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Mechanical resonators based on stressed silicon nitride have both exemplary optical and me-

chanical properties. Tensioning the silicon nitride enhances the mechanical properties of these

devices owing to the phenomenon of dissipation dilution. The effects of dissipation dilution can be

further enhanced through geometric engineering of the device, which has yielded devices that are

capable of quantum operation in ambient conditions. At the same time, interferometric detection

allows for a quantum-limited readout of the mechanical motion of such devices. The mechanical

motion of these devices can be selectively influenced by external perturbations by augmentation of

the mechanical resonator. In this work, we design a variety of sensors utilizing this combination

of low dissipation, precise motional readout, and a near-universal coupling to an external field of

interest. In this work, we study each of these elements, as well as their interplay, as they pertain to

tensioned silicon nitride mechanical resonators. We study the ramifications of functionalization for

force sensors, with a specific focus on developing probes for external magnetism, acceleration, and

gravity. Such sensors could enable high-resolution spin imaging or inertial navigation, and moti-

vate geometries and probes for fundamental physics in the context of larger-scale masses. My work

presents the development of specific design criteria pertaining to force sensors based on phononic

crystal membrane resonators. A deeper study of these resonators leads to a generalized formal-

ism to understand the effects of a general, spatially varying, thermal environment on the sensing

performance of such devices. This formalism is verified by direct measurement of an engineered

micromechanical resonator exposed to a spatially varying thermal bath. The work concludes by

considering the development of a micromechanical bolometer based on frequency-shift detection in

engineered tensioned silicon nitride resonators.
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to values of relatively high (low) values of Q. All values of Q are much greater than

unity. The top plot is the amplitude part of χ, while the bottom indicates the phase

response of the resonator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Functional form of Qint as a function of membrane thickness. Dashed line indicates

the bulk limit of Qvol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.5 Qgas for a device with h = 100 nm, ωm = 2π × 1MHz, and mgas = 30 atomic mass

units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



x
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function of ∆L/λ where we have assumed λ is 1064 nm. The low-frequency behavior

of the phase noise scales as (∆L)2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4 Michelson interferometer optical diagram. (Top) Pre-fiber optical apparatus. (Bot-
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gram was used as an optical switch in order to prevent damage to the device when

utilizing high laser powers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.5 Measured electronic noise floor a ATS9462 card. This measurement was performed
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2.6 Inferred imprecision noise floor due to the various sources as a function of input laser
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2.7 Optical spectra before the cavity (with the Nd:YAG noise eater both on and off)

and after the cavity for 750 µW of power. With the noise eater off, there is a strong

RIN peak around 750 kHz which is strongly suppressed by both the noise eater and

the cavity. The filter cavity reduces the noise to the shot noise level for 200 kHz and
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2.8 Optical power spectra measured by the balanced detector while sweeping the setpoint

of the Michelson lock servo for 20 mW of incident power into the interferometer.

(Top) broadband optical power noise spectrum. Spectra of higher RIN correspond

to poorly selected values of the setpoint. (Bottom) These four panels correspond to

the noise floor at 4 specific places in the spectrum. All panels have the same y-axis

scale as indicated on the leftmost panel. The colors of the plot correspond to the

frequency as indicated in the top plot of the figure. We see that at low frequency

the noise floor is heavily dependent on the value of the setpoint of the Michelson. . . 58

2.9 Noise floor for 20 mW of incident power incident on the Michelson, with and without

the filter cavity. Above 100 kHz, the imprecision noise floor of the system is around
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√
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In all plots, red lines correspond to the thermal motion contribution to the noise,
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near resonance. (c) and (d) show an equivalent message in the motional picture,

where it is apparent that only near resonance the noise floor is determined from the
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3.2 MRFM experimental schematic from the first detection of a single electron spin [3].

Figure reused with permission from Spring Nature. The semi-hemispherical shell

represents the resonant slice, indicating where the probe is most sensitive to spins

inside the sample. The spins are manipulated with an external RF coil while the
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3.6 (a) Geometry of a tensioned beam under mass loading. (b) Superimposed mode

shapes for increasing mass load. The sinusoidal shape is the unloaded mode shape,

while the triangular shape is the saturated mode shape. (c) Frequency of the mass
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3.7 (left) Microscope image of a trampoline resonator. The inset is a zoomed-in image
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3.8 Theoretical force power spectral density for an actively damped micromechanical

resonator. Here the measurement efficiency was assumed to be ideal, and the readout

was shotnoise limited. Furthermore, it was assumed that the thermal occupation of
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However, for larger damping rates the imprecision noise is fed back to the resonator

as a force that is larger than the thermal force, resulting in diminished performance. 84
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Introduction

Over the past ten years, quantum optomechanics as a field has greatly expanded its capa-

bilities and scope. We have witnessed large leaps in capabilities in regard to operating mechanical

oscillators in the quantum regime, fueled by improvements in both the design and readout of me-

chanical resonators. These experiments consist of a wide range of both mechanical resonators

and readout mechanisms [6–31]. First studied in 2008, it was found that tensioned silicon nitride

mechanical resonators were great candidates for optomechanical experiments, owing both to their

exemplary mechanical and optical properties [32, 33]. This opened the way to a new class of op-

tomechanical experiments, the membrane in the middle optical cavity, which has served as the

basis for many breakthrough experiments ever since [34–46]. The mechanical property enabling

these experiments is called dissipation-dilution, a concept first discovered in the 1990s in regard to

tensioned mirror suspensions [47]. The re-emergence of dissipation dilution in tensioned membrane

devices has led to a myriad of works seeking to reduce mechanical dissipation. These works carried

out prior to and during this work, typically exploit a modification of the membrane geometry in

order to modify the dissipation profile of target mechanical modes [1, 48–59]. These efforts have

resulted in a vast variety of mechanical resonators based on the same material platform. Much of

the focus of this work will to be explore how these emerging geometries can be utilized. Notably,

we will utilize and develop new strategies that seek to maximize the applicability of these tensioned

silicon nitride devices to a wide range of sensing applications.

Developing sensors from low-dissipation mechanical resonators is attractive given the relative

ease at which we can change the sensing target of a single mechanical resonator. Mechanical
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sensing, shortly put, is achieved by coupling an external perturbation to the state of motion of

a mechanical resonator. Practically, this is achieved by the addition of a functionalizing agent

to the resonator, be it depositing a magnet for magnetic sensing, or metalizing the surface to

couple to electric fields. Studying the effects of functionalization will be a central theme of this

work. Namely, we study the ramifications that functionalization has on the dissipative, spectral,

geometric, and thermal properties of micromechanical resonators and their normal modes. Another

key aspect of designing micromechanical sensors is achieving low-noise mechanical readout. This

work considers the implementation of a Michelson interferometer, an increasingly attractive choice

as modern micromechanical resonators become lower mass and lower dissipation.

In our discussion of micromechanical sensing, we seek to be broad in our formalism while

also focusing on a few sensing targets of interest. Inspired by the excellent work with cantilevers in

the field of magnetic resonance force microscopy (MRFM), we consider the advantages afforded by

pursuing similar experiments with tensioned silicon nitride membrane resonators. Historically for

our group, this study led us to consider the previously unstudied limit of high-mass load tensionsed

micromechanical resonators. This work delves into this study, identifying applications to magnetic,

gravitational, and acceleration sensing. This work culminates in a new research thrust for our group,

which seeks to characterize and leverage the thermal properties of our devices. First, we identify

the ramifications that arise from local heating of a complex silicon nitride membrane resonator. We

find that modern approaches to engineering low-dissipation modes introduce higher susceptibility

to local heating effects, identifying future design goals for micromechanical resonators. Using the

insight gained in this investigation, we identify a new sensing target for our micromechanical devices,

namely that of thermal radiation.

Chapter 1 presents a broad overview of understanding the mechanics of solids necessary to

understand tensioned mechanical sensor design. It will begin with an overview of the mechanics

of thin plates, namely how to relate the stress or strain of the plane to observable quantities such

as mechanical displacement. This discussion will continue with a discussion of tensioned plates,

presenting the well-known physics of unpatterned membranes and strings. We will summarize the
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conventions used throughout this work pertaining to modeling continuous resonator modes as a

simple harmonic oscillator. Finally, we will engage in an extensive overview of loss mechanisms in

silicon nitride mechanical resonators. This discussion will be a review of previous works from our

group, as well as updating our understanding of mechanical losses to recent conventions used in

the field of optomechanics.

Chapter 2 overviews the physics of the Michelson interferometer in the context of quantum-

limited measurement of the motion of a micromechanical resonator. We discuss both the fun-

damental and technical noise sources arising from such a system, as well as reveal experimental

design considerations pertaining to the use of Michelson versus cavity-based interferometry. We

also present a detailed implementation of a Michelson interferometer used throughout the rest of

this work.

Chapter 3 concerns the theory of micromechanical sensing. We identify the roles of impreci-

sion and thermal noise in the roles of force sensing as well as other measurement paradigms. We

continue with a discussion of micromechanical spin sensing, including a summary of an electron

spin detection experiment carried out in our lab: Fischer, R., McNally, D. P., Reetz, C.,

Assumpcao, G. G., Knief, T., Lin, Y., Regal, C. A. (2019). Spin detection with a mi-

cromechanical trampoline: towards magnetic resonance microscopy harnessing cavity

optomechanics. New Journal of Physics, 21(4), 043049. We also consider the ramifications

of mass loading on the sensing capabilities of tensioned micromechanical oscillators, culminating

in an experimental exploration of the effects of extreme mass loading: Shaniv, R., Keshava, S.

K., Reetz, C., Regal, C. A. (2023). Understanding the Quality Factor of Mass-Loaded

Tensioned Resonators. Physical Review Applied, 19(3), L031006. We also discuss the

sensing implications of the commonplace optomechanical technique of cold-damping.

Chapter 4 surveys an effort in this group to develop high-sensitivity force sensors. In partic-

ular, we will discuss the design of phononic crystal resonators arising from patterned silicon nitride

membranes. We develop a theoretical understanding of these devices, revealing design principles

capable of tuning the mechanical properties of these devices. These principles are tested via a sur-
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vey of a variety of mechanical devices at both room temperature and cryogenic conditions. These

devices were designed to be addressable with free-space optical probing while still having exem-

plary force-sensing capabilities. we conclude with a discussion of how to push the limits of these

designs for future devices. Many of these ideas are present in our work: Reetz, C., Fischer, R.,

Assumpcao, G. G., McNally, D. P., Burns, P. S., Sankey, J. C., Regal, C. A. (2019).

Analysis of membrane phononic crystals with wide band gaps and low-mass defects.

Physical Review Applied, 12(4), 044027.

Chapter 5 explores thermal effects on the performance of micromechanical devices for both

sensing and quantum optomechanical experiments. In particular, we investigate the effects of a

spatially varying thermal bath on the thermal noise of various resonator modes. This reveals a

stark contrast in the susceptibility of local heating between different modes of the same resonator,

a situation germane to the field of cavity optomechanics. Through these measurements, we also

develop a new method for determining material properties of silicon nitride in complex microme-

chanical structures. This experiment is outlined in our work: Shaniv, R., Reetz, C., Regal, C.

A. (2023). Direct Measurement of A Spatially Varying Thermal Bath Using Brownian

Motion. Physical Review Research, 5(4), 043121.

Chapter 6 introduces yet another sensing paradigm for micromechanical devices, namely

the development of micromechanical bolometers based on tensioned low-dissipation silicon nitride

devices. The operating principle of these sensors is the transduction of absorbed radiation to a

mechanical frequency shift through the mechanism of material expansion. This requires the devel-

opment of experimental protocols that track the frequency of narrow-linewidth micromechanical

resonators. We discuss a few such schemes. Additionally, we will introduce a new type of mi-

cromechanical resonator, a perimeter mode device, which we modify to tailor to the application

of micromechanical bolometry. This chapter culminates in a discussion of the interplay between

device geometry and bolometric sensitivity.



Chapter 1

Overview of tensioned micromechanical resonators

In this chapter, we will discuss the general theory of elasticity as it pertains to the microme-

chanical resonators studied in this work. Namely, we will focus on the physics of elastic deformation

of tensioned thin film structures, with a focus on the particular physics of thin film tensioned res-

onators, often constructed from silicon nitride. This discussion will outline the interplay between

device geometry and the normal mode structure of these devices, which is a central theme of this

work. We then will discuss how modal geometry affects modal parameters, namely mode frequency,

mass, and dissipation. Following this general study of elasticity, we will also discuss dissipation

dilution and its ramifications for the types of mechanical resonators studied throughout this work.

1.1 Elasticity of thin plates

The study of the elasticity of solids concerns the physics of how solid objects deform. Such a

study is paramount to understanding micromechanical resonators. The theory of elasticity applies

to a wide range of structures, many of which are outside the scope of this work. For this reason,

we will restrict our discussion to the elastic equations concerning the deformation of thin plates, or

thin films, which will describe most of the elastic physics in this work.

The kinematics of a deforming solid can be described via the strain tensor which describes

the changes in the displacement field ui of the object in space. The strain tensor ϵi,j can be defined

as follows:

ϵi,j =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

+
∂uk
∂xi

∂uk
∂xj

)
(1.1)
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where xi denotes the Cartesian coordinate in the i direction. Here, and throughout this work, the

repeated indices k denote an implied summation over k from k = 1 to k = 3. We are concerned

with the limit of a thin plate undergoing relatively small oscillations. In this limit, the description

of the strain tensor can be greatly simplified under the Kirchhoff hypothesis, which posits straight

lines through the mid-surface prior to deformation remain straight upon deformation, and that the

plate thickness does not change [60]. Under these assumptions, we write the deformation field in a

simplified form:

u1 = v1 − z
∂w

∂x
(1.2)

u2 = v2 − z
∂w

∂y
(1.3)

u3 = w (1.4)

where vi describes a pure in-plane displacement in the i direction. Here we see that the out-of-plane

displacement w also adds to the in-plane displacement.

Evaluating the strain tensor under these kinematic assumptions still results in a rather com-

plicated expression for the strain as a function of these displacement fields, and thus will not

be shown here. However, the resulting expansion contains many higher-order terms which can

be neglected under the assumption that the deflections of the plate are small compared to the

film thickness. Neglecting these higher order terms, a simplified expression referred to as the von

Kármán strains can be calculated:

ϵ11 =
∂v1
∂x

+
1

2

(
∂w

∂x

)2

− z
∂2w

∂x2

ϵ12 =
1

2

(
∂v1
∂y

+
∂v2
∂x

)
+

1

2

∂w

∂x

∂w

∂y
− z

∂2w

∂x∂y

ϵ22 =
∂v2
∂y

+
1

2

(
∂w

∂y

)2

− z
∂2w

∂y2
.

(1.5)

Note that since the plate thickness cannot change, ϵ3i = ϵi3 = 0 for all values of i. All further

entries of the stress tensor can be calculated via the symmetry of the stress tensor. In this work, we
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will typically analyze mechanical modes that are primarily out-of-plane, and thus we will assume

that v1 = v2 = 0 for the remainder of this discussion. With this assumption, we arrive at the form

of the elastic strain that will hold for the majority of the systems studied in this work:

ϵ11 =
1

2

(
∂w

∂x

)2

− z
∂2w

∂x2

ϵ12 =
1

2

∂w

∂x

∂w

∂y
− z

∂2w

∂x∂y

ϵ22 =
1

2

(
∂w

∂y

)2

︸ ︷︷ ︸
elongation

− z
∂2w

∂y2︸ ︷︷ ︸
bending

.

(1.6)

Here we have described the two terms that appear in each non-trivial element of the strain tensor as

either elongation or bending. The word elongation is meant to describe the effects of this element

of the strain tensor when applied to a beam system, where this strain describes the lengthening

or shortening of the beam. However, this generalizes to the case of a plate as well. Bending

describes terms that contain second derivatives of the out-of-plane displacement, corresponding to

the geometric curvature of the plate.

Under these assumptions of the kinematics of the thin plate, one can then derive elastic

equations of motion to describe the dynamics of the plate. In this work, we will refer to the elastic

equation derived in [61], where an elastic equation of motion was calculated by evaluating Newton’s

second law at each infinitesimal volume element. The resulting equation for a thin plate can be

described as follows:

Dx,x
∂4w

∂x4
+ 2Dx,y

∂4w

∂x2∂y2
+ Dy,y

∂4w

∂y4
+ hρ

∂2w

∂t2
= 0. (1.7)

The equation describes the motion of a thin plate situated in the xy plane. w quantifies the out-

of-plane displacement — displacement in the z direction — as a function of location on the plate.

Di,j are the flexural rigidities calculated to be:
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Di,j =


Eih

3

12(1−νi,jνj,i)
, if i = j

Eih
3

12(1−νi,jνj,i)
νj,i + Gh3

6 , if i ̸= j

 (1.8)

where Ei is the Young’s modulus of the material in direction i, h is the plate thickness, νi is

the Poisson ratio associated with the deformation in the i direction arising from a stress in the

j direction, and G is the shear modulus of the material. Since we are focusing our discussion on

amorphous silicon nitride membranes, we can assume that the material is isotropic. This implies

that Ei = E and νi,j = ν. In this limit, the shear modulus can be related to the Young’s modulus

as E = 2G(1 + ν), which leads to a much-simplified form of the elastic deformation equation:

D

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4

)
+ hρ

∂2w

∂t2
= 0 (1.9)

where D = Eh3/(12(1 − ν2)). Now that we have the elastic deformation equation for a thin plate,

we can also add a term that corresponds to an isotropic tensile stress σ:

D

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4

)
− σh

(
∂2w

∂x2
+

∂2w

∂y2

)
+ hρ

∂2w

∂t2
= 0. (1.10)

Above is the full elastic deformation equation for a tensioned membrane resonator. For a membrane,

material properties such as σ and ρ can be considered to be uniform. However, this work often

studies patterned resonators, where holes are etched into a membrane in order to engineer the

geometry. This modifies the above equation. Firstly, we identify holes in the material with a

spatially dependent density. In this case, ρ(x, y) can be thought of as a function that is 0 in the

holes and ρSiN where there is remaining silicon nitride. Secondly, σ(x, y) will also have spatial

dependence due to this patterning. This is attributed to the fact the stationary configuration of

the membrane will need to change upon patterning, which consequentially creates a modulated

stress distribution. A more detailed description of the effects of this redistribution will be discussed

later in this work. However for the time being consider a tensioned string that changes width at

some point along its length. Newton’s second law states that the tension in the string is constant

for the stationary state of the string. The tension is related to the stress by T = σA where A is



9

the cross-sectional area of the string. Changing the width of the string changes A, but T must

remain constant. This forces a change in σ. This intuition for the string holds in more complex 2D

structures as well.

Despite these added complications that arise from patterned structures, an outline of how to

solve Eq. 1.10 can still be described. As with many partial differential equations, it is often useful

to pursue the strategy of separation of variables. Furthermore, we are looking for normal-mode

solutions to the problem, and thus expect the time part of the solution to be harmonic. Therefore,

we assume that w(x, t) = w(x)e−iΩt. For the remainder of this work, we will refer to w as w(x), and

time dependence will be written explicitly when needed. Under this form of the solution, Eq. 1.10

becomes:

D

hρ

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4

)
− 1

c2

(
∂2w

∂x2
+

∂2w

∂y2

)
− Ω2w︸ ︷︷ ︸

wave equation

= 0. (1.11)

Here we have introduced the stress-defined speed of sound c =
√

σ/ρ and divided the whole

equation by h. We note that in general, owing to the spatial dependence of σ and ρ, the speed

of sound also has spatial dependence for structures studied in this work. As indicated above, the

last three terms of the equation correspond to the classical wave equation in 2 dimensions. In the

limit of high tension and short wavelength, these two terms dominate the mode shape, creating

roughly sinusoidal mode shapes for tensioned membranes and strings. However, it is well known

that the first three terms have a large role to play when considering the boundary conditions of the

problem. For micromechanical resonators, the device is secured to a substrate along its edges. For

a membrane device, this will be a square along the perimeter, while for a string this will be two

lines at either end. In either case, we can refer to these regions as the supports of the device and

will state the boundary conditions as:

w(x, y)|supports = 0

(n̂ · ∇)w|supports = 0

(1.12)
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Figure 1.1: Theoretical mode shape for a tensioned string resonator. (Left) mode shape over the
entire device extent. (Right) mode shape near the clamping point. The dotted line corresponds to
the pure wave equation solution.

where n̂ is a unit vector normal to the interface between the device and the supports. There

boundary conditions are referred to as clamped boundary conditions. Enforcing such a boundary

condition has ramifications on the solutions to Eq. 1.11. Notably, if one were to solve a wave

equation with these boundary conditions — neglecting the first three terms — the only viable

solution would be the trivial one of w(x, y) = 0. Therefore, the non wave-equation terms define the

deformation close to the supports, even for a highly tensioned membrane. A full solution to this

problem can be seen in [62,63], which display such results:

ϕ(x) =

 ϕl(x), if x < L/2

(−1)n+1ϕl(L− x), x > L/2

 (1.13)

where

ϕl(x) = sin(βσx) − βσ
βE

(cos(βσx) − e−βEx), n (1.14)

L is the length of the string. βσ = nπ/L and βE =
√

12σ/h2E are the wavenumbers associated

with vibrations dictated by either tensioned or bulk properties of the material.

It is illustrative to examine the relative scales of these two wavenumbers for the case of a
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string with relatively generic parameters of L = 500 µm, σ = 1 GPa and h = 100 nm. In this

limit, β−1
σ ∼ 200 µm while β−1

E = 400 nm. This means that the exponential correction to the wave

equation solution is small and that the length scale of the exponent is a small fraction of the device

size. Although this analysis was carried out for the 1D case of a string, the same principles hold for

a 2D membrane resonator. In general, this is a generic feature of mechanical modes on structures

with these boundary conditions. Mechanical modes that extend to the supports will necessarily

need to have regions where the mode shape mirrors closely that of the string discussed above. As

will be discussed later, the precise mode shape ties directly to the dissipative properties of the

mode, and therefore an understanding of the effects of the clamped boundary condition is useful

intuition for future discussions.

1.2 Normal mode equivalence to a simple harmonic oscillator

It can be intuitively understood that the normal modes of a micromechanical resonator can

be mapped to that of a simple harmonic oscillator.

M−1Ku = ω2u. (1.15)

Solving for the eigenvalues and eigenmodes of the matrix M−1K results in the normal mode fre-

quencies and normal modes of the system of particles. Each one of these normal modes can be

thought of as a simple harmonic oscillator, each with its own effective resonator parameters, namely

the effective mass of the mode meff,n and the spring constant of the mode keff,n. These combine

to determine the frequency of oscillation given by ωn =
√
keff,n/meff,n. Intuitively, we expect that

the meff,n should correspond roughly to the amount of mass that moves throughout the extent of

the mode, while the keff,n should correspond to roughly how stressed the resonator becomes when

it undergoes a harmonic cycle of motion. However, it is apparent that the geometry of the mode

also plays a deep role in how the effective parameters should be determined.

Here, we will present a method for determining these parameters that are outlined in [63].
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This derivation assumes a convention for the mode shape in question relating to its normalization.

Throughout this work, unless specified otherwise, we will describe the mode shape w(x, y, t) as

q(t)ϕ(x, y), where ϕ(x, y) has the property that it has a value of 1 at points of maximal out of plane

displacement. We note here that this is not a unique way to normalize a mechanical mode and care

must be taken to ascertain the normalization convention of the calculation at hand. Throughout

this work, we will adopt the convention presented above.

Under this assumption, we can now derive the effective resonator parameters by multiplying

Eq. 1.10 by ϕn(x, y) and integrate the result over the planar extent of the device:

∫
device

∑
m

ϕn

(
Dqm(t)∇4ϕm − σhqm(t)∇2ϕm

)
dxdy+

∫
device

hρ
∑
m

ϕnq̈m(t)ϕmdxdy =∫
device

p(t)(x, y, t)ϕndxdy.

(1.16)

Here we have introduced the biharmonic operator ∇4 = ∇2∇2, and we have also included a pressure

term in order to capture the more general case that includes an external force acting on the mode. In

the above expression, the general solution for w(x, y, t) has been replaced with a sum of the normal

modes of the system. Under typical conditions, we assumed that qm(t) is spectrally confined to

a small bandwidth around each ωm. This is true in the limit that each normal mode is relatively

low dissipation. This expression can be further simplified by the fact that the eigenmode solutions

should be orthogonal:

∫
device

hρ(x, y)ϕnϕmdxdy = ξn,mδn,m (1.17)

where δn,m is the Kronecker delta symbol and ξn,m is the result of the integral when n = m. We

emphasize here the presence of the ρ(x, y) inside the integral. This is a necessary condition on the

inner product such that modes will be orthogonal for nonuniform mass systems. Note that this

inner product is also only correct in systems with small rotations of the object, such as those that

are studied in this work.

With this in mind, we can rewrite Eq. 1.16 as follows:
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qn(t)

∫
device

ϕn

(
D∇4ϕn − σh∇2ϕn

)
dxdy + q̈n(t)

∫
device

hρϕ2
ndxdy =∫

device
p(x, y, t)ϕndxdy −

∫
device

∑
m̸=n

qm(t)ϕn

(
D∇4ϕm − σh∇2ϕm

)
dxdy.

(1.18)

Here we have applied the orthogonality condition where possible and arranged all terms that contain

the degree of freedom qn(t) on the first line. The second line involves all other degrees of freedom as

well as the applied force. It can be shown that the integral containing all other degrees of freedom

vanishes for relatively simple geometries like uniform membranes and beams [63], but it is not

obvious that this expression vanishes in generality for more complex structures. For the sake of

this work, we will treat this term as a perturbative term. We justify this by inspecting the spectral

content of this term, which will most likely be centered around a narrow band of frequencies defined

by each ωm where m ̸= n. This would be true in the limit of low-dissipation mechanical modes.

Therefore, this perturbation term can be seen as a crosstalk term from the other degrees of freedom,

which apply off-resonant forces to the mode in question. For the sake of understanding the intrinsic

properties of a mode, we want to consider the bare effects of the mode, regardless of the excitation

of the other degrees of freedom. Therefore, we will neglect this term for determining keff,n and

meff,n. To determine these terms, we match the expression in Eq. 1.18 with the canonical simple

harmonic oscillator equation of motion:

m̃eff,n =

∫
device

hρϕ2
ndxdy (1.19)

k̃eff,n =

∫
device

ϕn

(
D∇4ϕn − σh∇2ϕn

)
dxdy (1.20)

F̃eff,n =

∫
device

p(x, y, t)ϕndxdy. (1.21)

Here we also identify an effective force F̃eff,n which depends on the spatial profile of the force

applied and its overlap with the mechanical mode. We point out in Eq. 1.21 that the forms

of these three expressions all depend on the normalization convention on ϕn, but will all scale

equally as a function of the normalization. To emphasize this point, we have denoted each quantity
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with a tilde to denote that the actual values of each of these computed quantities should only

be considered in proportion to one another. However, regardless of the normalization used, we

can accurately predict the dynamics of the system in regard to calibrated inputs and outputs.

It should be noted that there are well-established conventions of normalization in different fields

that study the dynamics of mechanical systems. For instance, here we have explicitly stated the

convention that the maximum values of ϕn = 1. In this limit, the above parameters coincide with

relatively physically intuitive values for simple structures like beams and membranes. For instance,

low-order membrane modes will have m̃eff = mmembrane/4 and low-order beam modes will have

m̃eff = mbeam/2, where mmembrane and mbeam are the physical masses of the membrane and beam

in question. This aligns well with physical intuition where for these modes a decent fraction of

the physical mass participates in the mode. Another commonly used convention that is present in

the study of structural mechanics is to enforce that ξn,m present in Eq. 1.17 be equal to one unit

mass munit. Such normalization is referred to as mass matrix normalization, referring to how this

normalization convention is used within finite element analysis software or any discretization of the

continuous system being discussed.

To complete this discussion, we will now introduce yet another normalization convention for

the mode shape ϕn that is commonly used in the field of cavity optomechanics. This convention

can be motivated by considering the probing of the Brownian motion of an extended resonator

mode. The equipartition theorem states that the potential and kinetic energy of a simple harmonic

oscillator each have an average amount of energy equal to kBT/2 where kB is the Boltzmann

constant and T is the temperature of the thermal bath of the resonator. We can relate that to the

case of an extended mode by integrating the motion of each mass element throughout the resonator

extent. Assuming the harmonic motion of the resonator, we arrive at the following equality:

1

2
kBT =

1

2
mnω

2q2th,n =
1

2

∫
device

ρω2
nq

2
nϕ

2
ndV (1.22)

where qn is the motional degree of freedom of the resonator, mn is the mass of the resonator, and
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ωn is the resonant frequency. We now enforce the condition that qn = qth,n. What this means

physically is that if the resonator were to be probed at the maximal point of motion, we want to

observe the Brownian motion that corresponds to a resonator with mass mn and frequency ωn.

Under this constraint, we reveal the following equality:

mn =

∫
device

ρϕ2
n ≡ meff,opt,n (1.23)

where here we have defined the quantity meff,opt,n which corresponds to the observed inertia of the

resonator when probed at the point of maximal mechanical motion.

Figure 1.2: Top: Normalized mode shape ϕx for 1D string resonator. We have indicated with
the dotted line the quantity xp/L, which is a probe point at which the oscillator motion will be
evaluated. Bottom: Ratio of the effective and physical masses of the resonator as a function of
probe location. We see that while probing at the center, the effective mass is relatively low, and is
on the scale of the physical resonator mass. Probing near the edges where the motion is low results
in a diverging effective mass.

In general, we do not always probe at this optimal point. To correct for the probe location, we

simply normalize ϕn by the amplitude of the point at which we probe. When probing at this non-
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optimal point, the motion of the resonator is less but its frequency doesn’t change. As observers,

we argue that we should interpret this decrease in motion as an increase in the effective mass of

the resonator under the justification that we cannot ascribe this change in motion to a decrease in

bath temperature or a change in mechanical frequency. Therefore, we can define this new effective

mass — as a function of the probe point — as follows:

meff,n(x⃗p) =

∫
device

ρ

(
ϕn(x⃗)

ϕn(x⃗p)

)2

dV. (1.24)

One can see the ramifications of the effective mass formula in Fig. 1.2. This convention for the

calculation of the effective mass, along with the related normalization of the mode shape function,

proves to be useful for applications where the thermal motion of the mechanical resonator is a

quantity of interest. For instance, this convention readily applies to micromechanical thermometers

which seek to relate an observed motional quantity to a physical temperature. This formulation is

also important when considering the force-sensing performance of a resonator, where the Brownian

motion is often the limiting noise in the measurement scheme. Additionally, this normalization

scheme can be applied to Eq. 1.21 such that a signal force can be calibrated with respect to the

observed motional response.

1.3 Mechanical response

We have now established the equivalence between a normal mode of a micromechanical res-

onator and a simple harmonic oscillator under the influence of an arbitrary spatial force. We

complete this understanding by deriving the spectral character of the mechanical response to this

force. For this discussion, we will introduce a viscous damping term to include the effects of dissi-

pation in the response. With this damping term in mind, we can write the equation of motion as

follows:

meff ẍ(t) + γmeff ẋ(t) + keffx(t) = Feff(t), (1.25)
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where −γmeff ẋ(t) is the viscous damping force on the resonator. A general solution can be computed

from classical linear response theory, which focuses heavily on the mechanical susceptibility χm. We

can calculate χm(ω) by solving Eq. 1.25 for the case of a harmonic drive given as Feff(ω)eiωt. Under

these conditions, we assume that our mechanical response is also harmonic at the same frequency:

x(ω)eiωt. Here both Feff(ω) and x(ω) are complex valued phasors. They are related as follows:

(−ω2meff + iωγmeff + keff)x(ω) = Feff(ω), (1.26)

or more concisely:

x(ω) = χ(ω)Feff(ω) (1.27)

χ(ω) =
1

meff(−ω2 + iωγ + ω2
0)
. (1.28)

This is the most commonly presented form of χ for a mechanical resonator. To further parameterize

the problem, we will introduce the concept of the quality factor Q:

Q =
ω0

γ
= 2π

W

∆W
(1.29)

Here, we have written Q in two ways. First in terms of the frequency and linewidth of the oscilla-

tor, but also in terms of the stored energy W and the dissipated energy ∆W per oscillation cycle.

Therefore, Q parameterizes the energy decay of a harmonic oscillator. Heuristically, it corresponds

to the number of coherent oscillations a mechanical system undergoes prior to losing an appreciable

amount of the initial energy in the system. The effects of higher values of Q — lower dissipation

rates — can be seen in Fig. 1.3 where a drive near mechanical resonance generates larger mechanical

responses. This is because the resonator holds energy for a longer time — around Q oscillations

— and therefore reaches higher mechanical amplitudes. Far from mechanical resonance, this con-

dition no longer holds, since the off-resonant driving begins to negatively interfere with the natural

frequency response of the resonator. The phase response also changes as a function of Q. This can
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be understood by inspecting the form of χ far below and far above mechanical resonance. Below

resonance, the resonator responds with a DC response, which is just Hooke’s law x = Feff/keff , indi-

cating that there is no phase delay between the drive and response. Far above resonance, χ ∼ ω−2

which corresponds to a phase shift of −π. The transition between these two extremes happens near

mechanical resonance, which is defined as a bandwidth equal to γ = ω0/Q. Therefore, the phase

response changes more steeply for higher Q resonators.

Figure 1.3: Functional form of χ(ω) while sweeping over values of Q. Blue (red) traces correspond
to values of relatively high (low) values of Q. All values of Q are much greater than unity. The top
plot is the amplitude part of χ, while the bottom indicates the phase response of the resonator.

Here we will comment on our choice of how dissipation was modeled in this section, namely

that it appears as a viscous damping force −γmeff ẋ. This in fact cannot be true in general. For

instance, structural damping (γ ∼ ω−1) is expected to occur in arbitrary mechanical systems

and has been observed in high-stress silicon nitride micromechanical resonators [64, 65]. Such

modifications to χ qualitatively affect how the system responds to thermal noise (as discussed in
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the next section). However, since the experiments performed in this work typically operate with

high mechanical Q, and near resonance, a purely viscous damping model is sufficient for the scope

of this work.

1.4 Fluctuation dissipation theorem and the thermal force

As discussed previously, we expect that micromechanical resonators will exhibit Brownian

motion when exposed to a thermal bath of finite temperature. However, we did not discuss the

manner in which a mechanical resonator exchanges energy with the thermal environment. The

fluctuation-dissipation theorem reveals that thermal fluctuations in a physical quantity are directly

proportional to the dissipation of said quantity. For the case of the mechanical resonator system

in this discussion, this is quantified by the following relation [66]:

Sxx(ω) = −4kBT

ω
Imχ(ω), (1.30)

where Sxx is the single-sided power spectral density of the motional degree of freedom x, kB is

the Boltzmann constant, and T is the bath temperature. We note that in general, the fluctuation-

dissipation theorem holds for any system that obeys a linear response between an observable and an

external drive described by a general χ. We note here that the form of the fluctuation-dissipation

theorem present in Eq. 1.30 is valid in a classical limit. In general, a full quantum mechanical treat-

ment of the single-sided power spectral density must include vacuum fluctuations at low tempera-

tures. The thermal energy kBT in Eq. 1.30 is the classical limit of the average energy of a bosonic

mode which can be calculated by simply replacing 2kBT/ω → 2ℏ/(1− exp(−ℏω/kBT )) [67,68]. In

this work, ℏω ≪ kBT and therefore the classical formula will be sufficient. In this particular case,

this reveals that:

Sxx =
4kBT

meff

(
(ω2

0 − ω2)2 + γ2ω2

)−1

= 4kBTmeffγ|χ(ω)|2. (1.31)
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Eq. 1.31 describes the spectral character of the Brownian motion. We note that the final equal-

ity reveals that the thermal fluctuations match the mechanical response of the resonator for the

specific use of χ that assumes viscous damping. Another interpretation of this equation is that

the fluctuations of the mechanical resonator arise from a stochastic force that is uncorrelated in

time. Such a force should have a white power spectral density. The relationship between force and

motion indicated in Eq. 1.28 can be extended to relate their respective power spectral densities.

This allows us to identify the thermal force power spectral density as:

SFF = 4kBTγmeff . (1.32)

The presence of a white thermal force places limits on the resonator performance in many use

cases, including ground state cooling, force sensing, frequency stability, and the use of a mechanical

resonator has a quantum memory [49,67,69–72]. To our knowledge, there is no available strategy to

remove the effects of this type of noise, owing to its white character across the measurable bandwidth

of the resonator. Therefore, it is paramount to reduce the magnitude of SFF when possible. This

is most efficiently achieved by reducing γ or the overall dissipation, and by reducing T . The

latter is typically achieved by placing the micromechanical resonator in a cryogenic environment.

Throughout this work, we will revisit the effects of thermal noise for each discussed application as

necessary.

1.5 Dissipation dilution

Dissipation dilution is a phenomenon first identified in the 1990s in the context of suspended

pendulum systems [47]. It can be understood conceptually as arising from an increase in the stored

tensile energy in mechanical systems, typically arising from tensioning of the mechanical structure.

