JOINT INSTITUTE FOR LABORATORY ASTROPHYSICS

REPORT

UNIVERSITY OF COLORADO

NATIONAL BUREAU OF STANDARDS

JILA REPORT #52

RADIATIVE LIFETIME OF THE FIRST $\frac{2p}{3/2}$ STATE OF IONIZED CALCIUM AND MAGNESIUM BY THE HANLE EFFECT

by

Winthrop W. Smith and Alan C. Gallagher

IMPORTANT NOTICE

This report from the JILA contains unpublished material of a preliminary nature, or of transitory interest, and may not have been subjected to critical technical review. Such reports are issued sporadically as preprints, contract reports or unpublished communications. As such their reproduction, quotation, or citation in the open literature is not permitted without express permission of the author or the Chairman of the JILA. If this material is identified as accepted for publication in the open literature all citations should be made to that journal. If this constitutes a technical report to a sponsoring agency that agency may reproduce this material for further distribution within the government and to agency contractors.

University of Colorado
Boulder, Colorado

October 5, 1965
RADIATIVE LIFETIME OF THE FIRST $^2P_{3/2}^* \text{ STATE OF IONIZED CALCIUM AND MAGNESIUM}$

BY THE HANLE EFFECT*

Wintrop W. Smith† † and Alan C. Gallagger

Joint Institute for Laboratory Astrophysics, ** Boulder, Colorado

ABSTRACT

The lifetimes of the $\text{Ca}^+^2P_{3/2}$ state and $\text{Mg}^+^2P_{3/2}$ state have been measured by the Hanle-effect method with optical excitation from the ground states of the ions. The lifetimes are, respectively, $6.72 \pm .20 \times 10^{-9}$ sec and $3.67 \pm .18 \times 10^{-9}$ sec. The scattering ions were produced by introducing traces of calcium or magnesium into an argon discharge. "Alignment" depolarization cross sections were obtained for the collisional depolarization of the 1P_1 state of Ca, the $^2P_{3/2}$ state of Ca$^+$, the 3P_1 state of Mg, and the $^2P_{3/2}$ state of Mg$^+$ due to collisions with argon. These are, respectively, $1.9 \pm .3$, $1.4 \pm .2$, $1.9 \pm .3$, and $1.3 \pm .25 \times 10^{-14}$ cm2.

* Work was supported by the National Bureau of Standards and by the Advanced Research Projects Agency (PROJECT DEFENDER), monitored by the U. S. Army Research Office-Durham, under Contract DA-31-124-ARO-D-139.

†Present address: Department of Physics, Columbia University, New York, N. Y.

**Of the University of Colorado and the National Bureau of Standards.
I. INTRODUCTION

We report here the application of the Hanle-effect technique to the measurement of lifetimes of excited states of ions. Ca\(^+\) and Mg\(^+\) were chosen, since their absolute oscillator strengths are of astrophysical importance and are useful for testing various theoretical methods of calculating oscillator strengths.\(^1\) The Hanle effect has been known for many years as a technique for measuring lifetimes or transition probabilities for optical resonance lines in atoms.\(^2\) Nevertheless, the method has been used infrequently until recently when interest has been revived to a large extent by the work of the group at Columbia.\(^3\) This recent work has demonstrated the accuracy of the method for measuring atomic state lifetimes (a typical uncertainty is 3%), and it is an aim of the present paper to demonstrate that the method can be used to measure ionic state lifetimes with comparable accuracy. Although the results reported here are only for Group II ions, we think that the method should have wide application for precision determinations of transition probabilities of resonance lines of other ions.

Methods for measuring transition probabilities of atoms or ions may be divided into two classes: those which measure oscillator strengths directly and those which measure excited state lifetimes. Typical of the first class are the methods of anomalous dispersion (the "hook" method),\(^2\)
emission from thermal arcs, and absorption measurements. All of these methods really measure the product of the density of atoms or ions and the oscillator strength. Since the density is often difficult enough to determine in the atomic case, and since the percent of ionization in the ion case adds further uncertainty, these methods usually give more reliable relative rather than absolute oscillator strengths. The methods which measure lifetimes rather than oscillator strengths directly depend on density only through radiation trapping which becomes negligible in the limit of low density. The lifetime measurements can be done in a great variety of ways, for example, by direct measurement of the exponential decay following a brief excitation pulse, by measurement of phase shifts between exciting (modulated) radiation or electron beam and emitted radiation, by natural linewidth determinations using optically or electronically excited double resonance, and by the Hanle effect. The possibility of using the Hanle effect for lifetime measurements with electron excitation rather than with optical
excitation was investigated in atomic Hg by Skinner and Appleyard, and in Li\(^+\) by Kahan, Lucatorto and Novick. The magnetic-resonance and Hanle-effect experiments on ions by electron excitation must overcome the difficulties of a small percentage polarization in the excited state as well as the influence of the magnetic field on the electron beam. By using optical excitation from the ionic ground state, as reported here, the ion excited state is highly polarized; but one is restricted to studies of resonance lines in the ions.

