<td>0.05</td>
<td></td>
<td>530, Kumar</td>
<td>1963</td>
</tr>
<tr>
<td>0.06</td>
<td></td>
<td>530, Kumar</td>
<td>1963</td>
</tr>
<tr>
<td>0.07</td>
<td></td>
<td>530, Kumar</td>
<td>1963</td>
</tr>
<tr>
<td>0.08</td>
<td></td>
<td>530, Kumar</td>
<td>1963</td>
</tr>
<tr>
<td>0.09</td>
<td></td>
<td>530, Kumar</td>
<td>1963</td>
</tr>
<tr>
<td>0.0912</td>
<td>X = .75, Y = .23, Z = .02</td>
<td>532, Limber</td>
<td>1958</td>
</tr>
<tr>
<td>0.10</td>
<td></td>
<td>532, Limber</td>
<td>1958</td>
</tr>
<tr>
<td>0.11</td>
<td></td>
<td>532, Limber</td>
<td>1958</td>
</tr>
<tr>
<td>0.126</td>
<td></td>
<td>532, Limber</td>
<td>1958</td>
</tr>
<tr>
<td>0.158</td>
<td></td>
<td>532, Limber</td>
<td>1958</td>
</tr>
<tr>
<td>0.162</td>
<td>X = .48, Y = .511, Z = .009</td>
<td>526, Kaminisi</td>
<td>1960</td>
</tr>
<tr>
<td>0.209</td>
<td>X = .56, Y = .43, Z = .01</td>
<td>526, Kaminisi</td>
<td>1960</td>
</tr>
<tr>
<td></td>
<td>X = .50, Y = .47, Z = .03</td>
<td>526, Kaminisi</td>
<td>1960</td>
</tr>
<tr>
<td>0.251</td>
<td>see above</td>
<td>532, Limber</td>
<td>1958</td>
</tr>
<tr>
<td>0.269</td>
<td>X = .664, Y = .328, Z = .008</td>
<td>526, Kaminisi</td>
<td>1960</td>
</tr>
<tr>
<td></td>
<td>X = .500, Y = .471, Z = .029</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.31 E</td>
<td>Y = 1</td>
<td>488, Cox, et al.</td>
<td>1964</td>
</tr>
<tr>
<td>0.35</td>
<td>Y = 1</td>
<td>488, Cox, et al.</td>
<td>1964</td>
</tr>
<tr>
<td>.398</td>
<td>see p 94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.40</td>
<td>Y = 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.4</td>
<td>X = 0, Y = .999, Z = .001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.4</td>
<td>Y = 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.454</td>
<td>X = 0, Y = 0, Z = 1 with $X_c \sim .02$ to .03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.4832</td>
<td>Y = 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.499</td>
<td>see above</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.5</td>
<td>Y = 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.5</td>
<td>Y = 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.5 E</td>
<td>Y = 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.5 E</td>
<td>X = .38, Z = .015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.5 E</td>
<td>see above</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.5</td>
<td>Y = 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.53</td>
<td>X = .9, Y = .1 in convective envelope and radiative in intermediate zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X = 0, Y = 1 in isothermal core $X_{CN} = .005$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.56</td>
<td>$X_{CN} = .005$ see above</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.58</td>
<td>$X_{CN} = .0005$ see above</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.59 E</td>
<td>X = .38, Z = .015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.6</td>
<td>X = .999, Z = .001 or .01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X = .75, Z = .001 or .01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X = .75, Z = .005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.6</td>
<td>see 492, Demarque 1960</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.62</td>
<td>$X_{CN} = .005$ see above</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.620</td>
<td>X = 0, Y = .999, Z = .001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.631</td>
<td>X = .75, Y = .23, Z = .02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>532, Limber</td>
<td>1958</td>
<td></td>
<td></td>
</tr>
<tr>
<td>488, Cox, et al.</td>
<td>1964</td>
<td></td>
<td></td>
</tr>
<tr>
<td>497, Divine</td>
<td>1965</td>
<td></td>
<td></td>
</tr>
<tr>
<td>545, Rose</td>
<td>1966</td>
<td></td>
<td></td>
</tr>
<tr>
<td>490, Deinzer, et al.</td>
<td>1965</td>
<td></td>
<td></td>
</tr>
<tr>
<td>489, Deinzer, et al.</td>
<td>1964</td>
<td></td>
<td></td>
</tr>
<tr>
<td>490, Deinzer, et al.</td>
<td>1965</td>
<td></td>
<td></td>
</tr>
<tr>
<td>486, Cox, et al.</td>
<td>1961</td>
<td></td>
<td></td>
</tr>
<tr>
<td>487, Cox, et al.</td>
<td>1961</td>
<td></td>
<td></td>
</tr>
<tr>
<td>488, Cox, et al.</td>
<td>1964</td>
<td></td>
<td></td>
</tr>
<tr>
<td>482, Bodenheimer</td>
<td>1965</td>
<td></td>
<td></td>
</tr>
<tr>
<td>497, Divine</td>
<td>1965</td>
<td></td>
<td></td>
</tr>
<tr>
<td>545, Rose</td>
<td>1966</td>
<td></td>
<td></td>
</tr>
<tr>
<td>556, Shimoda, et al.</td>
<td>1958</td>
<td></td>
<td></td>
</tr>
<tr>
<td>556, Shimoda, et al.</td>
<td>1958</td>
<td></td>
<td></td>
</tr>
<tr>
<td>556, Shimoda, et al.</td>
<td>1958</td>
<td></td>
<td></td>
</tr>
<tr>
<td>482, Bodenheimer</td>
<td>1965</td>
<td></td>
<td></td>
</tr>
<tr>
<td>491, Demarque</td>
<td>1960</td>
<td></td>
<td></td>
</tr>
<tr>
<td>492,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>493, Demarque</td>
<td>1961</td>
<td></td>
<td></td>
</tr>
<tr>
<td>556, Shimoda, et al.</td>
<td>1958</td>
<td></td>
<td></td>
</tr>
<tr>
<td>497, Divine</td>
<td>1965</td>
<td></td>
<td></td>
</tr>
<tr>
<td>532, Limber</td>
<td>1958</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[X = 0.65, \quad X_{\text{CNO}} = Z/2 = 10^{-3},\]
\[10^{-4}, 10^{-5} \]

\[X = 0.38, \quad Z = 0.015 \]

\[I \quad X = 0.7, \quad Y = 0.3, \quad Z < 10^{-4}, \quad X_C = 0 \]

\[II \quad X = 0.7, \quad Y = 0.2965, \quad Z < 10^{-4}, \quad X_C = 0 \]

\[III \quad X = 0.7, \quad Y = 0.293, \quad Z < 10^{-4}, \quad X_C = 0.0035 \]

\[IV \quad X = 0.7, \quad Y = 0.299, \quad Z = 0.001, \quad X_C = 0 \]

\[V \quad X = 0.7, \quad Y = 0.292, \quad Z = 0.001, \quad X_C = 0.007 \]

\[VI \quad X = 0.7, \quad Y = 0.297, \quad Z = 0.003, \quad X_C = 0 \]

\[VII \quad X = 0.8, \quad Y = 0.20, \quad Z < 10^{-4}, \quad X_C = 0 \]

\[VIII \quad X = 0.8, \quad Y = 0.196, \quad Z < 10^{-4}, \quad X_C = 0.004 \]

\[IX \quad X = 0.8, \quad Y = 0.192, \quad Z < 10^{-4}, \quad X_C = 0.008 \]

\[X \quad X = 0.99, \quad Y = 0.01, \quad Z < 10^{-4}, \quad X_C = 0 \]

\[.7 E \quad X = 0.90, \quad Y = 0.10, \quad Z = 0.001 \]

\[.7 E \quad X = 0.90, \quad Y = 0.10, \quad Z = 0.001, \quad X_{\text{CN}} = Z/2 \]

\[.7 \quad \text{Envelope: } X = 0.9, \quad Y = 0.099, \quad Z = 0.001, \quad X_{\text{CN}} = (Z/7)/40 \]

\[\text{Core: } X = 0, \quad Y = 0.999, \quad Z = 0.001 \]

\[.70 E \quad X = 0.65, \quad X_{\text{CNO}} = Z/2 = 10^{-3}, \quad 10^{-4}, \quad 10^{-5} \]

\[X = 0.90, \quad X_{\text{CNO}} = Z/2 = 10^{-4} \]

\[.718 \quad X = 0, \quad Y = 0, \quad Z = 1, \quad X_{\text{CN}} \sim 0.02 \text{ or } 0.03 \]

\[.71 \quad Y = 1 \]