This added tension, or added strain, gives rise to a “lossless potential” into which energy can be

stored. This increase in stored energy is achieved while maintaining the same amount of dissipated

energy per cycle, meaning that there is no additional mechanical loss introduced by straining
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the underlying mechanical structure. Inspecting the energetic interpretation of Eq. 1.29 reveals

that dissipation dilution increases the quality factor of mechanical resonators, even if the decay

rate or linewidth of the mechanical resonance frequency stays the same. When benchmarking the

performance of mechanical oscillators in quantum optomechanics experiments, the Q - f product

is a useful figure of merit with which to compare oscillators of different frequencies. We readily

see that systems that exhibit dissipation dilution have enhanced Q × f owing to the increase

in mechanical frequency and mechanical Q, meaning that mechanical oscillators benefiting from

dissipation dilution also benefit future quantum optomechanical experiments.

In the context of this work, dissipation dilution can also be applied to sensing with mechanical

resonators. For thermal noise-limited mechanical modes, Eq. 1.32 depends only on γ, and therefore

should not benefit from dissipation dilution. This is true to the first order. However, our cursory

analysis of dissipation dilution fails to identify key ramifications of tensioning of micromechanical

devices. First of all, introducing tension modifies the mode structure given the different contri-

butions from the wave-equation terms and bulk terms in Eq. 1.11. Therefore, the mode shapes

for a tensioned structure and a bulk structure will be fundamentally different. The influence of

this change in geometry has been studied by others in our field, and the associated formalism will

be presented in the following sections of this work [49, 51, 73, 74]. Secondly, dissipation dilution

achieved via tension gives rise to relatively macroscopic mechanical resonators (on the order of

1 mm) which exhibit relatively high mechanical frequencies on the order of 1 MHz. Working at

these higher frequencies escapes ubiquitous 1/f noise arising from a variety of technical sources

including the mechanical readout and the sensing environment. When appropriate, we will discuss

the benefits of working at higher mechanical frequencies throughout this work.

1.6 Dissipation channels in silicon nitride micromechanical resonators

Up to this point, we have analyzed the normal mode structures of micromechanical resonators

in the absence of dissipation. We have introduced a viscous damping term in the equivalent res-

onator equation of motion, but have neglected to comment on its magnitude or physical origin in
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micromechanical membrane resonators. In reality, there are a number of dissipation channels which

each contribute to the total damping of a normal mode. This can be quantified as the following

two equivalent relations:

γ =
∑
i

γi (1.33)

1

Q
=

∑
i

1

Qi
(1.34)

where γi and Qi are the damping rates and quality factors of each individual channel. To date,

there have been many works studying the intricacies of these loss pathways among many different

classes of mechanical resonators. In general, the leading source of loss in a mechanical resonator

depends on a variety of factors, including geometry, temperature, gaseous environment, material,

and supports to the external environment. In this section, we will present a brief overview of

relevant loss pathways for stressed silicon nitride membranes.

1.6.1 Internal losses in micromechanical resonators

In this section, we will provide an overview of the internal losses present in stressed silicon

nitride micromechanical resonators. By internal loss, we are referring to loss directly associated

with the motion of the micromechanical resonator, inside the volumetric extent of the resonator. To

begin this discussion, it is illustrative to recall the definition of the quality factor Q in terms of the

energetic properties of the resonator, as presented in Eq. 1.29. When considering the dissipation

from material losses, we already can calculate W as either the average kinetic energy or average

stored tensile energy of the resonator from knowledge of the mode shape, or the previously defined

effective resonator parameters. One route to calculate ∆W is provided by the Zener model for

anelasticity. This model modifies Hooke’s law allowing for a phase lag between the stress and

strain fields of a material. This mimics a viscous damping force of a simple harmonic oscillator

undergoing harmonic motion x(t) = x0e
iωmt, where the role of the “stress” is the sum of the

damping force and the restoring force and the “strain” is the resonator motion:
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Fint = −keffx(t) + meffγẋ(t) = (−keff + i
keff
Q

)x0. (1.35)

Here we see that when considering the spectral character of motion near mechanical resonance,

we can capture the effects of dissipation by introducing an imaginary part to the spring constant

of the resonator. Clearly, we see that the imaginary part is much reduced from the real part by

a factor of 1/Q. Another way to arrive at this conclusion would be to solve the homogeneous

equations of motion for the resonator. In the presence of damping, the eigenvalues will in general

be complex-valued, reflecting this exact phenomenon we have just presented.

In the Zener model, this phase lag is captured by first identifying the most general stress-

strain relationship [75]:

σ + τσσ̇ = E(ϵ + τϵϵ̇) (1.36)

where τσ (τϵ) is a time constant associated with the relaxation of the stress (strain) with respect

to a changing strain (stress). In this section, it is understood that σ and ϵ are tensors. We will not

explicitly write their indices unless needed. To proceed, we can again assume harmonicity of the

motion, which results in the following stress-strain relation:

σ = E

(
1 + iωτϵ
1 + iωτσ

)
ϵ (1.37)

The above expression can thus be interpreted as the material having a complex part to its Young’s

modulus:

σ = Eϵ → σ = (E1(ω) + iE2(ω))ϵ (1.38)

where E1(ω) and E2(ω) are the real and imaginary parts of the Young’s modulus of the material,

where we have included an explicit frequency dependence that arises from the exact values of τσ

and τϵ. We also introduce the common notation of Qint, often referred to as the intrinsic quality

factor of the material:
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Qint =
E1

E2
. (1.39)

In some situations, it is often conceptually more convenient to use Qint as a metric for dissipative

properties of a material.

With this expression in hand, we can calculate a general expression for ∆W in this model [49,

73]:

∆W =

∫
device

[∮
σ(t)ϵ̇(t)dt

]
dV. (1.40)

where
∮

[·]dt indicates integration over a single period of oscillation.

Up until this point, we have neglected the effects of a nonzero Poisson ratio on the effects of

dissipation. To include the effects of the Poisson ratio, we must append Hooke’s law [73]:

σij =
E

1 + ν
(ϵij +

ν

1 − 2ν
δij

∑
l

ϵll) (1.41)

A generalized expression for ∆W can thus be calculated by inserting Eq. 1.41 into Eq. 1.40:

∆W =
∑
i

∑
j

∫
device

[∮
E1 + iE2

1 + ν
(ϵij ϵ̇ij +

ν

1 − 2ν
δij ϵ̇ij

∑
l

ϵll)dt

]
dV. (1.42)

Following [73], here we bring attention to the dynamic and static parts of the strain: ϵij(t) =

ϵ̄ij + ∆ϵij . Here we argue that for calculating the energy lost per cycle, we only need to consider

the dynamic part of the strain. For harmonic motion, ϵ̇ij(t) = −iω∆ϵij(t). Under this condition,∮
[·]dt is zero for all terms involving E1 and is nonzero for terms involving E2. Additionally, all

terms involving the static strain also integrate to zero. Therefore:

∆W = π
∑
i

∑
j

∫
device

E2

1 + ν
(ϵ̃ij ϵ̃ij +

ν

1 − 2ν
δij ϵ̃ij

∑
l

ϵ̃ll)dV, (1.43)

where ϵ̃ is the harmonic amplitude deviation of the strain field.

Eq. 1.43 is a quite generalized expression for the energy lost per cycle for a micromechanical

resonator, written in terms of the harmonic amplitude of the strain. This formulation is valid
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for any isotropic material, and even for multi-material micromechanical resonators. However, to

focus our work to that of stressed membrane resonators, we can write insert Eq. 1.6 into Eq. 1.43.

In doing so, we will neglect terms associated with the elongation of the structure, as labeled in

Eq, 1.6. This is valid for small out-of-plane motional amplitudes. However, damping associated

with elongation losses can manifest as amplitude-dependent damping rates [76]. In addition, we will

assume that there is no out-of-plane stress of the membrane, as this would violate the symmetry

of the problem. Doing so enforces that σ33 = 0. Plugging this into Eq. 1.41 implies that there is a

connection between the in-plane strains and ϵ33, namely that (1−ν)ϵ33 = −ν(ϵ11+ϵ22). Performing

this substitution yields:

∆W =

∫
device

πz2E2

1 − ν2

(
(
∂2w

∂x2
+

∂2w

∂y2
)2︸ ︷︷ ︸

mean curvature

− 2(1 − ν)(
∂2w

∂x2
∂2w

∂y2
− (

∂2w

∂x∂y
)2)︸ ︷︷ ︸

Gaussian curvature

)
dV. (1.44)

Here we have split up the curvature into the mean curvature and Gaussian curvature explicitly,

following the formalism established by Yu [48]. Intuitively, the mean curvature corresponds to the

amount with which a surface curves at a given point, regardless of the in-plane direction of the

curvature. On the other hand, the Gaussian curvature quantifies how much a surface curves in all

directions at a given point. It was shown by Yu [48], that for unpatterned membranes, the Gaussian

curvature integral is identically zero following an application of Green’s identity. For patterned

structures, this term is not necessarily zero by the same argument, given the mechanical amplitude

is not defined in regions without material, meaning that the application of Green’s identity requires

a consideration of the mode shape along the surface of the holes as well, which doesn’t necessarily

yield a zero result. However, it has been found empirically that this contribution to the energy lost

per cycle is a small perturbation to the overall result and therefore will be neglected when predicting

quality factors in this section. However, we caution that neglecting this term when exploring novel

mechanical modes, as whether or not it can be considered negligible depends heavily on the mode

shape in question [77]. For instance, in Ch. 6 we will investigate mechanical modes that have large

torque contributions, requiring the use of this term when predicting quality factors.
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Finally, we will produce a formula for a predicted value of Q. In doing so, we can calculate W

from either the kinetic energy or the stored tensile energy. Both are valid, but for conceptual clarity,

we will present a formulation that utilizes the tensile energy. However, for ease of computation,

often the kinetic energy is used.

The stored tensile energy is given by:

∫
device

σ

2

(
(
∂w

∂x
)2 + (

∂w

∂y
)2
)
dV. (1.45)

We note that this is only accurate in the high-stress limit for a membrane resonator. In principle,

there are energetic contributions resulting from the bulk properties of the material as well. If one

is concerned with these properties, a complete general treatment is also presented in the work by

Fedorov [73]. A key observation about the stored tensile energy is that it scales with the stress

of the membrane structure. To first order, the exact details of the mode shape stay the same

regardless of stress, meaning that as stress increases, ∆W stays constant. Therefore, one sees that

the predicted quality factor Q ∼ W/∆W ∼ σ. This is an example of dissipation dilution, which

we referred to more coneptully earlier in this chapter. With this established formalism, we can

introduce the of the dilution factor DQ has been introduced, which quantifies the strength of this

dilution [73]:

DQ =
Q

Qint
. (1.46)

For mechanical modes without dissipation dilution, DQ = 1. This is the case for resonators without

prestress, where the bulk properties of the material dominate.

1.7 Origins of internal loss

Up to this point, we have provided a generalized model for the internal losses in a mechanical

resonator in a manner that is agnostic to the fundamental sources of this loss. Here we will provide a

brief overview of the known internal loss mechanisms in silicon nitride micromechanical resonators.
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If the reader wishes for a very extensive and modern overview of this area, we encourage reading the

thesis of Tsaturyan [78]. The first loss we will discuss is thermoelastic damping (TED). TED relates

to how the material expands and contracts during motion. Any material with a finite coefficient

of material expansion αth changes its shape in response to a change in temperature. The converse

is also true, changes in the shape of an object induce gradients of temperature in the object.

These gradients of temperature mean that the motion of the resonator brings the system out of

equilibrium, generating heat, and in turn leads to dissipation. This phenomenon has been modeled

and studied heavily in the context of resonators originating from silicon nitride membranes [78,79].

In the regime of resonators studied in this work, TED is not the leading source of loss and can be

ignored. TED may become important to consider in the limit of thicker membrane films, as well

as higher frequency mechanical resonators with resonant frequencies exceeding 10 MHz.

The main source of intrinsic losses in silicon nitride membrane resonators is surface losses.

This has been established by many works, as tabulated in the overview article by Villanueva and

Schmid, where quality factors dependence of devices with varied surface-to-volume ratios were

studied [80]. They found that devices with larger surface-to-volume ratios exhibited higher loss,

indicating that surface losses dominated most of the devices studied. To date, the origin of these

surface losses is still unknown, although surface roughness and chemical impurities are promising

candidates to explain the observed increase in loss at the surface of the silicon nitride membrane.

Chemical treatments of the surface have been performed to improve the loss, but to our knowledge,

all either leave the loss unaffected or increase the effect [81].

To account for the effects of surface loss, a phenomenological Qint can be introduced that

depends on the material thickness [80]:

Q−1
int(h) = Q−1

surf + Q−1
vol = (βh)−1 + Q−1

vol (1.47)

with Qvol= 28000 ± 2000 and β = 6 × 1010 ± 4 × 1010 m−1. Here we bring to light a technical note

concerning the use of Qint in all formulas and calculations in this work, rather than using the more
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physical imaginary part of the Young’s modulus E2. In principle, it would be possible to use E2,

but in the case of surface loss this would require introducing a spatially dependent E2 that is much

higher near the surface of the nitride as opposed to the bulk.

Figure 1.4: Functional form of Qint as a function of membrane thickness. Dashed line indicates the
bulk limit of Qvol

Fig. 1.4 plots the functional form of this phenomenological Qint. We see that for most

typical membrane thicknesses used for silicon nitride (h < 400 nm) surface losses dominate the

intrinsic dissipation and that overall silicon nitride is effectively more lossy for thinner membranes.

Counter-intuitively, this actually doesn’t mean that thinner silicon nitride membranes have higher

dissipation overall. This can be seen in the form of Eq. 1.44, where we see that there is more

loss associated with thicker nitride given the explicit z dependence on the bending. In fact, for a

membrane, we can see this in an analytical result for the quality factor [48]:

Qmem =
1

λ
Qint

(
1︸︷︷︸

clamp

+λ
(n2 + m2)π2

4︸ ︷︷ ︸
sinusoidal

)−1

(1.48)

where λ = h
√

E/3(1 − ν2)σl2, n and m are the mode indices for (n,m) membrane modes and l is

the membrane side length. Here, the contributions from integrating over the clamping region near

the boundary, and the interior sinusoidal region of the membrane mode are explicitly labeled. For
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high aspect ratio, high-stress membranes, λ ≪ 1 so Qmem ≈ Qint/λ. This means that silicon nitride

membrane modes (for low values of n and m) have their dissipation dominated by the bending at

the edge of the membrane near the clamped boundary. For surface loss dominated Qint ∼ h, which

means that Qmem has no dependence on thickness. On the other hand, if (n and m) are large,

then the sinusoidal term dominates. Notably, in this limit, Q ∼ h−1, meaning that the higher

order modes of thinner membranes should have higher quality factors. This scaling is favorable

for applications where low effective mass resonators are also desired since the mass also decreases

linearly with the thickness.

1.8 Gas damping of micromechanical resonators

A ubiquitous source of loss of any mechanical resonator is due to interactions between the

resonator and its gaseous environment. At atmospheric pressure and low vacuum, the damping

arises from purely viscous forces between the resonator and the surrounding air [82]. In this work,

we operate all experiments at some level of high vacuum. At these pressures, the gas does not act

as a fluid and therefore doesn’t exhibit viscosity. In this regime — the molecular regime — the gas

transfers energy to and from the mechanical resonator through singular collisions. This model of

the gas is valid as long as the mean free path of gas molecules is longer than the length scale of

the mechanical structure [82]. For a 1 mm membrane, this would be around 10−3 mbar. In this

regime, an estimate for the gas-damped quality factor Qgas is given as [82]:

Qgas =

√
π

32

ρωm

p

kBT

mgas
(1.49)

where mgas is the mass of a single gas molecule and p is the pressure. Fig. 1.5 shows the dependence

on Qgas on pressure p. We note that in principle, the effects of gas damping can depend heavily

on device geometry, and this calculation is meant to give a sense of scale for a proper vacuum in

which to perform experiments with low intrinsic dissipation mechanical devices. For instance, to

our knowledge the highest Q micromechanical resonator operated at room temperatures have Q
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exceeding 109 [1], meaning that pressures less than 10−7 mbar are required for the operation of the

state of the art resonators. These constraints are relaxed for higher dissipation mechanical modes.

In principle, the effects of gas damping can be verified by measuring the dissipative properties of

each mode as a function of vacuum pressure and then operating the experiment in a regime where

gas damping is relatively negligible.

Figure 1.5: Qgas for a device with h = 100 nm, ωm = 2π × 1MHz, and mgas = 30 atomic mass
units.

1.9 Radiation losses

Another loss channel for micromechanical resonators relates to the coupling between a me-

chanical mode and the support structure housing the mode. Up to this point, we have implicitly

neglected this form of loss by only examining a mechanical mode shape within a simple membrane

structure while imposing strict boundary conditions at the edge of the space we wish to analyze.

In reality, the mechanical mode shape exists outside of this region, making this assumption of a
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clamped boundary condition invalid, albeit accurate enough for most situations. This is because

there is typically a large impedance mismatch at the interface between a high aspect ratio membrane

and the supporting substrate, which mimics a strict clamped boundary condition. However, there

is a finite impedance within the substrate, so in general, the mode shape does have a small motion

beyond the membrane. The effects of the mechanical mode in question coupling to the surrounding

support structure or substrate is often called radiation loss or phonon tunneling loss [55].

Predicting the effects of radiation loss on overall dissipation is a complicated endeavor. The

naive, brute-force way of tackling the problem would be to simply expand the analysis or simulation

space to include more of the support structure for the mechanical device. By including more of

the true mechanical mode shape in the analysis space, one can predict the losses that arise from

participation in the support structure by the methods described previously for calculating material

losses, given that the necessary material properties are known. This method is impractical for a few

reasons. Firstly, it is either computationally expensive if one wishes to simulate the problem, or is

analytically complicated if one wants to solve from first principles. Secondly, it would require precise

knowledge of the mounting structure of a mechanical device within the apparatus, knowledge that

is not readily available.

Simulation of the entire device including its support structure can be thought of as working

in the true normal mode basis of a coupled system of resonators. We can relax the analysis by

working in the original basis, where there are modes of the device that are coupled to modes of the

support structure. This is more attractive in that it allows for a more generic analysis, where precise

knowledge of the support structure is not needed. Here, we are concerned about both spectral and

spatial overlap between the device modes and the support structure modes [83]. However, this

picture still requires previous knowledge or some assumptions about the mode structure of the

supports. This analysis can also be avoided for structures with highly localized mechanical modes,

such as those found in the phononic crystal resonators discussed in Ch. 4. In this case, the lack of

energetic participation at the membrane edge obviates the need to analyze the substrate in detail.

Another approach is to assume that there exists a layer of perfectly absorbing material called
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a perfectly matched layer (PML) at some location in the support structure [52]. Conceptually,

this mimics coupling to an infinite acoustic waveguide, which would introduce dissipation since

coupling to the infinite waveguide corresponds to energy leaking out of the mechanical mode. The

introduction of the PML is an accurate model of radiation loss in the limit that the substrate

is much larger than the acoustic wavelength, as this mimics mechanical radiation into an infinite

medium. Often for normal substrate sizes (on the order of 1 cm), the substrate modes around 1

MHz or so contain reflections off of the substrate surfaces, and therefore a PML does not necessarily

quantitatively predict the effects of radiation loss. Another generic model of radiation losses without

introducing large levels of computational complexity is to model the support structure with an array

of lossy springs [55]. This does not require an expansion of the simulation or analysis space.

Overall, the effects of radiation loss are quite complicated but cannot be ignored. This often

manifests as a mounting-dependent quality factor, where the highest Q (lowest radiation loss)

results are obtained when the mounting is the most “weak”, or when the amount of contact area

between the mechanical substrate and the rest of the apparatus is minimized. This weak mounting

condition is often not attractive for other reasons, including mechanical and temperature stability.

This, along with the desire for higher Q mechanical modes has brought forth a wealth of approaches

that seek to minimize the coupling between the mechanical mode of interest and the modes of the

environment [49,84–86].



Chapter 2

Mechanical readout with Michelson Interferometers

This chapter will discuss mechanical displacement detection with a Michelson interferometer.

Although such an instrument was first utilized over one century ago, it is still a remarkable tool

even in the modern day, forming the basis for the first observation of gravitational waves [87, 88].

Here, we will also discuss its utility for a variety of optomechanics experiments. Given our group’s

previous and continued use of high-finesse optical cavities in a variety of experiments, we will

motivate our in-depth investigation of this alternative form of mechanical readout.

High-finesse optical cavities are championed as precision displacement detectors through a

dispersive coupling between the optical cavity resonant frequency and the mechanical motion of

dielectric in the optical mode of the cavity [34]. This dispersive coupling can also be interpreted as

a motion-induced phase shift of a near-resonant cavity probe tone. Since this phase shift is linearly

proportional to the cavity finesse, one would assume that high-finesse cavities are necessary for

precision readout of mechanical motion [67]. However, in this section we will prove that a Michelson

interferometer is capable of reaching the standard quantum limit (SQL) of mechanical displacement

detection for modern mechanical resonators, thus making it an attractive alternative to cavity-based

readout.

Michelson interferometers also provide a host of practical advantages over cavity-based inter-

ferometers. High-finesse optical cavities are resonant objects that typically require large degrees of

stabilization for implementation in optomechanical experiments. This stabilization presents many

technical challenges. A concrete example is the use of an optical cavity in a closed-cycle cryostat.
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These systems typically have moving parts as required by the cryogenic refrigeration cycle, thus

leading to vibrations of the optomechanical system affixed to the baseplate of the cryostat. If

these vibrations create acceleration noise, leading to cavity-frequency fluctuations exceeding the

cavity linewidth, then locking the cavity becomes exceedingly difficult or impossible. Thus much

care needs to be taken in order to operate high-finesse optical cavities in these systems. There

are engineering challenges associated with vibrational noise change when considering a Michelson

interferometer in the same situation. Now, one is mostly concerned with the relative displacement

noise of the device with a reference point on the optical table. In order for stable operation, this

relative displacement noise needs to be on a scale less than the optical wavelength used in the

experiment, which is a less stringent requirement than prescribed by a high-finesse cavity.

Another advantage of using a Michelson interferometer for mechanical readout is the relative

ease with which one can address the mechanical resonator. To couple a Fabry-Perot cavity to a

mechanical resonator, one needs to precisely reference the two cavity end mirrors and the mechanical

device. This task becomes even more difficult when also requiring a fairly small optical spot size.

Also, Fabry-Perot optical cavities should be constructed in as rigid a manner as possible in order to

increase their stability. Practically speaking, this enforces a single probe location of the optical spot

once the cavity is assembled, limiting the flexibility of the measurement. This fixed configuration

can also lead to technical challenges associated with thermal expansion and contraction of the cavity

assembly, where the optical spot can move when subjecting the device to cryogenic conditions,

potentially leading to sub-optimal measurements of mechanical motion. None of these technical

issues apply to Michelson interferometers, since the alignment can be carried out with free-space

optics at room temperature. Thus, Michelson interferometers are easy to use and implement for

experiments with fast device turn around, or experiments where vibrations are expected.

It is worth discussing the Michelson interferometer in the context of other optical interfer-

ometers. One technique of note is the use of an etalon made from the planar mechanical device in

question and a partially reflecting mirror. When working with fixed-frequency laser sources, it is

often necessary to allow for direct control of the interferometer arm lengths, or in the case of the
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etalon, the etalon length. Such control affords flexibility in the measurement process, as well as

calibration of power fluctuations to mechanical displacement. For Michelson interferometers, the

arm paths present in atmospheric pressure typically require active feedback in order to stabilize the

arm lengths relative to one another. Etalons provide potential advantages since the two interfering

paths exist in a vacuum, and therefore are not susceptible to disturbances arising from air currents,

allowing for feedback-free operation of these interferometers. However, there are experimental diffi-

culties associated with the operation of these etalons. In order to achieve optimal performance, the

membrane and mirror surface should be nearly parallel in order to ensure the maximal visibility

of the interferometer fringe. Therefore, each assembled etalon needs to be carefully constructed in

order to minimize any tilt. This susceptibility to tilt becomes more problematic under cryogenic

conditions due to the differential thermal expansion of materials during a cool-down. A Michelson

avoids this issue of tilt since the local oscillator can always be realigned in order to ensure optimal

mode matching to the reflected probe beam.

2.1 Theoretical description of the Michelson interferometer

Here we present a theoretical discussion of the operating principles of a Michelson interfer-

ometer. Such an interferometer comprises two arms over which a differential optical phase will be

accumulated. For the purpose of detecting micromechanical motion, the end mirror of the signal

arm will be a micromechanical membrane or any mechanical object that reflects the probe light.

Therefore, the motion of the mechanical device in question will modulate the optical path length

of the signal arm, thus changing the phase accumulation of light that passes through that arm of

the interferometer. To read out this optical phase, this light can be compared to a reference arm,

often called a local oscillator. The optical path length of this arm can be considered to be constant

in time, and therefore the phase difference between the signal optical field and the local oscillator

field will contain information about the motion of the mechanics. This phase difference can be

transduced to a changing optical power via interference between the two fields.

For all Michelson interferometers in this work, the splitting of the signal and local oscillator
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Figure 2.1: Basic diagram of a Michelson interferometer using a polarizing beamsplitter to split
and combine the two arms of the interferometer. Quarter waveplates (shaded red) are placed into
both the signal and local oscillator arms in order to direct the reflected light to the output port of
the polarizing beam splitter. The sum of the reflected fields is then rotated and split again on an
additional beam splitter in order to interfere the two beams.

fields, as well as their subsequent recombination, was performed with a polarizing beam splitter.

This can in principle be accomplished with non-polarizing beam splitters with the cost of wasted

optical power. A classical description of this problem begins with considering the electric field

at each part of the interferometer. Fig. 2.1 outlines the electric fields of interest. The relative

field amplitude of E⃗LO and E⃗s – the local oscillator and signal electric fields respectively – can be

controlled via a rotation of a half-wave plate at the entry port of the interferometer.

The explicit fields are written as:

E⃗0 = E0x̂ (2.1)

E⃗LO = E0 cos(2θsp)ŷ (2.2)

E⃗s = E0 sin(2θsp)x̂ (2.3)

E⃗LO,r = eiϕLOE0 cos(2θsp)ŷ (2.4)

E⃗s,r = eiϕsrmE0 sin(2θsp)x̂ (2.5)



37

where E0 is the input electric field amplitude, θsp is the angle between the fast axis of the half wave

plate and the plane of the optical table. x̂ and ŷ denote the direction of S and P polarized light

respectively. ϕLO and ϕs are the accumulated optical phases of the electric field corresponding to

the optical path lengths of the local oscillator and signal arms respectively. rm is the reflectivity

coefficient of the membrane being probed. We note that for the sake of this discussion, rm can be

considered to be real-valued.

At the output of the interferometer, the two electric fields are spatially overlapping, but have

orthogonal electric fields, and thus cannot interfere. By rotating the polarization of the output

field of the PBS by 45 degrees and subsequently splitting that light onto an additional PBS, one

can calculate the output fields of the second PBS as:

E⃗1 =
E0√

2

(
eiϕsrm cos(2θsp) − eiϕLO sin(2θsp)

)
ŷ (2.6)

E⃗2 =
E0√

2

(
eiϕsrm cos(2θsp) + eiϕLO sin(2θsp)

)
x̂. (2.7)

Once the fields are known, it is possible to then calculate the intensity of the beam by I ∝ |E⃗|2.

Often we are concerned about the total power in the beam, which corresponds to an integral over

the intensity over the plane transverse to the optical axis. Therefore, we can assume that Pi ∝ |E⃗i|2

at all points in the optical system. In addition, the proportionality constant should be the same

everywhere as long as the entire Gaussian beam profile is integrated over. Furthermore, we will

now parameterize these two powers in terms of the reflected power from the membrane Ps,r and the

reflected power from the local oscillator PLO. Therefore, one can then calculate the optical power

exiting the second PBS:

P1 =
1

2

(
PLO + Ps,r − 2η

√
PLOPs,r cos(ϕLO − ϕs)

)
(2.8)

P1 =
1

2

(
PLO + Ps,r + 2η

√
PLOPs,r cos(ϕLO − ϕs)

)
(2.9)

. (2.10)
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Both P1 and P2 have a term that depends on the phase difference of the two arms, which is the

mechanism through which the interferometer can transduce the motion of a mechanical oscillator

to a modulation of optical power. We have added included a mode-matching efficiency parameter

η ∈ [0, 1] which quantifies the spatial overlap between the reflected beam from the device and the

local oscillator. The translation from optical phase to motion can be understood by calculating the

optical path length as a function of the membrane motion:

ϕs = 2
(2πLs(t)

λ

)
=

4π(L0 + x(t))

λ
(2.11)

where Ls(t) is the physical length of the signal arm, and λ is the wavelength of the laser light

used in the interferometer. We make the time-dependent part of the arm length explicit by setting

Ls(t) = L0 + x(t), where x(t) is the motion that we wish to probe and L0 is the equilibrium length

of the arm. For all discussions to follow, x(t) ≪ λ, and therefore allows for a small signal analysis

of the system when needed. There is an overall factor of 2 in this formula since the arm is traversed

twice by the laser beam on the forward and backward journeys through the system.

We can first assess the performance of the system in the simplest case where one reads out

either P1 or P2. We note here that this would correspond to a Michelson interferometer which uses

a 50:50 non-polarizing beam splitter in the same geometry as shown in Fig. 2.1, and is therefore

worthy of discussion. When examining this case, we will define the sensitivity parameter ζ:

ζ ≡ |dP
dx

|
∣∣∣∣
x=0

(2.12)

which in this case is:

ζsingle = |dP
dx

|
∣∣∣∣
x=0

=
4π

λ
η
√
PLOPs,r (2.13)

where LLO is the arm length of the local oscillator. In order to maximize the sensitivity, the arm

lengths can be adjusted such that LLO − L0 = niλ/8 where ni ∈ Z. Similarly, it is apparent that

θsp should be a multiple of π/8, meaning that optimal sensitivity is achieved when the input power
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to the interferometer is evenly split between the two arms. The matching of the arm lengths can

be achieved via active control over the local oscillator length.

As will be discussed later, it is often advantageous to perform this measurement in a balanced

manner. That is, one will read out a signal that corresponds to P2 − P1. This can be achieved

with a balanced photodetector whose photodiodes are wired in series. When wired as indicated in

Fig. 2.2, the output of the circuit will have a voltage that is proportional to the photocurrents –

and in turn the optical powers – of the two photodiodes.

Figure 2.2: Basic schematic of a balanced photodetector taken from the RP Photonics encyclope-
dia [2]. As wired, the current towards the transimpedance amplifier is the difference between the
photocurrents produced by the two photodiodes.

For this configuration, the sensitivity parameter becomes:

ζbal =
8π

λ
η
√

PLOPs,r, (2.14)

which is just 2ζsingle. This arises from the fact that the balanced detector uses all of the optical

power in the interferometer by measuring both P1 and P2.

2.2 Michelson interferometer signal to noise

To this point, the current discussion has focused on the transduction of mechanical motion to

an optical field with a corresponding intensity fluctuation. Any such interferometer will have some

sort of noise. In the context of optomechanical systems, the fundamental noise source comes from

the quantum mechanical nature of the optical fields used to read out the motion [89]. Notably, it is
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the random distribution of the optical field photons that gives rise to the two fundamental sources

of noise. Firstly, there is the photon shot noise that occurs during the detection of the optical fields.

The random arrival of the optical photons generates a random fluctuation of optical power. For

interferometers, this noise is often referred to as imprecision noise, a convention that we will use in

this work. Secondly, the same random occurrence of optical photons gives rise to radiation pressure

shot noise (RPSN) which applies a random force to the mechanical resonator, which necessarily

changes its state of motion. This noise is often referred to as the back-action noise.

Here we present a mathematical description of these two noise terms. For imprecision, one

can understand the effective noise by first understanding the optical shot noise. The spectrum of

shot noise is:

SPP = 2hνP̄ =
2hc

λ
P̄ . (2.15)

Here, h is Planck’s constant, ν is the optical frequency of the light used in the measurement, c is

the speed of light, and P̄ is the average optical power in the optical field incident on the detector

used in readout. The optical power fluctuations can be related to fluctuations in mechanical motion

with the sensitivity parameter of the interferometer:

Sxx,imp =
SPP

ζ2
. (2.16)

We note here that the imprecision noise floor is white in frequency due to the flat response of the

interferometer to mechanical motion. This is in stark contrast to the imprecision noise floors seen

in optomechanical systems involving high finesse optical cavities coupled to mechanical resonators.

In that scenario, the finite linewidth of the cavity adds a frequency dependence to the imprecision

noise floor.

Clearly, Eq. 2.16 depends on the interferometer sensitivity ζ, which depends on the distribu-

tion of power in the arms of the interferometer:
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Sxx,imp =
cλℏ

16πη2
PLO + Ps,r

PLOPs,r
. (2.17)

An examination Eq. 2.17 indicates that for a fixed amount of input optical power, optimal

imprecision is achieved when the reflected signal power and the local oscillator power are balanced

(PLO = Ps,r):

S
(PLO=Ps,r)
xx,imp =

cλℏ
8πη2

1

Ps,r
. (2.18)

When this is the case, we can readily see a 1/P scaling in the imprecision, as is expected

for shot-noise-limited measurements. Another limit to examine is the limit of high local oscillator

power (PLO ≫ Ps,r), which is typically used for optical homodyne measurements [90]:

S
(PLO→∞)
xx,imp ≈ cλℏ

16πη2
1

Ps,r
. (2.19)

For optimal measurements of mechanical motion, the effects of measurement backaction must

be accounted for. The backaction noise can be calculated first by identifying the radiation pressure

force on the mechanical device. An arbitrary optical force on the membrane is given by:

Fopt =
2Pref + Pabs

c
. (2.20)

where Pref is the power of the reflected light and Pabs is the power of absorbed light. The factor

of 2 preceding Pref arises from the presence of an incoming and reflected light field. This is

equivalent to a picture where a reflected photon imprints an impulse that corresponds to twice its

incoming momentum. For devices fabricated from LPCVD stoichiometric silicon nitride membranes

as studied throughout this work, the optical absorption can be neglected when calculating the

radiation pressure force on the membrane.

From here, one can readily derive the backaction force spectral density:

SFF,BA =
4

c2
SPs,rPs,r =

16πℏ
cλ

Ps,r (2.21)
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Once calculated, one can evaluate the performance of the interferometer with respect to a

generalized Heisenberg uncertainty relation as defined in [67] as:

SFF,BASxx,imp ≥ ℏ2. (2.22)

Note that Eq. 2.23 this uncertainty is presented when using single-sided spectral densities. This

inequality encodes a key idea in the quantum-limited measurement of mechanical systems, in that

there will always be a trade-off between how precisely the system measures the motion (minimiz-

ing Sxx,imp) and how strongly the system perturbs the system (SFF,BA). This is readily seen by

observing the functional forms of these aforementioned spectral densities with respect to power.

Notably, Sxx,imp scales as P−1
0 , while SFF,BA scales as P0.

In our case, this inequality reads:

SFF,BASxx,imp =
ℏ2

η2

(
1 +

Ps,r

PLO

)
≥ ℏ2. (2.23)

Here, we have rewritten this formula in terms of in terms of the reflected power off of the membrane

Ps,r and the local oscillator power PLO. The presence of the reflected power in the signal arm denotes

the fact that the transmitted power through the membrane imparts no backaction, and therefore

there is no penalty associated with not collecting that energy for the final measurement. With this

in mind, it is apparent that the SQL can be saturated in this system in the limit of infinite local

oscillator power, and ideal efficiency η = 1. This limit of arbitrarily high local oscillator power

is typically assumed in optical homodyne measurements in order to reach optimal signal-to-noise

ratios [90]. Furthermore, we should remind the reader that there was an assumption of zero optical

absorption in the membrane. In principle, optical absorption would prevent saturation of the SQL

since absorbed light imparts backaction but provides no signal.

The SQL can be calculated by finding the minimum of the added noise in the system. As

revealed above, the SQL is saturated in the limit of large local oscillator power. To calculate the

total added noise. We can calculate this by thinking about our interferometer as a displacement
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detector with a noise floor defined as the sum of the imprecision noise and backaction motion. To

find the backaction motion, one needs to calculate the response of the mechanical oscillator to the

backaction force:

Sxx,BA = SFF,BA|χm(ω)|2 (2.24)

where here χm is the mechanical susceptibility of the oscillator being probed. Therefore the total

added noise in the system is:

Sxx,add(ω) = Sxx,BA(ω) + Sxx,imp(ω). (2.25)

We have added the frequency dependence back in here to emphasize that the noise floor of the

system has spectral dependence. For simplicity, we will analyze the added noise on mechanical

resonance since this is germane to most discussions of mechanical detection. Given the previously

examined functional dependence on optical power for each term, Sxx,add(ω)0) is minimized when

Sxx,BA(ω0) = Sxx,imp(ω0). This condition reveals both the noise floor at the SQL as well as the

optical power required to measure at the SQL:

Sxx,add,min(ω0) =
1 + η2

η

ℏ
mγω0

≥ 2ℏ
mγω0

= Sxx,zp(ω0) (2.26)

PSQL =
cmγλω0

16πη
(2.27)

We see that the added noise depends on the efficiency of the mode matching between the two

beams. In principle, other sources of loss could also lead to inefficiencies with the measurement. We

see that in the limit of an ideal measurement (η = 1), the lower limit of this added noise matches

that of the zero point fluctuation power spectral density Sxx,zp as discussed in [67]. We would

like to remind the reader that the expression for PSQL is the amount of power reflected from the

membrane required to reach the standard quantum limit. We have already assumed a limit of large
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local oscillator power, and therefore the total amount of laser power in the interferometer required

to reach this limit will be higher.