The Hanle effect with optical excitation may be described as the scattering of resonance radiation by the ions or atoms under study while they are subjected to a small and variable magnetic field. If the field at the site of the ion is zero, it is possible to coherently excite the magnetic sublevels of the excited state by absorption of a single photon with the appropriate polarization. When the magnetic field is turned on, the degeneracy between the magnetic sublevels is removed and this coherence is lost. Thus the interference effects in the scattering by the various excited state Zeeman sublevels are gradually lost as the magnetic field is increased. The result is a change in the angular distribution of the scattering with magnetic field, completely incoherent scattering by the Zeeman sublevels occurring when the levels are separated in energy by many natural linewidths (reciprocal lifetimes). By measuring the change in scattered intensity at a particular angle with magnetic field, one can determine the lifetime from the magnetic-field width of the intensity resonance. It is important to note that the Hanle-effect technique gives the natural lifetime in terms of the variation of the scattered intensity with magnetic field. The absolute intensity and number of scatterers need not
be known provided multiple-scattering narrowing of the natural linewidth is evaluated. (This is generally done by finding the limiting value of the lifetime as the density of scatterers is reduced toward zero). The scattering cross section of an ion for its own resonance radiation is so large\(^2\) that the low-multiple-scattering limit is reached at pressures of the order of \(10^{-5}\) Torr or less. Consequently the data is taken at ion densities below \(10^{11}/\text{cc}\), where ion-ion collisional or Stark perturbations have a negligible influence on the excited state lifetimes.

In the present experiment the ions are produced by running a discharge in a foreign gas. The resulting collisional perturbations of the natural lifetime have been evaluated by the method described in Sec. IV, B and C. An additional complication is the slight magnetic field dependence of the number of ions produced in the discharge; this field dependence has been evaluated by the method described in Sec. IV A.

II. THEORY

A complete description of the Hanle effect (and of resonance fluorescence by nearly degenerate levels in general) is contained in a formula first derived by Breit\(^{13}\) and later rederived by Franken and others;\(^{12,14}\) we will use this formula to interpret the experiments.

The first few energy levels of \(\text{Ca}^+\) and \(\text{Mg}^+\) are shown in Fig. 1. Ninety-nine percent of naturally occurring calcium consists of zero nuclear-spin isotopes, while ninety percent of natural magnesium are zero nuclear-spin isotopes and 10% are \(\text{Mg}^{25}\) with nuclear spin \(I = 5/2\). Thus the Breit formula can be evaluated for \(\text{Ca}^+\) without considering hfs, whereas the \(3^2P_{3/2}(F, m_F)\) states of \(\text{Mg}^{25}\) have \(g_F\) values differing from \(g_J\), and they will produce Hanle-effect linewidths differing from that of the even
isotopes. However, it is easily shown from the Breit formula that the
effect of the odd isotope on the measured width in Mg$^+$ is a maximum of
0.3%, even with the assumption of equal lamp intensity exciting all isotopes.
Both Ca$^+$ and Mg$^+$ will therefore be treated assuming zero nuclear spin
(no hfs) in the Breit formula.

In the experiment we use incident and exit axes at 90° to the magnetic
field and to each other with incident and exit polarizers oriented
perpendicular to the field.15 For this geometry with a $^2S_{1/2}$ ground state
and a $^2P_{3/2}$ excited state, the Breit formula13,12 predicts a scattered
intensity:

\begin{equation}
I(H) = N I_o [1 - cL(x)]
\end{equation}

where $L(x) = 1/(1 + x^2)$ and $x = 4\pi g_J \nu_o H r / h$ (we also use $x = H / \frac{1}{2} H_{1/2}$
following the notation of Wahlquist16), $I(H)$ is the scattered intensity
as a function of magnetic field strength H, I_o is a normalizing constant,
c = 0.6, N is the number of scatterers, ν_o is the Bohr magnetron, r is
the effective lifetime of the excited state, and we use $g_J = 1.5$ for the
$^2P_{3/2}$ state.17 (The difference between this effective lifetime and the
natural radiative lifetime is treated in detail in Sec. IV C.). It can be
seen that the half-maximum point in the Lorentz lineshape, corresponding to
$x = 1$ in Eq. (1), occurs at $H \sim \pm 3.8$ G for a typical lifetime of 10^{-8}
sec.

In the Ca$^+$ experiment, an interference filter was used to pass the
3934 and 3968 Å lines (Fig. 1a) while blocking the remainder of the Ca,
Ca$^+$, and argon spectrum; in the magnesium experiment, a spectrometer was
used to isolate the 2796 and 2803 Å lines (Fig. 1b) from the remaining
spectrum, but in both experiments the radiation from the $^2P_{1/2}$ state as well as from the $^2P_{3/2}$ state was detected. At first sight it might be thought necessary to eliminate the $^2P_{1/2} - ^2S_{1/2}$ radiation in order to see a Hanle effect resulting from only the $^2P_{3/2}$ fine structure level, but this is not really necessary, since no Hanle effect can be observed in a $J = 1/2$ to $J = 1/2$ transition with linearly polarized (or unpolarized) light. Consequently, the $^2P_{1/2} - ^2S_{1/2}$ scattering will merely contribute a constant term to Eq. (1), which can be represented by a renormalization and a decrease in the value of c. The finite solid angles actually used in the experiment also decrease the size of the field-dependent term compared to the other term, so that the net result in the experiments was a value $c = 0.35$.

In order to obtain the transition probabilities (or oscillator strengths) of each of the transitions from the $Ca^+^2P_{3/2}$ state (Fig. 1a), one must evaluate the appropriate branching ratios from theory or from a separate experiment. An experiment to obtain these ratios is planned.

