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Ultracold polar molecules provide an exciting platform for the study of many subfields of

physics. Some of the studies include spin-models, quantum information, strongly correlated and

exotic phases of matter, ultracold chemistry, and beyond-standard model searches. This makes

them a very versatile testbed as any individual molecule could potentially be used for all the

above-mentioned studies.

In this thesis, I will describe my work on the direct laser-cooling of molecules, specifically the

YO molecule. The work spans over different magneto-optical-trapping mechanisms, sub-Doppler

cooling, conservative trapping, and collisional studies. Some of the highlights of my work are the

demonstration of the first sub-Doppler molecular MOT, and the study of bulk gas collisions in a

true single partial wave regime. In the culmination of this work, we achieve a record phase space

density of PSD = 2.5 × 10−5 in a bulk dilute gas of YO molecules pushing laser-cooled molecules

into the ultracold regime.
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Chapter 1

Introduction

1.1 Why Polar Molecules?

Polar molecules provide an exciting and diverse system for probing fundamental physics.

Unlike atoms, polar molecules have intrinsic strong electric dipole moments in their body-fixed

frames. These moments can be manipulated with either DC or oscillating microwave fields by mix-

ing rotational levels which have extremely long lifetimes allowing for potential, long coherence and

storage times. Since a typical electric dipole-dipole interaction in polar molecules is ten thousand

times stronger than that of typical magnetic dipole-dipole interactions, the applications with polar

molecules cover a wide variety of fields. Some of these applications include simulating spin models

[44, 14], quantum information [35, 5, 24, 52, 40, 61, 82], ultracold chemistry [46, 66, 15], searches

for the electron EDM [58, 2], the promise to study strongly correlated phases [10, 23] and exotic

states of matter [56, 32, 63]. Figure 1.1 shows some of these applications diagramatically.

We see that these applications are broad and cover many aspects of different physical fields.

Spin models, strongly correlated phases, and exotic phases of matter probe interesting condensed

matter physics which can be difficult to simulate due to the sheer number of interacting particles.

Searches for the electron EDM with polar molecules allow tabletop experiments to probe wide mass

ranges of potential beyond standard model particles which are out of reach even today at large

facilities like the LHC, and place tight constraints on potential beyond standard model theories

such as SUSY. Polar molecules are an interesting platform for quantum information as the rich

internal structure could allow for shelving and continuous loading of qubits mid-operation and
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Figure 1.1: Shown are some applications of polar molecules to probe and study different funda-
mental physics.

also mid-circuit readout for error correction. Since the interaction is based on electric dipole-dipole

interactions the range of these interactions is quite long and coherent Rabi oscillations have already

been seen between optical tweezers several µm apart. Ultracold chemistry with polar molecules is

an exciting avenue. At ultracold temperatures, arbitrary state preparation can be done and only

the lowest partial wave is dominant in the scattering cross-section between the molecules. As such,

tight control over the system can be achieved and intermediate reaction products and the resulting

reactant products can be detected vs. time. This allows a measurement of the intermediate complex

lifetimes and quantum state mapping of the products depending on the initial state preparation

which is a difficult problem for ab initio theory.
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Figure 1.2: The relevant energy scaling of molecular degrees of freedom and interactions are shown
vs. temperature.

1.2 Why Ultracold Molecules, and How do We Make Them?

Before discussing why and how to make ultracold molecules it is useful to define the definition

of ultracold. Generally in the field of AMO physics, the rule of thumb is that ultracold corresponds

to a velocity distribution with an average temperature of < 1 µK. This definition is a good rule of

thumb, however it does miss much of the physics involved in ultracold gases. A better definition

that I prefer is ultracold is defined as when the collisional processes of a distinguishable dilute gas

of atoms or molecules are dominated only by one partial wave. In this definition, the intrinsic

properties of the molecules are accounted for depending on the interaction typically dipole-dipole

or van der Waals along with the centrifugal barrier heights. If this condition is met then the

collisional cross-section can be defined as a simple hard sphere scattering with a characteristic

scattering length a, and in this limit, the temperature of the gas would be called ultracold.

The reason we want the molecules to be in the ultracold regime is if the temperature of the

molecules is high then the intrinsic properties of the molecule are ”bleached” out from Doppler

broadening of the relevant degrees of freedom. In this case, we cannot take advantage of the unique

properties of the molecules in the true quantum regime. Additionally, many of the fundamental

physics that one would study with molecules rely on well-controlled coherent interactions with
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applied optical, microwave, or DC fields which again are compromised if the ensemble thermal

energy of the gas is too high. The relevant energy scaling of a typical diatomic molecule is shown

in Fig.1.2. We see from the figure that to access the ultracold regime the molecules need to be at

extremely low temperatures at around 1 µK. To reach degeneracy the molecules need to be cooled

even further typically through evaporative cooling to temperatures around 100 nK or lower.

By far the most successful way to produce molecules at ultracold temperatures is through the

association of atoms. This is done by laser-cooling two atomic species generally alkali earth atoms

which are the most simple atoms to laser cool and associating them through a Feshbach resonance

as these atoms also have 1 µB magnetic moment in their ground state. STIRAP pulses are then

applied to coherently transfer the molecules into their absolute ground state. This methodology

was first used in our lab on KRb molecules [51] and has become widely successful in creating dense

gases of dipolar molecules [33, 50, 55, 59, 71]. Additionally, with shielding of inelastic loss three

molecular species have been brought to quantum degeneracy [22, 75, 62, 13, 7].

Thus far, no directly laser-cooled molecule has been brought to degeneracy, and only really

in this work on YO molecules can you say that laser-cooled molecules have finally made it to

the ultracold regime with a bulk dilute gas. However, laser-cooled molecules have advantages over

magneto-associated molecules. One advantage is molecular readout can be done without destroying

the molecules which will be an advantage in the future particularly when the experiment demands

in-situ readout of different internal spin states in the molecule. Additionally, molecules that can

be laser-cooled are generally found in nature and are much more exciting for ultracold chemistry

studies. Also, a much wider array of molecules can be laser-cooled including heavier molecules for

EDM studies including polyatomic molecules.

In this thesis, I will only concentrate on laser-cooling YO molecules. This molecule is unique

in its level structure, and it has been found in this work that YO molecules are very amenable to

laser-cooling and achieve the highest phase space densities of any laser-cooled species both in free

space, magneto-optical-traps, and in conservative traps. With its large dipole moment of 4.5 Debye

in the ground state, it remains a very exciting molecule for studying Bose-Hubbard spin models



5

and exploring exotic states of matter.



Chapter 2

Molecular Structure of YO Molecules

Before discussing laser-cooling and preparation of cold molecules in single quantum states,

it is necessary to understand the structure of molecules and their additional degrees of freedom.

In this thesis, we will only concentrate on the structure of diatomic molecules, in particular, the

YO molecule. However many of the facets that will be discussed apply to polyatomics except

with reduced symmetry. Molecules enjoy important properties of atoms in that oscillating electric

and magnetic fields can resonantly drive electronic transitions between atomic orbitals, and static

fields can shift the internal energy of individual spin states. This allows for state manipulation

and cooling to ultralow temperatures. However, molecules have additional degrees of freedom in

that they can vibrate and rotate. These vibrations and rotations can also be manipulated with

oscillating and static fields in heteronuclear molecules that are not present in atoms. It is precisely

these extra degrees of freedom that create a physical system unique for certain fundamental studies.

A diagram of the relevant energy scaling of electronic, vibrational, and rotational states is

shown in Fig.2.1. The scaling of electronic transitions matches well with alkali and alkaline earth

metals used in typical AMO experiments with transition frequencies of several hundred THz lying

within or just outside the visible. The next energy scale is vibrational which creates a large density

of states in each electronic state. The frequency span between vibrational levels is typically in the

tens of THz range. It is important to note that as the vibrational quantum number increases the

spacing of the vibrational levels decreases showing a prominent anharmonicity.

This of course makes sense as the equilibrium position of the nuclei increases with increasing
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Figure 2.1: Unlike atoms, molecules have additional degrees of freedom in that they can vibrate
and rotate. The electronic, vibrational, and rotational degrees of freedom have drastically different
energy scalings associated with them as shown diagrammatically above.
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vibrational quanta, the electrostatic force between the atoms must decrease until the molecules

disassociate. This can be seen with the tailing off of the potential energy curves in Fig.2.1. The next

energy scale is rotational which has typical energy spacings of 1-10 GHz for the lowest rotational

transitions. This further increases the densities of states as now every electronic state has a ladder

of vibrational energy levels and every vibrational level has a ladder of rotational levels. In addition

to vibrational and rotational levels, there are the familiar fine structure and hyperfine structure

from electron and nuclear spin couplings that add even more states which will be discussed in detail

later. These contributions typically have splittings of 10s of THz and 1-0.001 GHz respectively,

and will be discussed in detail later.

It now appears daunting to attempt to laser cool even the most simple of molecules due

to the large density of states. However, these contributions are well resolvable, and choosing

molecules with the right properties and being a little clever allows for efficient cooling, trapping, and

manipulation of the molecules. Additionally, the beauty of molecules is revealed with this complex

structure in that they can be coherently manipulated over a wide range of the electromagnetic

spectrum from the visible to rf. The next few sections are dedicated to each degree of freedom

discussed above in more detail.

2.1 Electronic Structure

We are mainly interested in achieving expressions for the electric transition dipole moments

(E1) between the various degrees of freedom in the molecule as these matrix elements reveal infor-

mation on the ability to manipulate the molecules with microwave and laser fields. In this thesis,

we ignore any weak forbidden transitions (M1 and E2). As such, to find the matrix elements we

need to determine the various wavefunctions for each internal state which immediately does not

seem like an easy task given the complexity of the internal structure of the molecule. However, a

powerful approximation is generally valid that greatly simplifies the effect of each contribution to

the molecular structure into a simple product of the individual wavefunctions.

This approximation is called the Born-Oppenheimer approximation which states that the
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ratio of electronic and nuclear energy levels is given by [9] (Chapter 2.1),

∆Enucl

∆Eelectronic
≈ (

m

M
)1/2, (2.1)

where m is the mass of the electron and M is the mass of the nuclei. This means that the acceleration

of the electrons from the electrostatic interaction is much greater than that of the nuclei. As such,

the velocities experienced are much higher, and electron dynamics happen on a time scale of 1 fs. In

the molecule fixed frame, the nuclei can be considered fixed in space. This is further extended as the

nuclear motion of vibration and rotation is also weighted in their energy by further powers of the

mass ratio. This allows us to write the total molecular Hamiltonian to a very good approximation as

the sum of the electronic, vibrational, and rotational degrees of freedom and the total wavefunction

as a simple product,

|ΨMolecule⟩ = |ΨElectronic⟩ × |ΨV ibrational⟩ × |ΨRotational⟩ . (2.2)

This product allows an intuitive calculation of the transition dipole moments for electronic transi-

tions.

2.1.1 Angular Momentum and Hund’s Cases

Due to the numerous magnetic couplings present in molecules every electronic state has a

different set of ”good quantum numbers” depending on the energy scaling of molecular interactions.

The order of coupling and the good quantum numbers are well described diagrammatically by

Hund’s cases. The quantum numbers relevant to cooling YO molecules are given in the Table.2.1.

Most of these quantum numbers are familiar to atomic systems with the addition of the vibrational

and rotational quantum numbers. The Hund’s cases describing the angular momentum coupling

are given in Fig.2.2.

The first coupling case that will be discussed is Hund’s case (a). In this case, the electrostatic

interaction between the nuclei is much greater than the spin-orbit interaction, which is much greater
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Figure 2.2: Shown are the angular momentum coupling cases relevant to the YO molecule. Hund’s
case (a) describes the coupling in A2Π1/2 and A

′2∆3/2 states. Hund’s case (b) describes the coupling
in the X2Σ+ and B2Σ+ states.
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Quantum Numbers

Symbol Definition

I Total Nuclear Spin of Nuclei
S Total Electron Spin of Relevant Valence Electrons
L Total Orbital Angular Momentum of Valence Electrons
R Total Angular Momentum from Rotation of Nuclei
v Total Number of Vibrational Quanta

Table 2.1: Description of the relevant quantum numbers for laser-cooling of YO molecules.

than the rotational energy [8]. As reference the typical energy spacing between electronic levels is

≈10000 cm−1, the spin orbit interaction has energy of ≈100 cm−1 and the roational energy is of

order ≈1 cm−1. The strong electrostatic energy locks the electronic orbital angular momentum L

to precess around the internuclear axis of the nuclei. The spin-orbit interaction is strong enough to

cause the electron spin to also precess along the internuclear axis as the rotational energy is very

small. As such, the orbital angular momentum and the spin angular momentum have projections

along the internuclear axis with quantum numbers Λ and Σ. The sum of these two projections is

defined as Ω as shown diagrammatically in the top representation in Fig.2.2. Ω then couples to R

to form the total angular momentum J excluding nuclear spin. Adding, nuclear spin I couples to

J to form F. Hund’s case (a) is a good representation of the excited electronic states that are used

prominently throughout the rest of this work for Doppler cooling. One interesting consequence of

the coupling of the orbital angular momentum to the internuclear axis is the projection of Λ is

degenerate as it can be projected towards either nuclei. This actually has a profound effect on the

electronic structure with states with non-zero Λ. This degeneracy is known as lambda doubling

and creates two states with opposite parity that can be represented as linear combinations of the

different angular momentum projections. This degeneracy is lifted due to second-order spin-orbit

coupling and the rotational Coriolis effect [9] (pg. 328). Due to coupling with other states with

projection |Λ| − 1, lambda doubling has the largest effect for states which have angular projection

|Λ| = 1.

The second case is Hund’s case (b) and occurs when the electrostatic interaction is still the
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largest interaction, but the rotational interaction is larger than the spin-orbit interaction. In this

case, the orbital angular momentum is still projected along the internuclear axis however since the

spin-orbit term is small the electron spin does not couple strongly to the internuclear axis. As such,

Λ couples to R first to form N, which then couples to S to form J. J then couples to I to form

F. Hund’s case (b) will be important for states with Λ = 0 such as the ground state of the YO

molecule and future possible repumping on higher excited states. Since Λ = 0, there are no parity

doublets in the ground state of YO. Instead, states of opposite parity are formed by the rotational

ladder in each vibrational manifold which allows E1 transitions between different rotational states.

Another interesting aspect to note is that Hund’s cases are only really true in the lowest rotational

manifolds. If the rotational manifolds become increasingly populated the spin-orbit interaction

breaks down and the good quantum numbers can change as the transition to a different Hund’s

case occurs.

2.1.2 Term Symbols

Now with an understanding of the relevant magnetic couplings of the different angular mo-

menta, how do you label a particular quantum spin state? The labeling is given below for a

heteronuclear diatomic molecule and specifically for the YO molecule, and is quite similar to the

term symbols used for atoms except with the additional degrees of freedom,

v = (0, 1, 2...),K2S+1Λ±
Ω , J = Ω+ (R = 0, 1, 2...), (G), F,mF (2.3)

the first term simply represents the vibrational level with the associated occupied electronic state

which was previously shown in Fig.2.1. The second term is a term that is similar to the labeling

of the atomic states. Here K is just a placeholder and will not be seen throughout the rest of this

thesis. The values of K are letters labeled, X,A,B,C... and denote the relative energy scaling of the

electronic state. X is reserved for the ground state, the first excited state A, the next excited state

B... and so on. This convention however is not followed and you will see interesting states like

A’ which simply means that transition was found at a later time and had lower energy than the
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previously labeled states. S is the total spin of the valence electrons and YO which has one valence

electron is fixed to S = 1/2 indicating spin doublets. The Λ term had been previously defined for

both Hund’s case (a) and (b). The labeling convention takes the form of Λ = 0,1,2... → Σ,Π,∆....

An important note is that this Σ has nothing to do with the projection of the electron spin and

is simply a label. Ω has been previously defined and can be thought of as essentially denoting the

spin-orbit state for nonzero Λ. The plus or minus superscript denotes the reflection symmetry of

the state with a plane that contains the internuclear axis and is only valid for states with Λ = 0.

The next term is the total angular momentum J and takes values from J = Ω + (R = 0,1,2...). In

Σ states the quantum number R = N as Λ is zero. As such, throughout this thesis, the rotational

states will be labeled N in the ground state. The next quantum number G is a special case that is

only applicable to Σ states in YO like the ground state. It is defined as G = I + S and has to do

with the fact the YO has a massive Fermi contact interaction. This means the electron spin density

with the Y89 nucleus, which has a nuclear spin I = 1/2, is large (O16 has no nuclear spin). It is so

large the Hund’s case (b) scheme described earlier is altered as I and S first couple together and

then couple to the rotation. This is critically important and is responsible for many of the facets

of laser-cooling and in particular the hyper-efficient ground state sub-Doppler cooling present in

YO molecules. A simple basis transformation for G is given by a Wigner 6-J matrix that allows a

transformation to the standard Hund’s case (b) with more specific details given in [9] (pg.156) and

[83],

|((I, S)G,N), F ⟩ =
∑
J

(−1)S+I+F+N ((2G+ 1)(2J + 1))1/2

 I S J

N F J

 |(I, (S,N)J), F ⟩ . (2.4)

While this expression may seem intimidating to a young grad student reading this thesis, such

expressions are extremely common as transformations to different bases happen constantly when

discussing molecules as shown in the previous section. However this expression is straightforward to

understand and states exactly what was stated in the previous paragraph, the ket on the left-hand

side states I and S couple together to first form G, which then couples to N to form F. This can
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be represented with a Wigner-6J symbol as three angular momenta are being coupled with some

prefactors summed over J times the ket on the right-hand side which is the standard Hund case

(b) coupling where S and N couple together to form J, which then couples to I to form F.

2.1.3 YO Level Structure

YO Spectroscopic Parameters

Electronic Level Symbol Orbital Configuration Lifetime τ Linewidth Γ/(2π) Intrinsic Dipole Moment

X2Σ+ 11σ115π412σ1 NA NA 4.5 D
A2Π1/2 11σ115π46π1 33 ns 4.8 MHz 3.7 D

A′2∆3/2 11σ115π42δ1 23 µs 6.9 kHz 7.5 D (Theory)

B2Σ+ 11σ115π413σ1 30 ns 5.3 MHz 1.7 D (Theory)

Table 2.2: Molecular orbital configurations, lifetimes, and dipole moments of relevant electronic
states for laser-cooling [65, 85].

Now that molecular term symbols and the different angular momenta cases have been de-

scribed, we can turn to the molecule relevant to this thesis. That molecule, is the Y86O16 molecule

pronounced yttrium-monoxide. It is an interesting molecule that consists of an element residing

in the rare earth third column of the periodic table and of oxygen. This molecule has been the

study of numerous theoretical and experimental articles as this molecule is prominent in astrophys-

ical observations around cool stars [65]. Additionally, it acts as a test bed for ab-initio studies of

open-shell transition metal diatomic molecules [65].