501, Faulkner, et al. 1966
482, Bodenheimer 1965
568, Varsavsky, et al. 1962
510, Hayashi, et al. 1962
513, Hayashi, et al. 1963
563, Suda, et al. 1965
501, Faulkner, et al. 1966
490, Deinzer, et al. 1965
488, Cox, et al. 1964
X = .65, X_{CNO} = Z/2 = 10^{-3}, 10^{-4}, 10^{-5}
X = .90, X_{CNO} = Z/2 = 10^{-4}

Y = 1.0

see p 95

see p 95

see p 95

see p 95

I Y = 1
II Y = 1 for 0 \leq M/M_\odot \leq .85
III Y = 1 for 0 \leq M/M_\odot \leq .8
II, X = .9, Y = .099, Z = .001
III in envelope

X = .57 or .77, Z = .03

X = .67, Z = .03

X = .66, Z = .0264

see p 95

see p 95

X_{CN} = .005 see p 95

X = .6, Z = .02, X_{CN} = .18Z

see p 95

X_{CN} = .005 see p 95

X = .7, Z = .02, X_{CN} = .18Z

see p 96

X = .57 or .77, Z = .03

X = .67, Z = .03

X = .6, Z = .02, X_{CN} = .19Z

see above

501, Faulkner, et al. 1966

545, Rose 1966

497, Divine 1965

490, Deinzer, et al. 1965

491, Demarque 1960

492,

493, Demarque 1961

538, Osaki 1963

495, Demarque, et al. 1964

495, Demarque, et al. 1964

482, Bodenheimer 1965

497, Divine 1965

490, Deinzer, et al. 1965

556, Shimoda, et al. 1958

520, Iben et al. 1962

490, Deinzer, et al. 1965

556, Shimoda, et al. 1958

520, Iben, et al. 1962

568, Varsavsky, et al. 1962

495, Demarque, et al. 1964

495, Demarque, et al. 1964

539, Pearce, et al. 1965

539, Pearce, et al. 1965
see p 97
see p 97
see p 97
see p 97
$X_{CN} = .0005$ see p 95
see p 97
see p 97
$X_{CN} = .005$ see p 95
$X = 0, Y = 0, Z = 1,$
$X_{CN} \sim .02$ or .03
$X_{CN} = .005$ see p 95
$Y = 1.0$
$X = .75, Y = .249, Z = .001$
$X_{CN} = .0005$ see p 95
$X = .75, Y = .23, Z = .02$
$X = .76, Y = .2375, Z = .0025$
$X = .85, Y = .1475, Z = .0025$
$X = .93, Y = .0675, Z = .0025$
$X = .99, Y = .0075, Z = .0025$
Z is all C-N
$X = .75, Y = .235, Z = .015$
see p 95
$X = .995, Y = .003, Z = .002$
$X = .90, Y = .09, Z = .01$
(envelope)
$X = 0, Y = .99, Z = .01$
(core)
$Y = 1$
$Y = 1$

537, Pearce, et al. 1965
539, Pearce, et al. 1965
539, Pearce, et al. 1965
539, Pearce, et al. 1965
556, Shimoda, et al. 1958
539, Pearce, et al. 1965
539, Pearce, et al. 1965
556, Shimoda, et al. 1958
490, Deinzer, et al. 1965
556, Shimoda, et al. 1958
489, Deinzer, et al. 1964
506, Haselgrove, et al. 1950
556, Shimoda, et al. 1958
532, Limber 1958
480, Blackler 1953
553, Sears 1959
491, Demarque 1960
492,
533, Massevich, et al. 1960
562, Suda, et al 1960
486, Cox, et al. 1961
487, Cox, et al. 1961
1.0 see 492, Demarque 1960 p 95
1.0 X = 1
1.0 Y = .999, Z = .001
1.0 E X = .999, Y = 0, Z = .001
1.0 E Y = 1
1.0 E Z = .02 for X = .78, .76, .74, .72, .70
Z = .025 for X = .74, .72, .70, .68, .66
Z = .030 for X = .72, .70, .68, .66, .64
Z = .035 for X = .70, .68, .66, .64
Z = .040 for X = .68, .66, .64
1.0 X = .57 or .77, Z = .03
1.0 E X = .67, Z = .03
1.0 X = .68, Y = .276, Z = .044,
X_{CN} = .0091
1.0 E .68 \leq X \leq .81, Z = .04
1.0 E X = .90, Y = .099, Z = .001
1.0 E Variable-X = .71, Y = .27
Z = .02 gives best model
1.0 X = .739, Y = .240, Z = .021
X_o = 4.618 \times 10^{-3}, X_{N} = .97 \times 10^{-3}, X_0 = 1.0715 \times 10^{-2}
1.00 X = .6, Z = .02, X_{CN} = .19 Z
1.0 E X = .66, Z = .0264
1.0 E X = 0, Y = .999, Z = .001
1.0 see p 96
1.0 X = .9, Y = .099, Z = .001
X_{CNO} = (Z/2)/40
1.0 E
X = .65, X_{CNO} = Z/2 = 10^{-3}, 10^{-4}, 10^{-5} CNO
X = .90, X_{CNO} = Z/2 = 10^{-4}
population II stars

1.01
X = .75, Y = .24, Z = .01

1.02
X = .75, Y = .249, Z = .001

1.05
X = .7, Z = .02, X_{CN} = .18 Z

1.05
X = .7, Z = .01 X_{CN} = .19 Z

1.06
X = .99, Y = .009, Z = .001

1.06
see above (1.05)

1.07
X = .7, Z = .01, X_{CN} = .18 Z

1.07
X_{CN} = .0005 see p 95

1.07
see above (1.05)

1.08
see above (1.05)

1.085
see above (1.05)

1.09
X_{CN} = .0005 see p 95

1.09
X = .75, Y = .24, Z = .01

1.09
X = .75, Y = .24, Z = .01

1.09
see above (1.05)

1.095
see above (1.05)

1.10
see p 96

1.10
X = .57, .67, or .77, Z = .03

1.10
X = .7, Z = .01, .02, X_{CN} = .19 Z

1.110
X = .7, Z = .02, X_{CN} = .19 Z

1.112
X = .75, Z = .015, X_{CN} = .18 Z

1.120
see above (1.110)