III. DESCRIPTION OF THE EXPERIMENT AND APPARATUS

The apparatus used is indicated in Fig. 2. Resonance radiation from a lamp passes through an f/1.5 system of lenses and a linear polarizer into the scattering chamber. Light scattered at a mean angle of approximately 90° is collected by a photomultiplier through a second f/1.5 lens system, linear polarizer, and interference filter; a magnetic field is applied to the scattering chamber perpendicular to the incident and detected light beams. Some stray light is collected from instrumental scattering as well as from ion resonance radiation originating from the discharge itself. In order to eliminate the bulk of the discharge light and to make it possible to evaluate and eliminate collisional broadening by electrons or by metastable argon atoms
produced in the discharge, the discharge is operated on a pulsed basis and
the scattering is monitored after turning off the discharge. A typical
timing sequence is shown in Fig. 3. The ion population in the scattering
region diminishes by half in approximately 5 ms per Torr argon (in the
operating region below 1 Torr), while the discharge light dies out much
more rapidly than the ion scattering.

The magnetic field in the scattering region is produced by a set
of Helmholtz coils with homogeneity of \(\sim 0.1\% \) over a two-inch cube,
driven by a regulated, programmed, dc power supply. Sinusoidal modulation
of the magnetic field at 25 cycles with very small harmonic distortion
permits the use of lock-in detection of the scattered intensity at either
25 - or 50 -cycle reference frequency. Saturation of the lock-in amplifier
at the discharge pulse frequency is prevented by using a low-pass filter,
which transmits frequencies 50 cycles and below, at the input to the
amplifier. The lock-in signal is plotted as a function of magnet current
with an X-Y recorder. The Helmholtz-coil magnetic field was determined
as a function of current to an accuracy of 0.1\% with the aid of an
optically-pumped rubidium-vapor magnetometer. 20

In the Mg\(^+\) experiment we were not able to obtain an interference
filter to separate the MgI resonance line at 2852 Å from the 2796 Å
MgII resonance line without a considerable sacrifice in peak transmission
and high cost. For this reason, we have used an f/9 Jarrell-Ash
grating spectrometer to isolate the two ion lines from the remaining spectrum.
Signal-to-noise is sacrificed compared to the f/1.5 system used for
Ca\(^+\), but the precision was still adequate. 21 Because of the lower signal-
to-noise in the Mg\(^+\) experiment, many of the checks for systematic error
discussed in Sec. IV were carried out only on Ca\(^+\).
A. Source of Ion Resonance Radiation

An initial attempt to make a microwave-excited, electrodeless-discharge tube as a source of Ca and Ca\(^+\) resonance radiation was frustrated by the fact that the calcium reacted almost immediately with the quartz walls of the tube when the lamp was brought up to operating temperature. Magnesium electrodeless lamps present similar problems. A small amount of metal in the tube (with a few Torr of argon to sustain the discharge) rapidly cleans up, leaving an argon lamp. A larger quantity of Mg or Ca will discolor the walls so rapidly that no significant amount of light gets out.

Lack of success with the simple electrodeless discharge tube for these reactive metals indicated that a more complex arrangement such as a modification of the Cario--Löchte-Holthuysen flow lamp\(^22\) is necessary. Successful flow lamps of this type have been made to work well for both calcium- and magnesium-atom resonance lines by the group at Columbia. Using these lamps with radiofrequency excitation at 15-30 Mc/sec from a 400-watt oscillator, we find that the ratio of ion to atom resonance line intensities could be made as high as 1:1 with about 15 mw intensity of the 3934 and 3968 Ca\(^+\) lines going into an f/1.5 optical system.\(^23\) No attempt was made to purify the tank argon used, and only a mechanical forepump was used to pump out the lamp.

One may speculate that the ion resonance line intensity might be increased still further if the electron temperature in the discharge could be increased by the use of microwaves. The result of this consideration was the modified design of the Columbia flow lamps illustrated in Fig. 4. Merely by using microwave excitation, and without further optimization
of the geometry or the use of a cavity to enclose the lamp, we obtain roughly four times the output intensity in the 3934-68 Å ion lines and in the 4227 Å atom resonance line that we had with the original flow-lamp design in Ref. 22. The microwave power output of the magnetron is approximately 100 watts, of which only a small fraction actually excites the discharge; no upper limit on the amount of ion resonance radiation was reached with the power available.

B. Source of Ions

A dilute vapor of Group II metal ions was produced in both rf and dc discharge scattering chambers (the latter is shown in Fig. 2). The scattering chamber designed for rf excitation at 15-30 Me/sec was similar to that in Fig. 2, but had a quartz cover where the brush cathode is shown. The oven sprayed an atomic beam of calcium (or magnesium) up into the scattering region. The two side windows for the incident and scattered beams of resonance radiation were protected from becoming coated with calcium (magnesium) by an argon flow (as indicated). A rf discharge between the grounded oven and an electrode painted on the glass above produced a plasma of argon and calcium (magnesium) in the scattering region above the oven. By varying the rf power or the oven temperature, the density of Ca+ (Mg+) ions was controlled.