The relevant states, orbital configurations, lifetimes, and dipole moments are given in Ta-

ble.2.2. We see that in the absolute ground state, X2Σ+ YO features a large permanent dipole

moment of 4.5 Debye that makes it very suitable for fundamental quantum simulation studies. Ad-

ditionally, its appreciably large mass of 105 amu provides low recoil temperatures for sub-Doppler

cooling. YO features excited states namely the A2Π1/2 that has a short lifetime of 33 ns allowing

scattering large amounts of photons for laser-cooling in a short amount of time. Uniquely to cur-

rent trapped laser-cooled molecules YO features an intermediate A′2∆3/2 state with a lifetime of

23 µs that allows for recoil-limited cooling in traditional optical molasses. YO also is an open shell

molecule as seen from the orbital configurations meaning that a strong magnetic moment exists in
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the ground state allowing for ground state cooling and also magnetic trapping.

Successful laser-cooling is facilitated by scattering photons off a strong transition normally

in the optical or near IR spectral region. The spontaneous emission rate is given by the well-known

equation below which can be derived from the Wigner-Weisskopf theory of coupling of excited

electronic states to vacuum modes,

Γspon =
∑
i

ω3
i→e| ⟨Ψe|µ |Ψi⟩ |2

3πϵ0ℏc3
(2.5)

where ω is the angular transition frequency. As such, the higher the transition frequency the higher

the spontaneous emission rate and the higher the photon scattering rate. The sum over i is the

sum over all lower energy states to a particular excited state in the molecule given by |Ψe⟩. Here

⟨Ψi|µ |Ψg⟩ is the matrix elements of the transition dipole moment. These matrix elements are

the single most important expressions for laser-cooling of a molecule or atom! In the following

discussion, we assume only E1 transitions and the dipole moment are induced by the interacting

laser field. To understand why this expression is so important we will write out the definition in

the Born-Oppenheimer approximation discussed earlier, and we will analyze each term. Analyzing

each term in the expression reveals what molecules can and can’t be laser-cooled and why YO does

meet the criteria for laser-cooling. The transition dipole moment is defined in [9] (pg. 269) and is,

µe =

[∫
α
ψ∗
v(Rα)ψ

′∗
v (Rα)dVα

]
×
[
⟨J,MJ |µ |J ′,M ′

J⟩
]
×

[
−e

∫
k
ψ∗
v(rk, Rα)

∑
k

rkψ
′
v(rk, Rα)dVk

]
.

(2.6)

Here k represents the kth electron, α represents the αth nucleus, ri is the position of each

electron, Rα is the position of the nuclei, J and MJ are the total angular momenta and its projection

along the internuclear axis, e is the charge of the electron, the prime subscript represents the lower

energy electronic level. An important point that needs to be reemphasized is the three terms here

are all intrinsic properties of the molecule. The first term represents the overlap of the vibrational

wavefunctions and its square is known as the Frank-Condon factors. This term is the most stringent
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term for what molecules can be laser cooled and may be familiar to those who perform cooling to

the ground band in tightly confining optical traps or ion traps. The second term is the geometric

factor from the different angular momenta between the excited and lower energy state. We will

see clever choices of the internal states limit the branching from this term. The last term is the

familiar term for the transition moment in atoms which is just the matrix elements of the position

operator.

We will begin with the third term, the term boils down to choosing molecules with strong

dipole-allowed transitions. This term is normally deduced from performing fluorescence spec-

troscopy and looking at the decay after exciting a particular state. Once the lifetime is known

both Eq.2.6,2.5 can be used to determine its magnitude. If no spectroscopy is known sophisticated

coupled cluster methods can be used to roughly determine this term [84]. Generally, this term

is not the limiting factor for laser-cooled molecules and strong excited state transitions normally

exist. In YO as stated previously numerous strong transitions exist so we already have one-third

of Eq.2.6 accounted for in favor of cooling YO molecules.

2.1.3.1 Frank-Condon Factors and Energy Level Diagrams of YO

To determine the Frank-Condon factors we will need to calculate the vibrational wavefunc-

tions and perform the integral in the first term in Eq.2.6. To do so we need to have a Hamilto-

nian (that is hopefully simple) to define the energy level structure that we can use to diagonalize

Schrodinger’s equation. We can make a simple approximation of what a diatomic molecule is in a

semi-classical picture. The approximation is to assume that a diatomic molecule is an anharmonic

non-rigid rotor [9] (pg. 243). The picture of this is a spring connecting to the two nuclei that have

higher order distortion constants to approximate the anharmonicity to a harmonic oscillator. In

the vibrating rotor approximation as the molecule vibrates the moment of inertia changes of the

molecule changes which creates a mean rotational constant,

Bv =
h

8π2cµ

(
1

R̄2

)
(2.7)
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where R is the distance between the nuclei and is averaged over the motion [9] and µ is the

reduced mass of the nuclei. Additionally, as the molecule rotates faster the equilibrium position

also increases, and is known as centrifugal distortion. This adds higher-order constants to deal with

the divergence from a rigid rotor.

In these approximations, we will write down two equations. The first will describe excited

2Π and 2∆ states and the second will describe 2Σ states. The equations are as follows,

HΠ,∆ = Tv±Av,J+BvJ(J+1)−DvJ
2(J+1)2+HvJ

3(J+1)3+(−1)±1+J−1/2(pv,J+2qv,J)(J+1/2)/2

Av,J = Av +AJv(J(J + 1)) +AJJv(J
2(J + 1)2)

pv,J = pv + pJv(J(J + 1)) + pJJv(J
2(J + 1)2)

qv,J = qv + qJv(J(J + 1)).

(2.8)

The first term Tv describes the energy offset of the particular electronic state and the specific

vibrational state in that electronic state. The subscript v on all the terms absorbs the anharmonic

distortion of the constants into the constants themselves. What this means is for every vibrational

state in each electronic state there is a new set of constants to describe that state. The next in

the top equation with the ± is the spin-orbit constant where the sign denotes the state of interest

for example A2Π1/2 or A2Π3/2. The next three terms should seem familiar and are just the energy

levels of a rigid rotor with higher order terms Dv and Hv to account for the centrifugal distortion

where J is the total angular momentum excluding nuclear spin. Here we explicitly write out the

centrifugal distortion terms and do not absorb them into each constant. The last term describes

the lambda doubling which was described earlier in the discussion with Hund’s cases. The terms

pv,J and qv,J describe the admixing states with |Λ| − 1 which lifts the degeneracy of the parity

doublet [9] (pg. 531). The next three equations describe the centrifugal distortion of the spin-orbit

constant and lambda doubling constants. The spin-orbit constants AJv and AJJv represent the

higher-order distortion constants. The same notion is followed for both pv,J and qv,J .
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The second equation applicable to 2Σ states is simpler as there is no parity doublets or

spin-orbit coupling. It is as follows,

HΣ = Tv +BvN(N + 1)−DvN
2(N + 1)2 +HvN

3(N + 1)3 (2.9)

where the constants have the same definition as before however J has been replaced by N. This is

great for describing rotational splitting however, we care deeply about the exact hyperfine ground

state structure to account for the electron and nuclear spin. Therefore we will add in an effective

Hamiltonian which describes their unique coupling to form G. The Hamiltonian that describes the

hyperfine splitting is the Frosch and Foley Hamiltonian given as [9] (pg. 935),

Hhyperfine = γvS ·N + bvI · S + cvIzSz + CI,vI ·N, (2.10)

where the constants γv, bv, cv and CI,v represent the strength of the spin-rotation, contact, dipolar,

and nuclear spin-rotation interactions. Each of these constants again is dependent on each vibra-

tional manifold accounting for any anharmonicity. Additionally, the constants also are dependent

on the specific rotational level with higher-order distortion terms added to them. This effective

Hamiltonian is quite complicated to diagonalize and good references discussing each term are given

in [83] and [9] (pg. 746). Here we just quote the result and its consequences on the level structure.

First, we introduce two new constants bf,v = bv + tv and tv = cv/3 which are called the Fermi-

contact constant and the dipolar hyperfine term. The Hamiltonian only diagonal in N takes the

form of given in Table.2.3. We see that the triplet states in G = 1 from the coupling of I and S are

lifted by the spin-rotation interaction. This is shown diagrammatically in Fig.2.3. In the special

case of when N = 0 the degeneracy is not lifted and there is only hyperfine manifold in G = 1.

Now that we have simple Hamiltonians to describe the energy level structure, what are the

actual constants? Thankfully lots of spectroscopy has been done on YO as stated previously. The

spectroscopic parameters for the X2Σ+ ground state and the A2Π1/2,3/2 states are given in [6]

(Table. 4). For the B2Σ+ and A′2∆3/2,5/2 states the constants can be found in [43] (Table. 3), and
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YO 2Σ Hyperfine Splitting

G’ = 1,
F’ = N + 1

G’ = 1,
F’ = N

G’ = 0,
F’ = N

G’ = 1,
F’ = N - 1

G = 1,
F = N + 1

γvN
2 +

bf,v
4 − tv

N
4N+6 0 0 0

G = 1,
F = N

0 γv
2 +

bf,v
4 − tv

2
γv
2 (N(N + 1))1/2 0

G = 0,
F = N

0 γv
2 (N(N + 1))1/2 −3bf,v

4 0

G = 1,
F = N - 1

0 0 0 −γv(N+1)
2 +

bf,v
4 − tv

N+1
4N−2

Table 2.3: Effective Hamiltonian diagonal in N for hyperfine splitting for 2Σ states in YO [9] (pg.
748).

N

G = 0

G = 1

F = N

F = N - 1

F = N

F = N +1

Figure 2.3: Shown qualitatively is the hyperfine splitting of 2Σ states in YO. The triplet states in
G = 1 from the coupling of I and S are lifted by the spin-rotation interaction.
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Figure 2.4: Shown qualitatively are the relevant electronic states for laser-cooling YO molecules.

[64] and [65] (Table 4). The hyperfine constants for the ground state can be found in [17] (Table.

2).

So what does the level structure of YO look like? Using the spectroscopy in the above

references and Eq.2.8 and 2.9 we can construct a basic energy level structure shown in Fig.2.4.

In the bottom is the ground state of YO where the v = 0, X2Σ+ state is shown with the first

four rotational states and the hyperfine splitting in each state. We see the rotational constant is

B = 2hπ × 23.263 GHz, and the hyperfine splitting between the G = 0 and G = 1 manifolds is

roughly 772.5 MHz which is unique to current laser-cooled molecules. Above is the v = 0, A2Π1/2
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state with the first three states of the rotational ladder shown. We see that each angular momentum

state is comprised of two different manifolds with opposite parity from Λ doubling as previously

discussed, with a splitting that goes roughly (J + 1/2)×4.5 GHz. Here we neglect the hyperfine

splitting in the excited states as it will be discussed later.

An advantage of using Eq.2.8 and 2.9 is you can simply subtract the two equations between

two particular states to get the transition energies. Shown are three such transition wavelengths

between v = 0, X2Σ+ → v = 0, A2Π1/2, each climbing up the rotational ladder. Fortunately,

transitions that climb up the ladder only differ in frequency by ≈ 10 GHz which is a fact we will

take advantage of when discussing the geometric branching ratios. The other two states of interest

are the v = 0, A2∆3/2 state and the v = 0, B2Σ+ shown on the right side of the figure. Something

of interest is the delta state is lower in energy than the v = 0, A2Π1/2 state which immediately sets

alarms for laser-cooling as we will see. Also, of interest is the small parity doublet in the delta

state of around a few kHz based on recent data. This also will cause issues for laser-cooling. The

v = 0, B2Σ+ has not been taken advantage of as of yet in the experiment, but I introduce it as it

remains a promising candidate for vibrational repumping.

So how do we get the vibrational branching ratios and by extension the Frank-Condon factors?

We can use a method based on the WKB approximation called the RKR (Rydberg-Klein-Rees)

method [9] (pg.280). This methodology works by inverting the experimental data and using Eq.2.8

and 2.9 which provide quantization of the energy levels to create potential energy curves. These

quantized energy levels are subject to a strict phase relation that allows for the determination

of the classical turning points for any given energy. Therefore the vibrational potential can be

determined. Such a potential is shown in Fig.2.5 which has been calculated by this author using

the RKR method, and represents the vibrational potential of the X2Σ+ ground state. Every third

vibrational level has been labeled just for legibility.

With the knowledge of the vibrational potential functions, we can determine the vibrational

wavefunctions for each electronic state to get the Frank-Condon factors. A curve is generated for

each state as similar to what is shown in Fig.2.5. The vibrational potentials for each electronic state
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Figure 2.5: Shown is the vibrational potential energy curve of the X2Σ+ of YO vs internuclear
distance calculated by this author using the RKR method. Every third vibrational eigenenergy is
shown.

are then plugged into Schrodinger’s equation. Numerically diagonalizing Schrodinger’s equation

gives the vibrational wavefunctions for each state. The wavefunctions for each state of interest

are shown in Fig.2.6. One thing that you can immediately notice is that the wavefunctions are all

centered around 1.8 angstroms except the B2Σ+ state and A′2∆3/2 state. From this observation, we

can expect a good overlap of the wavefunctions and strong (diagonal) Frank-Condon factors except

maybe for the B2Σ+ state which has the largest deviation of the equilibrium position compared to

the other electronic states. We can also see that the spatial extent for the v = 0 wavefunctions is

very similar for all electronic states. This also indicates that there should be decent overlap of the

wavefunctions.

Now with the wavefunctions, we can calculate the first term in Eq.2.6,
∫
α ψ

∗
v(Rα)ψ

′∗
v (Rα)dVα,

to get the vibrational branching ratios between the different electronic states. The Frank-Condon
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Figure 2.6: Shown are the vibrational wavefunctions Ψ calculated by this author for the low-
est vibrational states in YO for each relevant electronic state. The plots show the wavefunction
amplitude vs internuclear distance.

factors which are the square of the branching ratios are given in the tables in Fig.2.7. The Frank-

Condon factors are labeled q and the excited state is given a prime superscript and the lower state

has no superscript. Immediately we can see that the vibrational overlap of the v = 0, X2Σ+ →

v = 0, A2Π1/2 is very good and any transition between v = n,X2Σ+ → v = n,A2Π1/2 is good

meaning the Frank-Condon factors are very diagonal. This has a great consequence in that we

can scatter 1/0.0065 = 150 photons before decaying to v = 1, X2Σ+ and 1/0.0005 = 2000 photons

before decaying to v = 2, X2Σ+. As such, we only need two vibrational repump lasers to slow, trap,

and cool YO molecules. Additionally, we find that v = 0, B2Σ+ → v = 0, X2Σ+ transition has

good enough branching for repumping purposes. The other two tables involving the A′2∆3/2 are
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Figure 2.7: Shown are this author’s calculations of the vibrational branching ratios (Frank-Condon
factors) between the relevant electronic states in YO.

for reference and will be discussed later. Something that should be noted is that the square of the

transition dipole moment is directly proportional to these factors. This means that the transition

strengths are suppressed by these factors, and the repump lasers need appreciable power in them

to efficiently power broaden the transitions.

As stated before, the property of diagonal Frank-Condon factors is a stringent requirement

and greatly limits the number of molecules that can be laser-cooled. This requirement was high-

lighted in 2004 by Di-Rosa [26] and has been the bane of laser-cooling exotic molecules. However,

the number of molecules that have been laser-cooled at the time of this thesis has been growing

drastically since the beginning of my time in the lab, and there are a large number of molecules

out there that have this property where many have not even been identified yet! However, for this

work, we find that YO molecules are definitely amenable to laser-cooling with limited branching.

Now with the vibrational branching ratios calculated, we can turn our attention to the geometric

factors or the second term in Eq.2.6.

2.1.3.2 Geometric/Angular Momentum Branching Ratios

It seems maybe obvious that to laser cool a molecule, it must have limited vibrational branch-

ing or diagonal Frank-Condon factors and indeed this is an extremely important aspect of what



25

Figure 2.8: Shown are this author’s calculations of the rotational branching ratios of theA2Π1/2, J =

1/2± → X2Σ+ states.

molecules can be laser cooled. However, how does one deal with the angular momentum branch-

ing? It seems very complicated as if you scatter a photon of an excited electronic state it can have

massive branching to a large amount of rotational and hyperfine states. In this section, we will

calculate all the angular momentum branching ratios.

So, we are interested in calculating the second term in Eq.2.6 ⟨J,MJ |µ |J ′,M ′
J⟩. Immediately

we can see that these matrix elements are a simplification as the bra and ket are already on the

same basis. We know however that different electronic states are represented by different Hund’s

cases and therefore each electronic state has a set of good quantum numbers. Thankfully these

basis transformations are very common and the conversion from Hund’s case (b) to Hund’s case (a)

is the most common. First, we note that the excited state can be written as a linear combination of
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Figure 2.9: Shown are this author’s calculations of the rotational branching ratios of the
A′2∆3/2, J = 3/2± → X2Σ+, N = 0+, 1− states.
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Figure 2.10: Shown are this author’s calculations of the rotational branching ratios of the
A′2∆3/2, J = 3/2− → X2Σ+, N = 2+ state.
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Figure 2.11: Shown are this author’s calculations of the rotational branching ratios of the
A′2∆3/2, J = 3/2+ → X2Σ+, N = 3− state.
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different parity-conserving functions as we discussed when talking about lambda doubling [9] (pg.

619). Explicitly the excited states can be written as,

|Λ; J, |Ω|;±⟩ = 1√
2
(|Λ = 1;S,Σ, J,Ω;MJ⟩ ± (−1)J−S |Λ = −1;S,Σ, J,−Ω;MJ⟩). (2.11)

Again this is the standard basis expansion of the Hund’s case (a) state and is called the

aβ basis. Now we transform the Hund’s case (b) states into the Hund’s case (a) basis and the

transformation is given in [9] (pg. 230) and is as follows,

|Λ;N,S, J⟩ =
S∑

Σ=−S

(−1)J−S+Λ(2N + 1)1/2

J S N

Ω −Σ −Λ

 |Λ;S,Σ, J,Ω⟩ . (2.12)

However, as we recall, in YO the Fermi contact interaction is large and we need to perform

another basis transformation given by Eq.2.4 to go from the bβS to the bβJ basis [9] (pg. 233).

