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Exploring out-of-equilibrium quantum simulation in a many-atom strontium cavity QED platform

Thesis directed by Prof. James K. Thompson

In my thesis work, I have explored novel ways to experimentally simulate nonequilibrium quan-

tum models in a cavity quantum electrodynamics (cavity QED) platform consisting of many atoms col-

lectively coupled to an optical cavity. Quantum simulation is a burgeoning field, both in atomic physics

and beyond, with the potential to answer many open questions about complex quantum systems. In

particular, many of these systems are expected to exhibit nontrivial dynamical phases of matter not ob-

servable in thermodynamic equilibrium, which are challenging to observe in nature but could be real-

ized with a controllable quantum simulator. To this end, cavity QED offers the ability to natively engineer

infinite-range nonlocal interactions, a feature present in many quantum magnetism and quantum op-

tics models. This makes the platform well-suited to study these models and explore their behavior out of

equilibrium.

A key breakthrough in my thesis work was developing a simulator to study dynamics in the BCS

model of superconductivity using an ensemble of thermal spins interacting through the cavity. Although

this model has been predicted to exhibit three distinct phases of dynamics after quenching the system

out of equilibrium, an observation of these phases in real superconducting or superfluid platforms has

remained out of reach. Thanks to the ability to engineer cavity-mediated atom-atom interactions and

control single-particle energy shifts in our system, I successfully utilized an Anderson pseudospin map-

ping to experimentally observe all three predicted dynamical phases for the first time in any platform.

By expanding the scope of this mapping in straightforward ways, I was able to explore even richer dy-

namics and performed a study identifying and contrasting two distinct many body energy gaps in the

system. My work opens the door towards engineering even richer and more complex quantum models,

such as superconductors with nontrivial topology and synthetic lattices experiencing coherent correla-

tion spreading across their sites.
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7.7 Simultaneously measuring 〈 Ĵ−〉 and 〈 Ĵ z〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

7.8 Directly measuring excited state population transfer with the cavity probe . . . . . . . . . . 240



Chapter 1

Introduction

1.1 General motivation

Over the past 200 years, fundamental physics has vastly increased our understanding of how the

universe works at its most basic level, culminating in triumphs such as general relativity and the Stan-

dard Model. Although these theories are known not to be complete, they have remarkable predictive

power over all but the most extreme parameter regimes, both quantitatively (such as calculating the de-

gree of gravitational lensing [1] or the value of the fine-structure constant [2]) and qualitatively (such as

predicting the existence of gravitational waves [3] or the Higgs boson [4]).

However, attempting to use the full machinery of general relativity or the Standard Model to calcu-

late the dynamics of a human-scale system would be unnecessary and impractical. Understanding why

a ball rolls down a hill does not require knowledge of curved spacetime or the strong force binding its

constituent quarks together, and considering these effects would distract from the simpler picture of an

object accelerating under a constant downwards force. Using approximate simple models such as this

to better understand mechanisms in a complex system is, in many ways, a foundational tenet of physics

and science as a whole. That said, the use of such models must be justified. Part of the challenge in-

herent to physics is determining under what regimes certain models hold predictive power (and to what

extent), as well as when counfounding technical details necessitate a more heavyweight description of

the system. This determination requires comparing the predictions of these models with the proper

experimental measurements.

Alongside our advances in theoretical physics, the advent of computers has increased our ability to
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understand complex systems from first principles through the use of computational methods. This pro-

vides an alternative avenue for testing the predictions of simple models of a system when experimental

measurements are inaccessible. However, computational methods run into challenges when studying

highly correlated quantum systems due to the exponential growth in system complexity with the num-

ber of particles. Moreover, these kinds of systems often display interesting emergent phenomena, which

we would like to understand but which have no obvious analog in smaller or simpler systems (as Philip

Anderson famously said, “more is different” [5]). While physicists can propose mechanisms for emer-

gent behavior using some simple model, without the ability to perform experimental measurements or

numerical simulations, these mechanisms cannot be tested.

A classic example of this issue lies with superconductors. These are materials that exhibit near-

zero electrical resistance and a repulsion of magnetic field lines from the bulk of the material, and which

feature large correlations between electrons in the material that give rise to their strange effects. Key

insights into superconductivity were made in the 1950s when physicists Bardeen, Cooper, and Schrief-

fer proposed a model, now called the BCS model, which provided a simple microscopic mechanism for

the phenomenon [6]. Despite its successes, the BCS model cannot account for the behavior of uncon-

ventional superconductors, including high-Tc superconductors which have received a lot of interest for

their potential use in real-world applications. An approximate simple model, the Fermi-Hubbard model,

is believed to be a valid minimal model which may capture the behavior of unconventional supercon-

ductors [7]. However, generating predictions from the model in the parameter regime of interest, which

exhibits competing interaction orders, low temperatures, and strong interactions, is challenging [8].

Analog quantum simulation, an emerging tool that studies quantum systems with another quan-

tum system, has the potential to help test models which experimental and classical numerical methods

cannot. The basic reason this method holds such promise is that, unlike simulation on classical com-

puters, the platforms used in quantum simulation are composed of quantum objects which, through the

use of Hamiltonian engineering, can directly simulate the model in question. At the same time, the plat-

forms are designed to be more tunable, programmable, and easily measured than the real experimental

systems they attempt to emulate. Analog quantum simulators are similar in spirit to quantum comput-
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ers, which can in principle perform the same task. The main difference is that quantum computers must

first convert the desired dynamics into discrete digital gates (i.e., “digital” quantum simulation), whereas

analog systems rely on directly engineering the desired Hamiltonian in almost a bespoke fashion: for

a similarly sized system, the latter is less prone to a buildup in infidelity over time [9]. Motivated by

this promise, quantum simulation experiments have developed over a variety of different platforms in

atomic physics [10–16], attempting to study a variety of problems [9, 17]. One active area of interest is

the aforementioned Fermi-Hubbard model [18–23], with some experiments even beginning to provide

insight into regimes which are classically difficult to simulate [24].

Another large class of problems which can be probed with quantum simulators are emergent phe-

nomena in out-of-equilibrium quantum systems. Generically, the number of degrees of freedom in

such systems far outstrips their equilibrium counterparts, which already host quite rich physics. This

results in a variety of new behaviors, some precluded from existence at equilibrium; at the same time,

the added complexity can make these systems even more challenging to predict. Therefore, there are

many open questions left to be explored [13, 17, 25]. An incomplete list of active areas of research

into nonequilibrium systems includes driven-dissipative phases [26, 27], particularly the physics of self-

organization [28–39], optical bistability [40], phase synchronization [41–46][47][G], many-body localiza-

tion [48, 49], correlation spreading dynamics [50, 51], discrete time crystals [52], quantum many-body

scars [53, 54], and prethermal dynamical phase transitions [55] (see Ch. 5 for a more in-depth discussion

of this physics).

Despite the huge interest in quantum simulation, the field has a couple of major limitations. Cur-

rently, only a few experiments have demonstrated results beyond what can be classically simulated. A lot

of the technical challenges facing current quantum simulators boil down to imperfections in initial state

preparation, such as working at a finite temperature [24], or imperfections in engineering the desired

dynamics [54]. Improving these metrics is an active goal of many experiments. At the same time, due

to the bespoke nature of the interactions, quantum simulators are somewhat limited in the number of

models they can study. One potential avenue to mitigate this problem is to continue developing multiple

different platforms for quantum simulation, with different interaction types. A benefit of atomic systems
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the ability to engineer interactions that scale with distance in many different ways [16], from contact in-

teractions in optical lattices [11], 1/r 6 van der Waals interactions with Rydberg atoms [12], 1/r 3 dipolar

interactions [15], and tunable 1/rα interactions (α≥ 1) with trapped ions [10], to infinite-range interac-

tions with optical cavities [14]. Continued research into multiple platforms will therefore strengthen the

toolbox of quantum simulation.

In this thesis, I will showcase work developing the “tool” of collective cavity quantum electro-

dynamics (cavity QED), specifically for studying nonequilibrium physics with quantum simulation. At

its most general, a cavity QED system studies light-matter interactions when certain electromagnetic

modes are amplified via the presence of reflective mirrors which form a resonator. I will specifically fo-

cus on the case where we couple many identical atoms (in our case, strontium atoms) to a single mode

of a high-finesse (i.e., highly reflective) optical cavity.

What makes cavity QED an appealing platform for study? First, it boasts impressive measure-

ment capabilities, applicable not only towards precision measurement and quantum sensing but also

for readout in quantum simulation experiments. The enhanced light-matter interactions displayed by

strongly coupled atom-cavity systems enables the collection of photons scattered off the atoms through

the cavity mode with high quantum efficiency, making them an appealing candidate for performing fast

mid-circuit measurement of qubits in neutral atom quantum computing platforms [56–59]. By perform-

ing these measurements on an ensemble of atoms, it is possible to perform quantum nondemolition

(QND) measurements of the ensemble which only partially collapse the many-body wavefunction, lead-

ing to entanglement generation in the form of spin squeezing [60–62][63–65][G]. This technique, along-

side a similar technique in cavity QED systems for deterministically squeezing an ensemble of atoms

[66–68], has led to record levels of entanglement [69][70][G],1 with ongoing work towards applications in

real quantum sensors such as matterwave interferometers [71][G] and optical atomic clocks [72, 73]. In

the context of quantum simulation, these capabilities open up the potential to measure correlations in

observables below the standard quantum limit.

1 Throughout the thesis, I will use the designator “[G]” to indicate when a paper comes from our group (the group of James
K. Thompson).
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Another draw for utilizing cavity QED for quantum simulation is the wealth of available models

and phenomena observable using all-to-all interactions. For example, a series of experiments study-

ing Bose-Einstein condensates trapped in optical cavities [74] has successfully studied an open system

implementation of the Dicke model [32, 33, 75, 76] and the related Dicke-Hubbard model [77] using

just globally applied drives in combination with an all-to-all cavity interaction. These systems have

also been shown to display self-organization behavior [78] and topological pumping of the atoms in

real space [38]. Similar setups have been engineered to realize theoretically predicted driven-dissipative

phases and phase transitions, including both discrete [37] and continuous time crystals [79], as well as

the cooperative resonance fluorescence model from quantum optics [80][G] and related observations of

bistability and photon blockades [26, 40] (see Ch. 8 for a brief discussion of this result). In related work,

driven BECs in a ring resonator have demonstrated exotic states of matter such as supersolids [81], as

well as collective forms of scattering [82, 83] which can create interesting quantum phases [84]. Away

from a dissipative regime, atom-cavity systems can display effective all-to-all atom-atom interactions

which emulate different types of quantum magnetism. These include the Heisenberg model and Ising

model [85][86][G], as well as a couple of related models discussed in this thesis including, notably, the

BCS model of superconductivity (see Sec. 1.2 for an overview). All-to-all interactions could also be used

to probe the Sachdev-Ye model [87] and other models of information scrambling [88], which may pro-

vide insight into other fast-scrambling systems like black holes [89]. Cavity QED can even be used to

generate higher-order interactions such as three-body and four-body terms [90][G].

I will note that although single-mode cavity QED natively exhibits all-to-all interactions, clever

system engineering can modify this behavior and enable the study of a broader range of models. One

recent experiment managed to study fractional quantum Hall physics by engineering a Laughlin state

out of transverse cavity modes with nonzero angular momentum [91]. Another utilized a confocal cavity

geometry to generate local interactions in a 2D plane transverse to the cavity axis to engineer a spin

glass and observe replica symmetry breaking behavior consistent with simple models of such systems

[27]. Finally, by combining all-to-all interactions with controllable frequency shifts, a third group has

demonstrated the capability to generate arbitrary graph states of interactions between individual trap
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(a) (b)

Figure 1.1: Basic form of the all-to-all cavity-mediated atom-atom interaction. (a) Many atoms couple
to a single mode of an optical cavity, which we model as spins. Under the right conditions, the cavity
mediates an all-to-all “spin-exchange” interaction in which one atom lowers its spin state by emitting a
photon into the cavity, and another atom raises its spin state by absorbing the same photon. The inter-
action takes the form χŜ+Ŝ−, which can be approximately broken up into two terms: χŜ2 and χ(Ŝz )2. (b)
The χ(Ŝz )2 term, sometimes called one-axis twisting, induces an inversion-dependent frequency shift
on the atoms which looks like twisting on the collective Bloch sphere. This introduces dynamical conse-
quences at the mean-field level (see Ch. 5) and can induce spin squeezing beyond mean-field. The χŜ2

creates a many-body energy gap between manifolds of different total spin angular momentum S. When
a term like single-particle dephasing exists that would reduce S, this term acts to gap protect the atomic
coherence and prevent dephasing (see Ch. 6). This figure is adapted from [93][G] (with Matt Norcia as the
first author).

sites in an optical cavity [92]. This last example raises an intriguing propsect of combining all-to-all

interactions with effects which are not all-to-all (in this case, local detunings), in order to study models

with increased complexity. Along this line of thought, combining interaction orders of different systems

could be an interesting path forward for simulating an even broader class of problems.

The interaction primarily studied in this thesis is a two-body, all-to-all cavity-mediated interaction

which resembles a spin-exchange process (see Fig. 1.1) [94][95][G]. Under the right conditions, discussed

in depth in Ch. 2.5.3, the ensemble can undergo a process where one atom emits a photon into the

cavity mode, which is reabsorbed by a second atom before it can leak out of the cavity. Treating the

atoms as spins, the interaction takes the form χŜ+Ŝ− using collective spin angular momentum raising

and lowering operators Ŝ±. This can in turn be interpreted as a combination of a one-axis twisting term
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(χ(Ŝz )2), which looks like an inversion-dependent frequency shift on the ensemble, and a many-body

gap protection term (χŜ2), which acts to preserve coherence within the ensemble. As we will see, just

these two ingredients is already sufficient to produce a host of interesting physics.

1.2 Overview of results

ndInIn this section, I will briefly summarize the results which comprise the bulk of this thesis.

There are four main experiments to discuss. The first two were led by a former postdoc in the group

named Juan Muniz, with me as the second experimental author. I included these two projects in the

thesis primarily for the sake of historical completeness; the second experiment in particular sets the

stage for later experiments performed by the group. The latter two projects were led by me.

1.2.1 Precision measurement of the natural linewidth of an ultranarrow atomic transition

In this first experiment [96][G] (see Ch. 4), we utilize the collectively enhanced atom-light coupling

afforded by cavity QED to probe narrow-linewidth transitions in strontium atoms, including the ultra-

narrow linewidth optical “clock” transition, so-named for its use in strontium optical lattice clocks [73,

97–101]. By comparing the response of the clock transition with another, easier to characterize transi-

tion in strontium, we are able to measure the linewidth of the clock transition with a lower uncertainty

than any previous measurement. Although this project is not directly related to quantum simulation, it

showcases the ability of cavity QED platforms to measure collective observables of an atomic ensemble

with high precision.

The main challenge in measuring the clock transition linewidth is its anomalously long lifetime.

This (1S0 – 3P0) transition is “doubly forbidden” since it requires a photon to change the total electron spin

from a singlet to a triplet configuration, as well as connect two J = 0 angular momentum states, neither

of which can normally occur. Only through weak state mixings of the raw hydrogen-like orbitals does

the transition decay at all, resuling in a linewidth on the order of 1 mHz and a corresponding lifetime

of ~100 s. At such long natural lifetimes, depopulation of the excited clock state may not be limited by

spontaneous emission but rather confounding effects such as blackbody radiation induced transitions
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[102, 103] and off-resonant scattering from the trapping light [104–106]. The result of such challenges is

that, at the time of running this experiment, the uncertainty in the clock transition linewidth was on the

order of 30% [104, 107].

In order to circumvent these problems, we infer the natural linewidth not through a measurement

of the population decay but rather by probing the dipole matrix element along the optical transition.

While the doubly forbidden nature of the transition makes this matrix element quite weak (it is propor-

tional to the square root of the atomic linewidth), placing many atoms into a high-finesse optical cavity

allows us to enhance the atom-light interaction to a point where we can probe a resonance feature as-

sociated with a millihertz transition, even with a laser whose frequency noise gives it a linewidth several

times broader. Moreover, we can do so quite precisely: by sending a weak probe through the optical

cavity and detecting the phase shift it receives from this resonance feature using a heterodyne detec-

tor, we are able to infer the natural linewidth with an uncertainty of roughly 3%. Key to achieving this

level of precision is performing interleaved measurements of the clock transition and a different atomic

transition in strontium, which has a still narrow but ultimately more manageable linewidth of 7.5 kHz.

By comparing the relative size of the shifts experienced by their respective probes, we gain first-order

insensitivity to a slew of systematic effects which would otherwise increase our uncertainty of the mea-

surement. These techniques raise the possibility to directly lock clock lasers to their respective atomic

transitions spectroscopically, a prospect that seems far-fetched in free space with current technologies

due to the ultranarrow linewidths and weak scattering intrinsic to these transitions.

1.2.2 Observing dynamical phases in the Lipkin-Meshkov-Glick model

In this experiment [108][G] (see Ch. 5), we build off initial work in our group exploring cavity-

mediated spin-exchange interactions [95][G] by studying them dynamically. Specifically, we perform

quench experiments of the Lipkin-Meshkov-Glick (LMG) model [109, 110], an all-to-all quantum mag-

netism model which is simple to express but also exhibits nontrivial behavior in the form of two distinct

parameter regimes of quench dynamics separated by a so-called dynamical phase transition [55]. We

observe this phase transition in our implementation and explore its features, including connections to
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the context of macroscopic self-trapping phenomena observed in Josephson junctions [111–114].

Dynamical phase transitions are a class of critical behavior in out-of-equilibrium systems which

have experienced a lot of interest over the past decade [115–125]. Unlike many driven-dissipative tran-

sitions which describe critical behavior in the steady-state of some open system, dynamical phase tran-

sitions as I’m defining them here are prethermal in the sense that the relevant dynamics occurs on a

timescale where dissipation can be neglected, effectively treating the system as closed [55]. In these sys-

tems, nonlinear or many-body Hamiltonian terms can induce sharp changes in the quench dynamics in

the thermodynamic limit (N →∞). This sharp change can be quantified by defining some time-averaged

order parameter which exhibits critical behavior, in analogy to a phase transition in equilibrium thermo-

dynamics. An interesting feature unique to this type of dynamical phase transition is a dependence of

the dynamical phase diagram on initial conditions. Because a dynamical phase transition occurs before

the system can reach a steady state, initializing the system in two different ways can lead to two different

phases of dynamics even if all other parameters are held fixed. This represents a new degree of freedom

which we would like to study and characterize.

To implement the LMG model, we engineer cavity-mediated spin-exchange interactions to pro-

duce a one-axis twisting interaction of the form shown in Fig. 1.1(b). We then perform quench experi-

ments by rapidly turning on an applied drive near resonance with an atomic transition, generating the

transverse and longitudinal fields present in the model. When probing the dynamics after the quench,

we identify two distinct regimes of dynamics depending on the relative strength of the drive compared

with the interactions. When the drive is dominant, the atoms undergo Rabi-like oscillation, which we as-

sociate with a paramagnetic phase since the time-averaged magnetization is zero. On the other hand, in

the interaction-dominated regime, atoms initially in the ground state will not freely oscillate and instead

exhibit a persistently negative magnetization, corresponding to a ferromagnetic phase. As we tune the

relative strength of the drive and the interactions, we observe a sharp kink in the time-averaged magneti-

zation, indicative of a second-order dynamical phase transition. Additionally, we repeat the experiment

for different initial conditions of our atomic ensemble and map out an “initial condition phase diagram,”

finding that the ultimate dynamical phase depends both in the initial atomic inversion and its phase rel-
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phonon-mediated
exchange

(a) (b)

Figure 1.2: Cooper pair formation in BCS superconductors. (a) In BCS superconductors, electrons distort
the underlying lattice of positive ions in the metal through Coulomb forces, creating phonons. Through
these phonons, they gain an effective attractive interaction. At sufficiently low temperatures, this causes
the electrons to condense into Cooper pairs of opposite momentum and spin states. (b) The attractive
interaction can be understood as a phonon-mediated exchange process between Cooper pairs of dif-
ferent momentum labels k (alternatively, the electrons scatter with a negative scattering length). In an
s-wave superconductor, this exchange is all-to-all and is analogous to a cavity-mediated spin-exchange
interaction.

ative to the applied drive.

1.2.3 Observing dynamical phases in the BCS model of superconductivity

Motivated by the success of the previous work studying the LMG model, in this work [126][G] (see

Ch. 6) we continue our exploration of dynamical phases by studying the BCS model of superconductivity

[6]. This model, which is famous for providing a first microscopic picture of how superconductivity can

arise in some systems, also has been predicted to exhibit three distinct dynamical phases after quenching

the Hamiltonian when the system is initially in an equilibrium state [127–137]. Despite attempts in both

thin-film superconductors [138–140] and degenerate Fermi gases [141] (and more recently, [142]), only

limited signatures of some of these phases have been observed. By engineering the BCS Hamiltonian in

our collective cavity QED system, we successfully observe phase transitions across all boundaries of the

predicted dynamical phase diagram, and we also provide a first experimental demonstation of “phase

III.”
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Although our physical system, composed of a dilute cloud of thermal atoms in an optical cavity, is

quite different from the highly degenerate systems of superconductors and superfluids, we can nonethe-

less study the BCS model through the use of an abstract mapping between the two systems. This step,

known as an Anderson pseudospin mapping [143], simplifies the description of the system by group-

ing electrons into “Cooper pairs” with opposite momentum and representing each Cooper pair with

an abstract pseudospin object, with spin-up and spin-down representing the presence and absence of

electrons in the pair, respectively. Under this mapping, an s-wave (i.e., isotropic) BCS interaction corre-

sponds to an all-to-all spin-exchange interaction between pseudospins. By making the abstract manifest

in our system and assigning Anderson’s pseudospin objects to our physical atoms, we can simulate the

dynamics of an s-wave BCS Hamiltonian. Controllable application of single-particle energy shifts allows

us to tune across a two-dimensional dynamical phase diagram, sufficient to observe the three predicted

dynamical phases.

Alongside demonstrating the predicted BCS dynamical phases, we refine a physical interpretation

of the phase transitions using our hardware-native language of a spin ensemble, providing an approxi-

mate simple picture of superfluidity which clarifies some of its features. The phase I to phase II transition

in the BCS model reflects a competition between single-particle dephasing and the spin-exchange inter-

action, which generates a many-body gap protection term χŜ2 (see Fig. 1.1(b)). Therefore, the transition

maps directly onto the interaction-protected spin coherence previously observed in cavity QED exper-

iments [85]. So-called “Higgs” oscillations which are characteristic of phase II in this system [137, 142]

correspond to detuned oscillations between manifolds of different total spin angular momentum, in-

duced by single-particle dephasing and with the different levels split in frequency by the gap-protection

term. Finally, the phase II to phase III transition observed in our experiment reflects a competition be-

tween the spin-exchange interaction strength and a single-particle beating between two halves of the

ensemble, reflecting states above and below the Fermi energy. These interpretations, made in the con-

text of the s-wave BCS model, can be extended to more complex models of superconductivity through

similar proposed mappings [144].
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1.2.4 Emulating rf spectroscopy of fermionic superfluids using multilevel atoms

The pseudospin BCS Hamiltonian studied in the previous section represents a reduced model of

BCS superconductivity, in which we neglect the effect of pair-breaking processes that allow Cooper pairs

to be half occupied. In a first attempt to model processes beyond the paradigm of Anderson pseudospins,

in this experiment [145][G] (see Ch. 7) we utilize the multilevel structure of our strontium atoms by in-

ducing a coupling outside of the initial two-level system and into a third noninteracting state. In this

extended system, we observe two distinct many body gaps and explore their different dependences on

the initial atomic state.

Our strategy of driving atoms into auxiliary states is closely analogous to the technique of “radio-

frequency (rf) spectroscopy,” performed in early experiments of degenerate Fermi gases to verify the

formation of Cooper pairs [146–150]. In those works, researchers studied degenerate spin mixtures of

fermions in two hyperfine sublevels by applying an rf drive nominally on resonance with a third, nonin-

teracting sublevel and performing spectroscopy. Any nonzero frequency shift (which we call the “spectral

gap”) observed on the resonance feature would then be a signature of Cooper pairing, since it reflects the

energy cost required to break up a pair. This method was successfully used to verify BCS condensation.

However, it was not without its issues: technical details led to complications in a quantitative interpre-

tation of the spectral gap [151–153], and there was not a clean probe to distinguish the spectral gap from

the typical superconducting energy gap (which we call the “BCS gap”) [146, 154, 155].

In contrast, the flexible control of initial conditions and collective readout techniques afforded to

us by cavity QED allow us to clarify the distinction between the BCS gap and the spectral gap. In our

implementation of the model, the BCS gap corresponds to the quantity χ〈Ŝ−〉 on the two-level system

which defines our Anderson pseudospin, where χ is a frequency scale that represents the spin exchange

rate between any pair of atoms. Conveniently, we can probe the BCS gap quasi-nondestructively through

the cavity since the instantaneous rate of atom-cavity coupling is proportional to 〈Ŝ−〉. The spectral gap

corresponds to an interaction-induced detuning between one of our states in the two-level system and

the third, noninteracting state which scales like χNg , where Ng is the number of atoms in the ground
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state. By tuning the strength of a dc coupling generated by a magnetic field, we infer this collective

detuning. Then, by repeating the experiment for different initial populations of atoms in the ground and

excited state of the two-level system, we observe scalings reflective of the Ŝ− and Ng dependences of

the two gap scales. This work showcases the potential promise in utilizing the many degrees of freedom

inherent to multilevel atoms to extend vanilla quantum simulation platforms and observe more exotic

physics.

1.3 Outline of thesis work

This introduction you have (possibly) just read comprises Ch. 1 of my thesis. In Ch. 2, I provide

what is hopefully a pedagogical introduction to the fundamentals of collective cavity QED, including the

approximate simple models we use to describe our cavity, atoms, and combined system under various

parameter regimes. In Ch. 3, I describe our experimental setup in gory detail, from important atomic

and cavity parameters to the technical details and various peculiarities of our laser systems and other

technologies. Along the way, I try to provide enough information about the evolution of our setup over

time to enable someone to reverse-engineer what our experiment looked like during our various exper-

iments. In Chs. 4–7, I discuss the experiments mentioned in Sec. 1.2 in the order provided. Finally, in

Ch. 8 I wrap up my thesis work by highlighting past, present, and future work in our lab related to ex-

panding the scope of cavity QED quantum simulation, as well as discussing potential next steps for the

experiment.



Chapter 2

Collective cavity QED with atoms

2.1 Historical context

A defining theme of the research performed on this project is enhancing atom-light interactions

along an optical transition with a well-defined electromagnetic mode. While this regime was initially

conceived of and observed using dense ensembles of particles in free space [156–158], it is also straight-

forward to achieve by placing the atoms inside a high-finesse cavity. Very early work with atom-cavity

systems led to the invention of the hydrogen maser [159, 160], which involves hydrogen atoms coherently

emitting into a microwave cavity. A couple of decades later, researchers extended this type of physics to

beams of Rydberg atoms. Utilizing the sensitivity of atoms in Rydberg states to electric fields, they ob-

served superradiant emission along mm-wave Rydberg transitions, demonstrating strong atom-cavity

coupling [161–163]. Work along optical transitions advanced in the following years, and researchers

were able to detect cavity-induced frequency shifts on atomic transitions [164] and even observe col-

lective vacuum Rabi splittings [165, 166].

As technologies improved, it soon became possible to control and detect effects of atom-cavity

coupling at the single-atom and single-photon level [167–169]. At the same time, interest in collective

cavity QED continued. Researchers began trapping increasing numbers of atoms inside high-finesse

optical cavities, increasing the collective atom-cavity cooperativity with the eventual goal of pursuing

entanglement generation for networking and metrology applications [62, 68, 170, 171]. Another avenue

which began to receive interest was trapping Bose-Einstein condensates within optical cavities, with a

particular eye toward quantum control and studying interesting dynamical physics [32, 74, 78]. In the
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past twenty years, these lines of interest have grown and intermixed, with current cavity QED experi-

ments pushing the boundaries of squeezing [69, 73, 172, 173][70, 71][G], transduction [174], quantum

simulation [27, 37, 77, 91, 175], and more [38].

2.2 The “bare” optical cavity

In order to understand how atoms interact with an optical cavity, we first need to describe how

the cavity behaves on its own. In our lab, we refer to this system as the bare cavity, which essentially

means there are no atoms. Even without atoms, these systems can be interesting in their own right, with

many different cavity geometries and form factors. For the context of this thesis, we will mainly focus on

understanding the bare cavity resonance condition for input and output light.

2.2.1 Input-output relations

Describing how the electric field inside a cavity relates to input and output fields (and vice-versa)

is often done using the so-called “input-output formulation” [176, 177]. While this is often treated at

the second quantized level in full generality, here I present a simplified description using classical fields

which is hopefully somewhat intuitive. For this derivation, we will assume a two-mirror stable resonator

with length L as described in Fig. 2.1, but the concepts are easily generalizable to other systems.

Consider an intracavity electric field Ec (x, t ),1 assumed to be a complex phasor oscillating with

frequency ω (such that the real, physical electric field is given by E
phys
c (x, t ) := Re

[
Ec (x, t )e−iωt

]
). If we

assume the field only occupies a single mode of the cavity (valid in the regime where Ec varies on a

timescale much more slowly than the cavity free spectral range fFSR = c/2L), we can pull out the spatial

dependence in the following way:

Ec (x, t ) = E0f (x)α(t ), (2.1)

where E0 is a prefactor with units of electric field×pvolume ( N
C ×

p
m3 using SI),α(t ) is a unitless quantity

which we will call the mode amplitude (since it fully describes the mode occupation), and f (x) is the

mode function of the cavity mode, satisfying
∫ |f (x)|2d 3x = 1 (see, for example, Steck’s Quantum and

1 From here on out, I will use bold notation (i.e., E compared to E) to denote a vector quantity.
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x

y
z

Figure 2.1: A generic two-mirror cavity with length L. Mirror M has transmission, reflection, and loss
probabilities given by TM , RM , and LM respectively. The “tilde” variables α̃i ,r,c,t denote field fluxes
through a fixed phase front with units of

√
photons/sec (see Sec. 2.2.1), representing the input, reflected,

intracavity circulating, and transmitted fields respectively. The “non-tilde” variableα denotes a field am-
plitude with units of

√
photons, represending the cavity mode occupation. The circulating field ampli-

tude α̃c and the mode amplitude α represent the same electric field, just with different units.

Atom Optics, Sec. 8.3 [178]). For example, a TEM00 cavity mode in the paraxial approximation and linearly

polarized along ex (with coordinates as described in Fig. 2.1) has a mode function given by [179]

f (r, z) = 1p
Vm

w0

w(z)
e
− r 2

w(z)2 cos
(
k(z + r 2

2R(z) )−φG (z)
)
ex, (2.2)

where w(z), R(z), and φG (z) are the Gaussian beam waist, radius of curvature, and Gouy phase at po-

sition z respectively; w0 is the beam waist at the focus (assumed to be at z = 0); k = ω/c; and Vm :=

( 1
2πw2

0)( 1
2 L) = 1

4πw2
0L is the mode volume [180], defined as the volume of the mode if it had a constant

energy density equal to the maximum value, holding the total energy fixed.

The total energy contained in the mode is:

U (t ) = 1

2

∫ (
ϵ0

∣∣∣Ephys
c (x)

∣∣∣2 + 1

µ0

∣∣∣Bphys
c (x)

∣∣∣2
)

d 3x= 1

2
ϵ0

∫
|Ec (x)|2d 3x

= 1

2
ϵ0E

2
0 |α(t )|2,

(2.3)

where B
phys
c is the physical magnetic field, which oscillates 90◦ out of phase with the physical electric

field at a frequency ω to give a constant total energy given by the above equation. We know that for a

field with Mc intracavity photons, the total energy should be ħωMc (ignore vacuum energy since we’re



17

working classically). It follows that if we setE0 :=
√

2ħω
ϵ0

, then the mode amplitudeα(t ) has a nice physical

interpretation of
√

photons, since |α(t )|2 = Mc . This convention also converts well to a second quantized

picture, where α becomes a coherent state amplitude.

While the mode amplitude describes the occupation of the cavity mode, we want the input and

output fields to describe the rate of change of this occupation. That means we should determine how

electromagnetic waves transfer power, which can be calculated using the time-averaged Poynting vector

S = 1
µ0
〈Ephys ×Bphys〉t = 1

2ϵ0c2 Re[E×B∗] [181]. The intracavity electric field can be split into left-

going and right-going components: Ec =E(→)
c +E(←)

c , defined by the direction of the wavevector k:

E(⇄)
c ∝ e

±i k(z+ r 2

2R(z) )∓iφG (z)
. (2.4)

In the paraxial approximation, the magnetic field is Bc = k̂
c × (E(→)

c −E(←)
c ). This implies:

Sc =S(→)
c −S(←)

c = 1

2
ϵ0c

(|E(→)
c |2 −|E(←)

c |2) k̂, (2.5)

where S(↔)
c := 1

2ϵ0c|E(↔)
c |2k̂ represent rightward and leftward power transfer and are manifestly decou-

pled.

Motivated by this, we will define the circulating field amplitude α̃c (t ) to satisfy:

1

2
ϵ0E

2
0 |α̃c (t )|2 :=

Ï
A
S(→)

c ·dA= P (→)
A , (2.6)

the rightward power transfer through a phase front A (due to energy conservation, the power is the same

through any phase front in the cavity, in both directions). Evaluating the integral allows us to relate α̃c (t )

to α(t ):

α̃c (t ) =
√

c

2L
α(t ) =

√
fFSRα(t ). (2.7)

The interpretation of this statement is that the total energy in the mode (represented by |α(t )|2) passes

through any given phase front every round trip time τRT = 1/ fFSR, resulting in a circulating power flow

represented by |α̃c (t )|2. Note that α̃c (t ) has the funny units of
√

photons/sec.

Now that we have established this machinery, discussing input-output relations in the cavity is

straightforward. An output field through mirror M can be described using a field amplitude α̃M ,o . If
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mirror M has a transmission coefficient tM (transmission probability TM = t 2
M ), then we can relate the

output field to α by:

α̃M ,o(t ) = tM α̃c (t ) =p
κM α(t ), (2.8)

where κM := TM fFSR is the rate at which photons incident on mirror M are transmitted. A similar relation

holds for an input field α̃M ,i (t ): every τRT = 1/ fFSR, the circulating field α̃c gains tM α̃M ,i in amplitude

from the input field. Therefore, the mode amplitude α(t ) responds like:

dα

d t

∣∣∣
input

= 1√
fFSR

dα̃c

d t

∣∣∣
input

≈
√

fFSR tM α̃M ,i (t )

=p
κM α̃M ,i (t ).

(2.9)

Equations (2.8) and (2.9) describe instantaneous relations between the cavity mode and external fields

and hold generally. They do not take the system dynamics into account, however, and thus do not pro-

vide a full description of α(t ) on their own.

2.2.2 The cavity transfer function

In the case of the bare cavity, it is straightforward to solve the system dynamics. To start, let’s define

RM , TM , and LM to be reflection, transmission, and loss probabilities at mirror M , with rM := p
RM ,

tM :=p
TM describing the field coefficients (assumed to be real and positive). The total loss probability

in one round trip is Λ := 1−∏
M RM , which satisfies Λ ≈ ∑

M TM +LM in a low-loss limit. We define the

cavity linewidth κ to be the rate at which photons in the cavity are lost. This is given by κ= fFSRΛ= c
2LΛ

for a two-mirror cavity.

We will consider the simple case as shown in Fig. 2.1: a constant input tone α̃i through mirror 1

with an optical frequency ω and wavevector k =ω/c. In steady state, the intracavity circulating field α̃c ,

reflected field α̃r , and transmitted field α̃t will also oscillate at ω. We can solve for the intracavity field as

a function of α̃i by noting that the field should not change after one round trip:

α̃c = t1α̃i + r1r2e2i kLα̃c

⇒ α̃c = t1

1− r1r2e2i kL
α̃i ,

(2.10)
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where the first term represents the injected field during the round trip, and the second term represents

the circulating field after traveling a distance of 2L and bouncing off both mirrors. Note that here, we

implicitly define the phase of α̃c to be equal to the phase of the input light at mirror 1. Therefore, at

different positions along the beam propagation the circulating field will accrue a spatial phase factor

e i k∆z .

Assuming a high-finesse limit, the total loss probability satisfies Λ≪ 1 such that r1r2 =p
R1R2 =

p
1−Λ≈ 1− Λ

2 . This implies

α̃c = t1(
1−e2i kL

)+ Λ
2 e2i kL

α̃i . (2.11)

Since t1,Λ≪ 1, α̃c is only non-negligible when the term |1− e2i kL |≲ Λ
2 . Therefore we can also assume

|1−e2i kL |≪ 1, implying 1−e2i kL ≈−2i (k−kc )L =−i (ω−ωc )/ fFSR whereωc is the closest cavity resonance

frequency, and kc =ωc /c is its wavevector. To leading order, then,

α̃c = t1
Λ
2 − i

(ω−ωc
fFSR

) α̃i = 2t1/Λ

1− i
(ω−ωc
κ/2

) α̃i , (2.12)

implying that the steady-state mode amplitude α(ω) is

α(ω) =
√

1

fFSR

2t1/Λ

1− i
(ω−ωc
κ/2

) α̃i (ω) =
p
κ1

κ/2

1

1− i
(ω−ωc
κ/2

) α̃i (ω). (2.13)

We can also calculate the transmission through the cavity using the relationship α̃t =p
κ2e i kLα̃c

(the global phase factor e i kL is unimportant and describes the free-space beam propagation from z = 0

to z = L):

α̃t (ω) =
p
κ1κ2

κ/2

e i kL

1− i
(ω−ωc
κ/2

) α̃i (ω). (2.14)

Finally, the reflected field can be calculated by summing the initial reflection of the input field α̃i with

the light transmitted through mirror 1 from the intracavity field:

α̃r (ω) = r1α̃i (ω)− t1r2e2i kLα̃c (ω) =
(
r1 − r2

κ1

κ/2

e2i kL

1− i
(ω−ωc
κ/2

))
α̃i (ω)

≈
(
1− κ1

κ/2

1

1− i
(ω−ωc
κ/2

))
α̃i (ω)

(2.15)

in the high-finesse limit. The relative minus sign between the two terms represents the fact that the

reflected input light experiences no phase shift on reflection since the interface is a high- to low- index of
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(c) (d)

(a)

Figure 2.2: Normalized phasor plots describing the steady-state (a) transmitted and (b) reflected transfer
functions for a symmetric cavity (with T

T+L = 0.9) for different input frequencies ω. For each plot, five
particular frequencies are selected representing a normalized detuning from cavity resonance given by
ω−ωc
κ/2 ∈ {−5,−1,0,1,5}, depicted as markers shaded from dark (negative detuning) to light (positive de-

tuning). Panels (c) and (d) show the normalized transmitted and reflected power respectively, plotted
against the normalized detuning and including markers analogous to those in panels (a) and (b). This
figure is adapted from [182][G].

refraction boundary, and the transmitted intracavity light experiences a net π phase shift from bouncing

off a low- to high- index of refraction boundary an odd number of times inside the cavity.

Equations (2.14) and (2.15) are often referred to as cavity transfer functions since they predict

how input fields transfer to reflected and transmitted fields. They are related to the concepts of suscepti-

bilities and Green’s functions often seen in other subfields. In our experiment, we work with a (nominally)

symmetric cavity, such that T1 = T2 =: T , R1 = R2 =: R, and L1 = L2 =: L. In this case, we can simplify the

expressions further:

Tt (ω) = T

T +L

1

1− i
(ω−ωc
κ/2

) (2.16)

Tr (ω) = 1− T

T +L

1

1− i
(ω−ωc
κ/2

) , (2.17)

where Tt ,r are the transmission and reflection transfer functions respectively.

Fig. 2.2 shows what these transmitted and reflected fields look like for a cavity with low losses
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( T
T+L = 0.9). Interestingly, the phasors always trace out a circle on the complex plane as one scans the

probe detuning from cavity resonance [182][G].2 This understanding can provide useful intuition any

time we care about the phase of a laser interacting with a cavity.

Later in this chapter (in Sec. 2.4.3), we will derive mean-field equations of motion for the combined

atom-cavity system called optical Bloch equations. By adding a constant frequency input drive to these

equations according to input-output theory as in Eq. (2.9) and solving for the steady state, you can derive

a transfer function for the extended atom-cavity system as well. For an example of this, refer to Ch. 4.3.

2.2.3 Example: the PDH error signal

Pound-Drever-Hall (“PDH”) frequency stabilization [183] is a commonly used technique which

stabilizes a laser to the resonance of an optical reference cavity. The experiment I worked on utilizes half

a dozen of these locks, as outlined in Ch. 3. While this locking technique has a fancy-sounding name, it

essentially can be thought of as frequency-modulation (FM) spectrocsopy of the cavity resonance. The

setup is as follows: a laser is frequency modulated at some frequency ωm and directed at the cavity. The

reflected light is then captured on a photodiode and demodulated atωm . The appropriate quadrature of

demodulation features a nice error signal which can then be used in a feedback loop. A nice tutorial on

the PDH error signal, with a full mathematical description, can be found in [184]. Here, I will give some

brief intuition for the error signal that is light on equations and uses intuition from the previous section.

For modulation frequencies slow relative to the cavity linewidth (ωm ≪ κ), the reflected power

has time to equilibrate to the steady-state value shown in Fig. 2.2(d) for each instantaneous value of

ω. Therefore, as the laser frequency oscillates according to ω(t ) = ω0 +∆ωcos(ωm t ) (for some center

frequency ω0 and deviation ∆ω), the power incident on the photodiode will oscillate back and forth

on the Lorentzian curve describing the resonance profile. As shown in Fig. 2.3(a), demodulating this

oscillation generates a signal that encodes the local slope of the Lorentzian, so long as ∆ω is not too

large. This produces a dispersive-like lineshape.

2 In fact, this type of phasor response holds even more generally for any system which can be modeled as a damped single-
pole resonance (i.e., with a Lorentzian lineshape) in a linear-response regime, such as a weakly-excited atomic transition.
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Figure 2.3: Graphical intuition for the PDH error signal. (a) For ωm ≪ κ, frequency modulation of the
laser induces oscillations in the reflected power with a magnitude that depends on the slope of the
Lorentzian response profile (top). Demodulation with the proper quadrature therefore produces an er-
ror signal proportional to the derivative of a Lorentzian (bottom). (b) For ωm ≫ κ, frequency modula-
tion produces well-resolved sidebands which beat with the carrier, akin to a heterodyne measurement.
When the carrier is close to cavity resonance, only the carrier experiences a nontrivial phasor response
T0 (top), and the sidebands essentially act as an unperturbed phase reference for the carrier. Demodula-
tion along the proper quadrature therefore approximates an error signal proportional to Im[T0] (bottom,
black dashed). The full PDH error signal (bottom, gray, with ωm = 60×κ/2) contains additional features
at ω−ωc ≈±ωm , which can be explained with a similar argument but with one of the sidebands close to
resonance instead of the carrier, leading to a relative sign flip and half the amplitude.

The situation is a bit different when ωm ≫ κ, which is the regime most often used in our lab.

Here, frequency modulation is better thought of as producing FM sidebands at ±ωm relative to the so-

called “carrier” tone at the original frequency ω. For any given ω, at most one of these three tones is

close to resonance with the cavity. When the carrier is close to resonance, the sidebands are not affected

by the cavity and essentially act as a phase reference. The carrier, on the other hand, experiences a

phasor response which traces out the typical circle in the complex plane, denoted as T0 in Fig. 2.3(b).

Demodulation along the imaginary or “Q” quadrature results in a dispersive error signal proportional to

Im[T0].3 Each sideband also produces a similar response when it is close to cavity resonance, leading to

3 If one were to attempt PDH with amplitude (“AM”) modulation instead of frequency modulation, the beats between the
carrier and each of the ±1 sidebands would destructively interfere in this quadrature, leading to no error signal.
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a distinctive error signal with features at ωc and ωc ±ωm as shown in Fig. 2.3(b).

2.2.4 Cavity finesse

A useful concept for describing the loss properties of a cavity is the cavity finesse F . It is defined

as the ratio of the free spectral range and the full-width half-maximum (FWHM) of a cavity resonance

profile. In the low-loss limit (Λ≪ 1), we can express the finesse as:

F = fFSR

∆ fFWHM
= 2π fFSR

κ

Λ≪1≈ 2π

Λ
. (2.18)

The finesse tends to show up in expressions regarding the fundamentals of cavity systems, such as in

the definition of cooperativity as discussed in Sec. 2.4.4. It is proportional to the average number of

round trips 〈nrm〉 = 1/Λ that a photon makes in the cavity before being lost. Relatedly, the finesse is

also proportional to the power enhancement between resonant input light and intracavity light. For a

symmetric, lossless cavity:

Pc =
(

t1

Λ/2

)2

Pi

→ 1

Λ/2
Pi = F

π
Pi .

(2.19)

For a lossy cavity, the proportionality factor simply changes by T
T+L to accomodate for additional losses

not through transmission.

The finesse is related to a different, commonly-used quantity known as the quality (or Q) factor

Q, which is defined as the ratio of the resonance frequency (rather than the free spectral range) to the

FWHM cavity linewidth. Assuming we are operating on the nth longitudinal mode of the cavity, the two

quantities are related by the simple relation Q = nF . The Q factor has a nice physical interpretation as

(2π times) the number of oscillation periods of the cavity field in a single 1/e power decay time of the

cavity.

Depending on the physics community, one of these two parameters tends to be preferred. There

may be a couple of system-dependent reasons for using one over the other. First, the finesse and the

quality factor coincide when working with the fundamental harmonic. If you use multiple longitudinal
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modes in an experiment, Q will change whileF remains the same (up to frequency-dependent transmis-

sion and loss properties), which would make F a more natural parameter. Conversely, if you only ever

work with the fundamental mode, there is no reason to distinguish between the Q factor and finesse.

Second, in our derivations above we assume that the losses come only from the mirrors. Under these as-

sumptions, F is held constant when changing the cavity length (while holding the resonance frequency

fixed by changing longitudinal modes), but Q changes since the cavity linewidth is length-dependent.

However, in some systems (such as in nanophotonics), the predominant loss source in a cavity may be

the bulk. In this case, increasing the cavity length also increases the losses, and Q will be held fixed while

F drops. For us, since we work with a cavity mode in vacuum (negligible bulk losses) and work with

longitudinal modes at multiple different optical frequencies, the finesse is our preferred quantity.

2.3 The atomic ensemble

Besides the optical cavity, our main system of interest is a cloud of many strontium atoms. Atoms

are complicated systems, even more so when they are allowed to interact with each other. For the scope

of this chapter, we will start with the simplest possible picture: an ensemble of N identical two-level

systems (often referred to as “spins,” in reference to a spin-1/2 system spanned by the states |↑〉 and |↓〉).

2.3.1 Bloch sphere representation of spin states

We can visualize all possible pure states of a spin on a Bloch sphere. For an arbitrary pure state

written in the form: ∣∣θ,φ
〉= cos

(
θ

2

)
|↑〉+e iφ sin

(
θ

2

)
|↓〉 , (2.20)

we can map this state onto the point (θ,φ) on the surface of the Bloch sphere, as shown in Fig. 2.4(a).4

4 Note: in the quantum information community, it is common to see |0〉 on the north pole. However, when dealing with
spin systems, you really want to put |↓〉 on the south pole (even if you might be tempted to set |↓〉 = |0〉), since you want the
spin to literally be pointing down. If you do swap |↓〉 and |↑〉 on the Bloch sphere, you must also do so for the definition of spin
operators (such that in writing these operators, |↓〉 corresponds to the first row/column as opposed to the last). Notably, this
changes the definition of Ŝ y , which now takes |↓〉 to i |↑〉, as opposed to my convention here which takes it to −i |↑〉. (If you do
not perform this operator redefinition, all rotations on the Bloch sphere will be clockwise instead of counter-clockwise, which
is equally confusing.)
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Why is the Bloch sphere picture nice? One big reason is that time evolution for non-interacting

systems usually corresponds to rotations on the sphere. Suppose you create a spin state
∣∣ψ0

〉∝ |↑〉+ |↓〉

along a two-level system with a difference frequency ω↑ −ω↓ = δ. This corresponds to a Hamiltonian

Ĥ = δŜz , where Ŝz = 1
2 (|↑〉〈↑|− |↓〉〈↓|). Then after time δt =φ, the system will have evolved to the state

∣∣ψ(t )
〉= e−i Ĥ t

∣∣ψ0
〉= e−iφŜz ∣∣ψ0

〉∝|↑〉+e iφ |↓〉 , (2.21)

which is the original state
∣∣ψ0

〉
rotated by an angle φ along the equator of the Bloch sphere. In gen-

eral, consider the three spin operators (acting on the spin-1/2 sector and represented using Pauli spin

matrices):

Ŝx = 1

2

0 1

1 0

 , Ŝ y = 1

2

0 −i

i 0

 , Ŝz = 1

2

1 0

0 −1

 , (2.22)

where the first row/column is defined to act on |↑〉, and the second row/column acts on |↓〉. Then any

Hamiltonian proportional to a linear combination of these spin operators can be expressed in the form

Ĥ =Ω Ŝn for some frequencyΩ and a spin operator

Ŝn := Ŝ ·n= Ŝx nx + Ŝ y ny + Ŝz nz (2.23)

for some unit vector en = (nx ,ny ,nz ). Time evolution under this Hamiltonian can be easily visualized as

a rotation (counter-clockwise, following the right-hand rule) on the Bloch sphere about the axis pointing

along n with angular frequencyΩ.

The fact that the north and south pole correspond to spin-up and spin-down states suggests that

a spin’s Bloch sphere representation is connected to the physical direction of its spin. In fact, if you

consider the point v = (θ,φ) as a unit vector on a sphere, then a pure state
∣∣θ,φ

〉
corresponds exactly to

a spin pointing along v! This can be seen in a couple different ways:

(1) The expectations of the Pauli spin operators Ŝx , Ŝ y , and Ŝz correspond to the Cartesian coordi-

nates of v:

〈Ŝx〉 = sin

(
θ

2

)
cos

(
θ

2

)(
e iφ+e−iφ

)
= sinθcosφ

〈Ŝ y 〉 = sin

(
θ

2

)
cos

(
θ

2

)(
−i e iφ+ i e−iφ

)
= sinθ sinφ

〈Ŝz〉 = cos2
(
θ

2

)
− sin2

(
θ

2

)
= cosθ.

(2.24)



26
(a) (b)

Figure 2.4: Bloch sphere visualizations of spin states. (a) For a single spin-1/2 state, a point with spherical
coordinates (θ,φ) on the surface of the Bloch sphere corresponds to state

∣∣θ,φ
〉

as defined in Eq. (2.20).
(b) An ensemble of spins can be represented with a collective Bloch vector (purple), with its quantum
noise represented as a quasiprobability distribution on the collective Bloch sphere (red). Depicted here
is a coherent spin state

∣∣θ,φ
〉⊗N as defined in Eq. (2.27). Sufficiently weakly excited ensembles (Bloch

vectors close to the south pole) can be approximated as an excitation of an effective bosonic mode b̂
(bottom plane), as described in Sec. 2.3.3.

(2)
∣∣θ,φ

〉
is an eigenstate of Ŝv with eigenvalue 1/2:

Ŝv = 1

2

 cosθ sinθe−iφ

sinθe iφ −cosθ

 , (2.25)

Ŝv
∣∣θ,φ

〉= 1

2

[(
cosθcos

(
θ

2

)
+ sinθ sin

(
θ

2

))
|↑〉+

(
sinθcos

(
θ

2

)
−cosθ sin

(
θ

2

))
e iφ |↑〉

]
= 1

2

[
cos

(
θ

2

)
|↑〉+e iφ sin

(
θ

2

)
|↓〉

]
= 1

2

∣∣θ,φ
〉

.

(2.26)

In general, you can define this vector v for any two-level system, even one that is not literally a

spin-1/2 system. We call this vector the Bloch vector. Intuitively, the Bloch vector is quite powerful

because it allows us to visualize any two-level system as a literal spin. Tying into the discussion earlier

in this section, most single-particle Hamiltonians map onto fictitious magnetic fields in this picture, and

the time dynamics of the Bloch vector can be visualized as Larmor precession. For example, the earlier

example of Ĥ = δŜz looks like a magnetic field pointing along ẑ, and the Bloch vector simply rotates

counter-clockwise about the ẑ-axis with an angular frequency δ.
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2.3.2 The collective Bloch sphere

The collective Bloch sphere is a natural extension of the spin-1/2 Bloch sphere. In a nutshell, for

an ensemble of N spin-1/2 particles, a state vector on (or within) the collective Bloch sphere represents

the total (mean-field) spin of the ensemble. More precisely, the point v = (vx , vy , vz ) within the Bloch

sphere represents a spin ensemble where 〈Ŝx〉 = vx , 〈Ŝ y 〉 = vy , and 〈Ŝz〉 = vz . Usually, we refer to this

point as the (collective) Bloch vector, which encodes the mean-field properties of the spin system. v

can be any point within a sphere of radius N /2, centered on the origin.

Unlike with the single-spin case, the collective Bloch vector does not fully describe the N -spin

wavefunction, since the dimension of the Hilbert space (2N ) is now exponentially large. Still, we can

represent much of the important properties of any given state (such as its noise properties) by plotting a

quasiprobability distribution5 on the collective Bloch sphere, alongside the mean-field Bloch vector as

shown in Fig. 2.4(b). For many applications (including most in this thesis), we can restrict ourselves to

thinking only about the coherent spin states (or CSSs for short), which we will see are close analogs to

coherent states of a harmonic oscillator. We can define the states as follows:

∣∣θ,φ
〉⊗N = e−iθ(Ŝ·n′(φ)) |↓〉⊗N . (2.27)

Here, n′(φ) := (−sinφ,cosφ,0) is the unit vector which rotates a Bloch vector from the south pole along

an azimuthal angle φ. By definition, these states are single-particle rotations of the ground state |↓〉⊗N ,

and so they inherit the minimal noise properties of this state. They are also maximally coherent states,

meaning they are eigenstates of the Ŝ2 operator with eigenvalue S(S+1) = N (N+2)/4. This can be seen by

the fact that Ŝ2 commutes with Ŝ ·n′(φ) for all φ. Consistent with this fact, the Bloch vector representing

this state has length S = N /2, which can be seen from calculating the expectations of the operators shown

in Fig. 2.4(b):

〈Ŝ−〉 =∑
i
〈Ŝ−

i 〉 =
N

2
e−iφ sinθ (2.28)

〈Ŝz〉 =∑
i
〈Ŝz

i 〉 =
N

2
cosθ. (2.29)

5 Usually the Husimi Q-function, at least its analog using coherent spin states on the Bloch sphere. The function is defined

by Q|ψ〉(θ,φ) := 1
π |

〈
θ,φ

∣∣⊗N ∣∣ψ〉 |2 [66].
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Note that the coherent spin states
∣∣θ,φ

〉⊗N are not eigenstates of Ŝ−. They are also not eigenstates

of any spin-projection operator such as Ŝz except for along the axis v = (θ,φ) of the CSS. They should

be contrasted with eigenstates of a fixed operator such as Ŝz (of the form |S,Sz〉), known as Dicke states

which have well-defined Sz but perfectly ill-defined azimuthal phase. The two states
∣∣ N

2 , N
2

〉= |↑〉⊗N and∣∣ N
2 ,−N

2

〉= |↓〉⊗N are the only Dicke states that are also CSSs.

As mentioned above, the quantum noise of these states is the minimum allowed by the Heisen-

berg uncertainty principle, and in fact is evenly distributed between quadratures (just like with coherent

states of light), as shown in Fig. 2.4(b). We can see this by analyzing the state |↓〉⊗N , since all coherent

spin states share the same noise properties. Although Ŝx and Ŝ y have an expectation of 0 for this state,

their variance is nonzero. It can be shown that

std(Ŝx ) =
√

〈(Ŝx )2〉 =
√∑

i
〈(Ŝx

i )2〉 =
p

N

2
,

std(Ŝ y ) =
√

〈(Ŝ y )2〉 =
√∑

i
〈(Ŝ y

i )2〉 =
p

N

2
,

(2.30)

since the cross-terms in (Ŝx )2 have a vanishing expectation. Note that these results for the standard

deviation are just like that of a harmonic oscillator coherent state but with an extra factor of
p

N .

For a coherent spin state on the equator, the same noise distribution holds, but now the two or-

thogonal quadratures are “spin inversion” (i.e., Ŝz ) and phase on the Bloch sphere. Since the Bloch vector

has length N /2, an uncertainty in the phase quadrature of
p

N /2 implies a phase resolution of 1/
p

N .

This is known as the standard quantum limit (SQL for short), since it is a quantum-limit noise floor for

phase estimation for “typical” or “classical” states. In principle, it is possible to use different states to

attain lower noise along a particular quadrature. For example, the Dicke states mentioned earlier pro-

vide a Heisenberg-limited estimate of inversion, with a relative uncertainty of 1/N (but are maximally

bad in the other direction since their phase is undefined). For phase estimation, the so-called GHZ state

|↑〉⊗N +|↓〉⊗N can reach an uncertainty of 1/N radians (but is maximally bad in the other direction, since

it is a superposition of states with maximum and minimum inversion).



29

2.3.3 The Holstein-Primakoff approximation/transformation

Consider an ensemble of N two-level systems (“atoms”) with an energy difference ħω0. In the

absence of any interactions or other terms, this system has a Hamiltonian which looks like Ĥ = ħω0n̂e ,

where n̂e counts the number of atoms in the excited state |e〉. Naively, this looks quite similar to the

Hamiltonian of a simple harmonic oscillator, which looks like ĤSHO =ħω0b̂†b̂ =ħω0n̂. The main differ-

ence between these two pictures is that our atomic system can support a finite number of excitations

(up to N ), whereas the harmonic oscillator can have an infinite number. Still, it doesn’t seem like a huge

stretch to imagine that, in some limit, we could map the quanta of excitations from
∣∣g〉

to |e〉 in our

atomic system onto the quanta of a harmonic oscillator. In particular, when ne ≪ N , we might imagine

that the system “cannot tell” that the number of excitations is finite. This is the essence of the Holstein-

Primakoff approximation, which approximates the atomic system as a simple harmonic oscillator in a

weak-excitation limit.

The Holstein-Primakoff approximation is actually a limit of an exact mapping (the Holstein-Primakoff

transformation) between the two systems, of the form:

∣∣g〉⊗N ↔|0〉 ;

Ŝ− ↔
p

N

√
1− b̂†b̂

N
b̂;

Ŝz ↔ b̂†b̂ − N

2
.

(2.31)

Note that this mapping only considers spin states with maximum total spin angular momentum, i.e.,

〈Ŝ2〉 = S(S+1). In other words, this transformation maps the harmonic oscillator phase space from n = 0

to n = N onto the surface of the Bloch sphere, such that the spin eigenstate |S,m〉 = ∣∣Ng = S −m, Ne = S +m
〉

maps onto the harmonic oscillator state |Ne〉. To check that this mapping is valid, we check boundary

conditions and commutation relations:

[Ŝ+, Ŝ−] = 2b̂†b̂ −N = 2Ŝz ; (2.32)

Ŝ− |k〉 =
√

(N −k +1)k |k −1〉 =
√

(Ng +1)Ne |k −1〉 =
√

S(S +1)−m(m −1) |k −1〉 ; (2.33)

Ŝz |k〉 =
(
k − N

2

)
|k〉 =

( Ne −Ng

2

)
|k〉 = m |k〉 . (2.34)
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In the regime where 〈b̂†b̂〉 ≪ N , the mapping simplifies drastically to Ŝ− ≈ b̂
p

N (with Ŝz ≈ −N
2 a

constant). It follows that in this limit, excitations really do look like harmonic oscillator states since the

spin raising operator is essentially a rescaled bosonic creation operator. Further, coherent spin states

map directly onto coherent states. This approximation can be seen geometrically in Fig. 2.4(b): close

to the south pole of the Bloch sphere, we can ignore the curvature of the sphere and project the sphere

onto a plane (representing the phase space of a harmonic oscillator). Outside the weak excitation limit,

the mapping still holds but begins to notice the sphere’s curvature, such that CSSs are distorted and no

longer map onto coherent states.

2.4 Placing atoms in the cavity

The “bare cavity” is fundamentally a linear system, since it ultimately represents a specialized

class of boundary conditions for electrodynamics and thus is solved using Maxwell’s equations. Atomic

systems, on the other hand, are highly nonlinear, particularly when modeled as two-level systems which

can only absorb one photon each. All sorts of interesting physics arise when we couple these two systems

together, which we will introduce in this section.

2.4.1 The Jaynes-Cummings model

We can start by considering a single two-level system (“atom”) coupled to a single cavity mode

through an electric dipole interaction (ignoring dissipation for now). The Hamiltonian of such a system

looks like

Ĥ =ħωc â†â + ħωa

2
σ̂z − d̂ · Ê, (2.35)

where â is the cavity mode annihilation operator, σ̂z := |e〉〈e|− ∣∣g〉〈
g
∣∣ is the Pauli Z operator, ωc and ωa

are the cavity and atomic resonance frequencies respectively, d̂ is the electric dipole operator, and Ê is

the electric field operator.

The dipole operator acts on the atomic sector and can thus be represented by d̂=Deg σ̂
++D∗

eg σ̂
−,

where σ̂± are the atomic raising and lowering operators, andDeg := 〈e| d̂ ∣∣g〉
is the dipole matrix element
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(vector) coupling the ground and excited states.6 Without loss of generality, we will assume the dipole

matrix element is real. The electric field operator mirrors the expression for the classical field in Eq. (2.1):

Ê = E0f (x) â+â†

2 , where E0 =
√

2ħωc
ϵ0

is a prefactor with units of electric field ×pvolume, and f (x) is the

cavity mode function satisfying f (x) = 1p
Vm

ε at an antinode (where Vm is the mode volume, and ε is the

electric field polarization). Therefore, if we define a coupling frequency g by:7

g :=−(
Deg ·ε

)√ ωc

2ħϵ0Vm
, (2.36)

then the Hamiltonian becomes

Ĥ/ħ=ωc â†â + ωa

2
σ̂z + g

(
â + â†

)(
σ̂−+ σ̂+)

. (2.37)

This is called the quantum Rabi model, first studied semiclassically by Rabi in the context of a rotating

classical magnetic field acting on quantum spins [185, 186].

In atomic physics systems, the cavity and atomic resonance frequencies tend to be optical fre-

quencies (100s of THz), much larger than typical values for g (up to 10s of MHz). In this regime, the

counter-rotating terms which create or annihilate two quanta of energy (â†σ̂+ and âσ̂−) are far off reso-

nance, and we can make a rotating-wave approximation to remove those terms. The resulting Hamilto-

nian is a foundational model in quantum optics known as the Jaynes-Cummings model [187]:

ĤJC/ħ=ωc â†â + ωa

2
σ̂z + g

(
âσ̂++ â†σ̂−

)
. (2.38)

We can simplify this further by going into the rotating frame of the atoms. Practically, this means that we

work in an interaction frame with Ĥ0 =ωa â†â + ωa
2 σ̂

z , resulting in the interaction Hamiltonian:

ĤJC,I/ħ=∆ca â†â + g
(
âσ̂++ â†σ̂−

)
, (2.39)

where ∆ca :=ωc −ωa is the atom-cavity detuning.

The Jaynes-Cummings model is readily solvable by working in the basis of
∣∣g , M

〉
and |e, M〉 states

(where M is a quantum number representing the number of photons in the cavity mode) and noting

6 Recall that d̂∝ x̂. Due to odd-even symmetry in position space, the diagonal elementsDg g andDee vanish.
7 It is common practice to define g assuming the electric field polarization is aligned to the dipole matrix element of the

atomic transition, such that Deg ·ε = |Deg | is independent of the electric field polarization. Applying an electric field with
some other polarization then modifies the Hamiltonian in Eq. (2.37) by some geometric prefactor.
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that each state only couples to at most one other, as shown in Fig. 2.5(a). The ground state
∣∣g ,0

〉
re-

mains unperturbed, and each pair of states
∣∣g , M

〉
, |e, M −1〉 forms a two-level system with a subsystem

Hamiltonian with the form  0 g
p

M

g
p

M ∆ca

 . (2.40)

Fig. 2.5(b) shows the eigenenergies for the first excitation manifold (M = 1) as a function of the atom-

cavity detuning ∆ca . On resonance (∆ca = 0), the unperturbed states |e,0〉 and
∣∣g ,1

〉
hybridize to form

states of the form |±〉 ∝ |e,0〉± ∣∣g ,1
〉

with the excitation evenly split between atom-like and cavity-like

character. Sometimes, such eigenstates are referred to as polaritons, referencing similar concepts in

solid-state physics [188, 189], but I will not use that language here. The energy splitting from this hy-

bridization is called the vacuum Rabi splitting [190, 191] and is a signature of strong atom-light coupling.

For large detunings (∆ca ≫ g
p

M), the eigenstates are mostly atom-like and cavity-like with dressing

from the other, leading to a small “dispersive” energy shift. This shift is spiritually similar to the concept

of an AC Stark shift, which is a shift on an atomic state induced by a detuned classical field. In this case,

we consider the shifts on both the atom and the cavity field mode.

2.4.2 Extending to many atoms: the Tavis-Cummings model

While the case of a single atom coupled to cavity is interesting in its own right, our experiment is

primarily concerned with the case of many atoms. If we consider N two-level systems with a homoge-

neous coupling strength g , the quantum Rabi model from Eq. (2.37) becomes the more general Dicke

model [156, 192], given by

Ĥ/ħ=ωc â†â +ωa Ŝz + g
(
â + â†

)(
Ŝ−+ Ŝ+)

, (2.41)

where here we define collective angular momentum operators Ŝz := 1
2

∑N
i=1 σ̂

z
i and Ŝ± := ∑N

i=1 σ̂
±
i . In

the limit where N → ∞ with the atom-light coupling g renormalized by 1/
p

N to hold the mean-field

interaction strength constant, this model exhibits a second-order phase transition in its ground state,

sometimes called the “Dicke” or “superradiant” phase transition8 [32, 75, 192].