Figure 2 shows the scattering chamber in which a "brush cathode" dc discharge produced the ions. This type of cold-cathode discharge, designed by K. B. Persson of the National Bureau of Standards, produces a relatively stable plasma in a large volume by means of a "beam" of high-energy electrons. The temperature of the vast majority of electrons not in the main beam is quite low, corresponding to ~0.05-10 eV. Calcium
(magnesium) vapor from the oven is sprayed up into the observation region containing argon (again a continuous flow) several centimeters from the cathode. At argon pressures of 0.1 to \(\approx 1.0 \) Torr, one can produce a sufficient number of \(\text{Ca}^+ \) (\(\text{Mg}^+ \)) ions in the observation region to give multiple scattering of the resonance radiation with only a slow plating of metal on the container walls. Typical operating conditions for the brush cathode were 0.3 Torr argon, 300-500 volts dc on cathode, and 50 mA instantaneous discharge current. The brush discharge produced less ion resonance radiation than the rf discharge, and also appeared to have a slight advantage in stability. All data reported for \(\text{Ca}^+ \) and \(\text{Mg}^+ \) were taken with the brush cathode discharge.

IV. DETAILS OF THE EXPERIMENT

A. Field Dependence of the Discharge

A new complication which arises in these ion Hanle-effect experiments, as contrasted with atom Hanle-effect experiments, is that the ions are produced in a plasma which interacts with the applied magnetic field. As a result the ion density, \(N \), in Eq. (1) becomes a slowly varying function of the magnetic field, and the Hanle-effect and ion-density field dependences must be unscrambled. We have done this by detecting the ion resonance fluorescence first with both polarizers oriented parallel to the applied magnetic field (which gives no Hanle effect) then with both polarizers oriented perpendicular to the field. In this way we can measure first a signal proportional to \(N(H) \) and then to \(N(H)(1 - cL(H)) \) for the same optically illuminated region under identical discharge conditions, and the field dependence of \(N(H) \) can be corrected out of the \(N(H)(1 - cL(H)) \) signal.
Over the entire argon-pressure range and scattering-ion-density range reported in the experiments, \(N(H) \) varied slowly enough with field strength to produce less than 5% difference between the apparent width of the uncorrected signal, \(N(H)(1 - cL(H)) \), and the width of \(L(H) \). Since the discharge conditions varied greatly with argon and calcium (or magnesium) pressures and with the discharge current, the sign and magnitude of the width correction varied in a fairly random fashion throughout the data. Thus we have concluded that any inaccuracy introduced by the variation in \(N(H) \) appears as part of the scatter in the data (Figs. 6 and 7) but does not produce any systematic error.

B. Modulation Detection

Small amplitude field modulation and lock-in detection at the modulation frequency results in a lock-in output, after \(N(H) \) corrections, which equals Wahlquist's \(a_1 \) amplitude\(^{16} \) and closely approximates the derivative of the Lorentzian shaped \(L(H) \). The Hanle-effect linewidth can be determined from this signal by sweeping the field between approximately \(- \frac{1}{2} H_{1/2}\) and \(+ \frac{1}{2} H_{1/2} \), correcting for the variation of \(N(H) \), and measuring the peak-to-peak separation. Since this is a tedious process, and since the peak positions measured in this manner are strongly influenced by intensity drifts during the sweep time of the dc field, we have measured the widths by driving the lock-in reference with the first harmonic of the modulation frequency, so that the lock-in output (after the \(N(H) \) correction) has the shape of Wahlquist's \(a_2 \) amplitude. For small amplitude modulation, \(a_2 \) closely approximates the second derivative of \(L(H) \), with zeroes occurring at

\[
H = \pm \frac{1}{3} H_{1/2} \left(1 + \frac{1}{2} \frac{H^2}{\omega} \right).
\]

The positions of these
zeroes were measured by sweeping the field over a small region centered on each zero as many times as necessary to obtain sufficient accuracy. Aside from the $N(H)$ correction, which produced the equivalent of a slight zero offset, this null detection method was independent of even large amplitude drifts; in addition all of the signal integration time was applied to finding the crossing points. For simplicity, the $N(H)$ correction was applied by assuming the lock-in output could be represented by $I''(H)$ rather than the second Fourier amplitude of $I(H + H_\omega \sin \omega t)$ as in Ref. 16. The resulting inaccuracies in this correction were maintained at less than 1% of the linewidth by operating at $H_\omega / \frac{1}{2} H_{1/2} \approx 1/3$.

As a check on the validity of this method of measuring linewidths, several Ca^+ linewidths, measured under various discharge conditions in the range of a few percent multiple-scattering narrowing and a few percent collisional broadening, were compared to those measured by lock-in detection at the reference frequency and by dc detection (with $N(H)$ corrections in all cases). After corrections for modulation broadening, the results all agreed within the 1 - 2% scatter of the dc widths.

As an additional check on the validity of the results, Ca^+ lock-in signals were compared, after $N(H)$ corrections, to Wahlquist's a_1 and a_2 coefficients, with the resulting agreement shown in Fig. 5. The dc signal profiles were also compared to a Lorentzian shape; the results are presented in Sec. IV D where they were also used to investigate the lamp line profile.