As stated previously, it is often experimentally more convenient not to minimize the total

added noise of the interferometer, but rather to operate the point of highest ζ, which corresponds

with the interferometer fringe visibility. In this work, this will be the case unless otherwise stated.

It should be noted that the expression for the minimum added noise in this limit is only slightly

different than what is shown in Eq. 2.26:

S
(balanced)
xx,add,min(ω0) =

√
2

1 + η2

η

ℏ
mγω0

=
√

2Sxx,add,min(ω0). (2.28)

This is achieved at a reflected power of:

P (balanced)
r =

√
2cmγλω0

16πη
=

√
2PSQL. (2.29)

These expressions reveal that for applications where quantum-limited measurements are not

a requirement, we can reach very near SQL which is much less total laser power required to perform

the measurement, since we do not need to operate in a limit of high local oscillator power.

2.3 Laser phase noise in Michelson interferometers

Up to this point, the analysis of this interferometer has been performed assuming an ideal

laser source. This assumes that the optical spectrum of the light field is a delta function peaked

at the optical frequency of the laser. However, any laser source will have a finite linewidth due to

spontaneous emission of the gain medium used to achieve lasing, written as [91,92]:

δνlaser =
πhνlaser(∆νc)

2

P
, (2.30)

where ∆νc is the laser cavity linewidth. We bring attention to this formula, not for its specific

contents, but just as a statement that laser phase noise is fundamental, even in an ideal system.

Furthermore, a general laser system will not function ideally and will have additional technical
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noise. Common sources of this technical noise include vibrational and thermal noise, which induce

variations in the resonant frequencies of the laser cavity, which in turn imprints frequency noise on

the laser. We remark here that the laser frequency noise has a direct correspondence to its phase

noise, owing to the relationship between phase and frequency:

ν(t) =
1

2π

dϕ(t)

dt
. (2.31)

This relation implies an equivalent relationship between the power spectral densities describing the

frequency and phase noise:

Sνν = f2Sϕϕ (2.32)

where f is the spectral Fourier frequency. With these descriptions of laser phase noise, we can

analyze their effects on displacement detection in a Michelson interferometer. We will perform this

analysis assuming that we are using a balanced photodetector, although identical reasoning can

be extended to the unbalanced case. Additionally, we will restrict the analysis to the case where

θsp = π/8. The signal on the balance photodetector will be proportional to P2 − P1 as defined in

Eq. 2.10:

P2 − P1 = P0ηrm cos(ϕLO − ϕs). (2.33)

The interferometer operates such that the power output is linearly sensitive to the relative phase

of the two arms, which is achieved by introducing a phase offset of π/2 to ϕLO. In the following

discussion, we will encapsulate the length difference of the two arms to a time delay in order to

be consistent with discussions of laser phase noise measurements in the literature. Additionally,

since we only wish to calculate the effect of laser phase noise, we can neglect the motion of the

mechanical oscillator. Therefore:

P2 − P1 = P− ≈ P0ηrm(ϕin(t) − ϕin(t− τ)), (2.34)
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where ϕin(t) is the phase of the light field entering the interferometer, and τ is the time delay

between signals sent between the local oscillator and signal arms. We have taken the small-angle

approximation, which is valid in the limit of low-phase noise on the laser. In order to calculate the

power fluctuations due to phase noise on the interferometer, we first calculate the Fourier transform

P−:

P̃−(ω) = P0ηrmϕ̃in(ω)(1 − e−iωτ ) (2.35)

where ·̃ denotes a fourier transform. Therefore, the phase noise-induced noise spectrum is:

SPP,phase = |P0ηrm|2 sin2(ωτ/2)Sϕ,ϕ. (2.36)

Here, Sϕ,ϕ is the phase noise spectrum of the laser. This can in turn can be converted to motional

noise via ζ:

Sxx,phase(ω) =
λ2

16π2
sin2(ωτ/2)Sϕ,ϕ(ω) =

λ2

16π2
sin2(ω∆L/c)Sϕ,ϕ(ω) (2.37)

In the final form of Eq. 2.37, we have converted τ to the physical path length difference ∆L between

the two arms. Notably, Eq. 2.37 has no dependence on the optical power used in the interferometer,

meaning that it is solely a function of the quality of the laser source as well as the geometry of the

interferometer. Here we see that by reducing ∆L close to zero, one can get rid of the effects of laser

phase noise on the system. This can be understood since if the two arms have the same length,

then the light field is just a delayed copy of the light field at the input, regardless of what arm it

traversed. This effect is often used to measure the phase noise of a laser source, where the role of

one of the interferometer arms is a delay line which enhances the effect of phase noise [93]. In the

case of displacement detection, it is prudent to keep the length of the two interferometer arms as

close as possible.

To illustrate this point, we calculate Sxx,phase for various path length differences. The results

of this calculation are shown in Fig. 2.3, where we assume that the phase noise spectrum has a



47

power law scaling of ω−2, and is -110 dBc/Hz at 1 MHz. The magnitude and functional character of

phase noise has been measured for the Nd:YAG laser used throughout this work. A comparison of

Fig. ?? and Fig. 2.3 indicates that at a reasonable level of optical power entering the interferometer

(1 mW), the phase noise of the Nd:YAG used in this work would only be observable for arm length

differences on the order of 1 meter. We emphasize that such length differences are easily avoided

via the proper design of the optical system, and for this reason, phase noise was not considered

heavily for motional readout in this work.

Figure 2.3: Calculated Sxx,phase for a Michelson interferometer. (inset) DC phase noise as a function
of ∆L/λ where we have assumed λ is 1064 nm. The low-frequency behavior of the phase noise
scales as (∆L)2.

2.4 Laser amplitude noise in Michelson interferometers

Another source of noise in a laser system is amplitude noise. We have already discussed

the fundamental limit of amplitude noise, photon shot noise, which presents itself as a white noise
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addition to the laser power. Similarly to phase noise, technical aspects of the laser system can

produce added noise above the shot noise level. For this reason, noise above the shot noise level is

frequently referred to as residual intensity noise (RIN) in the literature. RIN can be described as

a classical fluctuation to an otherwise constant power laser field:

P (t) = P0 + δP (t) (2.38)

Note that in the above equation, δP (t) contains contributions from both (RIN) and shot noise.

However, both sources are uncorrelated. Hence the amplitude noise spectrum of the laser power

will be a sum of the shot noise and RIN spectra. Since RIN is a classical noise source, we consider

it to scale linearly with the average power P0 of the beam. Written directly, P (t) = P0(1 + β(t)),

for some stochastic function β(t). For the sake of this work, βrms ≪ 1. This has direct implications

for displacement detection. Consider a system that utilizes a single photodiode to read the optical

power from the interferometer. To understand this situation, consider a simplified expression for

the output of this interferometer in Eq. 2.10 under this model of noise:

P1 = P0(1 + β(t))(α +
ζ

P0
x(t)) ≈ P0(α + αβ(t) +

ζ

P0
x(t)) (2.39)

The final equality is a good approximation when ζx(t) ≪ t. Recall from Eq. 2.13 that ζ ∼ P0,

which means that both the noisy term and the signal term scale as the optical power, meaning

that the signal to noise ratio of such a system cannot be improved by increasing the optical power

in the interferometer. This contrasts the case of a shot noise-limited interferometer, which has a

noise floor that scales as P−1
0 . In systems with appreciable RIN, the generic behavior is that at low

optical powers, the system will be shot noise-limited. An increase in optical power will eventually

lead to a power above which there is no further gain in signal-to-noise ratio. Ideally, one would

wish to have a system that is quantum noise limited (shot noise limited). In this work, multiple

strategies are employed to reach this regime. Firstly, the use of a balanced photodetector can serve

as a common noise rejection of the classical amplitude noise in the system. This can be seen by
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considering simplified expressions for P1 and P2. If P1 is of the form in Eq. 2.39, it follows that P2

is written as:

P2 = P0(1 + β(t))(α− ζ

P0
x(t)) ≈ P0(α + αβ(t) − ζ

P0
x(t)). (2.40)

Therefore, a balanced photodetector which reads P2 − P1 = P− will read:

P− = 2ζx(t)(1 + β(t)) ≈ 2ζx(t). (2.41)

The above expression holds when the balance of power between the two beams going toward the

balanced detector is perfect. Any imbalance between these two arms will lead to a leakage of RIN

into the measurement. Another strategy to reduce RIN is to actively servo the intensity noise of the

laser. Such a servo is commonly referred to as a noise eater for laser systems. Additionally, passing

the probe light through a narrow linewidth filter cavity passively filters the RIN at frequencies

higher than the linewidth of the cavity. In this work, a combination of these three strategies was

employed in order to have shot noise limited displacement detection for frequencies in excess of ≈

80 kHz. The details of this will be discussed in the next section.

2.5 Low imprecision Michelson interferometer

In this section, we will present a detailed overview of a low-imprecision Michelson interfer-

ometer. The design of this interferometer was originally intended for mechanical force detection

experiments seeking to probe transient forces that act on short time intervals. Since the force acts

over a short period of time, the amount of imprecision noise in the measurement bandwidth in-

creases, requiring great care to be taken with the optical readout of the resonator motion. However,

the basis of this optical system can be utilized for any experiment, even ones that don’t require

such a low imprecision noise floor. We also wish for this system to operate on a variety of mechan-

ical devices in cryogenic conditions, making a Michelson interferometer an attractive alternative to

optical-cavity-based mechanical readout.
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A schematic of the optical system is displayed in Fig. 2.4. For clarity, we will describe the

beamline beginning at the laser source, which is a ND:YAG laser. The beam goes through an

optical isolator in order to reduce errant reflections back into the laser cavity. The beam is then

split into two paths via a PBS. The transmitted path was immediately coupled into a fiber, which

could route the beam to arbitrary places on the optical table for testing or optical probing. A more

involved path begins with the reflected light from the PBS. The main purpose of this path will be

to couple through a filter cavity. In this work, we elect to lock the laser to the filter cavity utilizing

the Pound-Drever-Hall locking scheme [94]. A detailed overview of the technique is presented well

in other works [95], but for this work, we will remark that a key element of PDH locking is the

addition of FM sidebands to the laser. This is typically done in two ways, either by modulating the

laser inside the head or by passing the beam through a resonant electro-optic modulator (EOM).

In this work, we utilize the latter, as indicated in Fig. 2.4. Since the circuit is resonant, a sufficient

modulation index required for the PDH locking technique can be attained via a conventional drive

from a typical functional generator.

Following the EOM, the laser beam is shaped by two lenses in order to achieve mode matching

with the filter cavity. This cavity is a symmetric, nearly confocal cavity that comprises two curved

mirrors. Both mirrors have a radius of curvature (ROC) of 5 cm and form a cavity length of slightly

less than 10 cm so as to remain in a stable configuration. The cavity itself is designed to have a

linewidth of 50 kHz. The beam shaping was done to have the focus of the focusing lens preceding

the cavity coincide with the midpoint of the two mirrors. However, since a confocal cavity has a

diffraction-limited waist, the beam was expanded prior to focusing in order to have the smallest spot

size possible. In practice, the positions of these two lenses were adjusted in order to maximize the

transmission through the cavity. In this work, the maximal achieved transmission was 70 percent,

although under normal conditions 50 percent transmission is typical.

Following the filter cavity, the beam is directed through a single-pass acousto-optic modulator

(AOM). The beam was aligned as to maximize the deflection into the first diffraction order of the

AOM. Modulation of the RF power driving the AOM allows for control of the power deflected into
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Figure 2.4: Michelson interferometer optical diagram. (Top) Pre-fiber optical apparatus. (Bottom)
Optical setup on a raised breadboard that can probe a variety of different samples in both cryostats
and vacuum chambers. The AOM appearing in this diagram was used as an optical switch in order
to prevent damage to the device when utilizing high laser powers.

the 1st diffraction order. Throughout this work, this modulation was typically used to servo the

intensity of the laser beam after it passed through more optical elements. The largest intensity

noise source addressed by these servos arises from polarization drifts caused by thermal effects in

optical fibers. Although all the fibers used in this work were polarization-maintaining (PM) fibers,
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these fibers require precise alignment to a specific polarization access in order to maintain an input

polarization with high fidelity. Typically, a modest alignment to the key would result in long-term

intensity drifts of around 5 percent in the downstream parts of the optical system as polarization

imperfections would be transduced into intensity drifts via polarizing elements such as PBSs. The

remaining intensity drifts could then be reduced via the AOM intensity servo.

A detailed diagram of an example Michelson interferometer is displayed at the bottom of

Fig. 2.4. Again we will describe this setup beginning at the fiber port. This particular implemen-

tation had added functionality beyond that of a simple Michelson. Firstly, a monitor of the laser

power after the fiber serves as the input signal for the aforementioned intensity servo. After the

pickoff, another AOM is present to serve as an optical switch. When large amounts of circulating

power are present in the interferometer, it is often prudent to turn off the laser light when not mea-

suring so as to not damage the device in question. Although the occurrence is rather infrequent,

devices can become damaged due to the presence of a high-power laser source ( 10 mW). Although

the mechanism has not been systematically identified, we believe that the cause of this damage is

most likely due to laser absorption by dust particles that fall onto the membrane device unnoticed,

which leads to local heating of the membrane.

Following this optical switch, a telescope shapes the beam for optimal probing of the mechan-

ical oscillator in question. The rest of the setup is the main interferometer as described previously.

The main differences consist of an imaging path in the signal arm of the interferometer. Typically

this was a simple microscope with a magnification of 4 to 5 which allowed for the location of the

probe beam on the device. In order to lock the local oscillator arm-length, a RedPitaya 125-14

FPGA programmed to act as a PI servo is used. One unique aspect of this setup is the use of a

separate photodetector as the error signal for this locking circuit. This choice was made in order for

the system to handle optical powers up to 20 mW. At this level of power, the peak-to-peak voltage

produced by the Thorlabs PDB450C balanced detector would be around 70 V, greatly exceeding

the maximum output voltage of the trans-impedance amplifiers for this detector, not to mention it

greatly exceeds the maximum voltages of both the RedPitaya 125-14 and the AlazarTech ATS9462
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digitizer board used to read the photo signal. Under these conditions, the error signal has strong

nonlinear behavior, leading to instabilities in the feedback loop. For this reason, a pickoff of 7

percent of the light was directed toward this separate locking photodetector. The relatively small

amount of light on this detector allowed for a more stable lock while at the cost of a small reduction

of signal.

In order for the system to be shot noise limited, the shot noise defined noise floor needs to

exceed that of the electronic readout chain. In this work, most of the photodiode signals were

digitized with an ATS9462 digitizer board. To characterize the noise of this board, one must first

understand the noise limitations of an analog-to-digital converter (ADC). The following analysis

relies heavily on the tutorial presented by Analog Devices [96].

A basic understanding of the operation of the ADC illuminates the meaning of some of these

terms. An ADC maps an analog signal V (t) to a digitized version. This is done with the assumption

that the ADC works on a voltage range of signals, referred to as its full-scale voltage or Vfs. Under

ideal operation, one can describe the resolution of the subsequent digitized signal as Vfs/2N , where

N is the bit depth of the ADC. One can then analyze the noise floor of the system defined solely

by this quantization noise. Under this noise model, the error of each sample amounts to sampling

from a uniform probability distribution between the values of −Vfs/2N+1 and Vfs/2N+1. One can

then calculate the integrated noise power associated with this measurement as:

Pquant =

∫ Vfs/2
N+1

−Vfs/2N+1

V 2p(V )dV =

∫ Vfs/2
N+1

−Vfs/2N+1

V 2 2N

Vfs
dV =

1

12

(
Vfs

2N

)2

(2.42)

With the absolute noise power scale calculated, we calculate the associated power spectral density

under the assumption that there is no time correlation between samples. This implies that the

PSD is white and spread evenly across the Nyquist band of the measurement. Therefore:

SV V,quant =
1

6fs

(
Vfs

2N

)2

(2.43)

where fs is the sample rate of the measurement. This functional form of SV V reveals a dependence
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of f−1
s , meaning that maximal performance can be achieved when using the maximum sample rate

offered by the device. For the ATS9462, the maximum sample rate is 180 MS/s, corresponding to a

Nyquist frequency of 90 MHz. This greatly exceeds the resonant frequency of any device used in this

work, meaning that the best noise performance is obtained at the cost of oversampling the signals

in question. This results in larger datasets than are required in principle. In order to alleviate

issues associated with the analysis and handling of these large datasets, sub-sampling of the data

can be performed. If the sub-sampling is performed by first binning the data and subsequently

averaging each bin, this maintains the noise floor of the higher sample rate data while lowering the

Nyquist band of the data set.

With this in mind, we can turn our attention to other noise channels associated with analog-

to-digital conversion. A main channel of noise is the Johnson thermal noise that occurs within

the ADC circuit itself. This can in principle be greater than the quantization noise, limiting the

performance. Another source of error in an ADC is harmonic distortion, where a harmonic input

signal will have added sidebands after the analog-to-digital conversion. This occurs due to any

nonlinearity in the ADC components, and although well-designed ADCs will try to minimize this

effect, it does limit the performance of ADCs somewhat. ADC datasheets quantify the magnitude

of these two effects with the signal-to-noise and distortion ratio (SINAD). Usually, this quantity is

reported in dBc, referencing the power of some input harmonic signal of interest. For the ATS9462

used in this work, the SINAD is specified to be 72.3 dB, measured using a nearly full-scale input

signal. To compare this number to the quantization noise, it is often illustrative to convert this

SINAD parameter into an effective number of bits (ENOB). The new noise floor can then be

calculated using the ENOB instead of the raw bit depth of the ADC, taking into account distortion

and other sources of input noise. ENOB and SINAD are related (assuming a fullscale input signal

for the SINAD parameter) by [96]:

ENOB =
SINAD − 1.76

6.02
(2.44)
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For the ATS9642, the specified ENOB would then be 11.7. Note that in principle the actual noise

floor of the board may differ from this value, and is useful to characterize the card implemented

into the experimental apparatus. For instance, one can see how the noise floor of the card changes

as a function of the sample rate. An example measurement is presented in Fig. 2.6. By fitting this

data, one can extract that the ENOB of the card studied here is 11, slightly worse than what is

specified in the datasheet.

Figure 2.5: Measured electronic noise floor a ATS9462 card. This measurement was performed
with the input ports 50 Ω terminated.

However, for most measurements done with this apparatus, this is sufficiently low. To illus-

trate the point, we can calculate the effects of this ADC noise in terms of position units. For this

analysis, we can also consider the effects of detector dark noise in a typical measurement band.

We note that in principle both dark noise and ADC noise are electrical in origin, and therefore are

first characterized as voltage noise. The conversion of the voltage noise to position noise requires

knowledge of the photodetector used to perform the question. The conversion can be calculated

with knowledge of the spectral responsivity of the photodetector — the conversion of power to

a photocurrent — as well as the trans-impedance gain of the current-to-voltage converter in the

photodetector. Finally, this effective power noise can then be converted to position noise through

the ζ parameter of the interferometer.

In this work, the PDB450C was utilized for precise measurements of the device motion and

will be analyzed in Fig. 2.6. One sees that for the mW scale of input power, the system will be



56

Figure 2.6: Inferred imprecision noise floor due to the various sources as a function of input laser
power. This assumes the use of Thorlabs PDB450C balanced photodetector with a gain setting of
104. Depending on the level of the signal being probed, the gain can be adjusted accordingly so
long as the bandwidth of the detector is sufficient. The level of dark noise observed on the detector
used in this work is 10 dB lower than the specification sheet value and is reflected here. The ADC
noise is calculated for a 180 MS/s sample rate.

shot noise limited. A technical point concerns the adjustable gain of the PDB450C. At higher gain

values, the calculated effect of both ADC and dark noise decreases inversely with the gain, at the

cost of the absolute bandwidth of the measurement. In principle, one should use the highest gain

possible for the measurement. The ultimate limit of gain is either the required bandwidth — the

bandwidth of the photodetector should exceed the mechanical frequency scale being probed — or

the fullscale voltage of the ADC.

Now that we have completed the discussion of the electrical noise present in the system, it

is prudent to discuss other sources of optical noise. For this system in question, the interferometer

arms had roughly equal lengths, and therefore we will neglect the phase noise of the laser. RIN

cannot be neglected. Rather, it is a leading source of noise for frequencies below 1 MHz for the

Nd:YAG used in this work. We addressed this noise in two ways, through the use of a balanced

detector and through passing the probe light through the filter cavity. The effect of the filter can

be described as a low-pass filter on the RIN spectrum of the laser. This effect can be seen in

Fig. 2.7, where the RIN of the input beam is reduced to the shot noise level of noise above 200
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kHz. The insertion of the cavity does produce added noise below the cavity linewidth. This is most

likely due to technical noise associated with the PDH locking electronics or phase-to-amplitude

noise conversion of low-frequency phase noise. For the measurements performed in this work, this

low-frequency sector of the spectrum was not necessary, but care should be taken for probing

lower-frequency mechanical oscillators.

Figure 2.7: Optical spectra before the cavity (with the Nd:YAG noise eater both on and off) and
after the cavity for 750 µW of power. With the noise eater off, there is a strong RIN peak around
750 kHz which is strongly suppressed by both the noise eater and the cavity. The filter cavity
reduces the noise to the shot noise level for 200 kHz and above.

Fig. 2.7 shows the ability of the filter cavity to reduce RIN at low laser powers. However,

at higher laser powers, there will be more RIN than measured here. A balanced detector should

take care of the rest. To investigate this effect, one can adjust the relative balance between the two

photodiodes. A similar effect can be achieved by changing the setpoint of the Michelson lock. This

will cause the local oscillator length to induce an imbalance between the two diodes. The results of

such a measurement can be seen in Fig. 2.9 over a broad spectrum. We see that a low frequencies,

where there is the highest level of RIN, the absolute noise floor is very sensitive to the balance of

the arms. At the highest frequencies, the noise floor is no longer dependent on the arm balance

due to shot noise exceeding RIN in this frequency band. We can see that at high levels of RIN,
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balancing the power onto the two diodes of the balanced detector is paramount to the maximal

cancellation of the extraneous noise.

Figure 2.8: Optical power spectra measured by the balanced detector while sweeping the setpoint
of the Michelson lock servo for 20 mW of incident power into the interferometer. (Top) broadband
optical power noise spectrum. Spectra of higher RIN correspond to poorly selected values of the
setpoint. (Bottom) These four panels correspond to the noise floor at 4 specific places in the
spectrum. All panels have the same y-axis scale as indicated on the leftmost panel. The colors of
the plot correspond to the frequency as indicated in the top plot of the figure. We see that at low
frequency the noise floor is heavily dependent on the value of the setpoint of the Michelson.

The measurement procedure presented in Fig. 2.9 provides an avenue toward the maximal

performance of the Michelson interferometer for high circulating optical powers. Finally, we can

evaluate the performance of the Michelson for this optimized configuration. As seen in Fig. 2.9, the

noise floor of this system reaches the level of 1 fm/
√

Hz for frequencies exceeding 100 kHz when

operating with 20 mW of power incident on the interferometer. We note here that in principle this

is not the maximal performance of the system, since this was achieved with the maximum optical

power available at the time. In principle, a more precise measurement could be achieved with more

incident optical power.
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An illustrative analysis of this system would be to understand this performance in the context

of quantum-limited measurement. Such a discussion is dependent on the parameters of the oscillator

in question. For the sake of the context of this work, we will examine two such oscillators, a mass-

loaded trampoline resonator and a defect mode of a membrane PnC device.

Figure 2.9: Noise floor for 20 mW of incident power incident on the Michelson, with and without
the filter cavity. Above 100 kHz, the imprecision noise floor of the system is around 1 fm/

√
Hz.

In this context, a figure of note would be the power required to operate at the standard

quantum limit PSQL. Powers higher than this level indicate that the backaction noise exceeds

the imprecision noise on mechanical resonance. For pure position measurements of the mechanical

oscillator, this is optical power to use in the interferometer. Tab. 2.1 shows a few example modes and

their respective PSQL. We see that the interferometer described in this section can readily achieve

these power values and operate under shot noise-limited conditions, and therefore in principle,

this interferometer is quantum-limited for these modes. However, for all these modes, the thermal

motion will greatly exceed the quantum noise, and therefore for routine measurements, this does

not truly matter.
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2.6 Feedback cooling analysis of Michelson interferometer

One of the most important technical accomplishments in the field of optomechanics is the

ability to ground state cool mechanical resonators. Often this is achieved in high-finesse optical

cavities via the technique of sideband cooling. Another possible avenue to ground-state cooling is

through feedback cooling. In such a scheme, a fast measurement bandwidth is needed to quickly

learn information about the state of the oscillator. Michelson interferometers provide this band-

width readily and thus are promising candidates to ground state cool mechanical resonators through

feedback [97]. This technique has some attractive aspects, namely the absence of an optical cav-

ity, which presents great challenges, especially when coupling to small-mode volume mechanical

oscillators.

Since ground state cooling with feedback is achieved via damping of the resonator motion, a

certain degree of damping is required in order to reach the ground state. Therefore, there is a limit

to the amount of damping we can impose prior to the oscillator transitioning from being under-

damped to over-damped. This fact amounts to the requirement that the thermal decoherence rate

of the resonator must be less than the resonant angular frequency of the mode in question [97]:

γth =
kBT

ℏQ
< ω0. (2.45)

Eq. 2.45 exhibits another reason why resonators with high f − Q products are useful for

quantum optomechanical experiments.

Another requirement for ground state cooling of a mechanical resonator stems from the

concept that the state of the oscillator needs to be read out faster than the rate at which thermal

phonons enter the resonator. This condition can be expressed mathematically as [72]:

Γmeas ≡
x2zp

2Sxx,imp
>

Γth

8
(2.46)

where Γth = γnth is the thermal decoherence rate of the oscillator. One notable insight for the

technique of feedback cooling is that the feedback loop can compensate for the backaction of the
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Device and Mode ω0/(2π) meff Q PSQL Pgs(T = 293K) Pgs(T = 4K)

Mass loaded trampoline 96 kHz 16 ng 800 × 103 214 µW — —
Bare trampoline 143 kHz 4 ng 30 × 106 11 µW — 120 mW

device B S1 defect mode 1.7 MHz 0.4 ng 2 × 106 3.1 mW — 2 W
device E S2 mode 2.4 MHz 0.4 ng 100 × 103 9.8 mW — 61 W
Perimeter mode 350 kHz 0.1 ng 1 × 109 50 nW 16 mW 220 µW

Table 2.1: Modal parameters including PSQL and Pgs, for a set of example modes that appear in
this work, with the addition of a perimeter mode studied in [1]. Devices B and E refer to devices
studied in Ch. 4 of this work. Devices that do not satisfy the inequality given in Eq. 2.45 have a
blank entry for the ground state cooling power.

measurement [72]. Therefore, one should operate with the lowest imprecision possible, meaning

that operating at optical powers greatly exceeding PSQL is actually necessary. Eq. 2.46 implies

that the necessary imprecision noise floor for ground state cooling is then:

Sxx,gs =
2ℏ2Q

kBTmω0
. (2.47)

Equating this expression to that of the imprecision noise floor reveals that required reflected power

from the membrane needed to ground state cool assuming ideal feedback:

Pgs =
cλkBT

16η2π

mω0

ℏQ
(2.48)

We evaluate this expression for various modes studied in this work to give a scale for the level of

optical power required to ground-state cool, and if ground-state cooling is possible. For a sense of

scale, a state-of-the-art mechanical resonator — a perimeter mode device — is also included [1].

These devices are more difficult to optically probe, but the results of this analysis show that in

principle ground state cooling is possible for such modes if great care is taken in interfacing them

with both the feedback force and probe laser.
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Sensing with tensioned micromechanical oscillators

Up to this point, we have presented a theoretical description for modeling the mechanical

properties of tensioned silicon nitride membrane resonators. In addition, we have established that

the motion of these resonators can be read out interferometrically with high precision using laser

interferometry. Such a system, a mechanical oscillator coupled to an electromagnetic field, broadly

applies to the field of optomechanics. This apparatus is primed for an application towards sensing

given that a mechanical resonator can be functionalized to couple almost ubiquitously to any

external field, whether it be light, force, or even heat [49,69,98,99]. In this section of this work, we

will discuss how such an optomechanical system can be utilized for sensing purposes over a wide

range of sectors. Since this work mainly focuses on tensioned membrane resonators, we will discuss

the roles tension plays in the design of mechanical sensors. In particular, we identify ways in which

tensioning the resonator, thus raising its frequency, can be utilized to lower the effects of technical

noise on an application-to-application basis.

3.1 Micromechanical sensing paradigms

The operating principle of a micromechanical resonator-based sensor is that an external

perturbation affects the motion of the mechanical oscillator. The full gambit of effects can be

represented via a modification to the equation of motion for a simple harmonic oscillator:

m(t)ẍ + γ(t)ẋ + ω2(t)x = F (t) + Fth(t) (3.1)
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where we have included the thermal force on the oscillator as well. Here we see that broadly,

there are two sensing paradigms: force and parametric. Force sensing is rather easy to understand:

an external force drives the oscillator, usually resulting in a change in the oscillator’s amplitude

above its normal Brownian motion. Readout of the motion allows for a force to be inferred.

Parametric sensing is much broader and also includes external forces on the oscillator. For instance,

an oscillator subject to a force gradient will experience a force of the form Ffg = ∂F
∂x x, which

functions as a frequency shift, despite a physical force being applied to the oscillator. In this

chapter, we will discuss sensing in the context of how the force appears in the equation of motion

since this will dictate how to infer the strength of the perturbation on the oscillator’s motion.

3.2 Direct force sensing and the role of thermal noise

In the direct force sensing paradigm, the harmonic oscillator is subject to an arbitrary force

Feff(t), given in Eq. 1.21. The fundamental force sensitivity is defined by the random thermal force

(Eq. 1.32) due to the oscillator’s coupling to a thermal bath. This limit can be arrived at in two

ways. The first we will call the force picture, and relies on the ability to directly infer the force

acting on the oscillator. We assume that we record the motion of the oscillator x(t) with perfect

precision (we will discuss the effects of imprecision and backaction later in this section). With this

record, we can also calculate ẋ(t) and ẍ(t). Assuming that the oscillator’s mass, damping, and

frequency are all known, one can then insert the record of the motion into Eq. 3.1 to directly infer

F (t) +Fth(t). Therefore, we see that ideally, we can perfectly infer the total force on the oscillator,

and therefore the force sensitivity can be understood to what force is required in order to reach a

signal-to-noise ratio (SNR) of 1.

Another way to define the noise floor of a force sensor would be to directly compare the scale

of the external force-induced motion to that of the Brownian motion. We will call this the motion

picture. One can perform this comparison due to the linearity of Eq. 3.1, where we can assume that

x(t) is of the form xF (t) + xth(t). One can then compare the spectral densities Sxx,F and Sxx,th to

derive a signal to noise ratio:
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Ssignal
xx = SFF (ω)|χm(ω)|2

Sthermal
xx = Sthermal

FF |χm(ω)|2.
(3.2)

Therefore, we see that an SNR of one is obtained when SFF (ω) = Sthermal
FF . We would like to say a

word of caution when applying this logic to a general force. Since we worked in the Fourier domain

up until this point, we have assumed that the force is applied for an infinite time such that the

motion is in the steady state when we calculate Sxx. In practice, this is equivalent to assuming

that the force has acted for a time much longer than 1/γ. For forces acting for times shorter than

1/γ, one does not reach the steady state of motion, and therefore the signal amplitude is also lower.

However, regardless of the integration time of the signal force, the oscillator is always in the steady

state of the thermal force. In other words, one would expect the root-mean-square amplitude of

the Brownian motion to always be
√
kBT/mω2

0. By comparing the now smaller signal amplitude to

the unchanged noise amplitude, we might infer that we have lower SNRs for shorter measurement

times. This is in direct opposition to the bound we placed in the force picture.

This apparent paradox can be resolved when considering the total contributions to the motion

of the oscillator. We can consider the total motion x(t) to be xhom(t) + xF (t), where xhom(t) is

a solution to the homogenous equations of motion for some initial condition of the system. xF (t)

can thus be considered to be the deviations that arise from external forces acting on the oscillator.

For short measurement times, the root-mean-square fluctuations of xF (t) will grow from zero, only

arriving at the expected Brownian motion amplitude for measurement times much greater than

1/γ. Therefore for short measurement times, the contributions to xF (t) from both the signal and

the noise grow at the same rate, thus resolving the apparent paradox. Practically, a determination

of xF (t) requires precise knowledge of the oscillator parameters, as well as the initial condition of

the oscillator. Thus both the force picture and motional picture require the same knowledge of the

oscillator parameters and also require low imprecision readout of the mechanical motion.

Given that both methods of inferring force from motion require precise measurements of

the displacement of the oscillator, it is important to examine the effects of imprecision noise on a
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force measurement. In this section, we will neglect the effects of backaction on the measurement.

However, this can be easily included by adding another white force term to all equations. We can

readily write down the complete noise power spectral densities in both pictures by comparing the

contributions of both the Brownian motion and the imprecision noise on the oscillator determined by

both the detection technique and strength. For this discussion, we will assume that the imprecision

noise is that of a Michelson interferometer studied in Ch. 2:

S(meas)
xx (ω) = 4kBTγm|χ(ω)|2 + S(imp)

xx (ω) (3.3)

S
(meas)
FF (ω) = 4kBTγm + S(imp)

xx (ω)|χ(ω)|−2. (3.4)

Here we see that the labeled inferred (measured) have a symmetry between the two pictures of

measurement, where the mechanical susceptibility acts as a filter to translate between the two

pictures. In the force picture, one is only limited by the thermal force PSD over a narrow bandwidth

that is defined by the range of frequencies in which the Brownian motion far exceeds the imprecision

of the system, as indicated in Fig. 3.1a,b. This readily identifies the advantages of pushing towards

better imprecision optical readout, achieved either with a high-finesse optical cavity or a Michelson

interferometer as discussed in Ch. 2, since doing so improves the bandwidth over which one is

limited by the fundamental force noise of the system. Fig. 3.1c,d shows the same concept but in

the motional picture.

With a strong enough readout, one could in principle measure the effects of force down to DC.

Measuring above resonance presents different challenges because the oscillator acts as an integrator

for frequencies exceeding its natural frequency. Practically, the bandwidth will also be influenced

by the multimode nature of the mechanical device, because the resonant response of the nearest

mechanical modes will generically be higher than the off-resonant response of the sensing mode.

In examining the effects of imprecision, we have revealed that a force detector functions well

over a finite bandwidth defined by the resonance of the oscillator as well as the vicinity of the

next nearest modes of the structure. For the sake of this work, we will then discuss resonant force
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(a) (b)

(c) (d)

Figure 3.1: Power spectral densities indicative of the noise floor for a force sensing measurement. In
all plots, red lines correspond to the thermal motion contribution to the noise, green lines indicate
the contribution from imprecision, and blue lines are the total noise floor. (a) and (b) show the
force noise spectral density over differing bandwidths. We see in (b) that one is limited by thermal
noise over a narrow bandwidth near resonance. (c) and (d) show an equivalent message in the
motional picture, where it is apparent that only near resonance the noise floor is determined from
the oscillator thermal noise.

detectors.

3.3 Functionalization for direct force sensing

Up until this point, we have analyzed the raw noise performance of a micromechanical force

sensor. However, we have not described the nature of a signal force. In general, introducing a signal

force requires an augmentation of the micromechanical device with a coupling agent, a process called

functionalization. This process can be performed in a variety of ways. As an example, the coupling

of the device to external optical forces can be enhanced via either deposition of a mirror coating onto

the oscillator or by patterning of a photonic crystal mirror into the resonator geometry itself [100].
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Or, a mechanical device could be coupled to external electric or magnetic fields by attaching a metal

or magnetic material directly onto the device. In general, an advantage of using a mechanical device

as a force sensor allows for a ubiquitous coupling to an external field since almost any material can

be attached to the micromechanical device.

In order for this augmentation to apply a force, there needs to be strong participation of the

coupling agent with the sensing mode. This can be seen directly from Eq. 1.21, where the effective

force imparted on the oscillator is calculated by an integration of the physical force against the mode

shape profile. This requirement presents a challenge to the researcher when designing direct force

sensors, but enables creative use of geometry to optimize device design [101]. Typically, we want to

probe the oscillator at the point of maximal amplitude for the best motional sensing performance.

However, such a location is also optimal for the location of the coupling agent. In general, we

cannot expect a sensing mode to have two distinct locations of maximal motional amplitude, and

therefore, it is often necessary to sacrifice imprecision in the readout for more coupling of the signal

of interest. We note that one advantage of the low-imprecision optical detection used in this work

(see Ch. 2) is that such a sacrifice can still result in a sensor with a large readout bandwidth.

Another issue with the necessity of the overlap between mechanical motion is associated

with mechanical loss. For the fabrication of a micromechanical resonator, we have the freedom to

select a low mechanical loss material. However, since the coupling agent needs to interact with an

external field, we do not necessarily have the freedom to select a low-loss material for the coupling

agent, leading to the possible introduction of additional dissipation into the resonator, hampering

the susceptibility of the device to thermal noise. This presents a dilemma: the introduction of a

relatively large coupling agent gives a larger signal at the cost of increased mechanical dissipation.