After the transformation, to calculate the actual matrix elements it is better to write the dipole

operator in tensor notation as we can exploit the Wigner-Eckhart theorem to get all the matrix

elements. We recast ⟨J,MJ |µ |J ′,M ′
J⟩ into ⟨Ψf |T 1

p (d) |Ψi⟩ where T 1
p (d) is a rank one spherical

tensor operator where p = 0,±1 and denotes the polarization of the driving field. We can than

follow the procedures in [9] (sections 5.5.3 - 5.5.5) and with a good summary in [78] we find,

⟨Ψ′
f |T 1

p (d) |Ψi⟩ = (−1)F
′−M ′

f

 F ′ I F

−M ′
F p Mf

 (−1)F+J ′+I+1((2F ′+1)(2F+1))1/2

 J F I

F ′ J ′ 1


×

1∑
q=−1

(−1)J−Ω′
((2J ′ + 1)(2J + 1))1/2

 J ′ 1 J

−Ω q Ω

 ⟨Λ′, S′,Σ′|T 1
q (d) |Λ, S,Σ⟩ . (2.13)

The last term does not need to be calculated as it is common to all branches and we are

looking for the relative branching ratios. Evaluating these terms in Matlab gives us the branching

ratios which are summarized in Tables.2.8, 2.9, 2.10, 2.11.
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First turning our attention to Fig.2.8 something profound has revealed itself. First, if we were

to drive a transition from X2Σ+, N = 0+, 2+ → A2Π1/2, J = 1/2− we have branching back to the

ground state for both N = 0 and N = 2. However, if we drive X2Σ+, N = 1− → A2Π1/2, J = 1/2+

we only have branching back to X2Σ+, N = 1−. There is no branching to N = 3 as that would

require two photons! This was pointed out in our group by Ben Stuhl in the important paper

[68]. This simple and clever choice of laser-cooling from N = 1 instead of N = 0 to limit rotational

branching opened the field and allowed all concurrent work on laser-cooled molecules from all

groups. As such, on YO we will laser cool the molecule from N = 1 rotational state and the

molecules will spend the majority of their time there unless we optically pump or coherently transfer

them to a different rotational state. The other tables show the branching from the A′2∆3/2, J =

3/2± → X2Σ+, N = 0+, 1−, 2+, 3− state and unfortunately branching is allowed to the lowest 4

rotational states. As such, if there is any mixing of the parity doublets in the A′2∆3/2, J = 3/2±

massive branching can open up which we will discuss more in the next section.

To summarize the last two subsections to laser cool a molecule pick a molecule with diagonal

Frank-Condon factors and laser cool from the N = 1 rotational ground state to limit rotational

branching.

2.1.4 The A′2∆3/2, J = 3/2± State

Unique to near ultracold (≈ 1µK) laser-cooled molecules YO features a low-lying intermediate

∆ state. In the previous sections, I mentioned multiple times that we would give further discussion

to this state and we will discuss it in detail in this section. This state causes nothing but problems

for the laser-cooling of YO molecules but can potentially be used narrowline cooling similar to the

methodologies used in alkaline earth atoms.

This state is weakly dipole allowed and gains its transition strength from spin-orbit and

Coriolis coupling to the 2Π state. These are the same interactions that are responsible for lifting

the degeneracy of lambda doublets in states with non-zero Λ. The lifetime of this state has been

measured in our lab to be τ = 23 µs corresponding to a linewidth of Γ = 2π× 6.9 kHz suspiciously
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similar to the linewidth of the 3P1 transition in strontium atoms and at the nearly the same

wavelength at 689.6 nm.

So why is this state a problem? First this state is lower in energy than the A2Π state and

this transition from the A2Π is strongly allowed as such spontaneous emission of photons can pump

molecules into the A′2∆3/2, J = 3/2− from A2Π1/2, J = 1/2− as we want to perform laser-cooling on

this particular 2Πmanifold. The transition between these flips parity for an E1 transition. Therefore

once you are pumped into the A′2∆3/2, J = 3/2− you can only decay back to X2Σ+, N = 0+, 2+

as we calculated in the previous sections with the angular momentum branching ratios in Fig.2.9

and 2.10. It seems we have come to a possible wall as in the previous section we made the

claim we want to laser cool from X2Σ+, N = 1− → A2Π1/2, J = 1/2+ to prevent branching to

other rotational states as this particular transition is closed. However, now we know in YO that

the transition is not closed and the branching through the A2Π1/2, J = 1/2+ → A′2∆3/2, J =

3/2− → X2Σ+, N = 0+, 2+ is on the 3 ×10−4 level or it takes roughly 3300 photons which is

on the same order as v = 0, A2Π1/2, J = 1/2+ → v = 2, X2Σ+, N = 1− vibrational branching.

Additionally, the Frank-Condon factors from the A′2∆3/2, J = 3/2− → X2Σ+, N = 0+, 2+ are

poor as we can see from Fig.2.7. Using these Frank-Condon factors we see that we will populate

the v = 0, 1, 2, X2Σ+, N = 0+, 2+ states by the time we perform all the slowing, magneto-optical

trapping, sub-Doppler cooling and conservative trapping. For a visual reference, these branchings

are shown explicitly in Fig.2.12.

We are not done quite yet as there is another issue that the parity doublet in the A′2∆3/2, J =

3/2± is small on the order of a few kHz and the dipole moment is large at 7.5 D. This means any stray

electric fields generated by our in vacuum MOT coils or viewports will mix these parity doublets.

To be more concrete the Hamiltonian for the stark shift between parity doublet hyperfine manifolds

is [9] (pg. 551),
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Figure 2.13: Theoretical stark splitting of hyperfine spin states with an applied field in the
A′2∆3/2, J = 3/2±, F = 2 manifold.

⟨J,Ω, I, F,MF | − T 1
p=0(µe)T

1
p=0(E) |J,Ω, I, F,MF ⟩ =

− µ0E0MFΩ[J(J + 1) + F (F + 1)− I(I + 1)]

2F (F + 1)J(J + 1)
(2.14)

Here E0 is the electric field strength in V/cm. Putting this interaction into a simple 2 × 2

matrix with an energy splitting of 50 kHz and diagonalizing it gives a theoretical curve shown in

Fig.2.13. Here we see a strong concern in that small stray fields completely mix the A′2∆3/2, J = 3/2

state. To check these calculations we can perform high-resolution stark spectroscopy ourselves. The

spectroscopy is shown in Fig.2.14. This spectroscopy is performed by applying an electric field by

turning our in-vac MOT coils from parallel to a series configuration with 1 MΩ resistors on each

coil to prevent any B-fields from being generated. The molecules are then released from our blue-

detuned MOT and are optically pumped into the X2Σ+, N = 0+, F = 1 state. Light at 689.6 nm
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Figure 2.14: Stark splitting of the X2Σ+, N = 0+, F = 1 → A′2∆3/2, J = 3/2±, F = 2 transition.
Shown is depletion spectroscopy with different applied electric fields.

driving the X2Σ+, N = 0+, F = 1 → A′2∆3/2, J = 3/2, F = 2 is then applied for a few milliseconds

and the detuning is stepped. This depletes all the population into the X2Σ+, N = 2+ manifold as

we expect from the angular momentum branching ratios. The linewidths are limited by Doppler

and power broadening to 130 kHz. We find good agreement with the theoretical predictions.

We can see that at zero field there are stray fields present that mix the A′2∆3/2, J = 3/2

state. This is also unwanted as it opens all rotational state branching from the A′2∆3/2, J = 3/2

specifically A′2∆3/2, J = 3/2± → X2Σ+, N = 0+, 1−, 2+, 3− with no applied field. This can be

visualized using Fig.2.12 except there is now branching to all the odd rotational states as well. It

seems that YO maybe is not a great candidate for laser-cooling as the rotational branching seems

like a technical nightmare to implement all the rotational and vibrational repumps to keep photons
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scattering on the X2Σ+, N = 1− → A2Π1/2, J = 1/2+ transition. I am happy to say that we do

indeed apply all these repumps in the experiment using a combination of many lasers and microwave

mixing of many different rotational states. This was an important part of the middle part of my

dissertation work. We will see that is most certainly worth cooling YO molecules even if the

upfront cost to do so is very technically challenging as the sub-Doppler cooling in YO is extremely

robust and reaches the lowest temperatures by any laser-cooled molecular species, especially in the

presence of optical conservative trapping light.

2.2 Rotational Transitions

Rotational transitions occur at 10’s of GHz for YO molecules and form an important tool for

both coherent manipulation for state transfer and mixing of different rotational states to effectively

optically repump many rotational manifolds with a single laser. We will only discuss rotational

transitions in the ground state. Therefore the angular momentum coupling is given by Hund’s case

(b) Fig.2.2. The Hamiltonian for rotational transitions in Hund’s case (b) basis is given in [9] (pg.

266) as,

⟨N ′,Λ′, S, J ′,M ′
J | − T 1

p=0(µe)T
1
p=0(E) |N,Λ, S, J,MJ⟩ =

E0(t)µ0(−1)J
′+J+N ′+S′−M ′

J

 J ′ 1 J

−M ′
J 0 M ′

J

 ((2J + 1)(2J ′ + 1))1/2

J
′ N ′ S

N J 1


× (−1)N

′−Λ′

 N ′ 1 N

−Λ′ 0 Λ′

 ((2N ′ + 1)(2N + 1))1/2. (2.15)

First, the two 3J matrices constrain the transition to follow N’ = N ± 1 and the standard

selection rule for E1 transitions ∆J = 0, ±1. Further, since YO has a unique Hund’s case (b)

coupling from the large Fermi contact interaction, using Eq.2.4 there is an additional selection rule

that ∆G = 0 as a transition that changes G is a spin flip and is a M1 transition. However, I will

mention that these M1 transitions may become of use in the future with a new microwave design for
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Figure 2.15: Shown is the application of microwave sweeping to repump the X2Σ+, N = 0+, 1−, 2+

states during the Dual Frequency MOT which will be discussed in chapter 4. Fluorescence of the
MOT is readout vs time with a PMT. Microwaves are swept at 40 kHz across the vibrational
manifolds on both N = 0 → N = 1 and N = 1 → N = 2. We can see with the application of
sweeping microwaves that the lifetime in the MOT increases by a factor of 3.6. Note the legend is
offset from the trace by exactly 40 ms, this is just an experimental artifact from the timing setup.

microwave shielding of inelastic collisions. They would allow efficient single-spin state transfer to

specific spin manifolds between N = 1 and N = 0 with less optical pumping. The exact transition

frequencies from N = 0 → N = 1 are given in [69] to the kHz level. For transitions between

N = 1 → N = 2 the splittings are calculated and shown in Fig.2.12.

Since we have large rotational branching from the 2∆ state can you mix all the population over

several rotational manifolds while applying a couple of lasers to repump the vibrational branching?

The answer is yes, shown in Fig.2.15 is the application of different microwave sweeps during the

dual-frequency MOT which will be discussed in Chapter 4. Microwaves are swept at 40 kHz with a

triangle waveform across the vibrational manifolds on both N = 0 → N = 1 and N = 1 → N = 2.

Lasers are applied on N = 1 to repump the vibrational population buildup back into v = 0.
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Figure 2.16: Shown is Rabi oscillations between X2Σ+, N = 1−, G = 1, F = 0 → X2Σ+, N =
0+, G = 1, F = 1. Rabi rates of around 1 MHz are achieved. The contrast is limited by the
decoherence rate of around 8.8 µs due to inhomogeneous microwave fields in our metal vacuum
chamber. The output power of the microwave horn was 25 dBm.

On v = 0 instead of microwaves mixing N = 1 → N = 2 another laser is applied driving the

X2Σ+, N = 2+,→ A2Π1/2, J = 3/2−, F = 2 transition. This optically pumps the population into

X2Σ+, N = 0+ which is mixed back into N = 1 with microwaves on N = 0 → N = 1. We can see

with the application of sweeping microwaves that the lifetime in the MOT increases by a factor

of 3.6. This was a fortunate discovery as the increase in MOT lifetimes allowed the advent of the

blue-detuned MOT which has a small spring constant and therefore a slow compression speed as

will be discussed later.

Beyond just mixing the population we can coherently drive different rotational states for
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single spin state preparation of the molecules. Shown in Fig.2.16 between X2Σ+, N = 1−, G =

1, F = 0 → X2Σ+, N = 0+, G = 1, F = 1 we can achieve appreciably fast Rabi rates of around 1

MHz which allow Landau-Zener sweeps on the order of ≈ 10 µs. With our new microwave shielding

setup we hope to achieve Rabi frequencies on the order of 30 MHz.

2.3 Vibrational Transitions

This section will briefly discuss vibrational transitions as they set a fundamental limit of the

experimental run time. The transition dipole moment of a vibrational transition can be written as

[9] (pg. 267),

µe(v
′, v) = µ0 +

(
dµe
dR

)
0

⟨v| q |v ± 1⟩+ 1

2

(
d2µe
d2R

)
0

⟨v| q |v, v ± 2⟩+ ... (2.16)

Here a harmonic approximation has been used to Taylor expand around the internuclear equi-

librium position of the vibrational potentials instead of using the full solution of the wavefunctions

as was done earlier in Fig.2.6. The subscript 0 means we are evaluating these derivatives at the

equilibrium position. As such to drive a transition between v → v + 1 the moment is proportional

to the derivative of the dipole moment. Since we know the energy spacing of the vibrational levels

extremely well from previous spectroscopy Eq.2.8. We can write the transition dipole moment as,

µe(v + 1, v) =

(
v + 1

2

)1/2( ℏ
mωe

)1/2(dµe
dR

)
0

. (2.17)

Here ωe is the energy spacing of the vibrational levels in the X2Σ in YO which has a wave-

length of 11.6 µm. The reason we are discussing this is that Black-Body-Radiation (BBR) can

drive vibrational transitions at room temperatures at an appreciable rate. This sets the fundamen-

tal limit of the lifetime of the experiment especially if you are doing coherent quantum gas studies.

The excitation rate from BBR is [76],

ΓBBRabs
i =

8π2

3ϵ0ℏc3
∑
f

ν3fiµ
2
fi

ehνfi/kbT − 1
. (2.18)
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The summation is over all states accessible from the initial state i. If we plug in all the

numbers at room temperature we get a lifetime of 5.4 s. If we put the molecules in an environment

at 100 K by surrounding the molecules with a cryo shield the lifetime increases to over 20,000 s.

In the future when evaporative cooling is applied the time left to perform fundamental studies of

a degenerate gas of YO molecules will be very limited. In that case, some form of BBR shielding

will be required held at lower than room temperatures.

2.4 Zeeman Splitting

This section will discuss Zeeman splitting of both theX2Σ+, N = 0+, N = 1− andA2Π1/2, J =

1/2± states. Understanding the Zeeman structure of both these states is crucial for magneto-optical

trapping, coherent state transfer of the molecules, and sub-Doppler cooling. The relative differen-

tial shifts are also important for the blue-detuned MOT and sub-Doppler cooling between different

G manifolds in the ground state.

2.4.1 Zeeman Splitting of X2Σ+, N = 0+, N = 1−

Due to various angular momenta in molecules, there are many magnetic moments to consider

when we discuss the interaction of a particular electronic state with an applied magnetic field.

However, for YO it is an open shell molecule meaning we have a strong 1 µB in the ground state

from the electron spin. It turns out all other magnetic couplings are proportional to the nuclear

Bohr-magneton µN . This means all other magnetic coupling will be suppressed in strength by the

electron to proton mass ratio me
mp

and their interactions in the fields we apply on this experiment

will be on the kHz level. Therefore we will only consider the contribution to the magnetic moment

from the electron spin solely.

The interaction with an applied B-Field in the X2Σ+ can easily be written out using [9]

(section 5.5.4) and Eq.2.4 with a good summary also found in [83]. We find that the Hamiltonian

governing the Zeeman interaction is,
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HZeeman
Z = ⟨((I, S)G,N), F | gsµBBZT

1
0 (S) |((I, S)G′, N), F ′⟩ =

gsµBBZ(−1)F−mf ((2G′ + 1)(2G+ 1)(2F ′ + 1)(2F ′ + 1)(2S + 1)(S(S + 1))1/2

 F 1 F ′

−mF 0 m′
f



× (−1)F+N+1+G

G
′ F ′ N

F G 1

 (−1)G+I+1+S

S G′ I

G S 1

 . (2.19)

With the Zeeman interaction, we can also add the Hamiltonian in table Table.2.3 to see

the splitting in the full energy landscape. We then obtain the splittings for X2Σ+, N = 1− and

X2Σ+, N = 0+ shown in Fig.2.17 and Fig.2.18. Qualitatively we can observe a couple properties of

the Zeeman interaction. First, for the G = 0 manifolds, the interaction is relatively weak and flat

at low fields > 10 Gauss as expected for the spin singlet. However, as the field strength increases

the coupling of G = I + S begins to break down and the interaction becomes that of independent

electronic spins transitioning into the Paschen-Bach regime at even higher fields. We see similar

behavior in the G = 1 manifolds, but the interaction energies are much more significant as they

are the magnetically sensitive triplet states. In either case, we see the shift is only approximately

linear up to around ≈ 5 Gauss and then roughly linear again in fields of around ≈ 25 - 50 Gauss.

2.4.2 Zeeman Splitting of A2Π1/2, J = 1/2±

In the excited state, the standard Hund’s case (a) basis Fig.2.2 gives good quantum numbers.

The Zeeman interaction can be written in a simple form [72],

HZeeman
Z = µBBZ

glΛ + gSΣ

J(J + 1)
ΩMF . (2.20)

You can make an immediate observation about the magnetic interaction in the A2Π1/2, J =

1/2± state. The observation is that the projection of the orbital angular momentum along the

internuclear axis Λ and the projection of the electronic spin along the internuclear axis Σ are in

opposite directions. Additionally, the interaction is weighted by the factor of J(J+1). As such, we
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Figure 2.17: Zeeman splittings of the X2Σ+, N = 1− states.
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Figure 2.18: Zeeman splittings of the X2Σ+, N = 0+ states.
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Figure 2.19: Zeeman splitting of the A2Π1/2, J = 1/2+, F = 1 state.

expect the g-factor to be essentially zero and the only other interactions are nuclear interactions

and again are suppressed by the electron to proton mass ratio me
mp

.

However, in reality, the coupling is more complicated than the simple expression in Eq.2.20

as mixing with the nearby B2Σ+ state introduces additional terms into the Zeeman interaction

resulting in the intimidating Hamiltonian given in [9] eq. 9.71 (pg. 621). If we plug in the relevant

quantum numbers Ω = 1/2, J = 1/2, Σ = -1/2, Λ = 1, and F = 1 to that Hamiltonian we get a

simple linear expression [72],

HZeeman
Z = ±1

3
(g′l − g′r)µBBZMF . (2.21)

The constants g′l and g′r are related to the lambda doubling coefficients p and q that we

discussed earlier in Eq.2.8 by the expressions g′l = p
2B and g′r = −q

B where B is the rotational
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constant in the A2Π1/2 state. The ± in front of the expression denotes the parity state. Evaluating

these relations gives us an effective small g-factor of -0.065 which is very small but non-zero and

allows efficient DC magneto-optical trapping of YO molecules. The splitting is shown in Fig.2.19.

Additionally, there exist two Hyperfine manifolds in A2Π1/2 F = 0 and F = 1. Only the splitting

of F = 1 is shown in Fig.2.19 F = 0, mf = 0 has no linear splitting at low field. These two states

F =0, F = 1 are unresolved within the linewidth of the transition.