8 Not to be confused with the superradiant phase observed in Sec. 8.1.1 in an entirely different model. In general, the qual-
ifiers “Dicke” and “superradiant” have become pretty muddy and ambiguous in the community, so you should make sure to
clearly define what you mean when using these terms.
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(a) (b)

(c) (d)

Figure 2.5: Dressed state resonances in the Jaynes-Cummings and Tavis-Cummings models. (a) Ladder
of states for a two-level system coupled to a cavity mode, with coupling strengths imposed by the Jaynes-
Cummings model in red. (b) Eigenenergies for the first excitation manifold (

∣∣g ,1
〉

, |e,0〉) as a function
of the atom-cavity detuning ∆ca . The atom-light coupling produces a classic avoided crossing between
the two states, leading to a hybridization of atom-like and photon-like excitations near ∆ca = 0. (c) An
ensemble of N atoms resonantly coupled to a cavity mode produces a mode splitting of size 2g

p
N in

the single excitation manifold, known as a vacuum Rabi splitting (VRS), which can be measured by scan-
ning a probe with frequency ωp through the cavity to look for resonant transmission. Shown here is an

example VRS profile (gray) with g
p

N
κ/2 = 5 and atomic linewidth γ≪ κ. The dashed curve represents the

unsplit cavity resonance. (d) In a limit where the cavity is detuned by ∆ca ≫ κ/2, the vacuum Rabi split-
ting manifests as a weak dressing of the atom-like and photon-like excitations, leading to a repulsive shift

∆ω= g 2N
∆ca

(gray solid curve) relative to the noninteracting resonances (dashed curve). Here, we plot the

case where ∆ca
κ/2 = 10.

Again, for a typical atom-cavity system, we can perform a rotating-wave approximation to ig-

nore the off-resonnat pair-creation and pair-annihilation process. The many-atom limit of the Jaynes-

Cummings model is known as the Tavis-Cummings model [193], and it takes the form

ĤTC/ħ=∆ca â†â + g
(
âŜ++ â†Ŝ−

)
(2.42)

in the interaction picture. At the mean-field level, the Tavis-Cummings model behaves much the same

as the Jaynes-Cummings model but with an enhancement of the interaction frequency from g → g
p

N .
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There are a few ways to understand this scaling. One relatively simple way is to recall the Holstein-

Primakoff approximation from Sec. 2.3.3. In the weak excitation limit (where the excited state population

Ne always satisfies Ne ≪ N ), we can treat the atomic ensemble as a harmonic oscillator with the substi-

tution Ŝ− → b̂
p

N , leading to the following Hamiltonian describing two coupled harmonic oscillators:

ĤTC/ħ≈∆ca â†â + g
p

N
(
âb̂† + â†b̂

)
. (2.43)

In this picture, when ∆ca = 0 then a weak excitation (such as a photon in the cavity) will resonantly os-

cillate back and forth between a cavity and atom excitation with an oscillation frequency g
p

N , demon-

strating the collectively enhanced coupling in the system.

The collective enhancement of atom-light coupling leads to atom number dependent frequency

shifts of the atom-cavity resonance spectrum, as shown in Fig. 2.5(c-d). When the cavity is on reso-

nance with the atomic transition, this manifests as a vacuum Rabi splitting with a full width equal to

2g
p

N . The larger splitting afforded by the
p

N factor historically enabled early studies of the strong

atom-cavity coupling regime on optical transitions [165]. In more recent times, it has also allowed mea-

surement of the atom number N below a fractional precision of 1/
p

N , set by the standard quantum

limit as described in Sec. 2.3.2, leading to spin squeezing [63, 182][G]. Far from atom-cavity resonance

(∆ca ≫ g
p

N ), the dispersive shifts of the atom-like and cavity-like modes increase in kind to g 2N
∆ca

. Even

more so than the resonant case, this regime has attracted much interest for engineering spin squeezing

through a measurement of N via the size of the dispersive shift [60–62], as well as through deterministic

atom number dependent Hamiltonians such as one-axis twisting [66–68, 94, 194–197]. Both such tech-

niques have been demonstrated to generate spin squeezing to the level of ~18 dB of metrological gain

over the standard quantum limit [69][70][G]. There are a host of other proposals for utilizing cavity QED

for generating squeezing, such as through engineering two-mode squeezing [198] or two-axis counter-

twisting [199][86][G], as well as for performing various quantum nondemolition measurements, such as

tracking the atomic state or position using lattice fields [200, 201] or tracking the atomic phase through

applied probes [202]. Many resources exist for learning about spin squeezing in cavity QED systems and

its various iterations; Zilong Chen’s thesis from our group is one good example [203][G].
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2.4.3 Optical Bloch equations

The previous sections only consider the unitary time evolution of the atom-cavity system. In real

systems, we have to deal with dissipation, both through the cavity (set by the FWHM cavity resonance

linewidth κ, equivalent to the reciprocal of the 1/e decay time for photons in the cavity) and into free

space (set by the FWHM atomic resonance linewidth γ, equivalent to the spontaneous emission rate).

For many situations, studying the mean-field equations of motion for the cavity field and single-atom

observables is sufficient to understand the physics. In a slight abuse of notation,9 our lab likes to call

this set of equations the optical Bloch equations for the system.

To derive the optical Bloch equations, we start by considering the time evolution of the system’s

density matrix ρ̂, which we assume to be governed by the following Lindblad master equation:

dt ρ̂ =−i [Ĥ , ρ̂]+κL[â](ρ̂)+γ∑
i
L[σ̂−

i ](ρ̂), (2.44)

where dt is a shorthand for a time derivative, index i refers to atom i ∈ {1, . . . , N }, and L[Ω̂](ρ̂) := Ω̂ρ̂Ω̂† −
1
2 {Ω̂†Ω̂, ρ̂} = Ω̂ρ̂Ω̂† − 1

2

(
Ω̂†Ω̂ρ̂+ ρ̂Ω̂†Ω̂

)
is a Lindblad-type superoperator on ρ̂ which describes the effects

of dissipation through a weak coupling to a Markovian bath with a jump operator Ω̂ [207]. In other

words, it describes how the density matrix evolves, under the assumptions that coupling to the bath

can be modeled as a stochastic process in which the system randomly experiences a jump Ω̂ with a

probability that is uncorrelated with all past moments. We can intuitively understand this form as being

composed of two terms: the “jump” term Ω̂ρ̂Ω̂†, in which the operator Ω̂ is applied, and the “no-jump”

term 1
2 {Ω̂†Ω̂, ρ̂}, in which the measured lack of a jump leads to a re-weighting of proabilities in the density

matrix due to an update of Bayesian priors about the system. Such a breakdown is explicitly used in the

Monte Carlo wave function (MCWF) method for numerically simulating open quantum systems [208].

From knowledge of the time evolution, it’s straightforward to obtain equations of motion for ob-

servable expectations (which we will refer to as “mean-field” quantities). In this thesis, I’ll adopt the

9 The term “optical Bloch equations” is commonly used in the quantum optics community to refer to the semiclassical
equations of motion for a single atom that is subject to a classical electromagnetic field [177, 204]. The name comes from the
strong connection between this system and a spin in an external magnetic field, which are described by “Bloch equations” first
studied by Bloch in 1946 [205]. With equations for the electromagnetic field included, the equations are sometimes called the
“Maxwell-Bloch equations” [206]. The equations described in this section are similar but are a bit more general in scope.
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notation where the lack of an “operator hat” represents a mean-field quantity: O := 〈Ô〉 for some operator

Ô. With this notation, we can utilize the cyclic property of the trace to obtain:

dtO= dt Tr
[
Ôρ̂

]= Tr
[
Ôdt ρ̂

]
= Tr

[(
i [Ĥ , Ô]+κL̃[â](Ô)+γ∑

i
L̃[σ̂−

i ](Ô)

)
ρ̂

]

= i
〈

[Ĥ , Ô]
〉+κ〈

L̃[â](Ô)
〉+γ∑

i

〈
L̃[σ̂−

i ](Ô)
〉

,

(2.45)

where L̃[Ω̂](Ô) := Ω̂†ÔΩ̂− 1
2 {Ω̂†Ω̂, Ô}. We want to study the time evolution of the Tavis-Cummings Hamil-

tonian on the cavity field and atomic observables, which we can track with the mean-field quantities a,

σ−
i , and σz

i . Combining Eq. (2.45) with Eq. (2.42) for these observables gives:

dt a =−i g
∑

i
σ−

i − (
κ
2 + i∆ca

)
a

dtσ
−
i = i g

〈
âσ̂z

i

〉
− γ

2σ
−
i

dtσ
z
i = 2i g

(〈
â†σ̂−

i

〉
−

〈
âσ̂+

i

〉)
−γ(1+σz

i ).

(2.46)

If we further simplify by assuming these operators are uncorrelated, such that the remaining ex-

pectations can be simplified like
〈

âσ̂z
i

〉
≈ aσz

i , then we end up with a complete set of equations that fully

determines the mean-field behavior of the system. Further simplifying the notation by using collective

angular momentum observables S− = ∑
i σ

−
i and Sz = 1

2

∑
i σ

z
i results in our typical expression for the

optical Bloch equations:

dt a =−i g S−− (
κ
2 + i∆ca

)
a

dt S− = 2i g aSz − γ
2 S−

dt Sz =−2g Im[a∗S−]−γ
(

N
2 +Sz

)
.

(2.47)

2.4.4 Regimes of atom-cavity coupling

As can be seen in Eq. (2.47), multiple frequency scales (κ, γ, g , ∆ca) contribute to the physics of

this system. Depending on the relative sizes of these processes, the qualitative nature of the dynamics

can change quite a bit. In this section, we will briefly go through the different regimes of atom-cavity
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NC≪1 NC≫1

κ≪γ
(“good-cavity”)

No lasing
threshold

g
√

N ≪γ g
√

N ≫γ

Traditional lasing
(γ≫ g

p
N ≫ NCκ≫ κ)

Coherent dynamics/
“resolved VRS” regime

(g
p

N ≫ γ≫ κ)

κ≫γ
(“bad-cavity”)

Below threshold
for superradiance

g
√

N ≪κ g
√

N ≫κ

Superradiance
(κ≫ g

p
N ≫ NCγ≫ γ)

Coherent dynamics/
“resolved VRS” regime

(g
p

N ≫ κ≫ γ)

Table 2.1: Regimes of atom-cavity coupling. The three conditions here (bad- vs. good-cavity, large or
small collective cooperativity, and resolved or unresolved VRS) are necessary and sufficient to generate
a hierarchy of scales for the four parameters κ, γ, g

p
N , and NCγ (or NCκ for the good-cavity case).

coupling, summarized in Table 2.1. For the time being, we will assume the cavity is on resonance with

the atomic transition (∆ca = 0); refer to Sec. 2.5.3 for the effects of a nonzero detuning.

First, we can directly compare the size of coherent interactions and dissipation. As described in

Sec. 2.4.2, excitations in the system will oscillate between the cavity (as a photon) and the atoms (placing

an atom in the excited state) at a rate set by g
p

N in the weak-excitation limit. We can see this quantita-

tively by making the Holstein-Primakoff approximation S− → b
p

N ,Sz →−N
2 for some effective bosonic

mode b describing the atomic ensemble (see Sec. 2.3.3) to simplify the optical Bloch equations:

dt a =−i g
p

N b − κ
2 a

dt b =−i g
p

N a − γ
2 b,

(2.48)

which looks exactly like damped oscillations between a and b. Solving for the dynamics of this system,

we find that the system attains critical damping when 2g
p

N = κ+γ
2 . Spectroscopically, this has the inter-

pretation that the vacuum Rabi splitting is equal to the effective linewidth of the VRS peaks, and therefore

the splitting is on the edge of being resolvable.

The critical point demarcates two distinct coupling regimes: first, the underdamped regime (where

g
p

N ≫ κ+γ) is dominated by coherent oscillations. Sometimes, we call this the “resolved VRS regime.”

Second, the overdamped regime (where g
p

N ≪ κ+γ) is dominated by dissipation. Spectroscopically,

this means the coupling g
p

N is not strong enough to split out the hybrid atom-cavity resonances be-
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yond their natural linewidths. In the time domain, it implies that if we excite the atoms, that excitation

will decay (either through the cavity or into free space) faster than coherent oscillations can build up.

This is the regime of many conventional laser systems like solid-state diodes, whose gain media are typ-

ically quite broad (large effective γ).10

The overdamped regime is also required for conventional superradiance [211, 212]. First stud-

ied by Dicke in 1954 [156], superradiance is a phenomenon in which identical emitters (such as atoms)

collectively emit into a common electromagnetic mode. The in-phase nature of the collective emission

causes constructive interference in the emitted electric field, resulting in an N -fold enhancement in the

emitted power over incoherent spontaneous emission, as well as in the emission rate. In recent years,

superradiance along narrow-linewidth optical atomic transitions has received much interest due to the

potential in building an ultranarrow superradiant laser, which could be used as a sort of active opti-

cal atomic clock. This interest has led to multiple theoretical proposals [213–220] and a great deal of

progress towards an experimental realization of a (continuous-wave) superradiant laser in our group

[93, 221–225][G] and elsewhere [226–229].11

How do we distinguish superradiance from traditional lasing? Essentially, the difference lies in

where dissipation primarily occurs. Traditional lasers operate in the good-cavity limit where κ≪ γ. As

such, the atoms (or whatever composes the gain medium) undergo many cycles of decay and repumping

in the time it takes for the average photon to leak out of the cavity. In this limit, the laser frequency (and

its phase coherence) are almost entirely determined by the cavity. Superradiance, on the other hand,

occurs in the bad-cavity limit where κ≫ γ. In this limit, photons emitted into the cavity by the atoms

will almost immediately leak out of the cavity, such that it is possible to observe a coherent superradiant

laser pulse with less than one photon in the cavity on average [221][G]. Such an experiment is possible

because the phase coherence is stored in the atomic ensemble, rather than the cavity. This property

is what enables many of the desirable features of a superradiant laser, such as its potentially narrow

10 While it is possible for lasing to occur in the underdamped regime, particularly with small mode volume systems like
nanocavities, it is uncommon and nontrivial to achieve [209, 210].

11 Hidetoshi Katori’s group in Tokyo has demonstrated a continuous source of 88Sr atoms [230], which has the potential to
explore continuous-wave superradiance as well.
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linewidth and its robustness against cavity frequency noise. For a more detailed discussion of these

features, our lab’s progress towards developing superradiant lasers, and more, I recommend reading Matt

Norcia’s and Julia Cline’s theses [224, 231].

While both lasing and superradiance can occur in an overdamped regime where κ+γ≫ g
p

N ,

they still both require a macroscopic buildup of phase coherence. Intuition tells us that if the dissipation

rates are too large compared to the atom-cavity interaction, they should eventually dominate and kill

such effects. The threshold between a coherent regime and a dissipation-dominated regime for a single

atom is set by the the (single-atom) cooperativity C. The normalization of this quantity is not always

consistent [180, 232, 233], but here we will define the cooperativity to be:

C := 4g 2

κγ
. (2.49)

This normalization relates the square of the single-photon atom-cavity Rabi frequency 2g to the product

of the atom and cavity linewidths.

While it may look like the cooperativity is dependent on atomic properties, it is a purely geometric

quantity equivalent to the Purcell factor [234]:

C = 24F

πk2w2 , (2.50)

where F is the cavity finesse, k = 2π/λ is the wavevector of the cavity resonance, and w is the cavity

waist.12 [180] is a fantastic resource which derives this form of the cooperativity in a purely classical

regime. That work makes it clear that the cooperativity describes the relative likelihood that an atom

emits a photon into the cavity mode, rather than into free space, essentially due to the geometry of the

system. Increasing the solid angle subtended by the cavity mode (by decreasing the cavity waist) in-

creases this likelihood, as does increasing the reflectivity of the mirrors due to constructive interference

effects. Placing N atoms in the cavity further enhances the likelihood of emitting into the cavity for sim-

ilar reasons of constructive interference. For an atomic ensemble, therefore, this relative likelihood is

given by the collective cooperativity NC.

12 Recall that g ∝p
γ∝ Deg
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The collective cooperativity determines whether dissipation out of the system is primarily coher-

ent (i.e., collective emission through the cavity) or incoherent (i.e., spontaneous emission). The former

occurs in the regime where NC ≫ 1: since all atoms couple to the same cavity mode, emission through

the cavity provides no information about which atom emitted the photon. Therefore, phase coherence is

preserved. In this regime, either lasing or superradiance can occur without preseeding, given sufficient

inversion (and repumping rate for a laser). When NC ≪ 1, most emission out of the system is in the

form of spontaneous emission, which is an incoherent process. In this regime, unseeded superradiance

cannot occur because the atoms dephase faster than coherence can build up due to collective emission.

Lasing also cannot occur, since in this regime the system cannot achieve a positive gain, no matter how

strong the gain medium is repumped.13

2.5 Adiabatic elimination of the cavity mode

Sometimes, in order to model dynamics of the atom-cavity system accurately, we need to model

all of the terms we introduced in the previous sections. But in many of the regimes listed above, we don’t.

For example, in the superradiant regime, κ is the dominant frequency scale. This means the cavity mode

damps on a time scale much faster than the rest of the dynamics, and you might imagine that we can

somehow “ignore” it. Adiabatic elimination is a common theoretical tool which formalizes exactly this

intuition of “ignoring” some degree of freedom in the system over relevant experimental timescales. In

this section, we will briefly discuss how this technique allows us to derive both mean-field dynamics and

an effective Hamiltonian description of the simplified problem. We will also apply this technique to the

example of eliminating the cavity mode in our atom-cavity system, which is the regime we operate in for

nearly all of the work described in this thesis.

13 This can be seen by setting up the optical Bloch equations (Sec. 2.4.3) for an incoherently pumped ensemble of atoms in
the Tavis-Cummings model with dissipation, adiabatically eliminating (Sec. 2.5) the atomic coherence S− by assuming γ is the
largest dissipation scale, solving for the steady state Sz in a small-signal limit (〈â〉 = a small), and then looking for a critical
point where the damping rate R in the equation ȧ = −Ra drops to zero to obtain a threshold condition. For sufficiently small
NC , no such threshold exists. Unfortunately, I couldn’t find a publication detailing this calculation, so this can be an exercise
for the reader.
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2.5.1 Mean-field adiabatic elimination

To understand the idea of “ignoring” the dynamics of some observable, let’s recall the optical Bloch

equations for our system from Eq. (2.47):

dt a =−i g S−− (
κ
2 + i∆ca

)
a

dt S− = 2i g aSz − γ
2 S−

dt Sz =−2g Im[a∗S−]−γ
(

N
2 +Sz

)
.

(2.51)

There are two related but separate conditions that lead to adiabatic elimination. First, suppose κ is the

dominant frequency scale. If the atoms emit into the cavity mode with rate −i g S−, this excitation will

damp very quickly. On timescales slower than 1/κ, the cavity field a will have reached a quasi-steady

state ass satisfying dt ass = 0, where

ass = −g

∆ca − i κ2
S−. (2.52)

We can then say that the cavity field a adiabatically follows S−. Alternatively, suppose ∆ca is the largest

frequency scale in the system. Then a will oscillate with a period of 2π/∆ca , averaging out the −i g S−

coupling which changes much more slowly and reducing the size of a on average. Therefore, coarse-

graining the time dynamics with sufficiently large time steps (∆t ≫ 2π/∆ca) will also make a appear to

have reached a quasi-steady state, satisfying Eq. (2.52) as well.

It will be useful for later to define the following effective frequencies:

χ := Re

[
g 2

∆ca − i κ2

]
= g 2∆ca

∆2
ca +

(
κ
2

)2

Γ

2
:= Im

[
g 2

∆ca − i κ2

]
= 1

2

g 2κ

∆2
ca +

(
κ
2

)2 .

(2.53)

Here, χ and Γ represent the quadratues of the quasi-steady state cavity field which are in-phase and

out-of-phase with S−, respectively, since Eq. (2.52) then reduces to ass = −(2χ+iΓ
2g

)
S−, which has a Rabi

frequency equal to 2g ass = (2χ+ iΓ)S−. We can visualize the separate roles of these in-phase and out-

of-phase components in Fig. 2.6: the χ term causes the Bloch vector to precess azimuthally, preserving

the atomic inversion Sz . As we will see next section, this corresponds to an effective all-to-all interac-

tion between atoms. Meanwhile, the Γ term drives the Bloch vector towards the south pole of the Bloch
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Figure 2.6: Bloch sphere representation of the adiabatically eliminated cavity field. When κ or ∆ca is the
largest frequency scale, the cavity field amplitude approximately adiabatically follows the atomic coher-
ence S− with a constant complex prefactor. The components of the field which are in-phase (red arrow)
and out-of-phase (yellow arrow) with the Bloch vector (purple arrow) correspond to Sz -preserving and
dissipative terms, respectfully, with Rabi frequencies equal to 2χ|S−| and Γ|S−|. For further discussion,
refer to Fig. 7.4 in Ch. 7.5.3.

sphere. As such, this component of the field represents collective decay through the cavity mode, other-

wise known as superradiance. As defined, Γ can be written in terms of the cooperativity C :

Γ= 4g 2

κ

1

1+ (∆ca
κ/2

)2 = Cγ

1+ (∆ca
κ/2

)2 . (2.54)

We see that, when the cavity is on resonance (∆ca = 0), the decay rate through the cavity for a single atom

is C times the spontaneous emission rate, consistent with our interpretation of cooperativity as a ratio of

decay probabilities as discussed in Sec. 2.4.4. Off resonance, we can think of the effective cooperativity of

the system as being reduced by the Lorentzian profile in the above equation, corresponding to a reduced

constructive interference of photons bouncing back and forth in the cavity. For N atoms, the emission

rate speeds up, which can be seen by the fact that the Rabi driveΩSR = Γ|S−| increases with S−. Again, this

is because the N atoms can emit in-phase into the cavity mode, increasing the constructive interference

and thus increasing the collective cooperativity.

Having calculated the quasi-steady state value ass, we can plug the value into the remaining optical
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Bloch equations to simplify the equations of motion, thereby “eliminating” the cavity mode. In terms of

χ and Γ, Eq. (2.51) then becomes:

dt S− =−
((γ

2
+ΓSz

)
+2iχSz

)
S−

dt Sz =−Γ|S−|2 −γ
(

N
2 +Sz

)
.

(2.55)

Here, the roles of χ and Γ as interaction and dissipation terms is evident.

2.5.2 Effective Hamiltonian description

We have alluded to the fact that the χ term corresponds to atom-atom interactions. This can be

seen at a mean-field level by noting that ass ∝ S−, so the Hamiltonian term âŜ+ + â†Ŝ− should look

something like Ŝ+Ŝ−. We can formalize this idea essentially by using perturbation theory on the large

frequency scale∆ca or κ to generate an effective Hamiltonian (and effective dissipation terms as well). In

this section, I will explain and summarize the effective operator formalism used by Reiter and Sørensen

[235], which accomplishes exactly that. In the next section, we will apply the formalism to adiabatic

elimination of the cavity (so skip this section if you don’t care about the derivation).

To start, we can build intuition from reviewing time-independent perturbation theory in quantum

mechanics. The typical setup for this involves an unperturbed Hamiltonian Ĥ0 with eigenstates
∣∣n(0)

〉
and eigenenergies E (0)

n . Perturbing the Hamiltonian with some interaction V̂ , parametrized by some

“sufficiently small” scale λ, allows us to write expand the new solution perturbatively in λ:

(
Ĥ0 +λV̂

) |n〉 = En |n〉

|n〉 = |n(0)〉+λ |n(1)〉+λ2 |n(2)〉+ . . .

En = E (0)
n +λE (1)

n +λ2E (2)
n + . . . .

(2.56)

If we consider perturbations which act purely as couplings, meaning diagonal terms such as
〈

n(0)
∣∣V̂

∣∣n(0)
〉

are zero, then the first-order energy corrections vanish: E (1)
n = 0. The leading-order perturbations are
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+

(a) (b) (c)

Figure 2.7: Simpified description of the Reiter-Sørensen effective Hamiltonian formulation. (a) The
Hilbert space is broken up into two subspaces (gray boxes): a ground subspace Hg where most of the
physics occurs, and an excited subspaceHe (higher lying in frequency by ∆), each governed by nonin-
teracting Hamiltonians Ĥg , Ĥe . The system is subject to dissipation through a jump operator Ω̂ going
fromHe toHg with rate κ. A weak perturbation V̂ = V̂++ V̂− is introduced to couple the two subspaces.
Elimination ofHe is possible when |V̂ | ≪ max(κ,∆). (b) Left: an effective Hamiltonian Ĥeff can be de-
fined onHg using a technique akin to perturbation theory in |V̂ |/|Ĥe |. The leading-order perturbation
is a second order process where the system is raised from ground to excited subspace via V̂+ and later
lowered via V̂−. The Hamiltonian evolution in the excited space is governed by the equivalent of a propa-
gator Ĝe , with units of inverse energy, defined explicitly in the main text. Right: Elimination of the excited
subspace also introduces an effective jump operator Ω̂eff occurring at rate Γ. Its leading order process
involves raising the system with V̂+, propagating in the excited state with Ĝe , and then jumping down
to the ground state via the original jump operator Ω̂. (c) Eliminating excitations in the cavity mode pro-
duces an effective “spin-exchange” Hamiltonian where one atom emits a photon into the cavity, which
then gets reabsorbed by another atom before it can emit out of the cavity mode. This takes the form
χŜ+Ŝ− and is all-to-all, since every atom in the cavity can participate.

then given by:

|n〉 = |n(0)〉−λ ∑
k ̸=n

Vkn

E (0)
kn

|k(0)〉+O(λ2)

En = E (0)
n −λ2

∑
k ̸=n

VnkVkn

E (0)
kn

+O(λ3),

(2.57)

where Vkn = 〈
k(0)

∣∣V̂
∣∣n(0)

〉
is the interaction rate, and E (0)

kn = E (0)
k −E (0)

n is the energy difference between

the states. From the form of these corrections, we can reasonably conclude that perturbation theory

will converge if the interaction energy coupling two states is much smaller than the energy difference

between them; i.e., |Vkn |≪ E (0)
kn .

The intuition for generating an effective “perturbed” Hamiltonian is effectively the same, and the

formalism parallels the argument for perturbing the eigenstate energies (just with operators instead of
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numbers). Let us split the system’s Hilbert space into ground and excited subspaces Hg and He , re-

spectively, split by a some rough scale ∆∼ |Ĥe |− |Ĥg | for uncoupled Hamiltonians Ĥg and Ĥe (shown in

Fig. 2.7(a)). We can introduce a weak perturbation V̂ = V̂++ V̂−, composed of operators V̂± which raise

and lower the system between the ground and excited subspaces. Ignoring the possibility of dissipation

for now, we can adiabatically eliminate He when |V̂ | ≪ ∆. For simplicity, we also assume the ground

state energies are close to 0; i.e., |Ĥg |≪ |Ĥe |.14

Under these conditions, we can define an effective ground state Hamiltonian satisfying the follow-

ing form [235]:

Ĥeff,nodiss. = Ĥg − V̂−Ĥ−1
e V̂+, (2.58)

closely mirroring the perturbation theory for calculating eigenstate energies in Eq. (2.57). This perturba-

tion can be visualized diagrammatically as shown in Fig. 2.7(b): at second order, the system raises into

the excited subspace and then drops back down again with V̂± operators. We can describe the time spent

in the excited state with the operator Ĝe,nodiss. = Ĥ−1
e , which is analogous to a propagator in QFT [236].15

When considering the effects of dissipation, we have to include additional processes within and

coming out of the excited subspace He . As discussed in Sec. 2.4.3, we model the dynamics of a jump

operator Ω̂ applied randomly with 1/e time κ with a Lindbladian superoperator.16 For convenience, we

can absorb the rate κ into a dimensionful jump operator L̂ :=p
κΩ̂, so the superoperator takes the form

κL[Ω̂](ρ̂) = L̂ρ̂L̂† − 1
2 {L̂†L̂, ρ̂}. The second term corresponds to no-jump dynamics of the system, which

can be incorporated into Ĥe to form a non-Hermitian Hamiltonian of the form ĤNH = Ĥe − i
2 L̂†L̂. This

modifies the excited state propagator to take the form Ĝe = Ĥ−1
NH, and the full effective Hamiltonian looks

14 If the ground manifold energies are not close to zero, you must first rewrite the system to satisfy this requirement before
the formalism works. For example, when working with a single-particle drive through the cavity, using this formalism requires
defining a bosonic mode operator with the drive field subtracted out (i.e., â =α+δâ where â is the full cavity mode amplitude,
α is some classical field generated by the drive, and δâ is the remaining quantum operator).

15 In our case of calculating effective cavity-mediated interactions, the analogy is much less abstract. It’s called cavity QED
for a reason: we are essentially working with an interaction vertex which couples to a photon field (albeit with a very sharp
frequency-dependent coupling), analogous to the QED vertex but with an atom instead of an electron. More on this in the next
section.

16 While we only consider a single jump operator for simplicity, the formalism can handle multiple dissipation processes just
fine. The effective operators simply add together their effects.
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like

Ĥeff = Ĥg − 1

2
V̂−

(
Ĝe + Ĝ†

e

)
V̂+, (2.59)

where we now must include a conjugate term to recover Hermiticity.

The first term of the Lindbladian form represents a discontinuous jump from He into Hg with

probability κ. As shown in Fig. 2.7(b), this adds a new second-order process in the perturbation theory

involving a coherent raising of the system via V̂+, followed by propagation through He with Ĝe , and

finally an application of the jump operator, weighted by the rate κ: L̂ =p
κΩ̂. Since this process involves

a jump, it can be modeled by an effective Lindbladian within the ground subspace, with a dimensionful

jump operator taking the form

L̂eff =
√
Γe iϕ Ω̂eff = L̂ĜeV̂+, (2.60)

where Γ is the rate of the effective jump operator, and ϕ is an unimportant complex phase defined to let

Γ be real. The full effective ground subspace dynamics then looks like:

dt ρ̂g =−i [Ĥeff, ρ̂g ]+ΓL[Ω̂eff](ρ̂g ). (2.61)

2.5.3 Cavity-mediated spin-exchange interactions

Let’s now apply this formalism to our case of adiabatically eliminating the cavity. We define Hg

to be the subspace of states where the cavity is empty, and He to be the space where there is at least

one photon in the cavity. Starting with the Tavis-Cummings Hamiltonian from Eq. (2.42), the subspace

Hamiltonians and coupling terms take the following form:

Ĥg = 0; Ĥe =∆ca â†â; V̂+ = g â†Ŝ−; V̂− = g âŜ+. (2.62)

There are two different forms of dissipation in the system: spontaneous emission from the atoms, asso-

ciated with jump operators σ̂−
i which lower individual atoms incoherently at a rate γ, and emission out

of the cavity, given by a the jump operator â occurring at a rate κ. Since spontaneous emission does not

couple the ground and excited subspaces considered here (it doesn’t change the cavity population), it

doesn’t change during adiabatic elimination. We do have to include emission out of the cavity, however.
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Our excited state propagator is therefore given by

Ĝe = (â†â)−1

∆ca − iκ
2

, (2.63)

leading to the following effective Hamiltonian and Lindblad operators, which hold in the ground sub-

spaceHg (defined by 〈â†â〉 = 0):

Ĥeff =−1

2

(
g âŜ+)( (â†â)−1

∆ca − iκ
2

+ (â†â)−1

∆ca + iκ
2

)(
g â†Ŝ−

)
=−χŜ+Ŝ−

L̂eff =
(p
κâ†

)(
(â†â)−1

∆ca − iκ
2

)(
g â†Ŝ−

)
=

√
Γe iϕŜ−,

(2.64)

where χ,Γ are defined as before in Eq. (2.53), and ϕ represents an unimportant complex phase.

L̂eff corresponds to superradiance: it is an effective dissipation process by which atoms emit with

an enhanced rate Γ|S−|2 through the cavity mode, consistent with the mean-field description in Sec. 2.5.

Unlike spontaneous emission, the jump operator Ŝ− does not provide information about which atom

emitted the photon, making this a collective process and leading to the coherent Bloch vector dynamics

shown Fig. 2.6.

The effective Hamiltonian term, −χŜ+Ŝ−, is an all-to-all spin exchange process. We can think of

the process diagrammatically as in Fig. 2.7(c): one atom in the excited (“spin-up”) state emits a photon

into the cavity mode, lowering its state. Before the photon can dissipate, another atom in the ground

(“spin-down”) state absorbs the photon, raising its state. I have depicted the process like a Feynman

diagram to emphasize the connection between the two fields. The “vertices” here are not QED vertices;

instead, they represent the Tavis-Cummings atom-light interaction. The exchanged photon is “virtual”

in the same sense as internal lines in Feynman diagrams represent virtual particles: the photon is off

resonance (i.e., “off shell”) from the resonance frequency of the cavity mode represented by â, since

∆ca ̸= 0. This does not mean that the photon does not exist; in fact, in Ch. 6 and Ch. 7, we detect these

photons on a photodector. What terms like “virtual” and “off shell” really mean is that the photon can

only exist in the cavity on a timescale set by the detuning from resonance: in this case, a time of ∆−1
ca in
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the limit of large ∆ca .17

There are a couple different effects of spin-exchange interactions on the system. To understand

these effects, it helps to rewrite the interaction term into an equivalent form:

Ŝ+Ŝ− = Ŝ2 − (
Ŝz)2 + Ŝz ≈ Ŝ2 − (

Ŝz)2, (2.65)

where we can ignore the single-particle Ŝz term when N is sufficiently large. The second term, some-

times referred to as a one-axis twisting term, generates an Ŝz -dependent frequency shift at the mean-

field level. Beyond mean-field, such a process is commonly utilized to generate squeezing in atomic en-

sembles [62, 66, 67, 69, 194][71, 237][G], and multiple squeezing protocols have been proposed utilizing

cavity-mediated exchange interactions along both spin [94, 196, 238] and momentum degrees of free-

dom [195, 202, 239–241]. In this thesis, we will discuss how we have studied this term out-of-equilibrium

and how it generates a dynamical phase transition (see Ch. 5). The first term, Ŝ2, doesn’t modify the

dynamics within the maximally symmetric manifold of states (i.e., on the surface of the collective Bloch

sphere with S = N /2). However, if there are processes which reduce the total Bloch vector length such

as single-particle dephasing, the Ŝ2 term supplies a many-body energy gap between different S mani-

folds which suppresses the Bloch vector shortening. This gap protection has prevoiusly been explored

spectroscopically in our group [95][G] and dynamically elsewhere [85]. In this thesis, we use it to protect

spin coherence against dephasing, in the context of simulating dynamical phases in the BCS and related

models (see Ch. 6 and Ch. 7).

Before moving on, I will also briefly mention a related effective Hamiltonian, which our lab some-

times calls the QND Hamiltonian:

ĤQND/ħ= (
∆ca −2χŜz)â†â. (2.66)

This effective Hamiltonian essentially describes how the cavity resonance frequency is modified by an

atomic ensemble with inversion Ŝz along an atomic transition closely detuned from the cavity mode. In

17 I would be so bold as to claim that this intuition should hold throughout QFT: all so-called “virtual” particles represented by
internal lines in Feynman diagrams actually exist, just with small field amplitudes which die off as one over the deviation from
the on-shell energy of the particle. Think of the virtual fields as the particle off-resonantly exciting the harmonic oscillator of
the field in question. If someone were to attempt to measure these virtual particles, they would detect a nonzero number with
a very small (but nonzero) probability, since particle number is proportional to field squared and is thus quadratically small. If
a heterodyne-type measurement of these fields were possible, the probability of detecting something nonzero would go up.
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our lab, we often call this a “dispersive shift” of the cavity resonance, and it is commonly used to either

perform Ŝz measurements for squeezing, or to induce one-axis twisting by injecting an Ŝz -dependent

number of photons into the cavity, also to generate squeezing.18 How do we justify the existence of this

extra term, which does not show up in our adiabatic elimination at all? When eliminating the cavity, we

assume that the cavity is far off resonance from anything in the system, either internal like the atoms or

external like a drive. However, utilizing the QND Hamiltonian requires sending a macroscopic number of

photons into the cavity, usually by sending in a probe close to cavity resonance. This breaks the required

condition for adiabatic elimination. With proper care, however, it is possible to take advantage of spin-

exchange interactions and a QND probe simultaneously. We manage to do exactly this in Ch. 7, and I

explain how it works in Sec. 7.8.1.

2.5.4 Comparing spin-exchange and superradiance regimes in past experiments

Our atom-cavity system has been tuned to multiple different parameter regimes along two differ-

ent narrow-linewidth transitions in strontium (the 7.5 kHz linewidth 3P1 – 1S0 transition and the mHz

linewidth 3P0 – 1S0 transition). Depending on the goals of the experiment, tuning between different

regimes optimizes for superradiance, spin-exchange interactions, or coherent atom-cavity interactions.

I thought it would be helpful to place all our past experiments onto a single parameter plot, shown in

Fig. 2.8, as a way of identifying the relationship between various effects we have observed.

To read this figure, first find the experiment in question, displayed as either a point or line on the

plot (the legend lists a shorthand for the name of the associated paper, with a citation in the caption).

The coordinates of the experiment represent the ratios |∆ca |
κ/2 (for the x coordinate) and g

p
N

κ/2 (for the y

coordinate) on a log-log plot to capture the breadth of parameter regimes explored. The lefthand side of

the plot represents “close to zero” detuning to represent experiments performed on resonance. The plot

is split into three regions, corresponding to regimes where g
p

N , κ2 , and ∆ca respectively are the largest

18 While it might sound mysterious, the effect is essentially due to the atomic ensemble acting like a dielectric medium in the
cavity, introducing a phase shift in the round-trip propagation of cavity photons which therefore shifts the resonance condition.
It just so happens that the index of refraction is (a) inversion-dependent, which essentially describes the ensemble becoming
transparent as the transition saturates; and (b) sharply frequency-dependent around the atomic resonance (corresponding to
the dispersive shape of χ as a function of atom-cavity detuning).
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coupling-dominated

dissipation-dominated

detuning-dominated

Figure 2.8: Parameter regimes for atom-cavity coupling in past experiments. The vertical axis compares
the collectively enhanced coupling strength g

p
N compared to the HWHM cavity linewidth κ/2. The

horizontal axis compares the atom-cavity detuning ∆ca to the cavity linewidth. Green regions denote
parameter regimes where adiabatic elimination of the cavity is a valid approximation. Circles represent
experiments performed along the 3P0 transition, and squares represent those along the 3P1 transition.
Curves represent a scan over different parameter values. Citations for past experiments: VRS_3P1 (2016)
[242][G], SR_XOVER (2016) [222][G], MIT (2017)[243][G], SR_MHZ (2016) [223][G], SR_FREQ (2018) [93][G],
SPIN_EXCH (2018) [95][G], LINEW_3P0/LINEW_3P1 (2021) [96][G], DPT (2020) [108][G], BCS (2024)
[126][G], RF_SPEC (2025) [145][G], CRF (2025) [80][G].

Figure 2.9: Absolute frequency scales for the effective spin-exchange interaction (χN ) and collective
dissipation (ΓN ) after adiabatic elimination of the cavity mode, plotted for an assumed cavity FWHM
linewidth of κ/2π = 150 kHz (approximately the linewidth along both 3P1 and 3P0 transitions in our ex-
periment). A countour with integer k corresponds to a frequency of 10k Hz (for χN , to estimate the
period frequency) or s−1 (for ΓN , to denote a 1/e decay probability per atom). The shaded gray region
corresponds to parameter regimes where adiabatic elimination is not allowed. The black points and solid
curves correspond to past experiments, matching the labels in Fig. 2.8.
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frequency scales in the system. Only in the latter two regions (shaded green) is adiabatic elimination of

the cavity a valid approximation.

Looking at the distribution of points on this plot, it looks like we have explored all three regions on

the plot fairly extensively. Experiments in the coupling-dominated regime tend to feature well-resolved

vacuum Rabi splittings and fast superradiance (in an underdamped regime). Conversely, experiments

in the dissipation-dominated regime focus mostly on overdamped superradiance. Exceptions include

the 2018 spin-exchange paper which explores the effect of spin-exchange processes, albeit in the pres-

ence of superradiance in the background which occurs faster, as well as the 2021 linewidth measure-

ment paper which probed the the weak atom-cavity coupling in a weakly excited limit (see Ch. 4). Fi-

nally, experiments in the detuning-dominated regime focus either on the dynamics of spin-exchange

interactions or on dispersive shifts of the cavity from a QND-like Hamiltonian. It’s worth noting that

all the experiments performed along the 3P1 – 1S0 transition are on the top half of the plot, and those

performed on the 3P0 – 1S0 transition are on the bottom. This is due to the differences in linewidths

between the two transitions (a difference of ~6× 106), which sets a ratio of the single-atom couplings:

g3P1/g3P0 =
√
γ3P1/γ3P0 ≈ 2.4×103. While nominally, tuning the number of atoms can change the verti-

cal position on the plot, the collective coupling only scales like
p

N and thus limits the vertical extent for

each transition to 1 (maybe 2) orders of magnitude.

It can also be informative to plot the absolute size of the spin-exchange interactions (parameter-

ized by χN ) and the collective emission rate (parameterized by ΓN ). This is shown in Fig. 2.9, using a

similar log-log plot as the previous figure, for a cavity with a FWHM linewidth of κ/2π= 150 kHz which

matches our science cavity along both transitions. The size of each frequency scale is shown using con-

tours of constant value, calculated using Eq. (2.53): each contour with label k represents a frequency

of 10k Hz (for χN ) or s−1 (for ΓN ). The difference in units between the two represents the fact that χN

represents a Hamiltonian process with some oscillation period, whereas ΓN represents a dissipation rate

which is most easily described by the average number of events per unit time. From this plot, we can see

that operating with a large spin-exchange interaction requires operating along the 3P1 – 1S0 transition for

our cavity, with as many atoms as possible to push the parameter regime far to the upper right of the
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plot. Pushing into the detuning-dominated regime along the 3P0 – 1S0 transition leads to sub-Hz interac-

tion rates, which is prohibitively slow. A hidden scale in this consideration is the ratio of spin-exchange

interactions to the natural linewidth of the transition, which determines the number of coherent oscilla-

tions achievable before all the atoms spontaneously decay to the ground state. The maximum size of the

spin-exchange interactions while still operating in a detuning-dominated regime scales like g
p

N ∝p
γ.

Therefore, in order to achieve the largest separation of scales between χN and γ, you should work with

lots of atoms along a narrow linewidth transition. In principle, working with a narrower cavity linewidth

κ could allow one to reap these benefits along the 3P0 – 1S0 transition by speeding up the maximum at-

tainable spin-exchange dynamics (recall that g is independent of cavity linewidth).



Chapter 3

Experimental apparatus

This chapter is all about the tools we use to make our experiment function. Many of these tools

were originally built by Matt Norcia, as detailed in his thesis [231]. However, while the fundamental ap-

paratus has remained the same, many details of the setup, particularly with respect to the laser systems,

have changed over time. When relevant, I have tried to record the evolution of these systems over time,

which will hopefully provide some context for the current state of the experiment.

3.1 Level structure of strontium

Before diving into lab-specific systems, let us first discuss the tool nature has given us to work

with: the strontium atom. There are several theses that cover the atomic properties of strontium in

exquisite detail, such as [244, 245]. I will mainly focus on transition frequencies and decay rates, since

our experiment is not as dependent on other atomic properties such as the scattering rate. While writing

this section, some peers in Munich released a handy Steck-style reference sheet for 88Sr on the arXiv

[246], which I highly recommend using.

Strontium is the 38th element in the periodic table and has four stable isotopes: 84Sr, 86Sr, 87Sr,

and 88Sr. Of these, 88Sr is the most common, with a natural abundance of 82.6%. It is notable for having

a ground state s-wave scattering length of almost 0 which makes it a poor choice for studying interacting

degenerate gases [245]; however, our experiment often cares about trapping a large number of atoms

without regard for the strength of contact interactions, so we use this isotope frequently in our experi-

ments. 87Sr, with an abundance of 7%, is special because it is the only fermionic isotope of Sr. All bosonic
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isotopes of even-proton elements have zero nuclear spin, essentially due to the Pauli exclusion princi-

ple applied to protons and neutrons. As a result, only 87Sr has a nonzero nuclear spin, which at I = 9/2

results in 10 total nuclear spin sublevels. The large degeneracy can be interesting from a quantum sim-

ulation perspective, as we will briefly discuss in Ch. 8. The presence of a nuclear spin also opens up the

so-called strontium “clock” transition, discussed later, and as such is commonly used in optical atomic

clocks.

Strontium is an alkaline earth metal in the second column of the periodic table, which means it

has two electrons in its valence shell. The total spin of these two electrons can combine to form a singlet

or a triplet configuration, adding richness to the level structure compared to an alkali atom. Fig. 3.1

shows the low-lying electronic states for 88Sr, with the wavelengths and decay rates of certain important

transitions labeled. The other bosonic isotopes (84Sr and 86Sr) have essentially the same structure but

with isotope shifts less than 1 GHz in size. 87Sr carries the additional complication of hyperfine structure,

which I will briefly discuss later.

The ground state of strontium is the state 5s2 1S0, which has both electrons occupying the lowest

open s orbital with opposite spin, consistent with the Pauli exclusion principle. From this state, the

only dipole-allowed transition within optical frequencies is the transition to the 5s5p 1P1 state, in which

one electron is excited to the n = 5 p-orbital but maintaining the spin singlet configuration. In 88Sr,

this transition has a (blue) wavelength of 461.861980(3) nm [247] and a lifetime of 5.23(3) ns (based off

several measurements mentioned in [248]), corresponding to a linewidth of γ/2π= 30.4 MHz. The 1S0 –

1P1 transition is commonly used to Doppler cool strontium using a so-called “blue MOT.” However, it

is not perfectly cycling: with some small branching ratio, an atom in the 1P1 decays into the 5s5d 1D2

state. Historically, there has been a tension in estimates of this branching ratio, with some calculations

predicting 1:20,000 and some predicting 1:50,000 [249]. However, recent measurements of tweezer losses

combined with careful calculations suggest that the 1:20,000 value is more accurate [250]. The 1D2 state

has a lifetime of 300 µs [251], after which it predominantly decays into the 3P1, 3P2 states with a 2:1

relative decay probability.

The 3P manifold consists of three 5s5p fine-structure states: 3P0, 3P1, and 3P2, corresponding
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Figure 3.1: Level diagram for low-lying states in 88Sr. Wavelengths and decay rates of important transi-
tions are listed (the wavelengths for other strontium isotopes may differ due to hyperfine splittings and
isotope shifts). The transitions used in this thesis are labeled with their primary functions in black.

to angular momentum addition of the p orbital electron (L = 1) with the total electron spin (S = 1).

These three states connect to the ground state 1S0 with transition wavelengths 698.4457096. . . nm [99],

689.4488968. . . nm [252], and 671.2063331. . . nm [253] respectively. None of these transitions are for-

mally allowed by electric dipole selection rules, since they involve a spin flip from S = 0 to S = 1. However,

the true eigenstates of the atom actually involve a small amount of admixture between 1P1 and 3P1. This

is due to an additional spin-orbit coupling process only present in multi-electron atoms, between the

spin of one electron and the orbit of the other [107, 254]. As a result of this coupling, the 3P1 state gains

a small decay probability, with a lifetime of 21.326 µs and corresponding linewidth of γ/2π = 7.46 kHz
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[101]. This transition is commonly used to perform narrow-linewidth Doppler cooling using a so-called

“red MOT,” discussed in the context for our experiment in Sec. 3.4.

The other two 3P states are “doubly forbidden” from connecting to the ground state, since they not

only have the wrong spin state but also represent disallowed changes in angular momentum (J must go

to J or J±1, and J = 0 to J = 0 is forbidden). The 1S0 – 3P2 transition nonetheless has a nonzero (albeit very

small) linewidth in 88Sr since it can be driven by a magnetic quadrupole transition. Current estimates of

this linewidth place it under 1 mHz, with a recent calculation claiming γ/2π= 147(8) µHz corroborated

by a significantly less precise experimental measurement [255]. We do not use this transition currently

in our experiment, but it could be an option in the future if we wanted to use an extremely narrow-

linewidth transition for some reason. On the other hand, the 3P0 state is not allowed by any higher-order

electromagnetic selection rule in 88Sr. Nonetheless, it is possible to drive this transition by turning on a

large magnetic field, which off-resonantly couples the 3P states [256, 257]. In 87Sr, the nonzero nuclear

spin performs a similar admixture with no applied field necessary, endowing the 3P0 state with a natural

linewidth which we have measured to be γ/2π= 1.3 mHz [96] (see Ch. 4). This narrow linewidth makes

the 1S0 – 3P0 transition an amazingly precise frequency reference, making it a popular choice for state-of-

the-art optical atomic clocks [101].

As mentioned earlier, atoms in 1P1 occasionally decay into the 3P manifold, which contains two

metastable states. To ensure continuous operation of a blue MOT stage, we can repump the atoms by

exciting them to the higher-lying 5s6s 3S1 state, a dipole-allowed transition. This state has a lifetime of

total lifetime of 12.9 ns [258, 259], and due to differing branching ratios the 3P J – 3S1 transitions have

different decay rates corresponding to linewidths of γ/2π ∈ {1.4,4.3,6.6} MHz for J ∈ {0,1,2} respectively.

If an atom lands in 3P1, then it will decay back to the ground state, successfully closing the blue MOT

cycle. As such, the standard repumping scheme involves connecting 3P0 and 3P2 to 3S1 with 679.2889 nm

[260] and 707.2018 nm [253] respectively. The remaining transition connecting to 3P1 is at 688.0208 nm

[260], which we sometimes address when we want to shelve atoms from 3P1 into the metastable states

(essentially, the opposite of repumping).

The 5s4d 3D manifold sits just above the 3P manifold, separated by mid-IR frequencies. Of partic-
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ular interest to our group is the 3P2 – 3D3 transition, which has a wavelength of 2923.37283. . . µm [261].

This is a cycling transition with a metastable lower state and therefore is a good alternative candidate

for a cooling transition. And, since its wavelength is so long, the linewidth is substantially narrower.1

The 3D3 state has a predicted natural decay linewidth of 56.5(6) kHz [262, 263], in the realm of narrow-

linewidth transitions. The strontium ring cavity experiment has recently purchased a 2.9 µm laser from

Precilasers (part no. FL-SF-2923-0.6-CW). Although we have not implemented it yet, the plan is to ex-

plore addressing this transition with an “IR MOT” instead of our current red MOT. For completeness, the

3D2 state has a predicted linewidth of linewidth 66.2(7) kHz [262, 263]. The 3D1 state has had its decay

lifetime precisely measured by researchers on Jun Ye’s strontium optical lattice clock experiment in order

to characterize blackbody shifts on the 3P0 “clock” state, with a measured lifetime of 2.156(5.2) µs and

an associated linewidth of γ/2π = 73.8(2) kHz [101]. Additionally, the 3P2 – 3D2 transition has a wave-

length of 3011.843(2) nm [264], and the 3P0 – 3D1 transition has an estimated wavelength of 2603 nm

[101]. These frequencies should be sufficient to determine the transition for any possible 3P – 3D transi-

tion.

In 87Sr, the presence of a nuclear spin of I = 9/2 induces hyperfine splittings in all states with J ̸= 0.

Table 3.1 shows the hyperfine splittings for many of the states shown in Fig. 3.1, which range from the

10s of MHz up to GHz-level splittings. I should note that, in addition to the hyperfine splittings, 87Sr

also experiences an isotope shift in its transition frequencies relative to 88Sr, which basically represents

changes in the binding energies for the different electronic states depending on the composition of the

nucleus. For an incomplete list of isotope shifts, you can refer to Simon Stellmer’s thesis [244]; Annie

Park’s thesis also shows a convenient visualization of the isotope shifts combined with the 87Sr hyperfine

splittings, assuming the ground state stays at the same energy [269].

Finally, the hyperfine levels of 87Sr have different magnetic field sensitivities due to a modification

in their Landé g -factor, relative to their fine-structure state. Table 3.1 also provides the modified g -

factors, defined by the weak-field Zeeman effect Hamiltonian Ĥ/ħ = µB g mF B (where µB is the Bohr

magneton typically expressed in units of MHz/G, mF is the hyperfine sublevel quantum number, and B

1 Note that, all else held equal, the natural linewidth of an atomic transition scales like λ−3.
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State Hyperfine level Hyperfine splitting Landé g-factor Field sensitivity

5s2 1S0

88Sr - - - 0 0 kHz/G

87Sr F = 9/2 - - −1.3177×10−4 [265] -0.18443 kHz/G

5s5p 1P1

88Sr - - - 1 1399.6 kHz/G

87Sr

F = 7/2 +37 MHz -0.2224 ≈−2
9 -311.3 kHz/G

F = 11/2 -6 MHz 0.1817 ≈ 2
11 254.3 kHz/G

F = 9/2 -23 MHz 0.0403 ≈ 4
99 56.4 kHz/G

5s5p 3P0

88Sr - - - 0 0 kHz/G

87Sr F = 9/2 - - −2.08×10−4 [107, 266] -0.291 kHz/G

5s5p 3P1

88Sr - - - 1.5012 ≈ 3
2 2101.1 kHz/G

87Sr

F = 7/2 +1414.12 MHz -0.3338 ≈−1
3 -467.2 kHz/G

F = 9/2 +283.86 MHz 0.0605 ≈ 2
33 84.7 kHz/G

F = 11/2 -1179.29 MHz 0.2728 ≈ 3
11 381.8 kHz/G

5s5p 3P2

88Sr - - - 1.5012 ≈ 3
2 2101.1 kHz/G

87Sr

F = 5/2 +2371.28 MHz -0.8580 ≈−6
7 -1200.9 kHz/G

F = 7/2 +1597.14 MHz -0.1431 ≈−1
7 -200.3 kHz/G

F = 9/2 +618.55 MHz 0.1818 ≈ 2
11 254.5 kHz/G

F = 11/2 -551.55 MHz 0.3568 ≈ 51
143 499.4 kHz/G

F = 13/2 -1898.05 MHz 0.4618 ≈ 6
13 646.3 kHz/G

5s6s 3S1

88Sr - - - 2.0023 ≈ 2 2802.5 kHz/G

87Sr

F = 7/2 +2981 MHz -0.4451 ≈−4
9 -623.0 kHz/G

F = 9/2 +542 MHz 0.0808 ≈ 8
99 113.1 kHz/G

F = 11/2 -2439 MHz 0.3640 ≈ 4
11 509.5 kHz/G

Table 3.1: Hyperfine splittings and Zeeman sensitivites for select states in 87Sr. The splittings are quoted
in reference to a hypothetical I = 0 state, as calculated in [244, 267]. Full detunings of various hyperfine
levels from the 88Sr transition frequencies must also take isotope shifts into account [244]. Unless oth-
erwise labeled, Landé g -factors are calculated using the angular momentum quantum numbers S, L, J ,
I , and F , an electron spin g -factor of 2.0023, and a nuclear g -factor for 87Sr of -0.24284 [268]. Fractional
approximations assume no nuclear g -factor and an electron spin g -factor of 2. The field sensitivity is
equivalent to µB g , where µB = 1.3996 MHz/G is the Bohr magneton, and it describes the frequency shift
per mF in response to a magnetic field in the weak-field Zeeman regime.
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is the magnetic field strength, typically expressed in Gauss), and first-order Zeeman sensitivities (defined

as µB g ) for the hyperfine levels. Most of these values are calculated using the typical formula for the

Landé g -factor as a function of angular momentum quantum numbers. However, the values for 1S0

and 3P0 are taken from experimental measurements. Both of these states have no first-order Zeeman

sensitivity in 88Sr due to their J = 0 character but gain small g -factors in 87Sr at the 10−4 level due to the

presence of a nuclear magnetic moment. At this scale, other processes such as state mixing also affect

the magnetic sensitivities; this makes it prudent to have empirical measurements, since characterizing

this transition is important for optical atomic clocks using strontium.

3.2 The strontium oven

In order to do anything with strontium, we need a source of individual atoms. Strontium is a solid

at room temperature and has a fairly low vapor pressure, so to generate an atomic beam we heat up a

strontium sample inside an oven purchased from AOSense (part of a larger source chamber, part no.

AOS-SrBEAM S/N 0011, as described in Sec. 3.3.1), at temperatures that historically have varied between

440◦C and 520◦C. We purchased this oven all the way back in 2013, making it one of AOSense’s first

strontium ovens. Unlike many subsequenct ovens purchased by other groups in JILA that died from

various malfunctions, our oven has survived to the present day mostly2 unscathed. There have been

complications along the way, however, which would be useful to document here.

3.2.1 The strontium volcano

The AOSense oven generates an atomic beam by heating up a sample of strontium and allow-

ing them to escape from the oven through long, thin capillaries which I estimate by eye to be roughly

2 cm long and with a ~300 µm inner diameter (give or take 100 µm). The geometry of the capillaries

restricts which atoms can escape, which mostly only lets through atoms which pass straight through

the holes. The resulting atomic beam is mostly collimated, but there is also a diffuse background from

atoms which bounce off the capillary walls and then scatter at oblique angles. These atoms will stick to

2 for some definition of “mostly.”
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Figure 3.2: Images of the strontium oven “volcano” before and after the oven refill. (a) Before the refill, the
volcano had grown to almost touch the oven (as it did in 2018). (b) The full extent of the volcano can be
seen after removing the oven. The white dusting on the volcano and viewport is strontium that oxidized
due to a vacuum mishap during the removal. (c) After refilling the oven with strontium, we positioned it
farther back by placing a 1” spacer flange between the oven and its mounting flange, in order to prevent
volcano-induced shorts. The blue “eruption” is fluorescence from strontium in a functional Zeeman
slower stage, slightly oversaturated on the camera.

the first cold surface they come across, including a viewport in the strontium source chamber as can be

seen in Fig. 3.2(a). A large fraction of these atoms scatter at relatively small angles away from the atomic

beam and therefore stick onto the next cooling stage in the source chamber, which is the Zeeman slower

module. Over time, these atoms build up and form a volcano shape on the heat shield of the Zeeman

slower.

The reason the strontium volcano is a problem lies in the geometry of the source chamber. The

AOSense oven and source chamber were originally designed to be as low-power and compact as possible,

as part of a DARPA grant aimed at advancing compact atomic sensors. As such, the oven is designed to sit

very close to the Zeeman slower stage. While this helps increase the atom flux into the Zeeman slower,

it also does not leave a lot of room for the volcano, which continues to grow until it ultimately makes

contact with the outer oven heat shield. At this point, the oven experiences a thermal short and can

no longer heat the strontium to sufficiently high temperatures to get a high-flux atomic beam, and the

entire source becomes useless. We first encountered this problem in the summer of 2018, just before I
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joined the group. At that time, then-postdoc Juan Muniz and then-graduate student Julia Cline fixed the

issue by removing the oven and scraping away at the volcano until it was shorter.3 This bought us a few

more years. However, in 2024 when Eric and I refilled the oven with new strontium (see the next section

for details), we decided to enact a more permanent solution by adding a 1” spacer flange on the oven

mounting flange. This had the effect of increasing the gap between the oven and the Zeeman slower, as

shown in Fig. 3.2(c). Hopefully, this will prevent the volcano from touching the oven again, no matter

how voraciously it absorbs strontium atoms. Still, just to be safe, I scraped away more of the volcano

during the replacement procedure.4

3.2.2 Refilling the oven

Besides the volcano, the main issues we’ve had with the oven have essentially been symptoms of

old age: we simply started running out of strontium. Over the years, we have periodically measured the

flux of strontium exiting the oven by sending a weak 461 nm probe across the mouth of the oven and

measuring the absorption of the probe. Based on historical measurements, our oven has seen a reduc-

tion in flux at a constant temperature by 50-70% every 2 years between 2014 and 2020. This has posed a

recurring challenge for running experiments with a large number of atoms, which includes almost all of

our recent experiments. To compensate for the loss in flux, we have improved our loading and trapping

efficiency by optimizing MOT alignments, frequencies, and powers. Even with this, we were forced to

work with ever-increasing oven temperatures (up from 480◦C to 500◦C and even sometimes 520◦C right

before the replacement) and longer loading times (leading to cycle times of 3-6 seconds).

The most straightforward way to fix this problem was to add more strontium to the oven, which

is what Eric and I finally did in 2024. I had thought about performing this operation as early as 2020

but didn’t for several reasons: we were trying to limit the number of people in lab simultaneously due

to COVID-19, I was setting up to perform the experiments in Ch. 6 and Ch. 7, and, most importantly, we

3 On my first day in the Thompson Lab, I got to watch Juan and Julia perform surgery on the volcano. I guess there is poetic
justice to the fact that I had to do the same near the end of my Ph.D.

4 This procedure essentially involved sticking a long-handle flathead screwdriver into the source chamber through the oven
flange, which is an extremely awkward task similar to a game of Operation but requiring more force. Strontium is not the
hardest metal, but it is quite difficult to scrape because it tends to deform rather than chip. Words I would use to describe the
texture are “sticky” and “gummy.” If you’ve ever machined copper before, it’s a little like that.
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weren’t sure that we could do it ourselves without breaking the oven. In a conversation with an AOSense

engineer, we were told that the oven construction is “pretty fragile,” and that AOSense breaks 1 in 10 of

their own ovens when loading strontium, and so they would not provide instructions for disassembly.

This was not encouraging. However, as the alternative was to pay $15,000 for them to replace the stron-

tium instead, we decided to hold off. Later, in 2021 the (much newer) AOSense oven in the strontium

ring cavity experiment broke.5 Luckily, we had a spare oven available for their experiment to use, so their

project was not delayed too much. But this failure was actually an opportunity in disguise: then-postdoc

Vera Schäfer and I were able to dissect the oven and learn how it was put together. Pictures of the interior

of this oven can be seen in Fig. 3.3(c),(e), which turned out to be identical to ours except for the addi-

tion of an extra heat shield on the newer (dead) oven. During this dissection, we learned that refilling

the strontium is actually quite simple in principle: remove the heat shields from the oven, unscrew the

cap to the strontium chamber (which also holds the capillaries), and reload. This gave us confidence

that we could complete the task ourselves with at least as high a success probability as the 90% rate of a

professional AOSense engineer.

Finally, in 2024 Eric and I bit the bullet and attempted the oven refill. The timing was right: we

had just finished taking data for the current round of experiments and would soon need to switch to 87Sr

for the next round. Since 87Sr has a lower natural abundance, we would struggle to trap a substantial

number of atoms with the poor excuse for an oven flux we had by that time. The plan was to remove the

oven and place it in a portable transfer chamber under argon, move the chamber to Dan Dessau’s lab in

Duane, and perform the replacement under argon in a glove box there with the help of then-graduate

student Hope Whitelock. Then, we would transfer the oven back onto the source chamber and hope for

the best.6

The procedure had an inauspicious start: when removing the oven, we accidentally let some oxy-

gen into the source chamber, oxidizing some of the strontium in that chamber (the white residue in

5 There was an electrical short in the oven due to strontium leaking into the back of the oven around the heating leads.
A (different) representative at AOSense said it was “inconceivable” that strontium could have made its way back there, but
apparently they lacked vision.

6 I should note that we had a few backup plans in case we accidentally destroyed the oven in the process. We weren’t that
arrogant. The careful planning was fortunately unnecessary because the oven replacement worked on our first try.
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(a)

(b)

(c)
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Figure 3.3: Detailed images of the AOSense strontium oven and refill procedure. (a) Eric operated an
argon-filled glove box in Dan Dessau’s lab under the supervision of Hope Whitelock, ensuring a low-
oxygen environment. (b) Our strontium oven has two heat shields (unlike later versions with three),
which are attached with screws. The screws can sometimes get stuck however, necessitating the use of
force. (c) Beneath the heat shields lies a tiered design, consisting of additional heat shields (bottom)
between the strontium chamber (top) and the oven flange. The strontium chamber is surrounded by a
coil of wire, which is in turn surrounded by a metal clamp, presumably to ensure efficient heating. This
image is from a 2021 disassembly of a three heat shield oven for the strontium ring cavity experiment,
but the design is functionally identical to ours ignoring the heat shields. (d) The strontium chamber has
an unscrewable cap, giving access to the interior of the chamber. We loaded the oven with chunks of
strontium from a sealed glass tube, totaling ~0.5-1 g in mass. (e) The cap of the strontium chamber has
~120 capillaries compression-fitted together into a roughly square shape. It is possible for them to fall
out. This image is from the 2021 ring cavity disassembly. (f) While refilling the oven, our capillaries fell
out of the cap but mostly stuck together thanks to the compression fit. We stuck the capillaries back in,
losing ~6 capillaries in the process.
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Fig. 3.2(b)-(c)). Luckily, we had gated off the connection between the source and science chambers (see

Sec. 3.3.1), so the oxidation was limited to the source chamber. The fault can be traced back to a some-

what sketchy argon feed-through scheme, where we first pumped the system down with a turbo pump,

opened a valve to the source chamber, and then sent argon through a glove taped to the vent exhaust

port on our pump station simultaneously with turning off the pump. I believe that the glove attachment

became slightly loose, letting some oxygen in. We managed to learn from our mistakes when replacing

the refilled oven, avoiding a second oxidation incident. Additionally, we have since purchased a proper

valve attachment to the pump station vent hole, allowing for a less error-prone flow line. However, af-

ter talking with James, I would not recommend repeating our approach for venting the source chamber

with argon. When turning off its roughing pump stage, the pump station experiences backflow and can

fill with atmosphere, providing an additional potential inflow mechanism for oxygen. Instead, he rec-

ommended we displace the air before the source chamber valve by continuously flowing argon through

a cross, avoiding the use of a pump station altogether.

The oven refill procedure in the glove box in Duane was ultimately successful, with a few stress-

ful moments. First, some of the screws attaching the heat shields to the oven body had gotten stuck,

possibly from repeated thermal cycling. Hope Whitelock helped us solve this problem by holding the

screwdriver in a pair of pliers (see Fig. 3.3(b)), allowing her to apply a large torque on the screws and

ultimately remove them. Actually adding strontium to the chamber was relatively straightforward, but

we had to ensure that we added strontium chunks which actually fit in the chamber. By our rough esti-

mate, we installed between 0.5-1 g of strontium into the chamber. The real challenge in this procedure

is protecting the oven capillaries, shown in Fig. 3.3(e)-(f). These capillaries are likely compression-fitted

into their intended position inside the cap, which means friction is the only force holding them in place.