If the mechanical loss properties of the coupling agent are known, the mode shape of the device

including the coupling agent can be simulated and the added loss can be predicted, allowing for

an optimization of the signal-to-noise of the designed device. Practically speaking, the mechanical

loss properties are not known in general, and thus experimental verification of the added loss would

need to be performed.
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3.4 Spin sensing with tensioned silicon nitride mechanical resonators

Some potential sensing targets for precision force sensors are spin systems ranging from spin

ensembles down to the molecular or single spin level. The coupling of the motion of a mechanical

oscillator to the state of a spin system is a rather mature field at the time of writing this work.

Such a system has been widely utilized for the technique of Magnetic Resonance Force Microscopy

(MRFM). This technique, pioneered in the 1990s, seeks to image locations of spins in a target sample

via interaction between the motion of a mechanical oscillator and a time-dependent magnetization of

the spin system [98,102,103]. More concretely, the time-dependent magnetization of a spin ensemble

gives rise to a time-dependent magnetic field gradient, which can apply a force to a functionalized

mechanical resonator. Historically, these experiments were carried out with cantilever tips with an

added micromagnet [3,98,104–108]. These cantilevers can then be maneuvered close to the sample

of interest with techniques from atomic force microscopy (AFM), allowing for a small sample to

probe distance. This small sample to probe distance, combined with single-spin force sensitivity,

would enable direct imaging of single molecules [109–112].

Most MRFM protocols are performed in a relatively large quantization field of the spins, often

called B0, following the convention from the Nuclear Magnetic Resonance (NMR) field. The spins

are similarly manipulated with resonant RF driving schemes, arising from a time-dependent field

B1(t), usually generated from an external coil or transmission line. The goal of the external drive is

to generate a time-varying magnetization M(t) that has spectral components near the mechanical

resonance frequency and therefore can drive the motion of the mechanical oscillator. We note here

that typically driving of the spins is necessary to generate the coupling, despite the fact that the

Larmor precession of the spins can generate a time-varying magnetization. However, for typical

fields used in NMR and MRFM experiments, the Larmor precession frequencies greatly exceed the

resonant frequencies of micromechanical cantilever resonators, and therefore additional driving is

necessary to modify the dynamics of the spin system such that M(t) can change the mechanical

motion.
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MRFM is a powerful technique due to its ability to leverage the resonant nature of both the

mechanical resonator and the spin system in order to provide spatial information. A byproduct of

needing a micromagnet to generate the spin-motion coupling is an appreciable dipolar field that

penetrates throughout the target sample. This dipolar field changes the local magnetic field of each

spin, thus spatially varying the Larmor precession frequency. Therefore, when driving the spins,

only a fraction of the spins will be resonantly addressed by the driving scheme, and thus only a

small slice — the resonant slice — will affect the motion of the mechanics. The precise geometry

of the resonant slice dictates the spatial resolution of the MRFM technique.

The sensitivity of MRFM is demonstrated in a hallmark work of the detection of a single

electron spin [3]. The apparatus used in this experiment is displayed in Fig. 3.2. Here, all the

ingredients of the experiment are shown, including a rendition of the resonant slice. Since then,

the absolute resolution of MRFM has been achieved for systems of both nuclear and electron spins

to the scale of approximately 10 nm [105], with the current state of the art reaching the sub 1 nm

regime [113]. These improvements have been performed via a reduction in the probe to sample

spacing, as well as improved micromagnet designs which produce spatially narrower resonant slices.

These resolutions are on par with competing scanning probe technologies, notably those based

on Nitrogen Vacancy (NV) center defects in diamonds, which makes them a suitable platform for

future sensors capable of nanoscale magnetic resonance imaging (nano-MRI) [114]. Nano-MRI

capable sensors not only need exceptional spatial resolution but also require exceptional noise

levels in order to probe single nuclear spins. To inspect the scales of the problem, we can inspect

the form of the force from a single spin:

F⃗ = ∇(µ⃗i · B⃗) = µi∇(S⃗ · B⃗) (3.5)

where µi is the magnetic moment of the spin in question and S⃗ is the vector spin operator of the

spin in question. For the classic case of both the quantization field and spin pointing along the

z-axis, this formula simplifies to:
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Figure 3.2: MRFM experimental schematic from the first detection of a single electron spin [3].
Figure reused with permission from Spring Nature. The semi-hemispherical shell represents the
resonant slice, indicating where the probe is most sensitive to spins inside the sample. The spins
are manipulated with an external RF coil while the motion is monitored with a fiber interferometer.

Fz = µi
∂Bz

∂z
. (3.6)

It is evident from the form of Eq. 3.6 that large magnetic gradients benefit not only the spatial

resolution of the device but also the absolute sensitivity. We can compare the relative magnitudes

of the forces for electron versus nuclear spins. Assuming a state-of-the-art value for the gradient

of the magnetic field of 106 T/m [113], we can calculate that Felectron ≈ 10−17 N compared to

Fproton ≈ 10−20 N. From the relative size of the magnetic moments, the challenge of probing a

single nuclear spin is 1000 times more difficult. Given the relative difficulty of single electron spin

imaging, it is no surprise that cantilever-based MRFM has not been able to do the same for a single

nuclear spin.

Given that fundamentally the force sensitivity of a mechanical resonator depends on its

dissipation (Eq. 3.4, it is prudent to consider the use of tensioned resonators for MRFM experiments.

Notably, tensioned resonators benefit from dissipation dilution. Additionally, these resonators can

be engineered to have relatively low effective masses, which makes them excellent force sensors.
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The lowest observed level of thermal force on a tensioned Silicon Nitride resonator had a thermal

force power spectral density of 7 zN/
√

Hz, meaning that it could detect a single nuclear spin in less

than 1 second in principle [115,116].

Tensioned membrane resonators may also afford other advantages over bulk cantilever me-

chanical resonators. Tensioning of the oscillator leads to an increase in resonance frequency, from

the scale of 1 to 10 kHz for cantilevers to 0.1 to 1 MHz for tensioned membranes of or strings made

from silicon nitride. Working at higher frequencies has been shown to lead to a decreased level

of non-contact friction between the mechanical resonator and an external surface, and therefore

would in principle lead to smaller sample-to-probe distances [117]. Additionally, it is ubiquitous

for the surfaces of many materials to exhibit 1/f noise that is both electric and magnetic in na-

ture [118–120]. Thus working at higher mechanical frequencies will also allow for a reduction in

this added surface noise due to spectral suppression.

Attempts of MRFM experiments with tensioned silicon nitride resonators present unique

challenges [4,117,121]. Firstly, there is the obvious geometric problem associated with the mechan-

ical resonator being planar in nature. Positioning two planar surfaces less than 10 nm apart while

allowing for scanning capabilities is technically challenging, and thus probing a large planar sample

would be difficult when operating a membrane-based MRFM apparatus in the conventional MRFM

paradigm. This can be alleviated by modifying the configuration presented in Fig. 3.2. Here, the

membrane would house either the gradient source (or the sample), while an external tip that can

be brought close to the membrane surface would hold the sample (or the gradient source). Thus

the external tip would serve as the scanning implement affording the apparatus spatial information,

while the readout would be achieved by a stationary membrane. The choice of what to place on

the membrane — the gradient source or the sample — depends on the relative mass and dissipative

properties of both the prospective samples and the micromagnet. In the case of complex single-

molecule samples, which are typical targets of nano-MRI probes, we propose placing the sample on

the membrane. Samples of this size, and even larger, have been shown to not affect the dissipative

properties of low-dissipation membrane devices [117].
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Another challenge with performing MRFM experiments with a tensioned resonator is the

implementation of MRFM protocols for a MHz-scale frequency mechanical resonator. As stated

previously, the frequency mismatch between the Larmor precession frequency and the mechani-

cal resonator frequency necessitates driving the spin system to apply a resonant force. Many of

the state-of-the-art MRFM protocols applied to cantilevers rely on the motion of the mechani-

cal oscillator inducing adiabatic inversion of the spin system [3, 105, 122]. However, as resonator

frequencies increase, the transit of the mechanical oscillator past the spins occurs faster than adi-

abatic timescales. Additionally, such schemes are reliant on larger mechanical amplitudes achiev-

able by cantilevers, which may be difficult to achieve with stiffer tensioned mechanical devices.

A few protocols have been proposed that work at higher mechanical frequencies. Work with 1

MHz nanowire-based MRFM experiments has leveraged switchable gradient sources to generate

the spin-mechanical coupling [123–126]. Protocols that rely on a parametric modulation of the

coupling between two membrane modes have the advantage that the modulation need only oc-

cur at the difference frequency of the two modes in question, relaxing the speed requirement of

spin manipulatino [127]. Finally, operating at higher mechanical frequencies allows for a complete

disregard for the frequency mismatch problem by tuning the Larmor precession frequency and me-

chanical frequency into resonance. Oddly enough, this was the original proposal for MRFM, but

was ultimately rejected due to the technological problem of operating mechanical oscillators at

high frequency [102]. Such a protocol might be fruitful for future Nano-NMR experiments because

the mechanical motion couples directly to the transverse magnetization of the spin-system. This

prospect has led to the pursuit of a resonant detection protocol between a mechanical resonator and

a CaF2 spin ensemble. However, current signal-to-noise estimates arising from simple probe-sample

geometries indicate that resonant coupling would not be achievable without the implementation of

specialized nano-positioning equipment.
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3.5 Demonstration of electron spin detection with a trampoline resonator

In this section, we will discuss an experiment that sought to utilize a low-dissipation tensioned

resonator — a trampoline resonator — in an MRFM-like experiment addressing an ensemble of

electron spins [4, 121]. The main goals were to learn about the technical challenges associated

with coupling a spin ensemble to the motion of a tensioned, low-mass, mechanical oscillator. For

this experiment, a well-known electron spin sample of diphenylpicrylhydrazil (DPPH) was selected.

DPPH is used due to its high spin concentration of ρspin ≈ 2.1 ·1021 spins/cm3 and short relaxation

time, of 25− 80 ns. The high concentration will produce a relatively large force, and the fast decay

time allows for the use of the cyclic saturation technique [108,121,128].

Cyclic saturation can be understood first by identifying the role of the B1 field. For fast

decaying spins, the spins rapidly align to the external magnetic field. If the B1 field changes on a

timescale much slower than the decay time of the spins, then the spin system can be considered to be

in constant equilibrium with a slowly varying magnetic field. Thus the magnetization M(t) follows

the field, which oscillates at the mechanical frequency, thus generating a time-varying gradient that

can be used to drive mechanical motion. The modulation of the field can be carried out in a number

of ways. In this work, we explore both frequency and amplitude modulation of the B1 field.

For this demonstration, two functionalized trampoline resonators were used as the force

sensor. The resonators were mass-loaded with a NeFeB magnet. For this specific implementation,

a relatively small magnet was used (0.1 ng) such that the mechanical quality factor of the resonators

degraded minimally: the largest observed drop was from 4.5 × 106 to 2.4 × 106. The functionalized

device is presented in Fig. 3.3. Later in Sec. 3.6, we will discuss the functionalization of similar

trampoline devices with even higher mass loads.

To drive the spins, a microwave stripline circuit was used. The stripline tapered to a 90-

degree elbow in order to concentrate the field at this point. The sample of DPPH was deposited

at the elbow via the use of a glass tip and a micromanipulator. The stripline chip was electrically

contacted with a PCB via a conductive epoxy. In order to specify the sample-to-probe distance,
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Figure 3.3: (a) SiN trampoline resonator functionalized with an NdFeB magnetic grain a few
microns in diameter. (b) Zoom in to magnetic grain deposited on resonator tether.

the trampoline chip was placed inverted on top of the microwave stripline circuit in a flip-chip

geometry. The flip chip was assembled by maneuvering the trampoline chip — the top chip —

over the microwave stripline circuit — the bottom chip — with a vacuum chuck. The relative

separation between the two chips was monitored with an optical microscope. The vacuum chuck

was manipulated with a 5-axis translation-tip-tilt stage which allowed for proper alignment of the

two chips. Once the two chips were aligned, the flip-chip was secured by placing Stycast epoxy at

the corners. Following the curing of the epoxy, the magnet-sample distance could be determined

by adjusting the focus of the optical microscope.

A schematic of the completed apparatus appears in Fig. 3.4. For this specific implementation

of the experiment, the apparatus was placed in the vicinity of a strong NeFeB magnet in order to

define the ≈ 900 G B0 field for the experiment. The design of the microwave stripline is such that

the B1 field is transverse to both the B0 field as well as the direction of mechanical motion. The

mechanical motion was probed with a Michelson interferometer. The flip-chip assembly in addition

to the quantization magnetic were both housed in a vacuum chamber.

The experimental protocol was performed in a sequential manner. First, the thermomechan-

ical spectrum was measured in order to determine the resonant frequency of the sensing mode.

Next, the microwave circuit was driven with a signal with carrier frequency close to 2.8 GHz, which

is the expected electron Larmor precession frequency for the 900 G field used in this experiment.
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Figure 3.4: (Top) Experimental schematic for magnetic resonance force microscopy demonstra-
tion [4]. We detect electron spins in DPPH with a trampoline resonator using cyclic saturation.
Readout of the trampoline resonator is through a Michelson interferometer, with the signal arm
reflected from either the trampoline pad or from a gold reflector on the sapphire chip. (Bottom)
completed flip-chip assembly. The inset shows the elbow of the microwave stripline. At the elbow
resides the sample of DDPH.

This signal was first applied with modulation at the mechanical resonance frequency — either FM

or AM — followed by an experiment where the modulation was turned off. The monitoring of the

mechanical motion with and without the modulation allows for a determination of the effects of

spurious forces on the mechanical oscillator due to the microwave drive. These forces arise from

electrostatic interactions between the microwave stripline and trapped charges in the silicon nitride,

and would therefore be present without the spins. This protocol was performed for a sweep of MW

(microwave) carrier frequencies, as well as for a variable B0 field. The B0 field was tuned via an

external shim-magnet outside of the vacuum chamber. The FM frequency deviation was 10 MHz

for all experiments, while the AM modulation depth was 1 for all experiments.
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Figure 3.5: (a) MRFM resonance using an FM microwave drive. The MW frequency is swept at
a fixed magnetic field. Shown are the mechanical displacement (full blue), the corresponding force
signal (dashed red), and a fit of the FM signal (dotted black). (b) Same as (a), but here we sweep
the magnetic field at a fixed microwave frequency of 2.564 GHz and use device B. In both (a) and
(b), the input microwave drive power is -7 dBm. (c) MRFM resonance using an AM microwave
drive. We show a sweep of the MW frequency at a fixed magnetic field at two different MW powers
of -8 dBm (full green) and -3 dBm (dashed blue). Particularly using the AM technique, the spin-
resonance signal can easily be overwhelmed by spurious electrical forces, as observed at the higher
powers (dashed blue).

The results of this protocol can be seen in Fig. 3.5. Fig. 3.5a shows the FM results for

a swept MW carrier frequency. Here, one sees the observed increase in mechanical amplitude

(blue line), along with a simulation of the expected signal for a reasonable sample geometry (black

dotted line). Of note, the modeling revealed that a cylindrical sample geometry best explained the

observed signal. Despite the apparatus having no scanning capability, an adjustment of the MW

carrier frequency allowed for spatial information about the sample to be determined. In order to

match the absolute scale of the observed force, it was determined that there was an appreciable

loss in the MW delivery circuitry. Results for AM tell a less clear story, as seen in Fig. 3.5. Here,

one sees that for low MW powers (green line), there is a pronounced peak near the electron spin

resonance, as expected. However, an increase in MW power gives rise to spurious forces that are
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larger than the MRFM signal. This is well known within the field of MRFM and was pointed out

early in the history of the field [129]. It is notable that FM-based cyclic saturation is much less

susceptible to these spurious forces, and thus was more useful for our investigation. For this reason,

we also examine the dependence of the FM signal for a swept external magnetic field (Fig. 3.5b).

The existence of a similar signal to what was observed for a MW carrier frequency sweep reveals

the electron-spin-resonance origin of the force.

This demonstration exhibited the ingredients of an MRFM experiment. It used functionalized

mechanical resonators that allowed for coupling to a relatively large ensemble of electron spins.

To improve the spin sensitivity, there are a number of improvements to be made. Firstly, the

sample-to-probe distance was in excess of 10 microns for this specific implementation. Due to the

r−4 dependence of magnetic gradients from dipolar sources, reducing this distance could increase

the coupling by many-fold. Concretely, the gradients achieved in this experiment are 6 orders of

magnitude less than the state-of-the-art. We do not expect to be able to achieve sample-to-probe

distances of less than 100 nm while maintaining scanning capabilities, and therefore all future

implementations should be performed in a tip-membrane geometry. Additionally, the experiment

could be operated in cryogenic conditions. Under these conditions, the Brownian motion of the

oscillator greatly decreases, allowing for heightened force sensitivity. Also, an improved mechanical

resonator design — for instance simply using thinner membranes increases Q by a factor of the

inverse thickness — will also reduce the thermal force exerted on the mechanical resonator.

3.6 Mass loading of tensioned micromechanical resonators

In this section, we will study the effects of mass loading for tensioned mechanical resonators.

In this work, this study was carried out for applications towards magnetic force sensing, but could

equally be applied to other measurement paradigms, such as accelerometry. The details of the

analysis we will present have already been presented in published work as well as in other theses

of our group, so only the broad outcomes will be presented in this particular work [101, 130].

Nonetheless, the concepts will illuminate some of the complexity and open questions pertaining to
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the design of tensioned micromechanical sensors.

The analysis begins by considering a tensioned string resonator. In reality, the addition of a

load mass should be modeled as a full three-dimensional problem. However, if one considers only

the out-of-plane motion of the resonator, the system can be modeled as an Euler-Bernouli beam

system under tension, with spatially dependent material parameters. The overall analysis can be

further simplified by considering a somewhat constrained mass load located far from the supports

of the resonator. Here, one can model the mass load as a perturbation to the local mass density for

the wave equation part of the string equation [101]. In this limit, the mode shape and frequency

can be calculated from the following equation:

Eh2

12σ

∂4w

dx4
− ∂2w

∂x2
− ρ(x)ω2

σ
w (3.7)

where ρ(x) is a position dependent density. A simple analysis would be to inspect this equation in

the limit that ρ(x) is equal to the density of the silicon nitride everywhere, save for a small region

of length a where ρ(x) = ρ0 + ∆ρ. This increase in local mass represents a deposited mass that

functionalizes the device. The solutions to this problem can be studied in the low and high load

mass regimes. In the low load mass regime, the added mass is much less than the physical mass

of the oscillator. Here, the mode shape and mode frequency are very weakly perturbed, and the

mode structure is largely unchanged.

As the load mass is increased, the mode structure begins to change appreciably from the

unloaded case. In the high mass limit, the frequency of the lowest order mode of the device decreases

due to the increasing load mass, while the other mode frequencies stay roughly the same. This is

because all modes — except for the lowest order mode — have increasingly lower participation of

the load mass. This can be understood by noting that the elastically defined speed of sound in

the loaded region becomes much lower than the unloaded speed of sound, meaning that there is a

large impedance mismatch for traveling waves in the device at the interface of the unloaded and

loaded region. This impedance mismatch functions to prevent motion of the loaded region. A key
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insight is revealed here: higher order modes of a mass-loaded device have poor direct force sensing

capabilities due to the low participation of the mass, and therefore any applied force, on the motion

of these modes. Therefore, for sensing purposes, highly mass-loaded resonators are restricted to

the use of the lowest order mode of the device.

Figure 3.6: (a) Geometry of a tensioned beam under mass loading. (b) Superimposed mode shapes
for increasing mass load. The sinusoidal shape is the unloaded mode shape, while the triangular
shape is the saturated mode shape. (c) Frequency of the mass load as a function of mass loading
ratio R (left), as well as the wavenumber α of the oscillation in the loaded region (right). One sees
that the wave number saturates, giving rise to the saturation of the mode shape. (d) Calculated
value of the bending loss limited Qbend.

The lowest order mode has a different behavior. In the high mass limit, one expects that the

mode frequency drops due to the high load mass. At a certain point, the frequency drops below a

point at which the wavelength of a traveling wave in the unloaded region λ ∼ ω/(2π)
√

ρ/σ ≡ 2π/α,

where α is the wavenumber of oscillation in the unloaded region, will be much greater than the

absolute size of the device. Therefore, traveling waves will not appear to be sinusoidal in the



80

unloaded region. Rather, they will manifest as a linear displacement profile. Meanwhile, the loaded

region will experience a normal sinusoidal mode shape, albeit on a much shorter length scale. This

produces a triangular-shaped mode profile in the high mass limit. Another way of understanding

this is that as the frequency lowers, the system approaches a quasistatic limit, where the oscillation

appears as a slow oscillation of the static solution of the problem. Under this view, it is possible

to readily solve for the lowest order eigenfrequency by deriving an effective spring constant of the

string for a given small displacement of the load mass. The process of increasing the load mass

can be seen in Fig. 3.6. We note that after a relative mass load scale, that depends on both the

geometry and the density of the load, the mode shape ceases to change even while adding additional

mass. We call this phenomenon mode-shape saturation. We note that even though this analysis

was carried out for a one-dimensional tensioned string, it holds for a two-dimensional tensioned

membrane as well.

One ramification of mode-shape saturation arises when considering the dissipative properties

of the mode. As discussed in Chapter. 1, the internal losses of a mode are dictated by the geometry

of the mode, in particular by its bending. However, if the mode shape saturates, then the quality

factor of the mode saturates as well, a phenomenon we call Q-satuaration. This is seen in Fig. 3.6d,

where when the ratio of the load mass to the resonator mass R is much greater than 1, the internal

loss limited value of Q = Qbend saturates to a constant value, even though the mass continues to

increase. We note that the predicted value of Q in this limited is diminished from the bare value of

Q by over an order of magnitude. This decrease can be explained by a concentration of curvature

in the mass-loaded region.

This model, although simplistic, reveals key aspects related to the act of mass-loading a

tensioned resonator. However, there are aspects of real functionalization that it fails to capture.

Firstly, it does not take into account the three-dimensional aspects of the load mass, which needs

to be taken into consideration when wanting to model the material losses of the load mass [101].

Notably, one should consider whether or not there are mechanical modes of the load mass that

could couple to the resonator. If a coupling exists, it often is associated with increased mechanical
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losses because the load mass will not be tensioned, and thus does not benefit from dissipation

dilution [131].

With all of this in mind, it is pertinent to directly probe this theory of mass loading. Again,

this discussion will be brief, and the details are already presented in [101,130]. In this work, a silicon

nitride trampoline resonator was studied under mass loading. Trampoline resonators are notable

for their exemplary quality factors will also exhibit reduced modal masses, making them strong

candidates for force sensors [56]. Here, the trampoline resonator was mass loaded by epoxying a

magnetic grain to one of its tethers. This location was selected in order to reduce mechanical losses.

We note that adding mass to the central pad is sub-optimal due to higher mechanical losses, as

well as interference with free-space optical probing of the motion. The addition of the magnetic

grain allowed for a tunable load mass under similar mounting conditions.

Figure 3.7: (left) Microscope image of a trampoline resonator. The inset is a zoomed-in image of
the magnetic grain deposited onto the tether of the trampoline. (right) Measured quality factors
and frequencies of the device as a function of load mass. The open (filled) black circles correspond
to the device pictured in this figure with additional magnets added. Additional results from other
devices are indicated with other markers, where pink markers correspond to room temperature
results, and blue markers are the quality factors measured at 4 Kelvin. Small black dots are results
from FEA simulations including the loss of the epoxy. Small green dots correspond to the same
FEA simulation neglecting epoxy losses.

The results of this investigation are shown in Fig. 3.7. Here, we see that with added mass,

the quality factor of the mode does not necessarily drop, but rather plateaus to some relatively
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low value. This increased loss is accounted for by taking into account the losses in the epoxy

used to secure the load mass to the tether. We do not expect that epoxies will have low-dissipation

mechanical properties owing to their material design. However, we do observe that devices measured

at 4 Kelvin saw orders of magnitude increases in their quality factors, far exceeding what we would

expect for the increase of Qint of the silicon nitride [69]. Therefore, we conclude that the observed

quality factors in this experiment were dictated by the loss of the epoxy. Mass loading without

using a lossy material like epoxy would yield much better results, as indicated by predictions from

FEA simulations assuming epoxy-free loading of the device (Fig. 3.7).

These results are promising for tensioned mechanical sensors with large mass loads. We point

out that there have been other recent works that have investigated the limits of mass loading for

tensioned mechanical devices that observe similar trends in the large mass limit [131, 132]. These

developments are exciting, given the wide range of sensing targets that benefit from large load

masses. These include but are not limited to, magnetic force, gravity and acceleration. All of these

sensing modalities share the same property where the signal manifests itself as a force that scales

as the mass. Mathematically, we can write this as the signal in general as F (t) = βM , where F (t)

is the signal force, M is the load mass, and β is a proportionality constant that depends on the

sensing target of interest. For instance, in the case of an accelerometer, β = a(t), the acceleration.

Therefore, the force sensor we have created is actually a β sensor, and therefore we should consider

the spectral density associated with noisy fluctuations of β induced by the environment. With this

in mind, we can write the noise floor of the β sensor (assuming measuring close to resonance such

that imprecision of the motional readout is negligible) as:

Ssat
ββ =

4kBTω

MQ
=

4kBTkeff
M3/2Q

. (3.8)

Here, we have assumed that the sensing mode is operating in the saturated regime. Therefore, the

effective mass of the mode will be M regardless of probe location, because the load mass is much

greater than the physical mass of the bare oscillator. We have also used another property of the
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loaded regime, where due to the quasistatic nature of the mode profile, the keff associated with

the mode is constant. Therefore, we see that the sensitivity to β has a favorable M−3/2 scaling,

meaning that larger load masses can drastically increase the sensitivity of the sensor.

3.7 Effects of cold-damping for micromechanical sensors

One of the most ubiquitous effects in the field of cavity optomechanics is cold-damping,

or cooling of the mechanical motion. This is commonly achieved either through passive cavity

sideband cooling or through active feedback cooling schemes [35, 67, 72, 133–135]. Cooling of the

mechanical motion is useful for quantum operation of the mechanical oscillator, where operating as

close to the quantum ground state, or the equivalent of strong optomechanical coupling compared

to dissipation, is necessary. Damping, achieved either through active feedback or passively using

cavity sideband cooling, does not fundamentally improve sensitivity or bandwidth. In this section,

I will discuss this concept in detail, as well as examine broader situations where increased control

over mechanical motion required for some sensing protocols has been hypothesized to be mitigated

by damping in the presence of technical drifts or noise [4, 116].

A classical description of micromechanical damping can be described via the addition of a

damping force to the equations of motion. In addition, because the damping is achieved through

a connection to a cold bath, the temperature that corresponds to the Brownian motion also de-

creases [67]:

γtot = γ + γd (3.9)

Teff = Tinit
γ

γ + γd
. (3.10)

Under these assumptions, the product γtotTeff remains constant, meaning that the force sensitivity

SFF stays constant. This means that cold damping does not increase the force sensitivity as

dictated by the Brownian motion. This occurs, despite the lowered absolute scale of Brownian

motion resulting from the cold-damping. However, one cannot damp the thermal motion of the
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oscillator without also damping the response to the signal force. Therefore, no improvements can

be made by damping.

This analysis did not take into account the effects of imprecision in this measurement. In

a similar fashion to what was expressed in Eq. 3.4, where the imprecision of the measurement

manifests itself as force noise on the resonator. The only modification needed in this discussion

would be for the χ(ω) to correspond to that of a damping oscillator with a damping rate of γ + γd.

This is because when performing the cold-damping, the imprecision in the measurement gets fed

back to the oscillator in terms of an extra force term in the equation of motion.

Figure 3.8: Theoretical force power spectral density for an actively damped micromechanical res-
onator. Here the measurement efficiency was assumed to be ideal, and the readout was shotnoise
limited. Furthermore, it was assumed that the thermal occupation of the undamped resonator
was much greater than unity. For low values of damping, one sees that there are no appreciable
changes to the noise floor of the detector. However, for larger damping rates the imprecision noise
is fed back to the resonator as a force that is larger than the thermal force, resulting in diminished
performance.

One can see the ramifications of this in Fig. 3.8. Here, we see that at low damping rates, there

is no discernible change to the noise floor of the resonator. However, once damping rates become

larger, the added noise from the imprecision part of the damping becomes much larger than the

pure thermal force, and thus the performance is diminished. One thing of note is that although

damping of the resonator results in a wider resonant response bandwidth, it does not increase
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the sensitivity bandwidth for force detection measurements. Rather, the sensitivity bandwidth is

limited — for both damped and undamped oscillators — by where the motion of the resonator is

appreciably high with respect to the imprecision noise background.

This is not to say damping does not have technical advantages. As stated previously, working

in the force picture and motional pictures are equivalent in terms of pure performance, but the

former requires more post-processing of the motional signal in order to infer the force. Working in

the motional picture presents difficulties for transient signals that act over a time shorter than the

correlation time of the oscillator, but if that correlation time can be shortened — for instance by

cold damping — then the interpretation of the data becomes straightforward.

Another reason to damp is for other sensing modalities that infer an external drive via a

parametric change to the oscillator parameters. Typically, this parameter change results in a

resonant frequency shift, and thus many of these schemes rely on frequency tracking in order to

interpret the external signal. These schemes will be discussed later in this work when frequency

tracking is discussed in depth. However, a cursory consideration of the problem does reveal that

tracking lower dissipation (low γ) resonators presents technical difficulties owing to the narrow

spectral response of the resonator. Therefore, damping may aid in applications that seek to measure

frequency shifts high-Q mechanical modes for sensing purposes [5].



Chapter 4

Analysis of Membrane Phononic Crystals with Wide Band Gaps and Low-Mass

Defects

This chapter will overview a thrust in the Regal group to improve the force-sensing capabilities

of silicon nitride membrane resonators. The performance of resonant mechanical force sensors is

maximized when both the mass and dissipation of the sensing mode are minimized. To achieve

both of these design goals, we utilize a technique pioneered by Tsaturayn et al., where a silicon

nitride membrane is patterned with holes to create a phononic crystal (PnC) [49]. We expand upon

this technique in an exploration of a wide range of geometries, identifying principles and strategies

to create mechanical oscillators with excellent force-sensing capabilities that can be simultaneously

probed with free space optics. This chapter will overview this project, beginning with an analytical

model that brings an understanding of the structures explored in this work. We will also describe

the fabrication of these devices, identifying the specific challenges associated with creating patterned

silicon nitride-suspended structures. Finally, we will conclude with measurements of the dissipative

properties of an array of devices. The results of these measurements will inform future design

decisions when creating future membrane-based forced sensors.

A phononic crystal is an acoustic metamaterial that has discrete translational symmetry.

Much like the electronic energy levels of a solid-state crystalline system, the repeated unit cell

structure of a phononic crystal gives rise to a nontrivial energy spectrum that can have one or

more band gaps [136–138]. Acoustic band gaps can be utilized for a variety of applications. A

band gap defines a range of frequencies over which acoustic waves cannot propagate. This allows
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for the creation of acoustic shields, effectively decoupling an acoustic mode from the environment.

This shielding leads to a reduction of radiation loss of the structure, yielding low dissipation me-

chanical modes in a variety of structures [86,139–142]. For the application to tensioned mechanical

resonators, the use of phononic crystals was first applied to the patterning of the substrate, which

housed a simple membrane mechanical oscillator at its center [86]. However, this approach was

later extended to the patterning of the membrane itself [49]. Here, the membrane was periodically

patterned with a unit cell of holes, save for the center which was patterned in a unique defect

structure. This central defect has mechanical modes with resonant frequencies within the acoustic

bandgap. These modes oscillator throughout the defect, but upon impinging on the PnC structure,

this mode evanescently decays outward. This decay effectively decouples the mechanical mode

from its environment by suppressing the mechanical participation in the substrate and beyond.

In addition, the evanescent decay of the mode yields improvements in the internal dissipation of

the mode through a phenomenon called soft-clamping, where the effects of the clamped boundary

conditions at the edge of the membrane structure are also suppressed.

4.1 1D calculation of an acoustic band gap

We will now embark on a theoretical description of PnCs that applies to tensioned membrane

structures. To encapsulate many of the key concepts, we will begin by inspecting a 1D version of

the problem. We remark here that the analysis directly applies to PnCs in silicon nitride string

resonators [50, 51]. For a 1D tensioned string, the width of the string and 1D mass density can

be spatially modulated in order to define the PnC structure. Thus the equation of motion can be

stated as:

d2

dx2
[
I(x)E

d2w(x)

dx2
]
− T d2w(x)

dx2
− ρ1D(x)

d2w(x)

dt2
= 0. (4.1)

where I(x) is the geometrical moment of inertial, T is the tension, ρ1D is the 1D mass density, and

w is the out of plane motion. We note the generality of this model towards both tensioned and non-

tensioned mechanical resonators. For non-tensioned resonators, the periodicity required to produce
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band gaps arises from a periodically modulated moment of inertia or mass density. To accurately

predict the properties of the bandgap for a highly tensioned resonator, the 4th-order term can

be neglected for this analysis. Doing so reduces the equation to a wave equation with a spatially

dependent speed of sound. We can reduce the equation to an eigenvalue problem additionally by

also assuming harmonic time dependence:

c(x)2
d2w(x)

dx2
+ ω2w(x) = 0. (4.2)

In the above equation, c(x) is the spatially dependent speed of sound given as
√
T /ρ1D(x).

For this analysis, we will now restrict the class of structures we want to investigate. Many PnC

designs are constructed a relatively massive areas which we will call pads, connected by narrow

constrictions that we will call tethers. In the 1D model, the pads and tethers manifest themselves

as a speed of sound that can take on two values vp and vt, which correspond to the local speed of

sound in a pad and tether respectively. Therefore, within each region, pad, or tether, a solution to

the wave equation will appear as:

yk = Ake
ikx + Bke

−ik (4.3)

where k = ω/c. Interfaces between pads and tethers will then have reflection and transmission

coefficients given as the familiar Fresnel coefficients:

rpt =
vt − vp
vt + vp

(4.4)

tpt =
2vt

vt + vp
(4.5)

rtp =
vp − vt
vt + vp

(4.6)

ttp =
2vp

vt + vp
. (4.7)
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Here r and t correspond to reflection and transmission coefficients, while the subscripts pt and tp

indicate the interface type, either going from pad to tether or tether to pad.

To continue with our analysis, we can derive the motion across as a unit cell as a transfer

matrix M , which describes the transformation of the amplitude coefficients Ak and Bk across each

unit cell of the PnC. The total matrix M will then just be a product of the matrices for each

subsection

M = MhpMtpMtMptMhp (4.8)

Here Mhp captures the accumulated phase of the plane waves across the half pads at either end of

the unit cell. Mt does the same for the tether section, while Mtp and Mpt account for transmission

and reflection at each interface:

Mhp =

eikplp/2 0

0 e−ikplp/2

 (4.9)

Mpt =

tpt − rtprpt
ttp

rtp
ttp

− rpt
ttp

1
ttp

 (4.10)

Mt =

eiktlt 0

0 e−iktlt

 (4.11)

Mtp =

ttp − rptrtp
tpt

rpt
tpt

− rtp
tpt

1
tpt

 (4.12)

where lp and lt are the physical length of the pad and tether regions, and kp and kt are the wave

numbers in the pad and tether regions.

For an infinite, periodic structure, Bloch’s theorem states that translation of the solution by

one unit cell length (a) gives results in a phase factor multiplication of the original solution:

A1

B1

 = eiKa

A0

B0

 (4.13)
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where A1

B1

 = M

A0

B0

 (4.14)

Therefore we have the following eigenvalue problem

M11 M12

M21 M22


A0

B0

 = eiKa

A0

B0

 (4.15)

We note that M is a product of unitary matrices, which places a constraint on its components:

M11M22 −M12M21 = 1 (4.16)

Solving the eigenvalue problem gives us the implicit bandgap equation

arccosS = a (4.17)

S ≡ M11 + M22

2
(4.18)

or written more explicitly as:

S =
(V + 1)2

4V
cosω(tp + tt) −

(V − 1)2

4V
cosω(tp − tt) (4.19)

where V = vt/vt. We will refer to V as the contrast of the PnC, as it has direct ties to the properties

of the bandgap. tp and t are the transit times for the wave to traverse the pad and tether regions

respectively. The quantity tp + tt = ttot is of interest as it is inversely proportional to the 1st

bandgap center frequency.

An inspection of Eq. 4.17 reveals the condition for a bandgap as when |S| > 1, since it enforces

an imaginary wavenumber, and thus prohibits traveling wave solutions. The form of S reveals the

existence of multiple band gaps since the form of S is a sum of periodic functions in the variable ω.

Fig. 4.1 shows calculated bandgaps for a variety of relative pad and tether transit times. We observe
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Figure 4.1: Functional form of S2 for a variety of relative pad and tether transit time values. All
plots are calculated for a contrast parameter V = 3. Grey-shaded regions indicate theoretical
bandgaps. The title of each subplot indicates the transit time of the tether with respect to the
total transit time.

that the center of the nth bandgap is located at ωttot/(π) = n. This condition arises because of the

form of the 1st term in Eq. 4.19, which has large magnitude when ωttot/(π) = n. In the general

case of tt ̸= tp, there is a beating in the form of S between the two terms. This beating has the

effect of widening and narrowing certain bandgap orders. In the special case of equal transit times,

there is no beating effect. This has the effect of removing the even-order bandgaps while widening

the odd-order bandgaps. For the purpose of this work, we will only inspect the properties of the 1st

bandgap (lowest in frequency) as this bandgap is typically at the most accessible frequency scale.