Chapter 3

Laser-cooling of YO Molecules

There are two forces associated with the interaction of light with the molecules. The one

that will be at the forefront of this section is the scattering force and later the dipole force. We will

delve into the specifics of laser-cooling molecules and discuss Doppler and sub-Doppler cooling.

3.1 Type-I vs. Type-II Transitions

If you have been trying to study or learn about the laser-cooling of molecules, you have

undoubtedly encountered discussions of type-I vs. type-II transitions all over the place [68]. While

these discussions may seem technical, they provide a deep physical understanding of the resultant

laser-cooling of molecules. It was not until very recently that full understanding of the sub-Doppler

dynamics of Type-II transitions have been understood mostly through the work of Mike Tarbutt

even though they were predicted in the mid to late 90s. The reason for this is that most atomic

MOTs work on Type-I transitions and they worked well so interest in different MOTs and sub-

Doppler cooling mechanisms was just left on the shelve for 20 years. Only through the advent of

laser-cooling molecules has the community found renewed interest in the subjects of laser-cooling

and MOTs arising partly to address the complexity of molecular structure.

So what is the difference between a type-I and type-II transition? By definition a type-I is

a transition that drives transitions with total angular momentum J → J + 1, conversely, a type-II

transition is one that drives J, J + 1 → J . Note that the quantum number does not need to be

J it can also be F or L or any other quanta for your given system as long as the difference in the
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Figure 3.1: Type-I vs type-II transitions are shown. For any given polarization there is a single
state or linear combination of states that is dark to the light field in type-II transitions.

angular momentum follows the above rules.

To provide more insight into these two different transitions two examples are shown in Fig.3.1.

The first case is possibly the most simple case you could imagine in an atomic system that has

a ground magnetic structure. In this case, it would correspond maybe to elements in the first

column of the periodic table with no nuclear spin driving a transition with angular momenta of

J = 1/2 → J = 3/2 corresponding to a type-I transition. Here we have applied a magnetic field

to define a quantization axis and are going to drive σ+ transitions. We assume the ground state is

not magnetically sensitive for clarity. In reality, there would be a differential Zeeman shift between

the ground state and excited state, but it is not important for this analysis.

We see that applying the light optical pumps the population to the opposite stretched state

driving the J = 1/2,mj = 1/2 → J = 3/2,mj = 3/2 transition. If you adjust the magnetic field

strength you can tune the transition energy to maybe compensate for the Doppler shift which is

the basis for Zeeman slowers used in cold atomic experiments. You can also apply a gradient field

to get a position-dependent force for magneto-optical trapping.

Now let us check the type-II case where driving a transition J = 1 → J = 1 is shown. In this

case, we have an immediate problem in that if we apply the light we will optically pump ourselves
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into the J = 1,mJ = 1 state. This state is dark to the incoming polarization. However, it is not

just this special case where you have a dark state. For any polarization combination, there is a

state or linear combination of states that are dark to the light field (no transition dipole moment).

This is a major problem in that if we want to do Doppler cooling or any MOTs we can scatter

at most a few photons. Additionally, this fact prevents the use of any traditional Zeeman slower

as a Zeeman slower works by shifting the transition frequency to stay on zero-field resonance to

compensate for the Doppler shift on an atomic or molecular beam. You may be clever and try to

flip the polarization suddenly to get out of the dark state however, you would optically pump into

a stretched state with the wrong detuning.

So why don’t we just avoid using Type-II transitions? You may recall in the previous chapter

when discussing the angular momentum branching ratios we declared we were going to be clever

and drive X2Σ+, N = 1− → A2Π1/2, J = 1/2+ transition to limit rotational branching. Recall that

any rotational ground state can be recast into a linear combination of states in the Hunds case

(a) basis with total angular momenta J = N ± 1/2. As such, we will always be driving type-II

transitions [68]. This is the trade-off, either have rotational branching or type-II transitions. We

will opt for having type-II transitions and we will see that we exploit the dark states to great

effect for both sub-Doppler cooling in free space and in conservative traps, and for magneto-optical

trapping.

3.2 Doppler Cooling Theory and Slowing

3.2.1 Doppler Cooling Theory

To perform laser slowing we want a velocity-dependent force using light that we can apply

to a molecular beam. The force from stimulated absorption and then spontaneous emission at low

intensity (rabi frequency lower than the linewidth) is,

F⃗ = ℏk⃗Γscat = ℏk⃗Γρee. (3.1)
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Where k⃗ is the wavevector, Γscat is the scattering rate, Γ is the linewidth of the excited state

transition and ρee is the excited state population. The definition of the excited state population is

well known for a multilevel system with my favorite references being [67],[49], and [80]. In particular

[80] contains a very succinct set of rate equations for the massive multilevel systems in molecules

where ρee is defined as,

ρee =
ne

(ne + ng) + 2
∑ng

j=1(1 +
4∆2

j

Γ2 )
Is,j
Ij

. (3.2)

Where ne and ng are the numbers of excited and ground internal spin states, j denotes a

transition with a detuning ∆j and a saturation intensity Is,j = πhcΓ
3λ3

j
. So how is this expression

velocity dependent? It comes in the detuning which we can write as ∆j = δj − k⃗ · v⃗ − (geMe −

gjMj)µBB/ℏ. Here δj is the laser detuning the second term is the Doppler shift which is velocity

dependent and the last term would be the differential Zeeman shift from the excited state to the

ground state where B (magnetic field) could be position dependent if a gradient field was applied

for a MOT.

So our goal is to adjust the detuning of the laser δj to be equal to k⃗ ·v to ensure the scattering

force is maximized to get the best slowing. Since we cannot use a traditional Zeeman slower as

was discussed in the previous section we will use chirped laser-cooling where we will continuously

chirp the laser frequency corresponding to a decelerating molecular beam to keep the detuning

on resonance (detuning within the linewidth). This corresponds to a linear frequency chirp of all

the laser frequencies from red-detuned to near zero-velocity resonance. The first demonstration of

chirp laser-cooling was performed by early experiments by Bill Phillips, with chirped laser-cooling

to zero velocity and velocity reversal done by John Hall and Zhu in [29].

Additionally, if you apply Eq.3.2 in all six directions and you expand the force at small

velocities you get a damping force Fmollase ≈ −αv⃗ where α is a damping coefficient that depends

on the detunings and intensities of the relative laser beams. This configuration of laser beams

interacting with the atomic or molecular ensemble is known as optical molasses. So what does an



49

Figure 3.2: Full rate simulation of damping force for the Dual-Frequency MOT for YO molecules.

actual acceleration vs. velocity look like? In general, it looks like the difference of two Lorentzian

curves which gives a dispersive curve. As an example using Eq.3.2 including all branching ratios,

all spin states, all laser detunings, corresponding intensities, all correct polarizations, and hyperfine

manifolds a simulation of our first MOT the Dual-Frequency MOT is shown Fig.3.2 where we can

see a clear dispersive curve creating a retarding force over a range of ± 3.5 m/s.

There is an interesting limit known as the Doppler limit which corresponds to the minimum

temperature achievable in a standard red detuned laser-cooling. The limit for a two-level system

is TD = ℏΓ
2kb

and is the result of the fluctuation-dissipation theorem in three dimensions defined as,

kbT =
Dp

3α
=

ℏ2k2Γscat

3α
. (3.3)

Here Dp is the momentum diffusion constant and is the result of the random fluctuations in

photon scatters resulting in heating [49]. For reference, I have placed the Doppler temperatures

for a few transitions in YO. I have also placed a limit known as the recoil limit to the table as well

which represents the minimum temperature achievable by standard Doppler laser-cooling defined as
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Doppler-Temperatures and Recoil-Temperatures of YO Molecules

Doppler-Temperature Recoil-Temperature

X2Σ+ → A2Π1/2 115 µK 484 nK

X2Σ+ → A′2∆3/2 168 nK 384 nK

TR = ℏ2k2
mkb

. This limit can be beaten using coherent mechanisms such as velocity-selective coherent

population trapping (VSCPT).

We can see an enticing prospect as the minimum temperature achievable on the narrowline

transition X2Σ+ → A′2∆3/2 is photon recoil limited, and indeed these narrow transitions have

become powerful tools in alkaline earth elements for quantum state manipulation and cooling. We

will also see however in the following sections that the Doppler limit is also handily defeated due

to interesting coherence in the ground state sub-manifolds present in optical molasses.

However, turning our attention back to chirped laser-cooling of a molecular beam it would

be nice if there were a simplified version of Eq.3.2. If we make a couple of assumptions (which

are generally true when performing the experiment) that the total intensity Itot is equally divided

among the transitions and the detunings ∆ are all the same we get a set of simplified equations

[80],

Γscat =
Γeff

2

seff

1 + seff + (4∆
2

Γ2 )
, (3.4)

Γeff =
2ne

ng + ne
Γ, (3.5)

seff =
2(ne + ng)

n2g

Itot
Is
. (3.6)

First, we see that the form of Eq.3.4 is similar to that of a two-level system which gives

great intuitive understanding. The other two equations define an effective linewidth and satura-

tion intensity Γeff , seff which are extremely useful quantities for the quick back-of-the-envelope

calculations in the lab.
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3.2.2 Chirped Laser Slowing

Now with a basic understanding of the level structure, vibrational branching, rotational

branching, and laser-cooling, let’s laser cool some molecules! First, we need a full picture of the

level diagram with the corresponding lasers and microwaves that combine all the vibrational and

rotational branching we discussed in the previous chapter.

This diagram is given in Fig.3.3 and is a slightly busy diagram but it is easy to go through step

by step. First, we want to laser cool on v = 0, X2Σ+, N = 1− → v = 0, A2Π1/2, J = 1/2+, F = 0, 1

as stated multiple times and is shown as one of the orange arrows in the diagram. Recall that

we have detrimental branching up to v = 2 in the ground state from the Frank-Condon factors.

To address this we will first repump the v = 2 ground state manifold by applying a laser on

v = 2, X2Σ+, N = 1− → v = 1, A2Π1/2, J = 1/2+, F = 0, 1. This will optically pump all the

population into v = 1. To repump all the v = 1 population (recall is the largest branching) we

apply a laser driving v = 1, X2Σ+, N = 1− → v = 0, A2Π1/2, J = 1/2+, F = 0, 1 bringing all the

population back onto the main cycling transition. That covers all the vibrational branching.

For the rotational branching due to the A2∆3/2, J = 3/2± state we apply two orange lasers

on the v = 0 manifold to repump the N = 2 and N = 3 population. Specifically we drive both

v = 0, X2Σ+, N = 2+ → v = 0, A2Π1/2, J = 3/2−, F = 2 and v = 0, X2Σ−, N = 3− → v =

0, A2Π1/2, J = 5/2+, F = 3. For all the other rotational manifolds we apply microwaves mixing

v = 0, N = 0 → N = 1 states and v = 1, N = 0 → N = 1 → N = 2 and v = 2, N = 0 → N =

1 → N = 2. The details of the microwaves are given in Fig.2.15. Currently, we do not repump any

population that builds up in v = 1, 2 N = 3 which limits the current MOT lifetimes. One caveat I

will say here is that during laser slowing we only apply microwaves on v = 0, N = 0 → N = 1 and

begin sweeping the microwaves during the MOTs.

Next, we need to address each of the hyperfine manifolds in v = 0, 1, 2, X2Σ+. Recall that in

YO there is a large Fermi-contact interaction that splits the G = 0 and G = 1 singlet and triplet

states by around 770 MHz as shown in Fig.3.3. To drive all the population we put the lasers on the
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𝑨𝟐𝜫𝟏/𝟐

𝑿𝟐𝜮+

760 MHz

774 MHz

Laser Detuning G = 0, F = N

G = 1, F = N-1

G = 1, F = N
G = 1, F = N+1

J = 1/2, 3/2, 5/2

Laser Tones for Slowing

𝑨𝟐𝜫𝟏/𝟐

𝑿𝟐𝜮+

767 MHz

Laser Detuning G = 0, F = N

G = 1, F = N-1

G = 1, F = N
G = 1, F = N+1

J = 1/2+

Old Vibrational Repumper Tones

Figure 3.4: Laser tones used for slowing are shown in the left diagram. The laser is placed on the
G = 0 manifold and two tones generated by high-frequency AOMs address the G = 1 manifolds
with tones at 760 and 774 MHz. The right diagram shows the old vibrational repump tones which
were inefficient and did not repump all the population effectively.

G = 0 manifolds and we generate two tones at 760 and 774 MHz by dual driving high frequency

Brimrose AOMs and focusing the lasers through them to address the G = 1 manifolds. Through

combinations of polarizing and non-polarizing beam splitters and dichroic mirrors, we combine all

15 laser tones and send them through a single viewport toward the buffer-gas cell where the beam

of YO molecules is generated. Additionally, all the lasers propagate through a telescope and a long

focal lens to expand the beam at the viewport and to gently focus the beam to the buffer gas cell

aperture. This creates nonlinear scattering rates as the molecules are decelerated. This is done

however to ensure that the wavevectors of the lasers never have a component outwards transverse

to the molecules to prevent extra pluming of the beam.

To visualize this, the relevant detunings and a mock level structure are shown in the left

diagram in Fig.3.4. The right diagram is the scheme that used to be used for the vibrational
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repumping when I joined the experiment. This scheme was ineffective at repumping the vibrational

population in the G = 1 manifolds. Now all lasers in the experiment use the scheme in the left

diagram and this change boosted the slowed molecule number drastically which will be shown

shortly and was a major boost for later work on collisions. One key aspect is the repumping of

the dark states caused by being on type-II transitions as was discussed in the previous section. To

repump all the manifolds all the slowing beams go through a Conoptics Pockel cell which chops

the polarization between σ± polarizations at a rate of 1.5 MHz, which is much higher than the

scattering rate. This also has the effect of putting sidebands on all the laser tones at ± 1.5 MHz.

Since there is a strong degree of coherence in the laser tones on the G = 1 manifold, a forest of

tones appears due to the beating of the different tones.

The molecules are generated by ablation of a Y2O3 ceramic target held at 3.5 K in a cryogenic

buffer gas cell. The ablation is generated by an Inlite 532 nm q-switched laser with a peak energy

of around 9 mJ and pulse width of around 6 ns. The ablation of the target generates YO and every

ion and radical of YO you can imagine. Helium flows into the cell at 4 K at a rate of ≈ 0.25 sccm.

Collisions of the YO molecules with the helium buffer gas quench the internal states into the lowest

vibrational state and lowest four rotational manifolds N = 0-3. The molecules have a dwell time

of around 2 ms before leaving through a few mm aperture in the front of the cell. This creates a

collimated molecular beam of YO with a nominal forward velocity of 120 m/s.

The optimal time sequence for slowing is as follows. The lasers are chirped 163 MHz from red

to blue detuned over 14.7 ms. This slows the molecules from 120 to 20 m/s. This corresponds to

a deceleration rate of 6800 m/s2 which is lower than what you would predict using Eq.3.4 and 3.1.

This suggests there is a significant improvement that could be had in the slowing. The distance

the molecules are slowed over is 1.16 m. Two in-vac shutters open and close with timing optimized

for the decelerating molecular beam. These are critical to prevent helium from accelerating the

beam and reducing the effect of the helium flow on the vacuum lifetime in the main experimental

chamber.

The last slowing from 20 m/s to around 3 m/s which is the capture velocity of the MOT as
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Figure 3.5: CAD model of the experimental apparatus with labels of beam propagations and
microwave horns. The MOT beams enter through the bottom of the chamber and are retroreflected
with a λ/4 waveplate after the final pass.

we can see from Fig.3.2, is performed by leaving the main cycling laser detuned 32.6 MHz and off

resonantly scattering to the final velocity to avoid pushing the molecules backward. However, all

the repump lasers are chirped to zero velocity resonance over 9 ms. This extra chirp time used

to be very sensitive in its length, but after adding more tones to the repump lasers it is not too

sensitive anymore, and can be adjusted to around ± 3 ms without any detrimental effect. This

means the entire slowing sequence takes 23.7 ms. The main slowing laser is then shuttered leaving

the repump lasers propagating down the slowing axis and the molecules are loaded into the MOT.

To get a picture of what the apparatus looks like and what the beam geometries look like,

a CAD model of the experiment labeling the relevant beams and microwave locations is shown in

Fig.3.5. Typical PMT traces of the slowing and MOT loading are shown in Fig.3.6. We can see

a peak of slowed molecules occurring at 23 ms and the molecules then slowly drift into the MOT

beams while being careful not to blow them backward with resonant light. The MOT beams then

capture the molecules noted by the peak in fluorescence around 45 ms.

Note the dramatic difference in the number of slowed molecules with the extra repump tones
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Figure 3.6: Shown are typical slowing and MOT loading traces on the experiment decelerating
molecules with a peak forward velocity of 120 m/s. The two traces correspond to different tones
on the repump lasers as depicted in Fig.3.6.

on the vibrational repumps. This corresponded to a factor of 5 increase in the molecular number

almost immediately. This is probably the largest improvement during my PHD on the actual

slowing of the molecules. As I had stated before, I believe there is much more improvement that

could probably be made in the chirp rates, powers, detunings, etc. along with decoupling the

v = 1 laser from the main cooling cycle by repumping through the B2Σ+ state. These changes

will need to be made if there is to be a serious effort for evaporative cooling of YO molecules

to degeneracy. The little spike on both traces at around 24 ms is when the main cooling laser

addressing v = 0, X2Σ+, N = 1− → v = 0, A2Π1/2, J = 1/2+, F = 0, 1 for chirped slowing is

shuttered. The rest of the fluorescence captured afterward is from the MOT beams.
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3.3 Sub-Doppler Cooling

In this section, we are going to discuss interesting physical phenomena present in optical

molasse that provide a larger velocity-dependent damping force α than that provided by the Doppler

force. In turn, this will provide temperatures lower than the Doppler temperature discussed earlier

Eq.3.3. The simple physical reasoning is that a coherence between different ground-state magnetic

sub-levels is created with a coherence time longer than the excited state lifetime. This can be

understood through the energy-time uncertainty relation where the standard Doppler limit can

only be beaten if there is a longer time between each spontaneous emission event.Ssuch sub-Doppler

cooling is generally called ground-state cooling and was seen very early on in laser-cooling of atomic

species first by Bill Phillips et al. [42], and was theoretically described by Jean Dalibard and Cohen-

Tannoudji [21]. Before we can discuss these mechanisms, however, we need to discuss another force

associated with the interaction of atoms and molecules with light, the dipole force.

3.3.1 The Dipole Force

In the previous section, we discussed the scattering force and its use to effectively remove

entropy from an atom or molecule by absorption of a photon and subsequent spontaneous emission.

Since this phenomenon removes energy from the system this force is non-conservative. Indeed we

even noted that this force is proportional to the velocity of the cold ensemble of atoms or molecules

in an optical molasse not meeting the definition of a conservative force.