When we first removed the oven cap, the capillaries were sticking almost all the way out of the cap. Dur-

ing the procedure, they actually fell out completely. Fortunately, the capillaries mostly stuck together

into their square-like shape, possibly due to fraction from the initial compression fitting. As such, Eric

was able to literally pick up the bundle of capillaries and stick it back into the cap, losing only ~6 capil-

laries in the process. The final proof of success was that, after reinstalling the oven, we were able to trap
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atoms in a MOT again. In fact, the oven flux was substantially higher than anything observed previously

during my Ph.D., allowing us to work at 440◦C and observe as many or more atoms than we could see

pre-refill at 500◦C.

3.3 Blue cooling system

The first step of cooling and trapping our strontium atoms is a series of cooling stages addressing

the dipole-allowed 1P1 – 1S0 transition using 461 nm (blue) light. This light serves multiple stages: the

Zeeman slower, the 2D MOTs, and the 3D MOT. In order to operate all three cooling stages, we need a

combined total of at least 100 mW of blue light out of multiple optical fibers. Our resulting laser system

and breakout is somewhat complicated, and it has also changed quite a bit over the seven years of my

time in the lab.7 In this section, I’ll describe what how it operated near the end of my Ph.D. work, circa

2024.

3.3.1 The source and science chambers

In addition to the oven, AOSense provided us with a full source chamber which includes a Zeeman

slower and in-vacuum optics and magnetic fields for two stages of 2D MOT, pictured in Fig. 3.4(a). The

source chamber is kept under ultrahigh vacuum at the 10−10 torr level, with the help of a 3 L/s ion pump

and two getters. The main getter is from SAES and has a pump speed of 50 L/s (part no. CapaciTorr D 50),

located next to the oven. There is also a smaller 5 L/s getter also made by SAES (part no. St 172 HI/9.5-

7.5/250C, according to an AOSense representative), located on the bottom of the source chamber near

the 2D MOTs. However, after our last vacuum break we have not reactivated this getter, so it’s currently

doing nothing.8 This was following the advice from an AOSense representative, who told us they don’t

believe this smaller getter has a significant impact on vacuum levels.

7 At one point, the 461 nm laser for the ring cavity experiment was locked to our laser; later, our laser was locked to theirs.
Eventually, we fully separated the two laser systems.

8 Non-evaporable getters (NEGs) are essentially chunks of porous material that passively capture certain gases through sorp-
tion. However, they can become saturated and no longer provide pumping power. You should assume this happens every time
you break vacuum. To fix this, we “activate” the getter (i.e., purge it of the gases it’s trapping) by running a certain amount of
current through the NEG for a certain amount of time, with specific values recorded in our lab notes. This should occur while a
turbo pump is attached to the system and running, so that all the purged gases are removed from the system.
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Figure 3.4: (a) The source chamber, containing the strontium oven (right), a Zeeman slower (with light
launched from the left), and in-vacuum 2D MOT optics (with light launched from the vertical bread-
board). (b) The science chamber. Blue and red MOT optics are sent vertically and through horizontal
ports “A” and “B”, with repumps sent thorugh the side. Water-cooled MOT coils surround the cham-
ber, oriented vertically. Additional uncooled coils form three-axis bias fields, with the z coils wrapped
around the MOT coils. Our science cavity is inside (see Sec. 3.5). Two cameras are mounted for fluores-
cence imaging. The “car lamp” is occasionally used to heat the science cavity spacer (see Ch. 4.2).
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The Zeeman slower consists of a 461 nm beam with ~50 mW of power, launched into the source

chamber from the left in the figure and traveling to the right, counter-propagating with the atomic beam.

By scattering many photons from this beam, the atoms slow down from their initial r.m.s. velocity of

~250-270 m/s down to something closer to ~5-10 m/s. A velocity change this large causes the 1P1 – 1S0

transition to undergo Doppler shifts of over 400 MHz, much larger than the 32 MHz linewidth of the

transition. In order to resonantly scatter enough photons, the Zeeman slower uses a magnetic field gra-

dient (here, constructed by AOSense using in-vacuum permanent magnets) to counteract the Doppler

shifts with Zeeman shifts. Compared to some other Zeeman slowers, our slower is quite short, which is

a testament to AOSense’s compact design. To make the Zeeman slower function, we send in circularly

polarized light that is roughly -430 MHz red-detuned from the unperturbed atomic transition but close

to resonance with the Doppler-shifted transition frequency of atoms coming out of the oven.

The 2D MOT stages require a total of two circularly polarized beams, one sent into each of the

two viewports on the top left of the source chamber. Inside the chamber are mirrors oriented in a V-

shape, such that the input beam bounces twice before exiting the chamber in a retroreflected manner.

Combined with a 2D quadrupole field, this creates the 2D MOT. The vertically-mounted optics board in

Fig. 3.4(a) allows us to send these two beams into the viewports with the proper shape, angle, and power

(totaling around 40 mW). As can be seen in the figure, the two viewports are at angle. The purpose of

this angle is to deflect the atoms captured in the 2D MOT and send them through a bellows, shown on

the bottom left. Atoms not trapped in the 2D MOT continue in a straight line towards the Zeeman slower

window. To prevent strontium from sticking to this window and making it opaque, we heat the window

to 250◦C. At this temperature, the strontium bounces off the window and sticks on whatever other colder

surface it collides with next.

The bellows sends the atoms through an all-metal gate valve, not pictured in the top figure but

visible on the right of Fig. 3.4(b). This valve allows us to isolate the source chamber when performing

oven work. Past the valve is our science chamber, which is an 8” spherical octagon from Kimball physics

(part no. MCF800-ExtOct-G2C8A16), with windows AR coated for all our visible and near IR wavelenghts.

The reason for our chamber’s large size is to provide lots of optical access and hold our science cavity
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(described later in Sec. 3.5). This chamber must also be kept under ultrahigh vacuum at the 10−10 torr

level, but since the volume is larger than the source chamber it needs substantially more pumping power.

To that end, we have a 75 L/s TiTan ion pump from Gamma Vacuum (part no. 75S-CV-62-SC-N-N) which

rests underneath the science chamber on the lower level of our optical table. There is also a titanium

sublimation pump installed in case we need to improve the vacuum, although I have never used it, and

Matt claims he did not notice a major difference after using it [231][G].

Surrounding our science chamber are several magnetic field coils. The largest coils are hollow-

core copper wires mounted in a near anti-Helmholtz configuration, oriented vertically. Running current

through these coils creates a magnetic quadrupole field for our MOT stages. I will refer the reader to Matt

Norcia’s thesis for a detailed discussion of the design principles and implementation, both of the coils

and of the MOSFET-based circuit that drives them and stabilizes the current [231]. Practically speaking,

we run up to 80 A of current through the coils at 15 V, which generates roughly a 17 G/cm magnetic field

gradient in the horizontal directions and a 33 G/cm gradient in the vertical direction. This amount of

power generates a fair bit of heat, so to keep the MOT coils from melting we send processed chilled water

through the wires (which are hollow-core). Additionally, there are three pairs of bias field coils oriented

along the three principal axes of the chamber, also driven by a MOSFET-based circuit. These coils do not

need to be water cooled. As of March 2025, they can receive up to 10 A of current, generating between

27 G and 30 G of field at the position of the atoms depending on the coil. If we need to create larger bias

fields in the future, the driver circuit could potentially be upgraded.

With these coils, we can generate the necessary fields to trap atoms in a 3D blue MOT centered at

a position of our choosing. To form this MOT, we couple ~50 mW of light into a 1x3 fiber splitter. This

light is distributed into three MOT arms, corresponding to one vertical beam and two horizontal beams.

Once the beams are the proper size (with a waist of a couple cm) and polarization (roughly circular),

the beams are sent into the science chamber through viewports labeled ‘A,’ ‘B,’ and ‘Z’ (with ‘A’ shown in

Fig. 3.4(b)). After passing through the chamber, they are reflected back in with the opposite polarization

(but the same helicity since the k-vector is swapped relative to a fixed quantization axis), completing

the six-beam geometry of a standard MOT. We actually use a few different stages of blue MOT to trap
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and cool our atoms, which differ in the laser frequency and power used. In the first “trapping” MOT

stage, we use as much power as we can, with a detuning of around -30 MHz from the atomic transition

(approximately −γ where γ/2π = 32 MHz is the linewidth of the 1P1 – SingletSZero transition). This is

farther detuned than an ideal MOT configuration (with laser beams detuned by −γ/2 to gain maximum

frequency sensitivity in the scattering rate). My hypothesis is that the larger detuning allows us to capture

more atoms initially entering the science chamber. In later stages, we lower the MOT power and move

the laser frequency closer to the more standard −γ/2 detuning.

3.3.2 Laser breakout

Generating all the light required for the Zeeman slower, 2D MOT, and 3D MOT stages requires a

fairly involved 461 nm laser system and breakout. The system starts with two distinct Toptica DL Pro

ECDLs (external cavity diode lasers), each of which can output up to 50 mW of single-mode laser light

as shown in Fig. 3.5(a). One of these lasers (ECDL 2) is stabilized via a spectroscopy lock using a hollow

cathode lamp, as described in Sec. 3.3.3. The other laser (ECDL 1) is locked to ECDL 2 through a beat

note board, shown in the inset. In the past, this was a frequency lock which used a delay line after the

photodiode to generate an error signal related to free spectral range of the delay line. This lock had a lot of

issues with stability and was sensitive to ground loops and/or RF pickup from nearby sources. Eventually,

we switched over to a phase lock using a JILA-made evaluation board clone (JILA part no. TJ007A1) for

a phase-frequency detector chip from Analog Devices (part no. HMC440QS16G). This lock has proved

more robust, although we sometimes observe in-lock broadening of the beat note on a readout spectrum

analyzer.9

Since the DL Pros don’t output enough power to operate all of our cooling stages, we use them to

seed higher power diodes through injection locks. An injection lock works by sending ∼mW of power

into a single-mode diode, mode-matched with the diode’s output light. Usually, this seed light is sent

through the rejected port of an optical isolator, as shown in Fig. 3.5(b). Within certain current ranges, the

9 We have not pinned down the source of this broadening. Sometimes, we notice an improvement when we connect or
disconnect the PZT out port from the loop filter interface box to the Toptica controller, which may suggest a ground loop issue.
However, it doesn’t seem to affect our MOT quality too much, possibly because the broadening is still smaller than the 1P1
linewidth of γ/2π= 32 MHz.
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(a) Two Toptica DL Pros are phase locked to each other and stabilized to a spectroscopy source. (b) To
obtain more power, we seed a 500 mW injection lock diode with ECDL light and partition the output.
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diode frequency will be “pulled” to match the seed. When I joined the lab, we used three injection lock

diodes: one AR coated diode from Sacher (part no. SAL-0455-030) for the 3D MOT stage, and two non-

AR coated diodes from Nichia (part no. NDB4216E) for the Zeeman slower and 2D MOT stages [231][G],

each of which can output up to around 100 mW. In practice, this setup was a bit of a pain to work with

because the Nichia diodes often dropped out of their injection locks.10 This unreliability led Matt to use

the Sacher diode for the 3D MOT stage, but it was on the expensive side (around $7600 in 2015).

Around 2020, we discovered a new non-AR coated diode from Nichia (part no. NDB4916) that can

output up to 500 mW. After buying one and testing it out, I rebuilt our 461 nm breakout from scratch to

power all three cooling stages from just one injection lock diode, as shown in Fig. 3.5(b). We controlled

the injection lock using the same Thorlabs current and temperature controllers used by the previous,

unreliable injection lock stages (part nos. LDC205C, TED200C). However, instead of using a Thorlabs

diode mount, we used a homebuilt mount, also shown in the figure.11 The current injection lock diode

receives around 6 mW of seed power, more than the older stages. However, it also seems to be more

reliable, and in practice the injection lock can stay locked for many hours (unless someone is working

on the same optical table). We are also able to match or exceed the amount of power used previously.

Since none of our blue cooling stages are currently saturated, we have reason to believe that more power

translates to more atoms trapped in our MOT. Based off this assumption, the younger members in lab

have recently (c. 2025) purchased more injection lock diodes to significantly increase the amount of

power sent to each stage. This is likely to improve loading times and overall atom number, but it does

carry the risk of reducing the stability of the 461 nm chain, since any of the injection locks dropping will

then break the experiment. If it becomes a problem, one potential solution could be to set up an active

feedback loop to prevent the injection locks from dropping [270].
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Figure 3.6: (a) A new optogalvanic hollow cathode lamp (HCL) as viewed through one end. A large voltage
ionizes the interior buffer gas, causing electrons to flow toward the anode and buffer gas ions towards
the cathode. The ions then collide with strontium atoms in the cathode, expelling them into the hollow
central region. The plasma emits UV radiation, so we have wrapped foil around the sides of lamp to
minimize exposure. (b) A dead HCL. Buildup of (presumably) strontium has closed up the central hole,
preventing laser light from passing through the lamp.

3.3.3 Hollow cathode lamp

To stabilize our 461 nm pathways, we lock to a spectroscopy signal generated using strontium

atoms in a so-called (optogalvanic) hollow cathode lamp (here, “HCL”). As can be seen in Fig. 3.6(a),

a hollow cathode lamp is essentially a glass cell filled with a relatively low pressure of an inert buffer

gas, containing both an anode and a hollow cylindrical cathode which do not physically touch. The

cathode contains an element of choice (strontium, in our case). When you apply a sufficiently strong

ignition voltage, the buffer gas ionizes to form a plasma arc between the anode and cathode. The ions in

the plasma bombard the cathode, kicking up (strontium) atoms into the donut hole of the cathode. By

shining a laser beam through the donut hole, you can therefore probe for spectroscopic signals. HCLs

represent a good alternative to vapor cells for elements like strontium that have low vapor pressures at

room temperature and otherwise need to be heated substantially to generate a large optical depth.

Our present lamp is sourced from an Australian company called Spectrolamps (part no. HC054ST)

10 The drop rate depended strongly on the specific diode used. The Zeeman slower injection lock often stayed locked for
multiple hours (not all day, however), but the 2D MOT injection lock dropped as often as every 30 minutes.

11 The housing for the mount was designed to look like Birdo from the Mario games. Yes, this is vital information to pass
down.
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and has a 4 Torr neon buffer gas. In the past, we have purchased them from Hamamatsu, but they appear

to have discontinued selling “optogalvanic” HCLs, i.e., “see-through” lamps that allow you to send a laser

beam through the cathode. Currently, we also use a power supply purchased from Spectrolamps (part

no. HCLPS1) that can send up to 30 mA of current to the lamp in steady state at 400 Vdc. You can also

use a custom power supply as long as it can supply a sufficient voltage. It might also be important to

transiently generate a larger voltage upon switching on the supply in order to ionize the buffer gas, but

we have not tested this claim. Previously when we worked with a custom supply, a short-time voltage of

650 V with a decay time constant of 66 µs was sufficient to ignite.

When Matt first built our experiment, he managed to generate spectroscopic signals for both the

461 nm (1P1 – 1S0) and 707 nm (3S1 – 3P2) transitions using a hollow cathode lamp [271][G]. However, in

recent years we have switched back to only locking our 461 nm system to the lamp. The main reason for

this12 was to protect the lifetime of the HCL. In order to see an error signal on the 3S1 – 3P2 transition,

there needs to be a sufficient number of atoms in the metastable 3P2 excited state. The energetic bom-

bardment of buffer gas ions onto the cathode naturally excites a small fraction of the strontium atoms

into the correct state, but the optical depth is way smaller than for the ground state. Therefore, to see a

sizable error signal, we had to run a pretty large current through the lamp (20 mA). This actually substan-

tially reduced the signal-to-noise of our 461 nm error signal, since the optical depth along the 1P1 – 1S0

transition was so high that the spectroscopy probe beam was almost completely attenuated after passing

through the lamp. Moreover, it caused our lamp to die roughly every 18 months, which was not ideal.13

The most common failure mechanism for our HCLs run in this mode can be seen in Fig. 3.6(b): some-

how, the donut hole shrinks in size due to buildup of what is presumably strontium, to the point where

our spectroscopy beams can no longer pass through the lamp. For the second half of my Ph.D., we dras-

tically lowered the current sent to the HCL to ≲ 3 mA, which should improve the lifetime quite a bit. The

other consequence of this change is that our error signal for 461 nm spectroscopy is now substantially

12 Besides the error signal becoming finicky, that is.
13 Even when functional, the error signal would actually shrink over the course of several hours after turning on the lamp, by

an amount which would noticeably change the laser frequency due to a nonzero in-lock DC voltage. Close to death, the lock
would drop multiple times a day.
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larger, compared to both background noise and unintentional DC offsets.

3.3.4 461 nm spectroscopy lock

We originally locked our 461 nm laser to the strontium atoms in the hollow cathode lamp using

a technique called polarization rotation spectroscopy [272][271][G]. In a nutshell, this was a Doppler-

free spectroscopy technique which used a counterpropagating, circularly polarized pump to excite the

atoms, causing them to exhibit circular birefringence when the pump is close to resonance (see the bot-

tom cartoon in Fig. 3.7(a)). Then, a linearly polarized probe passing through the ensemble would expe-

rience polarization rotation with an angle which depended on the precise resonance condition. While

this technique was simple and effective, there were certain downsides. For example, the basic version of

polarization rotation spectroscopy is a modulation-free technique and therefore sensitive to DC drifts.

To avoid this issue, we strobed the system by “chopping” an AOM on and off with a 99 kHz square wave

[271][G], essentially amplitude-modulating the signal. This limited the bandwidth of the lock to much

less than 99 kHz, but it essentially worked. A bigger problem was that the error signal was sensitive to

drifts in polarization over time, which would cause the error signal to look asymmetric and change the

zero point of the lock. This form of DC drift could not be easily corrected with a chop technique.

At some point, we decided to try out a different method known as modulation transfer spec-

troscopy (here, MTS) [273–275], which our colleagues on the cold rubidium experiment had tested out

and seen promising results from. MTS differs from polarization rotation spectroscopy in a couple of

ways, illustrated in Fig. 3.7(a). First, it requires frequency modulating the laser at some frequency ωm ,

which can be substantially larger than the old 99 kHz AOM chop and therefore does not, in principle,

limit the bandwidth of the lock. Second, the error signal is generated not from the probe polarization

but by the phase relation between the probe carrier and sidebands, making MTS less sensitive to polar-

ization drifts. From these two metrics, one could reasonably consider modulation transfer spectroscopy

to be a form of frequency modulation (FM) spectroscopy, similar to how we used to lock our 707 nm laser

[271][G] or to a PDH lock (see Sec. 2.2.3). The key feature of MTS that distinguishes it from other related

methods is that the probe is not directly frequency modulated. Rather, a counterpropagating pump with
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Figure 3.7: (a) Top: modulation transfer spectroscopy (MTS) setup. Two counter-propagating “pump”
(frequency modulated at ωm) and “probe” (initially unmodulated) beams with opposite polarization
pass through the hollow cathode lamp. The atoms induce a four-wave mixing (4WM) process that gen-
erates sidebands ω±ωm on the probe (blue arrow). The bottom two cartoons highlight the differences
between the MTS setup and that of two other Doppler-free techniques: FM spectroscopy (modulation
on the probe instead of the pump, same polarization) and polarization rotation spectroscopy (no mod-
ulation, circularly polarized pump induces rotation in the probe polarization). (b) Two 4WM resonances
involving the ω and ω−ωm pump tones along a J = 0 to J = 1 transition (with the m = −1 excited state
suppressed for simplicity). Each resonance constrains the carrier frequency ω and the velocity class
of atoms involved (Doppler shift kv). The bottom plots show the contribution of each resonance to the
probe electric field, demodulated atωm , as a function of the detuning from atomic resonance∆ :=ω−ωa .
(c) The full MTS error signal (black, calculated) is a combination of signals from four 4WM resonances:
the two processes from (b) (total field shown as a solid blue curve), and two mirror processes using theω
andω+ωm pump tones (dashed blue curve). The plot shows the case whereωm = 1×γ/2, which is close
to experimental parameters.

opposite polarization is modulated, which transfers modulation sidebands to the probe via a four-wave

mixing (4WM) process only under specific atomic resonance conditions. It has been argued [276] that

the lack of modulation sidebands on the probe far from atomic resonance makes the error signal robust

against residual amplitude modulation (RAM) of the probe, which is also known to generate a drifting

DC offset. Empirically, it seems like the error signal is quite robust, so we have stuck with it ever since.

The error signal generated from modulation transfer spectroscopy is deceptively complex [277].

Here, I will attempt to convey a basic understanding, accompanied by Fig. 3.7. The basic four-wave
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mixing process involves absorbing and emitting tones from the pump separated in frequency byωm , ab-

sorbing an unmodulated probe tone with opposite polarization, and then finally emitting a new probe

tone with a frequency offset of ωm . Depending on the velocity v of the atom interacting with the beams,

the pump and probe beams will experience opposite Doppler shifts ∆ωD =±kv in the rest frame of that

atom. Therefore, for a broad range of laser frequenciesωwithin the Doppler-broadened lineshape of the

atomic ensemble inside the hollow cathode lamp, there exists some velocity class of atoms which will

bring the emitted probe tone onto resonance with the atomic transition (i.e., the three-photon resonance

of the three input tones). By tuning the carrier frequency ω, it is possible to also attain a “one-photon”

resonance in which the absorbed pump photon is also resonant with the atomic transition, greatly en-

hancing the 4WM process. Further, these simultaneous constraints determine both ω and the velocity

class kv of participating atoms and therefore create a Doppler-free signal.

Complicating this picture is the fact that, depending on which pump tone is absorbed, the reso-

nance condition will change. In total, there are four distinct 4WM processes: absorbing a pump photon

at ω and emitting at ω±ωm , and vice-versa. Fig. 3.7(b) depicts the two processes involving the ω and

ω−ωm , for a J = 0 to J = 1 transition (like the 461 nm transition in strontium). Each of the two res-

onances in this “doublet” (occuring at ∆ := ω−ω0 ∈ {−ωm
2 ,ωm}) generates a dispersive lineshape when

demodulated in the proper quadrature, with opposite sign since they generate probe sidebands with

opposite detunings from carrier. In the regime we operate, where ωm/2π = 30 MHz is smaller than the

pressure-broadened linewidth of the atoms in the hollow cathode lamp,14 these individual processes

are not fully resolvable. Adding together the signals from all four 4WM processes therefore generates a

single error signal shown in Fig. 3.7(c) with a zero crossing at ∆= 0. This is the signal we use to lock our

laser.

14 We can roughly estimate the pressure broadening in the lamp by looking at the MTS error signal, which contains signals
from both 88Sr and 86Sr. We know the transition in these isotopes is split by roughly 125 MHz (see, for example, [245]), and by
modeling the functional form of the MTS error signal [273] we can estimate the effective pressure-broadened linewidth to be
110±30 MHz.
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3.3.5 Repumping lasers

The 1P1 – 1S0 transition is not a closed transition, as shown in Fig. 3.1. In particular, there is roughly

a 1 in 20,000 chance for an atom to decay from the excited 5s5p 1P1 state into the 5s4d 1D2 state, rather

than the ground 5s2 1S0 state. From there, the atom decays into the 3P2 and 3P1 states, the former of

which is metastable. Since the atoms spend a relatively short amount of time in our Zeeman slower and

2D MOT stages (on the order of 10 ms given the expected initial and final atomic velocities), we can cool

a decent fraction of atoms in these stages with only 461 nm light without them being shelved into dark

metastable states.15 This is not the case for the 3D MOT, since we often rely on loading our MOT for

multiple seconds in order to trap sufficient atoms for our experiments. As such, repumping the atoms

out of the metastable 3P states is absolutely crucial for us.

To repump the atoms, we use two lasers: a 707 nm laser, which addresses the 3S1 – 3P2 transition,

and a 679 nm laser, which drives the 3S1 – 3P0 transition. Both of these are home-built diffraction grating

ECDLs [231][G]. Together, these lasers induce shelved atoms to repeatedly excite into the 3S1 state and

decay back down into the 3P manifold. Roughly 1/3 of the time, an atom will decay into the 3P1 state,

which decays to the ground state with a 1/e time of 21 µs. Thus, the average atom cycles through three

photons during repumping. We shine both lasers at the position of the 3D MOT, on resonance with their

respective transitions, and observe a substantial improvement of both the MOT population and lifetime.

When working with 88Sr, repumping is relatively straightforward since the lack of nuclear spin means

there is no hyperfine structure. Empirically, we have found that around 1 mW of 679 nm light and 5 mW

of 707 nm light is enough to maximize the number of atoms in a continuously loaded blue MOT.16 For

87Sr (with I = 9/2), the picture is more complicated: the ground state and 3P0 still lack hyperfine structure

15 There will be some shelved atoms, however. For an atom at 440◦C, it takes ∼25,000 photons for the Zeeman slower to fully
slow an atom. This is comparable to 20,000, which roughly equals the 1/e shelving probability for a 1 in 20,000 shelving rate.
If the 2D MOT beams are detuned by γ/2 and have an intensity of 0.1Isat, then they scatter 20,000 photons in ∼4 ms. The fact
that the shelving probability seems to be less than 1 but also not negligible may not be a coincidence if AOSense designed their
source with this in mind, but I have not asked them about it.

16 It’s worth noting that this amount of power is likely more than one saturation intensity: if we assume the repumping beams
have a waist of 3 mm, and that the atomic dipoles are randomly oriented relative to the laser beam, then the beams have an
intensity roughly equal to I = 4Isat–5Isat. This makes sense if you believe the scattering rate out of the metastable states to be
the bottleneck for our MOT atom number, since Rsc ∝ I

I+Isat
increases by less than 5% per additional Isat at these intensities

(compared to a 33% increase per Isat at I = Isat).
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Figure 3.8: 707 nm repumping scheme for 87Sr. (a) To repump on multiple hyperfine states in 3P2,
we send 707 nm light through an AdvR fiber phase modulator. We use a DDS (and a frequency dou-
bler for dynamic range) combined with an Arduino controller to periodically hop between multiple RF
tones, each tone hitting a different hyperfine transition, to save on power. (b) Diagram of the hyper-
fine structure along the 3S1 – 3P2 transition. We address a total of five hyperfine transitions: one for each
metastable state in 3P2. (c) Frequency landscape of the frequency modulated 707 nm light. We lock the
carrier frequency on resonance with the (Fg ,Fe ) = ( 13

2 , 11
2 ) transition (here denoted by f0) and use a total

of four RF tones to address the four other transitions.

since J = 0, but the 3P2 state splits into five hyperfine states, all of which are metastable. Therefore, we

need at least five different 707 nm laser tones: one for each hyperfine state.

We accomplish this by using a DDS board (part no. AD9959) to drive a fiber-coupled electro-

optic modulator (fiber phase modulator, or fiber EOM) and generate FM sidebands on the 707 nm light.

This fiber EOM is sourced from AdvR (part no. WPM-K0707-P78P78AL0) and uses a potassium titanyl

phosphate (KTP) crystal and can handle tens of mW of input power, unlike some other crystals used for

phase modulating red wavelengths. We send in around 17 mW of power into the fiber EOM, limited by

the ECDL, which generates 4.5 mW out of a fiber onto the atomic chamber. Attempting to drive five

different transitions at once using multiple RF tones would severely limit the amount of power available

for each transition, so instead we use an Arduino microcontroller to periodically hop between different

profiles saved in the DDS evaluation software every 10 µs, as shown in Fig. 3.8(a). These RF tones are

then frequency-doubled to increase the dynamic range of output frequencies beyond the clock rate of
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the DDS.

While this apparatus existed before my time in the lab, the previous RF setup [231][G] was empiri-

cally derived and difficult in practice to replicate, particularly given the low oven fluxes we were working

with at the time. Ultimately, we determined which RF tones to use from scratch, shown in Fig. 3.8(b-c).

We addressed a total of 5 hyperfine transitions using 4 distinct RF tones, down from the 7 tones used

in the previous generation [231][G], allowing us to address each transition more often. This was accom-

plished by locking the carrier tone to be on resonance with the Fg = 13
2 to Fe = 11

2 transition. This tran-

sition seemed to successfully repump the most atoms, possibly due to a large fraction of atoms getting

trapped in the Fg = 13
2 metastable state and the favorable branching ratio on this transition. By assigning

it to the carrier, we ensured the transition would see repumping across all DDS hops. Then, we chose

four additional transitions that have relatively large branching ratios and empirically led to the best re-

pumping. Of these, the most effective seemed to be the Fg = 11
2 to Fe = 11

2 tone. This is likely because,

when combined with the carrier, the tone forms an almost-closed system since the Fe = 11
2 excited state

only decays to the Fg = 9
2 state 5% of the time that it decays into 3P2, leading to efficient depumping

within a single 10 µs DDS hop.

While not used during the blue MOT stage, we also have a 688 nm laser (also a home-built diffrac-

tion grating ECDL) that addresses the 3S1 – 3P1 transition, which shelves atoms out of the 3P1 state and

into the metastable 3P states. We occasionally use this laser when running experiments on the narrow-

linewidth 3P1 – 1S0 transition in order to quickly freeze dynamics and perform (relatively slow) readout

on the excited and ground state populations (see Ch. 5.5 for an example of this in practice). All three re-

pumping/shelving lasers are locked with a PDH lock to a stable reference cavity, as described in Sec. 3.6.

3.4 Narrow-line cooling system

The blue cooling stages in the previous section are all Doppler cooling methods, which involve

selectively driving atoms by velocity class in order to narrow the velocity distribution (and thus the tem-

perature). The minimum temperature attainable with these types of schemes is determined by a dy-

namic equilibrium between cooling forces and random atomic recoil; as argued in [278], this tempera-
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ture scales with the atomic transition linewidth γ: TD := ħγ/2kB , where kB is the Boltzmann constant,

and TD is the Doppler limit. For typical dipole-allowed optical transitions used for laser cooling with

linewidths in the 5-50 MHz range (the 1P1 – 1S0 transition in Sr has a linewidth of γ/2π ≈ 32 MHz), this

sets a Doppler cooling limit around 100 µK–1 mK. For alkali (group I) atoms, cooling beyond this point

usually calls for sub-Doppler cooling techniques such as polarization gradient cooling [279, 280] or gray

molasses cooling [281, 282].17 However, alkaline earth atoms typically utilize a narrow-linewidth transi-

tion connected to the ground state which allows for Doppler cooling down to significantly lower temper-

ature. For strontium, this transition (with a wavelength of 689 nm, connecting 3P1 – 1S0) has a linewidth

of γ/2π = 7.5 kHz corresponding to a Doppler limit of 180 nK.18 Therefore, by adding a second stage

of MOT along this narrow-linewidth transition (which we call the red MOT), we can attain substantially

lower temperatures.

3.4.1 The SWAP MOT

While MOTs on a narrow-linewidth transition work the same as on Doppler-allowed transitions in

principle, practically the longer timescales introduce new challenges that must be addressed. In partic-

ular, the Doppler broadening out of the initial MOT stage is often substantially broader than the atomic

transition linewidth. To give concrete values for our experiment, atoms in our blue MOT start with a tem-

perature around 1 mK, leading to an r.m.s Doppler shift of 450 kHz, compared to a linewidth of 7.5 kHz

on the 3P1 – 1S0 transition in Sr. This is a problem because optimal MOT operation calls for laser beams

which are red-detuned by γ/2, which is not feasible if the atomic transition is inhomogeneously broad-

ened past this level. As a result, only a small fraction of the atoms will be effectively cooled by a traditional

fixed-frequency MOT. To get around this problem, initial experiments demonstrating narrow-line MOTs

[289–291] used “broadband” cooling light, either by introducing many different RF tones or by sweeping

17 Li and K are an exception since their small hyperfine splitting traditional sub-Doppler cooling techniques challenging. One
solution is to use a higher-lying narrow-linewidth transition [283, 284], which requires UV and blue lasers and have Doppler
limits around 4 and 29 µK for Li and K, respectively. The invention of the Λ-enhanced gray molasses introduced a highly
effective and fast alternative, which is now commonly used [285–287].

18 This is actually less than the recoil limit for strontium, defined as the temperature Tr corresponding to a kinetic energy

equal to the recoil energy imparted on the atom by a single photon: Ekin = Erec := ħ2k2

2m . Doppler cooling is also limited by the
recoil limit [288], which for strontium sets a minimum temperature of Tr = 460 nK.
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the frequency in a periodic ramp. This successfully cooled a substantial fraction of the atoms down to a

lower temperature. Then, application of a single-frequency MOT could cool the atoms down close to the

recoil limit.

In contrast, our experiment uses a technique (accidentally discovered by Matt)19 which we call

sawtooth-wave adiabatic passage (SWAP) cooling [292, 293][G]. Implementing SWAP cooling in practice

is easy: we sweep the frequency of our 689 nm laser, but instead of a symmetric sweep (typically a trian-

gle wave), we sweep with an asymmetric sawtooth wave which ramps upwards in optical frequency. This

process relies on the principle of adiabatic transfer: if a laser frequency sweeps across resonance with

the atomic transition sufficiently slowly, the atom will be adiabatically transferred from the ground state

to the excited state. The basic intuition for how SWAP cooling works in 1D is as follows: an atom with ve-

locity v sees both a co-propagating beam, which is blue-shifted by ∆ω= kv , and a counter-propagating

beam, which is red-shifted by ∆ω=−kv . An increasing sweep in optical frequency means the counter-

propagating beam will cross into resonance first, causing the atom to deterministically absorb a photon

and lose ħk of momentum. Later, when the co-propagating beam crosses onto resonance, the atom is

still in the excited state (assuming it has not undergone spontaneous emission), so the beam adiabati-

cally transfers the atom back to the ground state. This causes the atom to deterministically emit a photon

forwards and lose another ħk of momentum, for a total slowing of 2ħk per sweep. A full understanding

of SWAP cooling is significantly more complicated, particularly in a MOT setting. Discussion of these

intricacites has led to a series of theory papers from Murray Holland’s group in collaboration with our

group [294][G][295, 296][297][G] to model the process. These papers also tease out subtle details, such as

the crucial role of spontaneous emission in a process which is often explained using unitary dynamics.

I will not go into detail here but would instead highly recommend reading Ch. 10 of Matt Norcia’s thesis

[231][G], which introduces the topic quite well.

Using a SWAP MOT over a symmetric ramp MOT has several advantages. Empirically in our exper-

iment, the SWAP MOT captures a larger fraction of atoms out of our blue MOT, and this capture fraction

19 A quote from the JILA outreach article A Little Less Spontaneous by Catherine Klauss, 2018: “‘Basically, I pressed a button
on the function generator,’ said Norcia.”
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is more robust to changes in the atomic transition frequency, especially in 87Sr [231][G]. This robustness

makes it easy to cool atoms into our optical lattice (described in Sec. 3.5.2), which is quite deep and thus

induces large AC Stark shifts on this transition. The SWAP MOT generates larger acceleration forces than

would be possible with pure Doppler cooling, leading to faster cooling.20 Finally, the SWAP MOT does

not need so-called “stirring beams,” often used in traditional narrow-line cooling of 87Sr to rapidly mix

the ground mF states and prevent atom loss [298].

In our experiment, we typically use two different stages of SWAP MOT with different sizes of fre-

quency sweep. The first stage, with a peak-to-peak sweep of 9 MHz, is designed to recapture atoms out of

the blue MOT and cool them down from 1 mK to 10s ofµK. The second stage sweeps over a much smaller

range with a peak-to-peak deviation of 1.4 MHz. This stage cools the atoms further to somewhere be-

tween 10− 20 µK, and it simultaneously loads the atoms into the 813 nm optical lattice described in

Sec. 3.5.2. I’ll note that these two objectives may be in slight tension with one another. Empirically, I

have found that by tuning the center frequency of this second-stage SWAP MOT, I can decrease the atom

temperature to below 5 µK, and the MOT becomes substantially denser and more spherical in shape.

However, we cannot trap as many atoms in the optical lattice. For our actual second-stage SWAP set-

tings, the MOT flattens into a large pancake shape, which I suspect is better mode-matched to the cavity.

My personal explanation for this is that we have tuned the SWAP to be below the atomic resonance, so

the center of the magnetic quadrupole field does not provide good cooling power. As a result, the atoms

fall below the zero of the quadrupole field due to gravity until they see a large enough magnetic field to

shift the transitions onto atomic resonance, creating a flattening effect. Horizontally, the atoms spread

out in all directions away from the quadrupole zero, leading to the pancake shape.

3.4.2 The 689 nm laser system

The laser system used to generate our red MOT light, as well as any science beams for address-

ing the atoms along the 3P1 – 1S0 transition, is outlined in Fig. 3.9. We start with 15 mW of light from a

20 It also cools with fewer total scattered photons, which makes it an appealing candidate for systems with non-closed narrow-
linewidth transitions, such as YO molecules [295].
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Figure 3.9: 689 nm laser system breakout. (a) We use a home-built interference filter ECDL (see Sec. 3.7)
to generate light and stabilize it to our reference cavity (see Sec. 3.6). (b) To generate enough power for
our MOT and science beams, we seed a single-mode diode from USHIO which generates up to 200 mW
of light, which is partitioned between the MOT and other flexibly allocated pathways. (c) The MOT light
goes through an AOM which is driven by a sawtooth-wave RF tone for the SWAP MOT. The frequency
of the SWAP MOT is centered below the atomic transition frequency but sweeps onto and then above
resonance.
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homebuilt interference filter ECDL (IF-ECDL), described in detail in Sec. 3.7. Before we built this laser

in 2024, this was a commercial IF-ECDL purchased from AOSense (part no. AOS-ECDL-689), which was

more compact but more expensive. As we will discuss later, our homebuilt laser has lower phase noise

than the commercial version, which should improve the signal-to-noise ratio when probing the atoms

with this laser or making heterodyne measurements.

Just as with the blue laser system in Sec. 3.3, the 689 nm ECDL on its own does not output enough

power for all of our needs, so we need a gain stage. The form of this stage has undergone several changes

during my time in the lab. At the end of Matt’s Ph.D. in 2017, this stage took the form of an Eagleyard

tapered amplifier (part no. EYP-TPA-0690). However, tapered amplifiers do not work very well at red

wavelengths compared to IR, and the performance of this chip quickly degraded to provide a net gain

(after fiber coupling) of less than 2. By the time I joined the lab, we had installed an additional injection

lock stage with a 30 mW diode from Thorlabs (part no. HL6738MG) to send more initial power into the

tapered amplifier. In 2020, I gave the tapered amplifier to Julia for use in the strontium ring cavity experi-

ment and instead upgraded the injection lock to use a 50 mW diode from Thorlabs (part no. HL6750MG).

This was more than enough to compensate for the barely functional tapered amplifier.

Around this time, the ring cavity experiment was accumulating an impressive collection of 689 nm

injection lock diodes due to their many red cooling and slowing beams. This was becoming a bit of a

hassle for them; fortunately, in 2022 we became aware of a higher-powered 210 mW single-mode diode

made by USHIO (distributed by RPMC, part no. HL69001DG). This enabled both experiments to work

with significantly more 689 nm power. The only caveat to this diode is its limited quoted lifetime of 10,000

hours. To stretch out the lifetime of this object, we turn the diode off at night and over the weekend.

Currently, our gain stage is as shown in Fig. 3.9(b). We don’t currently use all of the rated 200 mW power

since there currently isn’t a need for more power, but that could change in the future. Some of this

power is sent to the SWAP MOT (see also Fig. 3.9(c)), and the rest is sent to various other breakout stages

labeled ‘A’, ‘B’, and ‘C’ in the figure. These pathways can be flexibly allocated to various beams used in

the experimental pulse sequence, which are not the same between different experiments.
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3.5 The science cavity

During the final SWAP MOT stage, we cool the atoms into an 813 nm optical lattice, formed by

sending 813 nm light through a high-finesse optical cavity which we call the science cavity. This effec-

tively couples the atoms to the cavity mode (with caveats that we will touch on soon), initializing our

many-atom cavity QED platform which allows us to perform all the experiments in this thesis. In this

section, I will present relevant details about our science cavity and the optical lattice used to trap the

atoms.

3.5.1 Cavity parameters

Our science cavity was constructed by Matt Norcia in 2014 [231][G], and we have not modified it

since. At a high level, it is a symmetric two-mirror cavity, shorter than confocal (with a nominal mirror

radius of R = 5 cm and a nominal length of L = 4 cm). The mirrors have coatings supplied by Advanced

Thin Films which provide a high finesse near 689 nm and 698 nm (on the order of 25000) and a moder-

ately high finesse near the lattice wavelength of 813 nm (around 2500). The mirrors are mounted on a

macor cavity spacer, with piezoelectric transducer (PZT) tubes on each side which allow the cavity length

to be changed. The tubes are cut to 0.25 inches each from a larger tube purchased from Piezomechanik

(part no. PiT 10x36x1).21 The piezos are designed to operate up to a positive voltage of 1000 V and down

to a negative voltage of -200 V. The total combined throw of the two piezo tubes over its full voltage range

is about 6.8 µm, given the length of the tubes, with a positive voltage causing contraction (shortening).

However, currently our voltage driver only goes between 0 and 150 V, resulting in a more limited throw

of 850 nm. Still, this is sufficient to tune the cavity length over more than two free spectral ranges at our

laser frequencies.22 The spacer, PZT tubes, and mirror are mounted together through the use of a macor

“hat,” in order to recess the mirrors inside the spacer and prevent strontium from coating the mirrors. To

see the geometry of the setup and the mirror mounting, I’d recommend looking at Matt’s thesis [231][G].

I also show a cartoon depiction of the mounting scheme next section in Fig. 3.11, since it is relevant to

21 I don’t think Piezomechanik sells the tubes we bought for our science cavity anymore. I saved a spec sheet for the tube in
question onto the lab OneDrive.

22 Further tuning requires creativity, as discussed in Ch. 4.
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Description Symbol 689 nm
[

3P1
]

698 nm
[

3P0
]

813 nm Units

Free spectral range ωFSR/2π 3.71459(2)(PRR) 3.71461(3)(PRR) 3.715(1)(∨) GHz

Cavity length L 4.03534(2)(∧) 4.03532(3)(∧) 4.035(1) (est.) cm

FWHM linewidth κ/2π 153.0(4)(PRR) 140.9(3)(PRR) 1584(∨) kHz

Cavity finesse F 24280(60)(∧) 26360(60)(∧) 2345.5(∨) -

Mirror total loss Tm +Lm 129.4(3)(∧) 119.2(3)(∧) 1339.4(∨) ppm

Mirror transmission Tm 106.52(∗)(!) 95.297(∗)(!) 1339.4(∗) ppm

Mirror loss Lm 22.9(3)(∧) 23.9(3)(∧) small? ppm

Mode waist w0 73.37(7)(PRR) 73.85(7)(PRR) 79.7(1)(PRR) µm

Rayleigh length zR 2.453(5)(∧) 2.453(5)(∧) 2.453(6)(∧) cm

Peak cooperativity C0 0.415(1)(∧) 0.456(1)(∧) - -

Atomic linewidth γ/2π 7.463(12) kHz(YE) 1.35(3) mHz(PRR) - -

Peak J.C. coupling g0/2π 10.88(2) kHz(∧) 4.66(5) Hz(∧) - -

Table 3.2: Science cavity parameters for relevant wavelengths/transitions in strontium. The top section
contains parameters which do not depend on atomic transitions. The bottom section of the table con-
tains atom-cavity coupling parameters along the associated atomic transitions for 689 nm and 698 nm,
assuming a Clebsch-Gordan coefficient of 1.
(PRR) Linewidth measurement paper in Phys. Rev. Res. (2021) [96][G]

(YE) Sr I clock evaluation paper in Phys. Rev. Lett. (2024) [101]
(∗) From Advanced Thin Films coating spec sheet
(!) 689 nm and 698 nm transmission values are assumed to be mistakenly swapped on the spec sheet
(∧) Derived from above quantities
(∨) Derived from below quantities

how we stabilize the length of the science cavity.

Table 3.2 details our current best understanding of various cavity parameters. Many of these val-

ues, particularly at the 689 nm and 698 nm wavelengths, were calculated around 2019 by then-postdoc

Juan Muniz in order to determine the linewidth of the 3P0 – 1S0 transition, as detailed in Ch. 4 and in

[96][G]. Other values are derived from those measurements: for example, the cavity finesse is calculated

from the free spectral range and the cavity linewidth using Eq. (2.18), the loss per mirror is calculated

from the finesse using the same equation, the cooperativity is calculated from the finesse and the waist

using Eq. (2.50), and the Jaynes-Cummings atom-cavity coupling g0 is calculated from the cooperativity
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and the atomic and cavity linewidths using Eq. (2.49).

To distinguish between transmission and loss probabilities in the cavity mirrors, we currently rely

on data from the Advanced Thin Films spec sheet. Unfortunately, there’s a bit of ambiguity associated

with these numbers. The spec sheet actually claims that the transmission rates Tm for 689 nm and

698 nm are swapped relative to what is reported in Table 3.2. If this is true, it would imply that the power

loss probabilities Lm for the two wavelengths are different by a factor of three. For this reason, Matt

posited that the values should be switched to what we currently report. The current best piece of inde-

pendent data we have to dispute or corroborate this claim is a measurement I performed in 2021, where I

optimized the 689 nm cavity coupling and then measured the transmission as a fraction of the input light.

Assuming no losses outside the cavity, a perfectly symmetric cavity, and perfect cavity coupling, then this

fraction should be Pt /Pi =
( Tm

Tm+Lm

)2 as derived last chapter in Eq. (2.16). With additional losses, this puts

a lower bound on Tm . Having measured a fraction of 0.54, this suggests that Tm ≳ 95 ppm, which does

not entirely rule out the possibility that the spec sheet was correct. A good future test of this would be to

repeat this transmission measurement with 698 nm light, since if the spec sheet is correct the fractional

transmission of this wavelength should be substantially higher at 0.80. If the transmission is similar to

that of 689 nm light, that would be strong evidence that the reported values in Table 3.2 are correct.

Additionally, we have substantially fewer measurements of cavity parameters at 813 nm. Juan

measured the waist of the cavity mode, but for everything else we currently rely on the Advanced Thin

Films spec sheet providing the transmission probability. I have performed quick and dirty measurements

of the cavity linewidth at 813 nm by fitting the shape of the PDH error signal lock to the science cavity

(see Sec. 3.6 for the locking chain) given knowledge of the PDH sideband frequency, which suggests that

the cavity linewidth is larger than the value reported in Table 3.2 at κ/2π = 2.1 MHz. However, it would

be cleaner to perform a ringdown experiment (say, by sending in a tone one FSR away and then rapidly

turning it off to measure the exponential decay time). Nominally, you might expect that the cavity length

should be the same as for 689 nm and 698 nm. However, as the different wavelengths may have different

penetration depths in the cavity mirrors, this is not exactly the case. We see some amount of evidence

for this up to potentially the 10 µm level, as discussed in Sec. 3.6. As a result, the free spectral range at
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Description Symbol Typical value Units

Transmitted power Pt 8.3(meas.) mW

Axial trap frequency ωax/2π 165(10)(meas.) kHz

Radial trap frequency ωrad/2π 0.41(2)(∧) kHz

Trap depth (for 1S0)

U0 580(70)(∧) Erec

ωdepth/2π 2.0(2)(∧) MHz

Tdepth 95(12)(∧) µK

Lamb-Dicke parameter
(for 689 nm/698 nm)

η 0.170(5)(∧) -

Axial temperature Tax 18(3)(meas.) µK

Mean axial quantum num. nax 1.8(4)(∧) -

Effective Lamb-Dicke param.
(for 689 nm/698 nm)

ηeff 0.37(4)(∧) -

Radial temperature Trad 17(3)(meas.) µK

Mean radial quantum num. nrad 860(160)(∧) -

Radial r.m.s. extent σrad 15.5(1.7)(∧) µm

Table 3.3: Typical parameters for the 1D optical lattice. Values in the top half describe properties of the
lattice as pertains to atoms in the ground state at zero temperature. Values in the bottom half depend on
the temperature of the atomic ensemble.
(meas.) Measured value, given Pt = 8.3 mW
(∧) Derived from above quantities

813 nm could be different by as much as 1 MHz and would benefit from being independently measured.

Finally, it is entirely possible for some of these parameters, like the cavity finesse, to degrade over

time. A possible mechanism for this is strontium coating the cavity mirrors, which may increase losses.

For future experiments which rely on precision measurements of cavity parameters, I’d recommend re-

peating Juan’s measurements.

3.5.2 813 nm optical lattice

To create an optical lattice, we send in several mW of 813 nm light through the cavity and stabilize

the 813 laser frequency to the cavity resonance through a PDH lock off the science cavity (the full locking

chain is described in Sec. 3.6). Properties of the optical lattice depend on exactly how much power we
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send through the cavity, as more optical power results in deeper trap depths. Table 3.3 shows values for

typical optical lattice depths used in the experiment. As the table shows, there are several important

parameters which describe the optical lattice. Here, I’ll briefly describe what each of the parameters

represents.

Let us assume that we trap the atoms near the waist of an optical lattice beam. Then the lattice

generates a potential landscape of the form

U (r, z) =−U0e−2r 2/w 2
0 cos2

(2πz

λ

)
(3.1)

for a lattice beam of wavelength λ and waist w0. Here, U0 is the maximum depth of the potential well,

known as the trap depth, and it is often expressed in units of frequency, temperature, and Erec (the recoil

energy of a lattice photon).23 Expanding around (r, z) = (0,0), we approximate a harmonic trap:

U (r, z) ≈−U0

(
1− 2r 2

w2

)(
1−

(2πz

λ

)2)
≈−U0 + 2U0

w2 r 2 + 4π2U0

λ2 z2

=−U0 + 1

2
mω2

radr 2 + 1

2
mω2

axz2,

(3.2)

where m is the atomic mass and ωr ,ωz are the radial and axial trap frequencies. Finally, we back out

explicit formulas for the radial and axial trap frequencies:

ωrad = 2

w0

√
U0

m
(3.3)

ωax = 2π

λ

√
2U0

m
. (3.4)

It follows that, for atoms near the bottom of the potential well, the trap looks like a 3D harmonic trap

with a level spacing of ωax along the axial direction and ωrad along the radial direction.

In terms of supplying measured values, one of the easier quantities to measure is the axial trap

frequency ωax. I measured this by utilizing a phenomenon known as parametric heating, which is a

process by which periodic modulation of the trap potential at twice the trap frequency leads to a coherent

buildup of motional excitation (and generally leading to atoms falling out of the trap). This process can

23 The recoil energy is the amount of kinetic energy gained by an atom upon absorption of a lattice photon. It is given by the

form Erec = ħ2k2

2m , where m is the mass of the atom, and k is the wavevector of the lattice light.
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be intuitively understood by comparing the atoms to a kid24 on a swing. Without any modulation, the

kid will swing back and forth periodically with fixed amplitude (until friction causes damping). However,

if someone pushes on the swing whenever it is at its maximum point, the kid will swing higher and

higher until the swing inverts, and the kid falls off. For this measurement, I amplitude modulated the

trap depth for different modulation frequencies and found the point of maximum loss from parametric

heating, allowing me to infer ωax/2π= 165(10) kHz.

When placing atoms in the optical lattice, the temperature of the ensemble determines which

quantum states the atoms occupy. For sufficiently hot atoms (i.e., when kB T ≫ħω for a trap frequency

ω), the ensemble effectively displays a classical Boltzmann distribution, which in a harmonic potential

implies a Gaussian distribution. In the radial direction, this is certainly true for our system, so the 2D

transverse position distribution is given by:

Prad(r) =

 1√
2πσ2

rad


2

e
− |r|2

2σ2
rad , (3.5)

where r = (x, y) is a 2D position vector pointing transverse to the lattice k-vector, and σrad is the r.m.s.

radial extent of the distribution along either axis. By the equipartition theorem, we can relate σrad to

other quantities by using the form of the harmonic potential:

1

2
mω2

radσ
2
rad = 1

2
kT

⇒σrad = 1

ωrad

√
kT

m
= w0

2

√
T

Tdepth
.

(3.6)

Along the axial direction, it’s less clear if a classical approximation is valid since kB Tax/ħωax = 2.2.

Instead, we can consider the mean occupation number n. For a given temperature β = (kB T )−1, the

equilibrium occupation number in a trap with frequency ω is given by:

n =
∑

n ne−βħωn∑
n e−βħωn

= 1

eβħω−1
. (3.7)

This suggests that in the axial direction nax ≈ 1.8, which is pretty close to but a bit smaller than the classi-

cal approximation of 1/βħωax = 2.2. This means that, even in the axial direction, there is still substantial

atomic motion.
24 or adult.
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Despite this, in many experiments we ignore the effects of atomic motion to first order. The reason

this is a reasonable approximation is due to the fact that we work in the Lamb-Dicke regime. At a high

level, this regime allows us to approximately decouple motional and internal (electronic) degrees of free-

dom along the cavity axis, because the trap is “sufficiently deep.” The general argument is as follows: a

laser drive in the form of a plane electromagnetic wave has a position-dependent phase factor that looks

like e i kd z , where kd is the wavevector of the driving light, and z is the position along the cavity axis. Let us

assume that z = 0 at the center of one of the lattice sites. Then we can rewrite the position as the operator

ẑ = z0(âax + â†
ax) for a motional ground state position spread x0 and an axial trap lowering operator âax.

Let us define the Lamb-Dicke parameter η := kd z0, which also happens to be equal to
p
ωrec/ωax, where

ωrec = Erec/ħ = ħk2
d

2m is the recoil frequency of the drive. Then the ability for the drive to excite motional

transitions is proportional to:

〈n′|Êdrive |n〉∝ 〈n′|e iη(âax+â†
ax) |n〉

≈ 〈n′|
(
1+η(âax + â†

ax)
)
|n〉+O(η2),

(3.8)

where we have expanded perturbatively in η. In the limit where η≪ 1 (the Lamb-Dicke regime), there-

fore, we can see that the probability of undergoing first-order sideband transitions (n → n ± 1) is sup-

pressed by a factor of η2
(|〈n −1| âax |n〉|2 +|〈n +1| â†

ax |n〉|2
)= η2(2n +1) compared to the carrier (n → n).

For ground state atoms, this suppression is simply η2. For a thermal cloud of atoms with an average oc-

cupation of nax, we can define an effective Lamb-Dicke paramter ηeff := η
√

2nax +1, such that η2
eff ≪ 1

provides the equivalent suppression condition for the Lamb-Dicke regime.

In our cavity system, our drives take the form of a standing wave since they are sent through the

cavity, rather than a unidirectional plane wave. Moreover, our drive lasers (usually 689 nm or 698 nm) are

incommensurate with our trapping laser (813 nm), meaning that different trap sites experience different

spatial phases of this standing wave. This modifies the traditional Lamb-Dicke picture in an interesting

way. Let us consider two atoms: one which sits at an antinode (AN) of the drive field, experiencing

maximum intensity, and another which sits at a node (N), experiencing minimum intensity. These two
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atoms experience different sideband couplings:

〈n′|Êdrive |n〉AN ∝ 〈n′|cos
(
η(âax + â†

ax)
)
|n〉 ≈ 〈n′|n〉 (3.9)

〈n′|Êdrive |n〉N ∝ 〈n′|sin
(
η(âax + â†

ax)
)
|n〉 ≈ η〈n′| (âax + â†

ax) |n〉 . (3.10)

From these equations, we see that maximum or “peak” couplers are very unlikely to undergo first-order

sideband transitions (but could still, in principle, undergo second-order transitions). Conversely, min-

imum or “weak” couplers can undergo sideband transitions at a Lamb-Dicke-suppressed rate, but they

are unlikely to undergo carrier transitions.

Finally, for drives with Rabi frequencies weaker than the axial sideband frequency (Ωd ≪ωax), you

can operate in a resolved sideband regime. In this regime, you can park the drive laser on resonance with

the carrier transition but off resonance from the sideband transitions, which provides an additional sup-

pression factor of
(Ωd
ωax

)2 in driving sideband transitions. This condition is usually met when driving along

the clock transition but is much harder to achieve on the 3P1 – 1S0 transition, since Ωd = 2g0
p

Mc where

Mc is the number of intracavity photons, and g0 scales with the square root of the transition linewidth.

Also note that, if the drive is only on for a very short period of time (less than 1/ωax), the drive is Fourier-

broadened in frequency space and thus doesn’t benefit from this additional condition.

3.5.3 Lattice-induced inhomogeneous broadening

The trap depth in the previous section describes the negative AC Stark shift experienced by atoms

in the ground state. For other states, generically speaking these shifts will be different, leading to a dif-

ferential transition frequency between ground and excited states that depends on the local intensity of

the trap light. For a given two-level system, it is often possible to work with a magic wavelength trapping

potential, which has equal AC Stark shifts in both states and thus doesn’t shift the transition frequency.

This is the underlying reason for our choice of an 813 nm optical lattice: as has been measured quite pre-

cisely [299], the magic wavelength for the 3P0 – 1S0 clock transition in strontium is at 813.427 nm. When

working along the clock transition, therefore, we don’t have to worry as much about differential light

shifts.
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On the other hand, dealing with light shifts on the narrow-linewidth 3P1 – 1S0 transition can be

quite a bit more complex. To start, our optical lattice is not at a magic wavelength for any of the 3P1 states.

As discussed in Table 3.3, our atomic ensemble experiences a radial spread due to its finite temperature,

which means that the atoms experience inhomogeneous broadening in the 3P1 transition frequency. As

we will derive in Ch. 6.14, if we assume that the atoms only have a substantial spread transverse to the

cavity (i.e., a 2D thermal distribution), then the fractional variation in trap depth u =U /U0 satisfies the

following probability distribution:25

P (u) =
(

Tdepth

T

)
u(Tdepth/T )−1; u ∈ [0,1]. (3.11)

With the temperature quoted in Table 3.3, this implies that the distribution sees a mean trap depth of

0.85(3)U0 and a standard deviation of 0.13(2)U0. As a result, the atomic ensemble will see inhomoge-

neous broadening which is 13% of the maximum differential AC Stark shift.

3.5.4 Scalar, vector, and tensor lattice shifts

Different Zeeman sublevels in 3P1 (and hyperfine sublevels for 87Sr) will also generically experi-

ence different AC Stark shifts induced by the lattice. The differences can be understood with a geometric

argument: keep in mind that angular momentum states
∣∣ j ,m

〉
form a basis for all possible states with

angular momentum j . An electric field with fixed polarization will couple to some orientations of an-

gular momentum state more than others, so it is only natural that a detuned electric field will shift the

states differently.

Exactly how the AC Stark shifts differ can be neatly described using a spherical tensor decomposi-

tion, and Dan Steck’s Quantum Optics [178] provides all the relevant derivations and formulas in Sec. 7.7.

Here, we will not dive too deeply into the equations and instead focus on interpretation. To start, suppose

we have an electric field oscillating at a frequency ω, described by Ephys(t ) := Re
[
Ee−iωt

]
as in Ch. 2.2.1,

25 This distribution works for any elliptical Gaussian lattice beam, so long as the atoms sample the lattice potential in a way
that satisfies a classical Boltzmann distribution. For a circular Gaussian beam, that implies a cylindrically symmetric atomic
distribution. For an elliptical beam, it implies an elliptical atomic distribution with an ellipticity matching the lattice beam.
You can think of the elliptical case as a “stretching” of the circular case along one direction: the atomic distribution and lattice
potential stretch in the same way, so the fractional intensity distribution remains unchanged.
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where E is a complex phasor. Classically, this field can induce a dipole moment in an atom which we

will call d := ←→α (ω)E, where ←→α (ω) is the (electric dipole) polarizability tensor. As defined, ←→α could be

complex if the dipole moment responds to the field with some phase delay, and the real physical dipole

moment given by dphys(t ) := Re
[
de−iωt

]
oscillates out of phase with Ephys. The fact that ←→α is a tensor

allows for the possibility that the induced dipole does not point in the same direction of the electric field.

From now on, we will use Einstein summation notation to denote vector and tensor indices, such that

dµ =αµν(ω)Eν. An induced dipole interacts with the external electric field with a potential that looks like

V = −1
2 d phys

ν E phys
ν , where the factor of 1

2 comes from the fact that the dipole is induced. In terms of the

polarizability tensor, this interaction evaluates to:

V ≈−1

2

(
d∗
νEν+dνE∗

ν

4

)
=−1

8

(
α∗
µν+αµν

)
EµE∗

ν

=−1

4
Re[αµν]EµE∗

ν ,

(3.12)

after ignoring counterrotating terms which oscillate at 2ω.26 We see that the energy shift experienced

by the atom depends entirely on the nature of the polarizability tensor αµν.

This intuition generalizes well to quantum mechanics. Suppose an atom in state |i 〉 is subject to a

classical electric field oscillating at ω. Then we can write the system Hamiltonian as

Ĥ =ħ∑
k
ωki |k〉〈k|− d̂µ

(
Eµe−iωt +E∗

µe iωt

2

)
, (3.13)

where d̂µ is an operator describing the electric dipole projection along coordinate µ, andωki =ωk −ωi is

the transition frequency between |i 〉 and some other atomic state |k〉. As described in Dan Steck’s Quan-

tum Optics, Sec. 14.3.1 [178], we can calculate the energy shift on |i 〉 using time-dependent perturbation

theory with the dipole interaction as the perturbation,27 resulting in the following second-order energy

shift:

U (2)
i =−1

4

(∑
k ̸=i

2ωkiDi k,µDki ,ν

ħ(ω2
ki −ω2)

)
EµE∗

ν , (3.14)

26 If looking at Steck’s formulas, note that there is a factor of 4 difference in the expression for the potential; however, the
definition for the polarizability is consistent. Ultimately, the factor of 4 comes from Steck’s convention for describing the electric
field: instead of the physical field representing the real part of a single complex phasor, he uses a sum of two counterrotating

phasors: Ephys = E(+) +E(−), where E(+) = E
2 e−iωt with E defined with my notation. Therefore, by Steck’s convention,

V =−Re[αµν][E(+)]µ[E(−)]ν.
27 The perturbation theory calculation is essentially equivalent to performing time-independent perturbation theory twice,

once on each of the ±ω terms in the perturbation, by moving into a rotating frame, followed by summing together the energy
shifts.
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where Dki ,ν = 〈k| d̂ν |i 〉 is the ν component of the dipole matrix element coupling |i 〉 to |k〉. In analogy

to the classical description discussed earlier, we assign the term in parentheses to (the real part of) the

polarizability tensor αµν(ω; i ) for state |i 〉.

Knowledge of the polarizability tensor is powerful because it allows us to calculate AC Stark shifts

for arbitrary electric fields. However, a challenge is that each state |i 〉 has a different tensor. This may

seem daunting, particularly in 87Sr where the different hyperfine structure manifolds have on the order

of 10 states each. On the other hand, we know that the states |F,mF 〉 transform into each other under

rotations in physical space, which means that, from a coordinate-free perspective, we should really be

able to describe the full F manifold with a single polarizability tensor ←→αF (ω). Moreover, by studying how

tensors transform under rotation, we should be able to express the polarizability αµν(ω;mF ) in a full

coordinate representation for any mF . The formal machinery by which we define these relations involves

decomposing the tensor into its irreducible components under rotation (see, for example, [300]). To

recap, any rank-2 tensor can be written as a sum of three components: a scalar component, which is

isotropic and does not change under rotation, a vector component, which transforms like an axial vector

(pseudovector), and a “tensor” component, which transforms like a (traceless, symmetric) quadrupole

tensor.28 For a state |F,mF 〉 given a choice of quantization axis Qµ, the full polarizability tensor can then

be written like [178, 301]:

αµν(ω;mF ) =α(S)(ω)δµν+α(V )(ω)
(
iϵµνσQσ

)(mF

F

)
+α(T )(ω)

(
3QµQν−δµν

2

)(
3m2

F −F (F +1)

F (2F −1)

)
,

(3.15)

where ϵµνσ is the Levi-Civita symbol which essentially represents a cross product, and α(S,V ,T )(ω) are

numbers which we call the scalar, vector, and tensor polarizabilities respectively. Note that α(S,V ,T )(ω)

do not depend on mF , implying that these three numbers are sufficient to calculate AC Stark shifts for

any hyperfine sublevel and any field polarization. It even turns out that, when the driving field is much

farther detuned than any hyperfine splitting, you can even relate polarizabilities for different hyperfine

28 Formally, this partitioning of the tensor reflects the decomposition of the space of rank-2 tensors into irreducible represen-
tations of SO(3): V (1) ⊗V (1) = V (0) ⊕V (1) ⊕V (2), where V (k) represents the space of rank-k spherical tensors. They are called
as such because they transform under rotations in the same way as the set of degree-k spherical harmonics.
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State α(S) (813 nm) α(V ) (813 nm) α(T ) (813 nm) Units

88Sr 1S0 280(14) [302] 0 0 a.u.

87Sr 1S0 280(14) [302] 4.8(2)×10−5 [302] 1.57(8)×10−5 [302] a.u.

87Sr 3P0 289(14) [302] 1.91(10)×10−1 [302] 3.65(18)×10−4 [302] a.u.

88Sr 3P1 290(40)(meas.) -128(6) [303] 59(7)(meas.) a.u.

87Sr 3P1, F = 7/2 290(40)(∧) 100(5)(∧) 27(3)(∧) a.u.

87Sr 3P1, F = 9/2 290(40)(∧) -23.3(1.2)(∧) -85(11)(∧) a.u.

87Sr 3P1, F = 11/2 290(40)(∧) -128(6)(∧) 59(7)(∧) a.u.

Table 3.4: Table of polarizabilities for narrow-linewidth strontium transitions at 813 nm. All units are
in “a.u.,” or “atomic units,” defined such that 1 a.u. = 4πϵ0a3

0 where ϵ0 is the vacuum permittivity, and
a0 is the Bohr radius. Ground and clock state polarizabilities are taken from [302], with an assumed
5% uncertainty since the scalar polarizabilities for these two states should be the same at the magic
wavelength condition (reflecting uncertainty in the oscillator strengths). Vector polarizabilities for the
3P1 transition are calculated using the table of oscillator strengths in [303], also with an assumed 5%
uncertainty. Scalar and tensor for the 3P1 polarizabilities are derived from measurements of AC Stark
shifts in our experiment, with precision limited by the quoted uncertainties of the absolute trap depth
in Table 3.3. Finally, polarizabilities for the hyperfine states in 87Sr are calculated from the values in 88Sr
using Eqs. (7.472) and (7.484) from Steck’s Quantum Optics [178], assuming that the differences arise
purely from hyperfine structure and not from isotope shifts between 87 and 88.

states in the same fine-structure manifold, as Steck shows for the tensor polarizability in Sec. 7.4.2.4 of

Quantum Optics [178].29

Calculating the polarizabilities precisely can be a daunting task because it in principle requires

knowledge of the dipole matrix elements for every possible atomic transition. Table 3.4 compiles my

current best knowledge of polarizabilities on the ground and narrow-linewidth excited states in stron-

tium. Many of these values come from theoretical calculations by other groups [302, 303], which should

be trusted to the few percent level due to imperfect knowledge of oscillator strengths in strontium. I

have empirically measured the scalar and tensor polarizabilities of 3P1 in our experiment by measuring

AC Stark shifts of different m J sublevels in 88Sr and then inferring the underlying polarizability tensor.