In order to have a large design space, it is useful to maximize this bandgap width for a given value

of V . Therefore, working in the equal transit time case is ideal.

Under these conditions, we can derive an expression for the normalized bandgap width:

∆ =
∆ω

ωπ
=

2

π
arccos

(
− 1 − 6V + V 2

1 + 2V + V 2

)
(4.20)

Here, ∆ is the gap-to-mid-gap ratio. An inspection of Eq. 4.20 reveals that wider bandgaps are

produced for larger values of V .
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Figure 4.2: Geometry of the 2D to 1D conversion for a pad-tether unit cell. The blue box (orange
box) defines the pad region (tether region) of the PnC unit cell.

4.2 Equivalence between 1D model and 2D membrane PnCs

In this section we will investigate the applicability of 1D model results to 2D structures. The

approach we will take is to develop a way to map the geometry of a 2D unit cell to an effective 1D

unit cell. In doing so, we imagine a traveling plane wave through the 2D structure. Our assumption

is that mass that is transverse to the propagation of the wave will act to impede the progress of

the wave. With this in mind, we propose the following map:

g1D(xl) =

∫
G
g(xl, xt)dxt (4.21)

where xl and xt refer to the coordinates along the longitudinal and transverse wave directions

respectively, and G refers to the domain of a single unit cell. This mapping effectively collapses

the 2D geometry along a single dimension, giving rise to an effective corrugated width. Upon per-

forming the mapping, translation to the pad-tether model presented above requires an assignment

of “wide” pad regions and “narrow” tether regions. Assigning these regions is somewhat arbitrary

and depends heavily on the geometry of the unit cell.

In this work, we will investigate two unit cells. The first appears in Fig. 4.2, where we have

also highlighted the regions assigned to be pads and tethers. It is apparent that this design strongly

reflects a pad-tether geometry, by design.
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For unit cells of this type, the selection of the pad and tether regions follows naturally from

the 2D geometry. Furthermore, the integration carried out in Eq. 4.21 can be carried out using

geometric properties. This procedure will perform the transformation (wp, wt, lp, lt) → (w̃p, w̃t, l̃p, l̃t)

of the geometric parameters.

Following this procedure, we derive the following:

ρp =

√
3

2
wphρ +

lttwh

wp
(4.22)

ρt =
4√
3

wphρ (4.23)

l̃p =lp (4.24)

l̃t =

√
3

2
lt (4.25)

T̃ =
4√
3
σtwh (4.26)

ṽp =
[3wpρ

8twσ
+

√
3lρ

4wpσ

]− 1
2 (4.27)

ṽt =

√
σ

ρ
(4.28)

Inserting these parameters into the 1D model allows for an analytic prediction for unit cell properties

without calculating the 2D band structure.

We also study other types of unit cells in this work, namely those developed by Tsaturaryan

et al [49]. The unit cell geometry can be seen in Fig. 4.3a. Here, a honeycomb lattice is formed

from circular holes patterned into the membrane. In this case, a delineation between pad and tether

regions is not so well defined. In fact, it can be seen that performing the collapse procedure on

this unit cell yields a rather non-trivial form of the effective 1D unit cell, as shown in Fig. 4.3b.

However, here we see that there are well-defined dips in the functional form of g1D(x), which we

will elect to define as the “narrow” tether regions. We define the effective pad and tether widths

as being the average of g1D(x) over these respective intervals. A test of the use of this convention

can be performed when calculating the true 2D unit cell band gap.

To calculate a 2D bandstructure, the eigenmodes of a single unit cell can be calculated

by treating Eq. 1.11 as an eigenvalue problem with Floquet boundary conditions. Analytically
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Figure 4.3: Schematic of 1D collapse for a low contrast unit cell. (a) Definition of pad and tether
regions inside the low contrast unit cell. (b) Resulting 1D geometry from performing the collapse.
The grey regions indicate the high-velocity tether regions used to define V for this unit cell.

speaking, this is a difficult calculation, but it can be readily performed with FEA simulations,

which is the approach we will take here. Fig. 4.4 shows the results of such a calculation for a given

instance of a unit cell. The left-hand side of the plot shows the physical unit cell, as well as a

representation of the unit cell viewed in the reciprocal space of the lattice. Key points in reciprocal

space are labeled accordingly. An inspection of the calculated band structure indicates that there

is no true bandgap for this structure. Due to the high aspect ratio of this membrane structure,

there is a large frequency mismatch between out-of-plane membrane modes and other polarizations.

Therefore, while there may be a bandgap for the out-of-plane modes that are usually interested in,

generically we observe that other polarizations can persist within this gap.

To test the validity of the 1D model in terms of predicting the properties of band gaps, we

can directly compare the results of the 1D model predictions to the results of the 2D model. These
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Figure 4.4: Schematic of the procedure to calculate the 2D bandgap. The left-hand side shows the
physical unit cell, as well as a schematic representation of the unit cell in reciprocal space. The
right-hand side shows the calculated band structure with the bandgap shaded accordingly.
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Figure 4.5: Band gap widths as a function of mass contrast as determined from the 1D model.
Comparison between different models of the bandgap to mid-gap ratio (∆) versus PnC contrast
(V ). Analytic prediction of the 1D model (solid blue line), finite element simulations of equivalent
2D structures (blue circle markers), experimental results of device A (red star marker) and device
B (yellow square).

results are seen in Fig. 4.5. It can be seen that over a wide range of geometries, the gap-to-mid-gap

ratio ∆ is accurately predicted by the 1D model, over a large range of geometries. Amazingly, this

is true even for the second type of unit cell, despite the lack of a clear pad-tether delineation. The

overall trend presented here shows that larger values of the contrast V result in wider bandgaps.

Increasing the contrast can be accomplished by increasing the ratio of pad width to tether width.

One trend that is not reflected in Fig. 4.5 is that by increasing V , there is a tendency for the

center bandgap frequency ωπ to decrease. This is due to the fact that by introducing wider pads,

the stress within each pad must decrease, resulting in a longer net transit time over the unit cell.

Therefore, it is not viable to increase the band gap width to arbitrarily high values without lowering

the frequencies of all of the eigenmodes.

4.3 Effects of contrast on defect modes

In this section, we will study the effects of contrast on a general defect mode. In doing so,

we will study the properties of the defect modes as a function of the contrast parameter. At the

outset, we would like to examine the effects of contrast on the soft-clamping effects of defect modes.

As stated previously, soft-clamping refers to how a defect mode in a membrane PnC evanescently
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decays into the PnC crystal bulk. Since the mechanical motion at the boundary of the membrane

is largely suppressed, the clamped boundary condition at the edge has a minimal effect on the

dissipative properties of the mode. However, we expect the effects of soft-clamping to be influenced

by the contrast of the PnC. In the bandgap, the wavenumber of a defect mode becomes imaginary,

leading to exponential decay in the surrounding structure. For higher contrast PnCs — which

means wider band gaps — the corresponding decay length is expected to be shorter. A shorter

decay length has the effect of concentrating the curvature of the mechanical mode over a shorter

distance, which might lead to increased dissipation. However, this would mean more isolation of

the mechanical mode. Not only does more isolation lead to less radiation loss, but it also might

reduce residual effects from the true clamped boundary conditions at the edges. It is not apparent

at the outset which effect will be stronger.

To investigate this, we will work in the 1D pad-tether model, with the addition of a 1D defect

consisting of an omission of a pad at the center of a finite 1D PnC. We will sweep the contrast

while scaling the pad and tether widths to keep the unit cell transit time — and thus the band gap

with — constant. We do this in order to keep the defect mode frequency constant and centered in

the bandgap. We will then monitor the properties of the defect mode as a function of V , notably

the Q and the decay length. The results of this study are presented in Fig. 4.6. We see that as the

contrast increases, the gap-to-mid-gap ratio also increases ∆. In doing so, the defect mode has a

shortened decay length n0, expressed in units of the unit cell length. At the same time, the bending

loss limited quality factor Qbend also decreases. This simulation takes into account the effects of

clamping loss at the edges. Therefore, we can infer that the effects of the shortened decay length

outweigh the effects of diminishing the true clamping losses at the edge of the membrane. This

reveals a tradeoff for increasingly high-contrast PnC devices, where wider bandgaps diminish the

effects of soft-clamping.

We also investigate the effects of contrast on the phononic isolation of a mode. By phononic

isolation, we mean the ability for a PnC to energetically isolate a defect mode from the environment

and vice versa. We will perform this investigation in a finite, 2D setting. The comparison will be
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Figure 4.6: Top: Orange points correspond to defect-mode frequency as a function of ∆. The
bandgap is shaded in grey. Bottom: blue points show the defect mode decay length in units of
unit cell length. Open grey points show the prediction of the bending loss limited Q = Qbend.
Overall, the trend is that while the decay length decreases, the predicted bending loss limited Q
also decreases.

between two devices with distinct unit cells and is mainly done to reveal conceptual trends. As a

way to probe isolation, we will sweep the number of unit cells used to construct the finite structure.

To quantify the isolation, we will compare the fraction of energy of the mode that is contained

within 10 microns of the clamped boundary, a ratio called ∆U . Fig. 4.7 shows the results for two

such devices, one with a high contrast PnC, the other with a low contrast PnC. We see a few

trends, the first of which is that lower contrast PnC provides a much stronger degree of phononic

isolation. In addition, the rate at which the isolation increases per unit cell added to the structure

is much higher than that of the low contrast PnC. This reveals an advantage of high-contrast PnCs,

namely that an appreciable amount of phononic isolation can be achieved with relatively few unit

cells, meaning that the overall membrane size will be smaller. Smaller membrane sizes present

technical advantages in the context of cavity optomechanics. Low-frequency membrane modes

will have higher absolute Brownian motion due to the equipartition theorem. When situated in a
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high-finesse optical cavity, these membrane modes will be seen as a cavity length change that can

destabilize the optomechanical system, often requiring active damping of these modes in order to

lock the optical cavity [37]. Therefore, devices based around high-contrast PnCs have the potential

to yield more stable systems overall.

Figure 4.7: Comparison of the phononic isolation of two membrane PnC devices extracted from
FEA simulations. The high (low) contrast PnC results, as well as the corresponding unit cell, are
highlighted in red (yellow).

In regard to contrast, we have identified a few tradeoffs. Firstly, high-contrast PnCs afford

more phononic isolation, meaning that radiative losses can be suppressed strongly with fewer unit

cells. Such devices will therefore be smaller in footprint, which has a few advantages. The first is the

reduction of thermal motion of the fundamental membrane modes of the structure, which will give

rise to better stability in high-vibration environments. Also, the smaller device footprint will allow

the PnC structure to better thermalize under local heat loads. We will discuss this topic in depth in

Ch. 5. However, working with higher-contrast PnCs comes at the cost of higher internal dissipation.

When considering which PnC to use for a certain application, it is therefore important to consider

what the expected loss pathways will be. For room temperature applications, internal losses are

expected to be higher, and thus one should use designs with are more soft-clamped, and therefore

have lower contrast. In cryogenic conditions, especially at dilution refrigerator temperatures, Qint

can become more than 10 times higher than the room temperature values, meaning that radiative

losses can become dominant [115]. Additionally, more phononic isolation can lead to the suppression
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of external vibrations, which are a source of technical noise in cryogenic systems. We thus identify

higher contrast PnCs to have advantages at these temperatures.

4.4 Fabrication of silicon nitride membrane PnC devices

In order to test the concepts revealed in the previous section, we elected to fabricate an array

of membrane PnC devices with a wide range of both PnC unit cell and defect geometries. Here we

will describe the fabrication process.

Devices were fabricated on a 375 µm thick 3-inch diameter silicon wafer with 100 nm of grown

stoichiometric LPCVD silicon nitride on either side. Designs were patterned using a direct write

photolithography system after spinning 1 µm of SPR-660 photoresist onto either side. The top

of the wafer was patterned with the PnC designs, while the back was patterned with rectangular

windows aligned to each PnC. The patterning was done on both sides with 300 mJ cm−2 of 405 nm

light. During these steps, the wafer was affixed to a sapphire carrier wafer with Crystalbond 509 in

order to protect the bottom side from unwanted processing. Patterning of the silicon nitride was

completed via a CF4 reactive ion etch. The wafer was then cleaned with O2 plasma followed by

ultrasound cleaning in an acetone bath. Additional cleaning was performed with isopropyl alcohol

and water.

Figure 4.8: Comparison between 2-sided and 1-sided KOH etching. Displayed is a cross-section of
the wafer following photolithographic patterning of the window and device side of the wafer. The
top row shows the initial configuration of the wafers, as well as locations of KOH etching (blue
arrows) and projected anisotropic KOH etching pathways (dashed arrows). The bottom row shows
the etch part way through for the 2-sided etch, and completed for the 1-sided etch.
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Figure 4.9: top left: window side of the wafer prior to the KOH etch. The wafer was patterned with
trenches of exposed silicon nitride to be used as score lines for dicing. top right: PEEK chuck inside
of KOH bath. bottom left: device side of the wafer post-KOH etch. Labeled are the “diamond”
membranes that resulted from poor corner compensation of the dicing trenches. bottom right:
wafer viewed from the back post etch.
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To suspend the PnC structures, the window side of the wafer was etched using an 80 C KOH

bath. The PnC side was protected via a PEEK wafer holder. Following wet etching, the wafer

was cleaned in a Nanostrip bath, acetone, and isopropyl alcohol. We note that the KOH etch

step of the process has many technical aspects that warrant discussion. Notably, we found that a

one-sided KOH etch was necessary for devices to survive KOH etching. This contrasts a similar

process used for trampoline resonators, where a double-sided KOH etch is sufficient. A schematic

of the anisotropic etch geometry is shown in Fig. 4.8 in the two cases. For the 2-sided etch case, we

see that at some point part of the way through the etch, there will be large islands of suspended

silicon below the patterned device structure. We expect these islands to be unstable and provide

potential failure points for the etching process. For a PnC device, there are hundreds of such failure

points, meaning that the probability that a single tether breaks during the etch to occur with high

probability. For a trampoline, the number of failure points is much smaller, meaning that double-

sided etching is sufficient for fabricating trampolines with relatively high yield. We can circumvent

this issue by doing a single-sided etch. For a single-sided etch, these islands of silicon are etched

prior to the release of the PnC structure, alleviating the issue entirely.

Single-sided etching requires specialized cleanroom equipment. For this specific fabrication

run, an AMMT wafer-holder single PEEK wet etching chuck was used to hold the wafer in a bath

of KOH. KOH is prevented from attacking the backside of the wafer by an o-ring pressed against

the front side of the wafer. Care needs to be taken when situating the wafer in the KOH bath. The

chemical nature of the etch produces large amounts of H2 bubbles to form throughout the etch.

If the buoyant force on a bubble pushes it into the device, the surface tension of a single bubble

has the potential to destroy an entire membrane. Thus the wafer should be situated such that

the bubbles have a free pathway to the surface of the KOH bath, which amounts to angling the

windows slightly upward in the KOH bath.

In order to dice the wafers post-etch, a “candy-bar” approach was utilized. On the window

side of the wafer, 150-micron-wide trenches of nitride were exposed in the photolithography step.

The subsequent KOH etch will cut grooves partway through the silicon wafer, defining score lines
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around each chip. Applying light torque to the now-scored chip along a score line will induce

a separation of the wafer along said line. A repetition of this process allows for each chip to

be separated from the wafer individually. This particular fabrication run had one unexpected

consequence of this approach. At the intersection of two perpendicular trenches, the KOH etch

will attack each of the four corners to etch a diamond pattern in the silicon wafer. With the

trench dimensions used in this fabrication run, this amounted to unintended diamond membranes

being etched at the corner of each intended device chip (Fig. 4.9). For future fabrication runs, the

geometry of the trenches at intersection points should be changed as to avoid this effect.

4.5 Characterization of PnC membrane devices

This fabrication run of the experiment produced 7 distinct device geometries. For the interest

of simplicity of analysis and narrowing the focus of the study, 5 of these devices were measured at

both room temperature and 4 Kelvin. We will call these devices A − E for identification. Across

all devices, 2 devices have a high-contrast unit cell (devices A and E), while 3 devices have a lower-

contrast unit cell (devices B, C, and D). The unit cell dimensions of each device are delineated in

Fig. 4.10.

For this particular characterization, we elected to use an alternative optical interferometer to

what was described in Ch. 2. Here, we construct an etalon by placing the device in question on top

of a highly reflective mirror. The etalon was assembled such that there was likely a tilt between

the mirror and device, meaning that the reflected light from the etalon had two beams: the prompt

reflection from the device chip and the reflection from the highly reflective mirror (higher orders of

the etalon can be neglected if the etalon is not well aligned). We note that if the etalon is perfectly

aligned, conservation of energy prohibits a power fluctuation when probed in reflection due do the

perfect reflectivity of the bottom mirror. Combining these two beams on a single photodetector

generates power fluctuations of the light which correspond to the motion of the micromechanical

device (see Fig. 4.11). We note that this scheme of measurement is not easily calibrated, since

that requires precise knowledge of the etalon. However, this work mainly was interested in the
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Device a1 a2 nx ny wp wt rc

A 100 µm 172 µm 12 7 30 µm 2.5 µm –

B 87 µm 151 µm 19 11 – – 23 µm

C 111 µm 192 µm 9 5 – – 31 µm

D 67 µm 116 µm 15 9 – – 18 µm

E 100 µm 172 µm 12 7 30 µm 2.5 µm –

Figure 4.10: Critical dimensions for the unit cells of all fabricated devices. Dimensions in the table
are defined above. nx, ny are the unit cell numbers of the PnC along the X, Y axes. Table entries
are omitted where they do not apply. Fabricated devices for A and C included fillets of radii 2.5 µm
at the sharp corners of the pad.

dissipative and spectral properties of the motion, and thus calibration was not necessary. We do

note that this method of measurement most likely has poor imprecision properties due to a lack

of control between the DC phase offset between the two beams. Practically speaking, a ad hoc

method was developed in order to maximize the sensitivity of the measurement. The method

began by performing a network analyzer measurement of the device where the drive was supplied

via a piezo situated beneath the etalon. This driven measurement allows for the identification of

resonances even in the case of low sensitivity. Once a mechanical mode is identified using this

method, the drive is paused on resonance, while the network analyzer signal is continually recorded

in a zero-span setting. In this configuration, the optics are incrementally aligned to maximize

the network analyzer signal, and thus optical coupling to the mechanical mode of interest. This

procedure is terminated once the sensitivity is maximized.

Example spectra for devices A and B are shown in Fig. 4.13. We see that when probing in the
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Figure 4.11: Schematic of the experimental apparatus used for measuring both mechanical spectra
and ringdowns. The mechanics chip (green) is affixed atop a stack of a piezo electrical transducer
(dark blue) and a highly reflective mirror (light blue). This stack is mounted onto a stage linked to
the sample stage (cold stage) for room temperature (4K) measurements. The solid box represents
the vacuum shroud for both the room temperature and 4K apparatus while the dashed box repre-
sents the radiation shield present for 4K measurements. The reflected light off the stack is sent to
a photodiode via a polarizing beam splitter.

crystal bulk, a wide frequency band of no mechanical modes is observed, indicating the existence

of a bandgap for out-of-plane modes. In order to observe the bandgap, one must probe on a tether

rather than a pad. This is because modes with frequencies above the upper band edge consist

of primarily the motion of tethers, while the pads stay stationary. Repeating this measurement

while probing near the defect reveals extra mechanical modes inside of the bandgap, revealing the

existence of in-band-gap defect modes. For the case of device A, there is one such mode, near the

lower band edge, while for device B, there are many defect modes inside of the bandgap. We see that

by comparing the spectra for devices A and B, the higher contrast PnC has a much wider bandgap

than that of device B as expected. All devices were measured at room temperature and 4 Kelvin.

This was done in order to observe a difference in the dissipative properties of silicon nitride, as well

as other thermal effects. For the spectrum, measuring at 4 Kelvin had the effect of lowering the
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mechanical frequency of all modes. We attribute this to a differential thermal contraction between

the silicon nitride membrane and the silicon substrate. Since the frequencies dropped, we believe

that the stress of the silicon nitride dropped. This means that the silicon substrate contracted more

than the silicon nitride membrane.

Figure 4.12: (a,b) Optical microscope image of high and low mass contrast PnC devices containing
a defect respectively. The displacement of the devices was measured both in the crystal bulk (blue)
and at the defect (orange). (c,e) Thermal noise spectra of the high contrast device on a logarithmic
scale. The defect mode shown in (e) is the fundamental symmetric mode. (d,f) Mechanical spectra
for the low contrast device on a logarithmic scale. The device was driven with sufficient white noise
in order to observe all expected defect modes. The spectrum shown in (f) contains 5 separate defect
modes within the bandgap, including the second symmetric mode examined in this study. Defect
mode frequencies in both (e) and (f) agree with predictions from 2D FEA simulations. Mechanical
modes that appear inside the bandgap in (d) have quality factors less than 100 and therefore are
most likely hybridized modes between the membrane and the silicon chip or mounting assembly.

For all modes studied in this work, the dissipative properties were obtained by performing

ringdown measurements. After obtaining the resonant mechanical frequency, a strong resonant
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drive was applied to the piezoelectric transducer situated below the mechanical device. After a

sufficient drive time, the piezo signal was quickly turned off, allowing the oscillator to freely decay.

In order to characterize the linear properties of the oscillator, the drive was adjusted on a mode-

by-mode basis in order to avoid driving to high amplitudes (greater than 1 nm) as to not activate

the Duffing nonlinearity term in the equations of motion [77]. Since these measurements were not

calibrated, network analyzer measurements sweeping across resonance were performed in order to

determine the onset of nonlinearity. The quality factor was then extracted from the free decay time

of the mode’s motion.

Figure 4.13: Example ringdown of the symmetric defect mode (resonant frequency of 2.55 MHz)
of device B. The resonant drive was turned off at t = 0. The dashed line is an exponential fit to
the free decay of the motion.

In general, all devices measured have multiple defect modes. This work narrowed its focus to

defect modes that are symmetric, or that have the center pad of each defect moving appreciably.

Such modes have relatively large pads conducive to optical probing, even in high-finesse optical

cavities. This means that the effects of imprecision on the force sensitivity of these modes can be

minimized, leading to larger detection bandwidths.

The defect modes and devices that we will analyze appear in Fig. 4.14. Here, we designed a

series of defects of variable characteristics and performance. The top row of Fig. 4.14 shows optical

microscope images in the vicinity of the geometric defect for the devices studied in this work. The
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Figure 4.14: Compilation of all devices presented in this work. In the first row are optical micro-
scope images of suspended phononic structures. Above are device labels that correspond to device
properties plotted in Fig. 4.15. The second row presents FEM simulations of symmetric defect
mode shapes. The third row shows FEM simulations of the static stress distribution normalized to
the film stress. The fourth row displays the normalized bending loss density.

second row in Fig. 4.14 shows the displacement of each defect mode. We see that the modes have

motion that is heavily confined to the vicinity of the geometric defect. The final two rows show the

stress distribution and curvature map of each mode respectively. Note that the symbols at the top

of Fig. 4.14 function as a legend in order to read Fig. 4.15.

Fig. 4.15a shows the observed quality factor at ambient and cryogenic temperatures for the

defect modes tabulated in Fig. 4.14. These observations are plotted against a quantity Ls defined

as follows:

κ =
1

U
(∂2

xu(x, y) + ∂2
yu(x, y))2 (4.29)

Ls =

∫
κ(x, y)dxdy (4.30)

where U is the energy stored in the mode. We note that this is just another way to express
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the expected bending-loss-limited quality factor of the mode as defined in Eq. 1.44 but with less

modern conventions on notation. However, it is still a valid way to predict the observed Q, and it

was used in this section of the work. In Fig. 4.15a the expected Qbend is plotted as dashed lines

as a function of Ls. The first notable trend is the increase in quality factor for the 4 K data.

This amounts to an improvement in Qint by about a factor of 3 just by lowering the temperature

of the device. We see that broadly, the theoretical values of Ls map well to the observed quality

factors at both room temperature and 4 K. Notably, we see a spread in the dissipative properties

across all modes. At room temperature, the devices housed in low-contrast PnCs tend to have

the highest values of Q, as would be expected from 1D model simulations. This trend does not

necessarily occur at lower temperatures, where the high-contrast structures exhibit higher increases

in Q. There is a possibility that the low-contrast devices began to see effects of radiative losses for

these measurements, but given the low-sample size of these measurements, we cannot necessarily

claim that this was the reason for the observed effect.

For the low-contrast devices, we see a large change in Q resulting from the specific defect

design. The reason for this can be seen in Fig. 4.14 in the form of the curvature map. For device E,

the large central map exhibits a complex yet overall relatively large form of curvature, which should

result in a lower quality factor. This curvature results from the geometry of this specific defect,

where the large pad is held at only 6 points and has low stress. Since the edges of the pad are free

to move, the motion of the center of the pad leads to the large curvature at the edges. Device A

has the same defect archetype — a trampoline embedded in a PnC — albeit with a much smaller

pad. The smaller pad size largely alleviates the curvature contribution from the pad. We note that

the effect observed in device E is not solely defined by the presence of a large, stress-released pad,

as evidenced by the same characteristics arising in device B. Rather, we assert that the support

structure of the pad plays an important role in defining the dissipation. Device B supports the

released pad with an intricate network of higher-stress tethers, which restricts the motion at the

pad edges. This reduces the curvature greatly, giving rise to a large-pad device with low dissipation.

This specific study targeted the design of micromechanical membrane-based force sensors.
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Figure 4.15: (a) Quality factor dependence on the loss factor Ls for all fabricated devices, measured
at room temperature (orange), and at 4 K (blue). The symbols correspond to the key presented in
Fig. 4.14. Dashed lines represent calculated Q-values determined from bending losses, with E2 =
80 MPa for the room temperature data and E2 = 17 MPa for 4 K. (b) Calculated force sensitivity
at room temperature (orange) and at cryogenic conditions (blue). The box is to emphasize the
similarity in defect design and performance between devices A and C.

The force sensitivity of each mode is thus plotted in Fig. 4.15 against x−1
zp which is proportional

to m
1/2
eff for each mode. Overall, the general trend is that the less massive modes yield the best

force sensitivity. Notably, we have indicated the two best devices, devices A and C as having the

same defect archetype — a small pad trampoline — but housed in the two PnC types studied in

this work. The performance of these two devices is relatively self-explanatory, being that they have

small physical mass while also being soft-clamped, and thus low dissipation. We note that the

rather weak performance of device D, which despite having a trampoline design for its defect, has

poor force sensing capabilities. This is due to the mode geometry, which has a large participation

in the low-contrast PnC structure. This specific device targeted a higher-order symmetric mode of

the defect, which results in an antinode of motion residing at the defect-PnC interface. This results
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in a larger PnC participation in the mode, and therefore high effective mass.

Device ωm/2π xzp ∆ ∆U wdefect ω0/2π

A 1.65 MHz 3.8 fm 0.55 5.6 × 10−7 15 µm 189 kHz

B 2.55 MHz 1.4 fm 0.17 2.3 × 10−2 130 µm 174 kHz

C 1.70 MHz 2.2 fm 0.19 6.9 × 10−2 30 µm 242 kHz

D 3.41 MHz 0.6 fm 0.24 3.2 × 10−2 30 µm 246 kHz

E 2.39 MHz 1.1 fm 0.55 1.9 × 10−8 80 µm 181 kHz

Figure 4.16: Tabulation of key parameters for each symmetric defect mode for all fabricated devices.
Note the correlation between ∆ and phononic isolation (∆U).

In a discussion of the overall performance of these devices, we see that these devices reach

the 10 aN/
√

Hz scale. This number can be improved in a myriad of ways. Firstly, reducing the

thickness of the membrane results in an increase of the force sensing. It can be shown that for soft-

clamped modes, Q ∼ 1/h and meff ∼ h. Therefore,
√
SFF ∼ h. 20 nm silicon nitride membranes are

routinely used in optomechanical experiments, so we anticipate that these exact devices fabricated

from 20 nm membranes would perform at the aN/
√

Hz scale [1, 49]. Additionally, operating at

dilution refrigerator temperatures would provide 100 zN/
√

Hz performance from the temperature

decrease alone. One should expect even better than this scale since Qint of silicon nitride also

improves at these temperatures. Further improvements could be made by changing the geometry

of the defect modes studied. As noted in Tab 4.16, the defect pad width was maintained to be at

least 15 microns in this work. This was chosen to be readily read out by free-space optical beams

and to be easily interfaced with high-finesse Fabry-Perot cavities without added technical noises.

If one relaxes this constraint, improvements can be made.

To see why, we will make scaling arguments of SFF for 1D and 2D defects. The only param-

eters we need to consider are Q and meff in this discussion. It is important to delineate between

1D and 2D defects since meff will have different scaling for each. One scaling to explore would be

to look at the frequency dependence of the force sensitivity for soft-clamped modes. We imagine

scaling the frequency by changing the length scale of the device in question, where the frequency

f ∼ 1/L, where L is the length scale of the device. It can be shown that Q ∼ f−2 for soft-clamped
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modes [51]. Therefore, SFF has a scaling of Ln−3, where n is the dimensionality of the defect.

Therefore, we see that for both 1D and 2D devices, larger devices yield improved force sensitivi-

ties, with a stronger scaling for 1D devices. We should note that this scaling runs into technical

difficulties rather quickly. To our knowledge, the longest silicon nitride string resonators fabricated

to date are 7 mm long, and we anticipate that higher aspect ratio devices will become difficult

to fabricate and cumbersome to operate [51]. Also, despite the potentially better scaling, moving

towards 1D resonators makes the optical readout much more complicated, either requiring more

advanced free space optics in order to produce diffraction-limited probe beams or abandoning the

free space approach altogether in favor of integrated optical readout.

4.5.1 Additional defect designs

We have established the benefits of utilizing high-contrast PnCs with small-pad trampoline

defects, the archetype of device A. One large drawback of this device is the location of the defect

mode within the bandgap. Notably, the frequency is near the lower band edge (Fig. 4.13). This

is undesirable for a host of factors. First, it is advantageous to have a clean bandwidth around

the mode in question for ease of optical detection. Making the relative detunings between modes

can also diminish the effects that might arise from hybridization with spectrally nearby mechanical

modes. Finally, if one wants to mass-load such a mode, the placement of the mode within the

bandgap will place limits on the scale of mass that can be successfully added while keeping the

mechanical frequency within the bandgap. Boosting the frequency up in the bandgap is a source of

difficulty, however. Notably, it cannot be achieved by shrinking the pad size down; in fact, the defect

mode frequency of a string defect will be around the frequency of the defect mode in device A. This

is due to a property of PnCs, where modes near the lower band edge have a wavelength roughly

equal to that of a single unit cell, which is the desired geometry for the defect mode in device A.

Therefore, any efforts to augment the geometry while maintaining a similar modal geometry will

result in a similar relative location within the bandgap. Thus, a more complex modal geometry is

necessary in order to place a defect mode closer to the center of the bandgap.
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Figure 4.17: (a) Optical microscope image of the snowflake design. The scale bar is 30 microns.
(b) FEA simulation of the defect mode profile. (c) Simulated mechanical mode spectra for probing
at the center of the device. The bandgap is indicated by the region shaded grey. As a proxy
for observed mechanical amplitude, we plot xzp when probed at the center of the device, while
assuming that each mode has a linewidth of 1 Hz. The red star marks the defect mode displayed
in (b). We see that the defect mode lies in the center of the bandgap.

Fig. 4.17 shows a more intricate defect design that aims to put a trampoline defect mode

in the center of the bandgap. The mode frequency is higher due to the addition of an inner

support structure within the defect unit cell. This makes the resulting defect mode have a shorter

wavelength, and thus a higher mechanical frequency. This is also achieved because the defect-

trampoline tethers are rotated 30 degrees from those in device A. To maintain tension in these

tethers, longer support tethers were added that connected to unit cells deeper within the PnC.

Fillets were added by trial and error in order to form the desired mode. We emphasize that the

exact design was achieved by sweeping over many geometric parameters, including tether widths and
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fillet radii. In general, this is the typical approach for designing defects for 2D PnCs. Although

the device was fabricated for this work, it was never characterized. However, given the overall

agreement between FEA simulation and observed mechanical properties of membrane PnC devices

characterized thus far, we are confident in projections from FEA simulations of this device. With

this in mind, we expect that the defect mode shown in Fig. 4.17 to have a room temperature force

sensitivity of around 80 aN/
√

Hz, or a 4 K sensitivity of 5 aN/
√

Hz.



Chapter 5

Direct Measurement of A Spatially Varying Thermal Bath Using Brownian

Motion

Micromechanical resonators are widely used as precision sensors and for scientific studies in

classical and quantum mechanics. Their fundamental performance limit stems from the Brownian

motion of each mechanical mode. A noteworthy case for non-uniform temperature is under optical

detection or coupling (such as often encountered in the field of optomechanics), where localized

light absorption leads to the illuminated point being significantly hotter. Under these conditions,

it is pertinent to ask how the variety of modes studied in this work, from global membrane modes

to localized defect modes, are differentially affected. In this chapter, we test a model that predicts

the Brownian motion of a mechanical mode based on its spatial distribution of dissipation. We

validate our model by studying both membrane and defect modes of a phononic crystal device in

the presence of a thermal gradient. We create a large Brownian motion difference between different

modes, such that on a 1 mm scale device, two modes exhibited thermal motion corresponding to

temperatures of 293 K and 1700 K, simultaneously. This large modal difference enables calibration

of thermal material parameters in their nano-scale values, e.g. emissivity and thermal conductivity.

By identifying modes that are sensitive to the temperature at localized parts of the resonator,

and even far from where they move the most, we create new design metrics for maintaining cold

resonator modes in the presence of strong optomechanical coupling.
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5.1 Mechanical systems in contact with nonuniform thermal baths

The common treatment for the study of Brownian motion of a single mode of a micro-

mechanical oscillator is to treat each mode as a single degree of freedom of a simple harmonic

oscillator. This single degree of freedom is considered to be in equilibrium with a thermal bath

with a temperature T . In this case, the equipartition theorem states that the variance of the

position degree of freedom of the oscillator is given as:

⟨x2⟩ =
kBT

mω2
i

(5.1)

where kB is the Boltzmann constant, and m and ωi are the mass and resonant angular frequency

of the oscillator respectively. There are many assumptions involved in reducing the continuous

description of a mechanical mode of a micro-mechanical system to this simpler description param-

eterized by a few parameters. It has already been discussed in this work how the motion inferred

by probing continuum mode shape at a set location can be described by an effective mass Eq. 1.21,

but the treatment of T in this equation has assumed to be the trivial case that this effective single

degree of freedom is coupled to a singular thermal bath. This description is insufficient in more

general cases, such as when the mode in question experiences a gradient of physical temperature,

or when the oscillator is subject to more than one channel of dissipation. These situations need

to be treated with care, notably because they fall under the category of non-equilibrium steady

states (NESS) of the system since the thermodynamic concept of equilibrium cannot occur in such

systems. For the equilibrium case where the thermal bath can be considered to be at a single

temperature, there is no heat exchange between the system and bath, while for a NESS, this is

not the case. A simple picture is that since the system is subject to multiple baths at different

temperatures (or a continuously varying bath), then heat flow must be present in the system, even

if the functional form of the heat flow does not change in time [143].

In order to model this complex situation of a spatially varying local bath, we will recall the
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fluctuation-dissipation theorem, which codifies the link between dissipation and modal temperature:

Sxx = −4kBT

ω
Im(χ). (5.2)

χ is the linear susceptibility of the system of interest.

In Eq. 5.2, it is notable to observe the presence of both the Im(χ), the dissipative part of

the susceptibility, and the temperature of the thermal bath of the system. Therefore, all forms of

dissipation give rise to fluctuations– or noise – in the system, with the magnitude of the fluctuations

scaling with both the temperature of the thermal bath of the system, as well as the strength of the

dissipation rate. With these observations in mind, there has been work to generalize the fluctuation-

dissipation theorem for a NESS, or where the system of interest has multiple links to various baths

at different temperatures [68, 143, 144]. Although in general, it is useful to probe the spectrum of

the thermal noise of the system (Sxx) one can also look at the variance of the degree of freedom of

interest ⟨x2⟩. In the case of a micro-mechanical oscillator ⟨x2⟩ is the Brownian motion, determined

by the equipartition theorem. Notably, any calculation or measurement of the steady-state ⟨x2⟩ can

determine an effective temperature Teff of the degree of freedom, in this case, a mechanical normal

mode. The most general determination Teff assumes that the mechanical mode is defined over all

of space. With this knowledge, a volumetric dissipation density α can also be inferred. α has the

property that
∫∞
−∞ αdV = γ. Therefore, the effective temperature can be calculated as [143]:

Teff =

∫∞
−∞ αTdV∫∞
−∞ αdV

=

∫∞
−∞ αTdV

γ
. (5.3)

An inspection of Eq. 5.3 reveals parallels to the fluctuation-dissipation theorem: the effective

temperature of the normal mode–corresponding to the amount of thermal fluctuations of the motion

degree of freedom – depends on both the local temperature as well as the amount of dissipation

at any given point in space. We also bring attention that we define this quantity as an effective

temperature as a matter of caution since the systems studied in this chapter will be in a NESS.