C. Multiple-Scattering Narrowing and Collisional Broadening

The linewidth of the Lorentzian-shaped intensity resonance of the Hanle effect corresponds to an effective lifetime, τ_{eff}, of the excited state. This effective lifetime can differ from the natural lifetime of the
excited state as a result of multiple scattering of photons5 and collisions with other gases.26,27 The additivity of these effects has been fairly well verified in double-resonance experiments under conditions of much greater multiple scattering and collisional broadening than occurred in our experiments.26 Consequently, we have assumed such an additivity for our Hanle-effect linewidths:

\[
\frac{4\pi g_{\nu} \left(\frac{1}{2} \left(\frac{1}{2} H_{1/2} \right) \right)}{h} \equiv \frac{1}{\tau_{\text{eff}}} = \frac{1}{\tau} (1 - \alpha x) + n \overline{v}_{12} \sigma .
\]

(2)

where \(n \) is the density of broadening gas atoms, \(\overline{v}_{12} = \sqrt{\frac{8}{\pi} RT \left(\frac{1}{M_{1}} + \frac{1}{M_{2}} \right)} \) is the mean relative velocity of the colliding ions and particles, \(\sigma \) is the "alignment" depolarization cross section for collisions with argon,28 \(\tau \) is the natural lifetime of the \(^2P_{3/2} \) state, \(x = 1 - \exp(-kN) \), \(N \) is the ion density, and \(\alpha \) and \(k \) are coefficients which depend on the states involved (the formulas for \(\alpha \) and \(k \) can be found in Ref. 5 or 26).

In our experiments in which the multiple-scattering narrowing was maintained at less than 10% of the natural linewidth, \(x \) varies almost linearly with \(N \); and Eq. (2) takes on the form used to interpret the experiments:

\[
\frac{4\pi g_{\nu} \left(\frac{1}{2} \left(\frac{1}{2} H_{1/2} \right) \right)}{h} \equiv \frac{1}{\tau} (1 - \alpha kN) + n \overline{v}_{12} \sigma .
\]

(3)

The scattering chamber discharge produces a considerable number of argon metastable atoms and free electrons, and it might be expected that these could contribute to the collisional broadening of the
Hanle-effect linewidths. This possibility was investigated by measuring the Ca+ linewidths during the discharge and during different intervals after the discharge was turned off. Under typical conditions the Ca+ linewidth was broadened several percent while the discharge was on. At all argon pressures below 1 Torr the broadening diminished to less than 1\% by 0.5 ms after the discharge was off, and no further changes were found between 1 and 5 ms after the discharge was turned off (after corrections were made for the decreasing multiple scattering narrowing with decreasing number of ions later in the afterglow). Consequently, the majority of the Ca+ and Mg+ data was taken by detecting the scattering 1 - 2 ms after the discharge was turned off; and the discharge was recycled immediately after this.

Once the collisional broadening by discharge products had been eliminated, the measured linewidths were expected to be in accordance with Eq. (3) where \(n \) is the density of argon atoms. Consequently the number of calcium (or magnesium) ions in the scattering chamber was varied at a number of argon pressures to establish the \(N = 0 \) limit of Eq. (3) for each argon pressure (Fig. 6); then these limiting widths were plotted against the argon pressure (Fig. 7) to establish the \(N = 0 \) and \(n = 0 \) limit (i.e. the natural lifetime). Since only the relative number of ions is needed in order to establish the \(N = 0 \) limits in Fig. 6, and since the optical depth for the ion resonance radiation is much less than 1, the intensity of scattered resonance radiation was used as the index of the scattering ion density.

The ion density was varied by changing the oven temperature, and by changing the discharge current. The former method has the
advantage of establishing the limit of $N = 0$ and of $n(Ca \text{ or } Mg) = 0$

at the same time so that any collisional broadening by Ca or Mg,

although not expected to be significant at the experimental densities

of less than 10^{-2} Torr, will not influence the limiting widths. Changing

the discharge current was used to verify that the discharge intensity
did not influence the linewidths through some mechanism such as heating

the argon to change its density at fixed pressure, or producing more
electrons. The linear dependence of the widths on N and n, as predicted
by Eq. (3), is consistent with the results in Figs. 6 and 7 and is at
the same time a considerable aid in finding the limiting widths.

D. Influence of Lamp Profile

The Breit formula is valid when the power density of the lamp
radiation is constant across the Doppler-shaped absorption band of the
scattering ions. The effect of a divergence from a flat exciting
spectrum can be exactly evaluated in terms of the power density, but
its major features can be considered as arising from the magnetic scanning
of the lamp line profile by the absorption profile of the scatterers.

For the Hanle-effect linewidths and the lamp Doppler widths of the present
experiments, this scanning effect should produce less than one-percent
error in the lifetimes if the lamp is not badly self-reversed, and little
self-reversal is expected for our lamp design. This expectation was tested
for Ca$^+$ in two ways: by looking for changes in the Hanle-effect linewidths
while varying the power level and oven temperature of the lamp, and by
comparing the field dependence of the scattering intensity to a Lorentzian
shape.
The line widths measured with altered lamp conditions changed less than one percent as the lamp power and calcium density were each varied by a factor of three, supporting the expectation of a sufficiently flat, lamp line profile.