501, Faulkner, et al. 1965

557, Smak 1960

506, Haselgrove, et al. 1959

506, Haselgrove, et al. 1959

520, Iben, et al. 1962

539, Pearce, et al. 1965

506, Haselgrove, et al. 1959

539, Pearce, et al. 1965

520, Iben, et al. 1962

556, Shimoda, et al. 1958

539, Pearce, et al. 1965

539, Pearce, et al. 1965

539, Pearce, et al. 1965

556, Shimoda, et al. 1958

506, Haselgrove, et al. 1959

518, Hoyle 1959

539, Pearce, et al. 1965

539, Pearce, et al. 1965

568, Varsavsky, et al. 1962

495, Demarque, et al. 1964

539, Pearce, et al. 1965

539, Pearce, et al. 1965

520, Iben, et al. 1962

539, Pearce, et al. 1965

539, Pearce, et al. 1965
1.13 $X_{CN} = .005$, see p 95
1.13 see p 100 (1.110)
1.135 see p 100 (1.110)
1.140 see p 100 (1.110)
1.150 see p 100 (1.110)
1.16 E $X = .75, Y = .249, Z = .001$
1.17 $X = .75, Y = .249, Z = .001$
1.175 $X = .8, Z = .01$
1.19 $X = .75, Y = .24, Z = .01$
1.2 E $X = .9, Y = .1, X_{CN} = .0005$
1.20 $X = .99, Y = .009, Z = .001$
1.2 E see p 96
1.20 E $X = .999, Y = 0, Z = .001$
$X = .99, Y = 0, Z = .01$
$X = 1, Y = 0, Z = 0$
$X = .749, Y = .25, Z = .001$
1.2 $X = .57, .67, .77, Z = .03$
1.20 $X = .8, Z = .02$
$X = .8, (X_{CN} = .19 Z), Z = .01$
$X = .7, Z = .02$
1.2 E $X = .66, Z = .0264$
1.2 E $X = .899, Y = .100, Z = .001$
$X = .891, Y = .099, Z = .01$
1.21 $X = .6, Z = .02$
1.25 $X = .99, Y = .009, Z = .001$
1.25 $X = .8, Z = .02$
1.25 $Y = 1.0$
1.250 $X = .8, Z = .02$,
$X = .7, (X_{CN} = .19 Z), Z = .02, .01$
$X = .6, Z = .02$
556, Shimoda, et al. 1958
539, Pearce, et al. 1965
518, Hoyle 1959
506, Haselgrove, et al. 1959
520, Iben, et al. 1962
506, Haselgrove, et al. 1959
527, Kippenhahn, et al. 1958
506, Haselgrove, et al. 1959
562, Suda, et al. 1960
494, Demarque, et al. 1963
495, Demarque, et al. 1964
539, Pearce, et al. 1965
482, Bodenheimer 1965
531, Kung, et al. 1965
520, Iben, et al. 1962
506, Haselgrove, et al. 1959
520, Iben, et al. 1962
488, Cox, et al. 1964
539, Pearce, et al. 1965
<table>
<thead>
<tr>
<th>1.25</th>
<th>X = 0, Y = .999, Z = .001</th>
<th>497, Divine</th>
<th>1965</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25</td>
<td>X = .9,.65,</td>
<td>500, Faulkner</td>
<td>1966</td>
</tr>
<tr>
<td></td>
<td>$X_{\text{CNO}} = .5Z = 10^{-5}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.25 E</td>
<td>X = .65, $X_{\text{CNO}} = .5Z = 10^{-3}$</td>
<td>501, Faulkner, et al.</td>
<td>1966</td>
</tr>
<tr>
<td></td>
<td>X = .90, $X_{\text{CNO}} = .5Z = 10^{-4}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.256</td>
<td>X = .7, Z = .02</td>
<td>520, Iben, et al.</td>
<td>1962</td>
</tr>
<tr>
<td>1.26</td>
<td>$X_{\text{CN}} = .0005$ see p 95</td>
<td>556, Shimoda, et al.</td>
<td>1958</td>
</tr>
<tr>
<td>1.27 E</td>
<td>X = .9309, Y = .0666, Z = .0025</td>
<td>505, Haselgrove, et al.</td>
<td>1958</td>
</tr>
<tr>
<td>1.29</td>
<td>X = .75, Y = .24, Z = .01</td>
<td>506, Haselgrove, et al.</td>
<td>1959</td>
</tr>
<tr>
<td>1.30 E</td>
<td>X = .90, Y = .099, Z = .001</td>
<td>551, Schwarzschild, et al.</td>
<td>1962</td>
</tr>
<tr>
<td>1.30 E</td>
<td>X = .75, Y = .22, Z = .03</td>
<td>552, Schwarzschild, et al.</td>
<td>1962</td>
</tr>
<tr>
<td>1.3</td>
<td>see p 96</td>
<td>558, Varsavsky, et al.</td>
<td>1962</td>
</tr>
<tr>
<td>1.3</td>
<td>X = .57,.67,.77, Z = .03</td>
<td>495, Demarque, et al.</td>
<td>1964</td>
</tr>
<tr>
<td>1.3 E</td>
<td>X = .90, Y = .099, Z = .001</td>
<td>504, Härm, et al.</td>
<td>1964</td>
</tr>
<tr>
<td></td>
<td>X = .90, Y = .090, Z = .01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.30</td>
<td>X = .8, Z = .02,.01, $X_{\text{CN}} = .19$ Z</td>
<td>539, Pearce, et al.</td>
<td>1955</td>
</tr>
<tr>
<td>1.3</td>
<td>see p 96, also X = .8, Z = .001</td>
<td>563, Suda, et al.</td>
<td>1956</td>
</tr>
<tr>
<td></td>
<td>$X_{\text{CNO}} = (Z/7)/40$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>X = .9, Z = .01,.001,</td>
<td>569, Virgopia, et al.</td>
<td>1966</td>
</tr>
<tr>
<td></td>
<td>$X_{\text{CNO}} = Z/7$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X = .9, Z = .01,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$X_{\text{CNO}} = (Z/7)/40$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.303</td>
<td>X = .6, Z = .02, $X_{\text{CN}} = .18$ Z</td>
<td>520, Iben, et al.</td>
<td>1962</td>
</tr>
<tr>
<td>1.31</td>
<td>$X_{\text{CNO}} = .005$, see p 95</td>
<td>556, Shimoda, et al.</td>
<td>1958</td>
</tr>
<tr>
<td>1.310</td>
<td>X = .8, Z = .01, $X_{\text{CN}} = .19$ Z</td>
<td>539, Pearce, et al.</td>
<td>1965</td>
</tr>
<tr>
<td>1.315</td>
<td>see above (1.31)</td>
<td>539, Pearce, et al.</td>
<td>1965</td>
</tr>
<tr>
<td>1.320</td>
<td>see above (1.31)</td>
<td>539, Pearce, et al.</td>
<td>1965</td>
</tr>
<tr>
<td>1.330</td>
<td>see above (1.31)</td>
<td>539, Pearce, et al.</td>
<td>1965</td>
</tr>
</tbody>
</table>
1.34 \(X = .75, Y = .249, Z = .001 \)

1.340 see p 102 (1.31)

1.35 \(X = .99, Y = .009, Z = .001 \)

1.35 E \(X = .99, Y = .009, Z = .001 \)

1.350 \(X = .8, Z = .02, .01, X_{CN} = .19 Z \)

1.354 \(X = .7, Z = .02 \)

1.360 \(X = .8, Z = .02, X_{CN} = .19 Z \)

1.365 see above (1.360)

1.370 see above (1.360)

1.380 see above (1.360)

1.390 see above (1.360)

1.40 \(X = .75, Y = .24, Z = .01 \)

1.40 \(X = .8, Z = .02, .01, X_{CN} = .19 Z \)

1.420 \(X = .8, Z = .01, X_{CN} = .18 Z \)

1.43 \(X_{CN} = .005 \) see p 95

1.43 \(X = .75, Y = .249, Z = .001 \)

1.44 \(X = .75, Z = .015, X_{CN} = .18 Z \)

1.45 see above (1.360)

1.46 \(X = .75, Y = .24, Z = .01 \)

1.47 \(X = .99, Y = .009, Z = .001 \)

1.47 \(X = .7, Z = .01, X_{CN} = .18 Z \)

1.48 \(X_{CN} = .0005 \) see p 95

1.48 \(X = .73, Y = .25, Z = .02 \)