However, there is another force associated with the interaction of light with a resonant system

(like atoms or molecules) and it is called the dipole force. This force is conservative meaning that

F⃗dip = −∇⃗Vdip. The dipole potential Vdip is defined as [67] (pg. 42),

Vdip = − 1

2ϵ0c
Re[α(ω)]I(r, z). (3.7)

First I(r, z) is the intensity of the interacting light field since we generally want strong

coherent interactions the intensity will be formed by a laser beam with a Gaussian beam profile
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defined as,

I(r, z) =
2P

πω2(z)
e
−2 r2

ω2(z) . (3.8)

Here P is the power in the laser beam, r is the radial coordinate, z is the axial coordinate

(propagation direction of the beam), and ω is the beam waist of the beam. You can imagine if

we have an intense laser beam focus on the molecules you may be able to generate a conservative

trapping force as long as Re[α(ω)] is positive. This is the exact physical mechanism behind optical

conservative traps called ”dipole traps”, or depending on the polarization of the beams and the

number of beams an ”optical lattice”.

Continuing with the definition of the dipole potential in Eq.3.7 the term α(ω) is called the

polarizability (please do not be confused by ω, for intensity it is the beam waist, but generally in

all other cases it is an angular frequency of the light field ω or transition in the molecule or atom

ω0) which is defined as µ⃗ = α(ω)E⃗. In the most simple terms, the polarizability gives a ”measure”

of the ability of the physical system of interest to acquire a dipole moment µ which we discussed

in length in Chapter 1, and is generally dependent on the frequency of the driving light field ω.

Here E⃗ is the electric field vector of the light field. Writing the dipole moment in this form is

convenient as the interaction of light is a second-order perturbation in the interaction potential

Eq.3.7. However with the polarizability, the interaction with the light field ”looks like” it is to first

order. This makes it easy to understand and determine the matrix elements of the interaction. For

more information on this, I suggest reading [67] (section 7.7).

Before we discuss the form of α(ω) there is an interesting relation between the scattering

force and dipole force where the scattering rate can be written as [67] (pg.43),

F⃗scat =
1

2ℏϵ0c
ω2

ω2
0

Im[α(ω)]I(r, z). (3.9)

We found a very interesting relation here where the dipole force is related to the ”dispersive”

part of α(ω) and the scattering force is related to the ”absorbative” part of α(ω). This is the result
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of an interesting mathematical relation called the Kramers–Kronig relation which I will not go into

more detail.

So what does α(ω) look like? Its form can be derived from a simple Lorentz model of an

atom or molecule interacting with an oscillating electric field with the best description I have read

being [67] (Chapter 1). Making some simplifications and assuming that the detuning of the light

field is greater than the linewidth of the transition |ω − ω0| = ∆ >> Γ, the dipole potential, and

the polarizability can be written as [67] (pg. 42),

Vdip =
∑
j

ℏΓ2
j

8

(
1

ω − ωj0
+

1

ω + ωj0

)
I(r, z)

Isat,j
. (3.10)

The sum is overall excited transitions that have a transition dipole moment to the ground

state of interest. First note that this expression provides a negative energy shift for detunings ∆ <

0 and that the excited state shift is opposite in sign. The second term in the parenthesis is called

the counter-rotating term and is generally so small it can be neglected for the work in this thesis.

This dipole potential is also known as the ac-Stark shift from the interacting light field. We can

further simplify this expression using the results for a two-system interacting with an oscillating

light field using the relation I
Isat

= 2Ω2

Γ2 . Here Ω is the Rabi-frequency defined as,

Ω =
⟨g| µ⃗ · E⃗ |e⟩

ℏ
(3.11)

and quantifies the energy scale of the coupling to the electromagnetic field, and we have seen the

return of one of our favorite quantities the transition dipole moment. Making the substitution we

get the the ac-Stark shift (dipole potential),

Vac =
∑
j

ℏΩ2
i→j

4∆i→j
. (3.12)

Here we are summing over the excited states j connecting to the ground state i. Note that

the ac-Stark shift is proportional to the square of the Rabi-frequency meaning it is dependent on

the intensity of the light field and the square of the transition dipole moment. Now with this
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Figure 3.7: (a) Clebsh-Gordan coefficients for a J = 1/2 → J = 3/2 transition. We note that the
stretched transitions that drive outwards are the strongest with a CG coefficient of 1. (b) Two
counter-propagating waves with perpendicular linear polarization (known as lin-perp-lin) create a
polarization gradient whose polarization changes to a pure polarization every one-eighth of a wave-
length and changes between linear polarization to circular polarization with a determined handness
and constant electric field amplitude of

√
2E0. (c) If the laser light is red-detuned molecules move

through the polarization gradient and the different magnetic sublevels experience ac-Stark shifts
both shifted red of the bare state energy. Effectively the molecules will be moving up potential
hills converting their kinetic energy into internal potential energy in the magnetic-sublevels. The
molecules will then be optically pumped into the opposite magnetic sub-level by excitation and
spontaneous emission of a photon. This photon carries away the excess energy from the ac-Stark
shift reducing the thermal energy of the molecules. If the optical pumping time is τp ≈ λ

4v on average
the molecules will always be climbing potential hills and the damping force will be maximal.

formulation, we can describe not only sub-Doppler cooling but also conservative trapping which we

will discuss later in this thesis at length.

3.3.2 Polarization Gradient Cooling

Now that we have discussed the dipole force we can now discuss the simplest form of sub-

Doppler cooling in an optical molasses known as polarization gradient cooling. The simplest ex-



61

ample is that of a molecule or atom with a ground state angular momenta of J = 1/2 being driven

by an oscillating electric field to an excited state with angular momenta J = 3/2. The relative

Clebsch-Gordan coefficients are shown in Fig.3.7 (a) where see that transitions that drive between

the most outward magnetic sublevels (mj = 1/2 → mj = 3/2 or mj = −1/2 → mj = −3/2) are the

strongest with a Clebsh-Gordan coefficient of 1. The field is generated by two counter-propagating

beams along z with linear polarizations that are perpendicular to each other. This creates a field

profile of [21],

E⃗(z) =
√
2E0

(
cos(kz)

ϵ̂x + ϵ̂y√
2

− i sin(kz)
ϵ̂y − ϵ̂x√

2

)
(3.13)

where at all points along the z direction we have a constant amplitude of
√
2E0. What is more

interesting however is that as we translate along the z direction we can see that polarization is

changing, and every one-eighth of a wavelength we transition from pure linear polarization to

circular polarization with a particular handness. This is shown diagrammatically in Fig.3.7 (b).

We assume the quantization axis is set by the light field.

We have now arrived at a fascinating consequence of this geometry. For example, imagine

we are at a position of λ/8 as shown in Fig.3.7 (b) on the z-axis. Here the light is pure left-handed

circular polarization. If we turn our attention back to Fig.3.7 (a) we that the light field will drive σ−

transitions. Specifically it will drive mj = −1/2 → mj = −3/2 and mj = 1/2 → mj = −1/2. We

now arrive at the most important point in this discussion. We note that these two transitions have

different Clebch-Gordan coefficients (their square being the angular momentum branching ratios)

of 1 and 1/
√
3. We now go back to Eq.3.12 where the ac-Stark shift is dependent on the square

of the Rabi-frequency and the Rabi-frequency is dependent on the transition dipole moment which

includes the angular momentum branching ratios. As such, for a fixed detuning and intensity, the

two different magnetic sublevels will have different ac-Stark shifts proportional to the square of the

respective Clebsh-Gordan coefficients. If we let the ac-Stark shift be equal to χ′ then the shifts are

going to be between the sub-levels are going to be Vac,mj = 1/2 = χ′/3 and Vac,mj = −1/2 = χ′.
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If for example, we were at a position of linear polarization on the z-axis such as λ/2 then the

light field will drive the transitions mj = −1/2 → mj = −1/2 and mj = 1/2 → mj = 1/2 and the

ac stark shift of the states will be the same as the branching ratios are the same. So, as we move

through the polarization gradient the magnetic sub-levels will experience differential stark shifts

depending on the position along the z-axis. If the driving field is red detuned both the stark shifts

will be negative with different strengths relative to the bare state energy. This can be seen at the

bottom of Fig.3.7 (c).

Now let us imagine that we have a thermal ensemble of atoms or molecules. They will move

through the polarization gradient and will have a position-dependent potential energy caused by

the ac-Stark shift of the magnetic sub-levels. For example, let our ensemble start at λ = 0 in the

mj = 1/2 sublevel and move along the +z direction. As the ensemble moves, the potential energy

of the sub-level increases, and correspondingly the kinetic energy of the ensemble decreases as it

moves up the hill shown by the arrows in Fig.3.7 (c). With the maximum differential stark shift

experienced first at λ/8. We know, however, that besides the dipole force, there is a scattering

force where beyond the stimulated emission of photons a spontaneously emitted photon can occur.

If for example, this were to occur at λ/8 (which does occur with the highest probability as we are

closer to bare state energy) the light field would drive the transition J = 1/2,mj = 1/2 → J =

3/, 2mj = −1/2. We know however from Chapter 2, that spontaneous emission would allow decay

to either magnetic sub-level in J = 1/2, and it turns out the transition dipole moment is stronger

for the decay from J = 3/2,mj = −1/2 → J = 1/2,mj = −1/2 than J = 3/2,mj = −1/2 → J =

1/2,mj = 1/2 as the branching ratios are 2/3 and 1/3 respectively! As such, the ensemble will

be optically pumped into the opposite magnetic sub-level which coincidentally, is experiencing a

maximal ac-Stark shift.

In this situation, the spontaneously emitted photon shown by the squiggly line in Fig.3.7

(c) must carry away additional energy proportional to ℏχ′. This cycle will then repeat itself and

the ensemble will continuously climb up potential hills and will be reset by optical pumping losing

energy continuously. This is much like the greek myth of Sisyphus and this type of cooling is
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colloquially known as ”Sisyphus Cooling”. What has been essentially created is a ground state

”lifetime” where a magnetic sub-level will populated by a period that we call the optical pumping

time τp with the lifetime being defined as Γ′ = 1
τp

much akin to a spontaneous emission rate.

This optical pumping time is effectively a coherence time associated with the population between

magnetic sublevels. The maximum damping force occurs if the Doppler shift kv is proportional to

the ground state lifetime. It turns out that if you calculate the damping coefficient for this effect

you find α ≈ −ℏk2∆Γ which is larger than that of a standard optical molasses by the term ∆
Γ which

is large as we had assumed when discussing the ac-Stark shift that |∆| >> Γ [21]. Additionally,

we find that this damping rate is independent of intensity which is not the case if the damping

coefficient is only dependent on the Doppler effect.

3.3.3 Λ-Enhanced Gray Molasses Cooling

The mechanism that we will use to sub-Doppler cool YO molecules is similar to that used

in polarization gradient cooling as it will rely on a Sisyphus mechanism, but it is fundamentally

different. The difference depends upon the type of hills that the molecules will climb up to remove

kinetic energy. This physical mechanism is called Gray-Mollasses-Cooling (GMC) and was first

identified by Ted Hansch et al. [79]. The advantage of this cooling is that it works on Type-II

transitions which we discussed we work on exclusively when laser-cooling molecules and is hyper-

efficient. Sub-Doppler cooling of YO molecules was the first work I was a part of in my PHD

thesis.

The basic physical mechanism is as follows, if the molecules are subjected to a a polarization

gradient like in Fig.3.7 (b) at all points in the gradient there will be a position-dependent dark state

as again, for any polarization in a type-II transition there is a state or linear combination of states

that is dark to the light field. When we say ”dark” we mean that state(s) are no longer interacting

with the field. However, the bright states (not dark) will experience a position-dependent stark

shift from intensity gradients and polarization gradients. At the intensity maxima of the intensity

gradients, the molecules will be optically pumped into the dark state. Note immediately that the
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lin-perp-lin polarization gradient has no intensity gradients in 1D as such there is no GMC cooling

in this case [25]. To have cooling in 1D you would need to have the polarization impinge at each

other at an angle other than 0 or 90 degrees.

So let us recap the physical picture, if the molecules are in a bright state they will experience

a spatially varying ac-Stark shift and will be optically pumped into a dark state at the intensity

maxima. This already seems very similar to the case of Sisyphus cooling as we discussed in Fig.3.7.

However, we are missing one aspect. If the molecules are in the dark state, how do they transition

to the bright state? The argument is subtle. It turns out that these bright states and dark states

are orthogonal to each other in that they create a linearly independent eigenbasis. These basis

states are normally called |C⟩ and |NC⟩ which represent the bright and dark states and are named

coupled and non-coupled referring to the coupling to the light field. An energy gap exists between

these states due to an AC stark shift of the bright state. These states are not eigenstates of the

kinetic energy operator. As such, there is coupling between the states proportional to the velocity

of the molecules ⟨NC| p2

2m |C⟩ ∝ v. This means the higher the velocity which is proportional to

the temperature of the moleucles the higher the transition rate. This is closely related to the

phenomena called VSCPT or ”Velocity Selective Coherent Population Trapping” [4]. The coupling

is called ”non-adiabatic” as it goes to zero as the velocity goes to zero and is strongest as the

intensity minima experienced by the bright state as the energy difference between |C⟩ and |NC⟩

is minimized. Note this is only true for blue-detuned light. As such GMC cooling relies on the

detuning of the light field to be blue on the relevant transition for cooling. If the light field is

red-detuned you will have heating.

We now have a full picture of our Sisyphus cooling mechanism. If the molecules start in the

dark state they can make a non-adiabatic transition to the bright state at the intensity minima of

the light field. As the molecules move in the bright state their kinetic energy turns into internal

potential energy due to the increasing ac-Stark shift moving through the polarization/intensity

gradients. At the intensity maxima of the gradient, the molecules will be optically pumped through

spontaneous emission to the dark state losing energy proportional to the ac-Stark shift χ′. This
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process repeats itself completing the cycle for Sisyphus cooling.

So where does the Λ-Enhanced part come into this cooling? Well, we can use two light fields

to couple two different ground manifolds to a particular excited state in a λ type scheme. Here the

light fields both have an intensity I, a common detuning ∆ called the ”one-photon detuning”, and a

differential detuning δ called the ”two-photon detuning”. In this scheme, you can create a coherent

dark state when δ = 0 as the coherent population transfer to the excited state from the two different

ground states destructively interfere with each other creating a robust dark state. This is closely

related to the phenomenon of ”Electromagnetic Induced Transparency” EIT for short and again

VSCPT. My favorite reference on this subject is [67], (Chapter 6). The entirety of the Λ-Enhanced

GMC is shown diagrammatically in Fig.3.8.

3.3.4 Sub-Doppler Cooling of YO Molecules

In this section, I will summarize our results on Λ-Enhanced GMC of YO molecules with the

published work found here [27]. Similar work has been demonstrated in other laser-cooled molecules

as well [42] [77],[41] and [16]. However, at the time of writing this thesis, YO remains by far the

coldest bulk molecular sample in both free space and in conservative traps. This is mostly due

to its favorable ground state structure as the ac-Stark shift cross-coupling between the different G

manifolds is negligible due to their large splitting of ≈ 760 MHz.

So to perform Λ-Enhanced GMC there are only three parameters that need to be optimized.

First is the intensity which in the following discussion will always be equally split between the two

transitions we will be driving in a λ scheme. The other two parameters are the one-photon detuning

and two-photon detuning ∆ and δ. The transitions we will be driving are v = 0, X2Σ+, N = 1−, G =

0, F = 1 → v = 0, A2Π1/2, J = 1/2+, F = 0, 1 and v = 0, X2Σ+, N = 1−, G = 1, F = 2 → v =

0, A2Π1/2, J = 1/2+, F = 1. Note, the beam addressing the G = 1 manifold addresses all three

hyperfine manifolds however we define the detuning to be from F = 2. Additionally, we will leave

the optical repumpers on v = 1 and v = 2 at all times for the subsequent data, and the microwaves

mixing v = 0, X2Σ+, N = 0+ → v = 0, X2Σ+, N = 1− will be off as they cause destabilization of
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Figure 3.8: In each ground state manifold Sisyphus-like cooling takes place between a dark and
bright state due to non-adiabatic coupling due to the motion of the molecules with subsequent
relaxation back to the dark state as described in the text. Coupling two ground state manifolds
with two different light fields in a λ-type configuration creates a robust dark state when δ = 0.
Application of a gradient B-field allows for a blue-detuned MOT which will be described in detail
in the following chapter.

the dark states due to the transition being dressed and causing subsequent higher temperatures.

The configuration of the beams and their propagation into the chamber is discussed in the next

chapter.

Diagrams of the relevant couplings and detunings are shown in Fig.3.8 and Fig.3.10 (a). The

relevant parameter of interest in this work is of course the temperature of the molecular ensemble.

The temperature is measured by TOF (Time-of-Flight) measurements where ballistic expansion of

the size of the molecular ensemble is measured after release from the GMC or in other cases the

MOT or conservative trap. A linear slope can be fitted to expansion size vs time defined as,
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Figure 3.9: (a) Definition of the ∆ and δ for Λ-Enhanced GMC of YO molecules along with an
energy diagram of the ground state manifolds. (b) Dependence of temperature vs intensity I in
units of I0 (single beam saturation intensity for a two-level system) a linear dependence on intensity
is seen as expected from theory. Here ∆ = 8.3Γ and δ = 0. (c) Dependence of temperature vs ∆
we see a ≈ 1/∆ dependence as expected by theory. Here I = 3.2I0 and δ = 0.

σ2(t)− σ20 =
kbTt

2

m
, (3.14)

to determine the temperature where m is the mass of the molecules and σ2(t) is the size of the

ensemble after expansion for a time t. When we image the molecules we normally apply a short

resonant beam of light on the molecules with the DFM beams < 500 µs, we measure two sizes one

in the axial direction which we always define as along gravity and the radial direction in the plane

of the crossing MOT beams in the x-y directions. As such, the temperature we quote is always the

weighted average of these two directions as Tavg = T
2/3
radialT

1/3
axial.

First, we can scan out the intensity and one-Photon detuning vs temperature. We apply the

GMC cooling for 10 ms after the DFM MOT and then measure the temperature. The results are

shown in Fig.3.10 (b), (c). For plot (b) ∆ = 8.3Γ and δ = 0 and the intensity is scanned in the six-

beam molasses. The units of intensity are given in terms of the two-level saturation intensity I0 for

a single beam defined as I0 = 2.7 mW/cm2, and is equally distributed between the two components.

We achieve temperatures in this work as low as 4 µK, the coldest laser-cooled ensemble at that time

only beaten by our recent results. Here we find a linear dependence on intensity which is what is

expected by theory as we recall that the damping coefficient for sub-doppler Sisyphus mechanisms
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is independent of intensity at above 1 I0 [21], [25]. However, the scattering rate scales linearly with

I as we recall in Eq.3.2. Therefore using the Einstein relation Eq.3.3 we expect the temperature T

to scale as T ∝ I.