The possibility of a divergence from Lorentzian field dependence was investigated by the following method. \(I(H) \) was measured with \(H \) varying between \(\pm 2.5 \, H_{1/2} \) and was corrected for the slight \(N(H) \) variation; then any asymmetry was removed by averaging the positive and negative field results (causes of asymmetry as discussed in Sec. IV E). For our scattering geometry, any lamp profile effects should be symmetric in field and should thus produce the approximate effect of multiplying the scattering intensity in Eq. (1) by \(1 + aH^2 / (\frac{1}{2} H_{1/2})^2 \) with \(a \ll 1 \). Labeling the experimentally measured \(I(H) - I(0) \) as \(S \), it then follows that

\[
\frac{S}{H^2} = \frac{1}{(\frac{1}{2} H_{1/2})^2} \left\{ cI_o - S + a \left[I_o (1 - c) + I_o \frac{S}{cI_o - S} \right] \right\} ,
\]

where only first-order terms in \(\alpha \) have been kept. Thus for \(\alpha = 0 \), a plot of \(S/H^2 \) vs \(S \) will be a straight line of slope \(-(\frac{1}{2} H_{1/2})^{-2} \), with \(S \) varying from 0 at \(H = 0 \) to \(cI_o \) at \(H = \infty \). If \(\alpha \) is not zero, the divergence of the data from a straight line will become apparent as \(S \) approaches \(cI_o \) (at the maximum fields used, \(S/(cI_o - S) \approx 20 \)). The advantages of plotting the data in this manner are that the values of neither \(cI_o \) nor \(\frac{1}{2} H_{1/2} \) need be assumed and the variation in \(\frac{1}{2} H_{1/2} \) due to a lack of Lorentzian shape appears as the variation in the slope of the line. \(Ca^+ \) data taken at several different
scattering chamber conditions in the range of a few percent, multiple-scattering narrowing and collisional broadening are presented in Fig. 9. The close fit to straight lines would appear to verify the validity of the $N(H)$ corrections as well as of the flatness of the lamp line profiles.

E. Deviations from Perfect Scattering Angles

The intensity of resonance fluorescence for arbitrary incident and exit angles and polarizer orientations can be calculated from the Breit formula for our $^2S_{1/2}$ ground state and $^2P_{3/2}$ excited state (I = 0) case with the result

$$I(H) = N I_0 \left\{ 0.8 + 0.2 \left(3e^2_z - 1 \right) \left(3e'^2_z - 1 \right) + 0.6 \frac{\text{Re} e^2_+ e'^2_-}{1 + x^2} +
ight.$$

$$+ 0.6 \frac{x \text{Im} e^2_+ e'^2_-}{1 + x^2} + 2.4 e_+ e'_- \frac{\text{Re} e^2_+ e'^2_-}{1 + (x/2)^2} +$$

$$+ 2.4 e_+ e'_- \frac{x/2 \text{Im} e^2_+ e'^2_-}{1 + (x/2)^2} \right\} \quad (4)$$

where e^+_z, e^-_z, e^+_z, and e'_z are defined as in Ref. 3. As noted in Sec. II, $I(H)$ becomes $N I_0 (1 - \frac{0.6}{1 + x^2})$ in the case of 90-degree scattering in the plane perpendicular to the field with polarizers oriented perpendicular to the field.

Small deviations from these exact conditions, due to finite solid angle optics or imperfect experimental setup, can cause the last three
terms of Eq. (4) to contribute to the signal. The first of these terms can appear if there is an error in the average scattering angle, $\psi - \psi'$, whereas the last two terms will contribute only in proportion to $\sin \delta \sin \delta'$ where δ and δ' are the errors in the in and out polarizer angles. Consequently, it is primarily the $x/(1 + x^2)$ term which produces an asymmetry in the signal with the amount of asymmetry depending on $\psi - \psi'$. Because the change in symmetry is first order in the amplitude of this term, but the measured linewidth changes only to second order in the amplitude, this source of width error is easily controlled. In these experiments we measured the maxima, P_+, and minima, P_-, of $I'(\hbar)$ with the lock-in detector and adjusted $\psi - \psi'$ until $P \equiv (P_+ - P_-)/(P_+ + P_-)$ was less than 0.1. Under these conditions the fractional change in width, which we calculate to be $4p^2/9$, was less than 1/2%.

We must also consider the possibility that the polarizer angles are sufficiently in error to produce significant contributions from the last two terms in Eq. (4). In this case the change in measured linewidth due to the last (asymmetric) term will be second order in its amplitude and quite negligible. The symmetric term will broaden the linewidth by first order in its amplitude, but the largest contribution to this amplitude is proportional to $\sin \delta \sin \delta' \sin \Delta \phi$ where $\Delta \phi$ is the error in $\psi - \psi'$. Consequently this amplitude will also be quite negligible when $\psi - \psi'$ is adjusted to produce a fairly symmetric signal.

These conclusions were tested in the Ca$^+$ experiment by varying the polarizer angles several degrees and also by removing the input beam polarizer; less than 1% width change resulted.
F. Atomic Lifetimes

The neutral calcium 4^1P_1 lifetime and magnesium 3^1P_1 lifetime have already been accurately measured by the Hanle-effect technique and by the phase-shift technique. Nonetheless, it appeared desirable to measure them in our apparatus, since we would obtain a general check on our apparatus and at the same time would obtain the argon collisional depolarization cross-sections for these states.

Line profile investigation on these atomic lines, following the methods in Sec. IV D, led to the same results found for the ion lines; that the lamp line profile was sufficiently flat to produce less than one percent error in the lifetimes.

The influence of a several percent multiple-scattering narrowing and collisional broadening were found to be consistent with Eq. (3) (with N representing the atomic density).