1.5 E \(X = .68, Y = .31, Z = .01 \)

1.5 see p 96

506, Haselgrove, et al. 1959

539, Pearce, et al. 1965

506, Haselgrove, et al. 1959

518, Hoyle 1959

539, Pearce, et al. 1965

520, Iben, et al. 1962

539, Pearce, et al. 1965

506, Haselgrove, et al. 1959

539, Pearce, et al. 1965

506, Haselgrove, et al. 1959

520, Iben, et al. 1962

556, Shimoda, et al. 1958

506, Haselgrove, et al. 1959

520, Iben, et al. 1962

539, Pearce, et al. 1965

506, Haselgrove, et al. 1959

506, Haselgrove, et al. 1959

520, Iben, et al. 1962

556, Shimoda, et al. 1958

479, Bennick, et al. 1965

514, Henyey, et al. 1959

568, Varsavsky, et al. 1962
<table>
<thead>
<tr>
<th>1.5</th>
<th>$Y = 1.0$</th>
<th>488, Cox, et al.</th>
<th>1964</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>$X = .7, .8, Z = .02, .01$</td>
<td>539, Pearce, et al.</td>
<td>1965</td>
</tr>
<tr>
<td>1.5</td>
<td>$X = .6, Z = .02$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>$X_{CN} = .19 Z$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.506</td>
<td>$X = 0, Y = .999, Z = .001$</td>
<td>497, Divine</td>
<td>1965</td>
</tr>
<tr>
<td>1.52</td>
<td>$X = .7, Z = .02, X_{CN} = .18 Z$</td>
<td>520, Iben, et al.</td>
<td>1962</td>
</tr>
<tr>
<td>1.52</td>
<td>$X = .75, Y = .24, Z = .01$</td>
<td>506, Haselgrove, et al.</td>
<td>1959</td>
</tr>
<tr>
<td>1.52</td>
<td>$X = .75, Y = .249, Z = .001$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.52 E</td>
<td>$X = .75, Y = .23, Z = .02$</td>
<td>519, Hoyle</td>
<td>1969</td>
</tr>
<tr>
<td>1.52 E</td>
<td>see p 96</td>
<td>562, Suda, et al.</td>
<td>1963</td>
</tr>
<tr>
<td>1.538</td>
<td>$X = 0, Y = 0, Z = 1, X_C \sim .02$ or 0.03</td>
<td>490, Deinzer, et al.</td>
<td>1965</td>
</tr>
<tr>
<td>1.563</td>
<td>$X = .6, Z = .02, X_{CN} = .18 Z$</td>
<td>520, Iben, et al.</td>
<td>1962</td>
</tr>
<tr>
<td>1.581</td>
<td>$X = .8, Z = .02, X_{CN} = .18 Z$</td>
<td>520, Iben, et al.</td>
<td>1962</td>
</tr>
<tr>
<td>1.596</td>
<td>$X = .75, Z = .015, X_{CN} = .18 Z$</td>
<td>520, Iben, et al.</td>
<td>1962</td>
</tr>
<tr>
<td>1.6</td>
<td>$X_{CN} = .0005$ see p 95</td>
<td>556, Shimoda, et al.</td>
<td>1958</td>
</tr>
<tr>
<td>1.6</td>
<td>$X = .99, Y = .009, Z = .001$</td>
<td>506, Haselgrove, et al.</td>
<td>1959</td>
</tr>
<tr>
<td>1.6</td>
<td>see p 102 (1.31)</td>
<td>539, Pearce, et al.</td>
<td>1965</td>
</tr>
<tr>
<td>1.61</td>
<td>$X_{CN} = .005$ see p 95</td>
<td>556, Shimoda, et al.</td>
<td>1958</td>
</tr>
<tr>
<td>1.61</td>
<td>$X = .75, Y = .249, Z = .001$</td>
<td>506, Haselgrove, et al.</td>
<td>1959</td>
</tr>
<tr>
<td>1.623</td>
<td>$X = 0, Y = 0, Z = 1, X_C \sim .02$ to 0.03</td>
<td>490, Deinzer, et al.</td>
<td>1965</td>
</tr>
<tr>
<td>1.645</td>
<td>see above</td>
<td>490, Deinzer, et al.</td>
<td>1965</td>
</tr>
<tr>
<td>1.7</td>
<td>see p 96</td>
<td>568, Varsavsky, et al.</td>
<td>1962</td>
</tr>
<tr>
<td>1.706</td>
<td>$X = .8, Z = .01, X_{CN} = .18 Z$</td>
<td>520, Iben, et al.</td>
<td>1962</td>
</tr>
<tr>
<td>1.74</td>
<td>$X = .99, Y = .009, Z = .001$</td>
<td>506, Haselgrove, et al.</td>
<td>1959</td>
</tr>
<tr>
<td>1.750</td>
<td>$X = .8, .7, Z = .02, .01$</td>
<td>539, Pearce, et al.</td>
<td>1965</td>
</tr>
<tr>
<td></td>
<td>$X = .6, Z = .02$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$X_{CN} = .19 Z$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.794</td>
<td>$X = 0.8, Z = 0.02, X_{CN} = 0.18 Z$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.811</td>
<td>$X = 0.7, Z = 0.01, X_{CN} = 0.18 Z$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 1.82 | $
u_i / \nu_c = 1.0, 1.5788, 2.5, 2.6667$ |
| 1.82 | $X_{CN} = 0.005$ see p 95 |
| 1.86 | $X = 0.6, Z = 0.02, X_{CN} = 0.18 Z$ |
| 1.866 | $X = 0.7, Z = 0.02, X_{CN} = 0.18 Z$ |
| 1.87 | $X = 0.75, Z = 0.015, X_{CN} = 0.18 Z$ |
| 1.94 | $X_{CN} = 0.005$ see p 95 |
| 1.94 | $X = 0.75, Y = 0.249, Z = 0.001$ |
| 1.97 | $X = 0.75, Y = 0.24, Z = 0.01$ |
| 2.0 E | see p 98 |
| 2.0 E | $X = 0.68, Y = 0.31, Z = 0.01$ |
| 2.0 E | see p 96 |
| 2.0 | $Y = 1$ |
| 2.0 | $Y = 1$ |
| 2.0 | $X = 1$ |
| 2.0 E | $Y = 1$ |
| 2.0 | $X = 0.596, Z = 0.02$ |
| 2.00 | see p 104 (1.75) |
| 2.0 E | $X = 0.596, Z = 0.02, X_{CN} = 0.20 Z$ |
| 2.0 | $X = 0, Y = 0.999, Z = 0.001$ |
| 2.02 | $X = 0.8, Z = 0.01, X_{CN} = 0.18 Z$ |
| 2.03 | $X_{CN} = 0.005$ see p 95 |
| 2.04 | $X_{CN} = 0.005$ see p 95 |
| 2.07 | $X = 0.99, Y = 0.009, Z = 0.001$ |
| 2.10 | $X = 0.8, Z = 0.02, X_{CN} = 0.18 Z$ |
| 520, Iben, et al. | 1962 |
| 520, Iben, et al. | 1962 |
| 515, Hitotuyanagi, et al. | 1958 |
| 556, Shimoda, et al. | 1958 |
| 520, Iben, et al. | 1962 |
| 520, Iben, et al. | 1962 |
| 520, Iben, et al. | 1962 |
| 556, Shimoda, et al. | 1958 |
| 506, Haselgrove, et al. | 1959 |
| 506, Haselgrove, et al. | 1959 |
| 480, Blackler | 1958 |
| 514, Henyey, et al. | 1959 |
| 562, Suda, et al. | 1960 |
| 486, Cox et al. | 1961 |
| 487, Cox, et al. | 1961 |
| 498, Ezer | 1961 |
| 488, Cox, et al. | 1964 |
| 476, Auman, et al. | 1965 |
| 539, Pearce, et al. | 1965 |
| 477, Auman | 1965 |
| 497, Divine | 1965 |
| 520, Iben, et al. | 1962 |
| 556, Shimoda, et al. | 1958 |
| 556, Shimoda, et al. | 1958 |
| 506, Haselgrove, et al. | 1959 |
| 520, Iben, et al. | 1962 |
| 2.135 | X = .75, Z = .015, X\textsubscript{CN} = .18 Z |
| 2.172 | X = .7, Z = .01, X\textsubscript{CN} = .18 Z |
| 2.20 | X\textsubscript{CN} = .005,.0005 see p 95 |
| 2.22 | X\textsubscript{CN} = .005 see p 95 |
| 2.26 | X = .6, Z = .02, X\textsubscript{CN} = .18 Z |
| 2.28 | X\textsubscript{CN} = .0005 see p 95 |
| 2.280 | X = .7, Z = .02, X\textsubscript{CN} = .18 Z |
| 2.29 | X\textsubscript{CN} = .0005 see p 95 |
| 2.292 | Y = 1 |
| 2.3 E | I-C12 = .0042, C13 = 5.4(-5), N = 1.45(-3), O = 1.31(-2) |
| | II-C12 = .0016, C13 = 5.4(-5), N = 5.49(-3), O = 1.31(-2) |
| | III-C12 = .0016, C13 = 5.4(-5), N = 1.359(-2), O = 5(-3) |
| | IV-C12 = .0028, C13 = 3.6(-5), N = 9.67(-4), O = 8.74(-3) |
| | X = .68, Y = .29 for all 4 cases |
| 2.32 | X = .8, Z = .01, X\textsubscript{CN} = .18 Z |
| 2.43 | X = .75, Y = .249, Z = .001 |
| 2.46 | X = .99, Y = .009, Z = .001 |
| 2.48 | X\textsubscript{CN} = .0005 see p 95 |
| 2.49 | X\textsubscript{CN} = .0005 see p 95 |
| 2.5 | X = .7, Y = .28, Z = .02, X\textsubscript{CN} = .19 Z |
| 2.5 | X = .596, Z = .02 |
| 2.52 | X\textsubscript{CN} = .005 see p 95 |
| 2.63 | X = .8, Z = .02, X\textsubscript{CN} = .18 Z |
| 2.68 | X = .99, Y = .009, Z = .001 |

