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ABSTRACT
This paper reports on the use of a convolutional neural network methodology to analyze fluorescence images of calcium-ion Coulomb crystals
in the gas phase. A transfer-learning approach is adopted using the publicly available RESNET50 model. It is demonstrated that by retraining
the neural network on around 500 000 simulated images, we are able to determine ion-numbers not only for a validation set of 100 000 simu-
lated images but also for experimental calcium-ion images from two different laboratories using a wide range of ion-trap parameters. Absolute
ion numbers in the crystal were determined for the experimental data with a percentage error of ∼10%. This analysis can be performed in
a few seconds for an individual crystal image, and therefore, the method enables the objective, and efficient, analysis of such images in real
time. The approach adopted also shows promising performance for identifying Ca+ ion numbers in images of mixed-species crystals, thereby
enhancing the experimental methodologies for studying the kinetics and dynamics of cold ion–molecule reactions.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0272967

I. INTRODUCTION
A. Formation and imaging of laser-cooled ionic
Coulomb crystals

The use of deep-learning methods to aid analysis of experimen-
tal results in the physical sciences has been growing rapidly in recent
years. This is particularly true for image analysis,1–3 where very large
datasets may be generated, and there is a need to extract parameters
that characterize the data efficiently and rapidly, even in real time
as the data are being recorded. In the current paper, we report the
use of a deep-learning method with a convolutional neutral net-
work (CNN) to analyze fluorescence images of ion Coulomb crystals
(CCs), which are created when ions in the gas phase are laser-
cooled in a multipole radio frequency trap (such as a Paul trap4).
We demonstrate that the efficiency and objectivity of analysis of the
images—in terms of deriving the absolute numbers of ions of various

chemical species in a given crystal—can potentially be dramatically
enhanced through the use of a CNN. This advance leads to a sig-
nificant benefit for the experimental methodology of using CCs to
study the kinetics and dynamics of cold ion–molecule reactions. We
also show that a publicly available CNN model, RESNET50, which
was originally trained to categorize images of everyday objects, ani-
mals, complex scenes etc., can be retrained to analyze and extract
numerical data from scientific images of this type. We anticipate that
this approach could be applicable in other imaging applications in
chemical physics.

As discussed previously in several articles,5–9 ionic CCs are nor-
mally formed within a quadrupole (Paul) trap, with the ions created
in the trap by ionization of neutral precursor atoms or molecules
(e.g., by photoionization or electron-impact ionization), at low den-
sities in an ultrahigh vacuum [Fig. 1(a)]. The trap applies confining
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FIG. 1. CC image generation and sim-
ulation. (a) Ion trap with imaging set up
(calcium oven and effusive beam not
shown). (b) (i) Experimental Ca+ ion
fluorescence image of a CC. (ii) Match-
ing simulated image using the molecular
dynamics code CCMD (see the text for
details). (iii) A simulated 3D representa-
tion of the CC, from the CCMD code,
corresponding to the image shown in (ii).
(c) A sequence of experimental images:
(A) pure Ca+ crystal, (B) “flattened” crys-
tal with Xe+ sympathetically cooled on
the outside, and (C–F) progressive time
sequence of images as Xe+ reacts with
NH3 to form NH+3 illustrating the growing
hollow core of non-fluorescing NH+3 .10

forces in three dimensions with a combination of radio frequency
and electrostatic fields, tending to push the ions together, but the
compression of the ion cloud is opposed by the repulsion between
like-charged ions. Initially on formation, the packet of ions forms
a diffuse, disordered, and mobile cloud because the kinetic energy
of the ions exceeds any localized potential energy minima. How-
ever, when laser cooling is applied to the ions, most commonly to
the alkaline-earth singly charged ions (Ca+ in the work described
here), the temperature can be lowered, typically to the milliKelvin
range, where a phase transition occurs to a pseudo-crystalline struc-
ture. The ions take up sites on an ordered 3D ellipsoidal multilayered
array—a gas phase “crystal”—typically with just a few hundred ions
and an ion-to-ion spacing of order 10–20 μm (cf. the spacing in a
true solid-state crystal, which is of order 0.2 nm). The phase change

occurs so as to minimize the potential energy of the system through
the ions taking up regular lattice positions at the optimum separa-
tion. Figure 1(b-iii) shows a simulated 3D structure of a CC of Ca+

ions of approximate total length 300 μm on the long axis.
The laser-cooled ions are constantly fluorescing through the

optical excitation and de-excitation cycle, and the rate of photon
emission and the large (micrometer-scale) separation of the ions are
sufficient to enable a simple microscope with an imaging camera to
be used to observe layers of the crystal structure with single-ion reso-
lution. Figure 1(b-i) shows an example experimentally recorded Ca+

ion image, in which each white, diffuse spot represents a single flu-
orescing Ca+ ion that is located in the central 2D slice through the
CC in the imaging-system focus. Various applications of ionic CCs
have been developed in spectroscopy,11–13 reaction dynamics, and
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kinetics,6–9,14–17 and the study of cold ion–molecule collisions has
become an important component of the burgeoning field of cold
and ultracold chemistry.18–20 Such experiments take advantage of
the fact that other types of positively charged ions, beyond those
that can be laser-cooled, can be sympathetically cooled and trapped
in the crystal (e.g., NH+3 , C2H+2 , OCS+, HN+2 , and MgH+). In gen-
eral, these other ions are not directly visible in the images because
they are not fluorescing under the experimental conditions. How-
ever, they tend to either be found as a dark inner shell of the crystal
(if they are lighter mass than the laser-cooled Ca+) or as a dark
outer shell (if heavier). Hence, their presence can be detected by
the observed deformation of the fluorescing Ca+ ion framework.
Cold ion–molecule reactions can be studied by passing cold, react-
ing neutral gases through the CC,6,7,21–25 or superimposing the ion
trap with a trap for neutral atoms or molecules,17 and observing
how the images change with time. Figure 1(c) shows a sequence of
images that was recorded over two minutes, in which the initial pure
Ca+ crystal (image A) is “doped” with Xe+ ions that sit around the
outside (note the flattened Ca+ structure in images B and C). The
Xe+ ions then react with NH3 (ammonia) by charge transfer to form
NH+3 , and a “hollow core” appears in the right-hand images (D–F)
because the NH+3 products of the charge transfer are trapped in the
center of the crystal.10,26