However, we believe that this temperature can be thought of as a true temperature in many

senses. For instance, a system with an effective temperature Teff will remain unchanged if exposed
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to an additional thermal bath at a temperature T = Teff . Furthermore, when assessing the noise

characteristics of such a mode, the effective temperature functions exactly as a true thermodynamic

temperature in formalisms typically employed to assess the performance of mechanical devices.

Although Eq. 5.3 is general for the case of mechanical modes, it is difficult to frame many

channels of dissipation as having a contribution to α. A simple case would be mechanical radiation

loss. In principle, correct modeling of the substrate and mounting structure of the mechanics could

allow for mechanical radiation loss to be modeled as bending loss associated with the minuscule

modal participation in these areas, but doing so is computationally intensive and not feasible.

Gas damping of mechanical resonators also is difficult to frame in this way, since it would require

knowledge of precisely how the motion of the resonator couples to pressure waves in the gas. Finally,

situations like optomechanical cooling are also difficult to model in this way, since it would require

modeling of the entire electromagnetic field coupled to the mechanics. Therefore is often convenient

to treat each loss channel in a lumped sum model:

Teff =

∑
i γiTi

γ
(5.4)

where the sum over i corresponds to summing over all known loss channels. Each channel is assigned

a temperature Ti. Although analogous to Eq. 5.3, Eq. 5.4 has the distinction that it can address

non-local losses readily. Such a formalism is convenient when considering the effective temperature

of electromagnetic degrees of freedom when coupled to a transmission line [68].

There are ramifications for mechanical resonator design when considering Eq. 5.3. For exam-

ple, when operating a mechanical resonator in the quantum regime, it is imperative to minimize

the rate at which thermal excitations affect the state of the resonator, quantified by the thermal

decoherence rate:

γth = γnth = γ
kBT

ℏω
. (5.5)

Here, γth is calculated assuming a uniform temperature bath at a temperature T , for a mechanical

resonator with resonant frequency ω. In this case, it is evident that minimizing γ – the total

dissipation of the resonator – is the correct figure of merit to optimize in order to achieve optimal
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performance. However, this is not generally the case. One notable example in optomechanical

systems is the operation of mechanical devices coupled to optical cavities. Such operation requires

high-intensity optical fields to interact strongly with the mechanical device, which can lead to

heating of the device arising from optical absorption in the mechanical material. Although this

effect can be mitigated through the use of high-quality, low-absorption materials to fabricate micro-

mechanical resonators, quantum operation is susceptible to minute amounts of heating. Notably,

in this scenario, the nature of the heat load on the device gives rise to a spatially varying map of

T (x, yz, z) across the device. In this scenario, many strategies for minimizing γ run into issues.

Notably, soft-clamped modes of membrane resonators have the property that the mode, as well as

its dissipation map α, are localized close to the location of optical probing while being far from the

device edges. This localization, along with the high aspect ratio of the device, can lead to elevated

temperatures at the location of large α, leading to a potential for elevated values of Teff despite

the majority of the device being well thermalized to the substrate temperature. For phononic

crystal devices, not only does the functional form of α have a strong modal dependence, but the

temperature profile T subject to a localized heat load has nontrivial geometrical dependencies.

For instance, geometry-dependent coefficients of thermal conductivity kth have been observed in

silicon nitride nanoscale devices [99,145]. Additionally, the effects of radiative cooling or heating of

nanoscale devices with high aspect ratios are of interest when utilizing these devices for thermally

sensitive sensing operations [146,147].

Motivated by this insight, we find it important to probe this effect on a real PnC device. Such

an experiment requires a few technical aspects. Firstly, a heat load needs to be applied to a device

in a local manner. An absorbed laser beam can be readily shaped and directed to produce localized

heating. For the stoichiometric silicon nitride membrane devices investigated in this work, the

nitride has quite low optical absorption (less than 1 ppm), and therefore an addition of an optical

absorber will be necessary to apply a controlled localized heat load with a reasonable amount of

laser power while operating at room temperature. The addition of the absorber should be done in

a minimally invasive way. That is, it should not have a considerable effect on α of the mechanical
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modes in question. Secondly, the device in question should support modes with various theoretical

maps of α. Doing so will allow for a measure of the differential effects of the nonuniform temperature

map on the observed Brownian motion of different normal modes of the system. Utilizing a silicon-

nitride PnC device allows for a determination of α since we have previously established that the

primary source of dissipation — for some modes — is the intrinsic dissipation associated with the

material bending.

5.2 Experimental overview

For the experiment in question, we elected to a set of modes on a study device E, defined

in Fig. 5.1 [148]. Device E was functionalized with an absorber by depositing Stycast 2850ft

epoxy using a glass tip on one of the PnC tethers far from the defect pad as seen in Fig. 5.4a.

This deposition was performed with a procedure described in depth in another thesis from our

group [130]. This location was selected in order to not have large participation in a subset of

modes of interest. Notably, defect modes of this device will have low participation at this point in

the crystal because they are localized strongly to the defect pad region. Furthermore, membrane-

like modes that have a node of motion along this tether also have reduced participation of the

absorber by symmetry. The experimental concept is displayed in Fig. 5.4b. A probe beam can be

directed to monitor the Brownian motion at various locations on the device (yellow beam), while

a temperature profile of the material can be changed by adjusting the heating beam power (red

beam). The deposition was performed in a clean room environment in a similar fashion to how

magnetic grains were deposited, as discussed in Ch. 3. The epoxy used as the absorber is a two-

part epoxy, comprised of a resin and a catalyst. Although the mixed epoxy appears homogeneous

on a macroscopic scale, it is apparent on the microscopic scale (1 - 10 microns) that the resin

is composed of micron-scale individual grains. This was apparent during the deposition process

when picking up mixed epoxy with the glass tip resulting in a granular droplet attached to the tip.

During deposition, it was thus imperative to ensure that absorbing material became attached to the

membrane tether via a visual inspection since early attempts at deposition resulted in only resin
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Figure 5.1: Overview of mechanical modes of device E studied in this section. The top of the figure
indicates FEA simulations of the mechanical mode shapes in ascending order of frequency. The
bottom shows a measured spectrum of the device while probing away from the defect. Colored
vertical lines (matching the colors of the mode-shape frames) indicate the resonance frequency of
each of the studied modes.

being placed on the resonator. A ramification of this is that the added mass cannot be assumed

to be homogenous, and therefore does not necessarily have mechanical properties that match the

macroscopically defined specified values.

Although the addition of the absorber was performed in order to be minimally invasive to

the modes of the device, certain perturbations could not be avoided. Notably, the addition of a

mass in the bulk of the PnC device can be interpreted as a defect in the same light as a geometric

perturbation to the structure. Therefore, there is potential for defect modes associated with the

addition of the mass – we will call these modes MD (mass defined) – to arise, which was the case in
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Figure 5.2: Phononic crystal membrane device and experimental scheme to probe a spatially varying
thermal bath. (a) Optical microscope image of the device studied in this work (scale bar 200
microns). Inset: zoomed-in image of deposited absorber used to generate temperature gradients
(scale bar 20 microns). (b) A simulated temperature map observed in this work. A localized heat
load was generated by absorbed light from a heating beam (red). The Brownian motion of the
device was measured interferometrically with a probe beam (yellow).

this experiment. For the mass scale of absorber deposited in this experiment, an MD mode exists

in the bandgap (see Fig. 5.3). Studying the properties of this mode, notably its frequency and

dissipative properties can be illuminating for understanding the effects of the absorber on other

modes. This study will be presented later in this chapter.

Figure 5.3: FEA simulation of the MD mode observed for device E functionalized with an optical
absorber.

For this device, one would expect different responses of Brownian motion with respect to

increasing heating power depending on the α distribution of the mode in question. Prior to the

experiment, we could make predictions about α from FEA analysis of the modes, as well as mea-

surements of their dissipation. It is useful to categorize modes of device E into 4 categories. (1)
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radiation loss limited modes. These will have large contributions to α in the substrate or further

beyond the simulation space of FEA simulations. We can identify these modes via measurements of

Q that are substantially below the expected value from bending loss. (2) Membrane modes that do

not experience radiation loss. These modes have α that is confined strongly to the membrane edge

due to the clamped boundary condition at the interface of the membrane with the silicon substrate.

These modes are differentiated from defect modes by observing that their observed quality factors

match the predictions determined by bending loss alone. (3) Defect modes of the geometric defect

would have modal temperatures that correspond to the overlap of their localized bending with the

temperature map generated from the heating beam. Although we have not yet discussed the exact

nature of the expected temperature maps in this experiment, one expects that the material tem-

perature at the geometric defect would be elevated from the substrate temperature. (4) MD modes

would have the highest temperature since they are localized to and have high relative dissipative

participation of the absorber. Having access to the differential heating about these 4 categories

of modes gives access to the thermal properties of the PnC device since the material temperature

at the geometric pad, absorber, and frame are probed directly, while the location and nature of

the heat load are known. Using this knowledge, in concert with the time-dependent nature of the

heating can give access to calibrated measurements of the thermal properties of the material. This

discussion will be presented later in this chapter.

Another effect to consider in this experiment is that of the material thermal expansion re-

sulting from the spatially varying temperature map. Conceptually, thermal expansion of the silicon

nitride leads to stress relaxation. This results in a lower speed of sound in these regions, resulting

in frequency shifts of the mechanical normal modes of the system. Such an effect is often leveraged

for micro-mechanical bolometers [99, 149]. For a device subject to a thermal gradient, it stands

to reason that certain mechanical modes will experience larger shifts when compared to others.

This is an additional differential effect that we can use to probe the system, as well as calibrate

our measurement of the Brownian motion. Notably, the (1,1) membrane mode has the property

that its Brownian motion is detectable at any probe location on the device with an appreciably
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high signal-to-noise ratio. Therefore, in this experiment, we can use the frequency shift of the (1,1)

membrane mode of the device to cross-calibrate the absorbed heat in separate data runs.

Figure 5.4: Schematic of the optical system used in this experiment. The yellow lines denote the
optical path of the probe beam of the interferometer. This beam results from the Nd:YAG after
the filter cavity and AOM which is used to control the intensity of the probe beam. The red beam
path denotes how the 950 nm heating beam was controlled during the experiment. These beams
are combined on a dichroic mirror (shaded red). In order to properly direct these two beams, a 940
nm LED was used to illuminate the device when not measuring. The forward path of this beam
is omitted for visual clarity but copropagates with the heating beam upon being combined on a
PBS. The return path of the scattered light is represented with a dashed blue line. A removable
PBS (dashed outline) was used in order to switch between imaging and measuring modalities of
the apparatus. The ATS9462 DAQ card was used to record signal traces as well as monitor beam
powers in this experiment. An RP 125-14 FPGA was utilized to implement a PID to lock the
Michelson interferometer as well as servo the intensity of the heating beam to a desired setpoint.

5.3 Control of the dissipation map

The added dissipation of the absorber can be measured by comparing the quality factor of

each mechanical mode before and after deposition. One can then infer the added dissipation by
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Figure 5.5: Observed quality factors of modes before and after absorber deposition. Note that the
(1,1) mode was radiation loss limited, and therefore the increase in Q can be attributed to a change
in the mounting environment of the chip. The A6 Q was not measured prior to deposition.

attributing any decrease in quality factor (increase in dissipation) to the absorber via the following

relation:

1

Qafter
=

1

Qbefore
+

1

Qabs
. (5.6)

Qabs is attributed to the loss in the absorber. This relation is valid in the limit where the addition

of the absorber has a negligible effect on the pre-deposition mode shape. This assumption notably

fails when there are additional effects at play, such as the hybridization of modes with the MD

mode. For the modes studied in this experiment, only the S2 mode had a frequency close to that of

the MD mode – differing by 40 kHz without a heat load – and therefore all other modes studied in

this work should obey Eq 5.6. The effects of hybridization between the S2 and MD modes will be

extensively addressed in another discussion. Another effect to consider in this scenario is radiation

loss. Notably, the device had to be removed from the vacuum chamber between measurement and

deposition, and thus the mounting environment of the oscillator was not controlled to the utmost

extent. Therefore, it is possible that modes that are susceptible to radiation loss – membrane modes

– may have changes in Q that are not due to the absorber.

Quality factors of the modes of this device were measured in most cases by ringdown mea-
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surements. Mechanical driving was achieved via an optical force produced from a modulation of

the heating beam at the mechanical resonance of the mode in question. This power modulation was

achieved via a direct modulation of the laser current above threshold. As can be seen Fig. 5.5, there

were some measured differences between Qafter and Qbefore for certain modes. Notably, the (1,1)

and (1,3)-(3,1) modes exhibited a noticeable change in Q. However, since these are all membrane

modes, we cannot directly attribute this change to that of the absorber. Notably, the (1,1) mode

experienced an increase in Q. This makes sense since the internal loss limited Q for membrane

modes of this device should be on the order of 2 × 106, meaning that the (1,1) mode experiences

large amounts of radiation loss both before and after deposition. A similar story is present for

the (1,3) - (3,1) membrane mode and to a lesser extent the (3,3) mode, which did experience a

statistically significant drop in Q.

Of the modes measured in this work, the (2,2) and S2 did not experience a reduction in the

measured mean Q upon addition of the absorber up to the statistical error of the measurement 5.5.

In most cases, 100 ringdowns were performed to get 100 independent measurements of Q. The

standard error of this ensemble average is plotted as the error bars on 5.5. A consequence of this

error is that it allows for a bound to be placed on Qabs in Eq. 5.6. We can assume a worst-case

scenario in which the error in the measurement of Q (∆Q) can be attributed to the addition of

the absorber. Under this assumption, it follows that Qabs = Q2
before/∆Q. As an example, the (2,2)

mode has a lower bound of Qabs ≈ 108 from the error of bound of Q being ± 104.

After deposition, the quality factor of the MD mode can be used to calibrate the mechanical

loss tangent, or Qint, of the absorber. We note here that the quality factor of this mode was expected

to be quite low due to a relatively high participation of the lossy epoxy used as the absorber.

This made the mode difficult to optically drive, and thus the Q was estimated from linewidth

measurements. A technical difficulty associated with these measurements involves the potential

for power from the probe beam heating the absorber, leading to anomalous heating-induced line

broadening. To mitigate this effect, measurements were performed with a wide range of probe

beam locations. The linewidth was constant regardless of the probe beam location, indicating that
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Figure 5.6: Results from FEA simulations of the relative dissipation of certain modes while sweeping
over the contact area of the absorber sphere.

the linewidth measured corresponded to the energetic decay of the mechanics.

Using this calibrated value of the Q, one is able to make predictions about the effect that

the addition of the absorber has on the dissipation of each mode. One way to quantify this would

be to calculate the dissipation fraction of the absorber, given as Q/Qab. As stated before, the

exact geometry and composition of the glue are unknown because of the heterogeneous nature of

the absorbing material at the micron scale. Simulating all possible geometries of the absorber thus

would be computationally intensive. Therefore, to capture qualitative effects, in this work the

absorber is assumed to be spherical and homogeneous for all FEA simulations, including the one

described here. In order to probe some effect of the geometry, the contact area of the sphere with

the device tether was swept while the density of the absorber was adjusted in order to maintain a

constant MD frequency of ≈ 2.45 MHz. For all of these geometries, setting the Qint,abs ≈ 800 yields

a simulated value of QMD to be in close agreement with the observed value of 12,500. In this study,

Qabs is taken to be the loss that is inside the absorber itself. In principle, there is additional loss in

the silicon nitride near the absorber. However, this was found to be negligible in the case of all modes

studied. Fig. 5.6 displays the effect of contact area on the relative absorber participation for many

of the modes studied in this work. One sees that there are three main predicted behaviors. The

MD mode has a dissipation participation factor close to unity as expected. The membrane modes,
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along with the S2 mode, are predicted to have participation between 0.001 and 0.01. Notably,

the (3,3) mode should have relatively high absorber participation since the absorber is located at

an anti-node of motion for this mode. Finally, the A6 is predicted to have extremely low glue

participation, due to its symmetry and high mechanical isolation from the location of the absorber.

There is a trend among almost all modes that an increase in contact area results in higher fractional

participation of the absorber, most likely attributed to a higher direct coupling. However, this effect

is rather small, indicating that for all modes studied in this work, save the MD, one does not expect

there to be appreciable dissipation participation of the absorber.

Figure 5.7: Spatial map of α for the (2,2), S2 and MD modes. (Top) The (2,2) has a loss map akin
to all bending loss limited membrane modes where the loss is concentrated to a small region at the
membrane edge. The S2 mode has its dissipation localized at the center of the device, well isolated
from the thermal environment of the substrate. Due to the dissipative nature of the absorber, the
MD mode has α that is concentrated solely in the added mass. (Bottom) Temperature map (color
scale has yellow indicating hot regions, red indicates ambient conditions) of the device due to local
heating. Effective probe locations of each mode are schematically indicated, and the colors are
matched to their corresponding mode labels above the temperature maps. One sees that the (2,2)
mode samples the temperature of the whole frame (Tfr), while the S2 and MD modes sample the
temperature of the center pad Tcp and absorber Tab respectively.
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Through this modeling, one is able to construct the map of α for each mechanical mode.

Fig. 5.7. Outlined here are the qualitatively different dissipation maps studied in this work. Notably,

the (2,2) mode has a dissipation that is limited by the bending of the membrane itself, but due to

the clamped boundary condition, this loss is limited to a small region around the membrane edge.

This means that the (2,2) mode should experience a thermal bath that is well-thermalized to the

substrate temperature. Although not denoted here, radiation loss limited modes are qualitatively

different since their dissipation maps have contributions within the substrate itself. For the purpose

of this experiment, one does not expect there to be a measurable difference in behavior between

radiation loss limited and bending loss limited membrane modes, since the edge of the membrane

structure should be well thermalized to the substrate itself. However, one could distinguish between

the two cases in principle by measuring the device with a temperature gradient within the substrate

itself. The dissipation map of the S2 mode is concentrated to the geometric defect at the center

of the device (unaffected by the addition of the absorber) and thus one expects that the modal

temperature of this mode to sample the temperature of this center defect. One can calculate a

modal temperature from Eq. 5.3 and find that the modal temperature should be approximately the

average temperature of the geometric defect in the limit of small thermal gradients across the pad.

We note that this behavior holds for all geometrically defined defect modes of this device, such as

the A6. Finally, the MD mode has almost all of its dissipation contribution contained within the

absorber. Therefore, its modal temperature should coincide with the average temperature of the

absorber. Conceptually, having this wide class of modes with different spatial temperature profiles

allows for spatial temperature probing across the device structure, as indicated in Fig 5.7.

5.4 Experimental control and procedure

To measure Brownian motion in a well-calibrated manner, both the probe beamline and

heating beamline needed to be well controlled in order to reduce technical noise. We will first

discuss the control of the probe beamline. A diagram of the experiment-specific section of the optical

system is displayed in Fig. 5.4. The probing system is composed of a Michelson interferometer,
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much akin to what was discussed in Ch. 2. The unique parts of this system begin with the control

of the intensity of the power incident on the Michelson interferometer, which is monitored by the

ATS9462 DAQ card prior to each experiment. Although the power drifts due to temperature

fluctuations in the lab of this system were determined to be minimal – less than five percent

– stability and accuracy of the displacement readout necessitated coarse control over the power

entering the Michelson interferometer. Hence, the power exiting the probe beam fiber was adjusted

to a desired setpoint by an AOM prior to the fiber (not pictured in Fig. 5.4. After this adjustment

was made, each experiment was operated in an open-loop manner with respect to the power of the

probe beam.

The 950 nm wavelength heating beam resulting from a QPhotonics QFBGLD-950-5 laser

diode was similarly monitored and controlled. Before combining the probe and heating beams

on a dichroic mirror, the heating beam power was monitored on a photodiode. This signal was

directed towards a Red Pitaya 125-14 FPGA which served as a programmable PID controller in

order to servo the intensity of this beam. The set point of this intensity servo was adjusted digitally

by changing the lock parameters of the FPGA. To avoid adding either electrical or optical shot

noise onto the heating beam, the bandwidth of this intensity servo was limited to 100 Hz. Due to

thermal instabilities in the heating laser current controller, 60 seconds of settle time elapsed prior

to taking data when the set point was adjusted. These instabilities typically occurred at relatively

high output laser powers around 2 mW.

Another source of technical noise in this experiment resulted from beam pointing of both

the probe beam and heating beam. For the probe beam, beam pointing has two effects. Firstly,

beam pointing can change the Michelson calibration factor of optical power to motion, thus giving

inaccurate results for the calibrated motion of the device. Secondly, beam pointing can change

the probe location of the Gaussian beam, resulting in a noisy value for the effective mass. These

two effects can be differentiated by looking at differential effects between the measured mechanical

motion of mechanical modes of differing geometries. Notably, mechanical modes with small mode

volumes, such as the S2 would be much more susceptible to the second effect when compared
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to the (1,1) membrane mode. Long-term measurements – taken over the course of a few hours

– showed that there was a long-term drift of the observed thermal motion of the S2, while the

(1,1) membrane mode showed no discernible time correlation in the measurement of its thermal

motion. This indicates our apparatus is indeed susceptible to beam pointing resulting in a change

in effective mass. However, this measurement also shows that this noise occurs on the order of 10s

of minutes, and therefore for measurements that occur within seconds of one another this effect is

weak. Therefore, the effect of beam pointing can be mitigated in measurements of the Brownian

motion by taking the data in an interleaved fashion, alternating between measuring the device

under a heated versus ambient temperature profile. Taking the ratio of these two data sets should

result in a cancellation of this beam-pointing effect with enough statistics. Under these conditions,

we can define an estimator for the temperature in the following way:

T̃
(i)
eff =

⟨x2i ⟩ω2
i

⟨⟨x2i,0⟩ω2
i,0⟩all

Tlab. (5.7)

Here, ⟨·⟩ denotes an average over a single-shot 0.3 s time interval, and ⟨·⟩all denotes a full average

over all the no-heating data, which was taken with large statistics and is assumed to have negligible

variance. ⟨x2i,0⟩ and ωi,0 are the measured displacement power and angular frequency of the mode

with no absorber heating, respectively, and Tlab is the lab temperature measured with a thermome-

ter to be 293 K. The ratio of ω2
i /ω

2
i,0 is present in order to account for the fact that the frequency

of each mechanical mode changes when the device is heated.

5.5 Experimental results

Here I will present the results of the experiment described above. For this experimental run,

the heating power set point was swept over a set of quantized values, each averaged many times in

order to accumulate strong statistics. Fig. 5.8 displays the effective modal temperature inferred from

the observed Brownian motion in accordance with Eq. 5.7. From the heating data, it is apparent

that there are strong differences between the heating curves of each mode. This corresponds to the



132

different effective thermal probe locations of each mode in accordance with Fig. 5.7. Notably, the

(2,2) mode does not heat in a statistically significant manner, as expected since its dissipation map

is concentrated to the membrane frame. Meanwhile, the MD mode was observed to heat to over

1000 K. We note here that since the observed modes were spatially separated, each heating curve

corresponds to a different experimental run. Therefore, although the MD mode was observed to

have a maximal modal temperature of around 1250 K, one can infer that the local temperature of

the absorber exceeded 1500 K on the other experimental runs of the experiment from the observed

value of |∆f(1,1)| (see the extrapolated fit line for the MD heating data on Fig. 5.8a). This maximum

achieved temperature is consistent with the fact that the device survived with experiment without

damage to the resonator structure since the melting point of silicon nitride is around 2200 K.

Different behavior is observed for both the S2 and A2 modes, as indicated on Fig. 5.8b. Here, both

modes heat at an intermediate level, which probes the effect of the local heating of the absorber over

a long range. Notably, these two modes heat to a similar level. This indicates two things: (1) that

the modes have dissipation density profiles that are localized to a similar region of the device and

(2) that these two modes most likely do not possess large amounts of absorber participation. This

second point can be argued by comparing the symmetry of these two modes, notably that the S2 is

a symmetric mode and the A2 is an antisymmetric mode. Antisymmetric modes of the geometric

defect should have a nodal line at the location of the absorber. Therefore, one would predict that

they should have quite different modal participation at the absorber location, regardless of the

exact geometry or nature of the absorber.

By measuring the modal temperatures of these modes, we have probed the local temperature

of the phononic crystal membrane structure at two locations – the geometric center pad and the

absorber – as well as a proxy for the average temperature of the frame of the device. We can

also inspect the behavior of other modes under these conditions, namely the rest of the membrane

modes. As can be seen in Fig. 5.9, none of the membrane modes, both bending loss and radiation

loss limited, experience an increase in Brownian motion. This is perhaps rather surprising given

that one can infer that the maximal temperature of the absorber reached in excess of 1500 K in
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(a) (b)

Figure 5.8: Teff inferred from Brownian motion for mechanical modes of a phononic crystal de-
vice subject to a spatially varying thermal bath. A measurement of the frequency shift of the
(1,1) membrane mode (∆f(1,1)) serves as a proxy for the heating power for each iteration of the
experiment. (Left) Brownian motion for the MD and (2,2) modes. The light orange (light blue)
points correspond to the raw integrated Brownian motion for each run of the experiment for the
MD ( (2,2) ) modes respectively. The orange (blue) data corresponds to the average of the raw
data binned around the desired heating values. Orange (blue) lines are linear fits to the data.
(Right) The similar data set and presentation for the S2 and A6 modes (insets of defect motion
are color-matched to their respective data). One sees that the S2 and A6 modes experience very
similar heating curves, indicating that they possess very similar spatial dissipation profiles.

some of these measurements. These no-heating results can therefore bound the values of Qabs for all

of the modes in which a “no heating” result was measured. Such a bound can be seen theoretically

in Fig. 5.10. For the absorber temperatures achieved in this work, one can roughly calculate that

the dissipation fraction of the (2,2) mode (quantified as Q/Qabs) can be bound above by around

10−2, thereby bounding Qabs to 2 × 108 for the (2,2) mode. A similar bound can be established

for all modes in which “no heating” was observed. This calculation highlights the dual nature of

this experiment. For modes in which heating is observed, the dissipation can be used to probe the

temperature profile of the device in a direct spatially resolving manner. However, we can also use

the heating data (or “no heating” data) to spatially probe and quantify the dissipation of certain

modes. This is of interest when studying the effects of functionalizing micro-mechanical resonators.

Notably, one could in principle use this measure dissipative properties of certain materials, or to

search for geometric dependence of dissipation in functionalized resonators.
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Figure 5.9: Effective temperature of membrane-like modes. ∆f1,1- binned (full blue circles with

error bars) T̃
(i)
eff for i = (1, 1) , (2, 2) , (3, 3) and (1, 3) − (3, 1) modes.

Figure 5.10: Theoretical maximally achieved temperature for a membrane mode that has glue
participation. The participation fraction Q/Qabs quantifies what fraction of the loss is contained
in the absorber itself.

5.6 Calibration of temperature maps

The previous measurements probed the temperature map resulting for a local heating of the

phononic crystal suspension in a few select places. Here we use the results of this measurement, as

well as some additional measurements, to produce a calibrated map of temperature over the entire

structure. In this section, we will outline the procedure for this calibration.

The temperature profile will be determined by the heat equation:
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ρCp
∂T

∂t
+ ∇ · q = Q̇(x, y, z) (5.8)

Here ρ is the material density, Cp is the specific heat capacity at constant pressure, q is the heat

flux and Q̇(x, y, z) is the heat source due to laser light absorption. When considering effects of

radiative cooling (or heating), then q is:

q = −kc∇T − nσε(x, y, z)(T 4
env − T 4) (5.9)

where kc is the coefficient of thermal conductivity, n is the surface normal vector, ε(x, y, z) is the

surface emissivity, σ is the Stefan Boltzmann constant and Tenv is the temperature of the blackbody

environment. In principle, if all parameters in Eq. 5.8 and Eq. 5.9 are known, then the temperature

profile can be calculated for an arbitrary geometry and arbitrary heat source. However, prior to

this work, not all material parameters were known for the particular device used in this work.

Additionally, nanoscale effects of thermal transport also can come into effect in such devices, and

therefore the use of the bulk values of many parameters can lead to incorrect predictions.

One example of this is the thermal conductivity of silicon nitride kc. This parameter has

been shown to have geometry-dependent values. A reduction in thermal conductivity is typically

attributed to geometries where the mean free path of phonons becomes less than a key geometrical

dimension, such as the membrane thickness. Notably, it has been calculated and observed that long-

wavelength phonons (between 1 and 10 microns) dominate heat transport in amorphous materials

such as silicon nitride [150]. However, when comparing the conductive properties of silicon nitride

nanostructures made from thin silicon nitride (around 200 nm) it has been found that there are

further discrepancies between membrane-like and string-like structures [145]. Therefore care must

be taken in order to properly measure the value of kc when predicting the temperature profiles of

our devices.

There are also nanoscale effects that contribute to the effect of radiative cooling. One effect in

question arises from optical effects associated with treating a suspended thin film of silicon nitride
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as an etalon. Infrared radiation arising from the material inside the thin film has the possibility of

reflecting off of either surface, changing the effective emissivity of the structure. This effect is also

directional since the reflection and transmission coefficients of the etalon depend on the angle of

incidence [146]. This may have applications for radiative sensing using micro-mechanical resonators,

allowing for sensitivity to radiation. Taking into account these effects, it can be shown that for 100

nm nitride films, the effective emissivity should be much reduced to 0.1, down from the bulk value

of 0.6 [151]. For our work, we cannot assume that the predictions from a membrane should hold

since the structure in question is much more complex. In principle, one could calculate the effects

of radiative heat transfer by via extensions of optical thin film calculations. This was not done

for this work. Rather, the emissivity was considered to be spatially uniform, but unknown. This

value for emissivity can be considered an effective value for this geometry, and therefore would not

be necessarily the correct value for an arbitrary geometry. However, the purpose of this discussion

is to outline how to extract this effective emissivity – and in the same vein, kc – for an arbitrary

silicon nitride nanostructure. With this established procedure, a systematic study of the geometric

effects on these parameters could in principle be performed, which would be a germane study to

perform when considering these structures as the basis for thermal or radiative sensors.

An inspection of Eq. 5.8 and Eq. 5.9 reveals that in principle 4 parameters are unknown for

a given temperature map, Q̇, kc, ε and Cp. For this study, we will assume that the Cp is known

and does not vary from its bulk value. Therefore, there are 3 unknown parameters. For a given

Brownian motion measurement, we reveal two previously unknown values of the temperature map,

the temperature of the central pad Tcp and the temperature of the absorber Tab. Note that a mea-

surement of “no heating” at the frame does not provide additional information, save for the correct

boundary condition to use when solving the heat equation. Therefore, a single measurement Brow-

nian motion measurement does not reveal enough information to uniquely determine a temperature

map. In principle, it would be possible if there were other modes that had large contributions to-

wards α that were not colocalized to either the central pad or the absorber. However, such a mode

was not found to exist in this device. Future studies could be performed with different resonators
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that are engineered to give more information – such as a device with two spatially separated defect

pads – that would allow for a unique determination from a single measurement.

This deficiency in information can be circumvented by performing a different class of measure-

ment, namely one that takes into account the time dynamics of the heating. Such AC heating mea-

surements are routinely performed to study the effects of nanoscale heating on calorimeters [145].

For this work, it was decided to subject the device to a step heat load. Qualitatively, the sud-

den change in heat load establishes a new steady-state solution for the temperature map, which

the system will slowly approach in time on a timescale (τth). Although not purely exponential in

character, we will fit all simulations for the time-dependent temperature profile to an approximate

exponential fit. Measuring this τth can give information about the material parameters of the de-

vice. For example, it can be shown that a string resonator of length L with a heat load at the

center will thermalize on a timescale given by τth = ρCpL/kc when effects of radiative cooling are

neglected. It is apparent here that with knowledge of geometry, it would be possible to extract

kc from such a measurement on the current device. However, the effects of radiative cooling have

an effect on the thermal transport for highly thermally isolated structures, even in the presence of

negligible temperature gradients. Therefore, it is difficult to extract kc from a single measurement

of τth. In this work, we instead use this as just another measure of the material properties to be

used in conjunction with the spatial Brownian motion measurements.

When performing a step-response heating measurement, there are in principle two observables

of the system that one could extract to learn about the time-dependent temperature profile. The

most direct would be readout the Brownian motion of each mode as a function of time, much like the

DC measurement protocol. However, this measurement has a complication given that the modes

used in this work have values of 2π/γ comparable to τth, complicating this measurement protocol.

We first draw attention to the simplest case, where τth ≫ 2π/γ. In this case, one can consider that

the mechanical mode in question is subject to a stochastic force whose power changes at a timescale

equal to τth. Solving the equation of motion for this scenario reveals that the Brownian motion

of the oscillator will adiabatically follow the thermal steady state established by this stochastic
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force since the energetic decay timescale of the oscillator is much faster than the change of the

thermal profile. The behavior is quite different in the opposite case, where τth ≪ 2π/γ. Here, the

state of the oscillator greatly lags behind the change in its thermal environment, since it takes an

appreciable amount of time for the memory of its initial condition to decay. Therefore, the record

of the Brownian motion would change on a timescale solely determined by 2π/γ. As a consequence

of this, it follows that a readout of the time-dependent Brownian motion is not a viable protocol

for every mode of the device.

Here we present an alternative method. Rather than reading out the Brownian motion of a

mode, one can instead read out the frequency when subject to a step heat load. In this case, there

is only one timescale of the mechanics that matters, which is the timescale at which the stress in

the structure redistributes. This will happen at a rate defined by the speed of sound c, as well as

the overall device size L. For the device used in this work, this is found to be around L/c ≈ 1 µs,

and therefore so long as τth ≫ L/c, then the instantaneous frequency of any mechanical mode will

serve as a measure of τth.

Fig. 5.11 shows the results of such a measurement in the form of a spectrogram. One sees

that the thermal-mechanical noise peak lags behind the monitor of the heat load, approximately

exponentially decaying to the new frequency of the system at a rate 1/τth = 12.5 Hz. This same

behavior was seen for all modes studied in this work, and therefore only data for the S2 mode is

presented here. Note that for this data set, a relatively modest heating power was used, one that

produced a frequency shift of ≈ 250 Hz on the (1,1) mode. This corresponds to an elevation in

temperature for the absorber of around 150 degrees K above ambient lab conditions. It is important

to not perform this calibration when operating at high temperatures of the absorber, since the effect

of radiative cooling is non-linear, thus having an effect that the thermalization time constant would

change as a function of temperature. One sees that for a lumped sum model of the system, the rate

of radiative cooling is much less than that of conductive cooling for absorber temperatures much

less than 1000 K 5.12.

With this added information, we are now able to accurately model the temperature maps
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Figure 5.11: Determination of thermalization time scale τth from step function response of ∆ωS2 .
Left axis: Spectrogram of thermomechanical motion. The dashed black line shows an exponential
fit to the peak power of each time bin of the spectrogram. The fitted rate of the frequency shift
1/τth is 12.5 Hz. Right axis: monitor of the heating laser power during this experiment. Inset:
The simulated time dependence of the temperature increase at the defect pad center (blue line).
Example exponential fit to this curve (black dashed line).

generated from the local heat source in this experiment. The first step will be to perform a sweep

over kc and ε while holding the heating power to a constant, but low value of 1 µW in order to match

the conditions of the experiment when performing the step-response frequency shift measurements.

In order to reduce computational complexity, a relatively coarse parameter grid was used for FEA

simulations. Assuming that the simulated value of τth(kc, ε) is a smooth function, one can readily

perform a 3D spline interpolation in order to estimate the results over a finer parameter sweep.

We can then use the spline interpolation function to find a manifold where τth(kc, ε) = 12.5Hz.

One sees in Fig. 5.13 that the FEA results do indeed appear to change smoothly with the swept

parameters, meaning that there is high confidence in the consistent parameter manifold calculated

from the condition τth(kc, ε) = 12.5 Hz. One can see that this manifold indicates an inverse relation

between the consistent values of kc and ε.

To continue, we perform FEA simulations of the static temperature map while changing the
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Figure 5.12: Comparing the rate of conductive cooling and radiative cooling of the absorbed in a
1D lumped sum model. The conductive cooling rate was estimated assuming that a single 200-
micron tether with a cross-sectional area equal to those found in the device forms a conductive link
between the absorber and the environment, and thus is an underestimate of the conductive cooling
rate compared to the device. The radiative cooling rate assumes that the absorber is a perfect
blackbody.

Figure 5.13: Results from FEA simulation of time-dependent heat equation using a step-function
heat source. A coarse parameter grid of ε and kc was used (blue dots), from which a 3D spline
interpolation was calculated. The red line indicates a 1D manifold of parameters consistent with
the observed value of τth



141

material parameters. In particular, we sweep over (ε,kc) pairs, while also adjusting the heat load

Q̇ applied to the system. Since our experiment only probes Tcp and Tab, we extract the functional

dependence Tcp(Tab) from the temperature map for all parameter triplets studied. The results

are shown in Fig. 5.14, where the rise in temperature above ambient conditions for the absorber

is plotted as a function of the rise above ambient temperature for the pad. There is clearly a

strong trend present when the effects of radiative cooling are increased (increasing ε). Notably, the

presence of more radiative cooling allows for stronger gradients of temperature across the device.