520, Iben, et al. 1962
520, Iben, et al. 1962
556, Shimoda, et al. 1958
556, Shimoda, et al. 1958
520, Iben, et al. 1962
556, Shimoda, et al. 1958
520, Iben, et al. 1962
556, Shimoda, et al. 1958
489, Deinzer, et al. 1964
481, Bodenheimer, et al. 1963
520, Iben, et al. 1962
506, Haselgrove, et al. 1959
506, Haselgrove, et al. 1959
556, Shimoda, et al. 1958
556, Shimoda, et al. 1958
478, Bahng 1964
476, Auman, et al. 1965
556, Shimoda, et al. 1938
520, Iben, et al. 1952
506, Haselgrove, et al. 1959
<table>
<thead>
<tr>
<th>X_{CN}</th>
<th>equation</th>
<th>authors</th>
<th>year</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>see p 95</td>
<td>2.78</td>
<td></td>
</tr>
<tr>
<td>0.0005</td>
<td>see p 95</td>
<td>2.83</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>Z = 0.01</td>
<td>2.850</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>Z = 0.02</td>
<td>2.864</td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>Y = 0.24</td>
<td>2.89</td>
<td></td>
</tr>
<tr>
<td>0.99</td>
<td>Y = 0.009</td>
<td>2.91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>see p 96</td>
<td>3.0 E</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td>3.0 E</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>0.999</td>
<td>Z = 0.001</td>
<td>3.0 E</td>
<td></td>
</tr>
<tr>
<td>0.708</td>
<td>Z = 0.02</td>
<td>3.05</td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>Y = 0.249</td>
<td>3.078</td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>Z = 0.015</td>
<td>3.11</td>
<td></td>
</tr>
<tr>
<td>0.0005</td>
<td>see p 95</td>
<td>3.44</td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>Y = 0.24</td>
<td>3.47</td>
<td></td>
</tr>
<tr>
<td>0.99</td>
<td>Y = 0.009</td>
<td>3.5 E</td>
<td></td>
</tr>
<tr>
<td>0.68</td>
<td>Y = 0.31</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>0.596</td>
<td>Z = 0.02</td>
<td>3.89</td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>Y = 0.23</td>
<td>3.90</td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>Y = 0.24</td>
<td>3.986</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td>4.0 E</td>
<td></td>
</tr>
<tr>
<td>0.99</td>
<td>Y = 0.009</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>see p 96</td>
<td>4.0 E</td>
<td></td>
</tr>
</tbody>
</table>

556, Shimoda et al. | 1958 |
556, Shimoda et al. | 1958 |
520, Iben, et al. | 1962 |
520, Iben, et al. | 1962 |
506, Haselgrove, et al. | 1959 |
485, Cimino, et al. | 1963 |
502, Giannone, et al. | 1965 |
506, Haselgrove, et al. | 1959 |
562, Suda, et al. | 1960 |
486, Cox, et al. | 1961 |
487, Cox, et al. | 1961 |
497, Divine | 1965 |
521, Iben | 1965 |
506, Haselgrove, et al. | 1959 |
520, Iben, et al. | 1962 |
556, Shimoda, et al. | 1958 |
506, Haselgrove, et al. | 1959 |
506, Haselgrove, et al. | 1959 |
514, Henyey, et al. | 1959 |
476, Auman, et al. | 1965 |
519, Hoyle | 1960 |
506, Haselgrove, et al. | 1959 |
489, Deinzer, et al. | 1964 |
480, Blackler | 1958 |
506, Haselgrove, et al. | 1959 |
562, Suda, et al. | 1960 |
Y = 1.0	4.0	486, Cox, et al.	1961
Y = 1.0	4.0	487, Cox, et al.	1961
X = .61, Y = .37, Z = .02, X_{CNO} = .008	4.0 E	509, Hayashi, et al.	1962
X = .61, Y = .37, Z = .02, X_{CNO} = .008	4.0 E	510, Hayashi, et al.	1962
Y = 1.0	4.0	488, Cox, et al.	1964
X = 0, Y = .999, Z = .001	5.0	497, Divine	1965
Y = 1.0	5.0	486, Cox, et al.	1961
Y = 1.0	5.0	487, Cox, et al.	1961
X = 1.0	5.0	498, Ezer	1961
X = .74, Y = .24, Z = .02, X_{CN} = Z/7	5.0 E	542, Polak	1962
X = .596, Z = .020	5.0	476, Auman, et al.	1965
X = .602, Y = .354, Z = .044	5.0 E	528, Kippenhahn, et al.	1965
X = .708, Z = .02	5.0 E	522, Iben	1966
X = 0, Y = 0, Z = 1, X_{C} ~ .02, to .03	5.22	490, Deinzer, et al.	1965
Y = .98, Z = .02	5.5	485, Cimino, et al.	1953
see above	5.58	490, Deinzer, et al.	1955
X = .75, Y = .24, Z = .01	5.97	506, Haselgrove, et al.	1959
X = .68, Y = .31, Z = .01	6.0 E	514, Henyey, et al.	1959
Y = 1.0	6.0	486, Cox, et al.	1961
Y = 1.0	6.0	487, Cox, et al.	1961
X = 0, Y = .999, Z = .001	6.0 E	497, Divine	1965
X = .70, Z = .03, X_{CNO} = .6 Z	6.0 E	543, Reiz, et al.	1966
Y = 1.0	6.588	489, Deinzer, et al.	1964
Y = 1.0	7.0	486, Cox, et al.	1961
Y = 1.0
X = .602, Y = .354, Z = .044
X = .602, Y = .354, Z = .044
see p 98
Y = 1.0
Y = 1.0
Y = 1.0
X = 0, Y = .999, Z = .001
X = .75, Y = .23, Z = .02
X = .75, Y = .24, Z = .01
Y = 1.0
Y = 1.0
Y = .98, Z = .02
X = .708, Z = .02
X = 0, Y = 0, Z = 1,
X_c ^ c ~ .02 to .03
X = .70, Y = .27, Z = .03
X = 1
X = 0, Y = .999, Z = .001
X = .70, Z = .03, X_{CNO} = .6 Z
X = .61, Y = .37, Z = .02,
X_{CNO} = Z/3
X = .68, Y = .31, Z = .01
X = 0, Y = .999, Z = .001
X = .75, Y = .24, Z = .01
Y = .98, Z = .02
487, Cox, et al.
516, Hofmeister, et al.
517, Hofmeister, et al.
480, Blackler,
486, Cox, et al.
487, Cox, et al.
488, Cox, et al.
497, Divine
519, Hoyle
506, Haselgrove, et al.
486, Cox, et al.
487, Cox, et al.
485, Cimino, et al.
523, Iben
490, Deinzer, et al.
525, Inunuma
549, Savedoff, et al.
498, Ezer
497, Divine
543, Reiz, et al.
511, Hayashi, et al.
514, Henney, et al.
497, Divine
506, Haselgrove, et al.
485, Cimino, et al.
1961
1964
1964
1958
1961
1961
1964
1965
1965
1960
1959
1961
1961
1963
1966
1965
1959
1959
1961
1965
1966
1962
1959
1965
1959
1963
14.6 E \[Y = .98, Z = .02 \]
14.8 E \[Y = 1.0 \]
14.8 \[Y = .999, Z = .001 \]
15.0 E \[X = .708, Z = .02 \]
15.0 E \[X = .70, Z = .03, X_{CNO} = .6 Z \]
15.6 E \[X = .90, Y = .08, Z = .02, X_{CNO} = Z/3 \]
15.6 E \[X = .90, Y = .08, Z = .02, X_{CN} = Z/3 \]
15.6 E \[X = .90, Y = .08, Z = .02, X_{CNO} = Z/3 \]
15.6 \[X = .90, Y = .08, Z = .02, X_{CNO} = Z/7 \]
16.0 E see p 98
19.4 \[X = 0, Y = 0, Z = 1, X_C \sim .02 \text{ to } .03 \]
20 E \[X = .68, Y = .31, Z = .01 \]
20 \[X = 1 \]
20.0 \[Y = .999, Z = .001 \]
20.0 E \[X = .70, Z = .05, X_{CNO} = Z/7 \]
20.1 \[X = .75, Y = .24, Z = .01 \]
24.3 \[Y = .98, Z = .02 \]
26.73 \[Z = 1, X_C \sim .02 \text{ to } .03 \]
27.2 \[Z = 1, X_C \sim .02 \text{ to } .03 \]
28 \[X = .75, Y = .22, Z = .03 \]
28.2 E \[X = .75, Y = .22, Z = .03 \]