Although measuring the AC Stark shifts themselves has fairly high (few percent) precision, ultimately the

29 Note that the version of Steck I used has a sign error in its expression for the large-detuning vector polarizability in
Eq. (7.484), which I have fixed when calculating vector polarizabilities in Table 3.4. The sign in Eq. (7.472) is correct. I emailed
Steck about it, so maybe in your version the sign will be fixed?
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Figure 3.10: The magic angle condition for 3P1 – 1S0 with 813 nm light. (a) The differential shift ∆ωeg

between excited and ground states along the 3P1 – 1S0 transition for different angles θlatt between the
813 nm lattice polarization and the quantization axis, measured for a trap depth of U0/ħ = 2π ×
2.0(2) MHz in the ground state. Uncertainty bands reflect the uncertainty in the differential shift mea-
sured at θlatt = 0◦. A magic angle condition is attained when ∆ωeg = 0, which is not guaranteed to occur
at the same angle for all mF levels. (b) A lattice polarization not parallel to the quantization axis can in-
duce Raman transitions which lead to unwanted dynamics between sublevels, reflecting a limitation of
the polarizability formalism. This dynamics can be suppressed by creating a sufficient energy separation
between sublevels which overwhelms the Raman process, for instance by applying a large bias field.

quoted uncertainties come from imperfect knowledge of the ground state trap depth, which we used in

deriving the polarizabilities.

3.5.5 A magic angle lattice

As we discussed in the previous section, the frequency shift an atomic state experiences from an

AC electric field can depend on the field polarization. In some cases, it is possible to tune the polarization

of the light in order to attain a so-called magic angle condition, analogous to a magic wavelength, in

which the total AC Stark shift for some excited state sublevel
∣∣Fe ,mFe

〉
is equal to the shift on the ground

state. This is useful because it nulls out the lattice-induced inhomogeneous broadening mentioned in

Sec. 3.5.3. In our experiment, we often perform this trick on the 3P1 – 1S0 transition (see Ch. 5 and 6), so I

will describe the technique and its limitations.

To start, let us fix a quantization axis Q and k-vector of the lattice light, where we will restrict to

the condition that k⊥Q for simplicity. We’ll also assume that the light has a linear polarization ε with an

angle θ from the quantization axis, such that Q ·ε=Qµεµ = cosθ. Then, using Eq. (3.14) and Eq. (3.15),
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the total AC Stark shift is given by:

∆U =−1

4

(
α(S)(ω)+α(T )(ω)

(
3cos2θ−1

2

)(
3m2

F −F (F +1)

F (2F −1)

))
|E |2. (3.16)

Notice that the vector shift is 0, which is always true for linearly polarized light. Fig. 3.10(a) shows the dif-

ferential AC Stark shift between excited and ground states along the 3P1 – 1S0 transition with our 813 nm

lattice, measured with the trap depth quoted in Table 3.3. We see that, for a lattice angle of θlatt = 51(3)◦,

we predict a magic angle condition along the m = 0 transition, consistent with the values we use in later

chapters.

However, there is a caveat to the magic angle condition. As illustrated in Fig. 3.10(b), a lattice

whose polarization is not parallel to the quantization axis can induce Raman transitions between sub-

levels within a fine (or hyperfine) manifold. This is a problem if you are trying to induce frequency shifts

on a two-level system in the atom and don’t want population to leak into auxiliary states. Why weren’t

we warned about this possibility from the polarizability calculations? Essentially, it’s because we were

calculating AC Stark shifts on the initial state without considering the possibility of resonant couplings,

one-photon or two-photon. We can account for these effects by first writing down the lattice shifts with

the lattice polarization parallel to the quantization axis and then rotating the coordinate system (thereby

rotating the quantization axis). As an example, let us consider the 3P1 state in 88Sr. When the lattice

polarization is aligned with the quantization axis, we can write down an effective diagonal Hamiltonian

describing the AC Stark shifts:

Ĥ(θ = 0◦) =


U (S) +U (T ) 0 0

0 U (S) −2U (T ) 0

0 0 U (S) +U (T )


|m = 1〉
|m = 0〉

|m =−1〉 ,

(3.17)

where U (S,T ) :=−1
4α

(S,T )|E |2 are the scalar and tensor light shifts.

To rotate the quantization axis by θ, we simply change our basis by mapping |ψ〉 → R̂n(−θ) |ψ〉 =

e i (Ĵ ·n)θ |ψ〉, such that the components of our wavefunction now correspond to mF states in the rotated

basis. The Hamiltonian then transforms like Ĥ → R̂n(−θ)ĤR̂n(θ). As an example, let us consider a
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rotation by 90◦ about an axis orthogonal to Q:

Ĥ(θ = 90◦) =


U (S) − U (T )

2 0 −3U (T )

2

0 U (S) +U (T ) 0

−3U (T )

2 0 U (S) − U (T )

2


|m = 1〉
|m = 0〉

|m =−1〉 .

(3.18)

We see that, as illustrated in Fig. 3.10(b), a lattice polarization orthogonal to the quantization axis in-

duces Raman couplings between the m =±1 states. The diagonal elements of this matrix correspond to

the lattice shifts predicted by our polarizability calculations, but the off-diagonal terms are not consid-

ered. Fortunately, in some cases it is possible to mitigate this issue. If you apply a large bias field along

the preferred quantization axis direction, it creates large detunings between the different mF sublevels,

pushing any Raman couplings off resonance. Intuitively, this bias field “enforces” the quantization axis

by making its basis of mF states the right eigenstates for the system. However, if you are running an ex-

periment where the states need to be degenerate, this strategy is not viable, and the only way to avoid

these couplings altogether is to use a polarization parallel to the desired quantization axis.

3.6 The reference cavity

Up to this point, I have described several laser systems designed to address specific atomic tran-

sitions, as well as our science cavity which needs to be on or close to resonance with those transitions.

Ensuring these objects stay at their intended frequencies requires a frequency reference, but so far I have

only described how we stabilize our 461 nm laser (through a modulation transfer spectroscopy lock; see

Sec. 3.3.4). The remaining lasers are all locked to a stable reference cavity, which I will now describe.

Our reference cavity (sometimes we shorten this to “rCav” to distinguish it from our science cav-

ity, or “sCav”) was purchased from Stable Laser Systems (part no. SLS-6010-1-4bore) in 2015. The cavity

consists of a 10 cm long ULE (ultralow-expansion glass) spacer with 10 mm diameter bore holes drilled

through it and mirrors attached to either end of the bores to form optical cavities. As the part number

suggests, there are four such bores in the cavity, allowing us to lock multiple lasers along different op-

tical pathways.30 The cavity is plano-concave, with a 50 cm radius of curvature for the concave mirror,

30 While this is convenient, we could likely work just as well with a single-bore cavity using a combination of beamsplitters,
dichroics, and polarization control to send many laser beams into the same cavity. I have also heard that the single-bore design
is more stable, but I don’t have any data for this.
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Description Symbol 689 nm
[

3P1
]

698 nm
[

3P0
]

813 nm Units

Free spectral range ωFSR/2π 1.4960(5)(meas.) 1.50(∨) 1.4961(2)(meas.) GHz

Cavity length L 10.020(3)(∧) 10(spec.) 10.0191(13)(∧) cm

FWHM linewidth κ/2π 113.2(∧∨) 79.3(∧∨) 55.39(∧∨) kHz

Cavity finesse F 13200(∨) 18900(∨) 27000(∨) -

Mirror transmission Tm 238(∗) 166(∗) 116(∗) ppm

Mode waist w0 210(∨) 211(∨) 228(∨) µm

Rayleigh length zR 20(spec.) 20(spec.) 20(spec.) cm

Table 3.5: Reference cavity parameters for relevant wavelengths/transitions in strontium. Mirror losses
are assumed to be negligible, but we could test this by directly measuring the cavity linewidth.
(meas.) Measured in lab
(spec.) Derived from the quoted mirror specs
(∗) From Advanced Thin Films coating spec sheet
(∧) Derived from above quantities
(∨) Derived from below quantities

resulting in a reasonable ~200 µm waist located at the flat mirror. Generally, we send light in through

the concave mirror, so a beam which couples optimally to the cavity mode should be slighty converging

towards a focus on the back of the cavity. Table 3.5 lists our knowledge of the reference cavity parameters.

What makes our “stable” reference cavity stable? First, ULE has a small coefficient of thermal

expansion at room temperature; moreover, there is usually a “zero-crossing” temperature where the co-

efficient crosses through zero and length changes are quadratically suppressed. On top of this, the cavity

is kept under a ~10−8 torr vacuum with an ion pump and temperature controlled to further suppress any

thermal drifts in the cavity resonance. The cylindrical ULE spacer sits on top of Viton balls to isolate

against mechanical perturbations, within an Invar “cradle” which registers the cavity’s position and pre-

vents it from rolling.31 As a result, we generally trust the cavity to be both mechanically and thermally

stable. The main limitation in the stability of the reference cavity is an observed long-term drift in the

cavity resonances, at the rate of a few kHz per day. We believe this to be due to slow relaxation processes

31 However, the spacer could potentially slide forwards or backwards in this cradle. In 2024, when we moved the reference
cavity to its current position on the optical table in the middle of X1B21, we made great pains to ensure that the cradle would
remain level and not allow the spacer to slide.
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Figure 3.11: Locking pathways to the science cavity and the reference cavity. The red lasers (689 nm,
679 nm, and 707 nm, with the capability to lock 688 nm as well) are stabilized to the reference cavity
(rCav) through a PDH lock. Since these lasers need to shine at specific frequencies tied to atomic tran-
sitions, the locking light is sent through a fiber EOM to generate an FM sideband at the nearest rCav
resonance. The 813 nm laser is locked directly to the science cavity (sCav) with a high-bandwidth PDH
lock in order to have a stable optical lattice. The sCav resonances are prone to drift due to thermal or
mechanical fluctuations, and they need to be stabilized relative to the atomic transitions in strontium
to perform cavity QED experiments. To accomplish this, we send 813 nm light through a fiber EOM to
generate an FM sideband at the nearest rCav resonance and generate a PDH error signal. This signal
then actuates the sCav piezos, feeding back on the cavity length and thus stabilizing the sCav to the rCav.
Since the piezos have resonances at 9 kHz, the bandwidth of this lock is low at the ~100 Hz scale.

in the ULE spacer (since it is a glass and not a crystal). This is not a big deal on the day-to-day timescale,

but keep in mind that over the course of a year, any lasers locked to the reference cavity could drift by as

much as 1 MHz. This matters for the 689 nm laser in particular, which drives a narrow-linewidth transi-

tion and so could drift off resonance if working with low Rabi frequencies. To compensate for this drift,

we have historically tuned an EOM frequency in the locking chain (see Fig. 3.11).32

Locking our red lasers to the reference cavity is fairly straightforward, as shown on the right side

of Fig. 3.11: we generate a PDH error signal in reflection off the cavity (see Ch. 2.2.3 for a refresher on

PDH locks) and use it to actuate the laser current, thereby stabilizing the frequency. The bandwidths of

these locks tend to lie between 100 kHz and 1 MHz, limited mostly by path length delays between the

32 This is also a good way to check the current drift rate of the reference cavity, which we have observed to be slower than
originally reported by Matt. Perhaps the drift is slowing over time as internal stresses in the glass settle?
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lasers and the reference cavity. For 679 nm and 707 nm, we don’t care so much about having a tight lock

since these lasers address MHz-linewidth transitions, and the lasers currently sit quite far away from the

reference cavity (for a round trip path length around ~25 m). We care more about the 689 nm laser since it

addresses a narrow-linewidth transition, and so this laser sits next to the reference cavity (for a round trip

path length closer to ~5 m). Since these lasers need to address well-defined frequencies corresponding to

their respective atomic transitions, we pass the locking light through a fiber EOM. By sending the proper

modulation frequency into the fiber EOM, we can stabilize the ECDL frequency with an RF sideband on

resonance with the reference cavity and the carrier frequency close to the atomic transition.

We also stabilize the science cavity (sCav) to the reference cavity (rCav) as well, but since the sCav

does not generate laser light, we need a more complicated locking chain compared to the red laser sta-

bilization setups. To accomplish this, we use the 813 nm laser as a bus to send information about the

sCav resonance to the rCav, as shown on the left side of Fig. 3.11. First, we lock the 813 nm laser to the

sCav in the same way that we lock our red lasers to the rCav: using a moderately high-bandwidth PDH

lock. Independent of locking the sCav resonance, this is necessary for us to stabilize the power of our

813 nm optical lattice, which strongly depends on the laser being on resonance with the cavity mode. In

a separate pathway, we pass 813 nm light through a fiber EOM to generate FM sidebands at some tunable

modulation frequency. By generating a PDH error signal off one of the sidebands and using this signal to

actuate the piezo tubes on the sCav, we can stabilize the sCav length. We observe mechanical resonances

in the piezo-hat-mirror assemblies (see Fig. 3.11) at around 9 kHz, limiting the bandwidth of this “slow”

lock to the ~100s of Hz range.

The tunable modulation frequency sent to the fiber EOM allows us to move the sCav resonances to

the desired detuning condition from our atomic transitions. Although in principle, our locking scheme

should exactly stabilize the sCav length, empirically we notice that resonances near 689 nm (and pre-

sumably 698 nm as well) appear to drift slowly even while in lock. This is despite the fact that the in-lock

error signal for the sCav-to-rCav lock does not appear to substantially move away from zero. I have

talked with Leon Lu from Dan Stamper-Kurn’s cavity microscope experiment (E6), and he also notices

this issue in their cavity (locked at 1560 nm, with drifts observed at 780 nm). Their leading theory is that
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their 1560 nm and 780 nm lasers experience different penetration depths in their sCav mirrors, and so

the length stabilized by their 1560 nm laser is not the same length experienced by their 780 nm laser.

When the sCav experiences thermal drifts, the 780 nm cavity length can therefore change (albeit at a

suppressed rate), shifting the resonances.

Is this theory plausible? Empirically, I have observed shifts in the 689 nm cavity resonances at the

100 kHz level in our experiment over the course of a couple of hours, which I estimate can correspond to

a 1◦C temperature change arising after turning on the MOT coils and water cooling stages. Assuming the

cavity mirrors have a thermal expansion coefficient of 10−6 ◦C−1 (fractional length change), this requires

the difference in cavity length between our 689 nm and 813 nm of around ∆L ≈ 10 µm. Mirror coatings

for many ultrahigh reflectivity mirrors rely on dielectric stacks of alternating low- and high-index mate-

rials, with 20-50 layers each of quarter-wave [304, 305] or near-quarter-wave [306, 307] thickness. If we

assume our cavity mirrors are similar, then the light could see as much as 15 µm of effective cavity length

inside the mirror coatings. Based off this, the theory of different pentration depths as a mechanism for

the observed resonance drift is on the edge of plausible.33 We could test this by measuring the free

spectral range of our science cavity at 813 nm and 689 nm at the same time: a difference of 1 MHz would

be sufficient to explain the drifts.34

3.7 Homebuilt interference filter ECDLs

Many of the lasers in our experiment were built by members of the lab, rather than purchased

from a company. The primary motivation for doing so is to cheaply construct lasers with low phase

noise. Although we could splurge ~$100,000 on a narrow-linewidth fiber laser from PreciLasers or an

equivalent company, an affordable alternative is the external cavity diode laser (ECDL), which consists

of a single-mode laser diode placed inside a weak optical cavity. Since these lasers are fairly simple, our

goal was to learn how to construct them ourselves and optimize them for narrow-linewidth operation.

33 The reference cavity does not see a significant different in FSR between 689 nm and 813 nm, as shown in Table 3.5. However,
this could be because the rCav has similar reflectivities for these two wavelengths, and the sCav does not. It seems reasonable
to guess that different reflectivities could have different penetration depths.

34 We don’t see this for the reference cavity, but you could argue that the order or magnitude different finesse values for 689 nm
and 813 nm in the science cavity is responsible for the different penetration depths into the cavity mirrors, and the reference
cavity does not share this difference in finesse.
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In some cases, we have succeeded tremendously, but there is still a lot we don’t know about why certain

lasers seem to be narrower than others. In this section, I’ll discuss the history of our lab’s ECDL design

and our current knowledge about the resulting lasers.

In particular, we have focused on interference filter ECDLs (IF-ECDLs), first developed in 2006

[308] and explained in detail in this review paper [309]. The essential features of such a design are

twofold: first, inside the cavity is an interference filter, which is essentially a narrow-line bandpass fil-

ter where the passband is tunable based on the light’s angle of incidence. This object provides a sharp

frequency-selective edge in the composite gain medium of the ECDL, which helps ensure single-mode

operation. Importantly, rotating the interference filter to change the laser frequency does not substan-

tially change the alignment of the laser path. By comparison, an alternative ECDL design using a diffrac-

tion grating in the “Littrow” configuration [310, 311] experiences a change in alignment when rotating

the diffraction grating, although a clever design can mitigate these effects [312]. Second, in an IF-ECDL,

the light is focused with a lens onto a partial retroreflector, which provides optical feedback onto the

diode. The retroreflector also acts as an output coupler, since it is partially transmissive. This focusing

and direct retroflection is often called a “cateye configuration,” making an analogy to the way light re-

flects inside a cat’s eyes to improve their night vision (which is what makes their eyes glow at night). A

benefit of these features are built-in mechanical robustness. Because the output coupler is positioned at

a focus, which has a large angular spread, alignment is robust against small angular displacements of the

output coupler. Additionally, rotating the interference filter leads to only a small positional displacement

compared to the (typically) large beam size at the filter, so tuning the laser wavelength does not misalign

the cavity. This is not the case in diffraction grating ECDLs, whose alignment is typically sensitive to

tuning the grating angle and therefore often see large spikes in their frequency noise spectrum around

mechanical resonances [309].

Fig. 3.12(a) shows a CAD model of our lab’s design (made by then-postdoc Vera Schäfer for a

689 nm IF-ECDL on the ring cavity experiment). First, we place a single-mode (ideally AR coated) diode

into a homebuilt diode mount, which is temperature-controlled using a thermistor glued onto the side

of the mount (the central hole) and a Peltier cooler (between the mount and the laser base). The light
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Figure 3.12: Interference filter ECDL (IF-ECDL) design and implementation. (a) CAD model of the stron-
tium ring cavity experiment 689 nm IF-ECDL, courtesy of Vera Schäfer, showcasing the generic design.
A laser diode (ideally AR coated) is placed in a temperature-controlled mount with an aspheric lens for
collimation. The light passes through an interference filter, i.e., a narrow-line bandpass filter, which is
tuned to the proper angle to provide sharp frequency selectivity near the desired wavelength. A pair of
lenses focus the light down to a small spot and then re-collimate outside the ECDL. At the focus, we
place our output couplter: a cateye retroreflector which partially transmits and partially reflects the light
directly back towards the diode. (b) The laser base for my first IF-ECDL, now part of the ring cavity exper-
iment’s 813 nm laser. The multiple holes allowed us to compare the laser’s performance with different
cavity lengths. (c) Image of our 813 nm IF-ECDL, constructed by me in 2019. This laser has a titanium
base which is not actively temperature controlled since its coefficient of thermal expansion is three times
smaller than aluminum. The lavender scatter on the laser base is 813 nm light, which can be imaged on
my smartphone (iPhone 16) because the phone’s CMOS sensors are sensitive to NIR. (d) Image of our
689 nm IF-ECDL, constructed by Eric Song in 2024. This laser base is made of Invar, which is even less
prone to thermal expansion and also is not actively temperature controlled.
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is collimated using an asphere (front plate of the diode mount). Then, it passes through an interference

filter, mounted on a Thorlabs precision rotation mount (part no. PRM05) which provides a fine control

knob for the filter angle. Our output coupler is a partially reflective beamsplitter plate, often with 30%

reflectivity, and an AR-coated back face which ideally should be wedged to minimize unwanted optical

feedback from this surface. The output coupler is mounted on a three-axis kinematic mount, allowing us

to align the output coupler to the diode, along with a piezo to lock the ECDL frequency to some external

frequency reference. Surrounding the output coupler is a pair of aspheres, usually with a focal length

between 10-20 mm, in fixed mounts. All of these elements sit on a monolithic laser base, which may or

may not be temperature controlled.

This design originated from then-undergraduate Ben Johnston in Adam Kaufman’s group, who

built an IF-ECDL in 2018 designed to operate at 698 nm. The first laser we wanted to build in our lab was

an 813 nm laser for the strontium ring cavity experiment, which was assigned to me in 2018. I copied

many of the elements of Ben’s design but replaced his diode mount with a design commonly used in

our lab. This design, created by Matt and later adapted by Julia, provides a knob for controlling the diode

collimation and also places a thermistor very close to the diode, enabling a temperature control loop with

minimal delay times. Additionally, Ben’s laser had a cavity length close to 5 cm. I wanted to test longer

cavity lengths, under intuition from the Schawlow-Townes linewidth that longer cavities could provide

narrow linewidths. Fig. 3.12(b) shows the base I machined for this laser, which was made of aluminum

and designed to be temperature-controlled separate from the diode mount. The base allowed us to test

four different cavity lengths: 4.9 cm, 8.3 cm, 11.6 cm, and 15.0 cm. From our tests, I found that longer

cavity lengths indeed decreased the free-running laser linewidth, but the mode-hop-free tuning range

also decreased.35 We decided to compromise and work at the 8 cm cavity length, which was copied by

all subsequent lasers in our lab.

Since these tests, we have built several IF-ECDLs across both strontium experiments. For the

standing-wave cavity experiment, we currently have two lasers: an 813 nm IF-ECDL built by me in 2019

35 The measured mode-hop-free tuning ranges were (from shortest to longest) 12.2 GHz, 5.0 GHz, 1.8 GHz, and 1.3 GHz,
measured with an optimized feedforward ratio between the ECDL current and piezo voltage.
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(Fig. 3.12(c)), and a 689 nm IF-ECDL built by Eric in 2024 (Fig. 3.12(d)). The two designs are functionally

similar, with some minor differences including the specific diodes and optics used. The 813 nm laser

uses an Eagleyard AR-coated diode (part no. EYP-RWE-0840-06010-1500-SOT02-0000, serial no. AC-

03921) and a 3 mm thick Iridian bandpass filter (part no. MI000002) with a 3.1 nm bandpass, centered at

813 nm for an angle of incidence (AOI) of 15◦. The output coupler is a 30% reflectivity plate from Thor-

labs (part no. BSS05), which is 3 mm thick and has a 30 arcminute wedge on the back face. Finally, the

base is machined out of titanium and is not temperature controlled. Titanium has a thermal expansion

coefficient of 8.6×10−6 ◦C−1, about three times smaller than aluminum, partially justifying the lack of

temperature control. The 689 nm laser uses an AR-coated diode from Sacher (part no. SAL-0690-025, se-

rial no. 6738-217) and a 1 mm thick Iridian bandpass filter (part no. GX000007) with a 0.3 nm bandpass,

centered at 685 nm for AOI of 15◦. The output coupler is a 30% reflectivity plate from Thorlabs (part no.

BSS11R), which is also a 30% reflectivity plate from Thorlabs. Finally, the base is machined out of Invar

and is not temperature controlled. Invar has a much lower thermal expansion coefficient of 1.2×10−6

◦C−1, so we don’t expect the base length to change too much from thermal drifts.

3.7.1 Laser linewidth measurements

Seeing as part of our goal in building these homebrew lasers was to minimize the laser frequency

noise, we have on multiple occasions attempted to measure the frequency noise of these objects. Unfor-

tunately, these measurements have historically been very inconsistent. Part of the issue is that frequency

noise is not straightforward to measure. A naive attempt might be to look at the power spectral density

(PSD) of the laser light through, say, a heterodyne measurement. However, the resulting spectrum rep-

resents a convolution of the two lasers, so unless one is substantially lower-noise than the other then the

signal can be difficult to interpret.

Our first attempt was back in 2019 when characterizing the 813 nm IF-ECDL made for the ring

cavity experiment. The method at the time was to lock the laser to our science cavity with a low band-

width and measure the PSD of the in-lock error signal, which I will call SV ( f ). The error signal acts as

a frequency-to-voltage (“f-to-V”) converter, so combined with a calibration of the error signal slope, the
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resulting spectrum is directly proportional to the frequency noise PSD, or S f ( f ). At the time, we were

primarily interested in the frequency noise with an offset from carrier around 400 kHz because this was

where we expected parameteric heating to occur in the ring cavity. We measured the frequency noise in

this band to be dominated by white frequency noise, contributing to a Lorentzian linewidth of around

130 Hz.36 This linewidth was substantially lower than expected, to the point of suspicion; however, em-

pirically we found that forming an optical lattice with this laser led to science cavity lattice lifetimes 16

times longer than our Littrow-configuration 813 nm laser (then in use on our experiment), when sub-

tracting out the background vacuum lifetime. This was clear evidence that, even if we didn’t trust the ab-

solute value of our Lorentzian linewidth measurement, the newly-built IF-ECDL was substantially lower

noise than our diffraction grating laser.

Another method to estimate the Lorentzian linewidth of a laser is to beat it with a second laser,

ideally a copy of itself. As explained earlier, beating two lasers together and measuring the result on a

heterodyne detector provides a measurement in frequency space which is the convolution of the two

individial lasers’ lineshapes: SEtot ( f ) ∼ SE1 ( f )∗SE2 ( f ). If one of the lasers is much narrow than the other,

then its lineshape effectively looks like a δ-function, and the convolution returns the original lineshape

of the noisier laser. Otherwise, both lasers contribute to the total lineshape. In the special case of two

Lorentzian lineshapes, the combined lineshape will also be a Lorentzian with a FWHM linewidth equal

to the sum of the component lineshapes. This allows us to place an upper bound on the Lorentzian

linewith of each individual laser.37 In 2021, Zhijing Niu (a current graduate student on the ring cavity

experiment) and I set up a beat note between the two 813 nm IF-ECDLs that I made. From the analysis,

we measured a composite lineshape with an estimated Lorentzian linewidth of 1.8 kHz. Assuming each

laser has the same noise properties, that would imply a 900 Hz Lorentzian linewidth for each laser. This

was seven times larger than my previous measurement, which was a bit disheartening.

36 In the specific case of white frequency noise, i.e., S f ( f ) = h0 is contant, the laser lineshape will be a Lorentzian with a
full-width at half-maximum (FWHM) linewidth equal to∆ fFWHM =πh0 [313]. Note that the laser lineshape represents the PSD
of the electric field, sometimes referred to as SE ( f ), which is not equivalent to the frequency noise S f ( f ) (although the two are
related).

37 Real lasers are not perfect Lorentzians since they usually have more than just white frequency noise. However, usually a
laser’s frequency noise will approach a white noise floor for sufficiently large detunings from the carrier frequency, so we should
still be able to estimate the Lorentzian linewidth by looking at these large frequency noise sidebands.



109

Figure 3.13: Frequency noise power spectral density measurements of 689 nm and 813 nm ECDLs, in
units of Hz2/Hz. All measurements are taken with the OEWaves phase noise analyzer and smoothed
with a Hann window (21 point width).

More recently in 2023, we gained access to an optical phase noise analyzer from OEwaves (part

no. OE4000), purchased by the Kaufman and Ye groups. We believe that this device performs delay-line

interferometry on the input light, which essentially involves beating the laser against itself but with a

large path length delay between the two arms of the interferometer. Independently, a graduate student

from Dan Blumenthal’s group at UCSB named Andrei Isichenko visited our lab to discuss and test a

new laser technology38 with the rubidium matterwave interferometry experiment. As part of his test

equipment, he brought a home-built delay-line interferometer which we believe essentially performs the

same measurement as the OEwaves device. He was gracious enough to measure the frequency noise of

our 813 nm IF-ECDL and our old 689 nm ECDL (before building the new IF-ECDL in 2024, we had an IF-

ECDL from AOSense which had a cavity length of ~4 cm). His agreements agreed with the measurements

from OEwaves, which suggests that the results are at least reproducible and somewhat more trustworthy.

Fig. 3.13 shows a comparison of the frequency noise spectra for four lasers: a home-built diffrac-

tion grating ECDL in the Littrow configuration, normally used for 688 nm light but tuned to 689 nm

for the measurement; the old AOSense IF-ECDL at 689 nm; the new homebuilt 689 nm IF-ECDL; and

the homebuilt 813 nm IF-ECDL. All of the lasers were measured in a free-running mode, not frequency-

38 Two technologies, actually: a “self-injection lock” laser and a “stimulated Brillouin scattering” laser.
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stabilized to anything. There are several interesting takeaways from this data. First, the AOSense 689 nm

laser actually has worse high-frequency noise (say, above 100 kHz) than the Littrow laser, with a large

spike between 4.5-5 MHz. I have personally observed this spike manifested as noise sidebands on the

old 689 nm laser lineshape, for example when sweeping the laser across our science cavity and looking at

the frequency-dependent transmission. The new 689 nm IF-ECDL has lower high-frequency noise by a

factor of at least 3 compared to the AOSense laser, and by a factor of 2 compared to the Littrow laser. The

813 nm IF-ECDL has an order of magnitude less frequency noise than all of the other lasers, despite the

strong similarities in its design. We don’t know why this might be, other than some quirk of the diodes

we use.39

Additionally, we generically expect that at sufficiently large offsets from carrier, the frequency

noise asymptotes to a horizontal line, representing the background white frequency noise. This can

be seen in the Littrow ECDL above about 1 MHz. If the frequency noise approaches S f ( f ) → h0 for some

constant h0 with units of Hz2/Hz, then we can back out a Lorentzian (or “instantaneous”) linewidth of

∆ fFWHM =πh0. For the Littrow laser, this implies a Lorentzian linewidth of less than 5 kHz, which is lower

than expected. Interestingly, neither of the two homebuilt IF-ECDLs seem to settle to a constant value

until, maybe, around 10 MHz. If we use the 10 MHz freuqency noise value as the white frequency noise

background, it implies Lorentzian linewidths of 1.3 kHz and 100 Hz for the 689 nm and 813 nm lasers

respectively, consistent with my 2019 measurmeent of the 813 nm linewidth but significantly lower than

what we thought was feasible.

I should note, however, that the Lorentzian linewidth is not always the relevant measure of fre-

quency noise for our applications. For the 813 nm laser, we want low phase noise at twice the lattice trap

frequency to avoid parametric heating (see Sec. 3.5.2). For our typical trap frequencies, this process oc-

curs at around 330 kHz offset from carrier, which experiences a factor of four more frequency noise (out

of lock) than at 10 MHz. For the 689 nm laser, we care about noise in a broader bandwidth. For example,

39 One idea that could be interesting to test is varying the output power of each diode. The Eagleyard 840 nm diode is rated
to output up to 100 mW of power, and the Sacher 690 nm diode only outputs up to 25 mW (15 mW in practice). The Schawlow-
Townes linewidth scales inversely with power, so perhaps the 813 nm laser would have a larger linewidth if we turned down the
power?
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when sweeping this laser across our science cavity to perform a vacuum Rabi splitting measurement,

we typically sweep across the cavity resonance in ~100 µs. Frequency noise slower than a 10 kHz offset

from carrier can change the position of this laser from shot to shot, which necessitates a high-bandwidth

servo loop to reduce the frequency noise in this band. Alternatively, when performing heterodyne mea-

surements with the 689 nm laser to look at MHz-scale dynamics as in Ch. 6, frequency noise up to a MHz

offset from carrier determines our signal-to-noise ratio. In general, the Lorentzian linewidth is a good

starting place. For a characterization of the phase noise on top of the white frequency noise background,

analysis tools like the β-separation line [314] and the χ-separation line [315] can be helpful in describing

the effective laser linewidth and the effects of a servo on noise reduction. However, for a precise statis-

tical understanding about the role of noise on a measurement, you should always consider the specifics

of your experimental setup.



Chapter 4

Cavity-QED measurements of the 87Sr millihertz optical clock transition and determination

of its natural linewidth

4.1 Introduction

Ultranarrow-linewidth optical transitions have emerged as the new standard for precision optical

metrology, providing fast phase evolution, long coherence times, and intrinsic insensitivity to key envi-

ronmental perturbations that have allowed remarkable fractional accuracy at the 10−19 −10−18 level [98,

101, 299, 316–322]. They have a wide range of potential applications for fundamental physics, such as

gravitational wave detection using matter-wave interferometry or dark-matter searches [323–330], quan-

tum many-body physics [331–334][95, 108][G], novel cavity QED applications for superradiant lasing [95,

223][G], and spin squeezing on an optical clock transition [72, 73].

The value of the fundamental intrinsic linewidth for these ultranarrow clock transitions is impor-

tant for understanding the ultimate limits on quantum coherence offered by various atomic transitions

and species. However, a precise determination of these linewidths is, in general, challenging when the

natural lifetime of the excited state surpasses 100 s, which can occur in several atomic species [103, 335–

341]. This is because various competing processes can preclude the observation of the natural excited

state lifetime, such as black-body radiation-induced decay [102, 103] or scattering due to optical lattice

light used to trap the atoms [104–106], preventing the application of standard population decay tech-

niques to determine their lifetimes. For example, as of 2021, state-of-the-art optical lattice clocks have

only demonstrated coherence up to ∼10 s [98, 105, 106] which is limited mostly by Raman scattering of

the lattice light off an excited state [106] (since 2022, working at extremely shallow lattices in Wannier-
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Stark clocks has extended this coherence time to 30 s [101, 125, 299]). In fact, most of the systems where

these long excited state lifetimes have been precisely measured consist of atoms trapped without optical

potentials, such as magnetic or ion traps [103, 335–341], and in some non destructive detection has been

performed [342].

A particular transition of interest is the 1S0 – 3P0 transition in 87Sr. As of 2021, the two reported

values for the 3P0 excited state lifetime are τ= 330(140) s from Ref. [104] obtained from population decay

measurements from excited metastable states, and τ = 145(40) s from Ref. [107] obtained from effec-

tive atomic models and measurements of differential Landé g-factors between ground and excited clock

states, while ab-initio calculations estimate a lifetime between 110-130 s [343, 344].1 With the imple-

mentation of new potential landscapes for operating with reduced lattice-induced scattering [106, 346,

347] that can suppress these effects, and with reference optical cavities whose coherence times start to

approach the minute time scale [348–350], the full enhancement of these ultranarrow optical transitions

can be achieved.

In this chapter, we present a series of cavity-enhanced spectroscopic measurements directly on

the 87Sr clock transition which allow us to directly determine the natural lifetime of the excited clock state

3P0 (|e0〉). Our technique consists of precisely and simultaneously measuring the ratio of single-photon

Rabi frequencies along two optical transitions—the millihertz transition (1S0 =
∣∣g〉→3 P0 = |e0〉) and the

7.5 kHz transition (1S0 →3 P1 = |e1〉)—using a common atomic ensemble inside an optical resonator.

These single-photon Rabi frequencies, denoted by 2g0,1 for light-matter coupling strengths along the

millihertz and 7.5 kHz transitions respectively, depend on the electric dipole moment of the atoms along

with well-known and independently characterized geometric factors [180], such as the cavity’s mode

waist (w) and length (L). The natural linewidth γ0 can then be linked to the known natural linewidth γ1

from the measured coupling strength ratio as:

γ0

γ1
=

(
L0

L1

)(
w0

w1

)2 (
ωA0

ωA1

)2 (
g0

g1

)2

, (4.1)

1 Since the result described in this chapter, a new measurement of the linewidth was released with a higher precision by esti-
mating the dipole matrix element from measurements of the Rabi frequency [345]. This result conflicts with our measurement
in this chapter and should be addressed.
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whereωA is the (well-known) atomic transition frequency. Note that, for this manuscript, we generically

use subscripts 0 and 1 to denote quantities for the clock transition (with wavelength λ0 = 698.44 nm)

and the 7.5 kHz transition (with wavelength λ1 = 689.45 nm) respectively. The idea of using phase shifts

induced on probe light by ultranarrow transitions has previously been proposed for laser frequency sta-

bilization [351–353] in the saturated and resonant configuration, which is intrinsically destructive. By

contrast, here we use weak dispersive probes which do not substantially excite the atoms. Calculating

a ratio of shifts as opposed to just the millihertz transition Rabi frequency allows for the cancellation of

many common noise and systematic effects such as atom number fluctuations, inhomogeneous atom-

cavity coupling, cavity and laser frequency noise, and finite ensemble size effects.

Using this approach, we determine the natural linewidth of the clock transition to be γ0/2π =

1.35(3) mHz, with a corresponding excited state lifetime of τ = 118(3) s. The 30 µHz resolution implies

that we could detect states with lifetimes just below 2 hours. With straightforward future improvements,

we could detect states with lifetimes up to 15 hours using measurement trials that last only a few hundred

milliseconds, eliminating the need for long storage times in optical potentials.

While the techniques presented here have been performed before on kHz and MHz linewidth tran-

sitions [72, 172, 354–358][242][G], this work represents a first direct quantum non-demolition detection of

a millihertz linewidth optical transition. Our observation provides a direct spectroscopic signal to which

a laser could in principle be frequency stabilized [351], analgous to efforts along the 1S0 – 3P1 transition

in strontium [228, 352, 359, 360][243][G], a transition which is broader by seven orders of magnitude. Our

technique contributes towards the aim of creating a new type of atomic clock built with optical cavi-

ties that is complementary to traditional discretely-sampled atomic clocks based on Ramsey and Rabi

spectroscopy, and it offers enhanced measurement bandwidth and similar sensitivities as are predicted

in superradiant lasers [213, 214, 361][93][G]. The increased bandwidth could help reduce the challeng-

ing requirements on local oscillators and would enhance the bandwidth for searches for dark matter or

other new fields [329], for example. The nondestructive readout of atomic populations will also reduce

the problem of Dick noise aliasing in traditional atomic clocks that rely on destructive read out.
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4.2 Initial experimental setup

Our system, also described in [93, 223][G], consists of an ensemble of up to 105 87Sr atoms cooled

using SWAP cooling on the 7.5 kHz 1S0 – 3P1 transition [292, 293][G] and subsequently trapped within a

high finesse optical cavity using a λtrap = 813 nm, near-magic wavelength intracavity optical lattice [98,

362] which is less than ~2 GHz from the magic wavelength (i.e., half a free spectral range of the cavity).

From here on out, we will refer to the atomic transition frequencies as ωA0/A1 and to the relevant cavity

resonance frequencies as ωC 0/C 1, with detunings δC 0/C 1 from the atomic transition.

As shown in Fig. 4.1(b), we tune the cavity length such that one of its longitudinal (TEM00) modes

is resonant with the 1S0 – 3P0 clock transition. Simultaneously, we would like the 1S0 – 3P0 transition to be

within a few hundred MHz from resonance with a different longitudinal mode, which is not guaranteed

since our cavity free spectral range is ~3.7 GHz. In order to set the proper cavity detuning while keeping

the cavity on resonance with the clock transition, we heat up our ceramic cavity spacer with a set of

lights2 by about 10 K from room temperature. This shifted the 698 nm cavity resonance by 8 free spectral

ranges, with each free spectral range adjusting the detuning near 689 nm by around 48 MHz. Ultimately,

we set the cavity-atom detuning from the F = 9/2 3P1 manifold to be δC 1/2π= 277.5(8) MHz.

At these settings, we measure several cavity parameters, tabulated in Table 4.1 (among other quan-

tities which we will discuss later in the chapter). We observe a free spectral range (FSR) of ∆FSR,0 =

2π×3.71461(3) GHz for the clock transition and ∆FSR,1 = 2π×3.71459(2) GHz for the 7.5 kHz transition.

The cavity waist at the clock transition 3P0 wavelength is determined to be w0 = 73.85(7) µm. For the

broader transition 3P1 transition’s wavelength, the waist is w1 = 73.37(7) µm. These values are predicted

by the Gaussian beam propagation theory using the known wavelengths, mirror radius of curvature, and

cavity free spectal range. The waist sizes have been independently verified to agree at the 0.1% level by

measuring the spacing between the TEM00 mode and the TEM1,0/0,1 modes relative to the measured free

spectral range of the cavity [364].

The atoms are loaded at the cavity center (in between the two mirrors), as confirmed by taking

2 Affectionately called the “car lamp” due to the bulbs we installed.
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Figure 4.1: Probe setup for measuring dispersive shifts on narrow-linewidth transitions in strontium. (a)
Experimental set up. An 813 nm optical lattice confines atoms with an axial temperature of 14(1) µK.
A 689/698 nm laser addresses the atomic transitions between the ground 1S0 state and the 3P1 and 3P0

states, respectively. The different laser probe tones are generated by a fiber phase modulator (fiber EOM)
and RF function generators. From the same laser, we produce a (much higher power) optical local oscil-
lator. The local oscillator is frequency shifted by ∆ fHet, polarization filtered along x̂ with a polarization
beam splitter (PBS), and forms a heterodyne beat with the transmitted probes, detected on a photodi-
ode. The photocurrent is demodulated by the RF frequency for each tone in parallel, resulting in multiple
band-limited voltage signals Vout(t ). (b) The probe tones used to address the clock transition are shown
in (i), and the tones and hyperfine levels for the excited 3P1 manifold are shown in (ii). The cavity reso-
nance most closely resonant with the 3P1 manifold has a frequency defined by the detuning δC 1 relative
to the F = 9/2 manifold. Frequencies are not to scale. (c) Vibrational spectroscopy on the clock tran-
sition. We scan a strong 698 nm probe across resonance with the transition with a variable detuning
δL0 :=ωL0 −ωA0 and record the excitation fraction. We follow the procedure in Ref. [363] to fit the occu-
pation number, temperature, and trap frequency.

fluorescence images of the loaded atoms. The Rayleigh length of the modes (∼ 2.453(5) cm) is typi-

cally much longer than the longitudinal extent of the cold atomic cloud (σl ong = 0.30(5) mm). Finally,

we determine the cavity linewidth using cavity ringdown measurements. For these measurements, we

probed the cavity on resonance with light polarized along x̂ (see Fig. 4.1(a) for a definition of the co-

ordinate system). After quickly turning off the probe light with the EOM, we observed the photocur-

rent on a fast DC coupled photodiode directly positioned after the cavity. We determine a linewidth of

κ0/2π= 140.9(3) kHz at the clock transition and κ1/2π= 153.0(4) kHz at the 689 nm transition, after tak-
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ing statistics over several trials. At this linewidth, both the clock transition and the 7.5 kHz transition fall

into the so-called bad cavity regime, since κ≫ γ.

To determine the mean occupation number and trap frequency of the lattice, as well as the tem-

perature of the atoms, we perform axial sideband spectroscopy using a cavity probe near resonance with

the clock transition, following the approach of Ref. [363]. The fraction of atoms excited by this probe

as we scan its frequency is shown in Fig. 4.1(c). We consistently measure the axial trap frequency to be

ωz /2π = 230(1) kHz, the temperature to be T = 14(1) µK, and the mean occupation number to be nz =

0.9(1). The Lamb-Dicke parameter computed for the 3P0 transition is η0 = 0.1425(6), and η1 = 0.1443(6)

for the 3P1 transition.

To measure the linewidth of the clock transition, we define a quantization along x̂, established by

a static magnetic field B = B0x̂ with B0 ∼ 100 mG. Then, we optically pump the atoms into a 50/50 spin

mixture of the 1S0 hyperfine sublevels mF = ±9/2, with less than 5% of atoms remaining in the other 8

mF sublevels. After initializing the atoms in the stretched mF = ±9/2 states, we send weak probes far

off resonance from the atomic transitions through the cavity (as shown in Fig. 4.1(a)). The probe tones

are generated with a fiber phase modulator and can be switched on and off using acousto-optic modu-

lators located before the phase modulators. Both probes are polarized along the quantization direction

ẑ, established by a static magnetic field B. The different probe tones are driven by different RF sources,

indicated by a generic RF generator in Fig. 4.1(a). The different cavity modes probed for each transition

are shown in Fig. 4.1(b), which also indicates the relative frequency difference of the hyperfine states of

the 3P1 excited state. Further details for the individual transitions are provided in the following sections.

4.3 Expected phase shifts for QND probes

The two narrow-linewidth probes receive a phase shift arising from an interference between the

incident and scattered fields in the forward direction. In particular, we perform consecutive measure-

ments of the dispersive cavity resonance frequency shift ∆ω1 (or equivalently the multi-pass phase shift

∆ϕ1) on the 7.5 kHz transition, as well as the dispersive phase shift ∆ϕ0 on the millihertz transition.

These phase shifts depend directly on the light-matter coupling strength and therefore scale as∆ϕ0/∆ϕ1
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Description Symbol Value Unit

Probe wavelength 0 - 3P0 probe [259] λ0 698.4457 nm

Probe wavelength 1 - 3P1 probe [259] λ1 689.4485 nm

Trap wavelength λtr ap 813.4257(2) nm

Cavity FWHM 0 for probe polarized along x̂ κ0/2π 140.9(3) kHz

Cavity FWHM 1 for probe polarized along x̂ κ1/2π 153.0(4) kHz

Mode waist 0 w0 73.85(7) µm

Mode waist 1 w1 73.37(7) µm

Lattice waist wtrap 79.7(1) µm

Rayleigh Range 0,1 zR 2.453(5) cm

Free Spectral Range 0 ∆FSR,0/2π 3.71461(3) GHz

Free Spectral Range 1 ∆FSR,1/2π 3.71459(2) GHz

Cavity Length 0 L0 4.03532(3) cm

Cavity Length 1 L1 4.03534(2) cm

Axial trap frequency on axis ωz /2π 230(1) kHz

Radial trap frequency ωr /2π 528(2) Hz

Axial temperature Tz 14(1) µK

Radial temperature Tr 12(2) µK

RMS thermal radius σr 14(1) µm

RMS longitudinal cloud radius σlong 0.30(5) mm

Axial vibrational quanta n̄z 0.9(1)

Axial Lamb-Dicke parameter 0 η0 0.1425(6)

Axial Lamb-Dicke parameter 1 η1 0.1443(6)

Cavity detuning 0 δC 0/2π 0(10) kHz

Cavity detuning 1 δC 1/2π 277.5(8) MHz

Birefringent cavity mode full splitting 0 δb0/2π 23(3) kHz

Birefringent cavity mode full splitting 1 δb1/2π 24(3) kHz

Birefringent cavity mode polar angle
on Poincaré sphere (Jones vector)

θb 30(2) deg

Birefringent cavity mode azimuthal angle
on Poincaré sphere (Jones vector)

ϕb ±14(4) deg

3P1 linewidth [365] γ1/2π 7.48(1) kHz
3P1 F ′ = 11/2 detuning from 9/2 [259] ∆11/2/2π -1463.15(6) MHz
3P1 F ′ = 7/2 detuning from 9/2 [259] ∆7/2/2π 1130.26(6) MHz

Table 4.1: Summary of cavity and atomic parameters.



119

∝ (g0/g1)2, thereby allowing us to infer the ratio γ0/γ1 as described in Eq. (4.1) [187, 232]. In free space,

the sizes of∆ω0 and∆ω1 would be miniscule due to the weak oscillator strengths of the narrow-linewidth

transitions, as well as the fact that the atoms will emit into a large solid angle which reduces the quantum

efficiency in the direction of the probe. The optical cavity greatly magnifies the phase shifts because it

allows the probes to pass through the atoms multiple times, and because it causes the atoms to prefer-

entially emit into the cavity mode [180]. An optical resonator also introduces systematic effects that we

take into account later in this manuscript.

What is the expected form of these phase shifts? We can derive them in the weak probe limit using

the optical Bloch equations, as detailed in Ch. 2.4.3. To redefine the system here, we consider N two-

level atoms, described by the usual Pauli operators σ̂i
j , with i = x, y, z and j = 1, ..., N , equally coupled to

a single cavity mode with annihilation operator â. In this case the Jaynes-Cummings Hamiltonian [187,

232] in the atomic frame is:

H =ħδc â†â +ħg (â Ĵ++ â† Ĵ−), (4.2)

where Ĵ± = ∑N
i=1 σ̂

±
i are the collective raising and lowering operators for the atoms, δc = ωc −ωa is the

cavity detuning from the atomic transition (ωa), and 2g is the single photon Rabi frequency. We can

further define Ĵ z = 1
2

∑N
i=1 σ̂

z
j , in order to have a closed angular momentum algebra.

If we add a cavity drive ai (t ) with constant amplitude and a frequency ωp , where ai has units

of
√

photons/s, we can use the input-output formalism from quantum optics [176][182][G] to write the

Heisenberg-Langevin equations of motion for the cavity and atomic mean operators (O= 〈Ô〉) in the

rotating frame of the atoms as follows:

ȧ =−
(
iδc + κ

2

)
a − i g J−+p

κm ai (t );

J̇− = i 2g J z a −γ⊥ J−;

J̇ z =−i g
(
a J+−a∗ J−

)−γ(
N

2
+ J z

)
.

Here, we have included the spontaneous emission rate γ, a transverse dephasing term γ⊥, and cavity

losses characterized by the cavity decay linewidth κ. We additionally define
p
κm as the rate at which

photons are transmitted through one of the mirrors (such that without mirror losses, κ = 2κm). In the
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rotating frame, the incident cavity field is ai (t ) = ai 0e−iδp t , with δp =ωp −ωa defined to be the drive de-

tuning from the optical transition. The above equations agree with our derivation in Ch. 2.4.3 (Eq. (2.47))

but are slightly more general, since they include an input drive and allow the ensemble to experience

inhomogeneous broadening (i.e., γ⊥ > γ/2).

At long times, the system attains a steady state with all optical frequency observables responding

to the input drive by oscillating with a detuning δp : J− = J̃−e−iδp t , and a = ãe−iδp t . Working in the weak

probe approximation, such that all the atoms remain in the ground state, we can solve the steady-state

optical Bloch equations, which give a steady-state collective atomic coherence J̃− satisfying:

J̃− = i g N ã

(iδp −γ⊥)
. (4.3)

. We can also solve for the steady-state cavity field amplitude ã. We express this in terms of the transmit-

ted field ãt =p
κm ã, which satisfies ãt = T (δp )ai 0 for a transfer function T (δp ) given by:

T (δp ) = 1

1− i
(
δp−δc

κ/2

)
+ NCγ/2
γ⊥−iδp

, (4.4)

where C = (2g )2/(γκ) is the single-atom cooperativity. The form of this transfer function is quite similar

to that of the bare cavity derived in Ch. 2.2.2 (specifically, Eq. (2.16)), with an additional resonance ab-

sorption feature corresponding to the atomic transition frequency that scales in amplitude with NCγ/2.

This term is responsible for the vacuum Rabi splitting in a strong coupling limit. In this chapter, we

will also explore the weak coupling limit where NCγ≪ κ, in which this feature looks like an undepleted

absorption dip inside the cavity resonance.

The phase δϕt (δp ) acquired by the transmitted field (defined by ãt = |T (δp )|e iδϕt (δp )ai 0) satisfies

tan
(
δϕt (δp )

)= −2
(
δp g 2N + (δc −δp )(δ2

p +γ2
⊥)

)
γ⊥2g 2N +κ(γ2

⊥+δ2
p )

. (4.5)

Depending on which transition we probe (to 3P0 or to 3P1), the various frequency scales in this

general expression will satisfy a different hierarchy which simplifies the expression considerably. We will

see what these simplified forms look like in the following sections.
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4.4 Probing dispersive shifts on the clock transition

The millihertz optical transition falls into a less common regime relative to typical ensemble cavity

experiments: even in a regime where NC0 ≫ 1, the collective vacuum Rabi splitting in unresolved, since

NC0γ0 ≪ κ0 [95][G]. Instead, the atom-cavity coupling results in an absorption feature with a character-

istic width of order NC0γ0, which can be mapped out with a sufficiently weak probe as shown in simu-

lations in Fig. 4.2(a). As we detail below, our probe tones are detuned by approximately |δp |/2π≈ 1 kHz

from the atomic transition, which is simultaneously far-detuned from the absorption resonance in order

to prevent strongly exciting the ensemble, while also being on resonance with the cavity. Remarkably,

due to the ultranarrow linewidth of the clock transition, our probe is also in the resolved motional side-

band limit (meaning δp ≪ωz , whereωz is the axial trapping frequency), despite operating in a dispersive

regime. This scenario does not have precedent in the atomic quantum non-demolition (QND) measure-

ment community.

Under this set of circumstances, the system obeys the following hierarchy of scales:

g0

p
N ∼ δp ≪ κ

γ0⊥ ≪ δp

|δC 0 −δp | ∼ δp ,

(4.6)

which allows us to approximate the probe phase shift in Eq. (4.5) to the following:

tan
(
δϕt (δp )

)≈− g 2
0 N

δp (κ/2)
− δC 0 −δp

κ/2

=−NC0γ

2δp
− δC 0 −δp

κ/2
.

(4.7)

The first term on the right hand side of Eq. 4.7 is the atomic like phase shift, and the other term is a

cavity-like phase shift, independent of the atoms. For our measurements, we are interested in the first

term as it encodes the collective interactions (g 2
0 N ). The last term represents a background and must be

subtracted through an independent measurement, which will be explained later. The farther detuned

the probe is from the atomic transition, the larger this background will be (∝ δC 0 −δp ) relative to our

atomic signal (∝ 1/δp ). For scale, at our chosen detuning of 1 kHz, the phase shift from the atomic

resonance is ∼ 15 mrad, compared to a cavity-induced shift of ∼ 40 mrad.
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Figure 4.2: Probing a cavity-enhanced absorption feature along a millihertz linewidth transition. (a) Top:
a simplified energy level diagram for relevant states in 87Sr. Bottom: Simulated transmssion and phase
shift δϕ0 as a function of the probe detuning δL0 for δC 0 = 0, in units of NC0γ0, for the clock transition
(subindex 0). At a given detuning, the phase shift produced by the atomic ensemble is proportional to
γ0. On this scale, the cavity is always on resonance since κ≫ NC0γ0. (b) Transmitted power for a single
tone versus its detuning δL0 from the narrow clock transition frequency ωA0 (see inset). The two dips
correspond to atoms in the ground mF = ±9/2 states in the presence of a 200 mG magnetic field that
creates a 200 Hz nuclear Zeeman splitting in the optical transition frequency. (c) Atomic induced phase
shift ∆ϕ0 on the clock transition as the central frequency detuning, δL0, of the probes from the clock
transition frequency, ωA0, is scanned (see inset). The probes are detuned 2δp0/2π = 2 kHz from each
other. Blue (red) markers are for atoms initially in

∣∣g〉
(|e0〉). Solid lines are empirical fits that take into

account the finite excitation fraction. Either the transmitted probe amplitudes or phases could serve in
the future as frequency references for laser frequency stabilization to an ultranarrow optical transition.

To verify this physics, we investigate the cavity transmission characteristics in the presence of

atoms for the ultranarrow transition in Fig. 4.2(b)-(c). The atomic clock transition is addressed with

light from a stabilized state-of-the-art sub-10 mHz linewidth laser [348–350]. The power transmission

of a near-resonant probe, detuned by δL0 from the atomic transition, exhibits two distinct absorption

dips (Fig. 4.2(b)), associated with the mF =±9/2 ground states in the presence of a magnetic field [107].
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We attribute the absence of full absorption in this example data to an overly large probe power causing

atoms to transition to the excited state 3P0. The imbalance in the depth of the absorption features is

attributed to imbalance on the relative mF = ±9/2 populations. As a remark, these observed spectro-

scopic signals are quite narrow, with a characteristic width of around 100 Hz, and could be utilized in

the future for stabilization of a laser to the atomic transition frequency, providing an atomic clock with

complementary properties to traditional atomic clocks.

Uncertainty in the atomic transition frequency and laser frequency noise can both lead to uncer-

tainty in our probe frequency. To gain partial immunity to this, we probe the cavity with two symmetri-

cally detuned tones at δL0±δp0, where typically δp0/2π= 1 kHz, as shown in Fig. 4.1(b). Each probe tone

receives a phase shift equal to δϕ0(δL0 ±δp0), and the difference between these two phases is quadrati-

cally insensitive to small deviations of δL0 away from 0. Simultaneously, we probe a consecutive TEM00

cavity mode with an identical pair of tones, which receive phase shifts of the form δϕ0(∆FSR,0+δL0±δp0).

The phase shift from this additional pair represents the cavity-induced phase shift term in Eq. (4.7), al-

lowing us to remove its contribution and extract only the phase shift from the atomic resonance. The full

phase shift we calculate is the pair-wise difference:

∆ϕ0 :=
[
δϕ0

(
δL0 +δp0

)−δϕ0
(
δL0 −δp0

)]−[
δϕ0

(
∆FSR,0 +δL0 +δp0

)−δϕ0
(
∆FSR,0 +δL0 −δp0

)]
. (4.8)

For the rest of the chapter, ∆ϕ0 refers to this quantity. Expanding perturbatively in small ratios (and

keeping only the largest higher order terms), this phase shift should equal

∆ϕ0 =−NCγ

δp0

(
1−4

δ2
C 0

κ2 +4
δ2

p0

κ2 + (NCγ)2

12δ2
p0

− NCγ

κ

)
. (4.9)

The higher order terms in Eq. (4.9) will be considered later in the chapter as systematic corrections.

Finally, the above expression was derived assuming homogeneous atom-light coupling and a Clebsch-

Gordan coefficient of 1 along the transition addressed by our probes. In reality, the overall size of the

phase shift is modified by these effects. Since our drives are π-polarized and drive a F = 9/2 → F ′ =

9/2 transition, the phase shift must include a factor of |cC 0|2 = 9
11 , where cC 0 is the Clebsch-Gordan

coefficient. Inhomogeneous atom-light coupling effectively reduces the number of atoms by a factor of
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two: N → N /2. However, as we will compute a ratio of phase shifts which both are subject to this effect,

this correction will cancel.

To implement this four probe measurement, we turn on the probe beams for 20 ms to 40 ms,

with substantially more power sent in the two probe tones one free spectral range away from the atomic

transition to reduce their photon shot noise contributions to the final noise floor (since they will not

actually scatter any atoms, we are not concerned about sending in too much power). The initial time

dynamics exhibits transient ringing, of duration NCγ, associated with the homogeneous solution of the

optical Bloch equations, which in our system lasts about 2 ms. We want the steady state dynamics, so

in postprocessing we remove the first interval of width TH ≈ 5 ms. We beat the resulting signals against

a local oscillator, linearly polarized along x̂ in Fig. 4.1(a). The two pairs of probe tones are separately IQ

demodulated to a base band of 20 kHz using the same RF sources used to drive the phase modulator. The

demodulated IQ voltage signals VIQ(t ) are digitally sampled into the computer and then fitted to extract

the difference in the phases for a single pair. For example, the near-resonant pair of tones that probe the

clock transition are demodulated to 20±1 kHz, for δp0/2π= 1 kHz. Then, we extract the four phase shifts

and compute ∆ϕ0 as defined above.

Fig. 4.2(c) displays the experimentally measured phase shift ∆ϕ0 as a function of δL0 (which for

the actual measurement is nominally 0) for atoms initially in
∣∣g〉

(blue data) or kete0 (i.e., the clock state;

red data). The sharp resonances near δL0 =±δp0 occur when one of the tones is near resonant with the

atoms. For this magnetic field (∼ 100 mG) and probe power, the Zeeman level resonances are not re-

solved. This data confirms that, when |δL0| ≪ δp0, ∆ϕ0 is only quadratically sensitive δL0. Furthermore,

we measure ∆ϕ0 after having adiabatically transferred the atoms to |e0〉 [93, 223][G], and remove the re-

maining atoms in
∣∣g〉

using the strong 1S0 – 1P1 transition at 461 nm (red markers). We clearly observe

∆ϕ0 switching sign along with the atomic inversion (N → −N ), as well as a reduction of the signal, in

agreement with the measured adiabatic transfer efficiency. The two sets are shifted from one another

in frequency by less than 100 Hz, which represents the typical uncertainty to determine δL0 = 0. The

sign flip provides corroborating evidence to our claim that the phase shift is proportional to the atomic

response to the probe field. It also illustrates that the observed phase shifts can be used to provide a
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differential readout of atomic populations in the ground and excited states for nondestructive readout of

traditional Ramsey and Rabi spectroscopy or entanglement generation. The high frequency resolution

also means that dual simultaneous probing of two transitions at once can provide rejection of magnetic

field noise.

4.5 Probing dispersive shifts on the 7.5 kHz transition

Our strategy to measuring the clock transition linewidth γ0 is measuring the ratio of the single

photon Rabi frequencies g0/g1 between the 1S0 – 3P0 clock transition and the 7.5 kHz 1S0 – 3P1 transi-

tion. This is accomplished by comparing the phase shift ∆ϕ0 from the clock transition probing scheme

with a comparable measurement on the 7.5 kHz transition. Our system typically satisfies NC1γ1 ≫ κ1,

with C1 = (2g1)2/κ1γ1 denoting the single atom cooperativity parameter that characterizes the cavity-

enhanced interactions on this transition [232][182][G]. This gives a resolved collective vacuum Rabi split-

ting when the cavity is on resonance with the atomic transition (i.e., δC 1 = 0). For this experiment, we

instead operate in the dispersive limit (δC 1 ≫
p

N g1), and the vacuum Rabi splitting manifests as a dis-

persive shift δω1 = N g 2
1 /δC 1 [182][G] due to the presence of N atoms in the ground state. This frequency

shift corresponds to an equivalent multi-pass phase shift δϕ1 = δω1/(κ1/2) = NC1γ1/2δC 1. This regime

has been explored in many different QND platforms [61, 62, 69, 366][63, 64, 70][G].

We set the cavity length such that the closest mode to the excited 3P1 F ′ = 9/2 state is detuned by

δC 1/2π= 277.5(8) MHz. The cavity phase shift δϕ1 is computed by measuring the cavity frequency shift

δω1 of the TEM00 mode detuned by δC 1 from ωA1. To probe δω1, we scan the frequency of a weak π-

polarized probe across the cavity resonance. As before, in order to gain further insensitivity with respect

to cavity and laser frequency noise, we simultaneously probe a consecutive longitudinal TEM00 mode of

the cavity at frequency δC 1 −∆FSR,1 (see Fig. 4.1(b)), and compute the difference:

∆ϕ1 := δϕ1(δC 1)−δϕ1(δC 1 −∆FSR,1). (4.10)

From now on we will refer to ∆ϕ1 as this measured quantity, representing the multi-pass phase shift of

the dispersive probe along the 1S0 – 3P1 transition.
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Although naively, the value of ∆ϕ1 is given by the dispersive shift along a two-level system, the

phase shift actually has multiple contributions due to the hyperfine structure in 3P1, which effectively

creates three atomic resonances within ~2.5 GHz. Since our atoms are initialized in the mF =±9/2 states

and are probed with π-polarized light, the probes do not couple to the F ′ = 7/2 excited state manifold,

so the general form for the phase shift is given by:

∆ϕ1 =
g 2

1 N

κ1/2

[(
c2

N 1

δC 1
+ c2

N 2

δC 1 −∆11/2

)
−

(
c2

N 1

δC 1 −∆FSR,1
+ c2

N 2

δC 1 −∆11/2 −∆FSR,1

)]
, (4.11)

where cN 1 and cN 2 are the Clebsch-Gordan coefficient for π-polarized light probing the stretched states

on the F = 9/2 → F ′ = 9/2 and F = 9/2 → F ′ = 11/2 transitions, respectively (cN 1 =
√

9
11 ,cN 2 =

√
2

11 ),

∆11/2/2π = −1463.15(6) MHz is detuning of F ′ = 11/2 with respect to the F ′ = 9/2 manifold [259], and

∆FSR,1/2π is the cavity free spectral range at 689 nm. The first term in the sum contributes an order of

magnitude more phase shift than any of the others due to a combination of the larger detunings and

smaller Clebsch-Gordan coefficients on the other terms. Therefore, while the full form in Eq. (4.5) will be

used to calculate the precise value of the clock transition linewidth, to leading order we can approximate

the phase shift by:

∆ϕ1 ≈
g 2

1 N

κ1/2

c2
N 1

δC 1
. (4.12)

Practically speaking, the frequency shifts δω1 of the two longitudinal cavity modes are probed

by simultaneously sweeping the two probe tones across the cavity resonance with a linear frequency

ramp. As in Sec. 4.4, the transmission of these probes through the cavity is measured with a heterodyne

detector and subsequently IQ demodulated. The IQ data is fitted to extract the resonance frequencies

up to a common offset, and an estimate of the differential frequency shift between the two cavity modes

∆ω1 is then computed.
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4.6 Measuring the ratio of dispersive shifts

Using the forms of Eq. (4.8) and Eq. (4.5), to leading order we can infer the ratio of single-photon

Rabi frequencies g0/g1 from the ratio of dispersive shifts according to:(
g0

g1

)2

≈−1

2

(
∆ϕ0

∆ϕ1

)(
κ0

κ1

)(
δp0

δC 1

)
, (4.13)

allowing us to calculate γ0 from the known γ1 via Eq. (4.1).

However, certain unavoidable aspects of the experimental setup lead to systematics that require

a careful measurement sequence to suppress. The above ratio assumes that no atoms are excited into

the excited state, but at a finite probe power this is not the case. To alleviate this, we measure ∆ϕ0/∆ϕ1

over a range of optical powers. Then, we extrapolate to P = 0 to approach the zero-power limit where

no atomic excitations are created. Additionally, our lattice exhibits nonnegligible atom loss during the

measurement sequence (with a lifetime of ~500 ms at the time of measurement). To gain insensitivity

to atom loss, our experimental scheme relies on non-destructive interleaved measurements of ∆ϕ0 and

∆ϕ1 during a single shot such that the inhomogeneity of the atom-cavity coupling [62][63][G] and fluc-

tuations in the atom number N are common to both measurements and cancel in the final computed

ratio. The measurement sequence, shown in the inset of Fig. 4.3(b), consists of three short (∼ 2 ms) ∆ϕ1

measurements with two longer (∼ 25 ms) ∆ϕ0 measurements. From these five measurements we build

a suitable estimator for the ratio ∆ϕ0/∆ϕ1 and extract the ratio (g0/g1)2, which is described in detail in

Sec. 4.9.