We note here these FEA results are for relatively low heating powers (≈ 1µW ). In this regime,

there is a linear relationship between both studied temperature increases and heating power. For

higher heating powers, nonlinear effects of radiative cooling begin to dominate the behavior, much

as was seen in the toy model of the system considered in Fig. 5.12.

Figure 5.14: Temperature increase of the absorber versus the temperature increase of the central pad
for increasing heating power. Purple lines correspond to finite element analysis (FEA) simulations
where the values of ε and kc were consistent with the observed τth. Light to dark purple indicate the
trend when varying ε from 0 to 0.15. The black dashed shows the inferred local temperature increase
from the measured modal temperatures, while the red line shows the best fit FEA simulation.

We can compare the results of these FEA simulations with our observed data. Namely, fit-

ting both the observed values of Tcp and Tab, we can extract an observed functional dependence for

Tab(Tcp) to compare to the simulation results. From this comparison, we can perform an interpola-

tion in order to estimate the values for ε and kc, which match the observed dependence with high
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accuracy (see the comparison between the black dotted line and the red line in Fig. 5.14. We note

that this correspondence only occurs at relatively low-temperature increases. At larger temperature

increases, we begin to see deviations (beyond the bounds of Fig. 5.14). This can be explained by

multiple phenomena. One explanation could be the temperature dependence of material proper-

ties. Notably, if the thermal properties of the device change at the highly elevated temperatures

observed in this experiment, one might expect that the FEA simulation would become inaccurate

since these simulations were performed under the assumption of temperature-independent values

of all material parameters.

Figure 5.15: Simulated heating power PHeat with respect to the simulated frequency shift of the
(1,1) mode ∆f1,1. This dependence can be used as a calibration for heating power as a function of
observed frequency shift. The change in the functional form at larger frequency shifts is due to the
transition between the heat transfer being conduction-dominated to radiative cooling-dominated.

Another explanation might be in how the observed fits to data was performed. Under the

effects of radiative cooling, one expects that there to be a nonlinear relationship between the

temperature increase and the frequency shift of the (1,1) mode. Therefore, our model of a linear

fit is only valid at low-temperature increases (low heating power). To attempt to quantify this

relationship, we can also fit the observed value of the ∆f(1,1) to the simulated value. Note that

since the temperature maps are fully determined at this point, the only free parameter needed to

perform this fit is the coefficient of thermal expansion of silicon nitride αth. Not only does this allow

for direct calibration of the heating power with respect to the observed frequency shift, but also
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provides a measure of αth for this particular sample of silicon nitride. One can see the nonlinear

relationship between heating power and frequency shift in Fig. 5.15. This can be explained by the

nature of the temperature maps, where at high heating powers the ratio of temperature between

the absorber and the central pad is larger than what is seen at lower cooling powers. ∆f(1,1) is

mostly determined by the average temperature of the device. Radiative cooling effectively acts as a

stronger thermal link to the environment as the temperature increases, meaning that more power is

required to raise the average temperature of the device, and thus shift the (1,1) frequency, at higher

heating powers. From a lumped sum model of heating, the average temperature of the device would

exhibit two different power-law dependencies between heating power and temperature depending

on whether or not the system is dominated by conductive cooling or radiative cooling. In our

system, the crossover from conductive to radiative cooling can thus be seen to be around heating

powers around 20 µW as seen in both Fig. 5.15, which qualitatively matches the behavior predicted

from the lumped sum model results shown in Fig. 5.4. Overall, we argue that in order to calibrate

material parameters, it is sufficient to match the low heating power data given the complications

associated with radiative cooling on such a complicated geometry. Given all of this, the calibrated

device parameters are tabulated in Tab. 5.1. We draw attention to the fact that these values

match closely other values observed in the literature on other device geometries [99, 146]. This

correspondence increases our confidence in the local geometry-independent values of the material

properties used in our FEA simulations to explain the data, although one might expect that if

additional studies were performed on equally complicated but distinct device geometries there

might be deviations from our observed values.

5.7 Thermal motion of hybridized mechanical modes

The above experiment studied the effects of a spatially varying thermal bath on the Brow-

nian motion of a wide range of mechanical modes. In this experiment, the temperature profile

was changed by virtue of a changing heating power. Another possible experiment to change the

observed Brownian motion would be to change the mode shape, and thus the dissipation map, of
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thermal parameter value

kc 2.2 W/(m·K)
εSi3N4 0.12
Cp,Si3N4 700 J/(kg · K)
αth 1.9 × 10−6 (K−1)

mechanical parameter value

ρSi3N4 3100 kg/(m3)
ESi3N4 250 GPa
σSi3N4 1.05 GPa
νSi3N4 0.23

Table 5.1: Thermal and mechanical parameters of Si3N4 used to produce temperature maps used
in this work. kc is the thermal conductivity, εSi3N4 is the emissivity, Cp,Si3N4 is the heat capacity
at constant pressure and αth is the coefficient of thermal expansion. ρSi3N4 is the bulk density,
ESi3N4 is the Young’s modulus, σSi3N4 is the tensile stress and νSi3N4 is the Poisson ratio of the
stoichiometric LPCVD silicon nitride used in this work.

the mechanical modes themselves. One avenue towards such a control over mechanical mode shape

is through a controlled hybridization of two mechanical modes. By tuning the hybridization of two

modes, the relative mechanical dissipation between different regions of the mechanical device can

be adjusted in situ. For this device, this hybridization can be engineered between the S2 and MD

modes due to their naturally low difference frequency of 40 kHz, and their different responses to

local heating-induced frequency shifts. In studies of thermally induced mechanical frequency shifts

– one such instance is micromechanical bolometers – it is useful to define the relative responsivity

of a mechanical mode to a heat source:

Rf =
1

f

df

dP
. (5.10)

For the case of this particular device, it is observed and predicted that R
(MD)
f ≈ 13R

(S2)
f , which

allows the two modes to be degenerate in frequency for the heating powers achievable on this

device. We note that this property of mechanical modes is only realizable for local heat sources;

global heating of the device, for instance by heating the entire apparatus or substrate, gives rise

to all out-of-plane mechanical modes of the device having identical values of Rf . In this case, all

mechanical modes will always be nondegenerate in frequency.
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To begin this discussion, it is useful to first establish a theoretical basis for such a situation.

To clarify terminology, we will refer to the eigenmodes of the system as mechanical normal modes.

We imagine that the normal modes of the system with no heating power to be completely uncoupled,

and will hereafter refer to these mechanical modes as local modes. We expect that the observed

Brownian motion of the normal modes of the system to be nontrivial since the hybridization of the

MD and S2 modes is achievable via heating of the device. We expect that the hybridization will

occur when each of the unhybridized local modes is exposed to relatively localized thermal baths

with distinct temperatures.

To begin our discussion, we will begin with a discussion of the coupling of continuum local

modes of a micromechanical resonator. This coupling has been considered in the context of PnC

devices with two distinct geometric defect locations [77]. In this work, one can reduce the complexity

of the problem via the Galerkin discretization method. Here, one can reduce the dynamics of the

system to a subset of local modes, allowing for a description of the continuum model as an effective

set of coupled degrees of freedom. The parameters of the degrees of freedom, as well as their

coupling, can then be derived from the properties of the continuum modes. As a result of this

discretization, one can derive an effective equation of motion:

K11u1 + K12u2 = M11ü1 + M12ü2

K21u1 + K22u2 = M21ü1 + M22ü2

(5.11)

where the entries for the modal mass matrix Mij and the modal stiffness matrix Kij are given as:

Mnm = ρ⟨ϕn|ϕm⟩ (5.12)

Knm = σ⟨∇ϕn|∇ϕm⟩ (5.13)

where the ⟨·|·⟩ corresponds to the volumetric overlap integral of the quantities in question. u1 and

u2 represent the mechanical amplitude of each degree of freedom, while ϕn is the normalized mode

shape as defined in Ch. 1
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Eq. 5.11 can be rearranged to the more familiar form:

Mü + Ku = 0 (5.14)

where M is given as: M11 − M12M21
M22

0

0 M22 − M12M21
M11

 (5.15)

and K is: K11 − K21M12
M22

K12 − K22M12
M22

K21 − K11M21
M11

K22 − K12M21
M11

 (5.16)

u is a column vector with components u1 and u2. For modes that are well localized and spatially

separated, the overlap integrals are small: M11,M22 ≫ M12 = M21,K11,K22 ≫ K12 = K21. Also,

since we are interested in the behavior where hybridization may occur – and thus the frequencies

of the two modes are nearly degenerate – it follows that K11/M11 ≈ K22/M22.

Taking the leading order terms in the coupling, it follows that we can write M and K as:

M =

M11 0

0 M22

 ≡

m1 0

0 m2

 (5.17)

K =

 K11 K12 − K22M12
M22

K21 − K11M21
M11

K22

 ≡

 k1 −κ

−κ k2

 (5.18)

An inspection of Eqs. 5.17 and 5.18 shows that two coupled continuum mechanical modes with

small overlap can be reduced to two coupled simple harmonic oscillators.

To continue this discussion, we consider the effects of damping on the hybridization of two-

point mass-coupled oscillators. To model this system, the equations of motion are defined as:

Mü + Cu̇ + Ku = 0. (5.19)

Here we define the mass matrix M , the damping matrix C and the spring matrix K as:
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M =

m1 0

0 m2



C =

m1γ1 0

0 m2γ2



K =

 m1ω
2
1 −√

m1m2 g
2

−√
m1m2 g

2 m2ω
2
2



(5.20)

Note that the convention for coupling terms in K is selected such that the normal mode splitting

at zero detuning is g2/ω0 for all values of m1 and m2 in the undamped case.

To calculate the normal modes, one can assume that u(t) = u0e
λt. With this assumption,

we have effectively elected to solve the problem via a Laplace transformation. In this case, the

equations of motion can be rephrased as a polynomial in λ with matrix coefficients:

(Mλ2 + Cλ + K)u0 = 0. (5.21)

Much like an eigenvalue problem, this equation has nontrivial solutions for both λ and u0 if λ is a

root of the following polynomial:

A(λ) = det(Mλ2 + Cλ + K) = 0 (5.22)

In general, there are four solutions for λ for the above equation, coming in two complex conjugate

pairs. Physically, the imaginary part of λ corresponds to the frequency of each mode, while the

real part corresponds to the energy decay rate of the mode in question. Although there is an

analytical expression for each λ, its form is rather involved and will not be presented in this work,

as the general solution can be generated by the quartic formula. Once the roots of Eq. 5.22 are

known, then inserting each root into Eq. 5.21 produces a system of linear equations whose null

space contains the normal mode corresponding to the eigenvalue in question. The two complex



148

conjugate pair solutions for λ produce a complex conjugate pair of normal modes up to a scale

factor that without loss of generality can be neglected.

Although the forms of the equation are rather complicated, one can still investigate the prop-

erties of the solutions analytically. One such investigation would be to identify critical parameters

of the system where changes in qualitative behavior occur. For this section of the work, we seek to

identify in which parameter regime one can observe a hybridization of the two modes. This might

be a surprising question to ask if one is only familiar with the undamped case of this problem,

where hybridization will always occur. However, it can be shown that there is a critical value of the

coupling – when compared to the dissipation present in the system – below which full hybridization

ceases to occur, even the natural frequency of the two local mechanical oscillators is fully degener-

ate. Incomplete hybridization coincides with the property that two of the roots of Eq. 5.22 have

equal imaginary parts, meaning that the system does not exhibit an avoided crossing. A common

tool to study the properties of roots of polynomials is to study the discriminant of the polynomial:

Discx(A) = a2n−2
n

∏
i<j

(ri − rj)
2. (5.23)

Here A(x) is a polynomial of the form:

A(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 (5.24)

with roots ri.

An inspection of Eq. 5.23 obviates the property that a polynomial with discriminant 0 is

indicative of repeated roots of the polynomial. In our case, Eq. 5.22 defines the characteristic

polynomial of our problem. The discriminant with respect to λ of Eq. 5.22, can be considered

to be a polynomial of some parameter in its own right. For the case of searching for the lack of

avoided crossing, one can consider Discλ(A(λ)) as a polynomial in the detuning δ between the two

modes in question, which we can define as B(δ). By setting Discδ(B(δ)) = 0, one can search for

parameters where the roots A(λ) change their behavior, notably where the system can or cannot
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exhibit degenerate imaginary parts of their roots. This condition, although analytical, produces

rather high-order polynomials that are difficult to manipulate in the most general cases. A more

simplified case of the problem is when m1 = m2, γ1 = 0, ω1 = ω0 and ω2 = ω0 + δ. In this case,

one can verify that by setting Discδ(B(δ)) = 0, the condition that g2 = γ1ω0 is revealed.

For the more general case, Eq. 5.22 can be numerically solved. Since we are most concerned

with the degree of hybridization in this model, we define a parameter µi hereafter referred to as

the mixing factor:

µi ≡ min (||u(i)1 (δ)|2 − |u(i)2 (δ)|2|). (5.25)

µi ranges between 0 and 1, and u
(i)
j is the normalized motional amplitude of mass j in normal

mode i. When µi = 0, this means that there is a detuning at which the mode is fully hybridized

(equal participation of masses m1 and m2), while when µi = 1, this means that the mode has the

participation of only a single mass.

In Fig. 5.16 one can see the effects of dissipation on the mixing factor. For values of g2 below

the critical value, the µi > 0 indicating incomplete hybridization. For values of g2 much larger

than the critical value, the behavior of the system matches that of the undamped system. We

can evaluate which regime our system is in by considering the dissipation of both the MD and S2

modes. The hybridization of two modes is dominated by the more dissipative mode, in this case,

the MD mode. By extracting γ from experimental results, and the simulated undamped splitting

δωm from FEA simulations targetting the MD - S2 hybridization, we can compare the coupling

strength to the dissipation present in the system. This comparison is denoted by the black dotted

line in Fig. 5.16, indicating that our system should exhibit behavior closely matching that of the

undamped system, and thus one should expect full hybridization to occur in theory.

We again continue our analysis by studying the properties of the normal modes calculated

from Eq. 5.22. At the outset, the masses, damping rates, and temperatures (expressed as mi,

γi, and Ti respectively) of the local modes are known. The goal will be to derive the analogous
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Figure 5.16: Left axis: mixing factor µi as a function of coupling strength g. Right axis: normal
mode splitting ∆ωm as a function of coupling g in the case when γ2 = γ ≫ γ1. Dark (light) lines
correspond to the behavior in the case when γ1 = 0 (γ1 = γ2/8). The dotted red line indicates the
asymptotic value of the splitting expected when γ1 = γ2 = 0. The latter case corresponds to the
parameters explored experimentally. In both cases, there is a critical value of g, below which an
avoided crossing does not occur. In the case of no avoided crossing, it is evident that the degree of
hybridization also decreases since µi > 0 in this regime. The vertical dotted line corresponds to the
value of g between the S2 mode and the mass-defined defect mode (MD) explored experimentally
in this work.

properties (Mi, Γi and T
(i)
eff ) of the normal modes.

The damping rates of the normal modes can be calculated from energetic arguments. Notably,

it can be interpreted as the energy lost per oscillation times the oscillation rate:

Γ = ωm
∆W

2πW
(5.26)

where ∆W is the energy lost per oscillation, and W is the energy stored in the oscillator. In this

coupled mode model, ∆W can be calculated as the sum of the work done by damping forces on

each point mass per cycle. For harmonic motion, W can be calculated to be twice the average

kinetic energy over a single oscillation period. Therefore in the case of two coupled point masses,

the expression for the damping rate of mode i is then:

Γi = γ1m1
|u(i)1 |2

(|u(i)1 |2m1+|u(i)2 |2m2)
+ γ2m2

|u(i)2 |2

(|u(i)1 |2m1 + |u(i)2 |2m2)
(5.27)

To calculate the effective temperature of the mode in this model, we begin with the general case
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of a continuous oscillator subject to a spatially varying thermal bath:

Teff =

∫
αTdV∫
αdV

=

∫
αTdV

Γ
(5.28)

where T is the local physical temperature of the mechanical structure, and α is the dissipation

density of the mode. The analogous formula for the coupled point oscillator model would replace

integrals over volume with summations over the contributions from each mass:

Teff =

∫
αTdV

Γ
→

∑2
i=1 α̃iTi

Γ
(5.29)

Here we have neglected the mode indices on Teff and α for clarity. An inspection of Eq. 5.27 readily

identifies an expression for α̃i:

α̃i =
γimi|ui|2

|u1|2m1 + |u2|2m2
(5.30)

Therefore, the effective temperature for normal mode i is:

T
(i)
eff =

T1γ1m1|u(i)1 |2 + T2γ2m2|u(i)2 |2

γ1m1|u(i)1 |2 + γ2m2|u(i)2 |2
(5.31)

Note that in this calculation, normalization conventions for the mode shape vector components ui,j

have no effect on the result. Furthermore, this result relies only on the hybridized mode shape and

thus is valid for all regimes of the hybridization process.

To infer the Brownian motion from the effective temperature, the effective mass of each mode

must be considered. We note that the effective mass depends not only on the mode being probed

but also on the probe location. In the point mass case, there are two probe locations — one for

each mass — and thus we can define the effective mass of mode i observed at mass j to be:

M
(i)
eff,j = m1

|u(i)1 |2

|u(i)j |2
+ m2

|u(i)2 |2

|u(i)j |2
(5.32)

Finally, the observed Brownian motion can be expressed from the equipartition theorem:
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⟨(x(i)j )2⟩ =
kBT

(i)
eff

M
(i)
eff,jΩ

2
i

(5.33)

When experimentally probing the effects of hybridization on the modal temperatures, a salient

quantity to consider is yi:

⟨y2i ⟩ = ⟨(x(1)i )2⟩ + ⟨(x(2)i )2⟩ (5.34)

From the above formalism, it can be shown that if the normal modes are computed in the undamped

limit:

⟨y2i ⟩ =
kBT (i)

eff

miω2
i

T (i)
eff = Ti

(
Tj

Ti
− 1)

ω2
i

ω2
j

+
γjTj

γiTi
+ 2 + γi

γj
+ (

ω2
i −ω2

j

g2
)
2

(
1 − g4

ω2
i ω

2
j

)(
( γi
γj

+ 2 +
γj
γi

) + (
ω2
i −ω2

j

g2
)
2)

(5.35)

This expression for ⟨y2i ⟩ has the property that it depends only on mi, the mass of the non-hybridized

mode i. Another notable property is revealed when considering the case that Ti = Tj = T :

⟨y2i ⟩ =
kBT

miω2
i

(
1 − g4

ω2
i ω

2
j

)−1

=
kBT

miω2
i

(
1 + O(

g4

ω2
i ω

2
j

)

) (5.36)

For this work, the simulated minimal normal mode splitting is 500 Hz, therefore g4

ω2
i ω

2
j
≈ 10−8.

Hence, a measurement of ⟨y2i ⟩ has no discernible dependence on detuning when bath temperatures

are equal, regardless of any other parameter mismatch between the modes in question. Therefore,

any change in ⟨y2i ⟩ necessarily arises from a mismatch in thermal bath temperatures. When the

two oscillators are degenerate (ωi = ωj), the expression for ⟨y2i ⟩ reduces to the simple form:

⟨y2i ⟩ =
kB

miω2
i

(
Tiγi + Tjγj
γi + γj

+ O(
g4

ω4
i

)

)
(5.37)
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This expression of the quantity ⟨y2i ⟩ corresponds to a single local oscillator subject to two different

baths. The inferred temperature of this local oscillator would be:

T (i)
eff ≈ Tiγi + Tjγj

γi + γj
(5.38)

Here we will present the results of the hybridization of the MD and S2 modes. As stated previously,

we found it experimentally useful to study the quantity ⟨y2i ⟩ However, in principle, one could

measure the thermomechanical noise spectrum Sxx as a function of heating power while probing at

either the defect pad or near the absorber in order to probe the effects of the hybridization. However,

this was difficult due to the instability of the heating of the device. Although the intensity of the

heating laser was locked, there was appreciable frequency instability of the MD mode while the

heating laser was operated, as seen in Fig. 5.17. We attribute this added noise to mechanical

instabilities of the optical system giving rise to beam pointing, and thus intensity noise of the

absorbed light. Such instability complicates the quantitative analysis of the thermomechanical

noise spectrum. However, frequency noise does not change the energy of the system in question,

and thus one can in principle study the integrated motion of each mode across a bandwidth that

is wider than the size of the frequency fluctuations. This is difficult when the modes are close to

resonance, precluding the ability to distinguish the energetic contribution from each normal mode

of the system. Thus we found it useful to integrate the power across both modes, meaning that we

will probe the quantity ⟨y2i ⟩.

The results of the hybridization experiment are shown in Fig. 5.18. Firstly, one can observe

the mechanical frequency of the S2 and MD modes as they are brought close to hybridization. Note

that at the heating poweres needed for hybridization, one expects a linear relationship between the

frequency shift of the two modes and the (1,1) frequency shift. However, an additional mechanical

mode was also observed close to the MD natural frequency. The presence causes the frequency

shift of the MD modes to be slightly nonlinear due to effects of an avoided crossing. The presence

of this mode is negligible near the hybridization of the S2 and MD modes.
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Figure 5.17: Spectrogram of thermomechanical motion acquired while probing on the central defect
pad while heating such that the S2 and MD modes are closely hybridized. The MD mode has
relatively large frequency fluctuations due to its relatively large fractional frequency shift.

As discussed above, one can define an additional parameter related to ⟨y2i ⟩:

T̃ (S2,MD)
eff ≡

⟨y2(S2,MD)⟩ω
2
S2

⟨⟨y2(S2,MD),0⟩ω
2
S2,0

⟩all
Tlab. (5.39)

Here, ωS2 is the extrapolated angular frequency of the S2 mode without hybridization. As stated

before, this “temperature” does not depend on the effective mass changes due to the mode coupling,

yet can still carry information about the local temperatures of the two non-hybridized modes. As

seen in Eq. 5.35, the form of T̃ (S2,MD)
eff depends on the dissipation, the effective mass, the frequency,

and the coupling between the two modes, as well as the local bath temperature of each mode,

namely Tcp and Tab. It is, however, constructive to write the expected value for T̃ (S2,MD)
eff in two

specific limits:

T̃ (S2,MD)
eff =


T Tcp = Tab = T

TcpγS2+TabγMD

γS2+γMD
ωS2 = ωMD

. (5.40)

The first limit shows that for a spatially uniform bath, the temperature associated with the motional
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observable ⟨y2i ⟩ is just the physical temperature of the oscillator. We find this notable because it

shows that any increase of ⟨y2i ⟩ can be attributed to a spatially varying thermal bath. To quantify

this change in temperature, one can inspect the second case, which predicts what happens when

the two oscillators are brought into resonance. Here, the value of T̃ (S2,MD)
eff takes the form of Eq. 5.4

for a single oscillator in the presence of two different loss channels, and thus two different baths.

Figure 5.18: Hybridization of S2 and MD modes. (a) Measured frequencies of S2 and MD modes
with respect to ∆f1,1 (orange and purple points). Gray lines mark the theoretical hybridization
frequency curves obtained from fits to the measured modes’ frequencies and FEA prediction for
their coupling strength. The mode-hybridization shape determined from FEA is shown along the
frequency curves. The inset shows a zoomed-in plot around the full hybridization point. (b)

T̃ (S2,MD)
eff as a function of ∆f1,1, Measured (purple points) and ∆f1,1-binned (purple full circles

with error bars). The line is a single parameter fit, disregarding all points around δf1,1 ≈ 0.9 kHz.
(a) and (b) share the horizontal axis.

The heating results are shown in Fig. 5.18b. Here, one sees that there is a noticeable increase

in T̃ (S2,MD)
eff when the two modes are brought into resonance. This is expected when considering

the results of the first heating experience, where the temperature of the absorber should exceed the
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central pad temperature by approximately 500 K (Fig. 5.8). We note that the increase in T̃ (S2,MD)
eff

is considerably less than the expected value of 750 K predicted from Eq. 5.40. We attribute this

to the aforementioned heating-induced frequency noise of the MD. The size of the noise was on

the order of 1 kHz, exceeding the predicted frequency splitting from FEA simulation. Fluctuations

with the observed size and time correlation lead to rather complicated dynamical effects. Firstly,

one would expect that much of the experimental time was spent where the instantaneous state

of the oscillators was not fully hybridization. Furthermore, since the fluctuations occurred on a

time scale of around 10 ms, the normal modes of the system changed at a rate faster than the

predicted values of Γ in the steady state, and thus could never fully thermalize to the spatially

varying thermal bath. We acknowledge that these effects most likely led to the reduced value of

T̃ (S2,MD)
eff observed in the experiment, but did not seek to perform further analysis to relate the

observed frequency noise to this reduced value of motion.



Chapter 6

Micromechanical bolometer based on silicon nitride membrane resonators

In this section, we will discuss a recent effort in our group to expand the range of sensing

applications for low-dissipation mechanical resonators based on tensioned silicon nitride membranes.

The thermal physics explored in Ch. 5 is a coupling between the nature of the mechanical motion

of the resonators we study and their thermal environment. We propose a mechanical sensor that

leverages this coupling to probe the thermal environment of the resonator, namely the thermal

radiation impinging on the device. Such a device is called a bolometer, or a sensor of radiant heat.

In this section, we will overview the design principles and considerations associated with making a

micromechanical bolometer.

Conventional bolometers have many applications, ranging from thermal imaging to instru-

mental astrophysics. Typically, the readout is achieved by measuring a change in the resistance of

some electronic circuit element [152–155]. The nature of this readout, although simple, is typically

limited by Johnson noise in the readout circuitry. Thus a common approach to improve bolometric

sensitivity is to cool down the detector, often to cryogenic conditions. The current state-of-the-

art bolometers in fact rely on a superconducting phase transition, where a thermal photon can

locally break superconductivity, giving rise to a sharp increase in the observed resistance of the

circuit. The state-of-the-art in this sensing paradigm currently achieves sensitivities on the order of

10 zW/
√

Hz [156]. This technology has led to superconducting nanowire single-photon detectors,

which leverage this effect to detect single photons over a wide range of frequencies [157]. How-

ever, despite the exemplary sensitivities of these methods, they are highly reliant on the cooling of



158

the device. Therefore, there is a large interest in improving the sensitivities of ambient condition

bolometers. These have advantages in many fields, one of which is astrophysics, where achieving

cryogenic conditions on satellites presents a considerable engineering challenge.

Current state-of-the-art uncooled resistive bolometers reach sensitivities around 10 pW/
√

Hz,

so any improvements beyond this scale will advance our current technological capabilities [158].

These sensitivities are limited by Johnson noise associated with the resistive readout of the bolo-

metric signal. Therefore, potential improvements could arise from alternative readout methods.

For instance, a pW/
√

Hz bolometer has been realized based on a graphene mechanical resonator,

while silicon nitride trampoline resonators have exhibited 10 pW/
√

Hz have been demonstrated on

silicon nitride trampoline resonators [149,159]. For silicon nitride devices, a goal of micromechani-

cal bolometer design would be for the noise floor to be defined not by the Brownian motion of the

device, but rather by the intrinsic fluctuations of the surrounding blackbody environment. These

fluctuations arise from both thermal photons associated with material absorption, and through

thermal phonons associated with a thermally conductive link to the environment. As discussed

in this chapter, the level of these fluctuations depends on the specific geometry in question but

will be on the order of 100 fW/
√

Hz for the scale of tensioned silicon nitride mechanical resonators

typically implemented. To achieve higher bandwidth detection, the geometry can be modified to

be more thermally conductive, allowing for a faster response to incoming signal radiation, albeit at

the cost of sensitivity. In this chapter, we will work towards this goal by modifying the mechan-

ical resonator geometry that is typically used for these types of measurements. In doing so, we

will leverage a unique aspect of frequency-shift-based mechanical sensors, where the functionalizing

agent, the absorber in this case, can be spatially separated from the mechanical motion. This is

because both temperature and stress perturbations have long-range influences on the device. Our

proposed design utilizes this in full, allowing for flexibility in the choice of absorber since the lack of

mechanical motion at the absorbing point minimizes the additional loss associated with the added

material.
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6.1 Bolometer fundamental noise sources

The operating principle of any bolometer relies on the absorption of incoming thermal ra-

diation leading to a change in a physical quantity. Bolometers are typically conceptualized as a

thermal mass with a heat capacity C linked to a thermal bath with a conductance G. A fundamen-

tal source of noise concerns the random exchange of thermal quanta with the environment through

this conductance. In the systems studied in this work, G has two main contributions. The first

is from the conductive link to the environment. This can be modeled through a bridge of length

L and cross-sectional area Ac connecting the thermal mass to the environment. In this situation,

the thermal quanta being exchanged with the environment are phonons. Hence, we will call this

noise phonon noise [160]. Therefore, the conductance associated with the conductive pathway Gc

is given as:

Gphonon = kcAc/L (6.1)

where kc is the coefficient of thermal conductivity for the bridge material.

The other link in question is the radiative link. Here, we want to know the effect of incoming

thermal photons on the device. We can call this photon noise [160]. This can be given as:

Gphoton = 4Aradσϵ(T
3) (6.2)

where ϵenv is the emissivity of thermal mass, σ is the Stefan-Boltzmann constant, T is the

device temperature, and Arad is the radiational cross section of the thermal mass. For uncooled

bolometers, the radiative conductance can be strong given the T 3 scaling. The total conductance

of the system will be G = Gphonon +Gphoton. Therefore, the noise equivalent power associated with

these two pathways can be given as:

ηth =
√

4kBGT 2 (6.3)
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where we have used the subscript th to indicate that this noise is from the thermal background

of the detector.

Any practical implementation of a bolometer will also have additional noise associated with

the readout of the physical quantity of interest. Therefore, the total noise of a bolometric measure-

ment will be:

η =
√

η2th + η2ro (6.4)

where ηro is the readout noise associated with the bolometer archetype in question. For

many resistive bolometers, this readout noise will typically limited by Johnson noise in the readout

circuitry [161]. In principle, micromechanical bolometers afford a different readout scheme, in

principle limited by the thermomechanical noise of a single degree of freedom of the system.

6.2 Micromechanical bolometer operating principle

It is not obvious at the outset how one should utilize a micromechanical resonator as a

bolometer. In Ch. 5, we demonstrated two effects arising from the heating of the device: an

increase in Brownian motion, and a mechanical frequency shift. We assert that for the desired

sensitivities of uncooled bolometers (< 1 pW/
√

Hz), observing a change in the Brownian motion

due to such a small amount of absorbed power would require long averaging times. However, we

note that some mechanical modes, namely the MD mode, experienced frequency shifts in great

excess of the intrinsic linewidth of the resonator. Therefore, we identify a detection of a mechanical

frequency shift due to stress changes — as seen in Ch. 5 — as the proposed method of transducing

the amount of absorbed power [99,149,162].

Here, we will discuss a theory of how to best detect mechanical frequency shifts. A naive

measurement of a frequency shift would be to observe the change in the thermal motion. If the

frequency shift δf is greater than the linewidth of the mechanical resonance, then the shift is

observable. However, it would take a measurement time τ equal to 1/γ in order to resolve the two
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peaks. Therefore, the sensitivity can be expressed as:

η =

√
1

Qω0R2
f

(6.5)

where the quantity η will be referred to hereafter as the noise-equivalent power of the sensor. The

above analysis is rather crude and does not take into account aspects of this measurement such as

random sampling of Sxx in a finite measurement time.

This number can be improved by introducing a mechanical drive. The reason for this im-

provement can be seen from the equation of motion, where the contribution of the mechanical

frequency scales as the mechanical motion x(t). In more concrete terms, we can imagine a situa-

tion where the mechanical resonator is maintained at a constant amplitude A through an external

resonant drive. We can then encode the information about the resonator’s motion in quadratures

of motion:

dx(t) = X(t) cos (ω0)t + Y (t) sin (ω0t) = A cos (ωt) + Y (t) sin (ω0t) (6.6)

where we have assumed that the resonant drive results in motion in only the X quadrature of

motion, which can be defined as the amplitude quadrature. To linear order, any information about

a frequency change of the oscillator will be present in Y (t), the phase quadrature. Under this

scheme, the phase of the oscillator can be calculated as:

ϕ ≈ Y (t)/A. (6.7)

For a micromechanical oscillator, this measurement will be inherently limited by the thermal noise

of the oscillator. Therefore, we can define an rms phase noise resulting from thermal motion as:

δϕth ≈

√
kBT

meffω
2
0A

2
(6.8)

Here we observe that the amount of phase fluctuations, which are directly related to frequency

fluctuations, caused by the thermal motion of the oscillator are diminished by a factor of 1/A.
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Therefore, any scheme that wishes to read the frequency shift of a mechanical oscillator benefits

from a mechanical drive. Typically, we are interested in the spectrum of the measurement noise.

Here we are interested in the phase noise spectrum Sϕϕ in relation to the motional spectrum

produced from Brownian motion Sxx. They can be related as:

Sϕϕ =
Sxx

A2
. (6.9)

The frequency and phase noise spectra are related as:

SΩΩ = ω2Sϕϕ (6.10)

where SΩΩ here we have adopted a notation where Ω is the instantaneous frequency of the oscillator.

In essence, what SΩΩ encodes is the frequency stability of the oscillator. Oftentimes it is useful to

relate this to another quantity, the Allan variance of the resonance σf . The definition of the Allan

variance of a quantity y is expressed as:

(σ(A)
y (τ))2 =

1

2

1

N − 1

N∑
k=2

(ȳk − ȳk−1)
2. (6.11)

Here, ȳk is an averaged value of y over the kth measurement bin with time length τ , and N is the

number of bins for a given τ [1]. For the case of frequency noise, the Allan variance can be related

to the frequency noise spectrum as:

(σ
(A)
Ω (τ))2 =

16

πτ2

∫ ∞

0
dωSΩΩ(ω)

sin4(ωτ/2)

ω2
=

16

πτ2

∫ ∞

0
dωSxx(ω)

sin4(ωτ/2)

A2
(6.12)

Assuming a classical thermal noise spectrum, this yields an Allan variance of the form:

(
σ
(A)
Ω (τ)

)2
=

kBT

meffω0A2Qτ

(τγ)2

1 + (τγ)2
. (6.13)

Eq. 6.13 gives the Allan variance in the ideal case where the oscillator is only subject to Brownian

motion. We emphasize that this is the fundamental noise that dictates the frequency stability. In
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general, there can be other sources of frequency noise for mechanical oscillators. Ambient temper-

ature drifts of the laboratory, or packaging environment, can give rise to corresponding long-term

frequency drifts of the device. There is some evidence that silicon nitride mechanical resonators can

experience excess frequency noise, which would increase the Allan variance [163]. We draw attention

here to there is little evidence of excess frequency noise observed on tensioned silicon nitride mi-

cromechanical resonators, outside of ambient temperature fluctuations of the environment [33,37].

This is in contrast to other material platforms that exhibit frequency jitter or instability [70, 164].

Depending on the vacuum environment, there have also been observations of unidirectional long-

term frequency drifts, indicative of slow deposition of contaminants on the device [1]. All of these

drifts should be taken into account. It has been shown that many sources of frequency noise are

common-mode between mechanical modes, and therefore it is possible to stabilize the frequency of

a target mechanical mode with respect to another mode of the device [71].

The Allan variance can be related to the noise-equivalent-power in the following relation:

ηro =
σ
(A)
δΩ/Ω

√
τ

Rf
(6.14)

where we have used the fractional Allan variance (σ
(A)
δΩ/Ω) and the relative responsivity of the mode

in question. The subscript “ro” refers to readout in this case.

The performance of bolometers is not strictly determined by the sensitivity. Notably, a sensor

with a larger bandwidth (short response times) is desired. As explored in Ch. 5, the response time of

a mechanical frequency shift is dictated by a host of factors but is overall determined by the thermal

isolation of the structure. Another aspect of bolometer design is the overall sensor size. Many

applications for these sensors seek to create arrays of these sensors, and therefore miniaturization

of the device is a thrust in order to reduce the pixel size.
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6.3 Mechanical frequency tracking schemes

We have established that the effects of Brownian motion on the Allan variance of a mechanical

mode can be diminished via the application of a large mechanical drive amplitude. These large

oscillation amplitudes are typically achieved by applying a drive resonant with the instantaneous

frequency of the oscillator. If the signal of interest is a frequency shift, there should be a scheme

in place to allow the resonant drive to follow this frequency. There is currently a lot of interest

in investigating various schemes to achieve frequency tracking, which we will summarize in this

section [5].

We identify three schemes that one can pursue for frequency tracking, feedback-free, phase-

locked-loop, and self-sustained oscillation, some of which I have pursued in the lab in preliminary

analysis of membrane frequency shift, and phase noise measurements. Although all three can reach

similar performance in principle, each possesses technical advantages which we discuss here. First,

we will discuss the most straightforward scheme, feedback-free. Here, no frequency tracking is

necessary. It is assumed that the oscillator will maintain a nearly constant frequency and that the

frequency shifts one wishes to detect are smaller than the resonant linewidth of the mechanical

oscillator. Under a near-resonant drive, the motion of the oscillator will be a sum of two terms,

which can be thought of as the fast and slow response of the oscillator. The slow term results from

the accumulation of driven motion resulting from the near-resonant drive. If there is a sudden

change in oscillator frequency, it will take a timescale τr = 1/γ in order to establish the new steady

state response. At the same time as this solution to the equation of motion develops, there is also a

fast response that can be extracted by simply calculating the instantaneous phase of the oscillator

and differentiating in order to extract an instantaneous frequency. Combining these two responses,

the inferred frequency can be calculated as:

∆ω(t) =
∆θ(t)

τr
+

d∆θ(t)

dt
(6.15)

where ∆θ(t) is the phase difference from the reference drive signal. As stated before, the assumption
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in this scheme is that one will always drive near resonance, and therefore the readout of these phases

will be associated with relatively small amounts of thermal noise.