502, Giannone, et al. 1965
489, Deinzer, et al. 1964
497, Divine 1965
524, Iben 1966
543, Reiz, et al. 1966
546, Sakashita, et al. 1953
507, Hayashi, et al. 1959
510, Hayashi, et al. 1962
511, Hayashi, et al. 1962
564, Tanaka 1966
529, Kotok 1966
480, Blackler 1938
490, Deinzer, et al. 1955
514, Henyey, et al. 1959
498, Ezer 1961
497, Divine 1965
529, Kotok 1966
506, Haselgrove, et al. 1959
485, Cimino, et al. 1963
490, Deinzer, et al. 1965
490, Deinzer, et al. 1965
534, Nagaratnam, et al. 1961
550, Schwarzschild, et al. 1958

\[
X = 0.68, \ Y = 0.31, \ Z = 0.01
\]

\[
X = 0.70, \ Y = 0.27, \ Z = 0.03, \quad X_{\text{CNO}} = Z/2
\]

\[
X = 0.70, \ Y = 0.27, \ Z = 0.03, \quad X_{\text{CNO}} = Z/2
\]

\[
X = 0.70, \ Y = 0.27, \ Z = 0.03, \quad X_{\text{CNO}} = Z/2
\]

\[
X = 0.70, \ Y = 0.05, \quad X_{\text{CNO}} = Z/7
\]

\[
X = 0.75, \ Y = 0.23, \ Z = 0.02
\]

\[
X = 0.75, \ Y = 0.24, \ Z = 0.01
\]

\[
\text{see p 98}
\]

\[
Y = 1.0
\]

\[
Y = 0.999, \ Z = 0.001
\]

\[
X = 0.75, \ Y = 0.24, \ Z = 0.01
\]

\[
X = 1.0
\]

\[
Y = 0.999, \ Z = 0.001
\]

\[
Y = 0.98, \ Z = 0.02
\]

\[
X = 0.7, \ Y = 0.27, \ Z = 0.03, \quad X_{\text{CNO}} = Z/2
\]

\[
X = 0.9, \ Y = 0.08, \ Z = 0.02
\]

\[
X = 0.9, \ Y = 0.08, \ Z = 0.02
\]

\[
X = 0.90, \ Y = 0.08, \ Z = 0.02, \quad X_{\text{CNO}} = Z/3
\]

\[
X = 1.0
\]

\[
X = 0.75, \ Y = 0.24, \ Z = 0.01
\]

\[
X = 1.0
\]

\[
Y = 0.999, \ Z = 0.001
\]

\[
X = 0.7, \ Y = 0.27, \ Z = 0.03, \quad X_{\text{CNO}} = Z/2
\]

514, Henyey, et al. 1959

558, Stothers 1963

559, Stothers 1964

560, Stothers 1966

529, Kotok 1966

519, Hoyle 1960

506, Haselgrove, et al. 1959

480, Blackler 1958

489, Deinzer, et al. 1964

497, Divine 1965

506, Haselgrove, et al. 1959

567, Van der Borght 1964

497, Divine 1965

485, Cimino, et al. 1963

561, Stothers 1966

547, Sakashita, et al. 1959

548, Sakashita, et al. 1961

564, Tanaka 1966

498, Ezer 1961

506, Haselgrove, et al. 1959

567, Van der Borght 1964

497, Divine 1965

561, Stothers 1966
<table>
<thead>
<tr>
<th>Value</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>X(_{\text{CNO}}) = Z/2</th>
<th>Citation</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.7 E</td>
<td>.75</td>
<td>.22</td>
<td>.03</td>
<td></td>
<td>550, Schwarzschild, et al.</td>
<td>1958</td>
</tr>
<tr>
<td>64 E</td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td>480, Blackler</td>
<td>1958</td>
</tr>
<tr>
<td>78.21 E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>489, Deinzer, et al.</td>
<td>1964</td>
</tr>
<tr>
<td>80 E</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td>567, Van der Borgh</td>
<td>1964</td>
</tr>
<tr>
<td>83.3</td>
<td>.75</td>
<td>.24</td>
<td>.01</td>
<td></td>
<td>506, Haselgrove, et al.</td>
<td>1959</td>
</tr>
<tr>
<td>85</td>
<td></td>
<td>.98</td>
<td>.02</td>
<td></td>
<td>485, Cimino, et al.</td>
<td>1963</td>
</tr>
<tr>
<td>100</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td>498, Ezer</td>
<td>1961</td>
</tr>
<tr>
<td>100</td>
<td>.7</td>
<td>.27</td>
<td>.03</td>
<td>X(_{\text{CNO}}) = Z/2</td>
<td>561, Stothers</td>
<td>1966</td>
</tr>
<tr>
<td>120 E</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td>567, Van der Borgh</td>
<td>1964</td>
</tr>
<tr>
<td>121.1 E</td>
<td>.75</td>
<td>.22</td>
<td>.03</td>
<td></td>
<td>550, Schwarzschild, et al.</td>
<td>1958</td>
</tr>
<tr>
<td>125</td>
<td>.75</td>
<td>.24</td>
<td>.01</td>
<td></td>
<td>506, Haselgrove, et al.</td>
<td>1959</td>
</tr>
<tr>
<td>128 E</td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td>480, Blackler</td>
<td>1958</td>
</tr>
<tr>
<td>174 E</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td>484, Boury</td>
<td>1963</td>
</tr>
<tr>
<td>200</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td>498, Ezer</td>
<td>1961</td>
</tr>
<tr>
<td>200</td>
<td>.7</td>
<td>.27</td>
<td>.03</td>
<td>X(_{\text{CNO}}) = Z/2</td>
<td>561, Stothers</td>
<td>1966</td>
</tr>
<tr>
<td>214</td>
<td></td>
<td>.98</td>
<td>.02</td>
<td></td>
<td>485, Cimino, et al.</td>
<td>1953</td>
</tr>
<tr>
<td>218.3 E</td>
<td>.75</td>
<td>.22</td>
<td>.03</td>
<td></td>
<td>550, Schwarzschild, et al.</td>
<td>1958</td>
</tr>
<tr>
<td>300</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td>498, Ezer</td>
<td>1961</td>
</tr>
<tr>
<td>306 E</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td>484, Boury</td>
<td>1963</td>
</tr>
<tr>
<td>387.7 E</td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td>489, Deinzer, et al.</td>
<td>1964</td>
</tr>
<tr>
<td>400</td>
<td>.7</td>
<td>.27</td>
<td>.03</td>
<td>X(_{\text{CNO}}) = Z/2</td>
<td>561, Stothers</td>
<td>1966</td>
</tr>
<tr>
<td>500</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td>498, Ezer</td>
<td>1961</td>
</tr>
<tr>
<td>611 E</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td>484, Boury</td>
<td>1963</td>
</tr>
<tr>
<td>750</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td>498, Ezer</td>
<td>1961</td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>X_{CNO}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>.27</td>
<td>.03</td>
<td>Z/2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 1000: 498, Ezer 1961
- 1000: 561, Stothers 1966
- 1515 E: 484, Boury 1963
- 2000: 498, Ezer 1961
- 4705 E: 489, Deinzer, et al. 1964
- 6645 E: 484, Boury 1963
AUTHOR INDEX