Next for the one-Photon detuning vs temperature in plot (c) we fix I = 3.2I0 and δ = 0.

Here we find a dependence of 1/∆ this is again what is expected from theory. We know the energy

removed per Sisyphus cycle is proportional to the ac-Stark shift which goes as Vdip ∝ 1/∆ from

Eq.3.12 which is also proportional to the damping coefficient α. However, the scattering rate goes

like Rscat ∝ 1/∆2 from again Eq.3.2. As such, their ratio from Eq.3.3 predicts the temperature to

go as T ∝ 1/∆. Due to this we always detune our GMC by around 8 linewidths generally as this

dependence on ∆ becomes fractionally small and is insensitive to ∆ fluctuations and we get the

lowest temperatures.

Next, we can scan out the two-photon detuning δ which is a much more interesting parameter

compared to the intensity and ∆. The results are shown in Fig.3.10 (a) and (b) where (b) is an

enlarged scan at around δ = 0. In plot (a) far from resonance we maintain strong cooling with

temperatures below 10 µK purely from the polarization dark states in each individual ground state

manifold. If we study plot (b) at two-photon resonance we see cold temperatures around 4 µK

which is what we expect as at δ = 0 a true dark state formed [67] (Chapter 6). Suppression of the

excited state population is created however on the order of ±Ω2

Γ from the resonance detuning. From

the given experimental parameters this is on the order of 10s kHz and we do see the temperature

remains low on this scale away from δ = 0. However, for detunings at ±100 kHz we see pronounced

heating which is quite striking. Our best reasoning for this is that you have two effects that create

dark states. One is from the polarization gradients present in the system which provides the GMC

cooling in all the ground state manifolds. The second is from coupling the manifolds in a lambda

scheme creating a coherent dark state at δ = 0. If we move away from resonance the two-photon

Rabi-frequency becomes non-zero and begins to shuffle the population between the ground state

manifolds. This has the effect of shortening the ground state coherence lifetime as discussed with

polarization gradient cooling leading to a lower damping rate and higher temperatures. When the
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Figure 3.10: (a) and (b) show the dependence of the temperature vs δ. (b) is an enlarged scan near
δ = 0 which is two-photon resonance. We can see pronounced heating occurs when δ is set just
off-resonance due to destabilization of the polarization dark states in each ground state manifold.
In these scans I = 3.2I0 and ∆ = 12.5Γ.

two-photon detuning becomes large however the population piles up into a predominately single

ground state manifold G = 0 or G = 1 and the GMC cooling in the manifold becomes robust again

leading to colder temperatures.

One thing to note, however, is at two-photon resonance, you would expect a lower temperature

even to below a single photon recoil from VSCPT than that just provided by GMC. We did not see

it at that time. However, now I am happy to say that after re-zeroing stray fields to better accuracy

and redoing all the laser locks in the lab we do reach colder temperatures at δ = 0 where we achieve

robustly 1.5 µK every day in free space cooling which is only 3 photon recoils in temperature. This

is shown in Fig.3.11.
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Figure 3.11: Example of daily temperature of Λ-Enhanced GMC of YO as of writing this thesis.
The temperature shown is Tavg = 1.5(2) µK which is about 3 photon recoils. This represents the
coldest sample of a bulk gas of laser-cooled molecules.

Before finishing the discussion on Λ-Enhanced GMC of YO molecules I would like to discuss

one more interesting experiment we performed. The experiment applied a static uniform B-field

along the z-axis and measured the resulting temperature while fixing the intensity and detunings at

I = 3.2I0, ∆ = 8.3Γ and δ = 0 the results are shown in Fig.3.12. We have some fascinating results.

First at zero field, the lowest temperatures are achieved which makes sense as the ground state

manifolds are least perturbed. Next, I would like to remind you that since YO has unique ground

state coupling due to the fermi contact interaction the G = 0 manifold is magnetic field insensitive

below 10 Gauss, and the G = 1 is magnetic field sensitive as shown in Fig.2.17. Turning back to the

figure as the B-field is increased to around 0.5 Gauss the ground state manifolds in G = 1 are being

remixed by Larmor precession while the G = 0 manifold is stable and coherent. Since the manifolds

are coupled in the λ-type configuration the dark states become destabilized and there is a stark

increase in temperature. At around 1-4 Gauss we see that the temperature drops and becomes flat
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Figure 3.12: Shown is the effect of an applied magnetic field along the z-axis on the Λ-Enhanced
GMC in YO molecules. The relevant parameters were held fixed at I = 3.2I0, ∆ = 8.3Γ and δ
= 0. We see at even large fields of 25 Gauss the average temperature remains at around 25 µK
unmatched by any other atomic or molecular species.

again and this is due to all the dark states in G = 1 (no dark states) being remixed and optically

pumped into G = 0 which provides strong GMC cooling as it is not perturbed by the magnetic

field. In the next region the GMC cooling becomes less effective in G = 0 as at around 10 Gauss

there will be an appreciable Larmor frequency mixing the population. However, something striking

happens at 15 gauss where the temperature plateaus in both directions. This is because a different

Sisyphus mechanism takes over called ”MASE” which is the Magnetically-Assisted-Sisyphus-Effect

[28].

This is quite remarkable as at 25 Gauss YO molecules remain at temperatures around 25

µK. To give some perspective at fields of around 1 Gauss a typical polarization gradient cooling

in an atomic ensemble would be completely ruined. Generally, however, GMC is magnetically

insensitive [25] and this is even more so in YO molecules due to its ground-state coupling. This is

quite advantageous as we will see for the blue-detuned MOT as the sub-Doppler cooling will not
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be perturbed by the applied gradient field.



Chapter 4

Magneto-Optical Trapping of YO Molecules

4.1 Theory of Molecular MOTs

MOTs have probably been the most difficult part of the laser-cooling of molecules saga, and

it took much effort from many groups before MOTs were achieved. I would say however during

my PHD ”regular” MOTs have been mostly figured out and a recipe for success has been written.

The theory of magneto-optical trapping (MOT) is not unlike that of the analysis we had already

performed when discussing optical molasses at the beginning of chapter 3. Indeed when discussing

the scattering force in Eq.3.2 I had mentioned that beyond providing a detuning for the Doppler

shift which provides a force linearly dependent on the velocity at small velocities, you can add in

a detuning term that is dependent on the differential Zeeman shift from the ground to the excited

state. Suppose the field applied is a gradient field with a null at zero, such as that provided by two

magnetic coils in the anti-Helmholtz configuration, you can give a position-dependent scattering

force where the detuning in total would look like ∆j = δj − k⃗ · v⃗ − (geMe − gjMj)µBA⃗r · r⃗/ℏ.

Here Ar is the gradient field and r is the position from the trap center. The reason we wish to

do this is simple, we want a position-dependent force to confine the molecules to a certain region

and compress them in size. The damping force is not position-dependent as such the ensemble of

atoms or molecules ”trapped” in the molasses will simply diffuse out over time. MOTs achieve

trapping and cooling with great success and are generally the beginning point of all ultracold atom

and molecule experiments after slowing.

We can expand the force on the molecules at small displacements as,



74

F⃗MOT ≈ −αv⃗ − κr⃗ (4.1)

where again α is the damping coefficient and the new term κ is the spring constant and determines

the strength of the position-dependent force. We can note that this force looks very familiar as

it is just a damped harmonic oscillator, and that is why we write the force in this form. This is

advantageous as the position of the molecules has a quadratic degree of freedom and this allows

us to use the equipartition theorem κσ2i = mω2
i σ

2
i = kBTi, where Ti is the temperature, ωi is

the trap frequency, m is the mass of YO and i = x, y, z to relate the temperature and trap

frequencies at equilibrium. A time of flight measurement as we recall in Eq.3.14 measures both the

temperature and the size at t = 0 (you can of course also use the in-situ size) and a single time of

flight measurement can determine κ. Additionally, using the temperature and Eq.3.3 along with

a scattering rate measurement you can determine α. If you know α and κ then you have a good

understanding of the MOT dynamics of your system from Eq.4.1.

So why are molecular MOTs difficult to implement? It has to go back to the fact that we

are using Type-II transitions to close the rotational ladder, and the problem is the same as that

we discussed when slowing. If we apply a gradient field and red-detuned beams with counter-

propagating circularly polarized beams as is typical in MOTs we will immediately optically pump

into the opposite stretched state. This is shown in Fig.4.1. The first solution to this problem which is

still widely used today is the so-called ”RF-MOT”. Where both the polarization is chopped similar

to the solution we have for slowing, and the B-field gradient is swapped in sign synchronously at

a rate comparable to or faster than the optical pumping time. This was first demonstrated in our

experiment in 2D on a molecular beam [36]. Subsequently, this technique was applied to 3D for

most molecular species [77], [53], [3] and [20]. This technique works great and captures a large

number of molecules at temperatures compared to that of atomic MOTs. However, a more elegant

solution exists that provides colder temperatures and in YO, more molecules.
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Figure 4.1: Shown is a type-II MOT configuration. With the application of a gradient B-field and
red-detuned beams, the molecules will be optically pumped into the opposite stretched state with
a few photon scatters.

4.2 Dual-Frequency MOT of YO

That solution is to use a ”Dual-frequency MOT” where we apply simultaneous red and blue-

detuned laser frequencies on both of the stretched states in Fig.4.1. This was first proposed by Mike

Tarbutt’s group [73]. Now adding blue-detuned components may raise some alarms as we know

that anytime a photon is scattered it will cause Doppler heating. This is true, however, stepping

back we can see that in a type-II optical molasses, we have a Doppler mechanism and a Sisyphus

mechanism from GMC. These mechanisms have opposite signs, so for any detuning, we will have

competing cooling and heating mechanisms which was present in the case when we discussed the

results of sub-Doppler cooling in the previous chapter. For reference, a table is shown in Table.4.1

displaying these mechanisms. Note, however, that the cooling and heating written in the table are

only true for molecules that have a velocity around or below a critical vc ≈ 1 m/s [25] which is true
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Type-II Cooling Mechanisms

vc ≈ 1 m/s Doppler Sub-Doppler

Red-detuned Cooling Heating

Blue-detuned Heating Cooling

Table 4.1: Cooling mechanisms vs detuning in type two systems. At all detunings, there is one
heating and cooling mechanism. The relative heating and cooling is true for molecules with veloc-
ities less than a critical velocity vc ≈ 1 m/s [25].

Figure 4.2: Shown are the optimal polarizations and detunings of the DFM in YO. The detunings
for L1, L2 and L3 are (-5.8 MHz), (-9 MHz, +2.6 MHz) and (-5.8 MHz) respectively.

for our Dual-Frequency MOT (DFM).

This creates an interesting physical system which is a balance of competing cooling and

heating mechanisms. Predominantly we want mostly Doppler cooling as an optical molasses relying

on Doppler cooling has a higher capture velocity than than that of a sub-Doppler mechanism [21],

and we want to capture as many molecules as possible after slowing. The rough capture velocity of

the DFM is shown in the previous plot Fig.3.2 with a capture velocity of 3.5 m/s. However, if the
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blue-detuned components are set correctly we can achieve lower temperatures and longer lifetimes

in the MOT as the scattering rate will be lower.

To perform the DFM we need to set the correct polarizations for each manifold in the ground

state. The correct polarizations are detailed in [72] and if you want to understand molecular MOTs

you should read this paper. In short, for a given excited state g-factor sign, gradient field sign,

upper and lower angular momentum quantum numbers, and detuning a particular polarization

needs to be set on each ground state manifold. The correct polarizations and detunings for YO are

shown in Fig.4.2. Our work on the DFM is briefly discussed and published in [27]. The number

of beams in the DFM is three and are labeled L1, L2, and L3. Beam L1 is set by the detuning

of the laser. Beams L2 is generated by dual driving a high-frequency Brimrose AOM. Beam L3

is also generated with a high-frequency Brimrose AOM and is made separately as this beam has

opposite polarization to the other beams. The AOM part numbers are either TEF-767 or GPM-800

corresponding to either tellurium or gallium phosphate (I prefer gallium as it has a higher damage

threshold at 614 nm). The detunings for L1, L2, and L3 are (-5.8 MHz), (-9 MHz, +2.6 MHz), and

(-5.8 MHz) respectively. The optimal intensity of the beams is set to I = 1.4I0, where I0 = 2.7

mW/cm2, and is equally distributed to the four components.

The beams are combined on a PBS and sent through a PM-633 optical fiber for mode cleaning.

The beams are then launched through an adjustable lens and hit a half and quarter wave-plate

pair to create circular polarization. The beams then enter the chamber as shown in Fig.3.5, and

are retroreflected with a quarter wave-plate on the last pass. To be more precise, there is a set

of quarter wave-plates on every arm on the MOT beams before and after leaving the chamber.

This is to ensure the beams are not polarized during reflection off the mirrors and to minimize any

birefringence during propagation. Optimized molecular MOTs and GMC are highly sensitive to the

polarization being set as pure as possible. Additionally, since the beams are recycled through the

vacuum chamber, when they propagate all the way through and back the loss of power is ≈ 20%.

To compensate for this the beams are gently focused using the adjustable lens after the fiber to

balance the intensity. The GMC and the MOTs are again very sensitive to this focus and it needs
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Figure 4.3: Shown are the in-vac coils for the gradient field as described in the text. Additionally,
the in-vac objective lens is shown which allows for efficient collection of the molecule fluorescence
for imaging.

to be set correctly. This can be done by optimizing the temperature in the GMC and the shape

of the MOTs. We also send in v1 and v2 optical repumper light through the MOT beams through

the use of dichroic mirrors to provide additional repumping for the MOTs. We leave the v1,v2

N2, and N3 slowing beams on and they propagate down the slowing axis for both more vibrational

repumping and rotational repumping. The microwave fields are left sweeping as discussed earlier

in Fig.2.15.

The gradient field is created with two vacuum coils in the anti-Helmholtz configuration. Each

coil has two stacked aluminum nitride PCBs due to their favorable thermal properties with circular

copper traces. The separation of the coils is 2.97 cm and are heatsinked to a copper horseshoe with

copper lugs that extend out of the vacuum. These can be actively water-cooled for heat dissipation

of the coils. However, throughout my entire PHD, this has not been required for the applied fields

I have used. A CAD model of the coils in the vacuum chamber is shown in Fig.4.3. The coils
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are connected in parallel. This was originally done to limit the electric field created between the

coils when a current is applied. However, due to a machining error, the coil null field was offset

from the paraxial condition of the optical beams. As such, compensation resistors were added

on one leg to push the null field down to the center of the MOT/GMC beams. We know from

our earlier discussion on the A′2∆3/2, J = 3/2± state that very small fields can mix the parity

doublet as seen in Fig.2.14. Now since the coil resistances are unbalanced applying fields larger

than 15 G/cm significantly mixes this state caused by the electric field between the coils. This

limits our overall maximum field gradient to be around 14 G/cm or significant loss is seen through

v = 1, 2, X2Σ+, N = 3−. This is an extremely trivial problem that needs to be fixed or repumping

out of v = 1, 2, N = 3− needs to be applied. If it was fixed we could create MOTs on YO with

densities that would be incomparable to other molecular species. I should say however, that the

maximum field gradient that I have had the coils is above 100 G/cm during testing which is more

than enough for a magnetic trap of YO in the absolute ground state which will be discussed in the

last chapter in more detail.

Getting to the results of the DFM a typical image of the DFM is shown on the left-hand side

of the Fig.4.4. The image is taken by collecting 13 ms of MOT fluorescence with an Andor IXON

888 EMCCD. From this, we can determine the number of molecules in the MOT. As discussed

earlier using equipartition and using TOF to determine the temperature, we can determine the

spring constant and the PSD. We get values of around 200,000 molecules at a temperature of

1.8 mK a spring constant of κz = 1.4 x 10−20 N/m and a PSD ≈ 10−13 for a good MOT. If we

perform a scattering rate measurement as shown on the right side of the figure by turning off the

v1 optical repumper, we can determine the scattering rate and the damping rate α/m using the

Frank-Condon factors and Eq.3.3. We achieve the values of Rscat = 369 (x103 s−1) and α/m = 34.7

s−1. The spring constant and damping rate are lower than what you typically expect in an atomic

MOT, but due to the nature of all the ground state manifolds vs the excited state manifolds (recall

Eq.3.2) we expect the scattering rate to be lower creating a lower scattering force. I want to say

that this MOT was essentially optimized in-situ to something that provided the largest molecule
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Figure 4.4: Shown is an image of the DFM on the left and a time trace of the slowing, loading and
DFM on the right (before microwave sweeping was implemented). From the image on the left, we
can discern the molecule number and from TOF we can get the temperature, spring constant, and
the Phase Space Density (PSD). From the right trace turning off the v1 optical repump beam, we
can discern the scattering rate using the Frank-Condon factors, and the corresponding damping
rate α/m using Eq.3.3.

number and temperatures around 2 mK. Therefore, many optimizations can be done, and this is

even suggested by full-rate equation models. Since the parameter space is quite large this could

be a good candidate for reinforcement learning in the future and should be done to optimize this

MOT in the future. Again, with optimizations with the slowing and this MOT, I would not be

surprised if a factor of 10 gain in the molecule could be achieved. This could be done by moving

the coils out of the vacuum chamber to allow larger MOT beams and repumping the v1 population

through the transition v = 1, X2Σ+, N = 1− → v = 0, B2Σ+, N = 0+. Again something of this

nature will need to be done for future evaporation studies.

4.3 Blue-Detuned MOT

We have come to an interesting possibility for a unique MOT. What if we could completely

rely on GMC cooling while in the presence of a gradient field? Even though this would create MOTs

with smaller spring constants than that of a DFM or RF-MOT we could drastically reduce the size
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Figure 4.5: (A) DFM configuration including polarizations and detunings addressing each manifold.
(B) BDM configuration is created by shuttering X2Σ+, N = 1−, [G = 0, F = 1], [G = 1, F = 0, 1]
and turning on a new beam on X2Σ+, N = 1−, G = 0, F = 1 with opposite polarization and
detuning.

of the MOT due to the equipartition theorem from the significantly lower temperatures that could

be achieved. This is important as it allows better mode matching to the molecular ensemble with

optical trapping beams which will be discussed in the next chapter. This type of MOT is called a

Blue-Detuned MOT (BDM) and was proposed [25] and demonstrated in Rb atoms [38] primarily

for use in laser-cooled molecules.

The first molecular species to demonstrate this MOT was in this experiment in YO with the

published work here [11]. This work was part of the middle to latter part of my PHD where I

led the development in the lab, and represented the first sub-Doppler molecular MOT. I believe

the entire field of laser-cooled molecules was converging to a similar route to further enhance the

densities that could be made in optical traps. As such, after our first demonstration in molecules

BDMs were created in all the other laser-cooled species [39],[45], and [34].