Experimental results are shown in Fig. 4.3(b). Probe optical powers P0 and P1 for the 698 nm and

689 nm probes, respectively, are reduced to interpolate to the zero-power value for ∆ϕ0/∆ϕ1. Three

different measurement sets (markers) are shown for consistency and repeatability, each fitted with a

quadratic polynomial on P0 (solid lines) with reduced χ2
ν near 1 for all sets. For these data sets, we have

verified that the P1 was already sufficiently low to avoid creating excitations in |e1〉. Each of these sets

were taken on different days and with independent cavity alignments to the clock transition. A simul-

taneous fit to the three sets is shown as a solid black line. Using different estimators and fit methods

(Sec. 4.9), we consistently measure a zero-power crossing ratio
(
∆ϕ0/∆ϕ1

)
exp =−8.95(9)×10−2.
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Figure 4.3: Extracting the ratio of phase shifts ∆ϕ0/∆ϕ1 in a zero-power limit. (a) (i) For the phase shift
measurement ∆ϕ0, the two probe tones are detuned by only 1 kHz from the atomic transition, much
smaller than the spacing between the axial motional levels ωz /2π = 230 kHz. In this resolved-sideband
regime, the probe tones experience a differential phase shift primarily from the carrier transition that
does not change the motional quantum number. Due to finite axial confinement, the carrier transition
strength is reduced by 6%, the largest correction factor that must be applied to our measurement. (ii)
In contrast, for the phase shift measurement ∆ϕ1 the probe tones are far detuned and the probe ex-
periences a phase shift due to interacting with all motional sideband transitions. (b) Ratio ∆ϕ0/∆ϕ1

measurement, from the interleaved pulses sequence (top inset) as P0 is changed. Different colors corre-
spond to different measurement sets (markers), over different days, and their color matching solid lines
are quadratic polynomial fits on P0 according to our model discussed in Sec. 4.9. Statistical errors (1σ)
are indicated by the errorbars. The top inset shows the measurement sequence, which alternates three
2 ms∆ϕ1 measurements between two 25 ms∆ϕ0 measurements (the first TH = 5 ms are removed for the
extraction of∆φ0). The solid black line is a global fit to the three measurements. The bottom inset shows
∆ϕ0/∆ϕ1 (markers) and its weighted linear fit (solid line), for a fixed set (P0,P1), as the atom number N
is changed.
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We note that the spread of the zero-power values for different sets is consistent with the effect

of the estimated uncertainty on our ability to tune δC 0 to zero for each data set. The bottom inset in

Fig. 4.3(b) shows ∆ϕ0/∆ϕ1 for different atom numbers N and fixed powers P0 and P1, with the red line

indicating a linear weighted fit. The variation of the measured values suggests that we can constrain any

unknown first order variation with N or N−1 to the 2% level within our final uncertainty, limited by signal

to noise. Since there is not an underlying model for why such a scaling would exist (beyond offsets in∆ϕ0

and ∆ϕ1 accounted for separately), no adjustment to the quoted uncertainty is applied.

4.7 Inferring the clock transition linewidth

To precisely determine the excited clock state linewidth from the measured
(
∆ϕ0/∆ϕ1

)
exp, several

systematic effects need to be accounted for. A detailed description is given in Sec. 4.8, but here we focus

on the most important corrections (displayed in Table 4.2). The largest systematic correction that must

be applied arises from the fact that the phase shift measurements ∆ϕ0 are made in a resolved sideband

regime in which the probe detunings δp0/2π = ±1 kHz are much less than the axial trapping frequency

ωz /2π = 230(1) kHz, as shown in Fig. 4.3(a). To be in a dispersive regime requires δp0 ≫ NC0γ0; for

most fully allowed optical transitions, this typically implies δp0 ≫ωz when NC0 ≫ 1. However, here γ0

being so small allows us to operate in the dispersive regime, probing the carrier transition, even when

δp0 ≪ ωz . For our atomic sample, the correction to the measured ∆ϕ0/∆ϕ1 is 1.062(4), where we also

take into account the inhomogeneous coupling between probes and atoms across the optical lattice.

The cavity also possesses intrinsic birefringence which modifies both phase shifts and therefore

changes ∆ϕ0/∆ϕ1. Rather than a single polarization-independent cavity resonance, birefringence cre-

ates two normal modes split by frequencies δb0 and δb1 at λ0 and λ1 respectively. If θb is the opening

angle between the probe beam polarization (x̂) and the birefringent eigenmode axis on the Poincaré

sphere, the correction on each phase shift scales as (δbi /(κi /2)sinθb)2 for i ∈ {0,1}. Including relevant

measurement details, such as the hyperfine structure of the relevant states, imperfect state preparation

in the ground state hyperfine manifold, uncertainty in the polarization alignment of the local oscillator

polarization relative to the probe’s polarization, and possible differential linewidths for both birefringent
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Effect Target Correction

Finite axial confinement ∆ϕ0/∆ϕ1 1.062(4)

Cavity birefringence ∆ϕ0/∆ϕ1 1.012(5)

Atomic resonance uncertainty ∆ϕ0 0.994(6)

Cavity resonance offset ∆ϕ0 1.008(6)

Table 4.2: Largest identified corrections to the clock transition linewidth measurement and their associ-
ated uncertainties.

normal modes, we determine a correction factor on the phase shift ratio of 1.012(5).

Furthermore, the atomic phase shift measurement ∆ϕ0 is quadratically sensitive to uncertainty

in the detuning δL0/2π = 0± 100 Hz (as shown in Fig. 4.2(c)). Corrections on the measured value of

∆ϕ0 from this effect scale as (1− (
δL0/δp0

)2). Similarly, ∆ϕ0 depends quadratically on the cavity reso-

nance condition, i.e., how close δC 0 is to 0. This correction scales as (1+ (δC 0/(κ0/2))2), where typically

|δC 0|/2π≲ 10 kHz.

Considering all of the other systematic effects studied in Sec. 4.8, the total size of the correction

factor to
(
∆ϕ0/∆ϕ1

)
exp is FC = 1.074(16). The corrected ratio is then ∆ϕ0/∆ϕ1 = −9.61(17)× 10−2. In

order to use the measured value for ∆ϕ0,1 to determine (g0/g1)2 as in Eq. 4.13, we need to take into

account the hyperfine structure in the 3P1 state manifold, meaning we must use the full expression for

∆ϕ1 as in Eq. (4.5). From this, we extract (g0/g1)2 = 1.83(3)×10−7. Finally, using Eq. 4.1 we determine

γ0/γ1 = 1.81(3)×10−7, where the waist (w) and length (L) for each mode are independently characterized

[364]. Using the value of γ1/2π= 7.48(1) kHz measured in Ref. [365], we finally find γ0/2π= 1.35(3) mHz

for the clock excited state natural linewidth. This value implies an excited state lifetime of τ0 = 118(3) s,

in agreement with Ref. [107] but in disagreement with Ref. [104]. Ab-initio atomic structure calculations

place the atomic linewidth at 1.4(5) mHz in Ref. [344], and 1.2 mHz in Ref. [343]. We also note that

the value used for γ1 reported in Ref. [365] is consistent with previous less precise determinations, with

relative uncertainties at the 2% level, from decay and photoassociation measurements [367, 368].
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Effect 1−FC Uncertainty on FC

Polarization uncertainty 2×10−4 6×10−5

Differential lattice shift −2.3×10−3 8×10−4

Saturation during probe −2×10−4 2×10−4

Probe optical pumping and losses −4×10−4 4×10−4

Zeeman shift 2×10−8 1×10−9

Higher order corrections −2.5×10−4 1×10−4

Table 4.3: Correction factors FC for the measurement of ∆ϕ1.

4.8 Systematics analysis

This measurement approach for determining natural lifetimes of long-lived states is new, and it

is important to think broadly about potential systematic corrections that must be applied, as well as

the uncertainties on these corrections. In this section, we will discuss nearly 20 different systematic

corrections. Most of these are small enough to be ignored, but we include them for completeness and for

the sake of future applications of the technique, in which details of the experimental system might make

these effects larger.

We roughly break up the systematics discussion into three categories: those that affect individu-

ally the cavity phase shift measurement ∆ϕ1 on the 7.5 kHz transition, those that affect the phase shift

measurement ∆ϕ0 on the clock transition, and those that affect the measured ratio (∆ϕ0/∆ϕ1). We de-

fine the correction factors FC as the ratio of the ideal quantity Q i and the actually measured quantity Qm

such that the ideal quantity can be recovered from the measured quantity as Q i = FC Qm .

4.8.1 Corrections on the phase shift∆ϕ1

In this section we discuss effects that affect the measured cavity frequency shift ∆ϕ1 for the two

consecutive TEM00 modes on the 7.5 kHz transition at 689 nm. The magnitude of the correction factors

FC are shown in Table 4.3
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4.8.1.1 Polarization uncertainty in the 3P1 probe

The polarization uncertainty effect refers to the fact that the probe light’s polarization might not

have been perfectly π-polarized. To optimize the probe polarization’s orientation relative to the mag-

netic field, we performed a measurement of ∆ϕ1 at a (variable) value of the transverse magnetic field

Bt first, and within 4 ms we measure it again at another magnetic field Bref
t that we believe to be close

to the value that cancels the transverse components. Magnetic fields along x̂, ŷ , ẑ are generated by three

respective sets of Helmholtz coils driven by a stabilized current source, which allow us to rapidly perform

small changes in the y and z components of Bt in order to perform this measurement (with coordinates

defined in Fig. 4.1(a)). In this way, we have the ability to compute the ratio in each experimental repeti-

tion, which gives us further insensitivity with respect to other quantities that fluctuate shot-to-shot, like

atom number.

The ratio of the two measurements, ∆ϕ1(Bt )/∆ϕ1(Bref
t ), is maximized when the y and z compo-

nents are nulled, as our model shows. An example of this measurement is shown in Fig. 4.4(a). If the

reference field Bref
t was not properly chosen, we can change it accordingly and evaluate the ratio again,

until we consistently find the right value for Bref
t , where we would like to operate the experiment. Typi-

cally, we observed day to day shifts of 3 mG as we repeat this procedure before any of the measurements

to establish the linewidth ratio. The associated correction factor FC takes into account the effect of a

small magnetic field fluctuations of magnitude 3 mG on typical data sets as shown in Fig. 4.4(a). Based

on our model, we find that we can realize a probe with 98% pure π polarization. The fitted quadratic

dependence of the phase shift magnitude along with this 3 mG uncertainty is used to estimate the cor-

rection factor for this effect.

4.8.1.2 Differential lattice shift in the 3P1 probe

The differential lattice shift is due to the fact that the lattice is not quite magic for the 3P1 states.

However, the expected differential AC Stark shifts, around 0.7(2) MHz for our trap depth, are very small

compared to the cavity detuning from the atomic transition δC 1. Experimentally, we determine ∆ϕ1
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to change by less than 1% for trap depths changing by 50%. The uncertainty is estimated based on a

combination of trap depth, resonance frequency and cavity detuning uncertainties.

4.8.1.3 Saturation and optical pumping due to the 3P1 probe

While probing the cavity phase shift ∆ϕ1, the probe itself can excite atoms, especially if the probe

power is large. To characterize this effect, we measure the change in∆ϕ1 as a function of the probe power.

In each experimental repetition, we perform three consecutive measurements as depicted in Fig. 4.4(b):

first at a (variable) power P H
1 , then at a (low) reference power P L

1 , then again at the same (variable) power

P H
1 . This allow us to be insensitive to, for instance, shot to shot variations in atom number, while allowing

us to characterize the effect of a high power probe on each measurement.

In each experimental shot, we obtain three cavity phase shifts for each of the previous powers

that we denote as ∆ϕ1
1, ∆ϕ2

1, and ∆ϕ3
1, respectively. We model the effect of any possible probe power

related effect during the probe, in the low power limit, as a modification in the measured phase shift as

∆ϕ1(P ) =∆ϕ1(P = 0)(1−2(P/P0)), where P is the probe optical power, P0 is some parameter that works

as an effective saturation power in this model (the beam area is fixed by the cavity), and∆ϕ1(P = 0) is the

zero-power phase shift that is the interest of our measurement. In order to characterize this behaviour,

we change PH
1 and measured the effect on ∆ϕ1 using the ratio sS = ((∆ϕ1

1 +∆ϕ3
1)/2−∆ϕ2

1)/(∆ϕ2
1); for low

excitation fractions, this is linear in the input power P H
1 and scales as sS = (P0 −2P H

1 )/(P0 −2P L
1 ). For a

given probe power P , the correction factor would be FC = 1/(1−2(P/P0)). As we measure P L
1 and sS , we

can determine P0 in our model to estimate the correction.

The measurement is shown in Fig. 4.4(b), where we fit a linear function (red line) to the input

probe power P H
1 . This allows us to establish that the excitation fraction is not significant (< 0.0001) for

cavity probe input powers below 1 nW. The value quoted for the associated correction factor, takes into

account the maximum power used for the data presented in 4.3(b), which was around 1 nW and was

decreased together with the clock transition probe power to extract the ratio ∆ϕ0/∆ϕ1. The uncertainty

is taken to cover the full range of power used in the∆ϕ0/∆ϕ1 measurement in Sec. 4.6. We assign a value

FC = 1.0002(2) for the correction factor.



134
a) b) c)

d) e) f )

1-
F C

 (x
10

-3
)

1-
F C

 (x
10

-3
)

0.00 0.02 0.04 0.06 0.08 0.10
-2.5

-2.0

δC1/(2π) [MHz]
-1.5

-1.0

-0.5

0.0

0 200 400
-1.0
-0.5
0.0
0.5
1.0

Δ
φ

1(B
t)/

Δ
φ

1(B
tre

f )
Δ

φ
0(δ

C0
)/

Δ
φ

0(δ
C0

re
f )

Bt [mG]

Bt
P1

H P1
HP1

L

Bt
ref t

1.0

0.8

0.6

0.4

0.2

0.02 0.30

0.20

0.10

0.00

0.00

-0.02

-0.04

-0.06

-100 100500-50

-80 80400-40

1.0

0.8

0.6

0.4

δC0/(2π) [kHz]

δC0 δC0
ref t

s S s O
P

Variable power P1
H [μW] Variable power P1

H [μW]
10-5 10-4 10-3 10-2 10-1 100 101 10-5 10-4 10-3 10-2 10-1 100 101

ε (frac. atoms in mF = ±7/2)

t

P1
HP1

L P1
L t

Input power P0 [pW]

Δ
φ

0/
Δ

φ
1 (

x1
0-2

)

-7

-8

-9

0 100 200 300 400

Figure 4.4: Assorted measurements for the systematics analysis of the clock transition linewidth mea-
surement. (a) Polarization alignment using cavity phase shift measurements while changing one of the
transverse magnetic field components. In a single shot, we compute the ratio between two measure-
ments at a variable transverse field, Bt , and a reference transverse field Bref

t . Typical day-to-day fluc-
tuations are around 3 mG. (b) Saturation effects on the 689 nm transition probe. We use interleaved
∆ϕ1 measurements at different powers to determine the relative reduction on ∆ϕ1 as the probe power
increases. (c) Power induced reduction on the 689 nm transition phase shift. We use interleaved ∆ϕ1

measurements at different powers to determine the relative reduction on ∆ϕ1 as the probe power in-
creases. (d) Influence of the cavity detuning δC 0 on the atom-like phase shift∆ϕ0 on the clock transition.
We tune the cavity at two different cavity detunings, one fixed (δC 0,ref), and one variable δC 0, and in a
single show we compute the ratio ∆ϕ0(δC 0)/∆ϕ0(δC 0,ref) that maximizes when δC 0 = δC 0,ref = 0. (e) Opti-
cal pumping correction factor FC , where we take the fractional population on the ±7/2 states to be ε, on
the ±5/2 states is ε2, on the ±3/2 states is ε3, and on the ±1/2 states is ε4. Inset shows the dependence of
the correction factor for ε = 0.05 versus the cavity detuning δC 1 to the 3P1, F ′ = 9/2 manifold. (f) Zoom
in for low powers for Fig. 4.3(b). Results and fits shown for estimator E3 as described in this text.

Furthermore, the probe itself can cause more permanent effects. For instance, it can cause atom

loss or optically pump atoms to different magnetic sub-levels, modifying ∆ϕ1 and eventually ∆ϕ0 on

interleaved measurement sequences. To characterize this effect, we again use three consecutive mea-

surements to obtain ∆ϕ1
1, ∆ϕ2

1, and ∆ϕ3
1: first at a (low) reference power P L

1 , then at a (variable) power

P H
1 , then again at a (low) reference power P L

1 . This scheme allow us to, in a single shot, characterize the

change that occurs after applying a relative high power probe.

The values for P L
1 used here fall into the low power region from the the previous analysis, such that
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for simplicity we will consider they do not have a significant effect. However, we will consider the second

high power probe has a more permanent effect. For example, we consider the case that during, and after,

the second pulse with power P H
1 the measured phase shift is modified by an effective value (1−(P H

1 /POP )

from its zero power value. Again, this POP tries to capture any effect such as redistribution in the ground

state hyperfine state manifold or atom loss as consequence of a higher probe power.

To characterize this effect and estimate the necessary correction, we consider the parameter sOP =

1−(∆ϕ3
1)/(∆ϕ1

1), that measures the differential phase shift after applying a higher probe power in between

the two pulses. In particular, our model predicts a behaviour of the form sOP = (P H
1 /POP ). We show the

result of these measurements in Fig. 4.4(c), where we varied the optical power of the second probe P H
1 .

For the final optical power used in the phase shifts ratio measurement presented in the text, we use

maximum probe powers in the 689 nm transition on the order of 1 nW. From this characterization, we

assign a correction factor FC = 1.0004(4), to cover the full range of variation for the used powers.

4.8.1.4 Zeeman shifts in the 3P1 probe

The Zeeman shift on the different ground and excited states changes the effective atom-cavity

detuning by a few hundred kHz, which is much smaller than the cavity detuning δC 1. The typical mag-

netic field that we use is 95 mG, as calibrated using the splitting between the peaks in the superradiant

pulses [93][G] and corroborated by the splitting measured in Fig. 2(a), for example. Taking this effect into

account we expect a very small correction to the ratio of phase shifts.

4.8.1.5 Higher order corrections on the∆ϕ1 measurement

Higher order corrections on the cavity frequency shift manifest in δω1 as δω1 = N g 2
1 /δC 1(1 −

2N g 2
1 /δ2

C 1) [182][G]. We note that this correction is N -dependent. For typical experimental parame-

ters we have 2N g 2
1 /δ2

C 1 ≲ 1×10−3. We calculate the correction factor FC based on an independent atom

number calibration using florescence imaging, while its uncertainty is estimated assuming extreme 50%

fluctuations in typical N .
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Effect 1−FC Uncertainty on FC

Polarization uncertainty −3×10−4 3×10−4

Atomic resonance uncertainty 6×10−3 6×10−3

Cavity resonance drift −8×10−3 6×10−3

Zeeman shift 2.3×10−3 5×10−4

Higher order corrections 4×10−4 2×10−4

Table 4.4: Correction factors FC for the measurement of ∆ϕ0.

4.8.2 Corrections on the phase shift∆ϕ0

In this section we discuss effects that affect the measured atomic-like phase shift ∆ϕ0 on the mil-

lihertz transition at 698 nm. The magnitude of the correction factors FC are shown in Table 4.4.

4.8.2.1 Polarization uncertainty in the 3P0 probe

The polarization uncertainty correction takes into account any possible misalignment between

the probe polarization and the applied magnetic field that defines the quantization axis. Based on the

measurements for ∆ω1 presented before, we model in a very similar way what the effect would have

been for the atomic phase measurement∆ϕ0 with a typical 3 mG uncertainty on the transverse magnetic

fields.

4.8.2.2 Atomic resonance uncertainty in the 3P0 probe

The clock transition is addressed with light from a state-of-the-art laser, used in the 87Sr optical

lattice clock experiments at JILA [98, 322, 350]. To determine the atomic resonance, we perform Rabi

spectroscopy, measuring the excitation fraction versus the probe light’s frequency. The probe frequency

is changed by changing the in-fiber EOM driving frequency. For sufficiently low power, we are able to

determine the central frequency with less than 10 Hz uncertainty, but the full-width at half maximum of

the spectroscopic feature is typically between 50 Hz and 100 Hz, similar to the data shown in Fig. 2(b).

The frequency might be shifted from the natural 87Sr frequency due to various atomic frequency shifts,
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such as DC Stark shifts, Doppler shifts, collective shifts, and differential AC Stark shifts from a lattice

imperfectly tuned to the clock states magic wavelength. However, we have already fully characterized all

these possible cock transition frequency shifts to be well below 100 Hz in Ref. [93][G].

Because we are using two symmetric tones to address the atomic transition, the associated correc-

tion factor FC to the measured phase shift scales as (1−(
δL0/δp0

)2) with δL0 the detuning from the tones

central frequency to the atomic transition, as defined earlier. Note that this effects increases the absolute

value of the measured phase shift ∆ϕ0, as can be seen in Fig. 2(b). Assuming that |δL0|/2π< 100 Hz but

is equally likely to take on any value in this range, we calculate a correction factor centered on the rms

average of FC (δL0) over possible values of δL0, accompanied by an uncertainty large enough to cover the

full range.

4.8.2.3 Cavity resonance uncertainty in the 3P0 probe

By probing and subtracting the phase shifts for two consecutive TEM00 modes, one on resonance

with the atomic clock transition, we guarantee that any instantaneous cavity length fluctuation will be

instantaneously removed from our measurement. However, if the initial cavity detuning from the clock

transition, δC 0, is non-zero, the phase shift will be modified by a factor (1+ (δC 0/(κ0/2))2), as noted in

Eq. 4.9. Typically, we can align the initial cavity length and minimize cavity drifts such that |δC 0|/2π ≤

10 kHz during each of the measurement in 4.3(b). We had verified analytically and experimentally what

would be the effect of a cavity resonance drift, with good agreement. For example, Fig. 4.4(d) shows the

relative change in ∆ϕ0 as δC 0 is intentionally changed. For this measurement, we are able to change

the cavity detuning by changing the drive voltage on the PZTs after the atoms are already loaded in the

lattice, as shown in the inset. We first measure∆ϕ0 for a variable detuning δC 0 and then change the cavity

length to a reference detuning δref
C 0, which allow us to remove unwanted effects, such as atom number

drifts, from our measurements as we did when we analyze the impact of transverse components of the

magnetic field on the phase measurements. Based on these results, and a precise determination of the

cavity FSR, we estimate a correction of less than 1% if we average over cavity detunings below a maximum

10 kHz drift. In fact the drifts in the zero-power value for ∆ϕ0/∆ϕ1 reported in 4.3(b) are consistent with
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cavity frequency misalignment within our 10 kHz uncertainty.

4.8.2.4 Zeeman shift in the 3P0 probe

The small magnetic field present to define the quantization axis generates a Zeeman splitting be-

tween the two ground states, of typical magnitude 100 Hz, smaller than the probes splitting 2δp0/2π =

2 kHz. We can accurately calibrate the magnetic field by observing the splitting between superradiant

pulses, as in Ref. [93][G]. By using two symmetric tones to address the clock transition, the phase shift

will be only second order sensitive to the Zeeman splitting. We calculate this value and assign and un-

certainty based on a 5% uncertainty on the determination of the magnetic field along the quantization

axis.

4.8.2.5 Higher order corrections on the∆ϕ0 measurement

Higher order corrections on the four-tones phase shift method are derived in Eq. (4.9). The second

correction factor ((2δc /κ)2) is the cavity resonance drift considered above. The other higher order terms,

remnant from the small angle approximation, contribute at the level of 10−4 for typical atom numbers,

obtained through an independent calibration of our fluorescence imaging. Its uncertainty is estimated

assuming extreme 50% fluctuations in typical N .

4.8.3 Corrections on the ratio
(
∆ϕ0/∆ϕ1

)
In this section we discuss effects that modify both the measured atomic-like phase shift ∆ϕ0 on

the millihertz transition at 698 nm and the cavity phase shift ∆ϕ1 on the 7.5 kHz transition at 689 nm.

The magnitude of the correction factors FC are shown in the following table.

4.8.3.1 Offsets in∆φ0,1

The effect of non cancelled offsets in our measurements is to alter the measured values of∆φ0 and

∆φ1. In particular, because the desired phase shifts are collective, while the offset are not, it can cause

an N -dependent correction to the ratio ∆φ0/∆φ1.
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Effect 1−FC Uncertainty on FC

Offsets in ∆φ0,1 0 1×10−2

Axial inhomogeneous probe coupling 0 2×10−3

Differential radial average 7×10−5 1×10−5

Finite axial confinement/
resolved carrier correction

−6.2×10−2 4×10−3

Ground state mF distribution −1×10−3 1×10−3

Lifetime in the lattice −2×10−3 2×10−3

Cavity birefringence −1.2×10−2 5×10−3

Table 4.5: Correction factors FC for the measurement of the ratio ∆ϕ0/∆ϕ1.

Assuming single atom phase shifts ∆φa
0,1 and offsets ∆φoff

0,1 on each measurement, we can express

the desired ratio as

∆φ0

∆φ1
= N∆φa

0 +∆φoff
0

N∆φa
1 +∆φoff

1

. (4.14)

For the three different sets shown in 4.3(b) we measured low power sets with no atoms in the cavity,

and verified that ∆φoff
0,1 = 0 within error bars. To be specific, we typically measure ∆φoff

0 = 0(0.25) mrad

and ∆φoff
1 = 0(4) mrad, while the low power phase shifts for N = 80×103 atoms are approximately ∆φ0 =

40 mrad and ∆φ1 = 400 mrad. Therefore, the offsets do not alter the measured ratios at the 1% level,

limited by the uncertainty in our determinations of the offsets.

We consider in this case the correction factor to be FC = (∆φa
0 /∆φa

1 )/(∆φ0/∆φ1) that for small

offsets (∆φoff
0,1 ≪ N∆φa

0,1) is approximately FC = 1+ (
(∆φoff

1 /∆φa
1 )− (∆φoff

0 /∆φa
0 )

)
/N . For the values just

quoted and summing in quadrature the uncertainties for each phase shift, we have FC = 1.00(1), which

represents the largest single uncertainty contribution to the final FC . It is worth noticing that the un-

certainty in the phase shifts measurements can potentially be improved by, for example, increasing the

probe detunings and their power, and improving the final quantum efficiency of the detection system.
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4.8.3.2 Axial inhomogeneous probe coupling

The optical lattice at λtrap = 813 nm, the probe at λ1 = 689 nm and the probe at λ0 = 698 nm all

form standing waves in the cavity that are all incommensurate with each other. Focusing on just the two

probes, the couplings vary approximately as g 2
0/1 = g 2

m,0/1 cos2
(
2πz/λ0,1 +ψ0/1

)
where z is the location

along the cavity axis, z = 0 is at the center of the cavity, and the spatial phase of the standing waves are

ψ0/1 = 0 or π/2, depending the relative parity of the modes. The maximum coupling at an antinode is

g 2
0/1,m .

As one moves along the cavity axis, the standing wave of the two probes continuously transform

every 13 µm from being aligned (having antinode aligned to antinode) to anti-aligned (having anitnodes

aligned to nodes.) As a result, the probes do not interact with exactly the same set of atoms. However the

atoms are loaded into lattice sites spanning approximately 0.6 mm along the cavity axis (rms diameter)

so that one expects the reduction in the coupling due to spatial averaging to be nearly identical and thus

cancel in the ratio of the measured couplings. Assuming atoms are only located every λtrap/2, and are

spread uniformly along 0.6 mm, the ratio of averaged couplings is modified by < 2×10−3. If a more rea-

sonable Gaussian envelope with standard deviation 0.3 mm (rms radius) is used to describe the loading

of the lattice sites, the ratio of averaged couplings is changed by many orders of magnitude less. Here,

we conservatively apply a correction FC = 1 with an uncertainty on FC of 2×10−3.

4.8.3.3 Radial inhomogeneous probe coupling

The measured phase shifts are also modified when averaging over the radial positions of the atoms

due to the finite difference in the probe mode waist sizes w0 and w1 characterizing the 1/e2 in intensity

radius of the Gaussian TEM00 probe modes (see Table 4.1). The ratio of waists scales as w1/w0 =λ1/λ0 ≈

1−1.29×10−2. For an atom at a distance r away from the cavity axis, the ratio of the couplings g 2
0 /g 2

1 is

modified by the factor f compared to its on-axis value

f = e
−2

(
r
w̄

)2
(

w2
1−w2

0
w̄2

)
, (4.15)
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where w̄ =p
w0w1 is the geometric mean of the waists. For scale, at the rms thermal radius of the atomic

cloud σr = 14 µm, the correction factor is f = 1.0007. After averaging over the atomic radial distribution,

the averaged coupling g 2
0 and g 2

1 are both reduced by about 4% but the ratio g 2
0 /g 2

1 is changed by less

than 10−4. We expect that the rms thermal radius is common to both measurements because we do

interleaved nondestructive probes and because we interpolate to zero probe power so that any potential

mechanical forces on the atoms is also interpolated to zero.

4.8.3.4 Finite axial confinement and resolved carrier correction

The largest systematic correction that must be applied arises from the finite localization of the

atoms along the axial direction. The atoms are trapped in the Lamb-Dicke regime along the cavity axis

with spacing dictated by the lattice wavelength (813 nm). The probe tones almost exclusively interact

with the well-resolved motional carrier transition since δp0 ≪ ωz . Lastly, because of the finite localiza-

tion of the atomic wave-function (i.e. finite Lamb-Dicke parameter) the effective strength of the carrier

transition (i.e. the effective g 2
0 is reduced by an estimated 6.2(4)% for which we apply a correction).

In order to evaluate the apparent modification to g 2
0 from this effect, we estimate the probabil-

ity distribution P (n) of finding an atom in the nth axial vibrational level. The estimate is made using

sideband spectroscopy measurements as shown in Fig. 4.1(c), following Ref. [363]. Based on this prob-

ability distribution, we calculate the average correction to g 2
0 . We model the light-matter coupling as

g 2
0 (φ, ẑ) = g 2

0,m cos2(kp ẑ +φ), where kp is the probe wave-vector, ẑ is the harmonic oscillator position

operator, g0,m is the value of g0 at a probe anti-node, and φ is a uniformly distributed phase between 0

and 2π that accounts for the inhomogeneous coupling of the trap atoms to the probe. This is justified as

the probe and the axial atomic distribution are incommensurate and the beating length is much shorter

than the cloud extent.

Furthermore, the radial spreading of the cloud means that each atom will have a slightly different

axial trap frequency. To leading order, an atom at distance r from the center will have an axial frequency

ωz (r ) =ωz,0(1− (r /wtrap)2), where ωz,0 is the maximum axial frequency (ωz,0/2π= 230(1) kHz) and wtrap

is the trap waist (wtrap = 79.7 µm). As both directions are decoupled, we have that the average axial
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frequency over the atomic ensemble is 〈ωz〉 = ωz,0(1− (〈r 2〉/w2
trap). For a Gaussian radial density dis-

tribution profile, we have 〈r 2〉 = 2σ2
r = 2kB Tr /(mω2

r ), with Tr the radial temperature determined from

the motional sideband fit, kB is the Boltzmann constant, ωr the radial trap frequency, and σr the rms

thermal radius of the cloud along its radial direction.

We calculate the average value 〈g 2
0〉 over this distribution for this effective axial trap frequency

〈ωz〉, that is the value that enters in our measurement result for ∆ϕ0, as

〈g 2
0〉 =

n=N z∑
n=0

1

2π

∫ 2π

0
P (n)〈n|g 2

0,m cos2(kp ẑ +φ) |n〉dφ, (4.16)

where Nz is the maximum harmonic level on the trap (Nz ∼ 17) [363] and |n〉 are the eigenstates of the

unperturbed harmonic potential along the z-direction. We follow a similar procedure for the 689 nm

probe, but taking into account that we are probing every transition, i.e. we sum over all possible initial

and final states correcting the relative detuning between each harmonic oscillator state. Based on the re-

constructed probability distribution P (n), we obtain a correction factor FC = 1.062(4), dominated by the

uncertainty on the fitted temperature on the axial and radial coordinates. This is the biggest correction

we apply to the measured ratio
(
∆ϕ0/∆ϕ1

)
.

We emphasize that for the 3P1 probe, where the probe detuning is much bigger than the trap fre-

quency (δC 1 ≫ωz ), the vibrational degrees of freedom do not play a significant role. However, the aver-

age over the phase ϕ in Eq. 4.16 gives a 1/2 reduction on g 2
1 , that is also present in the g 2

0 term, making

this a common mode effect whose impact is highly suppressed. Imperfect cancellation of this factor is

taken into account on the previous section Axial inhomogeneous probe coupling.

4.8.3.5 Ground state mF distribution

The initial distribution among the different magnetic mF sub-levels in the ground states is ex-

tremely important. For example, if there are atoms in any other mF state other than ±9/2, both ∆ϕ0 and

∆ϕ1 (or the measured ∆ω1) will be affected. Measuring the frequency splitting between the superradi-

ant pulses on the clock transition [93][G], confirmed that the initial optical pumping efficiency is at least

95% to the ±9/2 states. In order to estimate the correction to the dispersive phase shift ratio, we assume
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a conservative bound of 5% of the atoms in a wrong state. We model the measured ratio
(
∆ϕ0/∆ϕ1

)
when 5% of the atoms are allowed to be in any of the other mF levels as a function of the detuning δC 1.

Because the position of the different hyperfine levels on the 3P1 state relative to the cavity modes (hyper-

fine splitting is comparable to cavity free spectral range - see Fig. 4.1(b)), and the fact that each transition

has a different set of Clebsch-Gordan coefficients, the correction factor is highly sensitive to the cavity

detuning δC 1. A detail explanation follows below.

We consider a realization of the atomic distribution among the ground hyperfine state levels PG

that contains the list of probabilities of finding an atom in each ground state mF . Ideally, all the atoms

are in the stretched states, such that PG = {1/2,0, ...,0,1/2}, for the set mF = {−9/2,−7/2, ...,7/2,9/2}. For

the phase shift on 1S0 →3P0 transition at 698 nm, ∆ϕ0, the new phase shift for an arbitrary distribution

PG on the mF manifold is

∆ϕ0,{mF } =
mF=9/2∑

mF=−9/2
PG (mF )

4N (c0
π(mF ))2g 2

0

κ0δp0
, (4.17)

where c0
π(mF ) is the Clebsch-Gordan coefficient for π-polarized light probing the mF hyperfine ground

state on the 1S0 →3P0 transition, populated with probability PG (mF ).

For the phase shift at the 1S0 →3P1 transition at 689 nm, ∆ϕ1, the equivalent modification is

∆ϕ1,{mF } =
∑

k={0,1}

mF=9/2∑
mF=−9/2

PG (mF )
2πN g 2

1

κ1
(−1)k

×
(

(c0
π,9/2(mF ))2

δC 1 −k ×∆FSR,1
+

(c0
π,11/2/2(mF ))2

δC 1 −∆11/2 −k ×∆FSR,1
+

(c0
π,7/2(mF ))2

δC 1 −∆7/2 −k ×∆FSR,1

)
,

(4.18)

where c0
π,9/2(mF ), c0

π,9/2(mF ) and c0
π,9/2(mF ) are the Clebsch-Gordan coefficients for theπ-polarized tran-

sition on the F = 9/2,11/2,7/2 hyperfine manifolds for each mF state, populated with probability PG (mF ).

Note that the sum subtracts the shifts on the two cavity modes (k index), as shown in Fig. 4.1(b), and the

signs on ∆9/2 and ∆7/2 are taken to be consistent with the cavity detuning definition (δC 1).

Corrections on the measured ratio are shown in Fig. 4.4(e) for the case where the fractional pop-

ulation on the ±7/2 states is ε, on the ±5/2 states is ε2, on the ±3/2 states is ε3, and on the ±1/2 states

is ε4. We determine the value of FC as the one for ε= 0.05, and its uncertainty the one associated to the

spread in order to cover up to ε = 0.1, giving FC = 1.001(1). We point out again the dependence on the
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cavity detuning to the 3P1 manifold, δC 1, on the correction factor FC on Fig. 4.4(e) inset for ε= 0.05. For

the value we choose to operate (δC 1/2π= 277.5(8) MHz) we are near the maximum correction factor, but

we gain in insensitivity with respect to the cavity detuning.

4.8.3.6 Finite lifetime on the optical lattice

Any of our measurement sequences that involve a few consecutive measurements per experimen-

tal trial are susceptible to atom loss from the trap. In particular, the lifetime in the lattice is τlatt ∼ 500 ms

(limited by parametric heating), while typical measurements on the clock transition last Tm ∼ 20 ms

typically. By combining 5 of these measurements, as in 4.3(b), we can use the different outcomes and

partially cancel the effect of the trap lifetime, by retaining a correction 1+α(Tm/τlatt)
2, where α can

vary from 0 to 1 according to the way we combine the measurement outcomes (see next sections). The

magnitude and uncertainty on the correction contemplates a uniform spread of α.

4.8.3.7 Cavity birefringence

In an ideal atom-cavity system, light polarized along the atoms’ quantization axis will only inter-

act with π transitions. However, the presence of cavity birefringence featuring normal modes misaligned

with this axis leads to a coupling between π-polarized light and atomic transitions normally driven by

circularly polarized light that is quadratic in the birefringent energy splitting. This effect introduces cor-

rections to both phase shift measurements which do not cancel in their ratio, leading to a systematic

on the ratio measurement. Calculating these corrections requires modifying the cavity transfer function

shown in Eq. (4.4).

In the presence of cavity birefringence, a single longitudinal mode splits into two resonances char-

acterized by polarization eigenmodes â±, such that

Ĥcav = (ωc − δb

2
)â†

−â−+ (ωc + δb

2
)â†

+â+ (4.19)

for birefringent splitting δb . Since the probe beam polarization and quantization axis are aligned to a

common vertical direction (x̂ as in Fig. 4.1(a)), it makes sense to express these eigenmodes in this basis
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as well. This is accomplished using two parameters θb ,ϕb :

â− = [
cos(θb/2)

]
v̂ + [− sin(θb/2)e−iϕb

]
ĥ

â+ = [
sin(θb/2)e iϕb

]
v̂ + [

cos(θb/2)
]

ĥ,

(4.20)

such that light along ĥ (ŷ as in Fig. 4.1(a)) and v̂ polarizations interact with σ and π transitions re-

spectively. The above expressions are essentially Jones vector representations of the eigenmodes; cor-

respondingly, θb and ϕb can be thought of as spherical coordinates for the eigenmodes on the Poincaré

sphere with poles defined by h and v polarizations.

As long as the atoms occupy stretched states (mF = ±9/2), there is only one σ transition. There-

fore one can unambiguously define collective spin operators along the two transitions, denoted by J±
π/σ =∑N

i=1σ
±
i ,π/σ and J z

π/σ = 1
2

∑N
i=1σ

z
i ,π/σ for single particle operators σ∗

i ,π/σ. We go into the rotating frame of

the atoms, assuming the two transitions are degenerate in frequency, to construct the following Hamil-

tonian:

Ĥ =
[(
δc−δb

2
cosθb

)
v̂†v̂+(

δc+δb

2
cosθb

)
ĥ†ĥ+δb

2
sinθb

(
ĥ†v̂e iϕb+ĥv̂†e−iϕb

)]+[
gπ

(
v̂ Ĵ+π+v̂† Ĵ−π

)+gσ
(
ĥ Ĵ+σ+ĥ† Ĵ−σ

)]
.

(4.21)

Analogously to the derivation at the start of this document, one can derive Optical Bloch equations to

analyze mean-field behavior (O = 〈Ô〉). Assuming a vertically polarized cavity drive vi (t ) at detuning δp

from atomic resonance, these equations are given by

v̇ =−i
[(
δc − δb

2
cosθb

)
v + (δb

2
sinθb e−iϕb

)
h
]
− i gπ J−π − κ

2
v +p

κm vi (t )

ḣ =−i
[(
δc + δb

2
cosθb

)
h + (δb

2
sinθb e iϕb

)
v
]
− i gσ J−σ − κ

2
h

J̇−π = 2i gπv J z
π−γ⊥π J−π J̇−σ = 2i gσh J z

σ−γ⊥σ J−σ

J̇ z
π = i gπ

(
v† J−π − v J+π

)
−γπNπ J̇ z

σ = i gσ
(
h† J−σ −h J+σ

)
−γσNσ,

(4.22)

where Nπ/σ represents the number of atoms excited along the π/σ transition. In the weak probe limit,

both of these go to 0 as there are no excited atoms available to decay.

From these equations, one can determine how the input probe vi (t ) = ṽi e−iδp t changes in trans-

mission through the atom-cavity system. In general for a birefringent cavity, the transmitted light’s po-

larization may be different from the probe due to different resonance conditions for the two normal
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polarization modes. In our experiment, we beat the transmitted light with a vertically polarized local

oscillator to measure the light in heterodyne, so the signal of interest is the vertical component of any

transmitted light. We are therefore interested in the transfer function Tv (δp ), defined by ṽt = Tv (δp )ṽi .

It turns out that Tv can be expressed in terms of the following transfer functions, which decouple the

horizontal and vertical excitations:

Tπ(δp ) = 1

1− i (
δp−δc+δb /2 cosθb

κ/2 )+ NCπγπ/2
γ⊥π−iδp

Tσ(δp ) = 1

1− i (
δp−δc−δb /2 cosθb

κ/2 )+ NCσγσ/2
γ⊥σ−iδp

.

(4.23)

Then the full transfer function is given by

Tv (δp ) = Tπ(δp )

1+ (δb
κ sinθb)2Tσ(δp )Tπ(δp )

. (4.24)

Note that the transfer function does not depend on the azimuthal angle ϕb ; this holds as long as the

transmitted light is only measured along v . For small birefringent splitting, Fv can be calculated per-

turbatively by expanding in powers of (δb
κ sinθb)2. It follows that leading order corrections to the cavity

shifts will be quadratic in δb .

Using a simple polarimetry setup consisting of PBSs, waveplates, and photodiodes, we were able

to measure δb0/κ0 = +0.16(2), δb1/κ1 = +0.16(2), and θb = 30(2)◦. This implies (δb
κ sinθb)2 = 0.006(2)

along both transitions, justifying a perturbative treatment. From this, we can calculate the modified

shifts and derive a correction factor for the shift ratio∆ϕ0/∆ϕ1, which turns out to be FC = 1.012(3). This

value accounts for all differential shift measurements, as well as the full hyperfine landscape.

Considering the effect of cavity birefringence opens up new potential sources of uncertainty. First,

one might imagine that an imperfect optical pumping scheme might conspire with the cavity’s bire-

fringence to produce larger corrections than previously discussed. In fact, numerical calculations show

the two effects are largely decoupled and can be treated separately. Second, if the local oscillator is

misaligned from vertical polarization by some small angle α, all phase shifts will receive a linear cor-

rection proportional to α δb
κ sinθb . However, the experiment’s differential probe design leads to partial

cancellation of these shifts. Assuming α is uncertain by 5◦, the additional uncertainty on FC is at most
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0.003. Finally, if the two birefringent normal modes exhibit slightly different linewidths, the optical Bloch

equations change accordingly and lead to further phase shift modifications. Data used to determine

δb allows us to constrain any linewidth difference to δκ ≲ 0.05κ, which limits the correction on FC to

≲ 0.001. Incorporating these additional sources of uncertainty into the birefringence correction factor

gives FC = 1.012(5).

This experiment was performed before the discovery of cavity birefringence in our system. In

principle, for future experiments one could mitigate the effect of this systematic by aligning all beam

polarizations and the atoms’ quantization axis along the birefringent eigenmode axis. If the eigenmodes

are linearly polarized, the probe beam will only excite one of the two modes, completely removing any

birefringent coupling. Otherwise, any ellipticity the eigenmodes possess will limit the ability to suppress

the coupling with a linearly polarized probe beam, which is necessary for this experiment. In our system,

the effect of birefringence could be suppressed by approximately ∼ 17 by such an alignment.

4.8.4 Summary - Full systematic correction

Taking all this effects into account we infer a correction factor FC = 1.074(16) on the measured ratio(
∆ϕ0/∆ϕ1

)
. Its value is determined by multiplying the systematic corrections detailed in Tables 4.3, 4.4,

and 4.5, while its uncertainty is properly summed in quadrature. The uncertainty on FC is dominated,

mostly, by technical issues, such as the uncertainty in the clock atomic frequency, the cavity alignment

with the atomic resonance, and alignment of the probe polarization with respect to the cavity eigen-

mode axis considering birefringence, which can be further improved. Furthermore, its uncertainty is

also dominated by technical aspects such as signal to noise in our data and its influence on determining

the phase shifts offsets, as well as uncertainty in the atomic transition frequency and cavity alignment

on the clock transition.

4.9 Statistical estimators of the zero-power, zero-loss phase shift ratio

In this section, we will discuss the details of the low power measurement presented in 4.3(b). Ab-

sent systematic corrections, it remains to determine the zero-probe-power value for the ratio
(
∆ϕ0/∆ϕ1

)
,
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that we will name
(
∆ϕ0/∆ϕ1

)
P=0.

We measured the ratio of the atomic phase shift to cavity frequency shift while simultaneously

decreasing both 698 and 689 probe powers, P0 and P1 respectively, and taking longer sets to accumulate

similar statistics for lower optical power measurements, as expected from the photon-shot noise scaling.

The ratio is expected to strongly depend on both powers, although the maximum 689 nm optical power

was already low enough to be a significant effect, according to the results shown in panels b and c in

Fig. 4.4. We measure ∆ϕ0 and ∆ϕ1 in an interleave form, to gain insensitivity with respect to lattice

lifetime. We realize five measurements every Tc = 25 ms, as shown in 4.3(b), interleaving three∆ϕ1 short

measurements (∼ 2 ms) with two longer∆ϕ0 measurements (∼ 25 ms). Upon further detailed inspection,

the ratio of the average of two∆ϕ0’s and the average of the three∆ϕ1’s measurements will have the same

linear sensitivity to atom loss, therefore a ratio of the two quantities will be quadratically sensitive to

Tc /τlatt.

The 698 nm clock transition probe could excite atoms to |e0〉, and those atoms will not be counted

by the following dispersive 689 nm probe. We assume, in the weak probe power limit, that each clock

transition probe excites a fraction β0 of atoms into |e0〉 every Tc /2 interval while they are being probed.

Reversely, if there are atoms in the excited state, a fraction β0 is transferred to
∣∣g〉

. For the 689 nm probe,

we assume an excitation fraction β1, but also that any atom in the excited state is reset to the ground

state before the following ∆ϕ0 measurement, as the spontaneous emission decay time is only 21 µs.

Furthermore, losses from the lattice are treated as an exponential loss decay with time constant τlatt,

which was experimentally verified repeatedly.

We use the measurement outcomes of the different ∆ϕ0 and ∆ϕ1 measurements to construct dif-

ferent estimators for the zero-power ratio
(
∆ϕ0/∆ϕ1

)
P=0. Examples of these estimators, to name a few,
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are

E1 =3

2

(
∆ϕ1

0 +∆ϕ2
0

∆ϕ1
1 +∆ϕ2

1 +∆ϕ3
1

)

E2 =2

(
∆ϕ1

0 +∆ϕ2
0

∆ϕ1
1 +2∆ϕ2

1 +∆ϕ3
1

)

E3 =4

(
∆ϕ1

0 +∆ϕ2
0

∆ϕ1
1 +6∆ϕ1

1 +∆ϕ3
1

)
,

(4.25)

where the super-index orders each of the five measurements, i.e. ∆ϕ2
1 is the second ∆ϕ1 measurement.

For low optical power β0 (β1) is proportional to the probe optical power P0 (P1) on the clock tran-

sition (7.5 kHz transition) and satisfies β0 (β1) ≪ 1). In this case we can compute how populating the |e0〉

and |e1〉 states during the measurement sequence affects the estimators, for example,

E1 =
(
∆ϕ0

∆ϕ1

)
P=0

(
1−β0 +2β1 − 5

6
(Tc /τlatt)

2 +O (
β0,β1,Tc /τlatt

))
E2 =

(
∆ϕ0

∆ϕ1

)
P=0

(
1−β0 +2β1 − 1

2
(Tc /τlatt)

2 +O (
β0,β1,Tc /τlatt

))
E3 =

(
∆ϕ0

∆ϕ1

)
P=0

(
1−β0 +2β1 +O

(
β0,β1,Tc /τlatt

))
,

(4.26)

whereO
(
β0,β1,Tc /τlatt

)
refers to higher order terms in combinations ofβ0,β1, and Tc /τlatt, and

(
∆ϕ0

∆ϕ1

)
P=0

is the zero-power ratio that we want to determine.

In 4.3(b) we show the result for the so-called E3 estimator above and show quadratic polynomial

fits in the optical power P0 for the clock transition (β0 ∝ P0). In Table 4.6 we show the fitted
(
∆ϕ0

∆ϕ1

)
P=0

for

different estimators and fit methods, as a way to show a consistent method-independent value. The data

is not corrected by any systematic. We also point out that we did not take β1 or P1 into consideration

for either of these fits, as doing so does not significantly modify the other fitted parameters, because the

maximum value that P1 takes on all the 4.3(b) measurements is already low enough to cause significant

population in |e1〉 .

The results are consistent with a zero power crossing
(
∆ϕ0

∆ϕ1

)
P=0

= −8.95(9)×10−2. We finally note

that for single measurement instances as represented by the red, green and blue data sets, independently

of the estimators we compute, the data is spread consistently with a 10 kHz uncertainty on the alignment

of the cavity resonance frequency to the clock atomic transition (δC 0), as described previously. A zoom
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Estimator Fit method/origin
(
∆ϕ0

∆ϕ1

)
P=0

×10−2 χ2
ν

Estimator E1 Quadratic on P0. Mean value for crossing. -8.92(6)

Estimator E2 Quadratic on P0. Mean value for crossing. -8.92(6)

Estimator E3 Quadratic on P0. Mean value for crossing. -8.95(6)

Estimator E3 Linear on P0 (P0 ≤ 400 pW). Mean value for crossing. -8.95(6)

Estimator E3

(removing 7 ms data)
Quadratic on P0. Mean value for crossing. -8.95(6)

Estimator E3

(only for red set)
Quadratic on P0. -8.86(6) 0.7

Estimator E3

(only for green set)
Quadratic on P0. -9.02(7) 1.2

Estimator E3

(only for blue set)
Quadratic on P0. -8.95(4) 0.6

Estimator E3 Quadratic on P0. Using a global fit to the three sets. -8.95(4) 1.1

Table 4.6: Fits for several estimators for the ratio
(
∆ϕ0/∆ϕ1

)
.

in of the data presented in 4.3(b) is shown in Fig. 4.4(f). Fits are for the estimator E3 for each set, and the

black solid line is a global fit for all the data sets.

4.10 Constraining N dependent effects on∆ϕ0/∆ϕ1 measurements.

As discussed on a few of the systematic corrections presented previously, sometimes we can find

atom number dependent corrections that do not completely cancel when measuring the ratio∆ϕ0/∆ϕ1.

For example, when discussing the independent phase shifts offsets or higher order corrections.

In order to check the influence of these effects, and lacking an underlying model to believe they

would impact our measurement, we decided to perform ∆ϕ0/∆ϕ1 measurements for different atom

number N . These measurements are presented as an inset in 4.3(b).

For that set, our phase shifts measurements present some non-zero phase shifts offsets that were

properly measured. The most simplistic model, as introduced in Eq. 4.14, serves us as a proxy to further

investigate any unknown variations with N and 1/N on the ratio measurements. All in all, by considering

different variations of these fits, taking into account the N = 0 point and the offsets we measured, we find

agreement at the 2% level with the weighed average of the measured phase shift ratio (the value that we
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would assign for the ratio if no N dependent effect were present). This uncertainty is dominated by the

signal to noise ratio on the current data set.

Therefore, we constrain any unknown N dependent effect on the ratio at the 2% level, which is at

the level of our final uncertainty on the phase shift ratio and linewidth ratio. We consider this experiment

as a sanity check, but we do not use this independent constraint to modify our final uncertainty.

4.11 Conclusion

In conclusion, we show that cavity enhanced dispersive measurements can be used to realize spec-

troscopic measurements directly on ultranarrow optical transitions. We report state-dependent phase

shifts on the 87Sr clock transition, that are notably nondestructive, allowing for continuous tracking of

the transition frequency and potentially allowing laser stabilization to these transitions. With further im-

provements on our detection setup, this scheme could be used as an atom counting tool directly on the

clock transition, in contrast to other systems [354–358][242][G]. This tool would be particularly useful for

new optical lattice clocks built with optical cavities. Moreover, our setup represents a potential path for

laser stabilization to ultranarrow lines such as in a continuous superradiant laser.

Finally, we report a lifetime resolution of 30 µHz, which implies we could determine excited state

lifetimes of up to 90 minutes in comparable integration time ~100 ms. With reasonable improvements

in our setup, we could expect to determine up to 15 hour lifetimes, i.e., by reducing δp0 to increase the

signal, if no systematic effects are taken into account. For instance, it could be used to directly measure

the magnetic-field-dependent linewidth of bosonic isotopes in Sr [105, 256], determine the Sr 3P2 excited

state lifetime or even longer lived states such as the predicted ~10 µHz nuclear transition on 229Th being

pursued as a next generation clock [369–372], or obtain data on exotic systems of interest for atomic

structure calculations, such as highly charged ions [342, 373, 374], in cases where suitable transitions

can be found.



Chapter 5

Exploring dynamical phase transitions with cold atoms in an optical cavity

5.1 Introduction

Arrays of ultracold alkaline-earth atoms with narrow linewidth optical transitions are the basis

of some of the most precise atomic clocks [317] and are also used for quantum simulation [375] and

quantum information processing [376]. As we saw in Ch. 4, placing these atoms inside an optical cavity

opens up new avenues for performing precision measurement. Similarly, collective cavity QED on long-

lived transitions provides a means of investigating collective (many-body) quantum physics in controlled

environments. Such ensembles of atoms in cavities have been proposed for studying collective quantum

spin models, where the atomic internal levels mimic a spin degree of freedom and interact through long-

range interactions tunable by changing the cavity parameters [68, 377, 378][95][G]. Non-classical steady-

state phases arising from the interplay between atom-light interactions and dissipation of light from

the cavity have previously been investigated [32–36, 76, 379]. These systems also offer the opportunity

to study so-called “dynamical phases” of matter that are precluded from existence at equilibrium but

can be stabilized by driving a system out of equilibrium [48, 115, 380–382], as demonstrated by recent

experiments [120, 121, 383–386]. These phases can also display universal behaviors akin to standard

equilibrium phase transitions [379, 387, 388].

The work described in this chapter (which can be found at [108][G]) represents an advance towards

the goal of simulating quantum magnetism in an optical cavity. In particular, we use an ensemble of

about a million 88Sr atoms in an optical cavity to simulate a collective Lipkin-Meshkov-Glick model [109,

110], an iconic model in quantum magnetism, and report the observation of distinct dynamical phases
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of matter in this system. Our system allows us to probe the dependence of dynamical phase transitions

on system size, initial state and other parameters. These observations can be linked to similar dynamical

phases in related systems, including the Josephson effect in superfluid helium [389], or coupled atomic

[112] and solid-state polariton [114] condensates. The system itself offers potential for generation of

metrologically useful entangled states in optical transitions, which could permit quantum enhancement

in state-of-the-art atomic clocks [98, 317].

More broadly speaking, this work represents the first of a series of experiments from our group

exploring nonequilibrium phases of dynamics and their associated phase transitions, resulting in work

described in Ch. 6, Ch. 7, and part of Ch. 8. We will return to this work in future chapters to compare and

contrast the different models studied.

5.2 What is a dynamical phase transition?

The concept of a phase of matter, along with the notion of transitions between such phases, has

conventionally been used to describe behavior of a system in thermodynamic equilibrium. For some def-

inition of an order parameter characterizing the thermodynamic ground state, phase transitions occur

when the order parameter discontinuously jumps (a first-order phase transition) or exhibits a nonana-

lytic critical point (a second-order phase transition) as a function of some parameter of the system such

as temperature or an applied external field. Equilibrium physics already encompasses a vast breadth of

physical systems with rich behavior and many unanswered questions. Considering out-of-equilibrium

systems expands the number of possible systems significantly and have received much interest in recent

years.

We can expand the notion of phase transitions to encompass nonequilibrium systems as well.

Generically, a “nonequilibrium phase transition” is characterized by the existence of a critical point for

some broader definition of an order parameter, which now no longer has to describe the thermodynamic

ground state but can be some generalized observable that separates nonequilibrium “phases” with dis-

tinct properties. Such systems have been described in many different contexts. In driven open systems,

nonequilibrium phases are signaled by different steady states that depend on system parameters such
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as pump or loss rates [34–36, 390–392], independent of initial conditions. For the scope of this thesis, I

will refer to these transitions as dissipative or driven-dissipative transitions.

Here, we focus on a different class of systems: those featuring nonequilibrium phase transitions in

a closed system. In these cases, which we will call dynamical phase transitions (DPTs),1 the nonequi-

librium quantum phases are dynamical in nature, rather than reflecting only a steady state. Above and

below some critical point, we should observe qualitatively distinct behaviors with a sharp transition be-

tween the two regimes [115–119] using a time average of an order parameter such as magnetization.

DPTs are typically initiated by quenching control parameters and depend on the initial state of the sys-

tem. Examples of these transitions have been observed experimentally in arrays of trapped ions [120]

and cold gases [121], as well as previously in the context of macroscopic self-trapping [111–114]. Here

we demonstrate a DPT in a system of cold atoms with global interactions mediated by an optical cavity.

5.3 Implementing the Lipkin-Meshkov-Glick model

A feature of our cavity simulator (see Fig. 6.1(a)), compared with many aforementioned experi-

ments, is the use of a large ensemble of N ≈ 105-106 cold atoms. We use two long-lived electronic levels

in these atoms, |↓〉 (1S0, m J = 0) and |↑〉 (3P1, m J = 0) states, with a transition wavelength of 689 nm be-

tween the two, to mimic a spin-1/2 system (|↓〉 and |↑〉, respectively). Our atoms are trapped in an 813 nm

one-dimensional optical lattice, similar to previous works from our group [93, 95, 223, 242][G], and de-

scribed in more detail in Sec. 5.5. We operate in a regime where the atoms couple to a single common

transverse electromagnetic (TEM00) mode of the optical cavity with resonance frequency ωc detuned

from the optical atomic transition ωa by ∆=ωc −ωa . Here, |∆| is much larger than the cavity linewidth

κ/2π= 153.0(4) kHz, the atomic transition linewidth γ/2π= 7.5 kHz, and also the vacuum Rabi splitting

2g
p

N induced by the atoms, with g represents half the single-photon Rabi frequency 2g /2π= 21.8 kHz.

In this limit, the cavity mediates a global spin-exchange interaction, which is microscopically described

by a flip-flop process in which the emission of a photon from atom i in state |↑〉 into the cavity mode

1 The usage of the term “dynamical phase transition” is not always consistent across the literature. Sometimes, you will see
people use the term to refer to what we call dissipative phase transitions. If you use the term, make sure to clarify what you
mean.
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is subsequently absorbed by atom j in state |↓〉, as depicted in 6.1(a)(iii). As explained in Ch. 2.5.3,

the interaction rate scales as χN , where χ = − g 2

∆ in the large-detuning limit. In contrast to previous

work in our group studying spin-exchange physics [95][G], superradiant emission does not play an active

role due to the large detuning. Finally, the interaction dynamics are faster than spontaneous emission,

i.e., |χ|N ≫ γ, and the system obeys the hierarchy |∆| ≫ g
p

N ≫ κ,γ. This parameter regime allows us

to explore the closed-system dynamics associated with our predicted dynamical phases on a timescale

shorter than 1/γ.

Under these circumstances, the system can be described by the well-known Lipkin-Meshkov-Glick

(LMG) model [109, 110], which has been studied in various contexts including quantum magnetism. The

LMG model obeys the following Hamiltonian:

Ĥ/ħ=χ Ĵ+ Ĵ−+Ω Ĵx −δ Ĵz . (5.1)

Here, Ω represents a transverse field, physically represented in our system by a global drive along the

1S0 – 3P1 transition. The detuning δ :=ωp −ωa of this drive (at frequency ωp ) from the atomic transition

(at frequency ωa) represents a longitudinal field (see 6.1(a)(ii) for a depiction). We have also introduced

the collective spin operators Ĵα :=∑
j σ̂

α
j /2, where σ̂αj is a Pauli operator for the j th atom with α= x, y, z

and Ĵ± = Ĵx ±i Ĵy . The summation runs over the individual atoms j ∈ [1, . . . , N ] in the cavity. The model is

realized in the limit in which the cavity field couples identically to all atoms trapped in the optical lattice

(see Sec. 5.9 for modifications due to inhomogeneity in this coupling).

5.4 Dynamical phase diagram

On varying the ratios between Ω, δ and χ, two distinct dynamical phases emerge, for which the

time-averaged collective magnetization (along ẑ) of the atomic ensemble 〈 Ĵz〉 := limT→∞ 1
T

∫ T
0 〈 Ĵz (t )〉d t

serves as an order parameter. When all spins are initially prepared in the |↓〉 state with δ= 0, the system

features a sharp second-order transition [393] between a dynamical ferromagnetic phase with 〈 Ĵz〉 ̸= 0

and a dynamical paramagnetic phase with 〈 Ĵz〉 = 0. This transition is indicated by the solid green line

(V1) on the phase diagram shown in Fig. 6.1(b), as well as its projection on the 〈 Ĵz〉 vs. Ω plane in the
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ẑ

ŷ
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Figure 5.1: System overview and dynamical phase diagram of the Lipkin-Meshkov-Glick model. (a) (i) An
ensemble of 88Sr atoms is trapped in a 1D optical lattice supported by an optical cavity. The atoms are
coupled to a single cavity mode with a single-photon Rabi frequency 2g and a resonance frequency ωc

detuned by ∆=ωc −ωa from the optical atomic transition 1S0, m J = 0 (|↓〉) to 3P1, m J = 0 (|↑〉) (with fre-
quency ωa and linewidth γ). Light leaks out of the cavity at a total rate κ. The cavity is driven externally
by a laser with frequency ωp that, if on resonance with an empty cavity, would establish a coherent state
inside the cavity with average intracavity photon number |2Ωp /κ|2. As shown in (ii) and (iii), for the far-
detuned cavity system in consideration, the external drive generates a transverse field that drives Rabi
flopping at frequencyΩ=−2gΩp /∆. The external drive detuning δ=ωp −ωa establishes a longitudinal
field. The detuned cavity field generates an effective spin exchange interaction of strength χ = −g 2/∆
as shown in (iii). (b) The collective Lipkin-Meshkov-Glick (LMG) model with transverse and longitudi-
nal fields features a second-order dynamical phase transition (DPT) between paramagnetic (P, blue) and
ferromagnetic phases (F, red). The DPT is characterized by the long-time average of the collective mag-

netization 〈 Ĵz〉, and its dynamics can be characterized by trajectories of the classical Bloch vector on the
pseudospin Bloch sphere (see projection and associated sphere insets). For δ = 0, in the paramagnetic
phase the trajectories circumnavigate the Bloch sphere, whereas in the ferromagnetic phase the trajec-
tories are trapped below the equator. (c) The two-dimensional map shows the DPT indicated by a sharp

change in 〈 Ĵz〉 (white solid line) for δ/χN ≥−1/8. The white dashed line (δ/χN <−1/8) signals a smooth
crossover between the two phases (see Methods). Curves for δ = 0 (green solid line, V1), Ω/χN = 0.2
(blue solid line, H1), and for Ω/χN = 0.7 (blue dashed line, H2) are shown on both diagrams and exper-
imentally investigated in Figs. 5.3(b), 5.4(a), and 5.4(b) respectively. The dependence of the transition
point on both δ/χN andΩ/χN is investigated in Fig. 5.6(b).
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same panel and in Fig. 6.1(c).

In the ferromagnetic phase (red region in Fig. 6.1(b), (c)), the instantaneous magnetization 〈 Ĵz〉

oscillates about a non-zero time-averaged value, and the collective pseudospin Bloch vector given by

〈Ĵ〉 := (〈 Ĵx〉,〈 Ĵy 〉,〈 Ĵz〉) remains trapped below the equator of the Bloch sphere throughout the dynamics.

This phase is dominated by the interactions which can be understood in a mean-field approximation

as χ Ĵ+ Ĵ− ≈ χ(Ĵ · Ĵ − Ĵ 2
z ) ≈ χ(N /2)2 −2χ〈 Ĵz〉 Ĵz . The term Ĵ · Ĵ is a constant when restricted to the fully

symmetric spin manifold, which is the case of interest here. The second term describes a self-induced

precession of the collective Bloch vector about the ẑ-axis, which effectively tilts the axis of rotation of the

comparatively weak transverse field, such that the trajectory of the Bloch vector deforms into an orbit

that remains below the equatorial plane. Conversely, the paramagnetic phase (blue region in Fig. 6.1(b),

(c)) is dominated by Rabi flopping driven by the transverse fieldΩ Ĵx . This term causes large oscillations

of the instantaneous 〈 Ĵz〉, and, for δ= 0, the collective Bloch vector breaks through the equatorial plane

and rotates about the entire Bloch sphere.

For δ = 0, the transition between the paramagnetic and ferromagnetic phases occurs at a critical

drive Ωc = χN /2, as shown in Fig. 6.1(b), (c). The sharp transition in the dynamical behavior of the sys-

tem is traced back to the change in direction of the self-generated precession proportional to χ〈 Ĵz〉 Ĵz as

the Bloch vector crosses the equatorial plane at 〈 Ĵz〉 = 0, generating an abrupt shift to large-amplitude

oscillations for Ω >Ωc . Typical dynamics of the collective Bloch vector in the ferromagnetic and para-

magnetic phases are shown as insets in Fig. 6.1(b). The solid green (V1), solid blue (H1) and dashed

blue (H2) lines in Fig. 6.1(b) and (c) indicate analogous trajectories in the phase diagram which will be

explored experimentally later in Figs. 5.3(b), 5.4(a), and 5.4(b) respectively.