The extraction of a reaction rate from such measurements may
be achieved for relatively simple reactions (particularly those with
only one possible product ion) by recording numerous images of
the type shown in Fig. 1(c) as a function of reaction time. The 2D
images can then be analyzed to determine the number of ions of each
chemical species (mass) in the full 3-dimensional CC structure, at a
sequence of time points. One attractive feature of this methodology
is that it is a non-destructive detection method, and thus, in princi-
ple, a reaction rate can be derived from measurements on a single
CC.7,24,27,28

B. Determining ion numbers of CCs
There are a number of reasons why the calcium-ion numbers

cannot be routinely read directly from the CC images (unless the
crystal contains only a very small number of ions) or determined
accurately by simply measuring the overall geometry of the crystal
image.

● The images are a two-dimensional cut in the image plane
through the 3-dimensional ellipsoidal crystal and do not
fully show the detailed 3D structure. Blurred features lying
outside the focal plane appear in the crystal images to an
extent that depends on the depth of focus in the imaging.

● As the number of ions is increased, the crystal dimensions
do not change monotonically with ion number but rather
undergo step changes in the dimensions when the number
of layers increases. This is particularly the case when there
are just a few layers in the crystal. The ion numbers at which
these step changes occur vary with the applied fields, trap
geometry, and temperature.

● The crystal structure has a dependence on the applied RF
field and the endcap voltages, which increasingly squeeze
the crystal in the x–y or z dimensions, respectively, as the
RF peak-to-peak voltage or endcap voltages are increased.
Thus, the number of ions shown in the 2D images changes

as these voltages are adjusted, as well as the size and shape of
the overall crystal image.

● In practice, the effective temperature of the ions in the crys-
tal may change experimentally due to a number of possible
effects including background collisions with residual gases
in the vacuum and imperfect overlap of laser beams. This
may lead to blurring of the images and difficulty identifying
all the spots in an image.

● The structure is also subject to experimental imperfections
due to patch charges on the electrodes or unsymmetrical
positioning of the crystal with respect to the trap center, or
even due to imperfections on the imaging detector, leading
to distortions of the images.

To analyze the images for the number of ions, the crystals can
be simulated using an appropriate molecular dynamics (MD) code,
which produces simulated images for given ion trap parameters and
ion numbers. Figure 1(b-ii) shows the result from a MD simula-
tion of a pure Ca+ crystal image. Such a simulated image can then
be juxtaposed with the experimental image and the number of ions
determined by iteration of the initial parameters for the simulation
to get a good match. We will refer to this hereafter as the method of
iterative simulated-image matching (see, for example, Refs. 28–33).
Examples of the end result of this matching can be seen later in Fig. 8.
In general, the matching of experimental and simulated images is
performed by the human eye, rather than an automated proce-
dure. In practice, this is an extremely time-consuming method of
analysis—for crystals with a few hundred ions, each MD simulation
might take several CPU hours to generate a single simulated image,
and the simulation time scales up in proportion to N2 (where N is
the number of ions); then, this comparison of experiment and simu-
lation needs to be iterated. Furthermore, there is inevitably a degree
of subjectivity in matching by eye a “perfect” simulated image with
an “imperfect” experimental one, especially when trying to define
the ion numbers with a percentage error of better than 5%.

An alternative, complementary method for determining ion
numbers in the crystal was developed,34–37 in which the ions are
near-instantaneously ejected from the trap into a time-of-flight mass
spectrometer and the number of ions arriving at the detector is mea-
sured in mass-selective time gates. While such measurements can be
made in real time and indicate directly the mass and relative pro-
portions of all species that are present,23,38 one disadvantage of this
approach is that the CC is destroyed in the process; therefore, this
can be used to determine ion numbers at only a single time point in
a reaction kinetics experiment. To make measurements at a number
of time points, new crystals must be formed for each time point, and
in practice, there will be variations in the initial numbers of ions in
each of these crystals that needs to be accounted for to determine the
reaction kinetics. In addition, the accuracy of this method relies on
calibration of the ion numbers at the detector (and the extraction
efficiency), and over a long period of time, the absolute accuracy
of ion numbers may change incrementally due to slow degrada-
tion of the detector, even if the relative ion-numbers for different
masses remain accurate. The collection efficiency of ions of differ-
ent masses may also differ, especially if a wide spread of ion masses
is present,38,39 as the ion-extraction field used in a quadrupole ion
trap is less homogeneous than in conventional time-of-flight mass
spectrometers (see, e.g., Fig. 6 of Ref. 34).
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In a recent paper,33 it was demonstrated that the number
of dark ions in a CC could be determined mass-selectively and
non-destructively using excitation of the dark-ion secular reso-
nances, a development of the pioneering secular-excitation mass-
spectrometry of Ref. 14. Up to 8 H+2 ions could be detected quanti-
tatively in a CC of 2000 Be+ ions, and the chemical change from H+2
to H+3 was observed resulting from the reaction with background
H2. However, the step change in fluorescence signal became non-
linear for dark-ion counts greater than 8 ions, and the count of Be+

ions could not be determined by this method (the method of itera-
tive simulated image matching was employed). The method was also
limited to dark ions that were of smaller mass than the laser-cooled
ions. In some applications, this method could be complementary to
the method described in the current paper.