Abt, H. A. - 27
Adams, B. - 156
Alburger, D. E. - 157
Aleshin, V. I. - 709, 710
Alfvén, H. - 364
Aller, L. H. - 5, 28, 29, 30, 67, 135, 570, 571
Almquist, E. - 230
Ambartzumyan, V. A. - 332, 333, 334, 655
Anand, S. P. S. - 365, 636, 711
Anders, E. - 572, 802
Anderson, C. M. - 31
Arking, A. - 278
Armstrong, B. H. - 279
Arp, H. C. - 32
Arpigny, C. - 573
Aschieri, G. - 158
Auer, L. H. - 637
Auluck, F. C. - 638
Auman, J. R. - 476, 477
Babcock, H. W. - 33, 34
Baglin, A. - 639
Bahng, J. D. R. - 304, 476, 478, 539
Baier V. N. - 171
Baker, N. - 305, 366, 712, 713, 714, 715
Barbon, R. - 803
Barentzen, J. - 306
Baschek, B. - 35
Bashkin, S. - 172
Baum, W. A. - 150
Becker, R. A. - 173
Bennick, H. H. - 479
Bernstein, J. - 280
Bhatnager, P. L. - 18
Bidelman, W. P. - 36
Biermann, L. - 307, 527
Bird, J. F. - 424
Bisnovatyi-Kogan, G. S. - 640
Biswa, S. - 37
Blackler, J. M. - 480
Boccaletti, D. - 174, 660
Bodenheimer, P. - 94, 425, 426, 465, 481, 482
Böhm, K. H. - 309, 310, 463
Böhm-Vitense, E. - 38, 308, 716, 717
Boiarchuck, A. A. - 39
Bonnor, W. B. - 696
Bonsack, W. K. - 12, 40, 41
Boury, A. - 483, 484, 574, 575, 718, 719, 720
Brown, R. E. - 175, 176
Brownlee, R. R. - 428, 462, 472
Burbidge, E. M. - 7, 213, 680
Burbidge, G. R. - 7, 177, 213, 680, 721
Burgess, A. - 281
Cameron, A. G. W. - 25, 178, 179, 180, 181, 182, 183, 276, 427, 429, 430, 431, 499, 584, 628, 661, 662, 673
Cameron, R. C. - 511, 512
Camp, D. C. - 81
Carr, W. J. Jr. - 367
Caughlan, G. R. - 184, 185, 186, 187, 188
Cester, B. - 42
Chapman, S. - 571
Chen Dao-han - 461, 531
Chiu, H. Y. - 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 269, 270, 328, 576, 663
Christy, R. F. - 699, 731, 732, 733, 734, 735, 736
Cimino, M. - 485, 577
Clark, M. A. - 218, 230
Clayton, D. D. - 199, 200, 264, 267, 804
Clement, M. J. - 312, 379, 737, 738, 739
Chin, C. - 283
Clifford, F. E. - 201, 202
Climenhaga, J. L. - 43
Cocke, N. J. - 675
Code, A. D. - 44
Colgate, S. A. - 805, 806, 807, 808
Conti, P. S. - 45, 46, 138, 141
Cousins, A. W. J. - 47
Cowling, T. G. - 380, 381
Cox, J. P. - 486, 487, 488, 741, 742, 743, 744, 745, 746, 747, 748, 749, 763
Craddock, W. L. - 804
Crampin, J. - 382, 578
Dallaporta, N. - 803
Danziger, I. J. - 48
Davis, R. Jr. - 169, 203
Deinzer, W. - 489, 490
Demarque, P. R. - 468, 491, 492, 493, 494, 495, 496, 579, 580, 615, 750
Denis, C. - 313
Dennis, T. R. - 49
Deutsch, A. J. - 50, 51
Dicke, R. H. - 581
Divine, N. - 497, 642
Dluzhnevshaya, O. B. - 236
Doroshkevich, A. G. - 676
Duorah, H. L. - 204, 205, 206, 207
Dyck, S. R. van - 549
Dyson, F. J. - 280
Eddington, A. S. - 1
Eggen, O. J. - 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 110, 582
Eggleton, P. - 583
Ehrman, J. R. - 520
Elbers, D. D. - 284, 462, 749, 763
Elbert, D. D. - 282
Ellis, D. G. - 664
Eminadze, T. A. - 809
Ezer, D. - 429, 430, 431, 498, 499, 584
Faulkner, D. J. - 29
Faulkner, J. - 432, 500, 501, 585
Feast, M. W. - 63
Fergueson, A. J. - 217
Fernie, J. D. - 64, 81, 751, 752
Fichtel, C. E. - 37
Finzi, A. - 665, 666
Fitch, W. S. - 65
Forbes, J. E. - 464, 481
Ford, W. K., Jr. - 150
Fowler, W. A. - 163, 173, 184, 185, 186, 188, 199, 200, 208, 209, 210, 211, 212, 213, 243, 264, 265, 433, 586, 591, 680, 816
Frank-Kamenetskii, D. A. - 16, 214, 294, 753, 810, 823, 824, 825
Friedjung, M. - 811, 812, 813
Fujita, C. - 81
Gabriel, M. - 313, 700, 719
Gallino, R. - 235
Gandelsman, G. M. - 215
Gaustad, J. E. - 66, 434
Geisler, J. E. - 494
Gell-Man, M. - 216
Geltman, S. - 288
Giannone, P. - 485, 502, 577
Giannuzzi, M. A. - 485, 502, 577
Glasco, H. F. - 289
Goldberg, L. - 67
Gorbatskii, V. G. - 814
Gould, N. L. - 464, 481
Gould, R. J. - 435
Gove, M. - 217, 218, 230
Grant, I. P. - 290
Grasberger, W. H. - 335, 806
Gratton, F. - 568
Guratton, L. - 336
Greenstein, J. L. - 41, 60, 70, 101, 105, 135, 136, 142, 433
Griffith, J. S. - 411
Griffiths, K. - 432, 585
Gryzinski, M. - 815
Gualdi, C. - 174, 260, 660
Guili, R. T. - 486
Gunn, J. - 101
Gurm, H. S. - 754, 755, 778
Gurovich, V. Ts. - 677, 678
Guseinov, O. Kh. - 677, 694
Guseynov, O. H. - 695
Hadjidemetrion, J. D. - 701
Hamada, T. - 503
Hansen, C. J. - 628
Hansen, K. - 91
Härm, R. - 504, 550, 552, 620, 621, 707
Harmon, R. J. - 69
Harrison, E. R. - 337
Harrison, K. - 338, 679
Haselgrove, C. B. - 505, 506
Hayakawa, S. - 219
Hefner, H. L. - 70, 105, 135
Henley, L. G. - 463, 464, 465, 481, 514
Herbig, G. H. - 71, 72, 73, 74, 75, 76, 141, 442
Herring, J. - 278
Hien, N. van - 221
Hill, P. W. - 77
Hiltner, W. A. - 83, 96, 97
Hitotuyanagi, Z. - 515, 562
Hofmeister, E. - 466, 516, 517, 589, 590, 756
Holmgren, H. D. - 222
Holweger, H. - 38
Höshi, R. - 14, 510, 513, 587
Houck, T. E. - 44
Houston-Breton, M. - 718
Hoyle, F. - 212, 213, 382, 432, 433, 443, 505, 506, 518, 519, 585, 591, 680, 816
Huang, S. S. - 383, 444, 467, 592, 593, 757
Hughes, W. T. - 81
Hull, T. E. - 199
Hunter, J. H., Jr. - 27
Hunziker, W. - 137
Hurley, M. - 384, 385, 758
Iben, I., Jr. - 163, 445, 446, 501, 520, 521, 522, 523, 524, 594, 595, 596, 597
Iinuma, Y. - 525
Imshenik, V. S. - 339, 817
Inman, C. L. - 223, 341, 667
Iriarte, B. - 78
Iroshnikov, R. S. - 759
Ito, K. - 224
Jain, A. - 341
James, R. A. - 386
Jaschek, C. - 760
Jaschek, M. - 760
Johansson, S. A. E. - 225
John, T. L. - 291
Johnson, H. L. - 78, 79, 92
Johnson, H. M. - 805
Johnson, R. L. - 222
Jugaku, J. - 507
Just, K. - 681, 682