The basic physical mechanism has already been shown and discussed in Fig.3.8. Again, from

our results in Fig.3.12 we expect any present magnetic field to have a small effect on the GMC

cooling. However, we have arrived at an interesting juxtaposition. For efficient sub-Doppler cooling,



82

particularly GMC we want the lowest possible excited state population ρee to create coherent dark

states as we discussed in the previous chapter. However, the spring force in a MOT relies on the

scattering force, not the dipole force and we need an appreciable excited state population to exist

at all times to have a spring constant. These two competing mechanisms create a knife edge of

optimized parameters which we will discuss below to create this MOT in YO molecules.

First, the technical implementation of the BDM is shown in Fig.4.5. The DFM configuration

that we discussed in the previous section is shown on the left in (A). The relative energy level

splitting is also shown with the approximated g-factors at fields up to around ≈ 10 G. To create

the BDM the components on X2Σ+, N = 1−, [G = 0, F = 1], [G = 1, F = 0, 1] are turned off

by physical shutters and AOMs. Another laser tone addressing X2Σ+, N = 1−, G = 0, F = 1 is

then turned on with opposite polarization and blue-detuning with another AOM. This gives two

detunings exactly similar to the setup we use with GMC except with the opposite polarization on

X2Σ+, N = 1−, G = 0, F = 1. This setup is shown in (B).

Like GMC there are only three parameters that can be scanned intensity I, the one-photon

detuning ∆, and the two-photon detuning δ. To characterize the MOT following Eq.4.1 we want to

determine the spring constant κ and damping coefficient α. Following the methodology in Fig.4.4,

if we measure the temperature and the scattering rate at each point for each parameter scanned

we can determine both κ and α and the subsequent MOT dynamics.

First, we scan the intensity shown in Fig.4.6. Here we fix the magnetic field gradient to 4

G/cm, ∆ = 0.44 Γ and δ/2π = -264 kHz. The axial direction is set by the gradient field which is

stronger by a factor of 2 compared to the radial in the anti-Helmholtz configuration. First looking

at panel (a) we achieve temperatures of around ≈ 30 µK which is below the Doppler temperature

by over a factor of 3. Below 1 Isat we see the temperature rise as the cooling and trapping force goes

to zero as we would expect. At 1 Isat and above we see the temperature reach a minimum value

and increase linearly vs intensity. This is exactly what we would expect from earlier discussions

when discussing GMC. We can see this actually from panel (c) where the damping coefficient peaks

at around 1-2 Isat then plateaus which is predicted for sub-Doppler cooling mechanisms [25],[21].
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Figure 4.6: Shown is the Variation of the (a) temperature (T ), (b) spring constant (κ), and (c)
damping rate (α/m) with intensity (I) of each beam which are set with equal intensity, with a
magnetic field gradient of 4 G/cm, ∆ = 0.44 Γ and δ/2π = -264 kHz.

If we again use Eq.3.3, we predict a linear increase in T as the scattering rate increases linearly

with intensity and α is fixed. The spring constant is more interesting as we see a strong peak at

around 1 Isat then a slow decrease as the intensity increases. The red clover represents a full rate

simulation of the spring constant in the z-direction using Eq.3.2. We find very good agreement

with the measured results. The error on the rate equation is not shown as it is quite large do to

the excited state hyperfine splitting in A2Π1/2, J = 1/2+, F = 0, 1 being unresolved within the

linewidth. The inset is the result of a three-level system using the optical-Bloch-equations and

plots ρee. We find good qualitative agreement with the data. The falling off at higher intensity

can be understood as the two photon-Rabi frequency becoming large enough that the excited state

population starts to become adiabatically eliminated since δ ̸= 0, with the population spending the

majority of the time shuffling between the G= 0 and G = 1 manifolds through coherent stimulated
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Figure 4.7: Shown is the variation of (a) temperature (T ), (b) quadrature size (σ2), (c) spring
constant (κ), and (d) damping rate (α/m) in the blue MOT with differential detuning (δ), with ∆
= 0.44 Γ and I = 1.93 Isat and maximum magnetic field gradient of 4 G/cm.

emission.

Next, we discuss the results from scanning out δ which is a very interesting parameter as we

can effectively turn off and on a strong coherence by changing it in the Λ-enhanced GMC scheme.

Here we fix ∆ = 0.44 Γ and I = 1.93 Isat with a maximum magnetic field gradient of 4 G/cm. First

looking at panels Fig.4.7 (a) and (d) we see that the temperature decreases and the damping rate

increases weakly linearly as δ → 0 as we expect as we make a coherent dark state. Where the lowest

temperatures and highest damping rate are achieved at δ ≈ 0. However, looking at panels (b) and

(c) which show the size of the BDM and the spring constant we see dramatic behavior. At δ = 0,

we see the spring constant goes to zero and size approaches that of the DFM as the excited state

population ρee goes to zero. However, if we detune δ ≈ -300 kHz we see a large increase in the spring

constant and a compression of the size. This is a beautiful consequence of the physical system by

tuning one laser tone by several hundred kHz we can transition from pure GMC to a BDM while
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Figure 4.8: Shown is the variation of (a) temperature (T ), (b) quadrature size (σ2), and (c) spring
constant (κ) on one-photon detuning (∆), with a magnetic field gradient of 4 G/cm, δ/2π = -264
kHz and I = 1.93 Isat.

fixing all other parameters. As you would expect that there is a deep physical connection between

the strong sub-Doppler GMC and the magneto-optical trapping mechanism. This system allows

you to tune the relative magnitude of the dipole force and the scattering force against each other

to get completely different light-matter interactions by tuning a single laser over a sharp resonance

(δ << Γ). This is the only system I know of that allows for such tight control and separation of the

relative trapping and cooling mechanisms. The inset on the size panel is the result of a three-level

optical-Bloch-equation solution. We see we get could qualitative agreement with the model with

the data at near δ = 0. Away from two-photon resonance we that models begin to disagree, but

this is due to the triplet of hyperfine manifolds in G = 1 not being accounted for.

Last we discuss the results from scanning out the one photon detuning ∆. To be frank

this parameter is not incredibly interesting, but it still needs to be optimized. We see from panel

Fig.4.8 (a) that over a large range of detuning from (0.5 - 1) Γ the temperature is flat and the
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Figure 4.9: Top: In-situ image of the BDM. After 200 ms we achieve a size of ≈ 200 µm in the
axial and radial directions with a corresponding Phase-Space-Density of 5 x 10−9 the highest of
any molecular MOT. Bottom: Compression of the molecular cloud vs. time.

spring constant is approximately flat in panel (c). We see however that as ∆ increases the size and

spring constant increase and decrease. This is exactly what you would expect as the excited state

population decreases like ρee ≈ ∆−2 as you can see from Eq.3.2. The inset is again a solution to

the Bloch-equations and we find good qualitative agreement with the measured results. For ∆ it is

convenient that the detuning is not very sensitive on the order of several MHz as if the laser lock

drifts (which it should not!) it has minimal impact experimentally.

The results of optimization are summarized in Fig.4.9. Here we achieve a BDM with a in-situ

size of ≈ 200 µm in the axial and radial directions and a record PSD of 5 x 10−9. The optimal
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BDM sequence used in these images is to ramp the field gradient from 2-14 G/cm over 200 ms. This

provides the highest density and the longest lifetime of the MOT. You can see that the compression

time of the MOT is quite long around 200 ms due to the small spring constants achieved at these

low fields. A new proposal however using a conveyor belt type mechanism has been proposed and

demonstrated that should enhance the spring constant in the BDM and is applicable to YO [34].

I would like to state that the advent of the BDMs has changed the field drastically, and is directly

responsible for the collision results that will be discussed in chapter 6..



Chapter 5

Conservative Trapping of YO Molecules

The work on conservative trapping of YO molecules was performed after sub-Doppler cooling

and also after the BDM for collisional studies described in Chapter 6. After the work on sub-

Doppler cooling the most senior people in the lab wanted to see if they could make a conservative

trap on based the narrow-line transition as we had already had a TA in the lab to create modest

amounts of power. However, this did not work out well due to the broad ASE pedestal from the

TA causing unfavorable photon scattering. As such, while that was being tried I made optical

setups based on high-intensity coherent 1064 nm light which worked immediately as the light is

much further detuned and has a much narrower spectrum. The works with conservative trapping

can be found here [81] and [12].

We have already discussed the theory of optical trapping in Chapter 3 while discussing the

dipole potential. In particular, we stated that if we have transitions with good polarizability and

we make the potential spatially varying either by focusing a laser beam or interfering counter-

propagating beams with the same polarization, we could conservatively trap the molecules at the

points of highest intensity by Eq.3.10. However, like every interaction with light we have discussed

there are two forces, the scattering and dipole force. I want to note that magnetic trapping is

also a viable route in YO as it is an open shell molecule and has 1 µB sitting in the ground state.

However, unlike optical traps that trap all internal spin states, a magnetic trap only traps the

low-field seeking states which means the molecules need to be state-prepared. This was not done

on YO until the recent work on collisions [12].
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In the case of conservative optical trapping, we want the dipole force to be dominant and

the scattering force to be as small as possible. The reason is two-fold, first scattering photons will

cause heating. Additionally, in molecules, the trapping light can connect the ground state rotational

manifolds to many different states through both one-photon and two-photon transitions through

excited states so minimizing scattering is paramount. To get the right balance between the forces

we note that the scattering force and the dipole force scale like Fscat ∝ I
∆2 and Fdip ∝ I

∆ . Therefore

if we use far red-detuned light from the transitions with high polarizability and with appreciably

high intensity we can create a dipole potential deep enough relative to the average kinetic energy

of the molecular ensemble, with scattering rates well below 1 s−1. This is the principle of FORT

(Far Off Resonance Traps).

The total polarizability of YO is shown in Fig.5.1 including the 4 lowest electronic states

A2Π1/2, A
2Π3/2, B

2Σ+ and A′2∆3/2 vs. detuning in wavelength (nm) using Eq.3.10. Here a laser

beam with 30 W of power and a beam waist of 100 µm is assumed. The black dashed lines represent

the position of the transitions and the blue dashed line at 1064 nm. Here we plot the vertical axis

in terms of the trap depth of the dipole potential (positive is trapping) in µK. Experimentally it

gives an easy-to-understand trapping force relative to the thermal kinetic energy of the molecules.

We see that predominantly most of the trapping comes from the A2Π1/2 and A2Π3/2 states as we

would expect as they have the largest linewidths. With the given parameters and using 1064 nm

light we would achieve a trap depth of 62 µK. The rule of thumb is that the average temperature of

the ensemble over the trap depth should range from 8-10 and is known as the η = kbT
Vdip

parameter.

Beyond the trap depth, the trap frequencies are important to quantify the optical trap’s

strength. For an ODT (focused dipole trap) and XODT (Crossed dipole trap), these frequencies

are typically around ≈ 100 Hz or lower for typical ultracold or near ultracold experiments. In an

optical lattice in 1D, the radial frequencies are also around ≈ 100 Hz, and the axial frequencies

typically range from 10s to 100s of kHz. These large axial frequencies are great for holding your

ensemble against gravity with weak trapping light and the large frequencies are good for resolved

side-band cooling as typically found in alkaline earth atoms.
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Figure 5.1: Total ac-Stark shift of the ground state in YO which includes A2Π1/2, A
2Π3/2, B

2Σ+

and A′2∆3/2 vs. detuning in wavelength (nm). The position of the transitions is shown with the
dashed black lines and at 1064 nm with the blue dashed line. Here a 30 W laser beam is assumed
with a beam waist of 100 µm. A positive value on the vertical axis corresponds to trapping.

There are three ways to determine the trap frequencies. If the frequencies are low you can

apply a push beam on the ensemble while in the trap and measure the position of the ensemble vs

time with a CCD. You will see coherent damped oscillations with the oscillation frequency equal

to the trap frequency in that direction. In this experiment, we do not apply such methods as the

molecules are not quite in the ultracold regime < 1 µK which allows for weak traps. The other two

methodologies are to induce either pointing heating or intensity heating. Pointing heating is easy

as you shake the trap pointing with a piezo mirror and look at the loss of molecules from the trap.

Parametric heating is also quite easy as you modulate the intensity of the trap and at twice the

oscillation frequency of interest, you will see loss from the trap. Examples of both methodologies

are shown in Fig.5.2. For more information on the physical intuition of these processes, I suggest
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Figure 5.2: Examples of pointing heating and parametric heating to determine the trap frequencies
of conservative optical traps of YO molecules. For pointing heating, the loss occurs at the trap
frequency and can be achieved by shaking the trap pointing with a piezo mirror. For parametric
heating, loss occurs at twice the trap frequency and is achieved by modulating the intensity of the
trap light.

[60] as I will not discuss them here.

5.1 Technical Implementation of 1064 nm Systems

In this section, I will concentrate on the 1064 nm systems that make up the conservative

trapping light in the experiment. The 1064 nm setup for both the optical lattice and XODT

consists of a seed laser and two fiber amplifiers. The seed laser is a Coherent Mephisto NPRO ring

laser. This laser is extremely ”quiet” and provides a free-running linewidth of 3 kHz. Additionally,

the laser has a noise-eater on it that provides an extremely low and flat Relative-Intensity-Noise

(RIN) of -150 dBc/Hz from near DC to 2.5 MHz. This laser provides an extremely stable and low

noise system that is then coherently amplified by two fiber lasers which I will detail.

The first fiber amplifier is a Nufern 50W 1064 fiber amplifier, which I set up in the experiment.

This amplifier has some polarization stability sensitivity and was a backup for Jun’s labs just in

case people were in dire straits. This laser is seeded with 15 mW of power from the Mephisto. The

output laser polarization likes to drift, and is very sensitive to any strain induced in the output

fiber. Therefore, the output fiber is rigidly attached to the laser enclosure and the fiber should
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Figure 5.3: Polarization stability of the Nufern fiber amplifier is shown. You can see a transient
in the output power as the amplifier is turned on. This was measured by monitoring the power
transmitted through a PBS.

never be touched for any reason. To show the polarization stability a plot of the output power sent

through a PBS is shown in Fig.5.3. You can see from the plot there is a transient shift in the power

when the amplifier is first turned on and takes around 1 hour to settle. As such, you must let the

amplifier settle every morning when you turn it on for at least an hour.

Beyond the polarization stability of the Nufern the laser is quite sensitive to back reflections

into the laser amplifier through back coupling into the output fiber tip. As such, the output of the

amplifier is sent through two optical isolators. The optical isolators are Thorlabs IO-5-1064-HP

isolators where the input and output polarizers are removed and replaced with TFPN-1064-PW-

1025 plate polarizers to reduce back reflections and the absorptive volume. Sometimes the output

polarization of the amplifier changes particularly if the chiller is turned off for some time. As such,

there is a quarter and half waveplate pair before the first polarizer to compensate for any drift. I

will say the plate polarizers are a little tricky to align and are very sensitive to the angle as such it

would be beneficial to probably put them on rotation mounts if you ever had to realign everything
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Figure 5.4: Shown is an optics diagram of the Nufern fiber amplifier.

or build a new system. A diagram and photon of the setup are shown in Fig.5.4.

After the optical isolators, the beam propagates through a Gooch and Housego AOM with a

resonant frequency of 80 MHz. This AOM intensity servos the -1st order diffracted beam and allows

for arbitrary intensity modulation of the beam. The laser light is then coupled into an NKT LMA-

PM-15 fiber. These large mode area photonic crystal fibers allow for coupling large amounts of

1064 nm power. The fiber is SBS-limited for narrow line-width lasers. Talking to an NKT engineer

the SBS is limit is 50 W/m. For example, the length of this fiber is 5 m therefore the maximum

power that can be delivered is around ≈10 W which is indeed what I have seen. If you have never

encountered SBS as you cross a threshold the laser power starts reflecting out of the fiber, and the

coupled throughput power drops dramatically. This makes for some interesting moments of panic.

The fiber tip is water-cooled and has mode field strippers to dump non-mode-matched power out of

the fiber. Additionally, the fiber has custom fused silica endcaps from Tratech on them to prevent

the burning of the fiber from the air to the silica interface. For more information on the fibers

themselves, I recommend the thesis [54] as I will not discuss them here.

The second fiber amplifier I setup is a Preci lasers 100 W 1064 nm fiber amplifier. The optical
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Figure 5.5: Shown is an optics diagram of the Preci fiber amplifier.

setup is very similar to the Nufern setup except that the AOM uses the +1st order diffracted beam

through the AOM which is also intensity servoed. This creates a frequency shift of 160 MHz between

the two beams to help ensure that there is no lattice formed in the XODT. The setup is shown in

Fig.5.5. This fiber amplifier is much more stable than the Nufern amplifier as it does not exhibit

polarization drift on its output and it is much less sensitive to back reflections. Additionally, we

use just an off-the-shelf optical isolator rated for 100 W for a few mm beam without removing the

polarizers and supplementing them with plate polarizers. Also, the NKT fiber is only 2.5 m long

in this case which allows for powers ≈ 25 W to be coupled through the fiber before hitting the SBS

limit which is significantly higher than the Nufern setup.

For both setups, all transmission optics are chosen to be UVFS as much as possible to limit

thermal lensing which could be quite severe if BK7 was used by the time the beams get to the

vacuum chamber. Additionally, UVFS is much purer and limits the possibility of defects in the
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Figure 5.6: Shown is an optics diagram of the 1064 nm propagation into the experimental chamber
for an XODT and optical lattice.

glass from being burnt. Also, in the images, you may notice that any flat-facing optics such as

waveplates are slightly tilted. This is to prevent any reflections from back coupling back into the

fiber amplifiers and is a good habit one should be conscious of when aligning high-power optics

(make sure you know where reflected beams are dumping). Both fiber amplifiers are contained in

blackened aluminum enclosures for safety and to create low dust environments. A single piece of

dust at these powers can burn optics quite easily.

Next, I will detail the propagation of the 1064 nm beams into the vacuum chamber. The
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optical paths are shown in Fig.5.6. First, the Preci path at the top is used only for the XODT.

The beam is launched from the fiber and collimated to a beam waist of ≈ 3 mm and propagates

through a 400 mm lens to focus the beam onto the BDM position with a beam waist of ≈ 45 µm.

The beam propagates through one of the MOT arms and combines with the MOT beams with a

Semrock FF749-SDI01 dichroic mirror. The angle of the dichroic is quite awkward. The reason

for this is the angle of dichroic was set to minimize the reflection of the MOT beams as GMC

and particularly the BDM are quite sensitive to the power balance of the optical molasses beams.

However, the introduction of the dichroic mirrors has been slightly detrimental to the BDM and

has resulted in sizes around ≈ 20 µm larger than during what was quoted in [11]. However, this is

a tradeoff vs having an XODT or a smaller BDM. In the future when the MOT beams are made

independent this effect can be almost completely mitigated. After the chamber the beam is picked

off with another Semrock FF749-SDI01 dichroic mirror and the beam is dumped. Some of the light

is picked off further onto a photodiode for the intensity servo of this beam. The power of this beam

is typically around 19 W.