Ideally, one would like to have a real-time, non-destructive
method of analysis of an experimental sequence of CC images.
In this paper, we report on exploring the use of a deep-learning
approach using a CNN to enable rapid and reproducible analy-
sis of ion numbers from CC images. This would bring a greater
level of objectivity to the process of extracting ion numbers from
an image. It might also allow rapid deduction of experimental rate
constants in reaction studies and provide immediate pointers to
follow-up measurements that are needed. The method enables deter-
mination of absolute ion numbers, which is desirable or essential
in many circumstances. While rate coefficients for first-order or
pseudo first-order processes can be determined with knowledge of
N ion(t)/N ion(t0),40 i.e., relative ion numbers, knowledge of absolute
ion numbers is needed in situations such as when multiple reaction
pathways are present;38 when product ions undergo secondary reac-
tions with reactant gases;34 when one of the products has the same
mass as the laser-cooled ions;38 when large CCs are used and detec-
tor saturation must be assessed;39 or when background reactions
occur with unidentified gases in the vacuum chamber.

We start with the perspective that there is a one-to-one cor-
respondence between the CC image observed and a set of input
parameters—the parameters describing the physical geometry and
fields applied by the trap and the number of ions of different masses
in the crystal. Although that relationship is effectively determined
by Newtonian laws of classical physics, we seek to train a neu-
ral network to recognize the input parameters—and particularly
the number of ions—simply by “looking at” the images, obviating
the need to carry out any molecular dynamics simulations for the
analysis of experimental images. The inference of ion numbers is
immediate—it takes a matter of seconds for each image on a stan-
dard laptop computer—and effectively gives ion numbers in “real
time.” Furthermore, virtually, all the computational cost is associ-
ated with the CNN training process, and once this is completed, the
application to infer ion numbers comes at a negligible cost.

Our initial objective was to train a CNN with a sufficiently
broad training set (with images generated using a wide range of
ion trap parameters), so that it can be used across multiple ion-trap
setups and can determine ion numbers from CC images without
being provided with any further information about the trapping
parameters, or the CCD camera and optics, used to obtain those
images. This is analogous to the use of CNNs to identify everyday
objects or animals from a photo without being given prior informa-
tion about the details of the specific camera used, or how close the
object was to the camera, or what the resolution of the camera was.

C. Neural networks and their applications

The use of neural networks and artificial intelligence to solve
demanding problems has been ubiquitous over the past decade, but
the idea of using the human-brain model for a system that can be
trained to provide the desired output for a given set of inputs can
be traced back to 1943.41 The first trainable “neural network” with
hidden layers was constructed in the 1980s.42 Neural networks are
a type of supervised learning technique and require an extensive
training-dataset, consisting of input data points and their associated
outputs. In the current work, the inputs are the CC images in numer-
ical matrix form, and the output data points are parameters such
as the ion numbers, or as shown recently by Yin and Willitsch, the
secular temperature of the crystal.43

Training takes place by presenting a set of input data points and
known associated outputs to the network, which attempts to either
classify the input data (for example, identifying whether a photo-
graphic image shows a cat or a dog) or to produce values for the
output parameters (regression), and this is compared to the known
output values, and loss is calculated. The “loss” quantifies the dif-
ference between predicted values generated by the CNN model and
the actual values. It can be defined as either the cross-entropy in
the classification case or the Root Mean Square Error (RMSE) in
the regression case. The numerical weights in the network are then
adjusted to minimize this loss using the first-order derivative, and
the process is repeated. The amount that these weights are altered
(with respect to the slope of the loss) is known as the learning rate.
In the methodology of the current paper, we adopt the “regression”
approach to extract ion numbers, while in the paper of Yin and
Willitsch,43 the “classification” approach is adopted.

By 1998, Lecun et al.44 had developed a system based on the
concept of receptive fields, which are used by the human eye to
identify features in an image and to make progress in a handwriting
analysis problem. These systems became known as CNNs. Layers of
CNNs analyze the data on different length scales before the analysis
propagates into the traditional dense layers of the network prior to
an output classification or output parameter values being produced.
A turning point for the practical application of CNNs came when a
huge amount of data started to be created by digital cameras, espe-
cially in phones, which was easily collated on the Internet. This was
coupled with the realization that even consumer Graphical Process-
ing Units (GPUs) could substantially accelerate the training process
by orders of magnitude in comparison with using CPUs. The mas-
sive amount of training data and the ability to quickly and affordably
train networks meant that the architecture of these networks could
increase in complexity. CNNs became the leader in this field after the
success of AlexNet in the 2010 ImageNet competition, where, across
a 1.2 × 106 image sample comprising 1000 classes, it demonstrated
an accuracy that was significantly better than the state of the art.45

This marked the transition from CNNs being an interesting idea into
a practical technique and substantially reduced the computational
cost of image recognition.

The objective of the work described in this paper is to build
a suitable neural network, or retrain a pre-existing neural network,
that can be trained on simulated and/or experimental CC images
with known ion numbers and trap/imaging parameters for each
image. Having trained the network, we seek to use it to predict the
ion numbers for unseen images and without knowledge of other
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trapping parameters. Ideally, we aim for this analysis to be achiev-
able in real time while the experiments are taking place—which, in
practice, means analysis in a few seconds per image.

II. COMPUTATIONAL AND EXPERIMENTAL METHODS
A. Molecular dynamics simulation and training
of the CNN

To solve the problem outlined, we started by constructing a
very large dataset of simulated images using the Coulomb Crys-
tal Molecular Dynamics (CCMD) code, described most recently
in Ref. 32, on the University of Birmingham’s BlueBEAR High-
Performance Computing (HPC) facility. The CCMD code simulates
the laser cooling of a specified number of ions (typically 100–600
ions in this work), using a set of specified input parameters charac-
terizing the trap dimensions and fields, the imaging parameters, the
masses of the ions, the forces due to Coulomb repulsion between
ions, laser cooling, and stochastic heating processes (primarily
through collisions with background gas). The code is a classical
MD routine, rewritten by M. Bell and C. R. Rennick (University of
Oxford) in C++, and is based on a pre-existing MD code ProtoMol.46

Over a period of more than 20 years, MD simulations have been able
to successfully reproduce images of experimental CC images with
high accuracy, as illustrated, for example, in Refs. 28–33 and 47 and
also in Fig. 8 of the current paper. This is achievable both for pure
laser-cooled ion crystals and for mixed-chemical-species crystals.