More generally, as a function of the parameters Ω and δ/χN ≥−1/8, we observe a nonanalyticity

of the order parameter 〈 Ĵz〉 (indicated by a solid white line in Fig. 6.1(c)), which marks a second-order

transition between the two dynamical phases. However, the transition line is interrupted at a critical

point [δ/χN = −1/8]. Beyond this, there is a smooth crossover regime (indicated by a white dashed

line in Fig. 6.1(c)) in which the system is ruled mainly by single-particle physics (set by δ and Ω) and

has an intermediate behavior between that of a ferromagnet and a paramagnet. The phase boundary for
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δ/χN >−1/8 (assuming homogeneous atom-light coupling) can be analytically solved, with a derivation

provided in the Supplementary Information of [108][G]. The boundary describes the dependence of the

critical Rabi frequencyΩc on the longitudinal field δ and is given by:

Ωc (δ)

χN
= 1

2

[
2
(
1− δ

χN

)(
1+ 2δ

χN

)
− 3

2

( 8δ

χN
+1

)
+ 1

2

(
1+ 8δ

χN

)3/2
]1/2

. (5.2)

5.5 The experimental sequence

To simulate quench dynamics of the LMG model, we start by laser cooling the atoms to 14 µK and

trapping in the optical lattice supported by a symmetric, high-finesse optical cavity with a linewidth of

κ/2π = 153.0(4) kHz near the 1S0 – 3P1 atomic transition frequency. The lattice has a typical axial trap

oscillation frequency of ωtrap/2π= 200 kHz, placing the system in the Lamb-Dicke regime and thus de-

coupling the spin dynamics of the atoms from their motional state to leading order (see Fig. 3.5.2 for a

description of this regime). This lattice is nominally near magic with respect to the ultranarrow milli-

hertz 1S0 – 3P0 clock transition at 698 nm but not along the 1S0 – 3P1 transition. However, we can attain

a “magic angle” lattice (see Ch. 3.5.5) by setting the angle between the linear polarization of the lattice

and the quantization axis, in order to reduce potential dephasing due to the transverse spreading of the

atoms in a non-magic trap. To define the quantization axis, we apply a strong magnetic field perpen-

dicular to the cavity axis. We estimate that residual inhomogeneous broadening due to the lattice is less

than 2 kHz, much smaller than relevant frequency scales in the system.

Fig. 5.2(a) illustrates the various beams applied to our atom-cavity system for this experiment. To

measure the number of atoms trapped in the lattice, we perform fluorescence imaging on the dipole-

allowed 1S0 – 1P1 transition at 461 nm, calibrating the fluorescence count to an atom number by com-

paring the results with a vacuum Rabi splitting measurement along the 1S0 – 3P1 transition, as detailed

in Ref. [242][G]. We also use this measurement to determine the atom-cavity resonance condition (i.e.,

∆= 0). When simulating quench dynamics, we then tune the cavity to ∆/2π=±50 MHz, depending on

the dataset. We adjust the cavity length using piezoelectric transducers (PZTs) which mount our cavity

mirrors onto a spacer, and we stabilize the length to a stable reference cavity to ensure consistency from
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Figure 5.2: Details of the experimental sequence. (a) An optical cavity is driven by a 689 nm coherent
field that establishes an intra-cavity fieldΩp e iωp t , which is near resonance with the 1S0 – 3P1 transition in
88Sr. Inside the cavity, an ensemble of atoms is confined in a one-dimensional optical lattice at 813 nm.
Different lasers are applied for shelving excited state atoms into long-lived metastable excited states,
for freezing the system dynamics, for applying a radiation pressure force that pushes ground states in a
direction transverse to the cavity axis, for optically pumping atoms from long lived metastable excited
states back to the ground state, and for fluorescence imaging of atoms in the ground state. (b) A typical
fluorescence image captured on a CCD showing the state-resolved imaging technique. One sees that the
Ne excited state atoms that were shelved into 3P0 and 3P2 while the freeze/push beam was applied remain
near the trapping region. The Ng ground state atoms are pushed away from the trapping region. Based
on their spatial location, the atoms assigned to be in the excited (ground) state are shown in false color
blue (orange). (c) We show the relevant energy levels for 88Sr, the laser wavelengths, and their functions.
(d) Experimental timing sequence and typical timescales are shown.

shot to shot.

We realize the transverse fieldsΩ and δ by injecting laser light at frequencyωp into the optical cav-

ity through one mirror, creating a coherent driving field Ωp e iωp t inside the cavity. Here, Ωp represents

the rate at which the cavity would be populated with photons if the drive and cavity were on resonance

(which they are not). It is related to the input power P by the expression Ωp = √
κmP/(2ħωp ), where

κm = κTm/(Tm+TL) for single-mirror transmission and loss coefficients Tm = 105 ppm and TL = 23 ppm,

respectively. In the rotating frame at ωp , the laser light’s detuning from atomic resonance δ = ωp −ωa

provides the longitudinal field δ Ĵz in Eq. 5.1. Moreover, the applied laser rapidly builds up a classical field

within the cavity on a timescale of approximately 1/∆, which couples |↓〉 to |↑〉. This realizes the trans-
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verse field Ω Ĵx in Eq. 5.1, where Ω=−2gΩp /∆. The external drive is polarized along the magnetic field

direction to isolate the two-level pseudospin system defined by |↓〉 = ∣∣1S0,m J = 0
〉

and |↑〉 = ∣∣3P1,m J = 0
〉

.

We adopt the convention that the transverse field is oriented along x̂ in the pseudospin coordinate sys-

tem such that by jumping the phase of the laser light, we are able to create transverse fields oriented

along any direction in the pseudospin x y-plane.

The atoms begin in the ground state |↓〉. For experiments in 5.5, we initialize the atomic ensemble

to orient the Bloch vector along a tunable orientation; for all other results the atoms remain in the ground

state at initial times. Then, we perform a pulse sequence summarized in Fig. 5.2(d). We first quench the

system by rapidly turning on our external drive in approximately 10 ns using an in-fiber electro-optical

modulator (EOM), which modulates a laser carrier far from atomic or cavity resonance to produce our

desired drive tone. All other EOM sidebands are sufficiently far from resonance to not affect the physics.

The observation of the DPT requires that we be able to take a snapshot of the magnetization 〈 Ĵz〉

after some period of dynamical evolution. To achieve this, we have developed a technique to quickly

freeze the dynamics and then apply state-dependent spatial displacements of the cloud such that the

populations in the ground and excited states N↓ and N↑ are imaged onto two different regions of a CCD,

shown in Fig. 5.2(b). After the drive is applied for some time τ, we turn off the coherent drive by extin-

guishing the applied EOM sideband. In order to effectively count atoms in both excited and ground state

immediately after the drive, and freeze any dynamics that could be caused by spontaneous emission or

the transient decay of the cavity field, we shine a strongly focused 461 nm beam along the ẑ axis and ap-

ply a strong 688 nm shelving beam. The 461 nm beam immediately stops the dynamics as it dephases the

atoms, overwhelming the single particle rotation and any collective interactions. In addition, the 461 nm

beam exerts a radiation pressure force that gives a momentum kick to the ground state atoms, causing

them to move away from the trapping region. Simultaneously, the shelving beam optically pumps ex-

cited state atoms to the metastable 3P0 and 3P2 states (see the level diagram in Fig. 5.2(c)). We apply the

shelving pulse for 5 µs. For scale, we observe that more than 90% of the atoms have been shelved after

2µs.

To finish our state dependent detection, we allow for a short time of flight (~100 µs) so that the
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momentum kick applied to the ground state atoms is translated into a few 100µm displacement in space.

We then optically pump the shelved atoms back to 3P1 using 679 nm and 707 nm light applied for 200 µs.

The atoms then decay to the ground state via single-atom decay with a 1/e decay lifetime of 21 µs. We

then perform fluorescence imaging for 50µs to observe the number of atoms in the two spatially resolved

clouds, producing a CCD image like the one in Fig. 5.2(b). This allows us to measure both the total atom

number N = N↓+N↑ and the magnetization 〈 Ĵz〉 = N↑−N↓
2N in a single shot. The efficiency of this process

is above 98%, limited mostly by the efficiency of the shelving process.

5.6 Dynamical phases in the absence of a longitudinal field

First, we explore cut V1 on the dynamical phase diagram in Fig. 5.1(c) by placing the atomic drive

on resonance (δ= 0), thereby setting the longitudinal field to zero. Then, we perform the quench exper-

iment for different sizes of the tranverse field Ω and measure the magnetization. Representative time

traces are presented in Fig. 5.3(a). For drives deep in the ferromagnetic phase (Fig. 5.3(a)(i)), we ob-

serve small-amplitude oscillations that are in excellent agreement with our theoretical model based on a

mean-field description of the system. Close to the experimental critical point (Fig. 5.3(a)(ii-iii)), the dy-

namics become more complicated due to the interplay between interactions, drive and single-particle

decoherence from undesirable atomic motion in the optical lattice. Deep in the paramagnetic phase

(Fig. 5.3(a)(iv)), we observe dynamics of the magnetization consistent with single-particle Rabi flopping

with frequency Ω and in good agreement with our simulation. Damping of the oscillations occurs pre-

dominantly because of inhomogeneity in the coupling of the spins to the common cavity mode, shot-to-

shot fluctuations in Ω/χN (attributed mostly to atom number fluctuations at about the 5% (root mean

square, r.m.s.) level) and atomic motion in the lattice. Spontaneous emission and decoherence related

to leakage of photons from the cavity are negligible. We include these effects in our theoretical model

(Fig. 5.3(a), red solid line), and fluctuations in Ω/χN are indicated by the red shaded regions. Typically,

we notice that the experimentally calibrated parameters overestimate the value of Ω/χN by about 10%

compared with the numerical simulations. We attribute this systematic disagreement to drifts on the

calibration parameters and details not captured by the theory model.
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Figure 5.3: Characteristic evolution of dynamical phases and scaling of the DPT with atom number. (a)
Time traces of the mean magnetization 〈 Ĵz〉 after a quench with all spins initially in |↓〉 and no longi-
tudinal field (δ = 0), for four different post-quench transverse field strengths Ω representing both the
ferromagnetic ((i) and (ii)) and paramagnetic ((iii) and (iv)) phases. Traces are taken with N = 950×103

atoms and a cavity-atom detuning of ∆/2π = +50 MHz. The experimental data (blue) is compared to
numerical simulations (red lines) based on a mean-field description including relevant experimental
details (see Sec. 5.9). The shaded red region corresponds to an uncertainty band in the numerical simu-
lations accounting for shot-to-shot fluctuations in Ω/χN . Each point is the average of 12 experimental
shots. (b) The magnetization 〈 Ĵz (t f )〉 for different numbers of atoms N = (935, 620, 320)× 103 (blue,
green and red, respectively) after t f = 4 µs of evolution, plotted against the normalized drive strength
Ω/χN . This measurement maps to the green solid line (V1) in Fig. 6.1(b) and (c). The drive strength is
normalized on a shot-to-shot basis from the fluorescence measurement of the total atom number. The
solid black line indicates the simulated average (0 to 6 µs) as a function of the normalized drive including
dephasing sources. The inset shows the magnetization versus non-normalized transverse field strength
Ω for the same datasets. All error bars in experimental data are statistical (1σ).

We characterize the behavior of the DPT with system size by measuring 〈 Ĵz (t f )〉 at time t f = 4 µs

for different atom numbers N . Measuring 〈 Ĵz〉 at a fixed time serves as a proxy of the long-term time-

averaged magnetization, as considerable damping is caused by the previously mentioned effects. In the

inset of Fig. 5.3(b), we observe a transition in the magnetization at different values of the transverse field

Ω, depending on the atom number N . The dependence of the transition as a function of system size

is demonstrated by rescaling the corresponding drive to the normalized value Ω/χN , analogous to the

green curve in Fig. 5.1(b), (c). As displayed in the main panel of Fig. 5.3(b), the normalized traces collapse

onto one another, showcasing the collective scaling of the cavity-mediated interactions. In particular,

we observe a second-order dynamical phase transition between the ferromagnetic and paramagnetic
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phases at a critical drive strength of Ωexp
c = 0.35(3)χN . While this is different from the predicted critical

point of from the ideal LMG model, which is atΩc /χN = 1/2, this can primarily be explained by inhomo-

geneous atom-light coupling, and full numerical simulations of our system (explained in Sec. 5.9) show

reasonable agreement (solid black line). The fact that the transition is not perfectly sharp as predicted

in the ideal model (Fig. 5.1(b)) can be explained by residual single-particle decoherence of the atoms.

Nevertheless, a clear transition can be observed, as shown by comparing to the theoretical calculation.

5.7 Scanning the longitudinal field with fixed transverse field

The DPT can also be probed using our ability to controllably introduce a longitudinal field propor-

tional to δ Ĵz by detuning the injected light from the atomic transition, as shown in Fig. 5.1(b). In Fig. 5.4,

we map out the response of the system to the drive detuning δ by measuring the order parameter 〈 Ĵz (t f )〉

at t f = 4 µs for two fixed values of the drive strengthΩ above and below the (δ= 0) critical pointΩexp
c , as

well as for two opposite cavity detunings ∆/2π=±50 MHz.

First, we consider a weak drive strength below the critical point (Ω = 0.070(3)χN < Ωexp
c ), repre-

senting the blue solid line H1 shown in Fig. 6.1(b), (c). When scanning the drive detuning δ, we ob-

serve a sharp transition in the order parameter 〈 Ĵz〉, separating the ferromagnetic and the paramag-

netic dynamical phases (plotted in Fig. 6.4(a)), for both a positive and negative cavity-atom detuning

∆/2π=±50 MHz. The phase transition corresponds to the “inside edges” of the resonant features, which

occur symmetrically for each∆ at δc /|χN | = ∓0.27(2). The critical value of δc and the gradual decrease in

〈 Ĵz〉 for large detuning show good agreement with a mean-field calculation. The symmetric response of

the magnetization for∆↔−∆ demonstrates the dependence of the interaction strength on the detuning

sign: χN ↔−χN .

We also consider a drive strength above the critical point; namely, Ω = 0.44(1)χN > Ωexp
c , repre-

senting the blue dashed line H2 shown in Fig. 6.1(b), (c). For this parameter cut, shown in Fig. 6.4(b), we

observe a smoother crossover between the paramagnetic and ferromagnetic phases about the detuning

δc /|χN | = ±0.04(3) in agreement with the mean-field calculation. Tuning δ < δc (for positive cavity-

atom detuning ∆, and vice-versa for negative ∆) reduces the influence of the collective interactions and
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Figure 5.4: Exploring the DPT by scanning the longitudinal field for two different transverse field values
at fixed χN . The atomic magnetization 〈 Ĵz (t f )〉 at t f = 4 µs is measured as a function of the normalized
drive detuning δ/(

∣∣χ∣∣N ) for cavity detunings ∆/2π = ±50 MHz (red, +50 MHz; blue, −50 MHz) for two
different drive strengths: (a) Ω = 0.070(3)χN and (b) Ω = 0.44(1)χN . The inner edges of the resonant
features in panel (a) indicate a sharp transition from ferromagnetic to paramagnetic phases as |δ| is in-
creased. In contrast, the corresponding crossover in panel (b) is smoothed. Numerical simulations are
shown as blue and red solid lines with corresponding shaded regions. The gray shaded area indicates
the non-interacting limit of Rabi-flopping. Measurements in (a) and (b) map, respectively, to cuts rep-
resented by the blue lines H1 and H2 in Fig. 6.1(b), (c). All error bars in experimental data are statistical
(1σ).

the magnetization resembles the prediction of single-particle detuned Rabi flopping.

In both cases, the response of the system to δ can be understood by interpreting the single-particle

shift and interaction in Eq. (5.1) as a nonlinear detuning proportional to (2χ〈 Ĵz〉+δ) Ĵz , which competes

with the coherent drive. Depending on the sign of the interaction and the instantaneous magnetization,

the single-particle term δ can either cancel or enhance the contribution of the interactions relative to the
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coherent drive, tuning the system between the ferromagnetic and paramagnetic dynamical phases. The

predominant role of the interactions in the dynamics, especially below the critical point, can be observed

by contrasting with the purely single-particle model of detuned Rabi oscillations. This is represented by

the gray shaded areas, which plot the r.m.s. amplitude of such Rabi oscillations, taking the following

functional form:

〈 Ĵz〉rms
χ=0 =−1

2

Ω2

(δ2 +Ω2)
− 1

2
. (5.3)

Both above and below the critical Rabi frequencyΩexp
c , interactions modify the magnetization response

of the system. However, only belowΩexp
c does this modification correspond to distinct dynamical phases.

5.8 Dependence of the dynamical phases on initial conditions

The single-particle control achievable in our experimental platform allows us to explore the DPT

as a function of the initial state, as shown in Fig. 5.5. Specifically, we are able to demonstrate that the

critical point of the transition is state-dependent, by preparing the collective pseudospin in different

positions on the Bloch sphere. For example, we can prepare the system with Ω < Ωexp
c such that the

some initial states near the south pole remain trapped below the equator, representing a ferromagnetic

phase. For different initial states prepared further towards the equator, the same transverse field can

induce large oscillations around the Bloch sphere which are characteristic of the paramagnetic phase.

Probing the dynamical response to different initial conditions allows us to establish a connec-

tion between the DPT in our effective spin model and the phenomena of macroscopic self-trapping and

Josephson tunneling observed in coupled atomic condensates [112] and solid state polariton conden-

sates [114]. Fig. 6.6(a) schematically shows a double-well atomic condensate, where the initial mag-

netization of the collective state on the Bloch sphere is analogous to the initial population imbalance

between the wells, while the azimuthal angle maps to the relative phase difference of the condensates.

Similarly, the ferromagnetic and paramagnetic phases can be related to the self-trapped and tunneling

phases respectively [111].

To generate states with different initial conditions, we first prepare each spin in |↓〉 and then rotate
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Figure 5.5: Dependence of dynamical phases on initial conditions. (a) The initial state on the Bloch
sphere and subsequent dynamics of the spin model can be mapped to that of atomic condensates in
a double-well potential, described by coherent complex amplitudes in the left and right wells, αL and
αR , respectively. A population imbalance between the wells maps onto the magnetization (Jz ∼ |αL |2 −
|αR |2), and the relative phase of the condensate wavefunctions maps onto the azimuthal angle of the spin
state (∆φ). As time evolves, the population imbalance either oscillates as atoms tunnel back and forth
between the wells (the tunneling phase) or remains approximately constant (the self-trapped phase). (b)
(i) The initially prepared spin state can be parameterized in terms of the projection onto the equatorial,

given by r =
√

(N /2)2 −〈 Ĵz (0)〉2, and the relative azimuthal phase∆φ between the initial collective Bloch
vector and the coherent drive. (ii)-(iv) Color map of 〈Jz (t f )〉 after an evolution time of t f = 4 µs, plotted
using a polar projection of the Bloch sphere with coordinates defined by the initial condition as in panel
(i) (initial conditions are always below the equator; they are shown above the equator in the figure to
simplify visualization). Left (right) panels show simulated (experimental) results for 〈Jz (t f )〉 at t f = 4 µs
of evolution for different normalized drives Ω/χN . The adjacent plot of 〈 Ĵz (t )〉 (bottom of (i)) indicates
typical dynamics in the red and blue regions.

them on the Bloch sphere with a strong drive, i.e., Ωinit ≫Ωc , to initialize a certain drive angle. At this

point, which we call t = 0, the system has acquired a tunable initial magnetization 〈 Ĵz (0)〉. We then

simultaneously shift the phase of the driving field by∆φ−π/2 and its amplitude to the desired transverse

field strength Ω, which completes the quench. The phase and amplitude jumps are accomplished by

changing the phase and amplitude of the rf tone driving the electro-optic modulator used to control
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the drive. We are then able to initialize the collective pseudospin Bloch vector at different positions on

the Bloch sphere, such that 〈 Ĵz (0)〉 and ∆φ define the polar and the azimuthal angles, respectively, as

indicated in Fig. 6.6(b)(i). As the phase of the driving field naturally defines the x̂ and ŷ axes for the spin

degree of freedom, our protocol can equivalently be viewed as preparing the collective Bloch vector at

analogous positions on the pseudospin Bloch sphere.

In the rightmost panels (Fig. 6.6(b)(ii-iv)), we plot the measured magnetization after a time evolu-

tion of 4 µs using a polar projection of the Bloch sphere for different drive strengths Ω, over a 2D scan

of the initially prepared state J (0) via the initial magnetization and azimuthal phase. As we increase the

drive strength between panels, the set of initial conditions that lead to the ferromagnetic phase shrinks

(red region) while also becoming increasingly asymmetric about the south pole. Both of these features

are in qualitative agreement with our theoretical calculations (also shown in Fig. 6.6(b)(ii-iv)), which take

into account coupling inhomogeneities, dephasing and shot-to-shot fluctuations on Ω/χN . Quantita-

tive differences arise predominantly due neglecting axial motion of the atoms in the theoretical model.

5.9 Details of numerical modeling

The dynamics of the experimental system is modeled by a master equation for the density operator

ρ̂ of the complete atom-light system, given by:

d ρ̂

d t
=− i

ħ
[
Ĥtot, ρ̂

]+Lc [ρ̂]+Lel [ρ̂]+Ls[ρ̂]. (5.4)

Here, the Hamiltonian Ĥtot = ĤA + ĤL + ĤAL is split into three contributions characterizing the atoms,

pumping of the cavity field with the external drive, and the atom-light interaction respectively:

ĤA = ωa

2

∑
i
σ̂z

i , (5.5)

ĤL = ωc â†â +Ωp

(
âe iωp t + â†e−iωp t

)
, (5.6)

ĤAL = ∑
i

gi

(
âσ̂+

i + â†σ̂−
i

)
, (5.7)

where â (â†) is the annihilation (creation) operator of the cavity mode. To reiterate, ωa is the frequency

of the atomic transition, ωc the frequency of the relevant cavity mode,Ωp the effective amplitude of the
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injected field andωp the corresponding frequency. The spatial dependence of the coupling is character-

ized by g j = g cos(k j ) and k = πλL/λc , where 2g is the single-photon Rabi frequency at an anti-node of

the cavity mode. This form arises because the magic wavelength of the 1D optical lattice λL = 813 nm is

incommensurate with the wavelength λc = 689 nm of the cavity mode the atomic transition is coupled

to. For simplicity, we take the summation to run over i ∈ [1,2, . . . , N ] total lattice sites, such that each

site is assumed to be occupied by only a single atom. In reality, there are ∼ 103 relevant lattice sites,

each occupied by ∼ 102-103 atoms. However, as we assume contact interactions are not relevant and the

atom-light coupling is consistent across the entire atomic sample, this simplification is reasonable.

Decoherence due to the leakage of photons from the cavity at rate κ is described by the Lindblad

term

Lc [ρ̂] = κ

2

(
2âρ̂â† − â†âρ̂− ρ̂â†â

)
, (5.8)

while spontaneous emission on the atomic transition at rate γ and single-particle homogeneous broad-

ening of the ensemble at rate γel are described by

Ls[ρ̂] = γ

2

∑
i

2σ̂−
i ρ̂σ̂

+
i − σ̂+

i σ̂
−
i ρ̂− ρ̂σ̂+

i σ̂
−
i , (5.9)

Lel [ρ̂] = γel

2

∑
i
σ̂z

i ρ̂σ̂
z
i − ρ̂. (5.10)

The latter is attributed to a range of effects, including undesirable motion of the atoms in the optical

lattice, and is discussed in more detail in the SI.

The simulations presented in Fig. 5.3, Fig. 5.4, and Fig. 5.5 are the result of the numerical solution

of Eq. (5.4) within the mean-field approximation (with the exception of the lower panels of Fig. 6.2(a)

which include additional effects due to axial motion that are discussed in the SI). Specifically, we solve

equations of motion for σi := (〈σ̂x
i 〉,〈σ̂

y
i 〉,〈σ̂z

i 〉) and 〈â〉, and factorize higher-order moments of the oper-

ators, i.e., 〈σ̂x
i σ̂

y
j 〉 := 〈σ̂x

i 〉〈σ̂
y
j 〉.

The effective spin model which describes the nonlinear atomic dynamics throughout this work is

obtained from the atom-light model (Eq. (5.4)) by separate adiabatic elimination of the injected field and

intracavity fluctuations, and the full calculation is detailed in the Supplementary Information of [108][G].
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Figure 5.6: Probing many-body dynamics and mapping the phase boundary in the presence of inhomo-
geneous atom-light coupling. (a) The oscillation period as function of the cavity-atom detuning ∆ for
2Ωp /(g N ) = 0.104(4), δ = 0, and with the atoms starting in |↓〉. Blue markers are experimental values,
and the solid red line represents mean-field predictions, with the shaded red area representing an un-
certainty band in the prediction corresponding to typical experimental fluctuations on 2Ωp /(N g ). The
period is extracted from sinusoidal fits to the data as in Fig. 5.3(a), after removing a linear term caused
by the single-particle dephasing effects. The mean-field value takes the analytic form Tosc = 2π/(χN ),
rescaled properly to account for inhomogeneous atom-light coupling. Measurements are taken in the
dispersive atom-cavity coupling limit, i.e., |∆| ≫ g

p
N . (b) The critical detuning δc as function of the

drive ∆ for ∆/2π = ±50 MHz (blue and red markers respectively). We also plot the theoretical predic-
tion for the phase boundary (Eq. (5.2)) with rescaled parameters, as well as numerical simulations (solid
lines) which include uncertainty bands based on typical fluctuations inΩ/χN . All error bars are statisti-
cal (1σ).

Here, we merely present the resulting Hamiltonian for the atoms:

Ĥ =ħ∑
i , j
χi j σ̂

+
i σ̂

−
j +ħ∑

i

Ωi

2
σ̂x

i −
ħδ
2

∑
i
σz

i , (5.11)

where χi j = −gi g j /∆, Ωi = −2giΩp /∆ with δ = ωp −ωa and ∆ = ωc −ωa . Moreover, we have assumed

|∆| ≫ κ, g
p

N ,
√

gΩp ,δ. In the limit k = 2nπ for n ∈Z, i.e. uniform atom-light coupling g j → g , then we

recover the collective XY model of Eq. (5.1).

Although in the experimental platform the atom-light coupling g j is spatially varying due to the

incommensurate cavity and lattice wavelengths, the qualitative physics we explore is still consistent with

the framework of the collective XY model. Specifically, while the simulations of Fig. 5.3, Fig. 5.4, and

Fig. 5.5 take the proper form of g j into account, we observe that features of the detailed inhomogeneous

model such as the critical point and dynamical time-scales are consistent with the collective model upon
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a rescaling of the atom-light coupling.

For weak drives deep in the paramagnetic phase, the collective model replicates the quantitative

predictions of the inhomogeneous model upon replacement of the atom-light coupling with the r.m.s.

average: g → g /
p

2, χ→ χ/2, and Ω→Ω/
p

2. We check the validity of this approximation by analyzing

the quench dynamics deep in the ferromagnetic phase, which exhibits weak oscillations predicted to

have a period proportional to 1/χN . In Fig. 5.6(a), we extract this period from the experimental data

as a function of cavity detuning ∆, which is equivalent to varying the interaction strength χ∝ 1/∆. We

confirm that the fitted slope agrees with the χ→χ/2 correction for inhomogeneous atom-light coupling.

As the drive is increased closer towards the phase transition, the proper rescaling required for a

quantitative comparison changes. Specifically, comparing to the critical pointΩtheory
c /χN obtained from

a numerical calculation of the inhomogeneous model in the absence of decoherence, we find that the

corresponding collective model requires a rescaling of g → 0.62g , implying χ→ 0.38χ, and Ω→ 0.62Ω,

in order to match the critical value Ωtheory
c /χN ≈ 0.31. The reduction of this value below the true col-

lective critical drive Ωc /χN = 1/2 is consistent with experimental observations (Ωexp
c /χN = 0.35(3)). In

Fig. 5.6(b), we verify that the theoretically predicted phase boundary (black), represented by the criti-

cal detuning δc , agrees with experimental data (red, blue) under this rescaling over a range of different

transverse field strengths Ω. The experimental data and analytical predictions qualitatively agree over

the entire phase diagram, justifying the rescaling.

5.10 Mapping between the LMG model and macroscopic self-trapping

The connection between the collective spin model in Eq. (5.1) and the phenomena of macroscopic

self-trapping and Josephson oscillations observed in atomic and solid-state polariton condensates can

be formalized using an appropriate mapping between the spin and bosonic models.

For the condensate examples, a simple description of self-trapping and Josephson oscillations can

be obtained by a two-well model in the single-mode approximation [394] with a Hamiltonian given by

Ĥ = U

2
[n̂R (n̂R −1)+ n̂L(n̂L −1)]+J

(
â†

R âL + â†
L âR

)
+ ϵ

2
(n̂L − n̂R ) , (5.12)



171

where âR(L) is the bosonic annihilation operator of the right (left) well, and n̂R(L) = â†
R(L)âR(L). Contact

interactions between the constituent atoms of the condensate are characterized by U , J defines the

tunnelling between the two wells, and ϵ is some controllable energy difference.

Given that the total particle number n̂R + n̂L is conserved, and introducing the Schwinger boson

mapping Ĵz = (1/2)(n̂L − n̂R ), Ĵ+ = â†
R âL , with Ĵ− = â†

L âR , we can recover from Eq. (5.12) the following

effective spin Hamiltonian:

Ĥ =U Ĵ 2
z +2J Ĵx +ϵ Ĵz + U

4
N (N −2). (5.13)

Note that the total number of particles N = (n̂L + n̂R ) commutes with the Hamiltonian and is therefore

a conserved quantity. Finally, given that Ĵ 2 is also a conserved quantity of this Hamiltonian, and that

Ĵ 2
z := Ĵ 2 − Ĵ+ Ĵ− + Ĵz , we find that Eq. (5.13) is identical to the collective XY model with transverse and

longitudinal fields upon recognizing: χ=−U ,Ω= 2J and δ=U +ϵ.

5.11 Conclusion

The demonstration of the cooperation and competition between coherent drive and infinite-range

interactions in an optical transition opens a path to the quantum simulation of richer spin models and

out-of-equilibrium physics. For example, more complex spin-spin couplings can be engineered by using

the available Zeeman sublevels of the 3P1 state with two different cavity polarizations [377]. Moreover, in

the presence of additional inhomogeneous terms, our system can explore dynamical phases predicted

to exist in Bardeen-Cooper-Schrieffer superconductors [127, 137], and by modulation of the transverse

field our platform should be able to realize the archetypal model of a kicked top [89], relevant for explo-

rations of quantum chaos and scrambling dynamics [395]. Lastly, our investigation of non-equilibrium

dynamics using the 88Sr (1S0 – 3P1) optical transition can lead to insight into how to generate entangled

states for quantum sensing with the long-lived 87Sr (1S0 – 3P0) optical transition used in state-of-the-art

atomic clocks [98].



Chapter 6

Observing Dynamical Phases of BCS Superconductors in a Cavity QED Simulator

6.1 Introduction

Superconductivity, and its more general counterpart superfluidity, describe a rich set of phenom-

ena that span a remarkable breadth of energy scales, from the large and hot at the core of neutron stars

(MK temperatures) [396, 397] to the human scale of traditional and high-Tc superconductors (1-100 K

temperatures) [398], all the way down to the ultracold regime of degenerate gases of fermionic atoms

(nK temperatures) [399]. A large part of our modern understanding of superconductivity stems from

what we call the BCS theory [6], originally proposed by physicists Bardeen, Cooper, and Schrieffer in

1957. While this theory is now quite well understood, how this model behaves when quenched out of

equilibrium has been less thoroughly studied.

Of particular interest to us are the prethermal dynamical phases [55] predicted to emerge from

quenches of BCS superconductors and superfluids [127–137, 400, 401], creatively named phases I, II,

and III. Observing such phases experimentally has proved difficult: while there has been great progress

in pump-probe experiments of superconductors to induce the necessary fast quenches using THz tech-

nology, and signs of phases I and II have been observed, the intense pump pulses couple nonlinearly

to the Cooper pairs in the superconductor and complicate a clean observation of the dynamical phases

[138–140]. For these reasons, the realization of fermionic superfluids in ultracold atomic gases [155] has

generated great excitement in potentially exploring this physics [129–132, 134, 135, 137]. However, until

recently observations have been limited to spectroscopic signatures rather than the full time dynamics

[141]. In the past few years, a quintessential feature of phase II known as Higgs oscillations has been
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observed in the quench dynamics of such a system [142]. Still, in neither system has a systematic scan

of the dynamical phase diagram been performed to our knowledge, and phase III in particular has not

been observed.

Quantum simulation offers a path towards better understanding a broad range of phenomena,

from high-temperature superconductivity and correlated quantum magnetism in condensed matter physics

[402] to quarks and gluons in nuclei and matter under extreme conditions [403], as well as the black hole

information paradox in gravitational physics [404]. In this spirit, discussions with our group led by the-

orists in Ana Maria Rey’s group led to a 2021 proposal to observe the three predicted dynamics in a cav-

ity QED platform, using internal electronic states to encode effective Cooper pairs and cavity-mediated

atom-atom interactions to represent the BCS interaction [405][G][406].

In this chapter, I summarize the theoretical proposal and walk through the subsequent experi-

mental results as described in [126][G]. At a high level, we probe all three dynamical phases (phases I, II,

and III) predicted to exist in BCS superconductors by utilizing the high degree of control and flexibility

in state initialization, interaction control, and non-destructive measurements available when coupling

long-lived atoms to an optical cavity. Behaviors intrinsic to phase I (normal phase) and phase II (finite

steady-state superconductivity) had previously been observed in spin systems realized in optical cavi-

ties [85][95][G] and in two-level atoms interacting via collisions [121, 407–409]. We build on this work

by clarifying the connection between these dynamical phases from the BCS model and the physics of

many-body gap protection in spin systems. Our results also provide the first demonstration of phase III

(a self-generated Floquet phase featuring persistent oscillations of the order parameter), which is pre-

dicted to dynamically emerge in superconductors via quenches from weak to strong interactions [130,

137]. In our system, we instead engineer this phase using flexible control of the single-particle dispersion

[405][G][401], dynamically resembling the low-energy condition of a BCS superconductor. For all exper-

iments, we perform real-time tracking of the superconducting order parameter, enabling fast readout of

the dynamics.
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6.2 A primer on BCS theory

At a high level, the innovation of BCS theory was realizing that electrons in a metal interact with

the underlying lattice of positively charged ions via Coulomb forces, giving rise to an effective attractive

interaction between electrons.1 It can be useful to think of this process diagrammatically in momen-

tum space: two electrons with initial momenta ħk1 and ħk2 exchange a phonon with momentum ħkp ,

leading to new outgoing momenta ħk′
1 =ħ(k1 −kp ), ħk′

2 =ħ(k2 +kp ). This leads to an interaction term

of the form

ĉ†
k′

1,σ1
ĉ†
k′

2,σ2
ĉk2,σ2 ĉk1,σ1 , (6.1)

where ĉ are fermionic annihilation operators, and σi ∈ {↑,↓} is the spin state of electron i . This changes

the nature of the ground state, which attains the lowest possible energy by maximizing the number of

state configurations (k1,k2) which phase-coherently undergo phonon exchanges, due to the attractive

nature of the exchanges. As argued by Bardeen, Cooper, and Schrieffer [6], the way to maximize such

exchange processes is for the electrons to pair up in so-called Cooper pairs, with opposite spin and

momenta. If we only consider such pairings,2 we get the following effective BCS Hamiltonian:

ĤBCS =
∑
k,σ

εk
2 ĉ†

k,σĉk,σ−ħ ∑
k,k′

χk,k′ ĉ†
k′,↑ĉ†

−k′,↓ĉ−k,↓ĉk,↑, (6.2)

where the first term describes the single-particle electron dispersion relation (with energy εk/2 at mo-

mentum ħk3 ), and χk,k′ is a potentially momentum-dependent interaction scale in frequency units.

Often, people will consider the momentum dependence of this interaction in the language of partial

waves. For our purposes, we will assume it has an s-wave character, and specifically that the interaction

is uniformly all-to-all such that all terms of the summation have a single frequency scale χ [405][G][130].

In a zero temperature, low energy limit (such as the ground state), we can assume from the form of

the Hamiltonian that the wavefunction does not include terms in which any Cooper pairs |k,↑〉|−k,↓〉 are

1 More abstractly, any attractive interaction between electrons would lead to BCS superconductivity, regardless of the mi-
croscopic origin. However, in their original paper Bardeen, Cooper, and Schrieffer focused on the electron-phonon interaction
[6].

2 It is possible for Cooper pairing to occur with nonzero net momentum, particularly in the presence of an external field
[410, 411]. The interaction term including only zero net momentum is sometimes referred to as the reduced BCS Hamiltonian
[143][405][G].

3 The factor of 1
2 in this definition is there for reasons related to the mapping onto our system. Essentially, εk as defined here

is the single-particle energy associated with a Cooper pair, which has twice the energy of a single electron.
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broken, since such “pair-broken” terms disrupt the attractive interaction. This allows us to shift our view

from individual electrons to Cooper pairs by means of a simplifying description known as an Anderson

pseudospin mapping [143], illustrated in Fig. 6.1(a) (with electron spin suppressed). This description

maps the presence and absence of a Cooper pair with momentum label k to a spin-up and spin-down at

k, respectively. Formally, this is done through a definition of operators ŝ−, ŝz :

ŝ−k := ĉ−k,↓ĉk,↑; 2ŝz
k+1 := ĉ†

k,↑ĉk,↑+ ĉ†
−k,↓ĉ−k,↓, (6.3)

which satisfy the proper commutation relations for spin- 1
2 operators in the usual way [405][G]. Using this

new picture, we can recast the BCS Hamiltonian as describing a spin ensemble:

ĤBCS =
∑
k

εk ŝz
k−ħχ ∑

k,k′
ŝ+k′ ŝ−k

=∑
k

εk ŝz
k−ħχŜ+Ŝ−,

(6.4)

where Ŝ− := ∑
k ŝ−k is the collective spin lowering operators on Cooper pair states, which we will call ↑c ,

↓c to differentiate from electron spin ↑, ↓.4 We see that the BCS interaction looks functionally equivalent

to an all-to-all spin-exchange interaction, which is exactly what we will use in our system to simulate the

model. Equation (6.4) is sometimes called the Richardson-Gaudin spin model [412, 413].

The ground state of the system is depicted in Fig. 6.1(b) using an Anderson pseudospin picture.

Near the Fermi energy, electrons settle into superposition states of a presence and absence of a Cooper

pair, like: |↑c〉k+|↓c〉k. Importantly, the superpositions are phase-coherent between different momenta

k, represented in Fig. 6.1(b) by the fact that the spins point along the same azimuthal angle on the col-

lective Bloch sphere. This phase coherence is what enhances the exchange interaction and lowers the

total energy of the many-body state. If we set the Fermi energy to be εF = 0 without loss of generality,

then the ground state has mean-field expectations given by [130]:

〈ŝ−k〉gs = 1

2

2∆BCS√
4∆2

BCS +ε2
k

; 〈ŝz
k〉gs =−1

2

εk√
4∆2

BCS +ε2
k

. (6.5)

Here, ∆BCS, which we call the BCS gap, is self-consistently defined by∆BCS :=ħχ〈∑k ĉk,↑ĉ−k,↓〉 = ħχ〈Ŝ−〉,

and it has the physical interpretation as (half) the energy required to break up one Cooper pair superpo-

4 The single-particle energy of the system has also been shifted by a constant offset.
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Figure 6.1: Engineering BCS dynamical phases. (a) The Anderson pseudospin mapping encodes the
presence and absence of a Cooper pair as the up and down states of a spin-1/2 system, respectively.
Under this mapping, the attractive interaction χĉ†

k
ĉ†
−k

ĉ−k′ ĉk′ between electrons is equivalent to an all-

to-all exchange interaction χŜ+
k Ŝ−

k′ between pseudospins. (b) Model parameters. The top plot shows the
effective dispersion relation near the Fermi surface engineered in our system as a function of parameters
δs and EW, controlled using AC Stark shifts. The bottom plot visualizes the ground state of a BCS super-
conductor using Anderson pseudospins. Near the Fermi momentum, the pseudospins develop a phase-
coherent superposition at a scale set by a nonzero BCS pairing gap ∆BCS. This gap is self-consistently
defined from the spin coherence as shown on the Bloch sphere. (c) Dynamical phase diagram. The three
dynamical phases can be realized by varying parameters χN , δs, and EW. Representative dynamics of
the BCS order parameter |∆BCS| for each phase are shown as insets. We explore cut H1 (dashed line) in
Fig. 6.2 using a single ensemble of atoms and cuts V and H2 (solid lines) in Figs. 6.4 and 6.6 using two
separately controlled sub-ensembles. (d) Cavity QED implementation of the BCS interaction. Coupling
many strontium atoms to a detuned optical cavity generates infinite-range spin-exchange interactions
mediated by a virtual exchange of cavity photons. This interaction also causes a field proportional to
∆BCS to leak out of the cavity, providing a real-time probe of the dynamics.

sition state. Traditionally, this gap is considered as a thermodynamic order parameter, i.e., a quantity that

characterizes the system in equilibrium. Above the critical temperature for a superconductor (T > Tc ),

∆BCS = 0, implying that the system exhibits normal metal behavior since it is not thermodynamically

favorable for electrons to condense into Cooper pairs. Below the critical temperatue (T < Tc ), ∆BCS > 0

rises in a second order phase transition, and the system is in a superconducting phase. As we will see

in the next section, however, the BCS gap can be extended to describe the superconducting nature of

systems out of equilibrium just as well.
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6.3 Predicted dynamical phases

In the mid 2000s, motivated in part by the recent successful formation of degenerate Fermi gases in

cold atom platforms [399, 414, 415] and the ability in those systems to tune interaction strengths across

a Feshbach resonance, a series of theory papers were released from multiple theorists [127, 129–132,

416] which studied the behavior of BCS superconductors and superfluids as the interaction strength is

rapidly changed. Among these various studies, Barankov and Levitov seem to be the first to recognize

that the parameter space of possible quenches exhibits critical points that demarcate three dynamical

phases [130]. The three phases, depicted in Fig. 6.1(c), represent distinct regimes of dynamical behavior

that arise after a sudden perturbation of a control parameter in a closed many-body system. They are

described using a time-averaged or steady-state order parameter that demonstrates non-analytic behav-

ior at the boundary between phases. In particular, the BCS model is predicted to exhibit second-order

dynamical phase transitions in quantities derived from the time dynamics of the BCS gap ∆BCS.

Phase I is characterized by a steady state with a vanishing order parameter |∆BCS(t )| → 0 at long

times. Phase II exhibits a steady state with a constant nonzero order parameter∆∞ := limt→∞ |∆BCS(t )| >

0. Finally, phase III features oscillations in |∆BCS(t )| that persist to long times, realizing a Floquet super-

fluid despite not being periodically driven [134–137]. The long-time behavior of these dynamical phases

admits a simpler description in terms of the Lax-reduced Hamiltonian (used by our theorist colleagues),

which is an effective Hamiltonian taking the same form of Eq. (6.4) but with rescaled parameters and a

reduced number of spins [55, 137]. Under this formulation, phases I, II, and III emerge when the Lax-

reduced Hamiltonian describes effective zero-spin, one-spin, and two-spin systems respectively.

6.4 Cavity QED implementation overview

While the BCS interaction in Eq. (6.4) looks formally identical to the cavity-mediated spin-exchange

interactions utilized in Ch. 5, its indices still refer to the momentum states k in a superconductor. To use

our system to simulate a superconductor, we make a simple but subtle replacement of the electron mo-
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mentumk with the lattice site or positional label k for an atom in our optical cavity,5 giving the following

(now explicitly) spin-spin Hamiltonian:6

Ĥ =∑
k
εk ŝz

k +ħχŜ+Ŝ−. (6.6)

Now, χ refers to the dispersive part of the effective atom-atom interaction attained from adiabatic elim-

ination of the cavity mode. We have defined the spin operators relative to the inferred spin-1/2 sys-

tem encoded in the electronic ground state |↓c〉 =
∣∣1S0,m J = 0

〉
and the long-lived optical excited state

|↑c〉 =
∣∣3P1,m J = 0

〉
(mapping to the Anderson pseudospins of Cooper pair states), such that ŝ−k = |↓c〉〈↑c |k

and ŝz
k = (|↑c〉〈↑c |k −|↓c〉〈↓c |k )/2 for single atoms with labels k ∈ {1, ..., N }, and we have further defined the

collective lowering operator Ŝ− =∑
k ŝ−k and raising operator Ŝ+ = (Ŝ−)†. Whereas in previous work such

as in Ch. 5, we nominally studied the dynamics of spin-exchange interactions in the fully collective man-

ifold, in this work we explicitly break this assumption by engineering a spread in single-particle energies

εk =ħωk using applied AC Stark shifts ωk [417, 418]. These shifts compete with the spin-exchange inter-

action, as we will later see.

How, exactly, should we assign our atom labels k to various momenta k in this mapping? One

might imagine that there are combinatorially many ways to do so, but since our interactions are all-to-

all the precise mapping of which atom gets which momentum state is unimportant. In fact, the only real

control knobs we have to affect the physics are the interaction strength and the overall distribution of

single-particle energies (“density of states”), which we will call ρ(ω). The distribution ρ(ω) could have

arbitrarily many degrees of freedom, but we found that only two such degrees of freedom are necessary

to explore the desired dynamical phases. For practical convenience, we introduce experimental control

in the form of an overall frequency splitting δs between two atomic subensembles and an effective fre-

quency width EW of each sub-ensemble to engineer a tunable dispersion relation εk as in Fig. 6.1(b), both

engineered using 461 nm light shifts. This choice is inspired by the two-spin system of the Lax-reduced

Hamiltonian and will be explored further in Sec. 6.7. Phase I and phase II can also be observed using

5 Recall that our atoms are thermal. While we have hundreds of atoms per optical lattice site, and many of these share the
same axial wavefunction, each will have a different radial motional state which gives them distinguishable position labels.

6 This distinction may at first glance seem overly pedantic. Empirically, however, I have found that not spelling this out in
talks or poster presentations can sometimes confuse theorists, who fall under the mistaken assumption that our atoms are also
indexed by momentum.
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a single ensemble of atoms as shown in Fig. 6.2 (and, in fact, we do so). Both experimental setups can

nonetheless be described by a common phase diagram as shown in Fig. 6.1(c).

Additionally, we can tune the interaction strength as a third control knob. In principle, we could

do this by changing the atom-cavity detuning (recall that χ≈ g 2/∆ca in the far-detuned cavity limit). In

practice, constantly changing the cavity detuning would have been a pain.7 Instead, we load in different

atom numbers N into the cavity from shot to shot of the experiment, which has the effect of rescaling

the mean-field interaction strength χ〈Ŝ−〉∝χN .

We initialize all the atoms in the |↓c〉 state and then apply a coherent π/2 pulse through the cavity

in 100 ns such that Ω≫ χN , where Ω is the pulse Rabi frequency, and χN is the characteristic inter-

action strength for an ensemble of N atoms. This establishes a large BCS order parameter ∆BCS on a

timescale faster than any other relevant dynamics, mimicking the ground state of a Hamiltonian with an

infinite interaction strength χ (far right on the horizontal axis of the phase diagram in Fig. 6.1(c)). We

then quench the system by rapidly turning on εk , which sets a finite ratio χN /EW and a variable δs/EW,

allowing us to explore the dynamical phase diagram shown in Fig. 6.1(c) which is plotted in terms of di-

mensionless ratios of our three control knobs. Although our quench of the single-particle energies is not

the proposed interaction quench of the original theory papers identifying the dynamical phases [130],

the resulting phases can be shown to be connected through a Lax vector analysis.

For a more complete description of the experimental setup, refer to Sec 6.9 near the end of this

chapter. For now, though, we will jump into the results.

6.5 Phase I to phase II

We probe the phase I to phase II transition by varying the ratio χN /EW between the interaction

strength and the width of the single-particle energy distribution. As shown in Fig. 6.2(a), we shine an

off-resonant 461 nm beam onto a single atomic ensemble from the side of the cavity that generates a

distribution of AC Stark shifts with a spread EW. Careful shaping of the 461 nm beam allows us to realize

7 We didn’t have a cavity sweep set up at the time. Also, moving the cavity around would change our effective drive power and
require us to dynamically change our cavity probe frequency and RF demodulation as well (see Sec. 7.8.2 for a longer discussion
of the cavity probe).



180

0 2 4
Time (μs)

0.0

0.5

1.0

|Δ
|/Δ

 
BC

S
in

it

φ π 0  = 0.0
φ π 0  = 0.4
φ π 0  = 0.8
φ π 0  = 1.2

0.0 0.4 0.8 1.2
χN π /2  (MHz)

0

10

20

30

Li
fe

tim
e 

of
 |Δ

| (
s)

   
   

BC
S 

μ

0.0

0.5

1.0

Av
er

ag
e 

|Δ
|/Δ

 
B

C
S
 

in
it

0 4 8 12 16 20 24 28
Time (μs)

0.0

0.2

0.4

0.6

0.8

1.0

|Δ
|/Δ

 
BC

S
in

it

a b c

d

π/2 tapply EWwait

φ00

0.19 MHz

0.5 MHz

0.7 MHz

χN = 2π x
1.2 MHz

χN/EW

δ s
 /E

W

quench

δc

ωc ωa

ω

68
9 

nm
ωk

461 nm

689
nm

461 nm

φ(ωk)

ωk

φ0

0
ω

ρ(ω)

0 EW

1P1
3P1

1S0

Figure 6.2: Phase I to phase II transition. (a) Tuning the single-particle dispersion. We shine an off-
resonant 461 nm beam onto the atoms from outside the cavity. This generates a distribution of AC Stark
shifts representing a roughly uniform density of states ρ(ω) (bottom plot). (b) Probing phase I and phase
II. We perform a rapid π/2 pulse to prepare a highly coherent initial state, wait for 2 µs, quench to a
variable χN /EW with δs = 0, and then let the system evolve. The inset shows the explored parameter cut
and identifies post-quench χN /EW values with colored dots. The main plot shows experimental time
traces of |∆BCS| (colored curves) accompanied by numerical simulations (darker lines). Two curves are
extended to demonstrate long-time coherence protection, with the χN /2π = 0.19 MHz trace smoothed
for clarity. For χN /2π = 1.2 MHz, we show an ideal simulation neglecting dissipation and motional
effects (dashed line), which exhibits transient Higgs oscillations. Hints of these oscillations are present
in experimental data with additional damping. (c) Characterizing the phase transition. Blue triangles
show the fitted coherence time of |∆BCS| from t = 1 µs to 30 µs. Green circles show the time-averaged
|∆BCS| between t = 3 µs and 8 µs, with the dark green line representing numerical simulations. In all
cases, we identify a phase transition at χN /2π = 0.2 MHz. Error bars in all plots represent the s.e.m.
of boostrap resamplings on experimental shots. (d) Varying initial conditions. Before t = 0, we shine a
high-intensity 461 nm beam within 300 ns, engineering an initial phase spread ϕ(ωk ) ∈ [0,ϕ0] depicted
on the Bloch sphere. The phase ϕ(ωk ) applied to atom k is proportional to the post-quench frequency
shift ωk . Traces represent different ϕ0 and show enhanced oscillations with increasing ϕ0.

a roughly flat density of states (see Sec. 6.9.1), resulting in a setup consistent with the δs = 0 line in

Fig. 6.1(c). After the initial π/2 pulse, we wait for 2 µs to let transient dynamics settle and then turn on

the 461 nm beam to quench on EW/2π = 0.83 MHz from an initial value E (0)
W /2π≪ 0.1 MHz. The beam

exhibits a rise time of roughly 50 ns, much faster than the relevant dynamics. To scan across the phase

diagram in the inset of Fig. 6.2(b), we vary the interaction strength χN between shots by changing the

atom number N .

As shown in Figs. 6.2(b)-(c), we observe two distinct dynamical behaviors corresponding to phases

I and II, signalled by the decay rate of |∆BCS|. For experiments with sufficiently smallχN , such asχN /2π=
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0.19 MHz, |∆BCS| decays with a 1/e coherence time of 0.9± 0.1 µs. This coherence time is consistent

with single-particle dephasing of 〈Ŝ−〉 set by the energy spread ħEW and is nearly constant through-

out this regime. We identify the fast decay of |∆BCS| as an experimental signature of phase I. For larger

interaction strengths, we observe a rapid increase in coherence time up to a maximum of 29 µs when

χN /2π = 1.2 MHz; this constitutes an improvement of more than a factor of 30. We identify this ex-

tended coherence time regime as phase II. The residual decay of |∆BCS| in this regime can be attributed

to intrinsic dissipative processes including spontaneous emission, off-resonant superradiant emission,

and scattering of 461 nm light [95, 223][G], which set a maximum predicted coherence time of 29 µs (see

Sec. 6.9.1). All experimental observations (colored traces) are in good agreement with numerical simu-

lations based on experimental conditions (dark lines—see Sec. 6.10).

Due to the separation of timescales in the decay of |∆BCS|, we are able to determine the boundary

between phase I and phase II in our experiment by calculating the average |∆BCS| in a time window from

3 µs to 8 µs as a function of χN (see Fig. 6.2(c)). In this analysis, phase I features a vanishing average

|∆BCS|, while phase II sees a nonzero |∆BCS| that increases with χN . The sharp rise of average |∆BCS|

around χN /2π= 0.2 MHz indicates a dynamical phase transition, which agrees with the point predicted

by numerical simulations. In a spin-model picture, the BCS pairing gap corresponds to the energy gap

between collective angular momentum states, which exists due to the spin-exchange interaction χŜ+Ŝ−

[419]. Phase II corresponds to the parameter region where such interactions are sufficiently strong to

protect against single-particle dephasing. As a result, the observed transition directly relates to previous

experiments exploring coherence protection in other systems [85, 95, 121, 407–409]. In this picture,

single-particle dephasing couples the atomic ensemble from some initial angular momentum quantum

number S to S −1, and |∆BCS| represents (half) the energy gap between these two states due to the spin-

exchange interaction.

6.6 Signatures of Higgs oscillations

In BCS superconductors, the excitation of a Higgs mode is predicted to occur in phase II. This

mode can be characterized by a collective damped oscillation of the order parameter |∆BCS| with a char-
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Figure 6.3: Collective scaling in damped phase II oscillations. (a) Time dynamics of |∆BCS| measured
after engineering an initial phase spread over [0,ϕ0] where ϕ0 = 0.8π as in Fig. 6.2(d), plotted in absolute
frequency units (pink trace). The solid black curve represents a numerical simulation of the full system,
whereas the dashed curve represents an ideal simulation neglecting dissipation and motional effects.
We obtain a crude estimate of oscillation frequency in the experimental data by fitting a trough and peak
to smoothed data (after subtracting slow-moving behavior) within the first couple µs (magenta points),
using these points to infer a half period of oscillation, and with uncertainties determined using a 90%
amplitude threshold (pink bands). (b) Comparing oscillation frequency estimates of experimental data
(pink squares) with those of ideal simulations (black dots) for differentϕ0. Theory oscillation frequencies
are calculated using a Fourier transform from t = 0 µs to t = 5 µs. Error bars for experimental data are
set by the minimum and maximum frequencies implied by uncertainties in the half period shown in (a).
The two frequency estimates agree within error bars. (c), Collective scaling of oscillation frequency. For
each ϕ0 measured in the experiment, we plot the oscillation frequency against the long-time BCS gap
∆∞, calculated at t = 18 µs for ideal simulations and at t = 3 µs for experimental data. The solid black
line is defined byωosc = 2∆∞, demonstrating the expected scaling for Higgs oscillations. The dashed pink
line represents a linear fit to the experimental data. The pink band shows the uncertainty in the slope
assuming correlated error in ωosc, such that its bounds are defined by linear fits to the data assuming
maximum and minimum values for ωosc as defined by the error bars.

acteristic frequency of 2∆∞, the long-time value of |∆BCS| [137]. From an atomic physics perspective, we

can equivalently think of this mode as representing the detuned coupling between S and S −1 angular

momentum states induced by the single-particle dephasing term, which in a far-detuned limit (when

the interactions are much stronger than the dephasing term) should oscillate at a frequency set by the

interaction-induced detuning. We observe hints of Higgs oscillations by comparing the experimental
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trace of |∆BCS| at χN /2π= 1.2 MHz (red curve in Fig. 6.2(b)) with the dissipation-free simulation (dashed

line in Fig. 6.2(b)) and noticing that the first dip in the experimental trace coincides with the first cycle

of Higgs oscillations. The size of this feature can be increased experimentally by engineering an initial

phase spread ϕ(ωk ) ∈ [0,ϕ0] between atoms which is correlated with the post-quench frequency shifts

ωk of the atoms, as shown in Fig. 6.2(d). The initial state with a nonzero opening angle ϕ0 shares qual-

itative features with the BCS ground state at finite χ up to a π/2 rotation on the Bloch sphere [405], in

contrast to the initial state mimicking the BCS ground state with infinite χ in Fig. 6.2(b).

We can check if these oscillations scale properly with the long-time BCS order parameter ∆∞ as

ωosc = 2∆∞. We confirm this scaling in theory by measuring the oscillation frequency from t = 0 µs to

t = 5 µs in idealized numerical simulations ignoring dissipation and motional effects (black dashed line

in Fig. 6.3(a). For different values of the phase spread extent ϕ0, the system reaches its steady state at

a different long-time BCS gap ∆∞. By parametrically plotting the oscillation frequency vs. 2∆∞ as a

function of ϕ0 in panel (c), we observe the expected scaling.

Oscillations in |∆BCS| are consistently smaller and decay more quickly in experiment than in theory

(See Sec. 6.10.3 for a brief discussion). Nonetheless, we obtain a crude estimate of the experimental

oscillation frequency by measuring a half period from the first trough and peak of |∆BCS(t )|, as shown

in panel (a). In panel (b), we compare the frequency in experimental data to that of ideal simulations

for different ϕ0 and show that the frequencies agree within error bars. This suggests that the transient

dynamics observed in |∆BCS| are related to the Higgs oscillations present in theory.

Although the experimental oscillation frequency agrees with simulations, the steady-state order

parameter ∆∞ is much smaller, as can be seen in Fig. 6.3(a). As a result, the measured frequencies scale

linearly with∆∞ but with a different prefactor. In panel c, we fit a linear relation ofωosc = (1.7+0.7
−0.4)×2∆∞

to the data, where the slope uncertainty bounds are calculated assuming errors in ωosc are perfectly cor-

related. Most of the reduction in ∆∞ can be captured in theory by considering dissipation and motional

effects (solid black trace). We see an additional small difference in |∆BCS| between full numerical simu-

lations and experimental data, which we attribute to drifts in experimental alignments and calibration

factors over time. This difference is not apparent in Fig. 6.2(d) because we plot |∆BCS| in normalized
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Figure 6.4: Phase II to phase III transition. (a), Engineering a bimodal energy distribution. We prepare
two atomic clouds with centers separated by 3 mm and shine an off-resonant 461 nm beam centered
on one cloud. This generates a density of states ρ(ω) (middle plot), equivalent to a dispersion rela-
tion εk = ħωk (bottom plot). (b) Probing phase II and phase III. We prepare the same initial state as in
Fig. 6.2(b) with a π/2 pulse, quench to a finite δs/EW, and then let the system evolve. The inset shows the
explored parameter cut and identifies post-quench δs/EW values with colored dots. As before, colored
traces represent experimental time traces of |∆BCS|, and darker lines represent numerical simulations.
(c) Ideal simulations of mean-field trajectories for the two sub-ensembles (solid and dashed curves) in
phase II (magenta) and phase III (blue). The trajectories are projected onto the surface of the Bloch
sphere for visual clarity. (d) Fourier response of |∆BCS|2 for different δs, plotted as power spectra of the
dynamics from t = 0.5 µs to 4 µs after subtracting slow-moving behavior. (e) Average oscillation ampli-
tude between t = 3 µs and 8 µs. For the remaining plots, dashed lines represent ideal simulations (ignor-
ing dissipation or motional effects), and solid dark lines correspond to full simulations. The additional
dotted line represents numerical simulations rescaled by ×0.2, plotted to show similar trend behavior
between experimental data and simulations. We identify a phase transition around δs/2π = 0.85 MHz.
(f) Oscillation frequency of |∆BCS|, measured using power spectra calculated in (d). We correct for sys-
tematics inferred from our data analysis and assume this correction has an uncertainty of 100%, shown
by the green band. The phase transition point observed in data in panels (e) and (f) agrees well with
simulations.

units.

6.7 Phase II to phase III

We probe the phase II to phase III transition using a vertical cut through the dynamical phase dia-

gram. To realize this, we introduce an energy splitting ħδs between two individually addressable clouds

of atoms along the cavity axis using AC Stark shifts from our 461 nm beam, as shown in Fig. 6.4(a). In

combination with a background energy spread ħEW associated with lattice shifts (see Sec. 6.9.2), this
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produces a bimodal density of states and a dispersion relation similar to the one proposed in Fig. 6.1(b).

As before, we begin the experiment with a highly coherent state and with δs = 0. Then, we quench on

a nonzero δs and let the system evolve. Between shots, we scan δs while fixing χN /2π = 0.9 MHz and

EW/2π≈ 0.34 MHz to explore the vertical cut.

The resulting dynamics show a marked change in the dynamical evolution of |∆BCS| over the scan

as shown in Fig. 6.4(b), which we attribute to a transition between phase II and phase III dynamics.

For small δs, we either see Higgs-like oscillations which are damped after 3 µs (the trace where δs/2π=

0.6 MHz) or, for very small splittings, no oscillations resolvable above the noise floor (δs/2π= 0.3 MHz).

We associate this regime with phase II since it overlaps with the previously observed phase II dynam-

ics in parameter space. For larger δs, curves instead show large-amplitude oscillations that persist for

more than 5 µs (δs/2π= 1.4 MHz). We identify the long-lived oscillations in this parameter regime as an

experimental signature of phase III.

Intuitively, we can understand the difference between the two phases by identifying the two sub-

ensembles of atoms with two Bloch vectors (see Fig. 6.4(c), and Sec. 6.13 for a more detailed study). In

phase II, a finite δs causes the Bloch vectors to precess in different directions, but the dominant scale

χN locks them together to form the solid and dashed magenta orbits. In the presence of a finite EW,

the orbits decay, but the Bloch vectors maintain phase coherence. On the other hand, in phase III δs is

large enough that the two Bloch vectors accrue an unbounded relative phase, as in the blue orbits. The

presence of interactions locks each sub-ensemble separately against a finite EW, leading to persistent

oscillations. This effective beating of two large spins in a macroscopic array of spin-1/2 particles is truly

an interaction-driven effect since the interactions are strong enough to lock the spins within each sub-

ensemble but not strong enough to lock both sub-ensembles together.

We can experimentally define a boundary between phase II and phase III using the separation

of timescales observed for oscillations in |∆BCS|. Fig. 6.4(e) shows the average oscillation amplitude in

a time window from t = 3 µs to 8 µs. In this analysis, we observe a sharp rise in oscillation amplitude

at δs/2π = 0.85 MHz ≈ χN /2π as we increase δs, which we identify as a dynamical phase transition.

Numerical simulations plotted in Fig. 6.4(e) agree fairly well with data in capturing trend behavior and
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Figure 6.5: Justifying our alternative approach for probing phase III. (a) Simulation of an alternative
experimental sequence. As described by the timing sequence at the top, we simulate an experiment
that prepares the initial state using a π/2 pulse, lets the system evolve under a bimodal distribution of
single-particle energy (inset) until |∆BCS| reaches its minimum value, and then quenches the system
back to a continuous distribution of single-particle energies (inset). The theoretically predicted time
trace of |∆BCS| with χN /EW = 1.0 and δs,init/EW = 1.6 is shown at the bottom. The blue (gray dashed) line
shows phase III dynamics under a continuous (bimodal) distribution. (b) Long-time standard deviation
of |∆BCS(t )| after quenching to the continuous distribution shown in (a). The white lines are dynamical
phase boundaries for bimodal distributions. Nearly all the choices of parameter for phase III using bi-
modal distributions can lead to phase III behaviors after quenching to the continuous distribution.

estimating the phase transition point. However, we see a discrepancy in the absolute size of the observed

and predicted oscillation amplitudes. We attribute this to an extra dephasing mechanism (likely residual

motional effects) in our system or other imperfections in the experimental sequence not captured by the

theory model.

We verify the location of the phase II to phase III transition using the short-time oscillation fre-

quency (from t = 0.5 µs to 4 µs) as an additional experimental signature. As can be seen in the Fourier

responses in Fig. 6.4(d) and quantified in Fig. 6.4(f), the oscillation frequency exhibits a dip vs. δs at the

previously-identified phase boundary. This dip is present in roughly the same location for experiment

and theory and is expected to coincide with the phase II to phase III transition (see Sec. 6.13).

Our implementation of phase III in this work is not how it was originally envisioned [130], in which

the system starts in the ground state of a weakly superconducting system and is subsequently quenched
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to a system with much stronger interactions. Instead, we start with the ground state of a strongly su-

perconducting system and quench on a bimodal distribution of single-particle energies, which is quite a

different prescription.

Despite their qualitative differences, these two situations generate similar phase III dynamics and

can in fact be dynamically connected to each other with numerical analysis. This is done by the protocol

shown in Fig. 6.5(a), which uses a bimodal distribution (δs,init > EW) just to generate a state with min-

imum |∆BCS|. At this point the system’s dispersion is restored to be continuous by setting δs,final = EW.

This approach more closely resembles the phase III quench discussed in actual BCS superconductors,

where phase III is observed by quenching from a state with weak BCS paring gap |∆BCS| to one with a

strong pairing gap [137]. Numerical simulations show that nearly all choices of parameters that lead to

phase III using a bimodal distribution also lead to phase III dynamics when quenching to a continuous

distribution. The only exception is a small parameter regime close to the boundary between phase III

and phase II (see Fig. 6.5(b)).

6.8 Scan across three dynamical phases

Finally, we observe all three dynamical phases in a single cut through parameter space, as shown

in Fig. 6.6(a). We run the same experimental sequence described in Fig. 6.4, but instead scanχN between

shots with δs/2π= 1.1 MHz and EW/2π= 0.46 MHz fixed. This allows us to probe phase I, phase III and

then phase II by increasing atom number N . Using order parameters established in Figs. 6.2 and 6.4,

we determine boundaries between the three phases. As shown in Fig. 6.6(b), the long-time average of

|∆BCS| rises suddenly around χN /2π = 0.25 MHz in both data and simulations. This transition marks

the boundary between phase I and phase III. Additionally, at χN /2π = 1.0 MHz we observe a dip in the

short-time oscillation frequency of |∆BCS| (Fig. 6.6(c)), marking a transition between phase III and phase

II. For this scan, we do not use the long-time oscillation amplitude as an order parameter due to poor

signal-to-noise for smaller values of χN .