Our results for the Ca4^1P_1 and Mg3^1P_1 lifetimes were

\[\tau_{\text{Ca}} = 4.62 \pm 0.15 \times 10^{-9} \text{ sec} \]

and

\[\tau_{\text{Mg}} = 2.03 \pm 0.06 \times 10^{-9} \text{ sec}. \]

These are in satisfactory agreement with the results of Refs. 3, 30, and 31, which are respectively
\[\tau_{\text{Ca}} = 4.48 \pm 0.15 \times 10^{-9} \text{ sec}, \]

\[\tau_{\text{Mg}} = 1.99 \pm 0.08 \times 10^{-9} \text{ sec}, \]

and

\[\tau_{\text{Ca}} = 4.67 \pm 0.11 \times 10^{-9} \text{ sec}. \]

V. CONCLUSIONS

From the best fit lines in Figs. 7a and 7b, and from an estimate of possible systematic errors, we obtain

\[\tau_{\text{Ca}^{+} 4P_{3/2} \text{ state}} = 6.72 \pm 0.20 \times 10^{-9} \text{ sec}, \]

and

\[\tau_{\text{Mg}^{+} 3P_{3/2} \text{ state}} = 3.67 \pm 0.18 \times 10^{-9} \text{ sec}. \]

The uncertainty in the \text{Mg}^{+} lifetime is considered to be greater than that for \text{Ca}^{+} because most of the tests for systematic error were performed only with \text{Ca}^{+}. Since the same methods and apparatus were used in the \text{Mg}^{+} experiment, it appears likely that these systematic errors were also absent in the \text{Mg}^{+} data; but this was not proven due to the low intensities available when using a spectrometer.
The $\text{Ca}^{+} 4^2 P_{3/2}$ state lifetime cannot be compared directly to the theoretical predictions for the $4^2 P_{3/2} - 4^2 S_{1/2}$ oscillator strength, since the $4^2 P_{3/2}$ state decays by three transitions. Since we plan to measure the branching ratios for these three transitions, we will not try here to establish their most likely values from available approximate values.

Our $\text{Mg}^{+} 3^2 P_{3/2}$ state lifetime is compared to all the other experimental and theoretical results that we are aware of in Table I.

The slopes of the best fit lines in Fig. 7, and the equivalent data for the neutral calcium and magnesium $1^2 P_1$ states, can be used to establish the collisional depolarization cross sections defined in Eq. (2). It is also necessary to establish the average temperature of the vapor in the scattering region, since $n \nu_{12}$ is proportional to $T^{-1/2}$ at any particular argon pressure. The vapor in the scattering region above the oven is heated by the oven in competition with cooling by the walls of the scattering chamber and by circulation of the argon. The mean free path of calcium (magnesium) in 0.1 - 1 Torr argon is such that it will be in thermal equilibrium with the argon by the time it reaches the optically illuminated region 3 - 17 mm above the oven; while measurements of Ca^+ linewidths vs the discharge intensity showed no dependence on the intensity, indicating that the discharge did not significantly heat the vapor. Consequently, the temperature profile of the vapor in the scattering region was measured with a thermocouple probe while the discharge was off and the oven was at its typical temperature. The measured temperatures varied only slightly with argon pressure, but varied from 210 $^\circ$C at 3 mm above the oven to 120 $^\circ$C at 10 mm, and 80 $^\circ$C at 17 mm. Consequently, we have used $140 \pm 50 ^\circ$C to calculate
n \bar{v}_{12}. The resulting alignment depolarization cross sections for collisions with argon are

\[\sigma (\text{Mg}^3{^1P_1 \text{ state}}) = 1.9 \pm 0.3 \times 10^{-14} \text{ cm}^2 \]

\[\sigma (\text{Mg}^+{^2P_3/2 \text{ state}}) = 1.3 \pm 0.25 \times 10^{-14} \text{ cm}^2 \]

\[\sigma (\text{Ca}^4{^1P_1 \text{ state}}) = 1.9 \pm 0.3 \times 10^{-14} \text{ cm}^2 \]

\[\sigma (\text{Ca}^+{^2P_3/2 \text{ state}}) = 1.4 \pm 0.2 \times 10^{-14} \text{ cm}^2 \]

The theory of collisional depolarization of excited atomic states in atom-atom collisions has been developed in Refs. 26 and 27 and applied to Hg, Cd, and Zn collisions with similar atoms and foreign gas atoms. The excess charge of the ion in the case of ion-atom collisions adds a term \(\alpha R^{-2} \) to the dipole-dipole \(\alpha R^{-3} \) perturbation potential of atom-atom collisions, but this additional term can cause changes only in the populations of the atomic levels. Since we detect the depolarization of an excited state of the ion, only the dipole-dipole term is effective, and the above theories apply directly to our case as well. Nonetheless, we will defer a comparison of our results with the predictions of the theory until further experiments in progress give us a more complete set of cross sections for collisions between Group II A ions or atoms and noble gas atoms.
ACKNOWLEDGMENTS

We wish to thank L. Branscomb for suggesting the measurements of ion excited state lifetimes, P. Bender for his helpful discussions, and R. Weppner for his assistance in building the apparatus.
<table>
<thead>
<tr>
<th>Method</th>
<th>Reference</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCF with exchange and polarization approximations</td>
<td>32</td>
<td>2.56×10^{-9} sec</td>
</tr>
<tr>
<td>Coulomb approximation</td>
<td>33</td>
<td>3.97×10^{-9} sec</td>
</tr>
<tr>
<td>Arc emission</td>
<td>34</td>
<td>4.4×10^{-9} sec</td>
</tr>
<tr>
<td>Hanle effect</td>
<td>present work</td>
<td>$3.67 \pm 0.18 \times 10^{-9}$ sec</td>
</tr>
</tbody>
</table>
FOOTNOTES

3. For a review of the theory and experimental techniques, see A. Lurio, R. L. deZafra and R. J. Goshen, Phys. Rev. 134, A1198 (1964), and references contained therein.