The force is written as

Ftot = Ftrap + Fion + Fcool + Fheat, (1)

where the terms in the equation represent the trapping forces, the
Coulomb repulsion, the laser cooling force, and the stochastic heat-
ing force, respectively. The equations of motion are integrated using
a velocity-Verlet algorithm across the time cycle of laser cooling
and then across a subsequent cycle of image gathering. Typically,
each cycle involves around one million time-integration points of
0.2 ns each. This time step is sufficiently small to account for the
RF oscillation in the trap (3.8 MHz) and the long-range ion–ion
interactions.

The positions and velocities of the particles, sampled over
the image-gathering period, are then used to produce a simulated
image using the approach illustrated in Fig. 2. The image shows
the 2D-sliced probability density of the ions, with each slice cor-
responding to ions at a specific distance from the focal plane,
nominally the center of the crystal. A Gaussian blur is applied to
sliced images that are not in the focal plane, with greater blur-
ring for slices that are further from the plane. These slices are
then summed together to give a simulated image to compare with
experimentally obtained images. The blurring of the outer layers
makes them look less intense, but the fluorescence rate and detection
efficiency are approximately constant for all ions across the crys-
tal, which is illuminated by a laser with beam waist much larger
than the crystal dimensions. We mainly simulate images for pure
Ca+ crystals in this paper, although the CCMD code is capable of
simulating images of mixed-chemical-species crystals with a com-
bination of laser-cooled ions and sympathetically cooled ions [such
as in Fig. 1(c)], and we made use of that capability as demonstrated
later.

For the CNN training set, we chose ranges for the key input
parameters that may vary in a range of typical experimental Paul-
trap CC studies. The parameters initially varied are as follows:

● 33 ion number values ranging from 30 to 350 in steps of 10.
● 14 radio frequency peak-to-peak voltages ranging from 170

to 300 V in steps of 10 V.
● 21 endcap voltages, ranging from 1.5 to 3.5 V in steps of

0.1 V.
● 24 eta parameters ranging from 0.240 to 0.355 in steps of

0.005 V. This parameter is needed to characterize the imper-
fection of the field experienced by the ions experimentally;
the code adds an additional dc force field, in which eta
characterizes the ratio of axial to radial components of the
correction field.

● 3 random seeds, used to initiate randomly the velocities
and positions of the ions in the simulations. For crystals
with several hundred ions, there are several degenerate or
near-degenerate structures, some of which are related by
symmetry. Using different random seeds helps ensure that
these variants are covered in the training set.

FIG. 2. Illustrating the procedure for gen-
eration of a simulated 2D image in the
CCMD code from the 3D structure pro-
duced in the MD simulations. Image
created in https://BioRender.com.
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The heating and cooling rates had constant values for all the
simulations. The balance of heating and cooling determines the sec-
ular temperature once the crystal reaches equilibrium. Initial testing
indicated that crystals did not undergo significant structural changes
(in terms of shell structure and numbers of ions in each layer) if the
heating:cooling ratio was varied over a reasonable range appropriate
for the experiments we were aiming to analyze. Instead, the simu-
lated images showed minor disorder and/or greater blurring as the
heating rate increased. A good example of the effect of varying the
secular temperature is shown in Fig. 2 of Ref. 43.

Taking all permutations of these values leads to a dataset of
698 544 images. In order to test the quality of the training pro-
cess, the dataset is partitioned in a 5:1:1 ratio into a training set,
a validation set, and a test set, where the “validation” set is used
as unseen data to test the accuracy of the predictions of the neu-
ral network, and the “test” set is reserved for further testing of the
hyperparameters of the model if required. These sets were defined
by including each of the parameters in the filename of each image,
taking the hash of that filename and taking modulus 7 of that value.
The validation and test sets had a modulus of 0 and 1, and this
approach had three advantages: it is a simple method; we could
start validation before the training simulation had completed with-
out risking leakage between the two datasets; and, most importantly,
this should guarantee that there is no bias between the training, vali-
dation, and test samples. Ray Tune was used to carry out an unbiased
optimization of hyperparameters.48

Before training, the simulated images are automatically
cropped with a rectangular boundary around the elliptical image in
order to reduce the number of black (zero) pixels analyzed by the
neural network. We use image augmentation to diversify the data
that the network is trained on and to minimize any possibility of
over-training, even with the large number of training images. This
includes rotating the crystal image, moving it off center, and enlarg-
ing or reducing its size. This augmentation is applied randomly
before adding a simulated image to the dataset.

Initially, we attempted to build our own CNN, which was
coded using PyTorch or PyTorch Lightning. Typically, the mod-
els we employed included three CNN layers feeding into three
“standard” dense layers performing a regressional analysis to pro-
duce a single output (the ion number). While these relatively
simple models performed moderately well, especially in the ion-
number analysis of a validation set of simulated images, they
did not perform satisfactorily when given experimental images to
analyze.

Subsequently, it was decided to test out the RESNET50 CNN
model,49 and the remarkable capabilities of that model became
quickly apparent. This is the model that was used for all the results
presented in this paper. The RESNET50 model was developed by
Microsoft Research in 2015 and is a deep CNN with the number
“50” referring to the number of layers in the network. The model,
which has been applied to diverse applications such as facial recogni-
tion and complex-scene analysis, has been trained on the ImageNet
dataset that now contains over 15 × 106 images and 1000 classes
(images of objects, animals, etc.).45 Only a modification of the input
and output layers was required in the present work to retrain and
use the RESNET50 model for our purposes. For the output layer,
we replaced the final classification step, with a conventional dense

numerical output layer, and the predicted ion number was output
as a double-precision number. The top layer was changed to work
with grayscale images, as well as color images. As shown below, this
model has been successfully deployed to analyze data from laborato-
ries in Liverpool/Oxford, UK and Boulder, CO, USA. A self-standing
“Inference” routine has been created in this work, which runs on a
standard laptop in any location, via a link using the Docker platform
to the code. It uses the weights generated in the adapted RESNET50
model, through training on the simulated CC images, to determine
the Ca+ ion number for any CC ion image presented to the routine.
The time taken to analyze each image is typically less than 5 s.