Kamijo, F. - 761, 789
Kaminisi, K. - 342, 526
Kaplan, S. A. - 702, 762, 818
Karas, W. J. - 292
Katem, B. - 113
Kato, S. - 314
Kavanagh, R. W. - 226, 242, 263
Kegel, W. H. - 293
Khlopotov, P. N. - 598, 599
Khriplovich, I. B. - 171
King, D. S. - 749, 763
Kippenhahn, R. - 307, 315, 343, 366, 387, 388, 466, 516, 517, 527, 528, 590, 712, 714
Kirzhnits, D. A. - 344
Klimishin, I. A. - 762, 818, 819
Kodaira, K. - 80
Kohl, K. - 38
Kopal, Z. - 600, 764
Kopylov, I. M. - 39
Kopyshnev, V. P. - 227
Kotok, E. V. - 236, 529, 601, 611
Kozhevnikov, N. I. - 389
Kraft, R. P. - 31, 81, 82, 83, 84, 85, 86, 87, 802, 820, 821, 822
Kraichnan, R. H. - 316
Krefetz, E. - 390
Krishan, S. - 643
Krishna Swamy, K. S. - 317
Kristian, J. - 391
Kropp, W. R. - 256
Kruszewski, A. - 603, 766
Krzeminski, W. - 87
Kuehne, J. A. - 230
Kuhls, L. V. - 124, 447, 448
Kuiper, G. P. - 4, 23
Kumar, S. S. - 449, 450, 530, 604
Kung, S. - 531
Kurth, R. - 767, 768
Kushwaha, R. S. - 206, 207, 317, 365, 534, 643
Kuz'min, V. A. - 228, 229
Kuznetsova, T. D. - 294
Larson, R. B. - 468, 495, 605
Larson-Leander, G. - 88
Latter, R. - 292
Ledoux, P. - 313, 319, 606, 705, 719, 720, 770, 771
LeLievre, R. - 463, 514
Levée, R. D. - 463, 514
Limber, D. N. - 392, 532, 607
Lindquist, R. W. - 295, 683
Litherland, A. E. - 217, 218, 230
Lupanov, G. A. - 702
Lüst, R. - 307, 393
Luyten, W. J. - 644, 645, 821
Lynds, C. R. - 89
Malkiel, G. S. - 231
Marlborough, J. M. - 90
Marx, G. - 232, 233
Nasani, A. - 234, 235, 236, 451, 485, 577, 772, 773
Massevich, A. G. - 236, 533, 608, 609, 610, 611
Mathur, V. S. - 345, 638
Matingan, S. G. - 237
May, M. M. - 684
McCrea, W. H. - 612
McNamara, D. H. - 91
McVittie, G. C. - 685
Meggitt, S. M. A. - 452, 566
Mendoza, E. E. - 92, 93
Menyard, N. - 232
Manzel, D. H. - 18
Merchant, A. E. - 94, 95, 139
Mestel, L. - 394, 395, 396, 613, 646
Michel, F. C. - 267, 686, 774
Milligan, J. E. - 593
Misner, C. W. - 668, 683, 687, 688, 706
Mitchell, R. I. - 78
Monaghan, J. J. - 397, 398, 399, 647
Moore, D. W. - 775, 776
Moore, E. - 460
Morgan, W. W. - 96, 97
Morrison, P. - 189, 195
Morton, D. C. - 238, 669
Motz, L. - 479
Müller, E. A. - 67
Murphy, J. D. - 790
Nadezhin, D. K. - 339, 817, 823, 824, 825
Nagaratnam, A. - 534
Nakamura, S. - 239
Nakano, T. - 437, 438, 440
Nariai, H. - 689, 690
Németh, J. - 233
Norton, R. H. - 116
Novikov, I. D. - 22, 25, 676
Obi, S. - 556
Occhini, G. - 772
O'Dell, C. R. - 98, 99
Odgers, G. J. - 469
Ohmura, H. - 296
Ohmura, T. - 239, 296
Ohyama, N. - 220, 826, 828
Oke, J. B. - 35, 100, 101, 537
Okun', L. B. - 24
Olsen, K. H. - 740, 747, 749
Olson, E. - 297
Olúnik, G. T. - 777
Ono, Y. - 546, 634, 827, 828, 829
Osaki, Y. - 538, 648
Osterbrock, D. E. - 102, 614
Pacini, F. - 670, 671
Pagel, B. E. J. - 103
Pan Nung-Bao - 461
Paquette, G. - 241
Parenago, P. P. - 104
Parker, P. D. - 242, 243, 271
Parker, R. - 105, 135
Peach, G. - 298
Pearce, W. P. - 539
Pecker, J.-C. - 19
Peery, B. F., Jr. - 106
Percy, J. R. - 496, 750
Perdang, J. - 244
Perrotto, M. - 803
Petersen, J. O. - 543
Petersen, V. L. - 246, 247
Pikel`ner, S. B. - 24
Pinaev, V. S. - 215, 247
Pinaeva, G. V. - 346
Piotrowski, S. - 470
Pochoda, P. - 540, 541
Podurec, M. A. - 693
Polak, E. J. - 542
Pontecorvo, B. - 248, 249
Pöppel, W. G. L. - 568
Popper, D. M. - 107
Porfir`ev, V. V. - 400, 401, 402, 777
Poveda, A. - 830
Prasad, C. - 778
Preston, G. W. - 779
Purgathofer, A. - 150
Reddish, V. C. - 780
Reeves, H. - 195, 241, 250, 251, 252, 253, 254, 255, 541
Réineri, M. T. - 158
Reines, F. - 256
Reiz, A. - 543
Renson, P. - 108
Ritus, V. - 257
Roberts, P. H. - 376, 384, 385, 392, 403, 404, 405, 406, 407, 758
Robinson, I. - 21
Rodgers, A. W. - 119
Roeder, R. C. - 615
Rogerson, J. B., Jr. - 102
Rouse, C. A. - 347, 348, 349, 350, 351, 352, 544
Rose, W. K. - 545
Rosenberg, L. - 258
Roxburgh, I. W. - 320, 395, 397, 408, 409, 410, 411, 412, 413, 453, 454, 455, 649
Roy, T. C. - 781
Ruben, G. V. - 109, 471
Ruderman, M. A. - 156, 223, 259
Saakyan, G. S. - 332, 333, 334, 353, 354, 355, 655, 672
Sabbata, V. de. - 174, 260, 660
Sahade, J. - 15, 782, 783
Sakashita, S. - 261, 459, 546, 547, 548, 634, 828, 829, 831
Salpeter, E. E. - 197, 250, 356, 357, 487, 488, 489, 490, 503
Salzman, B. - 321
Sampson, D. H. - 262, 299, 300
Sargent, W. L. W. - 117, 126
Saslaw, W. C. - 617
Savédo`ff, M. P. - 549, 650, 651
Schatzman, E. - 456, 457, 618, 652, 653, 654, 832
Schild, A. - 21
Schmidt-Kaler, Th. - 619
Schucking, E. L. - 21
Schwarzk, R. A. - 683
Schwartzschild, M. - 8, 304, 319, 322, 504, 541, 550, 551, 552, 617, 623, 621, 707, 785
Searle, L. - 118, 119
Sears, E. L. - 163, 472, 553, 554, 555, 622, 632
Seaton, M. J. - 69, 120, 281
Seeger, P. A. - 263, 264, 265
Selberg, H. - 551
Sen, H. K. - 18
Sengbusch, K. von - 458
Shabalin, E. P. - 221, 266
Sharov, A. S. - 121
Sharp, D. H. - 687
Shaw, P. B. - 267
Shimoda, M. - 556
Shkolovsky, I. S. - 833
Shtil'er'shtein, G. M. - 414
Silvestro, G. - 235
Simoda, M. - 301, 473
Simon, R. - 784
Sitnik, G. F. - 708
Smak, J. - 122, 123, 268, 557
Smith, L. F. - 146
Smith, L. L. 115, 116
Smith, T. S. - 415
Sobolev, V. V. - 623
Spiegel, E. A. - 319, 323, 324, 325, 326, 775, 776
Spinrad, H. - 124
Stabler, R. C. - 194, 269
Stecher, T. P. - 593
Stein, R. F. - 26, 474
Stewart, J. N. - 284, 285
Stewart, P. - 254
Stewartson, K. - 404
Stoeckly, R. - 31, 416
Stone, Y. H. - 134