188

0.0 0.4 0.8 1.2
χN π /2  (MHz)

0.0

0.4

0.8

1.2

O
sc

. f
re

qu
en

cy
 (M

H
z)

0.0 0.4 0.8 1.2
χN π /2  (MHz)

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e 

|Δ
|/Δ

 
B
C
S
 

in
it

0 2 4 6 8
Time (μs)

0.0

0.2

0.4

0.6

0.8

1.0

|Δ
|/Δ

 
BC

S
in

it

0 2 4 6 8
Time (μs)

0 2 4 6 8 10
Time (μs)

a

b c

χN = 2π x
0.2 MHz

χN = 2π x
0.8 MHz

χN = 2π x
1.3 MHz

χN/EW

δ s
 /E

W

quench

Figure 6.6: Scan across three dynamical phases. (a), Probing phase I, II and III dynamics using time
traces of |∆BCS|. Quenches are performed in the same manner as in Fig. 6.4(b), except between shots we
hold post-quench values of δs fixed and vary χN instead. The inset shows the explored cut through the
phase diagram and identifies final χN /EW values with green (phase I), blue (phase III), and red (phase
II) dots. The χN /2π = 0.2 MHz trace is smoothed for clarity. (b) Time average of |∆BCS| in a bin from
t = 3 µs to 8 µs vs. interaction strength. The experimental data shows signatures of a phase I to phase
III transition at χN /2π = 0.25 MHz. (c) Oscillation frequency of |∆BCS| vs. interaction strength in a bin
from t = 0.5 µs to 4 µs. Again, we correct for systematics inferred from our data analysis and assume this
correction has an uncertainty of 100%, shown by the green band. This data identifies a phase III to phase
II transition at χN /2π = 1.0 MHz. Experimental data and transitions in both plots are consistent with
numerical simulations.

6.9 Details of the experimental setup

The experimental setup for this work is quite similar to that of the dynamical phase transition pa-

per described in Ch. 5: we load N = 105 − 106 88Sr atoms from a magneto-optical trap into an 813 nm

optical lattice supported by a high-finesse optical cavity with a temperature of roughly 15 µK. We mea-

sure an axial trapping frequency of ωx /2π= 165 kHz (coordinates defined in Fig. 6.7(a)), giving a Lamb-

Dicke parameter of η = 0.17 for excitation with 689 nm light. At the measured temperature of 15 µK,
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Figure 6.7: Experimental configuration. (a) Detailed diagram of the cavity and all relevant beams. A
magnetic field along ŷ sets the quantization axis. The 813 nm optical lattice supported by the cavity has
a tunable linear polarization. We drive a π/2 pulse with a beam polarized along ŷ through the cavity,
and during the experiment we probe the cavity resonance frequency using a second ŷ-polarized beam
to measure atom number. A 461 nm beam far-detuned from the

∣∣1S0
〉− ∣∣1P1

〉
transition shines on the

atoms from the side of the cavity, inducing AC Stark shifts. We probe signals transmitted through the
cavity using a balanced heterodyne detector. (b) Fluorescence image of the two atomic clouds used
when scanning through phase III in Figs. 6.4 and 6.6. (c) Frequency landscape of 689 nm beams. The
atomic drive frequency ωdrive is resonant with the atomic transition. The cavity probe frequency ωcp is
nominally centered with the cavity resonance frequency, 51 MHz red-detuned from the atomic transi-
tion. The local oscillator used in heterodyne detection has frequency ωLO and is 80 MHz blue-detuned
from the atomic transition.

η2(2n̄ +1) = 0.11 ≪ 1, placing the atoms in the Lamb-Dicke regime (see Sec. 3.5.2). Using piezoelectric

actuators, we stabilize the cavity length to set the closest TEM00 resonance to be 51 MHz red-detuned

from the atomic transition, with a full frequency landscape as displayed in Fig. 6.7(c). This is the same

detuning as in Ch. 5, placing us in a regime where cavity-mediated spin-spin interactions dominate.

However, depending on the parameter scan studied, other aspects of the experimental setup change.

Generally, we use one of two different setups as described in the following two subsections. The key pa-

rameters changed between the two setups are summarized in Table 6.1.

6.9.1 Phase I to phase II cut

For exploring the phase I to phase II transition along cut H1 in Fig. 6.1(c), we load the atoms into

a single atomic cloud, resulting in a Gaussian distribution transverse to the cavity axis with standard
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deviation σy = σz = 16 µm. Further, the cloud is extended over thousands of lattice sites, forming a

distribution along the cavity axis with a standard deviationσx = 430µm. We set a quantization axis along

ŷ with a 2.4 G magnetic field and tune the lattice polarization to a “magic angle” relative to this axis, such

that the differential lattice shift between ground (
∣∣1S0

〉
) and excited (

∣∣3P1,m J = 0
〉

) states vanishes (see

Sec. 3.5.2) [108][G]. This removes any contribution of the optical lattice on the single-particle energies εk .

After loading into the lattice, we initialize the atoms with a ŷ-polarized drive through the cavity

which is nominally resonant with the atomic transition. Because the drive is far off-resonance from the

cavity (which has linewidth κ/2π = 153 kHz at 689 nm), the induced Rabi frequency is somewhat sup-

pressed. Nonetheless, we find that roughly 5 mW of power before the cavity is sufficient to drive the

atoms with a π/2 pulse in 100 ns. We allow the atoms to settle for 2 µs in order to distinguish the desired

physics from transient dynamics observed after state initialization, which we attribute to undesired ex-

citation of sideband transitions. We then shine a 461 nm beam with 17.6 mW of power from the side of

the cavity along the ŷ direction, detuned from the
∣∣1S0

〉−∣∣1P1
〉

transition by more than 12.1 GHz, in order

to induce AC Stark shifts on the ground state. The beam has waists (wx , wz ) = (1030 µm,75 µm) along

the x̂ and ẑ directions at the plane of the atoms, and its center is displaced from the center of the atomic

cloud by x0 = 580 µm along the cavity axis. From these dimensions, we calculate an atomic density of

states ρ(ω) as a function of frequency shift which is roughly uniform between 0 and a maximum shift

ħẼW (for the distribution used, refer to the formulas in Sec. 6.14). We estimate that for the power and de-

tuning used in this cut, the 461 nm beam scatters off the atoms with an average rate of Rsc/2π= 1.3 kHz,

roughly a factor of six smaller than γ/2π= 7.5 kHz, the spontaneous emission rate. Combined with col-

lective emission from the atoms as described in Sec 6.9.3, these dissipation processes set a maximum

predicted coherence time in the system of 29 µs.

It is worth mentioning that the uniform distribution [−ẼW/2, ẼW/2] can be interpreted in two dif-

ferent ways on the dynamical phase diagram in Fig. 6.1(c). The first is: δs = 0 and EW = ẼW, and the

second is: δs = EW = ẼW/2. In principle, therefore, this cut could map onto a horizontal cut either along

the x-axis or along the line δs/EW = 1 (up to a factor of 2 rescaling on the horizontal axis). Here we pre-

fer the first interpretation δs = 0 because in this scheme we only have a single control parameter (the
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strength of AC Stark shift beam). Additionally, the line δs = EW in the dynamical phase diagram has an

implication that a small perturbation of δs can generate a gap in atomic frequency, but such a gap is not

physically realizable given the experimental control parameters used in this cut.

6.9.2 Cuts through phase III

For the two cuts through phase III described in Figs. 6.4 and 6.6, we load the atoms in two clouds

separated by 3 mm, as shown in Fig. 6.7(b). The left cloud has an extent described by standard devia-

tions (σx ,σz ) = (200 µm,16 µm). The right cloud has a similar extent along σz but is broader along the

cavity axis. We tune the lattice polarization to point along ẑ, which breaks the magic angle condition

and introduces a differential trap depth between ground and excited states of 0.47 MHz for atoms expe-

riencing peak lattice intensity. Due to their finite temperature, the atoms experience a spread in lattice

intensities which leads to an inhomogeneous trap depth. We estimate the induced distribution of en-

ergy shifts by assuming the atoms occupy a 2D Gaussian distribution radially with standard deviation

σy = σz = 16 µm, compared to the lattice waist wy = wz = 80 µm. This produces a peaked distribution

equivalent to the narrow peak in Fig. 6.4(a).

In these experiments, we perform a π/2 pulse as before and then immediately shine a 461 nm

beam centered on the left (“bright”) atomic cloud. Unlike in the previous cut, we do not wait for tran-

sient dynamics to settle after state initialization, for the sake of simplicity. We do not see major differ-

ences between observed and expected behavior when omitting the wait period. The beam has waists

(wx , wz ) = (1700 µm,80 µm). We install a beam block just before the chamber that clips the beam tail

that would otherwise hit the right (“dark”) atomic cloud. The 3 mm separation between clouds is suffi-

ciently large to ensure the beam does not significantly diffract around the beam block. The beam shifts

the mean energy of the bright cloud away from that of the dark cloud, introducing a tunable δs.

While nominally, we hold EW fixed while scanning δs to explore the phase II to phase III transition,

in reality the finite size of the blue beam introduces an additional contribution to EW on the bright cloud,

as shown in Fig. 6.8(c). As δs increases, therefore, both the size and shape of the single-particle energy

distribution changes. We calculate EW in a consistent manner by estimating the standard deviation of
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Figure 6.8: Modeling imperfections in EW and δs. (a) and (b) Dynamical phase diagram for the exper-
iment with two atomic ensembles, in terms of averaged spin-exchange interaction strength χNeff and
peak AC Stark shift fAC. The white lines show the predicted dynamical phase boundaries to guide the
eye. The white dashed line marks a small region of phase II’ due to the imbalance of EW for the two
atomic ensembles. (c) EW as a function of peak AC Stark shift fAC, with AC Stark shift applying to atomic
cloud 1. (d) δs as a function of peak AC Stark shift fAC (red line). The dashed line marks the place where
δs = fAC.equency ωcp is nominally centered with the cavity resonance frequency, 51 MHz red-detuned
from the atomic transition. The local oscillator used in heterodyne detection has frequency ωLO and is
80 MHz blue-detuned from the atomic transition.

the bright cloud distribution and matching the result to a uniform distribution with the same standard

deviation. When reporting the value of EW, we use the value obtained at the phase transition point for the

phase II to phase III transition. Additionally, we define δs to be the mean frequency difference between

the two ensembles. At large splittings, the size of δs also deviates from the peak AC Stark shift, which we

call fAC, as shown in Fig. 6.8(d). This change is relatively small, however.

These imperfections lead to a slight modification in the predicted dynamical phase diagram as

depicted in Fig. 6.8(a-b). In particular, the imbalance of EW for the two atomic ensembles can lead to

a small region of phase II’ marked by the white dashed line. This occurs because the spin-exchange

interaction is able to lock the ensemble with smaller EW, while the ensemble with larger EW remains un-

locked, which leads to |∆BCS| approaching a small but nonzero constant value. In the experiment, due to

other dissipative processes and reduced signal-to-noise ratio for small χN , we do not observe a differ-

ence between phase I and phase II’. This leads to a small discrepancy between theory and experiment in

describing the phase I to phase II transition point as shown in Fig. 6.6.

Finally, as we increase the 461 nm beam power, the atoms also scatter more blue photons. At the
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Atomic

distribution
Generating EW Generating δs

Scheme 1
(cut H1)

One cloud
σx = 430 µm
σz = 16 µm

461 nm beam
(wx , wz ) = (1030 µm,75 µm)

x0 = 580 µm
P = 17.6 mW

δca/2π= 12.1 GHz

N/A

Scheme 2
(cuts V, H2)

Two clouds
σx = 203 µm
σz = 16 µm

Separation 3 mm

813 nm non-magic lattice
w (cav)

0 = 79.6 µm

∆ω
(peak)
AC /2π= 0.47 MHz

461 nm beam
(wx , wz ) = (1700 µm,80 µm)

P = 17.3 mW
δca/2π= 14.0 GHz

Table 6.1: Parameters for inhomogeneity generation, for each of the two schemes used for different pa-
rameter cuts in exploring the BCS dynamical phase diagram.

largest applied AC Stark shift, we estimate that the bright cloud experiences a scattering rate of Rsc/2π=

3.4 kHz, resulting in lower coherence times for traces with large δs. However, this excess decoherence

does not bias our measurements of oscillation amplitude and frequency at times t ≤ 8 µs.

6.9.3 Readout

We measure both the pre- and post-quench dynamics of |∆BCS| by monitoring light emitted by the

atoms into the cavity as a function of time (see Fig. 6.1(d)). This light arises from a superradiance process

which is suppressed when the cavity resonance is detuned from the atomic transition frequency by much

more than κ, the cavity power decay linewidth [223, 420, 421][G]. In this limit, the established cavity

field adiabatically follows 〈Ŝ−〉, which is proportional to ∆BCS (see Sec. 2.5 for a discussion on adiabatic

elimination). By measuring the leakage of light from the cavity in heterodyne with a local oscillator, we

therefore obtain a real-time probe of ∆BCS.

Assuming homogeneous atom-light coupling (see Sec. 6.10.1 for modifications due to inhomoge-

neous coupling), the complex amplitude of the electric field leaking out of the cavity is given by

αout(t ) =− g

δc

p
κm〈Ŝ−(t )〉, (6.7)

where αout has units of
√

photons/s. Here, 2g /2π = 10.9 kHz is the single-photon Rabi frequency for

an atom maximally coupled to the cavity, δc /2π= (ωc −ωa)/2π=−51 MHz is the detuning between the
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cavity resonance frequencyωc and the atomic transition frequencyωa , and κm/2π= 41 kHz is the rate at

which photons incident on the cavity mirror are transmitted. αout is a form of dissipation in the system

equivalent to superradiance in a detuned cavity limit. Over the region of parameter space explored in

this work, we estimate that the dissipation rate never exceeds γSR/2π= 2.3 kHz. We measure the detuned

superradiant light as it leaks out of the cavity using balanced heterodyne detection, providing us with a

real-time probe of 〈Ŝ−〉∝∆BCS. In plots of |∆BCS|, we calculate the square magnitude of this quantity and

average over 400-1600 shots of the experiment, taken within 2-10 minutes. We then perform background

subtraction to remove vacuum noise power from the heterodyne signal. Finally, we take a signed square

root of the result to return an estimate of |∆BCS|which averages to zero in the absence of a real signal. This

explains why some traces dip below zero despite representing a nonnegative quantity. We also normalize

traces to the initial gap size ∆init measured right after the π/2 pulse.

Additionally, the cavity experiences a (dispersive) shift in its resonance frequency proportional to

the number of atoms. We use this fact to measure atom number by sending a pulsed probe tone through

the cavity and measuring the frequency shift using the transmitted light. Since this light is spectrally

resolved from the light emitted by the atoms, we are able to measure both signals independently on our

heterodyne detector. The different optical frequencies involved in the heterodyne beat are compared

in Fig. 6.7(c). We separate this signal out from the atomic signal using RF splitters and bandpass filters.

We read in both signals using an eight-channel, triggerable analog input card from NI (part no. NI PCI-

5105), installed in our data taking computer (named SYNC). It has a sample rate of 60 MS/s for a Nyquist

frequency of 30 MHz, which is plenty to resolve the MHz scale time dynamics. It also has an onboard

buffer memory of 128 MB, which in practice allows us to take many ms worth of data at the full sample

rate before running out of memory.

6.9.4 The experimental sequence

The full experimental sequence has several stages, as outlined in Fig. 6.9. To start, we spend a

variable amount of time cooling atoms from our oven source and loading them into the optical lattice.

This takes up the majority of the sequence time: the main experimental sequence only lasts a few ms,
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compared to somewhere between 1.5 and 6 seconds for the full time. Of this time span, the vast majority

is spent loading atoms into the initial blue MOT stage. This is largely due to the low flux of atoms exiting

our oven during the operation of this experiment. To give concrete numbers, at an oven temperature of

around 500◦C, a 3 second sequence time is necessary to generate an interaction strength at the level of

χN /2π= 1 MHz (for an r.m.s. value of χ, corresponding to around 860k atoms).8 We can get more atoms

into the lattice by loading for longer times, saturating at around a 6 second sequence length. The largest

interaction strength we regularly generate in this experiment is around χN /2π= 1.3 MHz, achieved with

the longest loading times.

After loading atoms into the optical lattice, we align the magnetic bias fields to point along ŷ and

let the coils settle for 30 ms. We then start the main portion of the experiment, consisting of multiple

experimental shots as well as pre- and post-measurement sequences, each lasting 50 µs. At a high level,

we interleave 9 pre-measurement sequences with 9 experimental shots. Then, we blow the atoms out

of the lattice using 600 µs of a resonant 461 nm beam shined from the side of the cavity, followed by 5

post-measurements. For not very important reasons, we actually do not analyze data from the first ex-

perimental shot, effectively giving us 8 shots per ≈ 3 second loading sequence. This allows us to average

down our signal fairly quickly despite working with a relatively slow experimental repetition rate.

The pre-measurement sequence (Fig. 6.9(b)) consists of no applied drive or 461 nm light (used

to generate inhomogeneity in the transition frequency). Instead, we measure the cavity resonance fre-

quency using a novel pulsed cavity probe, consisting of a regular train of weak laser pulses (5 µs be-

tween pulses) centered at the nominal cavity resonance frequency but Fourier-broadened to ±3.75 MHz

FWHM. This probe is capable of high-bandwidth measurement of the atomic inversion, which is fully

outlined in Sec. 7.8.2. For the scope of this experiment, all we really need it for is tracking the number

of atoms in the cavity before each experimental shot. We get this information because, as each pulse

transmits through the cavity in an undriven ringdown, the frequency of that transmitted light closely

8 Over time, the oven flux slowly got worse (until we refilled it with strontium in May 2024). I took the main data for this
experiment between Nov. 2022 and Mar. 2023, so these numbers are valid for that time period. Later, when I took final data
for the rf spectroscopy experiment in early 2024, I could not achieve this same performance and had to crank up the oven
temperature to around 515◦C for the largest interaction strengths.
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Figure 6.9: BCS dynamical quench experimental sequence. (a) After atom cooling and trapping, we turn
on a bias field to set a quantization axis and then start the main experiment. This consists of nine re-
peated sequences of one pre-measurement and one experimental shot, each lasting 50 µs, followed
by a 600 µs 461 nm pulse to blow away the atoms, and finally by five repeated sequences of a post-
measurement. (b) A pre-measurement sequence consists purely of measuring the atom number using
the pulsed cavity probe, which essentially consists of a train of short pulses on resonance with the cavity
every 5µs with the goal of inferring the instantaneous cavity resonance frequency (see Sec. 7.8.2 for more
information on the cavity probe design). (c) Both the experimental shot and post-measurement consist
of a short drive to resonantly excite the atoms, followed by a rapid turning on of any 461 nm beams which
apply the proper energies εk to the atoms, accompanied by probing with the cavity probe. The differ-
ence between the two subsequences is that the post-measurement does not have any atoms due to the
blow-away pulse.

follows the cavity resonance frequency. Since the cavity resonance shifts according to the atom number

N (see Ch. 7.8.1), we can infer N . The pre-measurement also plays a second role, which is to add a time

delay between experimental shots. At its longest, the lifetime of the atomic coherence is measured to be

around 29 µs. A 100 µs delay gives us 3 1/e times to allow the coherences to decay to no more than 5% of

the initial value.

The experimental shots and post-measurements consist of the exact same pulse sequence (Fig. 6.9(c)).

First, we initiate the pulsed cavity probe, which in principle allows us to track the evolution of the atomic

inversion 〈Ŝz〉.9 After a few µs, we apply a 689 nm drive resonant with the atomic transition for 100-

200 ns, generating a π/2 pulse for atoms which maximally couple to the cavity. Immediately following

this drive pulse, we shine our 461 nm beams at the atoms to produce the inhomogeneous single-particle

9 Again, we don’t actually use this information for this experiment, but it was set up anyway for the experiment in Ch. 7.
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energy term. For the remainder of the sequence, we read out the light transmitted through the cavity

to infer the dynamics of 〈Ŝ−〉 ∝ ∆BCS. There are no atoms in the cavity during the post-measurement

sequence. The main reasons for performing this step are to calibrate the drive strength (which is eas-

ily measured using the amplitude of the transmitted drive light in the absence of an atomic signal) and

to calibrate the noise floor of the heterodyne detector (the absence of a signal is a great opportunity to

measure the noise). Since the pre-measurement and post-measurement exist in the same measurement

record as the experimental shots, we get these measurements for each shot, which is convenient for data

analysis particularly when the system drifts.

6.10 Details of numerical modeling

While the ideal version of our experiment perfectly implements the Hamiltonian in Eq. (6.6), tech-

nical details break this assumption to varying degrees, much to the chagrin of our theorist colleagues.

Despite the presence of such imperfections, careful numerical simulations largely performed by Anjun

Chu have shown that, for the most part, the physics remains qualitatively unchanged. Here, I briefly

go over the highlights and describe how various technical details affect (or do not affect) the numerical

predictions.

6.10.1 Inhomogeneous atom-light coupling

To simulate an s-wave superconductor, we assume that all of our atoms couple to each other with

equal strength. This would be more or less true if all of our atoms saw the same intensity of 689 nm light

in the cavity, but in reality the 813 nm trapping lattice is incommensurate with this wavelength. As a re-

sult, our atoms effectively experience a uniform distribution in atom-light couplings, parametrized by a

phaseϕk representing the 689 nm electric field phase experienced by an atom at position k. Specifically,

atom k has a coupling strength gk = g0ζk , where g0 is the Jaynes-Cummings coupling strength for an

atom experiencing the maximum intensity of 689 nm light, and ζk = cosϕk is the position-dependent

modification to the coupling.

Recognizing this to be true in our system, we now consider a more accurate effective spin-spin
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Figure 6.10: Numerical simulation of the dynamical phase diagram including inhomogeneous atom-
light coupling. We identify the dynamical phases based on the long-time average (a) and the long-time
standard deviation (b) of |∆BCS(t )|, normalized by its initial value ∆init ≡ |∆BCS(0)|. The white solid lines
mark the corresponding dynamical phase boundaries, analytically derived from Eq. (6.6), which agree
with the numerical results based on Eq. (6.8). The white dashed lines mark an extra dynamical phase
transition that only exists for Eq. (6.6).

Hamiltonian:

Ĥ =ħχ∑
j k
ζ jζk ŝ+j ŝ−k +∑

k
εk ŝz

k , (6.8)

similar to Eq. (6.6) but with inhomogeneous atom-light coupling included in the interaction term. In

contrast to the homogeneous coupling case, Eq. (6.8) is non-integrable. Nevertheless, as shown in Fig. 6.10,

Eq. (6.8) leads to a similar dynamical phase diagram as Eq. (6.6) if we do the following:

(1) Use a generalized superconducting order parameter ∆BCS =χ∑
k ζk〈ŝ−k 〉;

(2) Interpret theπ/2-pulse as a pulse along the cavity axis under the Hamiltonian Ĥdrive =ħΩ∑
k ζk ŝ y

k

that generates the maximum possible |∆BCS|, which occurs whenΩt = 0.586π;

(3) Replace the atomic number N by an effective atom number Neff = N /2, such thatχNeff represents

the averaged interaction strength of Eq. (6.8).

We can still measure the generalized order parameter ∆BCS using the field leaking out of the cav-

ity as in the previous section, since with inhomogeneous coupling the transmitted field takes the form
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αout(t ) = − g
δc

p
κm

∑
k ζk〈ŝ−k (t )〉 ∝ ∆BCS. The dynamical phase diagram in Fig. 6.10 is numerically cal-

culated based on unitary evolution under Eq. (6.8), with χN corresponding to the averaged interaction

strength of Eq. (6.8). Since the inhomogeneous Hamiltonian does not admit a Lax vector analysis of the

dynamical phases, we instead identify the theoretically predicted dynamical phase based on the long-

time average of |∆BCS|, given by

Avg(|∆BCS|) = lim
T→∞

1

T

∫ T

0
|∆BCS(t )|d t , (6.9)

as well as the long-time oscillation amplitude of |∆BCS|. Since the oscillations in |∆BCS| might deviate

from a sinusoidal form, for theoretical simulations it is easier to use the standard deviation as a measure

of the oscillation amplitude:

Std(|∆BCS|)

=
[

lim
T→∞

1

T

∫ T

0

(
|∆BCS(t )|−Avg(|∆BCS|)

)2
d t

]1/2
.

(6.10)

Using these definitions, the dynamical phases can be characterized in theoretical simulations by:

• Phase I: Avg(|∆BCS|) = 0, Std(|∆BCS|) = 0.

• Phase II: Avg(|∆BCS|) > 0, Std(|∆BCS|) = 0.

• Phase III: Avg(|∆BCS|) > 0, Std(|∆BCS|) > 0.

In Fig. 6.10, we compare the results of these numerical order parameters (heat map) with the analytical

phase boundaries derived from the homogeneously coupled system described by Eq. (6.6) (white solid

lines), which were calculated using a Lax vector analysis similar to the one discussed in [405][G][55]. The

two agree quite well, verifying that inhomogeneous coupling does not substantially change the predicted

dynamical phases. The only difference is that Eq. (6.6) predicts an extra dynamical phase transition

marked by the white dashed line, corresponding to phase IIIa in [405]. This demonstrates that in our

system, we only expect to measure phase IIIb as a “true” phase III given the presence of inhomogeneous

atom-light coupling.
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Figure 6.11: Introducing various experimental imperfections into numerical simulations. (a) Example
phase II traces with χN /2π = 1.29 MHz, fAC/2π = 1.1 MHz. (b) Example phase III traces with χN /2π =
0.79 MHz, fAC/2π = 1.1 MHz. (c) Example phase I traces with χN /2π = 0.15 MHz, fAC/2π = 1.1 MHz.
The blue points are experimental data, the orange lines represent numerical simulations under inho-
mogeneous atom-light coupling but no dissipation or axial motion (so-called “ideal” simulations), the
green lines include dissipative processes on top of the ideal simulations, and the red lines consider both
dissipative processes and axial motion effects.

6.10.2 Residual single-particle and collective emission

The system we are attempting to simulate is purely Hamiltonian in nature: we start with the

ground state of an initial Hamiltonian and quench to a final Hamiltonian, then study the dynamics. In

our actual system of strontium atoms coupled to an optical cavity, we also have single-particle sponta-

neous emission and collective emission, which both affect the system at longer times. This is in conflict

with the definitions the three dynamical phases stated earlier in Sec. 6.3, which study the BCS gap at long

times.

The solution, as stated in earlier sections analyzing experimental results, is to use properties of

∆BCS at intermediate times as a proxy for the long-time values. In fact, we do this both for experimental

data and for the numerical simulations, which also include dissipation in the form of Lindbladian terms

for single-particle emission and collective decay. Without these terms, numerical simulations deviate

significantly from the experimental data as early as 2 µs after the quench, particularly in phase II as

shown in Fig. 6.11(a).
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6.10.3 Exciting motional sidebands

Even with the inclusion of dissipation terms in the model, we still see substantial discrepancies be-

tween the experimental data and simulations. One such symptom we observe is a faster than expected

decay of ∆BCS within the first couple of µs, followed by a stabilization of the value. Sometimes the traces

also exhibit longer-lasting oscillations with a period of around 5-6 µs. Additionally, both the Higgs-like

oscillations in phase II and the more persistent oscillations in phase III are consistently smaller in ex-

perimental data as compared to numerical simulations. After some debate, we believe the most likely

candidate responsible for such discrepancies is dephasing through coupling to different motional states

along the cavity axis (often referred to here as “axial motion”).

The proposed mechanism is as follows: although our atoms are trapped in the Lamb-Dicke regime

(meaning that the spacing between motional levels is much bigger than the effective recoil energy from

a 689 nm photon, as discussed in Ch. 3.5.2), a sufficiently large Rabi frequency Ω satisfying Ωηeff ≳ ωx

(where ηeff is the effective Lamb-Dicke parameter, and ωx is the trap frequency) can still drive sideband

transitions since it cannot spectrally resolve the different motional states. Alternatively, a sufficiently

short Rabi pulse will not notice the detuning between motional sidebands due to Fourier broadening

and will coherent couple to the sidebands, albeit with a reduced Rabi rate Ωηeff. Our initial drive in

these datasets satisfies both of these conditions: the peak Rabi frequency is around Ω/2π = 2.5 MHz

(and ηeff =
p

0.11 ≈ 0.33, compared to a trap frequency of ωx /2π = 165 kHz), and the FWHM of the

pulse power is around 100 ns, leading to a Fourier broadening of around 9 MHz. Therefore, we expect

that some fraction of the atoms will be excited into motional levels. As a rough estimate, we expect the

fraction of atoms exited into each of the ±1 motional sidebands to be sin
(
ηeff

π
4

)2 ≈ 0.07, since the carrier

experiences a π/2 pulse. This is not entirely negligible.

Modeling the full motional degree of freedom is apparently difficult, and our theorist collaborator

Anjun Chu does not simulate it fully. Instead, he studies the leading order effects by allowing atoms to

occupy |n〉 , |n ±1〉 motional states given some starting state |n〉. The results of this simulation, shown

as the red traces in Fig. 6.11, are the numerical simulations used to compare to the main experimental
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results. They do appear to capture much of the remaining discrepancies, particularly in the phase II

trace in panel (a). However, the simulations still overestimate the lifetime of oscillations in both phase

II and phase III. It is still not entirely clear whether a full accounting of atomic motion will resolve this

discrepancy or not.

6.11 Conclusion

The demonstrated capability to emulate dynamical phases of superconductors in optical cavities

opens exciting prospects for quantum simulation. For example, it may be possible to extend this exper-

iment include probing beyond mean-field effects like the spectral form factor [422, 423] and enabling

simulation of superfluidity in phenomena relevant to high energy physics [424, 425].

There are also potential avenues for furthering our exploration of BCS physics in our cavity QED

system. As a first extension, we will explore rudimentary forms of pair-breaking in the next chapter

(Ch. 7), which has strong connections to the technique of rf spectroscopy used in degenerate, fermionic

atomic gases to probe for pairing physics. Looking forward, even though so far we have focused our ef-

forts on simulating conventional s-wave superfluids or superconductors, it may also be possible to emu-

late elusive topologically non-trivial superfluid phases such as chiral p+i p [135] and dx2−y2+i dx y super-

fluids. So far these exotic systems have not been seen in experiments, but research efforts for studying

them have steadily grown in doped graphene and other novel materials [426–430], as well as in cuprates

using magnetic impurities to mix in different pairing channels [431, 432]. It will be fascinating to see if

our cavity simulator can, in the near term, engineer and probe these unconventional phases and even

understand competing orders of s, p and d superconductivity in a single system, a long standing open

question.

6.12 Additional information: comparison with systems featuring phase synchronization

Although physically distinct from this experiment, it is worth discussing a class of related systems

studying phase synchronization between superradiantly emitting dipoles, which are predicted to exhibit

qualitative features reminiscent of the three BCS dynamical phases discussed in this chapter. In one
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theoretical proposal [41], two ensembles of spins are placed in a high-finesse optical cavity with a rela-

tive detuning δ in their transition frequencies, mirroring the setup in our system. The main difference

with our experiment is that the physics is purely dissipative, compared to purely Hamiltonian in our

cases—their spins superradiantly emit into the cavity mode with a rate Nγc (instead of spin-exchange

interactions), a process that competes with an incoherent repumping rate w (instead of an applied disor-

der term in the Hamiltonian). In this modified setup, the Holland and Thompson groups identified three

steady-state phases where the two ensembles either exhibit no quantum correlations, spontaneously

synchronize their phases, or oscillate independently from each other with a random relative phase [41].

These phases are reminiscent of phases I, II, and III in the BCS model, and they are also sometimes re-

ferred to with this nomenclature [42]. Some key features of these dissipative versions of “phase I,” “phase

II,” and “phase III” were observed in our group [47][G]. Similar phase structures arising from phase syn-

chronization physics also show up in studies of dipolar systems [43], as well as in hot beam superradiance

proposals [46], where new atoms continuously enter the cavity and synchronize via collective dissipation

through the cavity field.

Despite the analogies between these systems and our setup, the underlying physics responsible

for the predicted phases possesses key differences that should not be overlooked. First and foremost, the

phases predicted in the systems outlined above are all driven-dissipative steady states, stabilized by the

removal of entropy through the presence of an incoherent pump establishing population inversion. In

contrast, the BCS dynamical phases explored in this chapter represent pure Hamiltonian dynamics of an

excited state (not necessarily a steady state), and no entropy is ever removed from the system. As such,

the post-quench dynamics and thus the phase diagram depend strongly on the initial state of the system

before the quench. In particular, if we initialized our system with 〈Ŝ−〉 = 0, say by optically pumping

the atoms into the excited state, no quench parametrized by our three control parameters χN , δs, and

EW will ever cause the system to spontaneously develop phase coherence—hence, the entire phase di-

agram is phase I. But such a formation of phase coherence from nothing is exactly the sort of physics

described by phase synchronization. As an example, the hot beam superradiance proposal [46] also op-

tically pumps all atoms into the excited state, but in this case coherence spontaneously forms through
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a self-seeding of superradiance. Subsequent atoms entering the cavity then synchronize with the rest of

the ensemble despite possessing zero initial coherence. Further, experiments in our group have shown

that superradiantly emitting atoms can forget their initial phase by synchronizing with an applied drive

through injection locking [433][G] or with a second ensemble of atoms possessing an initial phase dif-

ference that subsequently drops to zero [47][G]. Such demonstrations show an independence of initial

conditions that is only possible through entropy removal, and they reflect a fundamental difference be-

tween open quantum systems and the type of unitary dynamics studied in this chapter.

Beyond the difference in dynamical regimes, the control parameters in our system and those used

in [41] serve different roles, making it difficult to interpret the connection between the two phase dia-

grams rigorously. In particular, the applied disorder EW in single-particle transition frequencies used in

our experiment has quite different effects from the incoherent repump w in [41]. The former constitutes

a T ∗
2 dephasing process with a Gaussian envelope in time, leaving the average spin excitation 〈Ŝz〉 un-

changed. In contrast, the incoherent pump is a T1 type dephasing process, which is exponential in time,

and it causes 〈Ŝz〉 to increase towards N /2 (all atoms in the excited state). These distinctions alter the

system in ways that fundamentally affect the BCS dynamical phases studied here: our spin-exchange

interactions can only gap protect against dephasing with a frequency scale smaller than the interaction

rate χN , so the experiment would not work if we replaced EW with a white dephasing process (i.e., where

fluctuations in the transition frequency exhibit a flat power spectrum) like an incoherent pump or spon-

taneous emission. Moreover, the pump plays a dual role in the driven-dissipative systems by changing

both the phase coherence of the ensemble and the state populations. The population changes in partic-

ular appear to play a large role in predictions of chaotic dynamics near the phase II to phase III boundary

in the driven-dissipative systems [42]. No such chaotic dynamics is predicted or observed in our exper-

iment, an important qualitative difference in the phase diagrams. Due to these differences, one should

be careful when drawing parallels between phase synchronization and the physics of many-body gap

protection. To close, it might be of interest to consider regimes in which the two processes are simulta-

neously present and understand the interplay between the physics of Hamiltonian gap protection and

the physics of synchronization via dissipation, both in two-level systems and in large multilevel systems
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Figure 6.12: Frequency dip as a signature of the phase II to phase III transition. (a) Mean field trajec-
tories of the two large spin model evolving under Eq. (6.11). From left to right, Bloch spheres display
trajectories with δs/(χN ) = 0.5,1, and 2 respectively. (b) Oscillation frequency of |∆BCS| in the two-spin
BCS model Eq. (6.11) as a function of δs/χN . The frequency dip at δs/χN = 1 marks the dynamical phase
transition point. (c) Short-time frequency ω of the dynamics under inhomogneous atom-light coupling
(see Eq. (6.8)). The white line marks the phase II to phase III transition, the same boundary as shown in
Fig. 6.10. (d) Short-time frequency ω of the dynamics using experimental control parameters. The white
line marks the phase II to phase III transition. The frequency dips match the dynamical critical points
for both cases.

such as 87Sr.

6.13 Additional information: understanding the phase II to phase III frequency dip

Earlier, we discussed a way to understand the phase II to phase III transition by visualizing the two

atomic ensembles as two large spins. Here, we push on this analogy by briefly studying a model with two

literal large spins, split by δs:

Ĥ/ħ=χŜ+Ŝ−+ δs

2
Ŝz

1 −
δs

2
Ŝz

2 , (6.11)

where Ŝ± = Ŝ±
1 + Ŝ±

2 . As shown in numerical simulations in Fig. 6.12, this simple model captures the

observed dip in oscillation frequencies as δs nears χN (panel (b)), and moreover this dip coincides with
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the analytically predicted dynamical phase transition (panels (c)-(d)).

Given this analogy, we can build intuition about the mechanism behind this frequency dip us-

ing the two-spin model. Fig. 6.12(a) shows mean-field trajectories of the two spins on the collective

Bloch sphere. Instantaneously, we can understand the trajectories as precession of the Bloch vectors

about a fictitious magnetic field (as in Sec. 2.3.1), composed of a ẑ-component equal to ±δs/2 and an

x̂-component equal to 2χ〈Ŝ−
i 〉. Above the phase transition, since δs > χN , the z components of the

magnetic fields dominate, causing the Bloch vector trajectories to travel around the poles and accrue

an unbounded relative phase. The varying size of 〈Ŝ−
i 〉 during the trajectory self-consistently turns the

trajectories into the Pringle-shaped paths shown in the figure. Below the transition, the opposite regime

holds: χN > δs, so the magnetic field points closer to the equator than the poles. As a result, the Bloch

vector trajectories remain close to the equator and form snowman-like orbits. Here, unlike above the

transition, the total 〈Ŝ−
i 〉 stays large since the two spins do not accrue a large relative phase and instead

stay tightly locked close to their initial condition point. This is the underlying mean-field dynamics be-

hind the many-body gap protection induced by spin-exchange interactions.

The frequency dip at δs = χN can be intuitively explained by a dynamical slowdown of the Bloch

vector trajectories as they approach the poles of the Bloch sphere. At initial times, the fictitious magnetic

field points somewhere between the equator and the poles, and the Bloch vectors are deflected off the

equator as a result. As this dynamics progresses, and the distance from the poles decreases, 〈Ŝ−
i 〉 also de-

creases, and the magnetic field also moves towards pointing along the pole. Unlike above the transition,

where the trajectories deflect off the equator into Pringle shapes but ultimately rotate around the Bloch

sphere, at the transition the trajectories will exactly hit the poles, sending 〈Ŝ−
i 〉 to zero. Instantaneously,

the dynamics still looks like Larmor precession around the fictitious magnetic field, with a minimum

Rabi frequency equal to δs/2 at the pole. However, the radius of this orbit around the field axis also de-

creases, so the absolute distance traversed on the Bloch sphere per unit time slows down, leading to an

increasing period time (and decreasing frequency) for the full oscillation. In this idealized model, the

trajectory speed slows all the way to zero as the Bloch vectors approach the poles, leading to an oscil-

lation frequency of zero. For our dirtier system, we only see a partial slowdown at the transition point.
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Still, the essential physics is as described here.

6.14 Additional information: intensity distributions for Gaussian beams on Gaussian

atomic clouds

6.14.1 1D system, centered

Assume a cloud of atoms are Gaussian-distributed with standard deviation σ along the cavity axis

(call this direction x). We will shine a Gaussian beam with waist w transversely at the cloud of atoms,

such that the beam is centered on the atomic cloud. What distribution of intensities does the atomic

ensemble experience?

The atom distribution and intensity vs. x are both given by:

Px (x) = 1p
2πσ2

e−
x2

2σ2

I (x) = I0e−
2x2

w2 .

(6.12)

In order to get a distribution function PI (I ), we might imagine making a differential comparison

of the form PI (I )d I = Px (x)d x, implying PI (I ) = Px (x)|d x
d I |. The main problem with this is that x(I ) is not

a well-defined function: in general there are two values of x which satisfy a given I . The solution is to

define two branch functions

x±(I ) :=± wp
2

√
ln

(
I0

I

)
, (6.13)

such that

PI (I ) = Px (x+(I ))

∣∣∣∣d x+
d I

∣∣∣∣+Px (x−(I ))

∣∣∣∣d x−
d I

∣∣∣∣
= 2p

2πσ2
e−

w2 ln(I0/I)
4σ2 × w

2
p

2

(
ln

(
I0

I

))−1/2 1

I

= 1

I0
p
π

( w

2σ

)(
I

I0

)( w
2σ )2−1 (

ln

(
I0

I

))−1/2

,

(6.14)

where we restrict I ∈ (0, I0).
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6.14.2 2D system, centered

Let us extend this model into two-dimensions, allowing for different-sized waists w and atomic

extents σ in the two directions x and z. Our distributions will look like

P x⃗ (⃗x) = 1

2πσxσz
e
− x2

2σ2
x e

− z2

2σ2
z

I (⃗x) = I0e
− 2x2

w2
x e

− 2z2

w2
z .

(6.15)

Inverting the function I (x, z) like in the previous section seems out of reach now that it is a function

of two variables. It turns out we can still progress if we can find a parametrization of R2 in terms of I and

some auxiliary parameter u. Then, we can apply the following prescription to solve for PI (I ):

PI (I )d I du = P x⃗ (⃗x)d xd z

PI (I )d I du = P x⃗ (⃗x(I ,u)) |J x⃗ (I ,u)|d I du

PI (I ) =
∫

u
P x⃗ (⃗x(I ,u)) |J x⃗ (I ,u)|du,

(6.16)

where here I define the Jacobian J f⃗ (u⃗) to be the matrix with (i , j )th element equal to ∂u j fi .

In this particular system, we can define transformed polar coordinates to parametrize the space in

terms of I and an “angle” u. Start by defining unitless coordinates ξ,ζ = x
wx /2 , z

wz /2 . Then we can define

a radius ρ2 = ξ2 + ζ2, such that ξ = ρ cos(u), ζ = ρ sin(u) defines the variable u. In these variables, the

intensity becomes

I (ρ) = I0e−ρ
2/2. (6.17)

We can now rewrite x, z as functions of I ,u:

x(I ,u) = wx

2
ξ(I ,u) = wx

2
ρ(I )cos(u)

z(I ,u) = wz

2
ζ(I ,u) = wz

2
ρ(I )sin(u).

(6.18)

It follows that the Jacobian defined previously has the determinant

|J x⃗ (I ,u)| =
∣∣∣∣∂x

∂I

∂z

∂u
− ∂x

∂u

∂z

∂I

∣∣∣∣
= wx wz

4

∣∣ρ(I )ρ′(I )
∣∣

= wx wz

4

∣∣∣∣d(ρ2(I )/2)

d I

∣∣∣∣
= wx wz

4

∣∣∣∣d(ln(I0/I ))

d I

∣∣∣∣= wx wz

4

1

I
.

(6.19)



209

Finally, we can solve for the probability distribution, defining unitless parametersαx := wx
2σx

, αz := wz
2σz

for

succinctness:

PI (I ) =
∫

u

(
1

2πσxσz
e
− x2

2σ2
x e

− z2

2σ2
z

)
×

(
wx wz

4

1

I

)
du

= αxαz

2πI

∫ 2π

0
e−

ρ2

2 (α2
x cos2 u+α2

z sin2 u)du

= αxαz

2πI0

∫ 2π

0

(
I

I0

)(α2
x cos2 u+α2

z sin2 u)−1

du.

(6.20)

Using the integral formula for the Bessel I-function:

∫ 2π

0
ex cosθdθ = 2πI0(x), (6.21)

we can simplify the above to

PI (I ) = αxαz

2πI

∫ 2π

0
e−

ρ2

2

(
α2

x+α2
z

2 + α2
x−α2

z
2 cos2u

)
du

= αxαz

2πI
e−

ρ2

2

(
α2

x+α2
z

2

) ∫ 2π

0
e−

ρ2

2

(
α2

x−α2
z

2 cos v
)
d v

= αxαz

I0

(
I

I0

) α2
x+α2

z
2 −1

I0

(
α2

x −α2
z

2
ln

(
I

I0

))
.

(6.22)

We can confirm that this expression agrees with the one-dimensional case by taking wz → ∞

(αz → ∞). Since the Bessel I-functions satisfy Im(z)
z→∞−−−−→ 1p

2πz
ez and I0 is an even function, we ob-

tain

PI (I )
αz→∞−−−−→ αx

I0

(
I

I0

)α2
x /2−1

lim
αz→∞

[
αz

(
I

I0

)α2
z /2

I0

(
α2

x −α2
z

2
ln

(
I

I0

))]

= αx

I0

(
I

I0

)α2
x /2−1

lim
αz→∞

αz
1√

π(α2
z −α2

x )

(
I

I0

)α2
z /2 (

I

I0

)(α2
x−α2

z )/2 (
ln

(
I0

I

))−1/2


= αx

I0
p
π

(
I

I0

)α2
x−1 (

ln

(
I0

I

))−1/2

= PI (I )
∣∣∣
1D

.

(6.23)

If instead we had αx = αz := α (that is, the Gaussian beam has the same ellipticity as the atomic

cloud, just scaled larger or smaller), then the expression simplifies to the particularly concise

PI (I ) = α2

I0

(
I

I0

)α2−1

. (6.24)
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6.14.3 Displacing the Gaussian beam from center

Now, we will allow the beam to shine on the atoms with some displacement x0 from center along

the cavity axis (we will still assume the beam is centered vertically for simplicity). In the one-dimensional

system, we can essentially replace x±(I ) with

x±(I ) := x0 ± wp
2

√
ln

(
I0

I

)
. (6.25)

This relation returns mostly the same probability distribution PI (I ) with a couple modifications:

PI (I ) = Px (x+(I ))

∣∣∣∣d x+
d I

∣∣∣∣+Px (x−(I ))

∣∣∣∣d x−
d I

∣∣∣∣
= α

I0
p
π

(
I

I0

)α2−1 (
ln

(
I0

I

))−1/2

×
[

e−x2
0 /(2σ2) cosh

(
w x0

σ2
p

2

√
ln

(
I0

I

))] (6.26)

We can derive a similar expression in the 2D case. Defining ξ0 := x0
wx /2 , we obtain:

PI (I )
∣∣∣
2D

= αxαz

2πI
e−α

2
xξ

2
0/2

∫ 2π

0
e−

ρ2

2 (α2
x cos2 u+α2

z sin2 u)eα
2
x (ρ cosu)ξ0 du (6.27)

Unfortunately, I couldn’t find a closed-form expression for this case in general. However, we can simplify

the calculation somewhat by using the Jacobi-Anger expansion:

e i z cosθ =
∞∑

n=−∞
i nJn(z)e i nθ, (6.28)

which in turn implies

ez cosθ =
∞∑

n=−∞
In(z)e i nθ. (6.29)

The above integral takes the form

∫ 2π

0
e A cos2u+B cosu+C du, where A =−ρ

2

2

α2
x −α2

z

2
, B = ρξ0α

2
x , C =−ρ

2

2

α2
x +α2

z

2
. (6.30)

We plug in expansions for the two sinusoidal terms to obtain

eC
∞∑

m,n=−∞

(
Im(A)In(B)

∫ 2π

0
e2i mθe i nθdu

)
= 2πeC

∞∑
m=−∞

Im(A)I−2m(B) = 2πeC
∞∑

m=−∞
Im(A)I2m(B),

(6.31)
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since I2m are even functions. From this, we can obtain an alternate form for the 2D probability distribu-

tion:

PI (I )
∣∣∣
2D

= αxαz

I
e−α

2
xξ

2
0/2eC

∞∑
m=−∞

Im(A)I2m(B)

= αxαz

I0

(
I

I0

) α2
x+α2

z
2 −1

e−α
2
xξ

2
0/2

∞∑
m=−∞

Im

(
α2

x −α2
z

2
ln

(
I

I0

))
I2m

(
α2

xξ0

√
2ln

(
I0

I

))

= αxαz

I0

(
I

I0

) α2
x+α2

z
2 −1

e−x2
0 /(2σ2

x )
∞∑

m=−∞
Im

(
α2

x −α2
z

2
ln

(
I

I0

))
I2m

(
wx x0

σ2
x
p

2

√
ln

(
I0

I

))
.

(6.32)

We see that when x0 → 0, all terms in the sum except for m = 0 vanish, and we recover the original 2D

distribution derived earlier. This sum is numerically easier to compute than a full integral, especially

since in many cases only a few of the terms contribute to the sum.



Chapter 7

Time-resolved spectral gap spectroscopy in a quantum simulator of fermionic superfluidity

inside an optical cavity

7.1 Introduction

The simplified form of the BCS model studied in Ch. 6 assumes that fermions with opposite mo-

menta ±k can only ever exist in configurations of both occupied (a Cooper pair) or both not occupied

(no Cooper pair). So-called “pair-broken terms” with only one of the two momentum states occupied

are neglected, since their presence increases the energy of the system in the ideal reduced BCS Hamil-

tonian at zero temperature. Real systems, however, contain pair-breaking processes which modify the

system behavior. Understanding this physics requires moving beyond the paradigm of the Anderson

pseudospin mapping discussed previously and into a more complex description.

To that end, ultracold atomic systems have emerged as a promising platform for simulating com-

plex theories of quantum many-body physics, using clean and tunable interactions of many forms [10–

16] which could potentially enable a better understanding of the underlying mechanisms. An additional

advantage lies in the complex internal structure of cold atoms, which have multiple ground and excited

states and can lie beyond the paradigm of a traditional qubit. Such multilevel systems open up an even

broader class of models and physical systems for study [15, 92, 198, 434–442].

An example that directly relevant to the BCS model is the development of ultracold Fermi gases

using neutral atoms. Such experiments have enabled groundbreaking studies of the phenomenon of

fermionic superfluidity, including a first realization of the BCS-BEC crossover [155, 399, 414, 415], and

have provided insight into a broad range of many-body systems [396, 443]. To probe the superfluid pair-
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ing gap, early experiments relied on a “radio-frequency (rf) spectroscopy” technique, which involved

weakly driving a mixture of two spin states along an rf transition to a (nominally non-interacting) third

state [147–149]. This additional degree of freedom allowed researchers to observe an energy shift related

to breaking Cooper pairs [146]. While this technique has been used for many purposes [150], unde-

sired effects, such as competing pair-breaking processes and unwanted interactions between the third

state and the other two states, complicated efforts to analyze the pairing gap [151–153]. Additionally,

the predicted shift, sometimes called the spectral gap ∆SG, [154], depends nontrivially on the chemical

potentials of the component spin states and is not equivalent to the pairing gap ∆BCS [146, 155].

Inspired by this context, in the experiment described in this chapter [145][G] we extend our study of

the BCS model from Ch.6 by leveraging multiple internal levels of 88Sr atoms. We start with implementing

the so-called Anderson pseudospin mapping [143], mapping the presence and absence of a Cooper pair

onto a long-lived electronic transition. The atoms, which are collectively coupled to a detuned optical

cavity, experience an effective all-to-all interaction [95][G] which emulates the attractive and collective

interaction between electrons in different momentum states in a superconductor. With this setup, we

previously studied the BCS Hamiltonian and observed dynamical phases in the pairing gap∆BCS [126][G].

By coupling to a third atomic state, we can mimic the setup of rf spectroscopy experiments and measure

∆SG.

At a high level, we construct an appropriate three-level system using an applied magnetic field

to couple excited Zeeman states. By tuning the magnetic field strength, we explore this coupling both

in a gapped regime and in a strong-coupling regime featuring large population transfer between states.

Moreover, by varying the atomic inversion along the initial two-level system, we change both the number

of particles participating in the pairing as well the pairing strength, allowing us to explore the distinction

between∆SG and∆BCS. We accomplish all this through the use of two real-time probes, including a novel

nondestructive, large dynamic range measurement of the cavity resonance frequency.

The experiment described in this chapter has worn many hats between its conception and even-

tual completion. At first, we thought it would be a “stepping stone” experiment on the road towards

simulating BCS dynamical phases, since the experiment does not require modifying the single-particle
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energy distribution and thus was technically easier to perform. Later on, we discovered that the system

was interesting in its own right, with connections to donor-acceptor models of light-harvesting com-

plexes in photosynthetic organisms, systems whose underlying mechanisms are still poorly understood

[444–446]. Finally, we settled on our current interpretation as an extension of the BCS model and an

analogy to RF spectroscopy in ultracold Fermi gases.

7.2 Mapping RF spectroscopy onto a three-level ensemble

While the idea of modeling multilevel degenerate fermions with multilevel atoms coupled to a

cavity seems intuitively reasonable, the precise mapping is a bit subtle. To tease out the details, we

will first model the physical setup of the original RF spectroscopy experiments. Then, we will explore

precisely how the two systems map onto each other.

The original degenerate Fermi gases in ultracold atomic platforms were performed using one of

two isotopes: 40K [147, 149, 399] and 6Li [148, 415], the only two naturally-occuring fermionic isotopes

that are also alkali atoms. Both have fine and hyperfine structure in the ground state, leading to a rich

manifold of states to work with. To mimic the spin-1/2 nature of electrons, researchers in these experi-

ments would prepare the atoms in a mixture of the two lowest energy states in the manifold. We will refer

to these states as |1〉 and |2〉, following the convention used in 6Li experiments.1 For more information

on specific atomic properties, line data is available for 6Li [447] and 40K [448] in the style of Dan Steck’s

rubidium sheet.

Compared to electrons, which rely on Coulomb forces to generate strong interactions, neutral

atoms tend to have lower scattering lengths (i.e., weaker interactions) by default. However, tuning a

bias magnetic field close to special features called Feshbach resonances greatly enhance the scattering

length [449]. Feshbach resonances occur at magnetic fields where the unbound atoms come onto res-

onance with a weakly-bound molecular state. These two configurations are generally weakly coupled

1 6Li experiments tend to number their ground states from 1 to 6 in order of increasing energy [447]. I suspect this is because
the fine-structure splitting is quite small, such that at small fields the system is in a weak-field Zeeman limit, but at the large
(≈ 850 G) magnetic field necessary to reach the Feshbach resonance, the system is in the strong-field Zeeman limit. This means
it would be insufficient to describe the states only as a hyperfine |mF 〉 state or only as a fully-split

∣∣mJ ,mI
〉

state.
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due to some details of the atomic physics, causing the system to oscillate between bound and unbound

configurations (on resonance) or for the unbound state to be dressed by the weakly bound state (off res-

onance). By ramping through the resonance, you can adabiatically transfer the atoms into bound states;

this is a standard technique used to form bialkali molecules such as KRb, NaK, and NaCs (followed by

a STIRAP pulse to convert molecules from the excited Feshbach state into the ground state) [450, 451].

For these experiments, researchers tune close to a Feshbach resonance for the two spin states in the pre-

pared mixture, which increases the s-wave scattering length in interactions between the two spin states.

The scattering length obeys a universal reciprocal-like scaling about the Feshbach resonance, such that

it is positive on one side of the resonance and negative on the other. Operating on the negative side of

the resonance generates tunable, attractive interactions between atoms in |1〉 and |2〉 states, meeting the

necessary condition to observe s-wave BCS physics.

The technique of RF spectroscopy aims to measure whether or not this strongly interacting spin

mixture exhibits Cooper pairing. To do so, we can apply a radio-frequency (RF) drive between one of the

two interacting states, such as |2〉, into a third state which we will call |3〉. Since Feshbach resonances are

state-dependent, we will assume that the interaction rate between |3〉 and the other states is negligible

compared to the |1〉 to |2〉 interaction, making |3〉 effectively noninteracting. Fig. 7.1(a) shows a cartoon

providing basic intuition for the role of this drive: if the atoms have condensed into Cooper pairs with

momentum and spin states of the form |k,1〉 and |−k,2〉, then driving an atom into |k,3〉2 will destroy

a Cooper pair. This carries an energy cost, as described in 6.2; therefore, the photon should require extra

energy in order to drive the transition. The result is that a spectroscopic scan of the RF transition should

reveal a frequency shift in the presence of Cooper pairs, relative to a noninteracting system. For the

context of this work, we will call this frequency shift the spectral gap∆SG.

We can connect this situation with an ensemble of three-level systems using a mapping similar to

the Anderson pseudospin mapping discussed in Sec. 6.2. We will model the degenerate Fermi gas with

2 We will assume that the recoil momentum of an RF photon is negligible. For scale, an 80 MHz RF photon will impart a
recoil velocity around 1-10 nm/s, depending on the mass of the atom.
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(a) (b)

(d)

(c)

drive

rf

rf

drive

drive

Figure 7.1: Simulating RF spectroscopy with an ensemble of three-level systems. (a) The technique of “rf
spectroscopy” used in ultracold fermion experiments measures a frequency shift, associated with break-
ing a Cooper pair, along an auxiliary transition. (b) In our system, 88Sr atoms experience an effective
infinite-range spin-exchange interaction through detuned collective coupling to an optical cavity, ori-
ented along x̂. We apply a tunable magnetic field along ẑ and address the atoms with a ŷ-polarized laser
drive. (c) We explore a three-level system consisting of

∣∣g〉 = ∣∣1S0
〉

and |±1〉 = ∣∣3P1,m j =±1
〉

. We define
δz as the splitting between |±1〉 states. (d) The drive and cavity couple to the effective two-level system∣∣g〉↔|b〉. In this basis, δz couples |b〉 to a third state |d〉, analogous to the level structure used in rf spec-
troscopy experiments. The cavity is detuned from the atomic transition by ∆c =ωc0 −ωa ; this generates
a collective shift∆SG of |b〉, representing the spectral gap. Toy models of the atomic orbitals are shown to
highlight the different polarizations required to address the excited states.

an RF drive using the following Hamiltonian:

Ĥ/ħ= ∑
k,σ∈{1,2,3}

εk
2 ĉ†

k,σĉk,σ−χ
∑
kk′

ĉ†
k′,2ĉ†

−k′,1ĉ−k,1ĉk,2 +
δz

2

∑
k

(ĉ†
k,3ĉk,2 +h.c.), (7.1)

where ĉk,σ annihilates a fermion with momentum k and spin state σ, χ is the attractive s-wave BCS

interaction, εk is the single-particle energy of a fermion with momentum k as in Ch. 6, assumed to be

spin-independent, and δz is the Rabi frequency of the RF drive connecting |2〉 to |3〉. Here, we implicitly

work in an interaction frame where the zero-momentum spin states all have zero single-particle energy.

Additionally, we have fixed the “RF” drive to be a DC coupling in this frame, such that the drive resonantly

couples |2〉 and |3〉 in a noninteracting system.
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To study this Hamiltonian, we define basis of three states per momentum label k, instead of two

as with the Anderson pseudospin mapping [143]. For reasons which will soon become apparent, we call

them
∣∣g〉

, |b〉, and |d〉 and define them as:

∣∣g〉
k = ∣∣n−k,1 = 0,nk,2 = 0,nk,3 = 0

〉
|b〉k = ∣∣n−k,1 = 1,nk,2 = 1,nk,3 = 0

〉
|d〉k = ∣∣n−k,1 = 1,nk,2 = 0,nk,3 = 1

〉
.

(7.2)

If the system starts in the ground state of the undriven Hamiltonian (δz = 0), then the initial-time wave-

function can be described using only |b〉 and
∣∣g〉

states, mapping onto |↑c〉 and |↓c〉 Anderson pseu-

dospins. The RF drive then acts to couple the states |b〉 and |d〉, and therefore the full dynamics is

confined to this three-level basis. We can express the Hamiltonian in the reduced basis by introducing

three-level operators Ŝµν,k := ∣∣µ〉〈
ν
∣∣
k with µ,ν ∈ {b,d , g }, in analogy to the pseudospin operators:

Ĥ/ħ=−∑
k

εkŜg g ,k−χ
∑
kk′

Ŝbg ,k′ Ŝg b,k+
δz

2

∑
k

(Ŝdb,k+h.c.), (7.3)

where we have shifted the energy of the system by a constant offset in order to express the single-particle

energy term using the ground state population Ŝg g ,k instead of the other state populations.

Note that, rather than mapping the three spin states of each fermion onto three states of an atom

in our quantum simulator, we instead map three configurations of a pair of momentum states ±k onto

the three states of our atom. Two of these states correspond to the Anderson pseudospin states repre-

senting the presence and absence of a Cooper pair, and the third corresponds to a pair-broken config-

uration where one of the two states in the Cooper pair is occupied, and the other is empty since one of

the fermions is occupying a noninteracting state instead. We will see that, like with the gap protection

against dephasing observed in Ch. 6, transfer into this third state will be suppressed in the form of the

spectral gap ∆SG.

7.3 Experimental setup

To engineer the Hamiltonian in Eq. (7.3), we use a setup very similar to that of the BCS experi-

ment from Ch. 6. We start by cooling and trapping N = 105 −106 88Sr atoms into our high-finesse optical
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cavity in the strong collective coupling regime. The cavity’s unshifted resonance frequency ωc0 is red-

detuned from the bare 3P1 – 1S0 transition frequency ωa by ∆c /2π := (ωc0 −ωa)/2π = −51 MHz. The

relevant states include a single ground state
∣∣g〉

:= ∣∣1S0
〉

and two long-lived (γ/2π= 7.5 kHz) excited Zee-

man states |±1〉 := ∣∣3P1,m j =±1
〉

, with a quantization axis along ẑ using the coordinates in Fig. 7.1(b).

A ŷ-polarized laser drive excites the “bright” superposition |b〉k := 1p
2

(|+1〉k +|−1〉k ) for each atom k,

which also couples to the ŷ-polarized cavity mode. The orthogonal “dark” state |d〉k := 1p
2

(|+1〉k −|−1〉k )

has a spatial distribution aligned with the cavity axis (x̂), as shown in Fig. 7.1(d), and thus does not ra-

diate into the cavity. In this natural basis for our system, we define collective dipole operators Ĵ+ =

( Ĵ−)† :=∑N
k=1

∣∣b〉〈
g
∣∣
k , measuring dipole projections along ŷ , and the atomic inversion Ĵ z =∑N

k=1 Ĵ z
k where

Ĵ z
k

:= 1
2 (|b〉〈b|k − ∣∣g〉〈

g
∣∣
k ). We also apply a tunable, uniform magnetic field B⃗ ∥ ẑ, represented using the

collective angular momentum operator L̂z := ∑N
k=1

1
2 (|+1〉〈+1|k − |−1〉〈−1|k ) = ∑N

k=1
1
2 (|b〉〈d |k + |d〉〈b|k )

which describes linear Zeeman shifts.

Using the above definitions, up to atom-light coupling inhomogeneities neglected for the time

being (see Sec. 7.7 for the model with inhomogeneous atom-light coupling included), we engineer an

effective atomic Hamiltonian of the form:

Ĥa/ħ=−χ Ĵ+ Ĵ−+δz L̂z +
N∑

k=1
εk

∣∣g〉〈
g
∣∣
k . (7.4)

The first term describes an all-to-all cavity-mediated spin-exchange interaction with strength χ= g 2/∆c ,

where 2g /2π = 15.4 kHz is the rms atom-cavity coupling as a single-photon Rabi frequency. Since this

interaction is collective, it scales with atom number with characteristic strength χN . δz is the tunable

splitting between |±1〉 Zeeman states; in the bright/dark basis, it creates an effective torque that rotates

the collective dipole moment and couples |b〉 and |d〉. Finally, εk describes the differential light shift

between the ground state
∣∣g〉

and the excited states due to the intracavity trapping light at 813 nm for

atom k. This shift varies between the atoms due to a finite motional distribution (the same as described

in Sec. 6.9.2), which induces dephasing between the ground and excited states.

Based on the definitions for Ĵ− and L̂z , Eq. (7.4) is equivalent to Eq. (7.3) from the previous section

(up to a sign difference for εk ) if we map momentum labels k for the ultracold fermion system onto
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positional labels k of our strontium atoms. To reiterate, the spin-exchange term represents the BCS

interaction between fermions, and the εk term describes the electrons’ kinetic energy. Additionally, the

(complex) BCS pairing gap ∆BCS corresponds to χ〈 Ĵ−〉; as discussed in Ch. 6, this quantity also sets the

gap protection against single-particle dephasing in the case where 〈 Ĵ z〉 = 0. We go beyond our previous

results by mapping an atom in state |d〉 onto a “broken” Cooper pair consisting of one fermion in |1〉 and

the other transferred to a third state |3〉. The Zeeman term coupling |b〉 to |d〉 then represents a drive

which breaks up Cooper pairs. Unlike the drive in rf spectroscopy experiments, this coupling operates

at DC; we tune the coupling strength, rather than an rf drive frequency, in order to probe features of the

spectral gap ∆SG.

To study this model, we initialize the atoms with a collective drive angle θ0 =π/2 (defined as a π/2

pulse for maximally-coupled atoms) along the
∣∣g〉

to |b〉 transition using a < 250 ns laser drive pulse. At

time t = 0, we turn off the drive. As the atoms evolve under Eq. 7.4, they weakly emit ŷ-polarized light out

of the far-detuned cavity at a rate Γ|〈 Ĵ−〉|2, where Γ = |( κ
∆c

)χ| ≈ |χ|
300 sets the scale for collective emission

(as defined in Sec. 2.5). As outlined last chapter in Sec. 6.9.3, this allows us to measure 〈 Ĵ−〉 in real time

by measuring this light as it leaks out of the cavity using a heterodyne detector (see Figs. 7.2(a)-(b)), with

only a small fraction of atoms emitting light since Γ≪|χ|.