B. Generating a test set of experimental CC images
An additional set of experimental CC images was generated

to test the accuracy of ion-number prediction by the CNN on real
data. These were recorded on the laser-cooled ion-trap time-of-flight
mass-spectrometer setup at JILA, University of Colorado Boulder,
described in detail in Ref. 35. Ca+ ions formed via non-resonant ion-
ization of an effusive Ca beam using the third harmonic of a Nd:YAG
laser were loaded into a linear Paul trap. The Ca+ ions were then
laser cooled to secular temperatures of <1 K using the frequency-
doubled and fundamental outputs of two Ti–sapphire lasers (∼4 mW
at 397 nm and ∼20 mW at 866 nm). The resultant CC typically con-
sisted of several hundred ions. The fluorescence emitted by the ions
of the Ca+ CC was imaged onto an electron-multiplying charge-
coupled device (EMCCD). The number of ions in each crystal was
determined via time-of-flight mass spectrometry after the image had
been recorded.

A set of 12 000 images was generated, involving creation of
200 individual pure Ca+ crystals of a range of sizes from ∼50 to
900 ions. These consisted of 10 sets of 20 crystals with a combi-
nation of variable endcap voltages (1.75, 2.5, 3.25, 4.0, and 5 V)
and radio frequency peak-to-peak voltages (400 and 250 V). The
size (ion number) of each crystal was set approximately by vary-
ing the length of time for which the Ca atom beam was ionized. A
set of 60 images was recorded for each crystal at 2 s intervals (total
observation time: 2 min per crystal), and the ions were then ejected
into a time-of-flight mass-spectrometer, and a calibrated Ca+ ion
number was obtained. To confirm this calibration, the method of
iterative simulated-image matching was used to compare with the
ion numbers derived from the mass spectrum. A sample of some of
the images for different crystals obtained at different RF and endcap
voltages and ion numbers is shown in Fig. 3(a). A time sequence of
images at 2 s intervals is also shown for one crystal in Fig. 3(b).

III. RESULTS
In this section, we present the results of applying the infer-

ence routine to determine Ca+ ion numbers in five different sets
of CC images. We begin with the application to the validation set
of 100 000 simulated images of pure Ca+ crystals and then test the
level of success the CNN has with simulated mixed-species crystal
images (Ca+ with sympathetically cooled ND+3 or CaF+). It should be
noted that the training set included only pure Ca+ crystals. We then
apply inference to experimental crystal images, first those recorded
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FIG. 3. (a) Experimental images
recorded in Boulder for pure Ca+ crys-
tals with various ion numbers, obtained
with an RF peak-to-peak voltage of
400 V (upper line of images) and 250 V
(lower images). (b) A sequence of
Boulder experimental images recorded
for a single CC at 2 s intervals.

in Boulder and then those recorded in Liverpool/Oxford, noting that
the CNN was trained on primarily simulated images with the Liv-
erpool/Oxford trap parameters. Finally, we apply it to experimental
mixed-species crystals from Liverpool/Oxford with up to 20% of Kr+

doped into the Ca+ crystal. These datasets are presented in a pro-
gression of what we expected would be an increasing challenge for
the CNN.

A. Ion-number inference with simulated pure
calcium-ion CC images

The validation-set of ∼100 000 simulated CC images was run
through the CNN validation code to determine the Ca+ ion num-
bers, and we compared them with the ion number that was used
to generate them. The images were binned into sets according to
the actual ion number, with ∼3000 images in each of 33 bins in
step sizes of 10 ions (30–350 ions). Within each bin, the images
had widely varying trap parameters as described earlier. The stan-
dard deviation of the CNN-inferred ion numbers from the actual ion
numbers was calculated for each bin, and these are plotted as the ver-
tical thickness of the pink rectangles in Fig. 4. These deviations are
in the range 0.9–3.7 ion-number units or a percentage deviation of
1.2%–1.8%. Example values of the standard deviations in ion num-
bers are 0.9 at total ion number 50, 2.0 at 150, 2.7 at 250, and 3.7
at 350. Each pink bar is centered vertically on the average value of
the ion number produced by the inference routine, and this follows
a straight line of slope 1 and passes through the origin. The ten most

outlying points above and below the mean are also shown for each
bin in the figure with black circles. A sample of the crystal images
represented by the outlying error points is shown in Fig. 5. Although
these outlying crystal images are typically almost circular in geom-
etry (spherical crystal) or prolate-shaped (long and thin, pointing
vertical), it is not obvious why such categories of image should show

FIG. 4. Plot of inferred Ca+ ion numbers for 100 000 simulated images (from vali-
dation routine) vs the Ca+ ion number used to simulate each image. The centers
of the pink rectangles show the mean inferred ion numbers for the ∼3000 images
in each bin. The vertical thickness (but not the horizontal width) of the rectangle
shows the standard deviation for ∼3000 images. The black open circles show the
inferred ion number for the ten greatest outliers in each bin above and below the
mean.
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FIG. 5. Histogram of output ion numbers
from the validation routine for 3040 sim-
ulated images with 250 ions. The images
for which the deduced ion number has
the greatest positive and negative vari-
ation from the actual ion number are
shown above and below the histogram.

higher errors, except perhaps that the RF and endcap voltages used
to generate these lie at the extremes of the range incorporated in the
training set—and hence, the CNN has not fully recognized the trends
in images derived from that range of parameters. In summary, the
CNN is able to predict ion numbers of unseen simulated CC images,
generated with a wide spread of trap parameters, with a percentage
error of 1%–2% in a few seconds per image.

B. Analysis of simulated mixed-species CC images
(Ca+/CaF+ and Ca+/ND+3)

An intriguing question is whether the neural network can
determine calcium-ion numbers in images of mixed-chemical-
identity crystals. As explained earlier, ions of higher mass than
calcium—e.g., calcium fluoride CaF+, mass 59 u, tend to take posi-
tions in layers around the edge of the crystal, and the fluorescing
calcium-ion framework takes on the appearance of a flattened ellip-
soid. With this very different shape from the pure calcium crystal,
it might be expected that a CNN that has not been trained to rec-
ognize such crystals would have difficulty in generating physically
reasonable answers for the calcium-ion numbers.