8. For example, W. Demtröder, Z. Phys. 166, 42 (1962) who used the phase shift method in atoms; modulated electron beams have been used to measure lifetimes of excited states of molecular ions by G. M. Lawrence, JQSRT 5, 359 (1965).

9. The original optical double resonance experiment of Brossel and Bitter, Phys. Rev. 86, 308 (1952), has been applied to atomic excited states which cannot be reached optically using
excitation by electron beams by J. C. Pebay-Peyroula,
J. Phys. Rad. (Paris) 20, 669, 721 (1959) and to ion state
117, 224 (1928); for more recent work in the same vein see
J. C. Pebay-Peyroula et al., C. R. Acad. Sci. (Paris) 256,
5088 (1963) and 257, 3130 (1963).
451 (1964).
15. See Sec. IV E for a discussion of reasons why the geometry is
selected.
17. For an alkali-like ion, g_J calculated assuming Russell-Saunders
coupling should be correct to considerably better than 1%.
Even in HgI, for example, where there is a significant
departure from L-S coupling unlike the alkalis, the
measured value of g_J in the 6^3P_1 state deviates by only
1% from the Russell-Saunders value of 1.5. W. W. Smith,
18. A Hanle effect may be observed in a $J = 1/2$ state with
circularly polarized light; see A. Gallagher and A. Lurio,

21. In a different arrangement an interference filter was used in conjunction with an absorption cell which attenuated the MgI resonance line by a factor \(\sim 100 \), but the minor improvement in signal-to-noise did not justify the increased complication.

23. Our \(\sim 15 \) mW output figure agrees with the 16 mW maximum output given in Ref. 22, assuming an f/1.5 optical system (the actual aperture used is not stated in Ref. 22, however, and we were driving the lamp with considerably more rf power.)

28. This conventional definition of the cross section is adopted in Refs. 26 and 27. In Ref. 27 the relationship between "orientation" and "alignment" depolarization cross sections is derived. It has also been experimentally verified; W. Happer and E. B. Saloman, Phys. Rev. Lett. 15, 441 (1965).

FIGURE CAPTIONS

Fig. 1. (a) First few energy levels of Ca$^+$.
(b) First few energy levels of Mg$^+$.

Fig. 2. Schematic diagram of apparatus.

Fig. 3. Typical discharge and photomultiplier timing.

Fig. 4. Microwave-excited flow lamp. The drilled-hole oven top heats well enough to prevent condensing of the Ca or Mg in the passages (a problem encountered with the crinkle-foil plugs described in Ref. 22). The same oven design was used in the scattering chamber, with coaxial heater wires to minimize their magnetic field.

Fig. 5. Experimental vs theoretical lock-in signals from the Ca$^+$ experiment. Solid line is lock-in signal with reference frequency equal to modulation frequency; dashed line at twice the modulation frequency. Crosses are Wahlquist a$_1$ and a$_2$ coefficients with $\beta = \frac{1}{2} H_{1/2}/H_0 \approx 3$. The vertical scales and horizontal scale of the experimental curves are chosen to fit at the peaks and zero; β is known from the measured modulation broadening.

Fig. 6. Hanle-effect linewidth ($H_{1/2}/\sqrt{3}$) vs relative ion density at a number of argon pressures (in Torr). Widths have been corrected for the $\sim 6\%$ modulation broadening. (a) Ca$^+$ data. (b) Mg$^+$ data. The scatter here is much greater than for the Ca$^+$ data due to intensity lost using a spectrometer. To avoid mingling, data at only two pressures are presented.
Fig. 7. Extrapolated zero-ion-density linewidths vs argon pressure.
 (a) Ca\(^+\) width from Fig. 6a. (b) Mg\(^+\) widths from Fig. 6b and additional data. Typically five widths were measured to establish each point in Fig. 7b.

Fig. 8. I(H) data from the Ca\(^+\) experiment (with 3-5\% collisional broadening and 1-3\% multiple-scattering narrowing).
Figure 1
Figure 3
Figure 6

LINE WIDTH BETWEEN ZEROES OF L''(H) (GAUSS)

3934-68 Å SCATTERING INTENSITY/LAMP INTENSITY (ARBITRARY UNITS)
LINE WIDTH BETWEEN ZEROES OF $L''(H)$ (GAUSS)

2796 AND 2803Å SCATTERING INTENSITY/LAMP INTENSITY
(ARBITRARY UNITS)

Figure 6b
Figure 7a

ARGON PRESSURE (Torr)

LINE WIDTH (GAUSS)

-39-
Figure 7b

ARGON PRESSURE (Torr)

LINE WIDTH (GAUSS)
Figure 8

Graph showing the relationship between S/H^2 (inches/gauss2) and $I(H) - I(O) \equiv S$ (inches on recorder chart) for different pressures (0.39 Torr ARGON, 0.23 Torr).