For a more robust detection scheme, feedback can be implemented in order to maintain a

resonant drive even for large frequency deviations of the resonator. This is of practical importance

since ambient temperature fluctuations of the resonator housing can lead to slow, long-term drifts

of the resonator frequency. The first scheme we will discuss is the self-sustained oscillation (SSO)

scheme. This scheme can be understood as an application of an anti-damping force of the form

γẋ(t), meaning that the oscillator will maintain constant energy. To achieve this, a feedback loop is

implemented as shown in Fig. 6.1a. Here, the oscillator motion is phase-shifted by + π/2 and then

passed through a saturating amplifier. The phase shifter converts the motion signal x(t) to ẋ(t),

while the saturating amplifier defines the level of desired force one wants to apply for an operating

mechanical amplitude. In a frequency-locked system, this amounts to a perfectly anti-damped

force.

Figure 6.1: Adapted with permission from APS. Both (a) and (b) are taken from [5], where these
frequency tracking schemes are described in depth. In (a), the SSO scheme is diagrammed. In
this particular implementation, the frequency deviation is measured out-of-loop with a frequency
counter. In principle, this could also be measured in post-processing as well. (b) Diagram of a PLL-
based scheme. This particular diagram would use an in-loop measurement in order to determine
the frequency deviation.

Two elements of interest in the SSO loop are the phase shifter and the saturating amplifier.

We envision the phase shifter could be implemented with a variety of components, such as digital
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programmable phase shifting integrated circuits, analog adjustable phase shifters, or a delay line.

All of these solutions should have enough frequency bandwidth in order to achieve the proper

frequency shift over the frequency excursions experienced in a typical measurement. The saturating

amplifier could be implemented with a variety of nonlinear circuits. Both the phase shifter and

saturating amplifier could also be achieved with a properly programmed FFPA. The SSO method

would also require an out-of-loop measurement of the oscillator frequency, which could be achieved

with the shelf components such as a frequency counter (Fig. 6.1a), or with post-processing of the

raw mechanical signal. We also point out that this scheme of measurement would require some

form of bandpass filtering in order to address a single mechanical mode.

For a PLL-based scheme, the oscillator is driven with a local oscillator. The relative phase

of the oscillator response and the drive is then used to adjust the local oscillator frequency in

order to maintain a resonant drive. This is typically achieved via a PI filter which integrates the

phase difference in order to infer the frequency difference. Readout of the frequency deviation

can be achieved either through a readout of the in-loop control voltage fed to the local oscillator

or through an out-of-loop measurement as used in the SSO scheme. We note that for high-Q

mechanical oscillators, the PLL has a drawback where the bandwidth of the oscillator response

limits how quickly the PLL can follow the mechanical frequency, while in the SSO scheme, the

feedback force frequency changes immediately since it is derived from the oscillator motion directly.

However, as indicated in more thorough examinations of frequency tracking schemes, the stability

and added noise of all schemes discussed amounts to the same performance for integration times

longer than the oscillator bandwidth [5].

6.4 Micromechanical bolometer design with stressed silicon nitride res-

onators

Here we will discuss the basic design goals of the construction of a micromechanical bolometer

out of a tensioned silicon nitride resonator. As seen in the form of Eq. 6.13 and Eq. 6.14, the

sensitivity of a micromechanical bolometer relies on a host of factors. Generally, sensing modes
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benefit from being low-dissipation (high Q), and low-thermal motion (high frequency and high

mass). At the same time, we also desire that the relative change in frequency is maximized when

subject to a flux of incident radiation. Finally, maximizing the mechanical drive A can also improve

sensitivity. We will discuss all of these optimization problems, as well as the coupling between them

in this section.

In regards to the pure mechanical properties of modes, we note that a general bolometer

requires some mechanism in order to absorb the target radiation. In general, this can be achieved

either by using an absorbing mechanical material or by functionalizing the resonator with an ad-

ditional absorber, as explored in Ch. 5. We will explore the latter option, as it has the advantage

of providing a more flexible sensor, allowing the device to be tailored to the choice application. As

noted earlier in Ch. 3, functionalizing mechanical resonators change all properties of the mode, no-

tably the dissipative properties. For the previously explored case of force sensors, this presented a

large challenge, since the motion of the added mass was necessary in order to couple to the external

field. We assert that for a micromechanical bolometer, or any sensor that relies on a parametric

change to achieve transduction, this is not necessarily the case. This is because the frequency of a

mechanical mode in a tensioned device is dependent on the static stress distribution. Most of the

time, we discuss this as resulting from geometry. However, in the case of heat, thermal expansion

can also result in a stress redistribution. Notably, a local stress perturbation can result in a global

change in the stress of the structure, resulting in a frequency shift. This has large ramifications for

device design, where now the functionalizing agent can be spatially separated from the mechanical

mode.

With this added freedom in the placement of the absorber, we propose a conceptual device

construction. Since the thermal expansion of the device should scale with how much temperature

change is induced per unit of absorbed power, the absorber should be placed at the most thermally

isolated location on the device. This means different things for different device archetypes. For a

PnC device, this means that the absorber should be placed at the center of the device, while for a

trampoline device, this means that the absorber should be placed on the optical detection pad. For
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both cases, a new type of mechanical mode is needed, where the mechanical motion is located at

the region surrounding the absorber. Although not intentionally designed for this purpose, device

E studied in Ch. 4 exhibits a promising mode that fits this archetype. This mode, pictured in

Fig. 6.2a, consists largely of tether motion. Such a mode has been recently discovered in the field

of micromechanical resonators and has been called a perimeter mode [1]. These modes boast many

advantageous properties, notably their low dissipation through a new type of soft clamping. Rather

than exponentially decaying into a support structure, the mode wraps itself along the edges of a

polygon. Thus a sinusoidal, clamping-free mode profile is achieved.

Figure 6.2: (a) Perimeter mode in a high-contrast PnC device. The absorber (in yellow) can
be placed on a large pad. The narrow tethers near the large pad exhibit a sinusoidal profile
along a hexagonal path encircling the pad. (b) A perimeter mode in a trampoline device. The
large cylindrical object represents a generic absorbing element. Included are labels of commonly
referenced dimensions of the device. The support length L indicates the distance from the corner
of the pad to where the tether meets the substrate.

The instantiation of a perimeter mode found for device E, although not ideal, provides inspi-

ration for a promising micromechanical bolometer archetype, where a large central pad supporting

the absorbing element is surrounded by a polygon of narrow tethers. We can apply the same idea

to a simpler device like a trampoline resonator. This concept is presented in Fig. 6.2b. Between

these two designs, we see trade-offs. For perimeter modes housed in PnCs, we note that PnC

structures have a minimum size requirement — or number of unit cells — in order for there to be a

well-defined acoustic band gap. Therefore, PnC devices will have a larger footprint than trampoline

devices, meaning that pixel sizes will be larger. One way to avoid this would be to design devices
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with many such defects in an array. Ideally, these defects would be localized to allow for spatial

information about the impinging radiation to be preserved. This could be achieved by introducing

slight geometric differences between each defect, which would detune them spectrally, preventing

mode hybridization. Another issue with PnC perimeter mode devices is that the necessitated of a

pad-tether geometry in the PnC is sub-optimal compared to the ideal perimeter mode, and there-

fore will not have the best dissipative properties. For these reasons, we will discuss perimeter modes

on trampoline devices primarily in this chapter, although we do not necessarily rule out the use of

multiplexed perimeter modes housed in PnCs for future-generation devices.

6.5 Micromechanical perimeter-mode bolometer design: thermal properties

In this section, we will present an exploration of optimizing the design of perimeter-mode-

based micromechanical bolometers. The design will mainly center around the optimization of both

mechanical and thermal properties, as well as understanding the trade-offs between the two. We

will begin with a discussion of the thermal properties. Due to the rather simplistic geometry of

this structure, we can derive a lumped-sum model for the thermal properties of the system. The

model will consist of a central pad supporting a large absorbing region. This pad will then be

connected to the environment with 4 narrow tethers. For the lumped sum model, we will disregard

thermal transport effects arising from the perimeter mode tethers themselves, as these will only

provide higher-order effects to the conductive cooling rates. In the lumped sum model, we will

be interested in small temperature increases of the device, which will be valid in the small-signal

limit, which is the regime of interest for precision sensing applications. Therefore, we can derive

the following expressions for the radiative and conductive cooling rates:

Prad = 4ϵσApadT
3
env∆T = Grad∆T (6.16)

Pc =
4kcwth

L
∆T = Gc∆T (6.17)

where Apad = L2
pad is the pad area, wt is the tether width, h is the membrane thickness, and
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L is the support tether lengths. We note that the factor of 4 appearing in the expression for Gc is

because there are 4 support tethers. One can therefore solve for the temperature difference ∆T as

a function of the absorbed heating power:

∆T = (Gc + Grad)Pheat. (6.18)

We claim that even without calculating the frequency shift directly, maximizing ∆T/Pheat is equiv-

alent to maximizing Rf for a given geometry. To maximize ∆T , we see that this is achieved by

smaller values of Apad and larger values of L, assuming all other parameters are fixed. We focus

on these two parameters as these will scale with the overall device size. Therefore, as the device

size scales, there are two competing effects, one where the larger pad yields larger rates of ra-

diative cooling, while longer support tethers make the effective conductive links weaker. We can

study these two effects for increasing device size for a set geometric relation between Apad and L

of Apad = L2/16. The results can be seen in Fig. 6.3a. One sees that in the small-device limit, the

cooling is dominated by conductive cooling and relatively low temperature increases are achieved.

Increasing from here, the temperature reaches a maximum as the radiative cooling starts to increase

as the pad size increases, peaking around 150 microns of tether support length. This happens to

be around where the fraction of radiative cooling is close to 0.5. The details of the dependencies

should change as the relative pad size in relation to the overall device size changes, but the concept

stays the same.

In terms of device design, this dictates a strategy for creating more sensitive devices. Naively,

one would think that simply scaling the device to larger sizes would yield higher sensitivity. How-

ever, for a set amount of incoming heating power, this is not the case, due to the added effects of

radiative cooling. Here, we will claim that this scaling holds if one is interested in the quantity

∆T/Pheat. In many cases, we are more interested in measuring the effects due to incoming flux

Φheat. In this case, the absorbed power will scale as the pad size. In this regime, we recover a

different functional form:
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Figure 6.3: (a) Left axis: Temperature increase as a function of L for 1 µW of incident heating
power in the lumped-sum model. Right axis: Fraction of cooling through the radiative cooling
channel. We observe a peak of increased ∆T around where the cooling fraction is 0.5. (b) Same
quantities, but here now the device measures the incoming flux, and thus the heating power scales
as the size of the central pad. Here, larger devices will always yield more sensitivity, albeit with
diminishing returns.

∆T = (4ϵσApadT
3
env +

4kcwth

L
)−1ApadΦheat. (6.19)

One can see the results of this behavior in Fig. 6.3b. Here, we see that there is no maximum value

for ∆T , and rather the behavior asymptotes in the limit of larger devices. Therefore larger devices

yield the highest sensitivities, albeit with diminishing returns. Thus a device wishing to probe an

incoming flux will probably have a size that wishes to balance pixel size versus sensitivity. We note

here that to this point, the flux sensor treatment of the lumped-sum model seems the most appli-

cable to a general bolometer. However, there are other device applications where measuring with

respect to a heating power is a more accurate figure of merit. Notably, absorption IR spectroscopy

is one potential application for these devices [162]. Here, a sample is placed on the central pad,

while a rather small laser beam locally heats the sample. In this case, the experimenter dictates

the amount of incoming power, and in general, it will be quite localized, meaning that ∆T/Pheat is

the correct quantity to optimize. We can also investigate the effects of the temperature increase on

other geometric parameters. Fig. 6.4 shows this dependence on the tether width. We see that in
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general, narrower tethers yield higher values of ∆T for both a flux sensor and a power sensor. This

is because we are holding the pad size constant for these simulations. We note that here, there

is a direct trade-off between sensitivity (higher ∆T ) and bandwidth. We propose that tuning the

tether widths allows for tuning between more sensitive and slower sensors, to fast sensors with less

sensitivity.

Figure 6.4: (a) Left axis: Temperature increase as a function of tether width for 1 µW of incident
heating power in the lumped-sum model for a device with 100-micron support tethers, and 25-
micron pad length. Right axis: Fraction of cooling through the radiative cooling channel. We see
that in general the temperature increase is diminished with wider tethers. (b) The same overall
trends hold for the flux sensor.

6.6 Micromechanical perimeter-mode bolometer design: mechanical prop-

erties

We can now discuss the mechanical properties of the device, where the goal is to maximize

the Q of the resonator mode in order to reduce thermal coupling and achieve the readout needed to

achieve the radiative noise limit discussed previously. As a baseline, the device can be understood as

having two separate components, a polygonal (in this case we will only talk about a square) frame,

as well as a central pad. Between these two elements are thin support tethers as well as support

tethers to the surrounding substrate. The mechanics of the frame have been studied extensively in

other work and depend mainly on the width of the frame and support tethers, as well as the frame
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and support length [1]. In that work, the case of equal stress was studied. That is, the tether widths

of the supports and frame were adjusted so as to have constant stress throughout the device. This

was performed in order to maximize the stress in the device, thus ensuring maximal dissipation

dilution. For our work, the problem is more complicated, as not only do the mechanical properties

matter but also the thermal properties. Since this study is in its early stages, we will begin by

considering designs where all tethers have the same widths. We imagine that future designs could

iterate on the devices presented in this work by modulating the relevant tether widths in order to

maximize a trade-off of the mechanical and thermal properties of the device.

Figure 6.5: Comparison between the Gaussian (left) and mean (right) curvature profiles for a device
with 500 nm tethers with a 100-micron perimeter mode frame length. We see that the Gaussian
curvature is concentrated strongly in the support tethers since they must necessarily torque in order
to comply with the perimeter mode profile.

In the previous study of perimeter modes [1], it was found that it was insufficient to model the

loss of the mode by evaluating the mean curvature, as has been customary in this work and the field

in general. Therefore, in this section, we will include the effects of the Gaussian curvature. It was

found that this term can become large for these perimeter mode devices, where the torquing of the

tether becomes large. A torquing tether will in general have nonzero values of the cross derivative

∂2w
∂x∂y along its length and across its width. Therefore, an inspection of Eq. 1.44 indicates that

the Gaussian curvature term need not be zero, and in fact, might be dominated by the Gaussian
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curvature. This behavior can be seen in Fig. 6.5. Here, we see that the Gaussian curvature is

heavily concentrated in the device support tethers, as they must torque in order to allow for the

perimeter mode motion. Notably, the magnitude of the curvature in the tethers is larger than what

is observed in the perimeter mode itself, meaning that we expect that the perimeter mode Q will

be limited by the torquing of the tethers. Another attribute of these devices highlighted in Fig. 6.5

is the curvature distribution on the pad. This curvature distribution, or the dissipation density, is

at least 2 orders of magnitude attenuated from the loss experienced in the torquing of the support

tethers. Therefore, we expect that these devices can be readily loaded with an arbitrary absorber

or sample on this pad while maintaining the dissipative properties desired.

We can investigate this effect over a range of geometries. First, we will study the effect of

tether width. In this study, we will study the same perimeter mode device with the same square

frame size of 300 microns, but with a variable tether width. The results of this study can be seen

in Fig. 6.6. Here, the overall trend is that thinner tethers yield higher values of Q since the torque

of the perimeter mode tethers themselves is minimized for this geometry. However, we see that

we eventually saturate to a constant value in the thin-tether limit. This is because there will be a

constant torque in the support tethers, regardless of the support tether widths. We note that this

study focused on keeping the support tether length constant such that the distance between the

pad center and the edge of the device was equal to the perimeter mode frame length. In order to

maximize Q, this length can be adjusted. It has been seen previously that a sweep of this tether

length will increase the Q for low support tether lengths since this increases the length scale at

which the support tethers torque [1]. However, if the natural frequencies of the torque modes of

the support tethers become close to the perimeter mode frequency, the perimeter mode begins to

hybridize with the tether widths of the other modes, leading to a reduction in Q. For our problem,

we also have the connection tether between the absorbing pad and perimeter mode frame to take

into account. In general, this adds to the dissipation due to the added torquing material and also

introduces another hybridization mechanism.

Yet another hybridization mechanism can occur in the same way, except that a perimeter
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mode can hybridize with the torque modes of the perimeter mode tethers themselves, or the central

pad. An example of the former can be seen in Fig. 6.7. We emphasize that the behavior observed

in this particular device is not universal. That is, in general, it is not the 5th perimeter mode that

hybridizes with the torque modes of the perimeter mode tethers. In general, this depends greatly on

the particular geometry of the device. One general statement we can make is that the higher-order

perimeter modes are more susceptible to these effects, especially hybridization with pad modes.

This can be explained by the relatively large density of states at higher mechanical frequencies,

which increases the probability that a spectator mechanical mode will be near the ideal perimeter

mode frequency, making hybridization more likely to occur. In order to minimize and avoid these

effects in general, extensive modeling of the system should be carried out in order to maximize the

mechanical quality factor of the device. We also acknowledge that although the Q is maximized

for thinner tethers, efficient optical readout at these tether widths presents a technical problem

since it is near or beyond the diffraction limit for most optical systems. This can be addressed by

introducing relatively small detection pads to the tethers themselves. It has been shown that this

addition only reduces Q by around a factor of 2 [1]. Thus thin-tether devices can be used near

their potential while still maintaining stable optical readout.

To continue the discussion of perimeter modes, we can begin to inspect the properties of

higher-order perimeter modes. In general, so long as they do not hybridize with other polarizations

of motion of the device, they will maintain the exemplary dissipation properties of the other modes

in the device. This can be seen in the overall trend of the unhybridized perimeter modes in Fig. 6.7.

The first 4 perimeter modes exhibit a 1/n dependence on the Q, where n is the perimeter mode

number. This means that the first few perimeter modes will have decent sensing properties. For the

purpose of a bolometer, this can be leveraged in order to minimize the fractional Allan deviation.

An inspection of Eq. 6.13 shows that σ
(A)
δΩ/Ω has a ω−3/2Q−1/2 scaling, thus implying a n−1 scaling.

Thus the frequency noise floor will be lower for higher order perimeter modes. Working with

these higher-order modes introduces a drawback of potential nearby spectator modes, but we have

observed that working with the 3rd order — and thus improving the frequency stability by a factor



176

Figure 6.6: Comparison of Q calculated from only the mean curvature (circles) compared to Q
calculated with the inclusion of Gaussian curvature as a function of tether width for the first
perimeter mode of a 300-micron perimeter frame length device. We see a few trends. At low tether
widths, the true Q is lower than the Q calculated from the mean curvature, with the Q increasing
for thinner tethers. There is a large drop-off in Q for tether widths approaching 5 microns, even
for the mean curvature Q.

of 3 — typically avoids the effects of hybridization. To understand how this increased frequency

stability can be used for a bolometer, we need to also understand how Rf scales for a perimeter

mode device. This can be easily modeled through an understanding of the ideal perimeter mode

frequency:

ωn,perim =

√
σt
ρ

n

L
(6.20)

where σt is the stress inside the perimeter mode tethers. Therefore:

δωn,perim

ωn,perim
= −δσt

2σt
. (6.21)

We thus observe that regardless of the mechanism through which the stress changes, all perimeter

modes will experience the same fractional frequency shift, and thus will all have the same value of

Rf . Therefore, higher-order perimeter modes will in general be more sensitive.



177

Figure 6.7: Calculated Q for a perimeter mode device with 500 nm tether widths, and a frame
length of 150 microns. The first 5 perimeter modes are labeled with red stars on the plot. All other
modes are labeled as blue circles. An FEA simulation of each perimeter mode is also displayed
with an arrow pointing towards to corresponding Q on the spectrum plot. We see that the first 4
perimeter modes have vastly elevated Q than the rest of the device. The 5th perimeter mode has
a greatly diminished Q. This can be understood from the mode geometry which has a large torque
contribution in the perimeter mode tethers themselves.

To see the interplay of all of these effects, we will calculate the performance of a 100-micron

frame-size bolometer as a function of tether width. The results are displayed in Fig. 6.8. We

have already discussed Q in detail, so we will now discuss the calculated η as a function of tether

width, and perimeter mode order (Fig. 6.8b). We have also computed an estimation of ηth from

both the photon (phonon) pathways — shown as the dashed (dotted) line in Fig. 6.8b — for

these devices, assuming that an absorber is deposited onto the central pad. We observe that the

thin-tether devices have better Brownian motion-defined noise equivalent powers (ηBrownian). We

also note that increasing the perimeter mode order also improves the ηBrownian, so long as the

Q is maintained to be relatively high. This particular realization shows that the 3rd perimeter

mode exhibits mode hybridization for some tether widths, limiting performance. We envision

that a deployed device might specifically engineer this higher-order mode in order to optimize the
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operation of the device. With this in mind, we see that all modes of all geometries explored will be

ultimately limited by the phonon noise. The increase in ηBrownian as a function of tether width can

be explained by both a reduction in Q and Rf . We note that Rf is the same for each perimeter

mode order, as expected from the analysis presented in Eq. 6.21. The decrease of Rf with increasing

tether width can be explained by an increased conductive link to the environment as tether width

increases. This observation also indicates that this particular geometry has a significant fraction

of thermalization resulting from conductive cooling. We would expect that increasing the support

tethers would yield devices that would become radiative cooling dominated, and thus we would

have a saturation of Rf at higher values of tw. This increased conductive link also plays a role in

the thermalization rate, shown in Fig. 6.8d. Here, as the tether width increases, the thermalization

rate (or the detection bandwidth) also increases. It is thus apparent that this family of devices

allows for tuning of sensitivity versus bandwidth by increasing or decreasing the tether width, a

strategy seen elsewhere in the field of micromechanical bolometers [149].

For this particular geometry, we can ask what are the absolute values of the thermal con-

ductance G. The simulated values for G, as well as the contribution from the radiative (photon)

and conductive (phonon) channels, are plotted in Fig. 6.9. We see that in this particular geometric

configuration, these devices have a thermal conductance anywhere in the range of 10 nW/K to

100 nW/K depending on the tether width. Narrower tethers will cause the structure to be lim-

ited by the radiative conduction channel, setting the lower bound for G. These values are similar

to what is observed in conventional electrical readout bolometers, for instance in this work by

Varpula et al [161]. However, when comparing these particular structures, we observe that our

noise-equivalent-power is lower by an order of magnitude or more in some cases while having longer

response times by a factor of 10 or greater. This difference in response times can be attributed to

the relative difference in heat capacities of the two devices. What is notable, is that even though

the devices studied in this work are more sensitive, the limiting sensitivity will be ηth, owing to the

low-noise mechanical frequency shift readout. This is in contrast to what is observed for electrical

readout, where the Johnson noise is found to be the limiting noise contribution [161]. Therefore,
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(a) (b)

(c) (d)

Figure 6.8: Summary of performance of a 100-micron perimeter mode-frame length perimeter
mode bolometer. In all panels, the blue, red, and yellow points correspond to the 1st, 2nd, and
3rd perimeter modes respectively. (a) Q versus tether width. The drop in Q for the 3rd perimeter
mode at a tether width fo 2.5 microns is caused by hybridization with a lower-Q mode. (b)
Noise equivalent power from multiple sources. The dashed line indicates the contribution to ηth
from thermal photons for this device assuming an ideal absorber. The dotted line corresponds
to the contribution to ηth from phonons. The points correspond to the inferred ηro (Brownian
motion-defined readout noise) for each mode. We see that all geometries explored in this set of
simulations will be limited by the phonon noise. (c) Rf as a function of tether width. We see
that for wider tethers, the Rf decreases due to the increased conductive link with the environment.
(d) Thermalization rate versus tether width. The thermalization rate should be the same for each
order perimeter mode. We see that as the conductive link becomes stronger, the thermalization
rate, and thus the bandwidth of the device, increases.

we see this particular study as an example of the benefits of micromechanical bolometers, and

in particular, the use of low-dissipation perimeter modes in these devices. Conceptually, we can

understand this advantage in readout as arising from the transduction being achieved through a

single degree of freedom of the system. Notably, we can tune the dissipative properties of this

mechanical degree of freedom through the methods discussed in this work. In contrast, resistive
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bolometers limited by Johnson noise are limited by all degrees of freedom of the electronic system

and therefore do not benefit from the tunability afforded by mechanical resonators.

Figure 6.9: Contributions to the thermal conductance through both the phonon and photon chan-
nels. For a 100-micron frame length perimeter mode device. The nitride thickness was assumed to
be 100 nm for all simulated values. We observe that in the narrow tether regime, the conductance
is dominated by the photon contribution, while in the wider tether regime, the total conductance
increases as the phonon contribution begins to dominate

Now that we have established potential performance metrics for these devices, we should

discuss avenues for improvement. Given this work’s focus on the mechanical properties of devices,

we will devote most of our attention to improving the mechanical readout of these devices. One such

avenue has already been pointed out by others in the field, reducing the stress of the device [165].

In this work, it is noted that the relative responsivity of their device is inversely proportional to

the prestress of the membrane. This can be understood by inspecting Eq. 6.21, where it appears

that the fractional frequency change is inversely proportional to the stress of the perimeter mode

tether. The factor in the numerator, δσ, can be derived by understanding the operating principle

of these devices. By heating the central pad, the entire structure should expand, or experience in

change in the static strain. We note that this change in the static strain does not depend on the

prestress, rather it generates a change in the stress depending on Young’s modulus of the material:
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Eδϵ ∝ δσ.

It should be noted that the dependence on the prestress of the device affects other parameters,

notably the mechanical frequency and the quality factor. For our perimeter mode devices, we

can derive the scalings of these two parameters for those of soft-clamped mechanical modes [51].

Notably, the quality factor should scale as σ, since prestressing the device gives rise to dissipation

dilution. We can seek to derive a general scaling argument for a mechanical device with an arbitrary

Q(σ) ∝ σb, which would depend on the dominant loss mechanism of the mechanical mode in

question, notably whether it is soft-clamped (σ1) or clamping-loss limited (σ1/2), or radiation-loss

limited (σ0). Taking into account all of these factors, we can derive the following scalings:

Q ∝ σb

ωm ∝
√
σ

σ
(A)
δΩ/Ω ∝ ω

−3/2
0 Q−1/2 ∝ σ−(3/4+b/2)

Rf ∝ σ−1

η ∝ σ−b/2+1/4

(6.22)

With the above scaling arguments, one can see that there is a weak, albeit appreciable advantage

(σ−1/4) to working with higher-stress devices when working with soft-clamped mechanical modes.

This is in contrast to approaches suggested by other groups pursuing micromechanical bolometers,

which typically utilize less-engineered mechanical membrane devices [162]. Such devices will have

scaling with b = 1/2, meaning that the NEP will be independent of σ, meaning that to first order

there is no advantage to working with low-stress devices. However, we do identify a few advantages

associated with working with these lower-frequency, lower-stress devices. Notably, operating at a

lower frequency presents an easier task when it comes to employing frequency tracking schemes,

as the feedback needs to be performed on a slower timescale. In regards to utilizing high-stress

membranes, we anticipate benefits beyond just a lower NEP. We also anticipate advantages when

it comes to the dynamic range of the device. This will arise from a phenomenon associated with

a large amount of incident power, leading to a large relaxation of the stress. In principle, there
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is a scale of absorbed power at which the modal properties of the device change appreciably, thus

rendering the mode unusable as a transducer of absorbed power. Due to the higher values of Rf

in low-stress devices, we anticipate that such devices will have a lower maximal absorbed power.

Anecdotally, we have performed simulations in which 1 MPa perimeter mode devices experience a

cross-over from tensile to compressive stresses for even 1 uW of absorbed power. Thus such devices

might need to be handled with care, so as to not cause damage to the device prior to deployment, or

even during operation. Meanwhile, high-stress devices can handle much higher levels of absorbed

power and are more likely to be limited by thermally induced physical damage due to extreme

temperatures.

Another potential avenue for improvement might be to consider changing the thickness of

the membrane. The inspiration for this approach arises from the Q ∝ 1/h scaling for soft-clamped

mechanical modes. However, it has been observed that linear operation of mechanical devices is

typically achieved with oscillation amplitudes on the order of the membrane thickness, and therefore

the allowed mechanical driving amplitude A ∝ h, while the effective mass will also scale as h. This

yields a scaling for the fractional Allan deviation as σ
(A)
δΩ/Ω ∝ 1/h. At the same time, a device that

thermalizes due to conduction will experience a thermal link, and thus an Rf , that scales as 1/h as

well. Therefore, changing the thickness of the membrane will not change the noise-equivalent power

of the device. However, we just remarked that increasing the thickness increases the thermal link,

and thus the thermalization time. Therefore, despite not improving the sensitivity of the device,

increasing the thickness should also increase the bandwidth. This approach can be safely pursued

until the bulk losses of the silicon nitride begin to dominate, meaning that one could in principle

work with a device with a thickness of 500 nm, resulting in bandwidths approaching 1 kHz [80].

6.7 Absorber characterization and selection

In this section, we will overview a brief study of the compatibility between a vertically aligned

carbon nanotube (VACNT) absorber and a SiN PnC device. VACNT-based absorbers are of interest

to the bolometer field, owing to their high absorption (near 100 percent) over a broad range of
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frequencies [166]. There have also been attempts at the creation of a metamaterial absorber, where

a geometrically patterned VACNT forest would have frequency selective absorbption [166]. Similar

approaches using patterned semi-conductor arrays have also been shown to exhibit narrowband

absorption, which can reduce the background radiation levels [167].

The VACNT deposition was carried out Nathan Tomlin and Chris Yung from the Sources

and Detectors group at NIST. To grow the VACNT forest on a device, first, a 10-20 nm aluminum

oxide layer is deposited on the released silicon nitride membrane, followed by a 1-2 nm layer of iron.

We anticipate that future devices will utilize a shadow mask during these deposition steps so as to

selectively deposit the absorber onto the central pad of the device while leaving the surrounding

structure pristine. The growth is achieved in an 800-degree C oven in order to grow a 50 µm tall

VACNT forest. Given the adverse conditions of this process, it is prudent to test whether or not

the released SiN PnC will survive such a process. Also, we could expect that the silicon nitride

membrane could become more or less stressed, given differential coefficients of thermal expansion

of the aluminum oxide layer and the silicon nitride membrane itself. This stress will contribute to

the mechanical properties of the final device.

Fig. 6.10 shows a SiN PnC device with a deposited VACNT. We can see from these images

that the device survived the deposition process. An inspection from the backside also determines

that the tethers did not experience mechanical phenomena such as buckling, which might arise

from excess compressive stresses on the device. We note that although Fig. 6.10 displays a single

device, this deposition process was carried out for 4 different SiN PnC devices with similar results.

We anticipate that less intricate devices will also survive the process.

In order to characterize the mechanical properties arising from the VACNT, we decided to

measure a SiN PnC with a square PnC lattice. In order to carry out the measurement, we need

to probe the membrane from the backside, where we will harness the prompt reflection from the

vacuum-silicon nitride interface for our interferometric readout of the resonator motion.

Fig. 6.11 displays the thermomechanical noise spectrum of such a device. The first aspect of

the spectrum is the observation of the (1,1) membrane mode. We find that this mode has a greatly
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Figure 6.10: Microscope images of a VACNT forest deposited onto a SiN PnC device. Left column:
complete chip. The VACNT forest covers most of the chip save for the top and bottom. The PnC
device is located at the center of the image. Middle column: Front side of the chip. The bottom
image is a zoom-in of the PnC. Here we see that the tops of the CNT appear wavy. Right column:
Back side of the chip. The zoomed-in image on the bottom indicates that the silicon nitride tethers
survived the CNT deposition.

Figure 6.11: Thermal motion spectral density of a SiN PnC device with a deposited VACNT. The
inset shows the Brownian motion (blue points) of the (1,1) mode of the device. A Lorentizan fit
(red line) to this resonance reveals that the Q of this mode is 2200, meaning that the VACNT
introduces appreciable mechanical loss.
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reduced quality factor of 2200. For reference, we often observe that the (1,1) membrane mode of SiN

PnC devices is typically around 100,000 due to radiative losses associated with the mounting of the

device. This indicates — not surprisingly — that the VACNT introduces appreciable dissipation

to the mode. We attribute this to the complex characteristics of the VACNT structure, where the

interweaving of individual CNT may lead to the introduction of friction within the VACNT itself,

creating dissipation. Also, since the VACNT is not tensioned, we will expect that the introduction

of non-tensioned material to the system will reduce the effects of dissipation dilution. Other notable

aspects of the observed (1,1) resonance are the resonant frequency and magnitude of the mechanical

motion. The frequency is around 0.5 of the expected value, while the thermal motion is 8 times less

than expected. The latter is readily explained by the introduction of mass to the resonator, thus

increasing the effective mass of the (1,1) mode, and reducing its motion. This increase in mass and

dissipation explains our second observation, being that we do not readily observe a bandgap for this

device. We attribute this to the increased mass and dissipation of the higher-order modes, which

will obviate our ability to readout the Brownian motion of these modes with the imprecision of the

interferometer used. We also hypothesize that the combination of increased density of states and

increased dissipation could have effects on the mode spectrum itself for the higher-order modes.

The decrease in resonant frequency is a more complicated story. Firstly, we expect that the

silicon nitride film stress will change from the pre-deposition value. Also, there will be bi-layer

film effects from the addition of the aluminum oxide. More complications arise when considering

how to model the VACNT. We might think of modeling the addition of the nanotubes through

the addition of a non-tensioned layer of another material. However, the mechanical properties

of VACNT are not readily known. Furthermore, we would expect them to be anisotropic, given

that the composition of a VACNT is linearly aligned CNT. Although the mechanical properties of

individual carbon nanotubes have been studied, to our knowledge, mechanical studies of VACNT

have not been pursued to this date [168]. Therefore, we encourage future studies of the mechanical

properties of VACNT for the incorporation of VACNT into micromechanical bolometers. These

studies should focus strongly on the dissipative properties of VACNT, as to discern whether or not
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the addition of the absorber to a perimeter mode bolometer will hamper the sensing performance

of the device.

Despite performing this test, we also point out that there are other absorbers other than

VACNT. VACNT is useful mainly for its near-perfect absorbance over a wide bandwidth. However,

given the sensitivities of our devices, a slightly sub-optimal absorber with better and more tractable

mechanical properties might be preferable. Notably, thin films of Pt and Au have been used in

similar micromechanical bolometers, demonstrating the mechanical compatibility of these materials

with silicon nitride membranes [99,159].
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[14] Nikolai Kiesel, Florian Blaser, Uroš Delić, David Grass, Rainer Kaltenbaek, and Markus
Aspelmeyer. Cavity cooling of an optically levitated submicron particle. Proceedings of the
National Academy of Sciences, 110(35):14180–14185, 2013.
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noni. Magnetic resonance force microscopy. Rev. Mod. Phys., 67(1):249, 1995.

[104] Thomas R Albrecht, Peter Grütter, David Horne, and Daniel Rugar. Frequency modulation
detection using high-q cantilevers for enhanced force microscope sensitivity. Journal of applied
physics, 69(2):668–673, 1991.

[105] CL Degen, M Poggio, HJ Mamin, CT Rettner, and D Rugar. Nanoscale magnetic resonance
imaging. Proceedings of the National Academy of Sciences, 106(5):1313–1317, 2009.

[106] HJ Mamin and D Rugar. Sub-attonewton force detection at millikelvin temperatures. Applied
Physics Letters, 79(20):3358–3360, 2001.

[107] TD Stowe, K Yasumura, TW Kenny, D Botkin, K Wago, and D Rugar. Attonewton force
detection using ultrathin silicon cantilevers. Applied Physics Letters, 71(2):288–290, 1997.

[108] D. Rugar, C. S. Yannoni, and J. A. Sidles. Mechanical detection of magnetic resonance.
Nature, 360:563, 1992.

[109] A. O. Sushkov, I. Lovchinsky, N. Chisholm, R. L. Walsworth, H. Park, and M. D. Lukin.
Magnetic resonance detection of individual proton spins using quantum reporters. Phys.
Rev. Lett., 113:197601, Nov 2014.

[110] Ashok Ajoy, Ulf Bissbort, Mikhail D Lukin, Ronald Lee Walsworth, and Paola Cappellaro.
Atomic-scale nuclear spin imaging using quantum-assisted sensors in diamond. Physical
Review X, 5(1):011001, 2015.

[111] Igor Lovchinsky, AO Sushkov, E Urbach, NP de Leon, Soonwon Choi, Kristiaan De Greve,
R Evans, R Gertner, E Bersin, C Müller, et al. Nuclear magnetic resonance detection and
spectroscopy of single proteins using quantum logic. Science, 351(6275):836–841, 2016.



195

[112] HJ Mamin, M Poggio, CL Degen, and D Rugar. Nuclear magnetic resonance imaging with
90-nm resolution. Nature Nanotechnology, 2(5):301–306, 2007.
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