A test set of simulated mixed-crystal images was generated with
combinations of 150–250 Ca+ ions and 0 to 100 CaF+ ions; a sam-
ple of these is shown in Fig. 6(a). The application of the inference
routine to deduce the Ca+ numbers for this test set of 36 images
is shown in Fig. 6(b). It is clear that even for this small number of
images tested, there is a good prediction of Ca+ ion numbers with
an RMS error of 6.4 and an RMS percentage error of 3.1%.

In the case of mixed crystals with low-mass sympathetically
cooled ions, the images give the appearance of having a hollow core.
This is illustrated for a set of simulated images for Ca+ with ND+3
(mass 20 u) shown in Fig. 7(a). Given that the neural network had
not been trained on such hollow-core crystals, we expected that the
prediction of calcium-ion numbers from such images might be more
difficult than for the flattened images in Fig. 6. Figure 7(b) shows
the outcome of predicted ion numbers for 36 crystals of Ca+/ND+3
composition with combinations of 150–250 Ca+ ions and 0 to 100
ND+3 ions. The RMS ion number error is 22 for this set, and the
RMS percentage error is 11%. While the accuracy of prediction is
not as good as for the set in Fig. 6, we consider the accuracy to be
reasonable, as is the ability to get the correct ordering of the Ca+
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FIG. 6. (a) Simulated crystals of Ca+, which contain a proportion of sympathetically
cooled CaF+. Each crystal has 250 ions in total and CaF+ ion numbers ranging
from 0 to 100 as indicated. (b) Inference results, showing deduced ion number
vs actual Ca+ ion number for simulated Ca+/CaF+ crystals with combinations of
0–100 CaF+ ions and 150–250 Ca+ ions.

ion numbers in general. Furthermore, the slope of the trend is still
∼1, and only the intercept is shifted. The tendency for the model
to over-estimate the ion numbers is perhaps not surprising given
that the size of the ellipse encompassing the ions is somewhat larger
than the CNN would “expect” for a crystal with that number of Ca+

ions. In principle, if this overestimation could be demonstrated to be
systematic, then it could be corrected, enabling use of the CNN for
identifying numbers in such mixed crystals with light sympatheti-
cally cooled ions. As discussed later, the CNN could also be retrained
to include a set of simulated mixed-crystal images in the training set.

C. Analysis of experimental pure Ca+ CC images
recorded in Boulder

A test set of 370 experimental images, recorded as described in
Sec. II B, was selected from the 12 000 images available. We chose to
focus on the images recorded with 250 V RF peak-to-peak voltage
because the 400 V RF peak-to-peak voltage value was beyond the
range of parameters used in our training set, and it also generated a
number of long, thin, vertically aligned crystals that pushed toward,
or over, the boundaries of the imaging system. For these 400 V-RF

FIG. 7. (a) Simulated crystals of Ca+, which contain a proportion of sympathetically
cooled ND+3 . Each crystal has 250 ions in total and ND+3 ion numbers ranging
from 0 to 100 as indicated. (b) Inference results, showing deduced ion number vs
actual Ca+ ion number for simulated Ca+/ND+3 crystals with 0–100 ND+3 ions and
150–250 Ca+ ions.

images, the inference routine tends to significantly underestimate
the ion numbers at the higher end of the ion number range (more
than 350 ions). It is likely that this would be corrected by the use of
different focal length lens experimentally to compress the image size
and ensure that it is comfortably within the bounds of the imaging
detector.

From each of the five sets of 20 crystals for the 250 V RF voltage
(with endcap voltages 1.75, 2.5, 3.25, 4.0, and 5.0 V), we selected 6–10
crystals from each set that covered the range from the smallest crystal
size to an ion number of ∼450 at rough intervals of 50. It should be
noted that it is not possible experimentally to prepare a crystal with a
precise number of ions on demand. We used the first ten images (out
of 60) recorded at two-second intervals for each of the 37 separate
crystals.

Prior to running through the inference routine, the experimen-
tal images are converted so that they have the same magnification
and pixel array dimensions as used in the training set (which
was based on the pixel array dimensions for Liverpool images).
The adjustment of the magnification factor also takes into account
the slightly different trap geometry; for the Liverpool/Oxford trap,
r0 = 3.5 mm, while for the Boulder trap, r0 = 3.91 mm, where r0 is
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the minimum distance of each cylindrical electrode from the trap
center. Crystals were rotated by ∼5○ to bring the ellipse axis into
the vertical orientation, and any non-zero pixels outside the ellip-
tical boundary of the fluorescence from the crystal are set to zero.
A five-point two-dimensional median averaging was also applied to
reduce the noise level.

Figures 8(a) and 8(b) show examples of the plot of CNN-
predicted ion number, for crystals obtained using a common endcap
voltage (3.25 and 4.0 V respectively), against the ion numbers deter-
mined by the method of iterative simulated-image matching (an
example of the outcome of such matching is shown in the inset of
each figure). We have chosen to use the iterative simulated-image
matching ion numbers for the horizontal axis in these plots, rather
than the mass-spectrometer numbers, to enable a fair comparison
with results for the Liverpool/Oxford data (where we do not have
calibrated mass-spectrometric ion numbers currently.) Table I lists
the RMS- and mean-percentage errors for all five datasets. It can be
seen that the RMS error is typically around 10%. A significant part
of that error stems from the dispersion of values determined for the
ten images of each crystal—as is apparent from Fig. 8. If the mean
ion-number prediction is used for those ten images in place of the

TABLE I. Mean and RMS errors for inference predictions of Ca+ ion numbers in five
sets of images recorded in Boulder.