7.4 Time dynamics of the BCS gap subject to dark state coupling

We first explore the competition between spin-exchange interactions and excited state coupling in

Fig. 7.2(b) by comparing the time dynamics of the BCS pairing gap |∆BCS| = |χ〈 Ĵ−〉| for different coupling

strengths δz . Here, we scan δz /2π from 0 MHz to 5 MHz between shots while holding a fixed charac-

teristic interaction strength χN /2π = 1.0 MHz. A background inhomogeneity set by {εk } with standard

deviation ε/2π = 150 kHz also remains fixed; in the absence of interactions, this sets a dephasing time

of 1 µs as shown by the gray trace. Consistent with results from the BCS dynamical phases experiment,

we observe that sufficiently large interactions protect against dephasing at a scale set by χN , drastically

enhancing the coherence time. The coupling induced by δz rotates the collective dipole moment, in-

ducing oscillations in |〈 Ĵ−〉|. For small δz , weak oscillations open up at short times but damp after a few
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(c)

Figure 7.2: Oscillations in the pairing gap ∆BCS from excited state coupling. (a) The atoms emit light
weakly into the cavity at a rate proportional to ∆BCS = χ〈 Ĵ−〉, which we detect to infer dynamics. (b)
Time traces of |〈 Ĵ−〉| with χN /2π = 1 MHz. The Zeeman splitting δz induces rotations in the collective
dipole moment, which are suppressed for small δz . The gray trace represents single-particle dynamics
(with δz /2π= 0 MHz), using a smaller N to weaken the collective interactions. (c) The average oscillation
visibility (left) and frequency (right) from t = 0.5 µs to t = 5 µs for different δz . We also plot numerical
simulations (solid curves) and the single-particle response ωosc = δz (gray dashed line). The dynamics
resemble Rabi oscillation between excited states, with the Rabi frequency set by δz and the detuning
generated by collective interactions which we identify as the “spectral gap” ∆SG. To measure ∆SG, we
extrapolate the measured ωosc to δz /2π→ 0 MHz. All error bars in the paper represent ±1σ deviations
over a bootstrap resampling on experimental shots (nboot = 100).

microseconds. In contrast, large δz traces feature large-amplitude oscillations with long lifetimes. The

fact that |〈 Ĵ−〉| remains large in this limit at long times shows that the interactions continue to protect

against dephasing from the single-particle inhomogeneity {εk }, even with a large δz .

Fig. 7.2(c) further studies these two regimes by analyzing the oscillations in an interval from t =

0.5 µs to t = 5 µs. When δz /2π ≳ 2 MHz, the oscillation visibility (defined as V = |〈 Ĵ−〉|max−|〈 Ĵ−〉|min

|〈 Ĵ−〉|max+|〈 Ĵ−〉|min
) is

consistently large, and the oscillation frequency ωosc approaches δz . For small δz , a different picture
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emerges: the visibility is suppressed and approaches 0, and ωosc plateaus to a constant frequency. The

experimental data agrees with numerical simulations (solid curves) except for a small absolute scale fac-

tor in the oscillation visibility. This is likely related to additional dephasing mechanisms in our system

(such as residual motional effects), which are unaccounted for in numerical simulations but would re-

duce the measured |〈 Ĵ−〉|, as discussed last chapter in Sec. 6.10.3. The oscillation frequency at small δz

can be directly connected to the spectral gap ∆SG observed in degenerate Fermi gas experiments when

coupling to a third state. This is because our measurement of oscillations induced by a quenched DC

coupling provides information equivalent to mapping out an rf spectroscopic peak.

Before moving on, I want to briefly highlight the similarities and differences between this param-

eter scan (of a coupling δz to a third state) and the phase II to phase III scan from Sec. 6.7 (scanning an

energy splitting δs between two subensembles). In both cases, introducing the frequency induces os-

cillations in ∆BCS. For sufficiently large frequencies of δz or δs, the induced oscillation frequency ωosc

approaches the applied frequency. The oscillations are also longer-lived. In the limit of small frequency,

the oscillations damp more quickly and have a frequency which is representative of a many-body gap

(2∆BCS ≈ χN for the BCS experiment, and ∆SG for the current experiment). However, the two situations

have key differences as well. First, theoretical analysis of the three-level system does not predict a true

dynamical phase between these two regimes, instead observing crossover behavior in the analytics and

numerical simulations. From an implementation standpoint, the atomic ensemble is undergoing dif-

ferent processes: in the BCS phase II to phase III scan, the populations in the excited and ground state

remain fixed, while the total phase coherence oscillates. However, in this experiment, the excited state

coupling parametrized by δz transfers atoms out of the bright excited state. We can already see data

supporting the fact that these two experiments are different: in Fig. 7.2(c), we see that the oscillation

frequency increases with δz in a manner reminiscent of a quadrature sum. Notably, we do not see a dip

in the oscillation frequency as reported in the BCS model.
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emits into
cavity mode

NO emission
(dark)

(a) (b)

Figure 7.3: Rotating dipole interpretation of the spectral gap. (a) Atoms in a superposition of
∣∣g〉

and
|b〉 exhibit an oscillating dipole moment along ŷ , which can emit into the ŷ-polarized cavity mode. This
emission gives rise to the cavity-mediated interactions. In contrast, atoms in a superposition of

∣∣g〉
and

|d〉 exhibit an oscillating dipole moment along x̂, which is dark to the cavity due to dipole emission pat-
terns. Therefore, this superposition does not experience gap protection. (b) When subject to a magnetic
field, the oscillating dipole moment experiences an effective torque which causes it to rotate about the
magnetic field axis. This manifests as a coupling between bright and dark states. However, the cavity-
mediated interactions impose an energy cost to rotating between the two configurations, equivalent to
the spectral gap ∆SG.

7.5 Understanding the spectral gap

In this section, we study the spectral gap∆SG from a couple of different perspectives. We also push

on the differences between this experiment and the BCS experiment, contrasting ∆SG with the BCS gap

∆BCS.

7.5.1 The spectral gap prevents the rotation of atomic orbitals

An intuitive picture of the oscillations can be gained by imagining the atoms as electric dipoles, as

shown in Fig. 7.3. Atoms with coherence along the
∣∣g〉

to |b〉 transition exhibit a dipole moment propor-

tional to |〈 Ĵ−〉| which oscillates along ŷ at optical frequencies. Applying a magnetic field along ẑ creates

an effective torque on the dipoles, causing them to rotate in the x y-plane at a frequency set by the Zee-

man splitting δz . Therefore, the population in |b〉 should periodically transfer between |b〉 (aligned with

ŷ) and |d〉 (aligned with x̂) while maintaining coherence with the ground state
∣∣g〉

. This effectively causes

the collective dipole moment |〈 Ĵ−〉| along ŷ to oscillate in time.
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However, sufficiently strong spin-exchange interactions of the form Ĵ+ Ĵ− disrupt this process. This

term essentially shifts the excited state |b〉 by a frequency ∆SG relative to |d〉, which does not radiate

into the cavity. Quantitatively, χ Ĵ+ Ĵ− = χ( Ĵ 2 − ( Ĵ z )2 + Ĵ z ) has eigenstates |J , J z〉 and eigenvalues E J ,J z =

χ[J (J +1)− J z (J z −1)]. For fully collective states, i.e., where J = Nb+Ng

2 and J z = Nb−Ng

2 with Nb,g denoting

the populations in |b〉 and
∣∣g〉

respectively, E J ,J z ≈ (χNg )Nb in the large-N limit. Therefore, transferring

one atom from |b〉 to |d〉 imposes an energy penalty equal to ħ∆SG =ħχNg . Note that∆SG decreases with

increasing atomic inversion, mirroring the chemical potential dependence in degenerate Fermi gases.

7.5.2 The spectral gap creates a detuning between coupled harmonic oscillators

For a more theoretically grounded understanding of the spectral gap, we can recast the system

using a Schwinger boson formalism. At a high level, this formalism replaces each state (
∣∣g〉

, |b〉, |d〉) with

an abstract bosonic mode (âg , âb , âd ) in which creating and annihilating excitations in these modes

corresponds to collective (symmetrized) spin raising and lowering operators. For example, the operator

Ĵ− =∑
k

∣∣g〉〈
b
∣∣
k maps onto â†

g âb . In the maximally symmetric manifold only,3 the occupation N̂µ = â†
µâµ

of each mode µ corresponds to the number of atoms in each state. Assuming that the system remains in

the maximally symmetric manifold is a reasonable approximation (ignoring inhomogeneous atom-light

coupling, as discussed later in Sec. 7.7), so long as the inhomogeneities set by εk are much smaller than

χN . In this way, we can picture the atoms as representing excitations in harmonic oscillators defined by

the Schwinger bosons.

Using this formalism, we rewrite the Hamiltonian as:

Ĥ = δz

2
(â†

b âd + â†
d âb)−χâ†

b âg â†
g âb , (7.5)

where we explicitly neglect the inhomogeneity term since it is assumed to be unimportant for the dy-

namics. Using bosonic commutation relations, we can now rewrite the interaction term in terms of the

number of atoms in the bright and ground state: χâ†
b âg â†

g âb = χN̂b(N̂g +1) ≈ (
χN̂g

)
N̂b in the large N

3 Schwinger bosons can be used to represent any state |J ,m〉 representing N
2 spin-1/2 particles, for any angular momentum

J . However, only in the maximally symmetric manifold (J = N
2 ) does the number of Schwinger bosons correspond to the

number of particles in spin-up or spin-down. This argument extends beyond two-level systems to the three-level systems
discussed here.
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limit. In other words, atoms in the bright state receive an energy shift equal to χNg compared to atoms

in the dark state.

We can further tease out the dynamics of the system by studying the of motion for the field op-

erators âµ. At the mean-field level, we can replace these operators with a normalized field amplitude:

(âg , âb , âd ) →p
N (αg ,αb ,αd )T , where |αg |2 +|αb |2 +|αd |2 = 1. The equations of motion then reduce to:

α̇g = iχN (α∗
bαb)α0,

α̇b =−i
(δz

2
αd −χN (α∗

gαg )αb

)
,

α̇d =−i
δz

2
αb .

(7.6)

The first equation implies that the number of atoms in the ground state, given by Nα∗
gαg = Ng , remains

constant. Therefore, we can simplify the equations for αb and αd as follows:

α̇b =−i
(δz

2
αd −χNgαb

)
,

α̇d =−i
δz

2
αb ,

(7.7)

which are linear and can be solved analytically. The general solution is then given by

αg (t ) =αg (0)exp
[

iχN
∫ t

0
α∗

b (t ′)αb(t ′)dt ′
]

,

αb(t ) =
[
αb(0)cos

(ωt

2

)
+ iαb(0)

χNg

ω
sin

(ωt

2

)
− iαd (0)

δz

ω
sin

(ωt

2

)]
exp

(
i
χNg

2
t
)
,

αd (t ) =
[
αd (0)cos

(ωt

2

)
− iαd (0)

χNg

ω
sin

(ωt

2

)
− iαb(0)

δz

ω
sin

(ωt

2

)]
exp

(
i
χNg

2
t
)
,

(7.8)

where

ω=
√

(χNg )2 +δ2
z . (7.9)

The expressions for αb(t ) and αd (t ) describe dynamics that formally resemble Rabi oscillation

between |b〉 and |d〉 with a Rabi frequency δz and a (collective) detuning χNg . This detuning represents

the shift observed in rf spectroscopy experiments, so we identify the spectral gap as ∆SG =χNg .

7.5.3 Comparing the spectral gap to the BCS gap

How do the spectral gap ∆SG and the BCS gap ∆BCS quantitatively differ? We have discussed the

nature of ∆SG in the preceding sections. Intuition about ∆BCS can be gained by considering the mean-
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field ground state, which under an Anderson pseudospin mapping is described by4

〈 Ĵ−k 〉 =
1

2

∆BCS√
( εk

2 −µ)2 +|∆BCS|2
, 〈 Ĵ z

k〉 =−1

2

εk
2 −µ√

( εk
2 −µ)2 +|∆BCS|2

, (7.10)

with self-consistent equations

∆BCS =χ
∑
k
〈 Ĵ−k 〉 =

1

2

∑
k

χ∆BCS√
( εk

2 −µ)2 +|∆BCS|2
, (7.11)

〈 Ĵ z〉 =∑
k
〈 Ĵ z

k〉 =−1

2

∑
k

εk
2 −µ√

( εk
2 −µ)2 +|∆BCS|2

. (7.12)

In this work, we are mainly concerned with the regime εk → 0. In this limit, one can obtain

〈 Ĵ−k 〉 =
1

2

∆BCS√
µ2 +|∆BCS|2

, 〈 Ĵ z
k〉 =

1

2

µ√
µ2 +|∆BCS|2

, (7.13)

and the self-consistent equations become

χN

2
=

√
µ2 +|∆BCS|2, µ=χ〈 Ĵ z〉. (7.14)

Therefore, we can express the pairing gap ∆BCS magnitude by

|∆BCS| =χ
√( N

2

)2
−〈 Ĵ z〉2. (7.15)

In comparison, the spectral gap ∆SG can be expressed in the limit where εk → 0 by

∆SG =χ〈N̂g 〉 =χ
( N

2
−〈 Ĵ z〉

)
=

√
|∆BCS|2 +µ2 −µ. (7.16)

Beyond the limit εk → 0, the RF spectrum based on ideal BCS model shows an RF absorption

threshold at ω=χ〈N̂g 〉 (e.g., see Eq. (2.31) in [452], as well as [453]). The size of the mean-field collective

detuning between |b〉 and |d〉 will therefore be smaller than χ〈N̂g 〉 outside of the fully collective regime.

Likewise, when J < N /2, ∆BCS =χ〈 Ĵ−〉 becomes smaller and is roughly equal to χ
√

J 2 −〈 Ĵ z〉2.

Our initial preparation scheme with tunable Rabi pulse area can be interpreted as preparing the

mean-field ground state in the limit εk → 0 with fixed 〈 Ĵ z〉 (fixed number of Cooper pairs). It follows

that we can measure |∆BCS| of this ground state looking at the measured value of |∆BCS(t )| in Fig. 7.2(b) at
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Rotating frame:

Figure 7.4: Visualizing spin-exchange gap protection with nonzero inversion. Left: Because of far-
detuned atom-cavity coupling, the cavity field (red arrow) drives the atomic ensemble (purple arrow)
with an instantaneous Rabi frequency equal to 2χ〈 Ĵ−〉. Over an infinitesimal time d t , this drives the
Bloch vector a distance d s = 〈 Ĵ z〉(2χ〈 Ĵ−〉d t

)
in the azimuthal direction, corresponding to an angular dis-

placement of dφ = d s/〈 Ĵ−〉 = ωdispd t , where ωdisp = 2χ〈 Ĵ z〉. If the drive were fixed in phase, then this
dynamics would turn into rotation about the drive axis at longer times. However, because the cavity field
adiabatically follows the Bloch vector phase, the drive vector also rotates with a frequency ωdisp, result-
ing in a global azimuthal rotation at longer times. Right: Moving into the rotating frame of this dynamics
leads to a static Bloch vector and drive, with the addition of a fictitious ẑ field corresponding to the dis-
persive shift ωdisp. The total effective field then points parallel to the Bloch vector, with a total length

equal to 2χ
√
|〈 Ĵ−〉|2 +〈 Ĵ z〉2 = 2χJ .

short times, immediately after initialization. In contrast,∆SG represents the δz → 0 limit of the oscillation

frequency of the curves in Fig. 7.2(b), as shown in the right panel of Fig. 7.2(c).

Finally, in these expressions there is actually a third gap scaling, which when ϵk → 0 looks like

2
√
µ2 +|∆BCS|2 =χN . In our atomic physics implementation, this represents the gap protection strength

against single-particle dephasing, which generically takes the form 2χJ away from the maximally sym-

metric manifold. This can be seen in a couple of ways: first, single-particle dephasing can be modeled as

coupling different collective angular momentum manifolds without changing the atomic inversion, such

that the state |J , J z〉 is coupled to |J −1, J z〉. These two states have a collective detuning between them

equal to 〈J , J z |χ Ĵ+ Ĵ− |J , J z〉− 〈J −1, J z |χ Ĵ+ Ĵ− |J −1, J z〉 = 2χJ . A more intuitive picture of the physics in-

volves Bloch spheres, shown in Fig. 7.4. As described in Sec. 2.5, the spin-exchange interaction arises due

4 The factor of 1
2 in the single-particle energies comes from the normalization used in our spin implementation the BCS

Hamiltonian. See Sec. 6.2 for more.



227

to a small intracavity field which adiabatically follows 〈 Ĵ−〉. On the Bloch sphere, this looks like a ficti-

tious magnetic field pointing along the equator, with a Rabi frequency of 2χ〈 Ĵ−〉 and the same azimuthal

angle as the Bloch vector. If the Bloch vector is along the equator, the fictitious field points exactly along

the Bloch vector and creates the energy gap 2χ〈 Ĵ−〉. For a finite 〈 Ĵ z〉, the Bloch vector will instantaneously

begin to rotate about the field axis. However, the cavity field also rotates to follow the phase of the Bloch

vector, leading to an effective rotation about the ẑ-axis with a frequency 2χ〈 Ĵ z〉. Moving into the rotating

frame of this dynamics results in a ẑ component of the fictitious magnetic field, which now points exactly

along the Bloch vector direction with length 2χJ (and setting this as the gap protection scale).

While in our previous work, we conflated the many-body gap 2χJ with ∆BCS, this is because we

operated at the point µ = 0 (〈 Ĵ z〉 = 0) to reflect the conditions of typical superconducting platforms.

Our platform in principle allows us to make a distinction between these two scales when µ ̸= 0, but to

simplify the narrative we only consider ∆BCS and ∆SG as defined above (particularly since researchers

in superconducting fields do not, to our knowledge, distinguish between ∆BCS and the gap described

here).5

7.6 Measuring the two gaps as a function of inversion

To explore the dependence of the two gaps on the atomic inversion 〈 Ĵ z〉, we repeat the experiment

from Sec. 7.4 with different initial drive angles θ0 along the
∣∣g〉

to |b〉 transition. As Fig. 7.5(a) illustrates,

increasing θ0 decreases the initialized ground state population N init
g , which should reduce the splitting

between the excited states and therefore ∆SG. We see this trend in Fig. 7.5(b): when θ0 = 0.73π, the oscil-

lation frequency resembles the expected single-particle response, whereas the θ0 = 0.25π data exhibits

large frequency deviations which indicate a sizable spectral gap ∆SG. We determine ∆SG by fitting the

data to the form ωosc =
√
∆2

SG +δ2
z , the predicted response, over the domain δz /2π≥ 0.6 MHz where the

oscillations are most prominent (dotted lines).

5 From this discussion, our hot take is that ∆BCS does not actually represent a many-body gap away from 〈 Ĵ z 〉 = 0, despite
the fact that we’re calling it the BCS gap or pairing gap. Rather, the quantity 2χJ is the real frequency scale for many-body gap
protection in our system. For the scope of this work, we didn’t bother to push this take too far (we wanted to get published).
But for example, we expect that away from the equator of the Bloch sphere, the frequency of Higgs oscillations (as discussed in
Sec. 6.6) should be 2χJ , rather than 2|∆BCS|.
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Figure 7.5: Probing the spectral gap ∆SG. (a) As the drive angle θ0 increases, Ng decreases, which should
reduce the spectral gap ∆SG. (b) We repeat the experiment in Fig. 7.2(c) for different drive angles θ0.

For each θ0, we fit the results to the form ωosc =
√
∆2

SG +δ2
z (dotted lines) and extract ∆SG. (c) Measured

values of ∆SG (as outlined in (b)) and |∆BCS| (at short times t = 0 µs to t = 0.5 µs) for different θ0, or
equivalently the t = 0 ground state population N init

g (circles). The two gaps overlap at θ0 = 0.54π. We

compare against numerical simulations of the two gaps (solid curves) and χN eff
g (dashed curve), where

N eff
g is the ground state population weighted by cavity coupling and averaged over the measured time

interval t = 0.5 µs to t = 5 µs.

In Fig. 7.5(c), we observe that ∆SG and |∆BCS| scale differently with the drive angle θ0: ∆SG mono-

tonically decreases, and |∆BCS| starts at 0 and peaks around θ0 ≈ 0.6π. These qualitative behaviors are

consistent with the expected relations∆SG ∝ Ng and∆BCS ∝〈 Ĵ−〉. Numerical simulations calculated us-

ing a similar analysis (solid curves) agree qualitatively with experimental values but overestimate some

points. We attribute this to the additional dephasing mechanism described earlier, which would weaken

the interaction strength and therefore reduce the sizes of the gaps.

We also directly compare ∆SG with numerical simulations of χNg for different θ0 (dashed curve in

Fig. 7.5(c)). Complications arise in this calculation from inhomogeneous atom-light coupling, since the

effective Ng seen by the cavity varies in time (unlike in homogeneously coupled systems where it does

not vary on timescales faster than the decay rate). To account for this, we weight atoms by cavity coupling

and average the result over the measurement interval (t = 0.5 µs to t = 5 µs) to obtain an effective shift

χN eff
g (explained in further detail in the following section), represented by the black dashed curve in
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Fig. 7.5(c). This curve qualitatively resembles the measured values of ∆SG, demonstrating the expected

scaling.

7.7 Effects of inhomogeneous atom-light coupling on the spectral gap

The simple description of our setup, described by the Hamiltonian given in Eq. (7.4), assumes that

all atoms couple equally strongly to the cavity mode. However, as we have just alluded to in the previous

section, this is not actually the case: since our atoms are trapped in an 813 nm lattice which is incom-

mensurate with our optical atomic transition wavelength of 689 nm, our atoms effectively experience a

distribution of couplings gk = gcηk , where gc is the peak atom-cavity coupling, and ηk = cos
(
ϕk

)
is uni-

formly distributed over ϕ ∈ [0,2π) (this is the same setup as in Sec. 6.10.1). Despite these complications,

we still expect to see spin-exchange interactions which generate a version of the BCS gap ∆BCS and the

spectral gap ∆SG.

To model the expected behavior of this system, we define single-atom operators Ŝµν, j := ∣∣µ〉〈
ν
∣∣

j

on atom j with µ,ν ∈ {b,d , g } representing the three single-atom states. In terms of these operators, the

full Hamiltonian is described by:

Ĥ/ħ= δz

2

∑
j

(Ŝbd , j + Ŝdb, j )−∑
j
ε j Ŝg g , j + i gc

∑
j
η j (Ŝbg , j â − Ŝg b, j â†)+∆c â†â +ζâ† +ζ∗â. (7.17)

Here, ζ represents any classical drive sent through the cavity, which encompasses both the initialization

pulse and the QND cavity probe.

In addition to the Hamiltonian dynamics, we also consider the dissipation processes such as cav-

ity loss with a rate κ, and spontaneous emission with a rate γ, so the dynamics of this system can be

described by the following Lindblad master equation,

dt ρ̂ =− i

ħ [Ĥ , ρ̂]+L[L̂cav](ρ̂)+∑
j

(
L[L̂b, j ](ρ̂)+L[L̂d , j ](ρ̂)

)
, (7.18)

where the jump operator for cavity loss is given by

L̂cav =
p
κâ, (7.19)
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and the single-particle jump operators for spontaneous emission out of the bright and dark states are

given by

L̂b, j =p
γŜg b, j , L̂d , j =p

γŜg d , j . (7.20)

As described in Sec. 2.5, when ∆ca is the largest frequency scale in the system, then we can adi-

abatically eliminate the cavity and generate an effective Hamiltonian (and collective dissipation, corre-

sponding to superradiance). For our driven, inhomogeneously coupled system, this effective Hamilto-

nian looks like

Ĥeff/ħ= δz

2

∑
j

(Ŝbd , j + Ŝdb, j )−∑
j
ε j Ŝg g , j + i

2

∑
j
η j (ΩŜbg , j −Ω∗Ŝg b, j )−χ∑

j k
η jηk Ŝbg , j Ŝg b,k , (7.21)

whereΩ=−2gcζ/(∆c − iκ/2) is an effective Rabi frequency driving the atoms along the bright to ground

transition.

We have previously described (see Sec. 6.10.1) how the BCS gap is modified under these condi-

tions. What about the spectral gap? For a system with homogeneous atom-light coupling, an initial state

in the maximally symmetric manifold (i.e., J = Nb+Ng

2 ) experiences a spectral gap equal to ∆SG = χNg .

The presence of inhomogeneous coupling disrupts this picture. It is hard to analytically calculate the

spectral gap ∆SG in the case of inhomogeneous coupling. Instead, we rely on numerically simulating

∆SG with the same analysis used on the experimental data. Additionally, we compare ∆SG against what

we believe is a reasonable analog for χNg for an inhomogeneously coupled system. This analog replaces

Ng with an estimate of the ground state population weighted by cavity coupling, which we will call N ′
g

(or, in an abuse of notation, just Ng outside of this section):

N ′
g :=

∑
j η

2
j Ng , j

1
N

∑
j η

2
j

, (7.22)

normalized such that when all atoms are in the ground state, N ′
g = N . The intuition for why this seems

like a good choice comes from Sec. 7.8.1, where the weighted atomic inversion Ĵ z′ turns out to be the

correct observable to determine shifts in the cavity resonance frequency.

However, this quantity carries an additional complication: while the unweighted ground state

atom number Ng is preserved under the spin-exchange interaction (the number of excitations does not
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(a) (b)

Figure 7.6: Analysis of the weighted ground state population N ′
g . (a) Time dynamics after an initial Rabi

pulse with drive angle θ0 for peak couplers. Dashed lines are derived from simulations neglecting single-
particle and collective dissipation, and solid lines represent a full numerical simulation of the experiment
(including dissipation). (b) Comparison of various N ′

g measurements vs. θ0. The gray dashed trace
represents homogeneous coupling, with all other traces assuming uniformly inhomogeneous coupling.
The blue dashed trace shows the expected initial-time population according to Eq. (7.23). The black and
red traces represent N ′

g averaged over the time interval t = 0.5 µs to t = 5 µs (the interval used to measure
∆SG), using simulations neglecting and including dissipation, respectively. Finally, the black solid trace
is ∆SG computed from numerical simulations with the same method used with the experimental data,
normalized to 1 at θ0 = 0.

change), N ′
g is not. This is because when atoms with different cavity coupling strengths exchange excita-

tions, how the excitation is weighted also changes. This can be seen in Fig. 7.6(a), which shows numerical

simulations of N ′
g for several different drive angles θ0 (defined as the angle experienced by atoms with

maximum coupling). We see that N ′
g oscillates for a few µs after initialization, sometimes drastically

changing from the t = 0 value. Interestingly, in simulations that neglect dissipation (dashed curves), N ′
g

appears to quickly approach a steady state, where the system attains a sort of detailed balance in the

exchange between classes of atoms with different coupling strengths. With dissipation (solid curves), N ′
g

decays to N at long times.

Fig. 7.6(b) shows how various measurements of N ′
g differ as a function of drive angle θ0. For ho-

mogeneous coupling (gray dashed line), N ′
g = N cos(θ0/2)2 is constant in the absence of dissipation. In

the case of inhomogeneous coupling, we assume the atoms uniformly sample a coupling phase ϕ, re-

sulting in a coupling strength η(ϕ) = cosϕ. In this case, the weighted ground state population at t = 0
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(N ′ init
g , blue dashed line) is given by:

N ′ init
g (θ0) = N

(
1

2
+ J1(θ0)

θ0
− J2(θ0)

)
. (7.23)

In the experiment, we estimate∆SG by analyzing the oscillation frequency of Ĵ− within the measurement

interval t ∈ [0.5 µs,5 µs]. The black dashed line represents the average weighted ground state popu-

lation in this time interval, which we call the effective ground state population N ′eff
g , using numerical

simulations without dissipation. By visual inspection of Fig. 7.6(a), this estimate should be fairly close

to the long-time steady-state value fo N ′
g . We also plot N ′eff

g using simulations including dissipation (red

dashed line). Finally, we compare all of these estimates against ∆SG calculated from numerical simula-

tions and normalized to the same units.

One might be tempted to claim that ∆SG should increase in the presence of dissipation since N ′
g

increases over time. While this is true for collective dissipation, it is not necessarily true when single-

particle spontaneous emission is the dominant loss process (as is the case in our experiment). This is

because the relationship ∆SG = χNg only holds for maximally symmetric states. In general, states with

lower angular momentum will also have a smaller ∆SG. This can be seen for homogeneously coupled

systems by considering a wavefunction of the form |Ψi 〉 = |J , J z〉g b ⊗
∣∣ψ〉

d , which is an eigenstate of the

interaction term χ Ĵ+ Ĵ− with eigenvalue Ei =χ(J (J+1)− J z (J z −1)). Transferring one atom symmetrically

from |b〉 to |d〉 transforms the wavefunction to
∣∣Ψ f

〉 = ∣∣J − 1
2 , J z − 1

2

〉
g b ⊗

∣∣ψ′〉
d , which can be seen using

the Schwinger boson formalism introduced in Sec. 7.5.2. This is also an eigenstate of the interaction term

with eigenvalue E f , giving a total energy cost equal to

∆SG = Ei −E f =χ
(

J (J +1)− J z (J z −1)
)−χ(

(J − 1

2
)(J + 1

2
)− (J z − 1

2
)(J z − 3

2
)

)
=χ(

J − J z +1
)≤χ(

Ng +1
)

,

(7.24)

with equality holding iff J = Nb+Ng

2 . We conclude that as atoms dephase with fixed J z , ∆SG decreases.

The takeaway from this analysis is that the red dashed curve in Fig. 7.6(b) overestimates ∆SG be-

cause it does not take dephasing into account. This is verified by the fact that the computed value of∆SG

(black solid curve) lies below this curve. In Sec. 7.6, we compare ∆SG against the dissipation-free version
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of N ′eff
g (black dashed curve) for this reason. In fact, we see that this curve also overestimates ∆SG. This

is likely because the initial drive pulse does not place the system in a maximally symmetric state (atoms

with different cavity couplings are initialized to a different position on the Bloch sphere).

7.8 Measuring the atomic inversion in real time

Earlier, we emphasized that one of the fundamental differences between the spectral gap ∆SG and

the BCS gap ∆BCS is whether or not the gap-protected process involves population transfer between

atomic states. We can explore this difference by directly probing the atomic inversion Ĵ z = Nb−Ng

2 as a

function of time after the quench. We accomplish this using a probe of the instantaneous cavity res-

onance frequency which we call the cavity probe. As we will describe in this section, the cavity probe

utilizes the so-called “QND” Hamiltonian which takes the form [67]:

Ĥac/ħ= (
∆c −2χ Ĵ z)â†â, (7.25)

where â is the annihilation operator for the ŷ-polarized cavity mode. In essence, this Hamiltonian causes

a time-dependent shift in the cavity resonance frequency ωc (t ) in response to a changing 〈 Ĵ z〉, allowing

us to infer the dynamics of 〈 Ĵ z〉 by measuring ωc (t ). The novel feature of this probe compared to related

experiments is our pulsed cavity probe scheme, which allows us to detect rapid changes in ωc (t ) with

high dynamic range. The scheme, explained fully in the following sections, involves applying 100 ns

laser pulses with center frequency ωc0 every 5 µs, similar to work performed in a resonant atom-cavity

system [166].

7.8.1 The QND Hamiltonian

Eq. (7.17) provides a full description of relevant features of the system. However, the effective

Hamiltonian derived in Eq. (7.21) does not include the additional “QND” Hamiltonian term just intro-

duced, which describes the key physics behind our nondestructive cavity probe. Where does the addi-

tional term come from?
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The effective Hamiltonian derivation relies on an adiabatic elimination step that assumes all rel-

evant dynamics occurs close to DC in the rotating frame of the pump laser, which is assumed to be res-

onant with the atomic transition. In this picture, because the cavity resonance frequency is sufficiently

far-detuned, we conclude that the cavity field responds to the atoms “driving” the mode very quickly

and thus can adiabatically eliminate the field. However, in the presence of an applied cavity probe laser

close to resonance with the cavity (and not the atoms), the system can respond in two frequency bands,

complicating this picture. In other words, the cavity field can now consist of photons both from atoms

off-resonantly exciting the mode and from the resonant excitation of the mode by the laser.

To model this, we describe the pump field ζ using two terms: ζ= ζ(a) +ζ(c)e−i∆c t , near resonance

with the atomic transition and cavity mode respectively. The two fields can vary in time, but we can

cleanly separate the responses if we assume that |dtζ
(σ)|≪∆c |ζ(σ)|, such that the Fourier transform of the

field exhibits two well-separated regions centered at DC and ∆c . In experimental terms, ζ(a) represents

the initial laser drive that excites the atoms. ζ(c) describes the cavity probe, which is described in detail in

the next section. We can characterize the mean-field response of the system to these two separate drives

by setting up the following ansatz:

〈â〉 = a := a(a) +a(c)e−i∆c t

〈Ŝg b, j 〉 = Sg b, j := S(a)
g b, j +S(c)

g b, j e−i∆c t

〈Ŝg b, j 〉 = Sg d , j := S(a)
g d , j +S(c)

g d , j e−i∆c t

(7.26)

The other atomic observables (Ŝbd , j , Ŝbb, j , Ŝg g , j , and Ŝdd , j ) do not represent optical coherences and thus

do not exhibit a response in the two (optical frequency) bands, which we will call the “atomic band” and

the “cavity band.” Fig. 7.7(a) demonstrates that we see well-separated atomic and cavity band responses

on our heterodyne detector, justifying our treatment. In principle, the responses to the two bands can

be coupled because the atomic degrees of freedom are highly nonlinear. However, if we assume any dy-

namics from the cavity band are sufficiently weak and that∆c represents the largest dynamical frequency

scale in the system, to leading order the responses are decoupled. Experimentally, this represents the

limit taken by quantum nondemolition (QND) probes, which are designed to extract information with-



235

out significantly perturbing the atoms.

In the QND limit, the atomic band responses are well-described by the previous description in

Sec. 7.7. We can calculate the mean-field cavity band responses by applying the Heisenberg equation

of motion to Eq. (7.17) and separating out the frequency response at ∆c . This yields the following set of

equations:

d

dt
a(c) =−κ

2
a(c) − gc

∑
j
η j S(c)

g b, j − iζ(c)

d

dt
S(c)

g b, j =
[

i (∆c −ϵ j )− γ

2

]
S(c)

g b, j − i
δz

2
S(c)

g d , j − gcη j a(c)(Sbb, j −Sg g , j )

d

dt
S(c)

g d , j =
[

i (∆c −ϵ j )− γ

2

]
S(c)

g d , j − i
δz

2
S(c)

g b, j − gcη j a(c)Sbd , j ,

(7.27)

Note that, unlike with the atomic band, equations in the cavity band can have a macroscopic cavity

mode population, and instead the atomic coherences adiabatically follow the cavity since they are off

resonance by roughly ∆c . Therefore, we can set the time derivatives of the atomic coherences to 0. Solv-

ing the coupled equations to leading order in ∆−1
c yields:

S(c)
g b, j =

gcη j a(c)[
i (∆c −ϵ j )− γ

2

]2 + δ2
z

4

(
i
δz

2
Sbd , j +

[
i (∆c −ϵ j )− γ

2

]
(Sbb, j −Sg g , j )

)

=−i
gc

∆c
η j a(c)(Sbb, j −Sg g , j )+O(∆−2

c )

S(c)
g d , j =

1[
i (∆c −ϵ j )− γ

2

] (
i
δz

2
S(c)

g b, j + gcη j a(c)Sbd , j

)
=−i

gc

∆c
η j a(c)Sbd , j +O(∆−2

c ).

(7.28)

We can then eliminate the atomic observables from the equation of motion for the classical field

a(c) to obtain:

d

dt
a(c) =−κ

2
a(c) + i

g 2
c

∆c

∑
j
η2

j (Sbb, j −Sg g , j )a(c) − iζ(c)

=
[

2iχ0
∑

j
η2

j J z
j −

κ

2

]
a(c) − iζ(c),

(7.29)

where χ0 ≈ g 2
c /∆c is the spin-exchange interaction strength (for peak couplers) taken to the limit ∆c ≫

κ/2, and J z
j = 1

2 (Sbb, j − Sg g , j ) is the inversion for atom j along the bright-ground transition. We see

that, at least at the mean-field level, the presence of atoms in the cavity acts as an effective frequency
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shift. Experimental intuition comes from recognizing that the near-resonant atoms act as a gas with an

inversion-dependent index of refraction, which changes the cavity resonance frequency.

Using the Reiter-Sørensen effective operator formalism [235] described in Sec. 2.5.2 for each m J

subspace separately, it is possible to promote this mean-field intuition into an effective QND Hamilto-

nian for the cavity field:

ĤQND =
(
∆c −2χ0

∑
j
η2

j Ĵ z
j

)
â†â. (7.30)

We can follow definitions from the Supplemental Material of a previous work [95][G] and define an effec-

tive “weighted” inversion operator of the form

Ĵ z′ :=
∑

j η
2
j Ĵ z

j

1
N

∑
j η

2
j

, (7.31)

defined such that Ĵ z′ takes values between ±N /2. Combined with an rms interaction strength χ′ =

χ0
( 1

N

∑
j η

2
j

)
, Eq. (7.30) simplifies to ĤQND = (∆c − 2χ′ Ĵ z′)â†â, which is the form presented at the top

of the section. In the experiment, the atoms exhibit couplings characterized by η j = cos
(
ϕ j

)
with uni-

formly distributed phases ϕ j ∈ [0,2π). In this case, the weighted definitions evaluate to Ĵ z′ = 2
∑

j η
2
j Ĵ z

j ,

χ′ = χ0/2. Note that both χ and Ĵ z outside of this section always refer to the primed quantities defined

here, which reflects weighting by cavity coupling.

7.8.2 The cavity probe setup

In order to measure the cavity resonance frequency ωc (t ), we apply a series of probe pulses at the

cavity by sending RF pulses into a fiber phase modulator to periodically create an FM sideband nomi-

nally resonant with the cavity. To shape each RF pulse, we program an arbitrary waveform generator to

produce an RF pulse of the form

V (t ) =Venv(t )cos(ω̃t ); Venv(t ) =V0e−
t 2

2τ2 ; τ= 50 ns, (7.32)

where ω̃=ωc0−ωl is the RF frequency necessary to generate a first-order sideband at the unshifted cavity

resonance ωc0, given input light with frequency ωl . In our case, ω̃/2π=−60 MHz, which is large enough

that Venv(t ) varies slowly compared to ω̃ (|ω̃|τ≫ 1). The induced FM modulation therefore results in
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(b)

(a)

(c) (d)

cavity probeatomic signal

Figure 7.7: Simultaneously measuring 〈 Ĵ−〉 and 〈 Ĵ z〉. (a) Power spectrum of the full signal measured in
our heterodyne detector in a time bin from t = 0 µs to t = 3 µs. The atomic and cavity bands (shaded
regions) are well-separated in Fourier space. (b) From the atomic band, we measure the collective dipole
moment 〈 Ĵ−(t )〉 vs. time after the initialization drive pulse. Shown here is a trace with Rabi angle
θ0 = 0.99π and Zeeman splitting δz /2π= 0.3 MHz. The inferred 〈 Ĵ−〉 becomes large in the roughly 200 ns
during the initialization pulse, right before t = 0. We attribute this to detection of the initialization light
on our detector and therefore disregard our measurements at that time. (c) From the cavity band, we
measure the cavity frequencyωc over time (black points, with three example points highlighted in color).
Rescaling by a factor of 2χ allows us to infer the effective atomic inversion 〈 Ĵ z (t )〉 = (ωc (t )−ωc0)/2χ along
the |b〉 to

∣∣g〉
transition. We accomplish this measurement by dividing the raw heterodyne signal in this

band into time bins (here, tbin = 867 ns for clarity, although for the main experimental result figures we
use tbin = 67 ns for better time resolution). Three example bins are shaded to illustrate the process. (d)
For each time bin, we calculate the power spectrum of the heterodyne signal. Here, we plot an averaged
response (solid curves) over many instances of the experiment (faint curves) to extract a single estimate
of the center frequency, ωc (tbin) (dashed line). Our full analysis involves bootstrap resampling and ag-
gregation over frequency estimates of individual runs to obtain a statistical uncertainty (not displayed).

resolved sidebands of light, which follow a Jacobi-Anger expansion:

E(t ) = E0e iωl t exp
(
i Venv(t )

Vπ
πcos(ω̃t )

)
= E0

∞∑
n=−∞

i n Jn

(
Venv(t )

Vπ
π
)
e i (ωl+nω̃)t ,

(7.33)

where Jn is the nth-order cylindrical Bessel function, and Vπ is the half-wave voltage of the fiber phase

modulator. In our case, V0/Vπ ≈ 0.23, meaning the modulator is driven close to the linear excitation

regime (i.e., J1( Venv(t )
Vπ

π) ≈ Venv(t )
Vπ

π
2 ). As a result, we assume that the electric field of the first-order FM

sideband roughly inherits the shape described by Venv(t ).
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The Fourier spectrum of Venv is also a Gaussian, with a standard deviation of σ = 1/τ ≈ 2π×

3.18 MHz and a HWHM of σ
p

2ln2 ≈ 2π× 3.75 MHz. This means that if ωc (t )−ω0 = 2π×±3.75 MHz

at the time of the pulse, the injected electric field will be half as big as it would have been if the cavity

were unshifted, resulting in a 50% reduction in signal-to-noise. In other words, the pulse ensures that

the probe will have at least 50% of the maximum signal-to-noise over a 7.5 MHz band centered at ωc0.

Over time, the light inside the cavity will leak out, with a 1/e time constant of 2/κ≈ 2.1 µs for the electric

field. During this time, the cavity field will evolve according to Eq. (7.29) with ζ(c) = 0, as long as changes

in Ĵ z′ occur much more slowly than ∆c , the scale separating the atomic and cavity bands. Therefore,

as the light leaks out of the cavity, its frequency is modulated to match the dynamics of Ĵ z′. In other

words, the frequency of the cavity photons adiabatically follows the cavity resonance frequency ωc (t ),

since there are no other nearby eigenmodes to mix with. This is illustrated in Fig. 7.7(a): the cavity re-

sponse (in the yellow cavity band) is well-split from the atomic transition frequency (in the red atomic

band). Other cavity resonances such as different longitudinal modes are split by even larger detunings

(ωFSR/2π= 3.715 GHz).

We repeat the pulse described above every 5µs in order to keep the cavity populated with photons.

In between pulses, we detect the cavity field in transmission by beating it against a local oscillator and

measuring in heterodyne to infer a complex electric field amplitude as a function of time. We then time

bin the trace into chunks of length tbin = 67 ns (15 bins per µs, compared with a 60 MS/s acquisition rate

for the scope), similar to the binning shown in Fig. 7.7(c) which uses tbin = 867 ns for clarity. Within each

time bin, we estimate ωc by calculating the peak Fourier response, as shown in Fig. 7.7(d). These fitted

frequencies are then used to reconstruct the time-dependent behavior of ωc (Fig. 7.7(c)).

The precision of this probe relies heavily on signal-to-noise considerations. We operate at a power

where the maximum intracavity photon number is roughly Mc ≈ 30×103. Due to imperfect quantum ef-

ficiency, we effectively collect about 40 photons per time bin per shot of the experiment, which does not

allow for a high precision in frequency estimation. To improve this, we repeat the experiment 8 times

within a single loading sequence of the experiment, over a time period of roughly 2 ms. In postpro-

cessing, we average the complex electric field phasors from each of these experimental shots and then
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estimate the frequency, which multiplies the effective photon number by 8. Then, we repeat this load-

ing sequence for a total number of times nseq = 100. Since we cannot ensure phase stability between

loading sequences (tseq = 3 s), we could not directly average the complex phasors. Instead, we process

each loading sequence separately to obtain nseq estimates of the cavity resonance frequency per time

bin, which we then average down to increase precision by a factor of
p

nseq = 10. We empirically find

that the spread in frequency estimates is around 200 kHz at maximum intracavity power, giving us an

estimated maximum frequency precision of ∆ωc /2π = 20 kHz. The uncertainty region in later figures

come not from this estimated precision but instead from performing a bootstrap resampling on the nseq

frequency estimates per time bin (nboot = 100) and calculating the standard deviation over resampled

estimates. Finally, since the signal-to-noise decreases exponentially between pulses, we repeat the ex-

periment with the cavity probe pulses applied with a 2.5 µs offset. In post-processing, we stitch together

the two experiments to optimize the signal size in each time bin. We do not observe any distortion of the

dynamics by applying the cavity probe pulses at different times.

In principle, we could improve the signal-to-noise of the probe by sending in more photons; how-

ever, if the probe becomes too strong it will start to affect the system dynamics (which we do not want).

Eq. (7.30) can be interpreted as a shift of the atomic transition frequency by a characteristic amount

χ′〈â†â〉 =χ′Mc , where Mc is the number of intracavity photons. We want this to be small compared with

the frequencies of the Hamiltonian of interest, such as χ′N ≈ 2π×1 MHz. For the estimated intracav-

ity photon number Mc , we calculate a maximum frequency scale of χ′Mc ≈ (2π×35 kHz) ≪ χ′N . The

signal-to-noise could be further improved by increasing the quantum efficiency of our system, which is

estimated to be around 0.02. Finally, although we don’t believe it to be true in our system, laser frequency

noise in the local oscillator could be a limiting factor if it is larger than the shot-noise-limited precision

of the probe. Using a laser with narrower linewidth could then also benefit the probe.

7.8.3 Experimental results

Figs. 7.8(a)-(b) show a simplified cartoon which summarizes much of the previous section: the

short pulse length induces Fourier broadening, allowing excitation of the cavity mode even ifωc (t ) devi-
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Figure 7.8: Directly measuring excited state population transfer with the cavity probe. (a) We probe the
cavity resonance by sending light pulses at the cavity and detecting the transmitted light (“ringdown”).
The pulses resonantly excite the cavity over a large range of ωc (t ) = ωc0 − 2χ〈 Ĵ z〉. (b) The intracavity
field adiabatically follows ωc (t ), which can be measured in ringdown to infer 〈 Ĵ z〉. (c) Time traces of
〈 Ĵ z〉 (colored curves) with ±1σ bounds for different δz , compared with numerical simulations (thinner
dark curves). 〈 Ĵ z〉 is estimated in 50 ns time bins and then smoothed with a Gaussian filter (τsmooth =
50 ns). (d) Top: 〈 Ĵ z〉 oscillation visibility (circles) from t = 0.5 µs to t = 5 µs, relative to a baseline at
〈 Ĵ z〉 =−N /2, alongside numerical simulations (solid curve) and a noise floor (dashed line) inferred from
data at δz /2π= 0 MHz. The noise floor is not flat because calculating visibility involves normalizing each
data point separately. Bottom: a similar analysis for an orthogonal ẑ-polarized probe, which is sensitive
to Ng instead of 〈 Ĵ z〉. The noise floor is consistent with the top plot to aid in a visual comparison of the
two probes.

ates by several MHz. This feature gives our probe a large dynamic range for ωc (t ). After each pulse, the

cavity freely rings down, and the leakage “ringdown” light exhibits a frequency that adiabatically follows

ωc (t ) (Fig. 7.8(b)), which we measure to resolve fast changes in ωc (t ).

Fig. 7.8(c) shows time dynamics of 〈 Ĵ z〉 extracted from our probe. Before the sequence begins,

〈 Ĵ z〉 =−N /2. An initialization pulse at t = 0 with drive angle θ0 = 0.5π rapidly increases 〈 Ĵ z〉. Afterwards,
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we observe oscillations in 〈 Ĵ z〉 in some datasets. For smaller δz , these oscillations are hard to resolve

above the probe noise floor, whereas larger δz sets display more prominent oscillations. Assuming Ng

does not change significantly, oscillations in 〈 Ĵ z〉/ N
2 = (Nb −Ng )/N reflect transfer between |b〉 and |d〉.

We characterize this process by plotting the oscillation visibility for different δz relative to a baseline at

〈 Ĵ z〉 = −N /2 (orange points in Fig. 7.8(d)). Below δz /2π = 1 MHz, the lack of visibile oscillations above

the noise floor indicates poor population transfer. Above this point, however, the visibility sharply rises

and plateaus above 2 MHz, suggestive of large oscillations between |b〉 and |d〉. The experimental data

agrees well with numerical simulations (solid lines).

To confirm that the oscillations in 〈J z〉 arise from dynamics in Nb and not Ng , we also use a

ẑ-polarized cavity probe (red points in Fig. 7.8(d)). In analogy with the ŷ-polarized probe, this probe

measures oscillations of (N0 −Ng )/N , where N0 is the population in
∣∣3P1,m j = 0

〉
. Since we nominally

do not excite this state, we assume N0 is small, such that this probe solely estimates changes in Ng . We do

not measure an oscillation visibility significantly above the noise floor, so we conclude that the observed

oscillations in 〈 Ĵ z〉 primarily represent population transfer between |b〉 and |d〉.

7.9 Conclusion

In this work, we started with a pristine emulator of the BCS model with well-determined param-

eters and showed that we can add complexity in the form of controllable pair-breaking terms. Thanks

to this added complexity, we were able to individually measure two distinct many-body gaps, ∆BCS and

∆SG and clarify the difference between them. These results are enabled by utilizing the relative advan-

tages of cavity QED for studying superfluid systems: our system has direct access to multiple relevant

observables, including the pairing gap ∆BCS. From a technical standpoint, the system exhibits tunable

interactions without requiring a Feshbach resonance that induces significant two- and three-body losses,

and our stronger interaction strength allows us to neglect the effects of vacuum loss.

In the future, we could consider further exploring the rich features of BCS superfluidity, such as

higher interaction orders, using additional features in our system [144]. This experiment also shows the

potential promise in leveraging multiple internal states for exploring more complex physics, such as cor-
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related hopping processes between nuclear sublevels in 87Sr [440] or generation of multilevel entangled

dark states [198, 441, 442].



Chapter 8

Conclusion and outlook

In this thesis, I have presented a series of experiments engineering nonequilibrium quantum

phases of matter using many ultracold strontium atoms coupled to a single mode of a high-finesse opti-

cal cavity. The central physics in these experiments is an all-to-all cavity mediated interaction between

the atoms of the form χŜ+Ŝ−, which despite its simiplicity is nonetheless responsible for basically all

the interesting nonlinear and many-body phenomena highlighted in the preceding chapters. Moreover,

the utility of this interaction is not limited to the experiments here. Concurrently with and following my

works, the Thompson Lab has performed multiple related experiments applying these concepts to other

models and systems. I would like to briefly walk through the various projects here, since I believe com-

paring and contrasting them helps to clarify certain subtleties. I will also tease some ideas we have been

thinking about as next steps for the experiment.

8.1 Connections with other recent Thompson Lab experiments

8.1.1 Driven dissipative phases of the cooperative resonance fluorescence model

The dynamical phases in the Lipkin-Meshkov-Glick (LMG) model studied in Ch. 5 arose due to a

competition between an applied drive the spin-exchange interactions, which are the dominant atom-

cavity interaction when the cavity’s detuning from the atomic transition ∆ca is much bigger than its

linewidth κ. From an experimental perspective, it is easy to tune the system into a resonant regime

instead (∆ca = 0), where now superradiance at a rate ΓN dominates over the spin-exchange interaction

(see Ch. 2.5 for a definition of these quantities).
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This new model, defined by an applied resonant drive competing with collective emission, is a

classical quantum optics model known as cooperative resonance fluorescence (CRF) [454–456]. Unlike

the LMG model, dissipation is crucial to the competition in the CRF model, and its resulting nonequi-

librium phases are accordingly defined in terms of a steady state at long times, rather than the time-

averaged Hamiltonian dynamics we explored previously. When the drive is sufficiently weak, the system

is in a “superradiant phase” in which superradiance exactly cancels the drive, leading to a steady state

with a finite atomic inversion but no light inside the cavity. Above a critical drive strength, superradiance

cannot overcome the drive, and the system enters the “normal phase” which features rapid Rabi-like

oscillation with an eventual maximally mixed steady state at inaccessibly long times. Qualitatively, the

features of the superradiant and normal phases in the CRF model are quite similar to the ferromagnetic

and paramagnetic phases in the LMG model, and both exhibit a second order phase transition. How-

ever, the underlying mechanisms for the two models are quite different, as are the natures of the order

parameters (time-averaged compared to steady-state).

Although this model has been around for many decades and has received considerable theoretical

interest, a clean experimental realization has proved elusive. A recent experiment observed qualitatively

similar physics using a cloud of atoms in free space [457]. However, follow-up theoretical studies have

revealed key differences between this experiment and a true CRF model, the former of which exhibits

effective dipolar interactions which qualitatively and quantitatively modify the predictions [458–460].

In response to this controversy, my colleague Eric Yilun Song used our cavity QED experiment, which

features true nonlocal interactions, to cleanly simulate the CRF model and observe its nonequilibrium

phases along the 1S0 – 3P1 transition in 88Sr [80][G]. Additionally, he explored a related regime in which

both collective and spontaneous emission are relevant by running the experiment to timescales much

longer than 1/γ = 21 µs. He found that, in the presence of single-particle emission, the second order

phase transition melts into a first order transition due the onset of bistability in the steady state solution.

The position of the phase transition also shifts.
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8.1.2 Cavity-mediated momentum exchange interactions

Throughout this thesis, I have referred to the cavity-mediated interactions between atoms as a

“spin-exchange” interaction, despite the fact that the two-level system used in my experiments was re-

ally an electric dipole transition between atomic orbitals, rather than true spins. At the end of the day,

what truly matters is that the cavity mode can mediate an exchange between states in a two-level sys-

tem, regardless of what kind of two-level system you work with. My colleague Chengyi Luo on the rubid-

ium matterwave interferometry experiment took this philosophy to heart and engineered an analogous

exchange interaction between two momentum states, dubbing them “cavity-mediated momentum ex-

change interactions” [86][G]. In this system, he was able to observe many of the same features as I did

when simulating BCS dynamical phases (see Ch. 6), including a clean demonstration of Higgs oscilla-

tions with an oscillation frequency that scales with the interaction strength.1

On top of this, however, the fact that his interactions couple to momentum carried strange im-

plications for the time evolution of the interferometer’s atoms in position space. A superposition of

momentum states looks like a standing wave in the atomic density, which acts as a Bragg grating for

their input drive light. This actually forms the physical mechanism for the momentum exchange inter-

actions, as light reflecting off that Bragg grating is equivalent to the self-generated intracavity field in my

experiment. A residual momentum spread after velocity selection of less than 0.1ħk gives the ensemble

a finite extent which we refer to as a wave packet, but it also acts as a dephasing mechanism since differ-

ent atoms have different kinetic energies, which leads to Doppler dephasing as discussed in Sec. 8.1.3.

In position space, it turns out that this dephasing is exactly equivalent to the two wave packets separat-

ing and losing the interference responsible for their density grating. As a result, gap protecting against

this dephasing must also prevent the wave packets from separating, effectively acting as a “spring” be-

tween the wave packets which causes them to oscillate but remain overlapped. Chengyi observed key

signatures of this separation by applying the interaction for a short period of time during one half of a

full Mach-Zehnder sequence and observing an imbalance in the echo time required to fully rephase the

1 Actually, his oscillations were much cleaner, since he did not suffer from the twin plagues of inhomogeneous atom-light
coupling and residual motional dephasing that caused my Higgs-like excitation to quickly decay.
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ensemble after recombining the wavepackets.

An additional fascinating consequence of cavity-mediated exchange interactions between un-

trapped atoms is that the ensemble will recoil collectively to photons in the Raman drive, rather than

at a single-particle level. This concept is analogous to the Mössbauer effect in crystals, in which an

individual lattice site absorbing a gamma ray causes the whole crystal to recoil rather than just the in-

dividual atom [461, 462]. To understand this claim, we’ll consider the case of a single photon exciting

a zero-temperature ensemble initially in the ground state. Without interactions, one of the atoms will

absorb the photon and, at long times, separate from the rest of the ensemble with a recoil velocity vrec.

However, the cavity mediated interactions cause this atom to exchange its excitation with every other

atom in the ensemble, with each atom effectively possessing the excitation for a fraction 1/N of the time.

On average, each atom will recoil with a reduced velocity vrec/N , preventing the ensemble from separat-

ing. Notably, this thought experiment does not require the exchange interactions be generated from a

momentum-exchange process. In fact, it works just as well using internal levels on an optical transition

(such as the experiment in Sec. 8.1.3), so long as the atoms are free to recoil from absorbing a photon.

8.1.3 Many-body gap protection against Doppler dephasing

Because we work with thermal atoms, the typical atom has a nonzero momentum in some ran-

dom direction which causes it to move around as a function of time. If we attempt to address this atom

with a laser to drive some optical transition, the phase relation between the laser and the atomic coher-

ence then gets scrambled in the time it takes for an atom to move by one wavelength of the laser. This

phenomenon is called motional dephasing. To formalize this, suppose the ensemble has an r.m.s. mo-

mentum mvrms along the direction of the laser, which has a wavevector k. Then the rate at which the

atom accrues a phase shift relative to the laser due to motional dephasing is equal to dtϕrms = kvrms

(with a 2π phase shift occuring in a time t2π = λ/vrms, where λ is the wavelength of the laser). An equiv-

alent picture is to note that the velocity distribution vrms leads to a distribution of Doppler shifts with an

r.m.s. shift of ωd ,rms = kvrms, leading to Doppler dephasing (a synonym of motional dephasing).

A common solution to this problem is to pin the atoms in place with a sufficiently deep trap such
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that the position of the atoms is defined to much better than one wavelength of the addressing light,

which is equivalent to the Lamb-Dicke regime (see Ch. 3.5.2 for a more in-depth discussion). In this

regime, even if the atoms are at a finite temperature, each individual atom does not undergo Doppler

dephasing, allowing us to decouple internal and motional degrees of freedom.

Recently, my colleagues Zhijing Niu and Vera Schäfer on the strontium ring cavity experiment

demonstrated an alternate way to suppress Doppler dephasing: by using cavity-mediated spin-exchange

interactions [463][G]. The key insight here was recognizing that, like any other mechanism for inhomo-

geneous broadening, Doppler dephasing can be suppressed by a sufficiently large many-body gap gen-

erated by a χŜ2 term. To observe this physics, they loaded 88Sr atoms into an optical dipole trap in their

ring cavity, rather than the usual optical lattice. The dipole trap was to ensure that the atoms remain

well-coupled to the cavity mode, even as they move freely along the cavity axis. Then, much like my

experimental sequence when studying BCS dynamical phases in Ch. 6, they applied a π/2 pulse along

the 1S0 – 3P1 transition using 689 nm light and measured an enhanced coherence time in their ensemble,

consistent with a suppression of Doppler dephasing.

It’s important to note that, despite the fact that both this experiment and the matterwave inter-

ferometry experiment (Sec. 8.1.2) both observed gap protection against Doppler dephasing, there are

key differences in the way this dynamics manifested in position space. In particular, this experiment did

not observe real-space oscillations of the atomic cloud analogous to the “bound” wave packets in the

matterwave interferometer. Rather, the interaction forced the atoms to maintain phase coherence with

the spin wave defined by the initial laser pulse, even as the atoms traversed several wavelengths of the

light. Part of the reason for this is that the underlying mechanisms creating the cavity mediated exchange

interactions are different. In the matterwave interferometer, exchange interactions arise from a density

grating between the two momentum states which defines the relative phase between the drive and the

generated intracavity field. In the ring cavity experiment, the interaction arises from an energy cost for

atomic dipoles oscillating out of phase with the self-generated intracavity field, which in turn applies a

corrective phase shift to the atoms. No density grating forms in this experiment due to the different inter-

nal states. Moreover, although the excited and ground states for each atom differ in momentum by one
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recoil momentum ħk, this is much smaller than the r.m.s. momentum spread in the ensemble set by the

finite temperature. As a result, while the momentum of each atom affects its spin state in the combined

effects of a Doppler shift and the ensuing spin-exchange interaction dynamics, the changing spin state

has negligible backaction on the momentum state. Accordingly, collective recoil effects like the thought

experiment presented in Sec. 8.1.2 are difficult to observe on top of the large thermal background, even

while the general principle remains true.

8.2 Future experiments

8.2.1 Photon-mediated correlated hopping on a synthetic ladder of states

The spin-exchange interactions I’ve discussed up until now have all effectively been along a two-

level system: one atom lowers its state, and another raises its state. This is true even of the three-level

system considered in Ch. 7, since the second excited state in that experiment was dark to the cavity. It’s

interesting to consider what happens when you expand the scope of cavity-mediated exchange interac-

tions to a true multilevel system interacting with the cavity. In Monika Schleier-Smith’s group at Stanford,

researchers have explored exactly this kind of situation using the three-level F = 1 ground state manifold

in 87Rb, engineering a cavity-mediated interaction using a detuned two-photon process involving a Ra-

man drive and the cavity mode [175, 377]. When they initialized their atoms in the |mF = 0〉 hyperfine

sublevel and turned on interactions, they observed a pair production process where one atom raises

its spin from |mF = 0〉 to |mF = 1〉, and another lowers its spin from |mF = 0〉 to |mF =−1〉. Either jump

on its own is a detuned process, analogous to emitting a photon into the cavity in our experiment, so

in principle the number of atoms in |mF =±1〉 should be perfectly correlated (hence, “pair creation”).

This provides a mechanism for entanglement generation, which they have recently demonstrated and

explored in the context of programmable graph state generation [92].

A few years ago, my colleague and close theory collaborator Anjun Chu, formerly a graduate stu-

dent in Ana Maria Rey’s group (along with Asier Piñeiro Orioli and Diego Barberena) published a pro-

posal considering analogous physics in the ground 1S0 manifold of 87Sr [440][G]. Due to the nuclear spin
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of I = 9/2, this state has not three but ten sublevels, allowing for even richer dynamics in principle. The

proposal suggested initializing the atoms into the stretched mF = ±9/2 states and then applying circu-

larly polarized drives detuned from the 1S0 – 3P1 transition. For the right combination of drive powers,

drive frequencies, and cavity frequency, Anjun predicted that we could generate a correlated hopping

process similar to that observed in the spin-1 system, but spread over all levels at once. The process

involves one atom absorbing a circularly polarized photon and emitting with the opposite polarization

into a detuned cavity mode, followed by another atom absorbing the cavity photon and emitting into the

drive, with the two atoms thereby achieving hops of ∆m =±2 respectively. At short times, atoms would

hop out of mF =±9/2 and into the mF =±5/2 states in correlated pairs, and we may be able to measure

the differential population of these states (N5/2−N−5/2) with noise below the standard quantum limit. At

longer times, these correlations should spread across all ten levels.

Around the time of writing this thesis, our lab has started attempting to engineer this physics.

Admittedly, there are several challenges. Reading the populations of the different mF states is challeng-

ing since they all couple to the same cavity mode. We are trying out methods to split the transitions

out using a large magnetic field and measure ten different vacuum Rabi splittings by sweeping the cav-

ity resonance, with some success. To observe the interaction, we must attain a four-photon resonance

condition involving hops between different ground states. However, AC Stark shifts from our applied

drives, which change depending on the populations of each states due to dispersive shifts of the cav-

ity resonance, perturb this resonance significantly, requiring us to focus on stabilizing our experimental

parameters. Additionally, the effects of Zeeman shifts and tensor shifts in the excited state 3P1 mani-

fold are difficult to model. It is not obvious to what extent these will be an issue, and if we will have

to cancel these shifts somehow. Finally, the ratio between our desired interactions and single-particle

and collective dissipation scales as
p

NC , so we need this number to be large. However, Clebsch-Gordan

coefficients, hyperfine branching ratios, and inhomogeneous atom-light coupling all reduce the effec-

tive size of this term, requiring us to work with a large atom number. The limited natural abundance of

87Sr makes this a bit of a challenge, even with our newly replaced oven, so our cycle times are currently

quite long in the 3-4 second range. Despite these challenges, I am confident that we can engineer the
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interaction and see interesting physics.

8.2.2 Simulating p + i p superconductors

When defining the BCS Hamiltonian in Ch. 6, we assumed that every pair of momentum labels

k and k′ interacted with equal strength, which maps well onto the ideal picture of an all-to-all spin-

exchange interaction between Anderson pseudospins. To use language more typical for scattering the-

ory, we modeled an s wave interaction, since electrons with momentum ±k scatter into all possible

outgoing momenta ±k′ equally. In reality, our system exhibits inhomogeneous atom-light coupling,

since our trapping wavelength at 813 nm is incommensurate with our atomic transition wavelength of

689 nm (as discussed in several chapters, such as Ch. 6.10.1). If g0 represents the peak atom-cavity cou-

pling for an atom at an antinode of the 689 nm light, then an atom at position zi along the cavity axis will

experience a coupling of gi = g0 cos(θi ), whereϕi = kzi is the phase of the standing wave experienced by

the atom. Despite this complication, we still observed the three desired dynamical phases with the help

of numerical modeling.

It turns out that we may be able to utilize our inhomogeneous atom-light coupling to simulate dy-

namical phases of a superconductor with nonisotropic interactions between momentum states: specif-

ically, a chiral p + i p superconductor, which can exhibit dynamical phases with nontrivial topological

properties. This idea comes from a theory proposal originally designed for implementation in a Penning

trap [144], but the similar all-to-all interactions between the two platforms makes it potentially feasible

in a cavity QED system as well. The basic idea behind the mapping is to consider a two-dimensional

momentum space, such that a 2D momentum k can be written espressed as a complex value kx + i ky

with polar coordinates (r = k,φk ). A p + i p interaction between two momenta k and k′ then carries a

non-isotropic dependence of the form kk ′e i (φk−φk′ ). To engineer this interaction, we can map an atom

I = {i j } in our optical lattice with a coupling strength gi and some semi-arbitrary phase ϕ j , defined as

the phase relative to a transverse spin wave (i.e., relative to some beam which does not have to physically

exist), onto a momentum with polar coordinates (gi ,ϕ j ). The magnitude of the cavity-mediated inter-

action between atoms I and I ′ scales like gi gi ′ . From the perspective of the transverse spin wave, this
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coupling also carries a phase equal to e i (ϕ j−ϕ j ′ ), providing exactly the p + i p interaction form.

The prospects for simulating dynamical phases with nontrivial topology is intriguing, but there

are unanswered questions about the implementation that we would need to explore. First, some of the

suggested proposals for observing the desired physics have involved performing rapid π or 2π pulses on

the atomic state before letting the system evolve. However, in previous fast quenches of the optical tran-

sition, we have excited unwanted motional sidebands which rapidly cause dephasing in a manner which

we still have not been able to perfectly model numerically Ch. 6.10.3. We could try to reduce the excita-

tion of motional sidebands by working on methods to selectively load atoms into areas of peak coupling

[464, 465], but it’s not clear if we could do this without ruining the mapping between our ensemble and

the 2D momentum space described previously. Additionally, directly observing the nontrivial topology

of the dynamical phases probably requires performing a site-resolved measurement of the atomic state,

which we currently do not have the capability to perform. There are potential indirect methods to read

out a phase transition such as measuring a transition frequency, but it’s not clear if the signal will be

robust to experimental imperfections.
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67M. H. Schleier-Smith, I. D. Leroux, and V. Vuletić, “Squeezing the collective spin of a dilute atomic

ensemble by cavity feedback”, Phys. Rev. A 81, 021804 (2010).
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