End cap
voltage/V

Number of
images

Ion number
range

Mean %
error

RMS %
error

1.75 8 × 10 110–411 11.6 15.3
2.5 6 × 10 115–450 9.2 12.3
3.25 10 × 10 105–470 7.3 9.9
4.0 7 × 10 120–440 7.5 10.2
5.0 6 × 10 115–392 7.2 8.9

individual values for the 3.5 V set, the mean and RMS percentage
errors reduce to 5.3% and 6.4%, respectively. If it were possible to
identify in advance which of the ten images in each of these sets
would give the best predicted ion numbers, then the errors could
be reduced to around 1%. However, inspection of the crystal images
does not give any obvious grounds for making that selection. Nev-
ertheless, given that the CNN has not used any experimental images
in its training, and when considering all the imperfections of such

FIG. 8. Results for Ca+ crystals recorded
in Boulder, showing deduced ion num-
ber from inference vs Ca+ ion num-
ber derived by the method of itera-
tive simulated-image matching [see the
insets for comparison of example simu-
lated image (green) with observed image
(BW)]. (a) The results for ten images
recorded at 2 s intervals are shown for
each of ten crystals. The ion trap para-
meters are as follows: RF peak-to-peak
voltage 250 V; endcap voltage 3.25 V. A
line of slope 1 passing through the ori-
gin is shown. (b) Same as in (a) but with
seven crystals recorded at an endcap
voltage of 4.0 V.
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experimental data, we believe that this is an encouraging result. It
must also be recognized that there is an “error,” of up to 5%, in the
ion numbers determined by the iterative simulated-image matching
method, and these are assumed here to be the “correct” numbers
for calculating the errors. In practice, an exact match of simula-
tions and experimental images is rarely achievable, given that there
are inevitably many near-degenerate structures for the crystal at the
crystal sizes and temperatures used here (and the CCMD simulation
will land on one of these) and also the imperfections of experimental
images play a role in contributing to the error.

D. Analysis of pure Ca+ crystal images recorded
in Liverpool/Oxford

To test the transferability of our trained model across exper-
imental setups and trap parameters, the inference routine has also
been applied to deduce ion numbers for a set of 90 images that
were recorded (see Refs. 10 and 26 for further details) on an ion-
trap setup in the Heazlewood Group in Oxford or Liverpool during
the period 2019–2022, on 18 separate days. Compared to the Boul-
der experiments, the physical dimensions of the Liverpool/Oxford
ion trap are slightly different, the cooling laser power is lower,

FIG. 9. (a) Example experimental
images of Ca+ crystals from Liver-
pool/Oxford, recorded in the period
2019–2022 (unpublished). (b) Example
of the effect of the pre-manipulation
of experimental images from Liver-
pool/Oxford as described in the main
text. (c) Inference results for pre-
manipulated Ca+ crystal experimental
images recorded in Liverpool/Oxford,
showing deduced ion number from
inference vs Ca+ ion number derived by
iterative simulated-image matching. A
line of slope 1 passing through the origin
is shown.
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and a different camera is used with lower resolution. For each of
the images, the ion number had been previously deduced by the
method of iterative simulated-image matching. The trap parameters
used to record these images were a radio frequency peak-to-peak
voltage VRF = 200–210 V and endcap voltage Vend = 2.25–2.95 V,
and deduced ion numbers ranged from 150 to 720 ions. As illus-
trated by the sample of images in Fig. 9(a), the sharpness of the
images and signal-to-noise level are more variable than the images
recorded in Boulder, principally as a consequence of the older imag-
ing camera deployed, and there is a tendency for the outer elliptical
layer to appear less intense than we would expect from simulations.
In order to increase the similarity of the images to the simulated
images on which the CNN had been trained, we performed some
additional pre-processing steps compared to the Boulder-recorded
images. In particular, the intensity around the outer layer was arti-
ficially enhanced to improve uniformity of intensity using a square
function of the ellipse equation [ f(x, y) which is equal to 1 at the
ellipse boundary],

I(x, y) = I0(x, y) + A × I0(x, y) × ( f (x, y))2, (2)

where

f (x, y) = (x − h)2

a2 + (y − k)2

b2 , (3)

and the ellipse is centered at co-ordinates (h, k) and has major and
minor axes of length 2a and 2b. I0(x, y) is the unmanipulated inten-
sity, and A is a constant that had an identical magnitude for all
images. In addition, the intensity of images is normalized, such that
the “brightness density” = sum of non-zero pixels/number of non-
zero pixels is constant across the image set. The overall effect of these
subtle changes is illustrated for one crystal in Fig. 9(b).

Figure 9(c) shows a plot of the deduced Ca+ ion number from
the inference routine vs that deduced previously by the method of
iterative simulated-image matching. Given that the images are sig-
nificantly more variable in quality than for the Boulder set, this level
of accuracy and the matching of the general trend of the data to a
straight line of slope 1 passing through the origin are, in our view,
satisfying. The mean percentage error in ion-number prediction for
this dataset is 10.4%, which is comparable with that achieved for the
Boulder data.

E. Analysis of mixed Ca+/Kr+ crystal images recorded
in Liverpool/Oxford

Finally, we also tried applying the inference routine to a set
of experimental mixed-crystal images, analogous to those shown
in Fig. 6. Figure 10(a) shows four examples of the crystal images
that were used. These were obtained in a series of experiments con-
ducted in Oxford in 2020.26,50 The selected images were all mixed
crystals of Ca+/Kr+. We eliminated images from the sample that
contained greater than 500 calcium ions, those that contained more
than 20% rare-gas ions, and those that appeared visually to be highly
asymmetric in the vertical direction.

Figure 10(b) shows a plot of the Ca+ ion number deduced by
the CNN inference routine for mixed crystals of Ca+/Kr+ vs the
ion number deduced by iterative simulated-image matching. The
RMS-percentage deviation of Ca+ ion number is 12.5%, and the
mean percentage deviation is 9.3%. We are not able to deduce the
rare-gas ion numbers using the CNN because it has not been trained

FIG. 10. (a) Example experimental images of mixed-species Ca+/Kr+ crystals
from Liverpool/Oxford, recorded as described in Refs. 26 and 50 in the period
2019–2022. (b) Results for pre-manipulated Ca+/Kr+ crystal experimental images
recorded in Liverpool/Oxford, showing deduced ion number from inference vs Ca+

ion number derived by iterative simulated-image matching. The crystals have vary-
ing numbers of Kr+ ions that are less than 20% of the total ion number. A line of
slope 1 passing through the origin is shown.

to do that. In principle, it would be possible to retrain the CNN with
mixed crystals and to train it to deduce both the Ca+ ion number
and the dopant (e.g., rare-gas ion) number. However, we have not
performed that training to date.

Nevertheless, this limited exercise demonstrates once again
the versatility of the model that can be extended to make ion-
number predictions for experimentally imperfect mixed crystal
images (Ca+/Kr+) of the type it had not seen in training.

IV. CONCLUSION AND FUTURE PERSPECTIVE
Our overall objective at the outset of this project was to develop

(or retrain) a global CNN model that was capable of determining ion
numbers from CC images in real time during experimental record-
ings, in order to enhance the methodology of using CCs for cold
ion–molecule reaction dynamics and kinetics. We aimed to train the
neural network on a sufficiently diverse dataset, enabling it to be
used for images obtained in different laboratories without retrain-
ing. This would ensure adaptability to variations in quadrupole ion
trap geometries, applied fields, and, ultimately, mixed-species ion
crystals. The work reported in this paper demonstrates that this goal
is a challenging, but potentially achievable, objective. We have suc-
cessfully used a slightly modified CNN model (RESNET50) that has
been retrained on a very large set of simulated images, which were
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generated primarily using the trap parameters of the Liver-
pool/Oxford laboratory, and applied it with some success to exper-
imental results from both that laboratory and from Boulder. This
was achieved without inclusion of experimental data in the training
set. The typical errors of ∼10% are larger than estimated stan-
dard deviations from mass-spectrometry or the method of iterative
simulated-image matching (∼5%). However, in the case of the Boul-
der images, where we had multiple images of the same crystal
available, it was shown that using the average predicted ion number
for ten images led to an improvement in accuracy with a standard
deviation of around 6%. Moreover, there are some key potential
advantages in the CNN approach, including the non-destructive
nature of the ion-number determination (in contrast to the mass-
spectrometric approach) and the fast analysis of images—in seconds,
not days—in contrast to the iterative simulated-imaging matching.
Furthermore, we have shown that, even though we trained the CNN
only on simulated images of single-component crystals (pure Ca+

crystals), it could be applied in limited circumstances to identify
the Ca+ ion numbers for two-component crystals, especially those
where the second component was a species heavier than Ca+, for
both simulated and experimental images.

Although this is a very promising outcome, the challenges of
generating and working with a training set of more than half a mil-
lion images should not be underestimated. The training set took
many months to generate on the University of Birmingham’s high-
performance computing setup (BlueBEAR). Ideally, we would follow
up the present work by generating an extended training set on which
to retrain the model, with inclusion of simulated images of multi-
component crystals to add to the existing training set, to improve the
accuracy and versatility of identifying ion numbers in such crystals.
We would also generate enough experimental images, with pre-
determined ion numbers (via another method), to add these to the
training set. However, we would probably need to have at least 10%
of the total images in the training set being experimentally gener-
ated to have any impact on the training (i.e., 50 000–100 000 such
images). Such large sets of ion-number-labeled experimental images
do not exist currently.

However, even with current levels of accuracy, the approach
described here could be used immediately in a hybrid methodology
for identifying the ion numbers, in parallel with other measure-
ments. In the case of mass-spectrometric analysis, the CNN-based
evaluation of ion numbers would be extremely useful for routine
checking of the calibration of calcium-ion peak heights as a function
of crystal size. In the case of the iterative simulated-image matching,
the CNN inference ion number could provide an excellent start-
ing point for further refinement through image matching even for
mixed-species crystals. We also note that a typical sequence in chem-
ical kinetic measurements, as shown in Fig. 1(c), always starts with
a pure calcium crystal, and knowing the initial Ca+ number can
streamline the process of image simulation of the mixed crystals.
Furthermore, the very large database of 700 000 simulated Ca+ crys-
tals forms a valuable, diverse library of images, which could be used
to circumvent the need to simulate new images for image matching
within the parameter ranges covered in the database.

In other complementary work conducted in Basel in parallel
with this work, a more targeted CNN approach was adopted.43 A
smaller training set (7200 images) was created, consisting of simu-
lated CC images generated with a relatively narrow set of ion-trap

parameters and using the RESNET 18 and ALEXnet models. Ca+

ion numbers and secular crystal temperatures were deduced from
simulated and experimental images of pure Ca+ crystals. When
applied to a validation set of simulated Ca+ images with ion num-
ber 100–299 and fixed ion trap parameters, the RESNET 18 model
inferred the correct ion number for 93% of the tested images (clas-
sified in steps of one ion-number unit). In some circumstances, this
targeted approach may be advantageous where a fixed set of ion trap
parameters is used extensively and repeatably in a particular exper-
imental ion trap. However, the use of a targeted training regime
implies that if the ion-trap parameters are varied significantly out-
side that narrow range (as they frequently are in the Boulder setup
for example), then a completely new training set would most likely
need to be generated each time, and the model may not easily be
transferred across different experimental setups without retraining
and validation.

Finally, we observe that the model that was eventually retrained
and used in the current work—the RESNET50 model—was not
originally developed for image recognition of scientific images,
but rather for recognition/characterization of images of everyday
objects, animals, facial recognition, and complex-scene analysis.
The reason why it works also for these scientific images is that,
in both cases, the different layers of the CNN are used to char-
acterize features of the image at different length scales, before
compiling the information to achieve an overall recognition. This
multi-lengthscale characterization is needed in the process to rec-
ognize a CC image with a given ion number, as much as it is to
recognize an image of a human face. It seems likely that this could
be a versatile tool for a wide range of other imaging applications in
the physical sciences, as has already been demonstrated in the area
of medical imaging.51
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