Next, the Nufern beam is also launched from the fiber similar to the Preci laser. However,

this beam is used for the XODT and a 1D retroreflected horizontal optical lattice. As such, the

beam is launched opposite from the chamber and propagates through an optical isolator. The

reason for this is the optical isolator has large magnetic fields that perturb the GMC. Therefore

the optical isolator is placed far from the chamber to reduce the effect of the magnetic field. The

optical isolator is needed as the lattice is formed by retroreflecting the beam and we do not want

the retroreflected beam to couple back through the fiber. The beam then propagates through two

dichroic mirrors, specifically a Thorlabs DMLP805L and a custom-sized Semrock FF749-SDI01.

Some light bleeds through the last dichroic and is used to intensity servo the Nufern beam. The

beam propagates through part of the imaging system passing through three Edmund 67-283 lenses

where one of the lenses is the in-vacuum lens. The last lens focuses the beam down to a waist of

≈ 74 µm and has a typical power of around ≈ 7 W at this time. After the chamber, the beam is

collimated with a 350 mm lens, and is either dumped for the XODT or retroreflected for the optical
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lattice.

5.2 Loading and Cooling of YO Molecules in a 1D Optical lattice

In this section, I will discuss and summarize our results of sub-Doppler cooling and loading

into a 1D optical lattice [81]. The loading into the lattice was a natural progression from our earlier

work on λ-enhanced GMC cooling in free space [27]. Indeed, once you have a cold ensemble of

molecules you want to be able to hold them conservatively for a long time for further studies such

as collisions. However, the loading of the trap itself is an interesting physical problem on how to

optimize the number of molecules in the trap and if it is possible to provide cooling with λ-enhanced

GMC in the presence of the trap light.

The reason you want to apply cooling while loading the trap is that the trap is conservative

meaning phase-space density is conserved. As such, the spatial extent of the loaded molecules

will be translated into momentum and the overall temperature of the molecules will be higher.

If however, you can remove energy from the system with tuned spontaneously emitted photons

(cooling), the trajectory of the molecules in phase space will not be a circle, but a spiral inwards

until the molecules thermalize with the optical molasses beams. This can create extremely high

densities in the traps with successful cooling and with relatively modest trap depths.

The reason we used an optical lattice is quite simple. The optical trapping beam is created

by propagating the beam through our imaging system. This makes it quite difficult to ensure the

beam is level given our best efforts. As such, we saw short lifetimes in a focused dipole trap. If

you calculate the experimental parameters you see that even a tilt of 1 degree is detrimental as the

molecules are lost along the Rayleigh range of the dipole beam as shown in Fig.5.7. Therefore we

retroreflect the dipole beam to create a 1D optical lattice. This creates a tight optical trap along

the axial direction of the beam as the trap frequency along that direction is now proportional to

the magnitude of the wavevector of the trapping light ωz ∝ k. Additionally, the radial frequency

is higher by a factor of 2 compared to a focused beams trap as the total intensity of the trap is

I ∝ E2
tot = E2

1 + E2
2 + 2E1E2 cosϕ where ϕ is the angle between the polarization of the incoming
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Figure 5.7: Trap depth of a focused ODT with progressively larger tilt angles with respect to
gravity. The parameters are a 10 W beam with a waist of 76.4 µm at 1064 nm. We see even an
angle of 1 degree is detrimental to the trapping.

and retroreflected beam and is nominally set to 0. If the intensity of the retroreflected beam is the

same as the incoming beam then E1 = E2 and then the trap depth is 4 times larger than a single

focused beam ODT.

However, there is a trade-off. Since the frequency along the axial in particular is quite large

a lattice is much more susceptible to intensity noise present in the system and extra care needs to

be made to ensure that the noise is low to prevent heating. For our work, this was the case, and

the lifetime and heating rate of the molecules held in the lattice are shown in Fig.5.8. The lifetime

is limited by the vacuum lifetime in the experimental chamber and at this time we had the lowest

vacuum pressure and we found a lifetime of 850(70) ms. As a rule of thumb 1 × 10−9 torr equals

to ≈ 1 second lifetime and 1 × 10−10 torr to ≈ 10 seconds. For the heating rate, we could not
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Figure 5.8: (a) Measurement of one-body lifetime in the optical 1D lattice. The solid line is an
exponential fit with a 1/e decay time of 850(70) ms.(b) Measurement of the heating rate inside the
lattice which includes both photon scattering and parametric heating from intensity noise. The
solid line is a linear fit with a heating rate of −0.4(0.7) µK/s.

measure an increase in the molecule temperature vs time relative to the experimental running time

as shown in panel (b), with a heating rate of −0.4(0.7) µK/s. I would like to note that this heating

rate includes the heating from either photon scatters from the 1064 nm light or any parametric

drive from the intensity noise.

We now discuss the loading of the molecules into the lattice in the presence of λ-enhanced

GMC. The largest perturbing effect on the cooling will be the presence of differential stark shifts
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Figure 5.9: Number of molecules loaded into the lattice vs intensity and the one-photon detuning
∆. Here the two-photon detuning is fixed to δ = 2π× 70 rad/s. For the intensity scan ∆ = 8.3 Γ.
For the one-photon detuning scan I = 5.5I0. As both the I and ∆ increase they reach a threshold
where the total loaded number of molecules plateaus. The solid lines are fitted to N = N0−k×ρee,
where N0 is a constant, k is a scale factor, and ρee is the excited state population from a three-level
model solving the optical-Bloch-equations.

between the G = 0 and G = 1 manifolds due to the presence of trapping light. As such, the optimal

parameters of GMC in free space that we discussed in Chapter 3 will need to be re-optimized. This

is quite an interesting system as we have two competing lattices with lattice periods of 532 nm

from the trapping light and 307 nm from the cooling light. As such, it is possible that the GMC

could be abhorrently affected in the presence of the trapping light as the ground state coherence

is destroyed. However, we will find that due to the favorable ground state structure of YO mainly

the large spacing between the G = 0 and G = 1 manifolds we retain robust GMC cooling in an

optical trap.

Just like the scans of λ-enhanced GMC in free space and in the BDM there are three param-

eters that can be scanned the Intensity I, the one-photon detuning ∆ and the two-photon detuning

δ. Here I is split evenly between the two beams addressing the v = 0, B2Σ+, N = 1, G = 0, 1

manifolds as depicted in Fig.4.5 (B). To start, the lattice beams are ramped on and the GMC

is applied overlapping with the lattice beams for 50 ms which was found to maximize the loaded

number of molecules. We first turn our attention to scans of I and ∆ vs the loaded number in the
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9.8 I0

1.1 I0

Figure 5.10: Number of molecules loaded into the lattice vs the the-photon detuning δ. Here ∆ =
8.3 Γ and the scan is taken at two different intensities I = 9.8I0 and 1.1I0. A pronounced peak
appears in the loaded number vs δ as when the resonance condition is satisfied a robust dark state
is formed. As the intensity increases the resonance becomes broader.

lattice. We fix δ = 2π× 70 rad/s. We find that at an intensity of 2I0 and ∆ = 4.2Γ the loaded

number of molecules is maximized and plateaus as shown in Fig.5.9. The solid lines are fitted to

N = N0−k×ρee, where N0 is a constant, k is a scale factor, and ρee is the excited state population

from a three-level model solving the optical-Bloch-equations. We find good agreement with such a

simple model.

These results can be summarized as follows, for the intensity at 2I0 the scattering rate is

high enough such that the molecules do not sag vs gravity and have an optimal overlap with the

trapping beams. This is similar to the results when applying GMC in free space as at around 1I0

the molecules are hardly held against gravity (requires a few kHz scattering rate) and is the lowest

intensity that can be used to hold the molecules in the molasses. As the intensity increases the
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temperature does increase (only marginally) however, the temperature achieved is low enough such

that η ≈ 8. However, at high intensities around 9I0 we see a tailing off of the number indicating

that the temperature increase from momentum diffusion is becoming deleterious. For ∆ the picture

is quite simple as ∆ increases the temperature decreases and the rate of change of ρee becomes

small at large detunings as such we see a plateau of the loaded molecule number.

Next, we can scan out the loaded number of molecules vs δ. While holding I and ∆ fixed.

The results are shown in Fig.5.10 with the one-photon detuning fixed to ∆ = 8.3 Γ and at two

different intensities I = 9.8I0 and 1.1I0. Here we see a pronounced narrow peak appear for both

scans as we would expect, as again when the two-photon resonance condition is satisfied δ = 0 a

coherent and robust dark state is formed. Here we see that the optimal detuning compared to free

space is shifted by ≈ 100 kHz blue indicating a differential stark shift between the G = 0 and G

= 1 manifolds on that order. This is a powerful tool to measure the differential stark shift of the

ground state manifolds. However, as we detune away from the resonance condition there is a dip

and a slight recovery of the loaded number. This is again attributed to the heating that was seen as

we detune away from resonance in free space. I will not repeat it here but the discussion is laid out

clearly in Chapter 3 (section 3.4). We do note however that as the intensity increases the resonance

gets broader. This is what is predicted as the width of the ”EIT dip” is proportional ±Ω2

Γ and in

this range the excited state population will be suppressed. With optimized parameters of I = 1.4I0,

∆/2π = 40 MHz and δ/2π = 70 kHz, we load a maximum of ∼ 1200 molecules (limited only by

mode matching of the beams to the cloud) into the optical lattice with a temperature of 7.0(6) µK.

This corresponds to a PSD of 3.1× 10−6, and at the time this was the largest PSD achieved for a

”bulk” gas of laser-cooled molecules only beaten by our recent work collisions in a XODT.

We can perform another interesting experiment now that the molecules are loaded and con-

servatively trapped in the lattice. The experiment is to test what is the lowest possible temperature

that can be achieved with λ-enhanced cooling. As stated previously, the lowest intensities are lim-

ited in free space as the molasses cannot ”hold” the molecules against gravity. However, in the

optical lattice, this is not a limit. If we apply a large ∆ detuning and an optimized two-photon de-
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Figure 5.11: (a) Shown is the temperature versus intensity I with ∆=8.3Γ and δ=2π×70 rad/s. The
solid line is a linear fit. (b) Number of remaining molecules versus I with ∆=8.3Γ and δ=2π×70
rad/s. The solid line is a fit to the function N = N0 − k× ρee(I), where k is a scale factor, and ρee
is the excited state population calculated with the optical-Bloch-equations.

tuning δ and lower the intensity, the temperature should also decrease. As again, for a sub-Doppler

mechanism the temperature scales linearly with intensity Tavg ∝ I. You may think, however, that

since we have two competing lattices on top of each other at all times the cooling will be com-

promised. While this may be true to some extent this much to my surprise was not the limiting

factor.

The results of such an experiment are shown in Fig.5.11. Here after loading the molecules,

we waited for 40 ms for the unloaded molecules to fall out of the view of the CCD. We then applied

an additional 30 ms of GMC cooling while scanning out the intensity while holding ∆=8.3Γ and

δ=2π×70 rad/s. First in panel (a) as the intensity is lowered we find lower temperatures scaling

linearly with I as we would expect. However, as the intensity is lowered below one I0 we see

pronounced molecule loss. Additionally, at these lower intensities (which is not shown) we see

heating of the molecules. The solid line is again a fit from using the optical-Bloch-equations fitting

N = N0− k× ρee(I), where k is a scale factor, and ρee is the excited state population for the given

above parameters. We find that whenever the excited state population is sufficiently occupied,

there is heating and large molecule loss. This would suggest that there are two mechanisms at play.
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First, the GMC cooling is becoming compromised as the excited state population is increased,

and the final temperature scales linearly with ρee from Eq.3.3. Second, since there is trapping

light at 1064 nm present, transitions driving v = 0, A2Π1/2, J = 1/2+ → ”Excited − states”

are possible in particular it is reasonable that the 1064 nm light is driving a transition to the

D2Σ+ state, which has transitions near 1064 nm and the trapping light sits on a broad ASE

pedestal 10s nm wide with high peak intensity. This can just pump the molecules into other

vibrational/rotational states through a multi-photon process and thus are dark to our fluorescence

beams on the v = 0, X2Σ+, N = 1− → v = 0, A2Π1/2, J = 1/2+ transition.



Chapter 6

Collisions of YO Molecules

Collisions of YO molecules at ultralow temperatures represent the culmination of the work

during my PhD. Magneto-optical trapping, sub-Doppler cooling, and conservative trapping are all

methodologies that allow the manipulation and preparation of the molecules at high phase-space

densities. Jun may not remember, but when I joined the lab many years ago he suggested that by

the end of my PhD, I could see collisions of YO molecules in a tightly focused optical trap. I am

happy to report that through much work I was able to meet this expectation, and I led this work

as well. The work on collisions is detailed here [12].

6.1 Theory of Ultracold Collisions

In this section, I will describe the basic physics involved with ultracold scattering as a ref-

erence before discussing the experimental results. The basic theory is shown in Fig.6.1. Here the

collision of two molecules can be decomposed in the center of mass frame of particles of reduced

mass µ = m1m2
m1+m2

and energy Ein = ℏ2k2
2µ impinging with some flux j⃗in onto a potential Uint along

the z-direction. This is shown with the orange balls. The interaction with the potential is generally

cast in the form of the flux j⃗in in some cross-section dσ scattering into some solid angle dΩ with

outgoing flux j⃗out. The reason for this is this is generally how you would measure some scattering

process. Send in some particles and measure the number of molecules per unit time NdΩ scattered

into a range angles dΩ with some detector. The incoming differential cross-section dσ characterizes

the ”strength” of the scattering process and depends on the kinetic energy of the incoming flux



106

𝑘

𝑧

| ۧ𝜓  ~ 𝑒𝑖𝑘∙ റ𝑧

𝜃

| ۧ𝜓  ~
𝑒𝑖𝑘𝑟

𝑟

| ۧ𝜓  ~ f(𝜃)
𝑒𝑖𝑘𝑟

𝑟

𝑈𝑖𝑛𝑡

𝑘

Incoming wave

Scattered wave

Spherical wave

𝑑𝜎

Outgoing wave 
(Non-Interacting)

𝑑Ω
Ƹ𝑟

റ𝑗𝑖𝑛

റ𝑗𝑜𝑢𝑡

Molecule 1 Molecule 2 Molecule 1 Molecule 2Molecule 1 Molecule 2

Figure 6.1: Shown is the basic intuition of low energy scattering. The collision of two molecules can
be decomposed in the center of mass frame with particles of reduced mass µ = m1m2

m1+m2
and energy

Ein = ℏ2k2
2µ impinging with some flux j⃗in onto a potential Uint along the z-direction. This is shown

diagrammatically with the orange balls. The incoming differential cross-section dσ characterizes
the ”strength” of the scattering process and depends on the kinetic energy of the incoming flux and
the strength of Uint. If an asymptotic form of the wave function is assumed the differential cross
section is then dσ

dΩ = |f(θ)|2. Where f(θ) is the scattering amplitude.

and the strength of Uint. Using number conservation we note that dσ
dΩ = N

jin
where N is the number

of particles. The goal is to determine the ratio of dσ
dΩ and integrate this ratio to get the total

scattering-cross section σ. Both of these quantities are shown diagrammatically in the figure.

To find σ we will assume an asymptotic form of the wave function,

|ψ(r, θ)⟩ = lim
r→∞

(
eik⃗·r⃗ + f(θ)

eikr

r

)
, (6.1)

this form is well motivated as at far distances from the potential Schrodinger’s equation will give

a plane wave solution, and assuming an isotropic potential (generally a good assumption), the

scattered wave will look like a spherical wave with some amplitude dependent on θ called the
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scattering amplitude f(θ) as shown in Fig.6.1.

If the potential is assumed to be isotropic and falls off faster than 1/r the incoming plane

wave can be expanded in terms of ”partial waves” at large r. This means that the wave function

can be represented by some radial wave function times a spherical harmonic. Applying constraints

like the total probability density of the wave function is conserved before and after scattering and

matching equations at large r, after many steps which are detailed in length here [57], you will find

dσ
dΩ = |f(θ)|2 and that the total elastic cross-section is,

σelastic(k) =
4π

k2

∞∑
l=0

(2l + 1) sin2 δl(k) =
4π

k2

∞∑
l=0

(2l + 1)
1

1 + cot2 δl(k)
. (6.2)

I want to concentrate on the form of this equation. First, the quantity δl(k) is the short-range

phase shift and is the phase shift of the incoming plane wave wavefunction due to the interaction

potential. This is very convenient as all of the short-range interactions are quantified by δl(k). It

can be thought that the sole job of the interaction potential is to adjust δl(k) in the simplest picture.

Next, the cross-section scales with 1
k2

which is inversely proportional to the incoming energy of the

plane wave. Therefore, slower molecules will have a larger cross-section. This can be interpreted

as the molecules having a larger de-Broglie wavelength, and can more effectively ”see” each other.

The sum over l represents the lth partial wave involved with the collision. The waves are usually

called s,p,d,f... corresponding to l = 0,1,2,3... as a call back to spectroscopic notation in atoms.

Due to symmetry requirements of the overall wavefunction, distinguishable particles can interact

through all partial waves and indistinguishable bosons and fermions can only interact through even

or odd partial waves respectively.

The maximum possible cross section is defined as σunitary = 4π
k2
(2l+1) where the phase shift

is δl(k) = π
2 where l represents largest participating partial wave. This sets the possible upper

bound on the cross-section. While the cross-section is convenient to understand the strength of the

scattering process, it is often more convenient to put the process in terms of a rate often cast in

units of cm3s−1. To do this we need to multiply the cross-section by the probability current of the
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plane wave. For a plane wave of reduced mass µ you find a probability current of,

j =
ℏ

2mi

(
ψ∗∂ψ

∂x
− ψ

∂ψ∗

∂x

)
=

ℏk
µ
, (6.3)

assuming the plane wave has an amplitude of one.

Beyond just elastic collisions, in molecules for all species at or near ultracold temperatures

≈ 1 µK, a strong inelastic/collisional loss is observed which is either due to internal relaxation

of rotational or hyperfine levels in the ground electronic state, or which is usually the case when

the molecules are spin-polarized in the absolute ground state, the loss is caused by either chem-

ical reactions or ”sticky-collisions”. Sticky collisions occur when the optical trapping light drives

transitions to a dense continuum of states. This dense continuum is theorized to occur because the

molecules form a transient complex bound state when they approach each other at short range. In

this case, the inelastic cross-section is defined as,

σinelastic(k) =
π

k2

∞∑
l=0

(2l + 1) sin2(1− |ηl(k)|2) =
π

k2

∞∑
l=0

(2l + 1)
1

1 + cot2(1− |ηl(k)|2)
, (6.4)

where ηl(k) is defined as ηl(k) = e2iδl(k). We note a very fundamental result herein that the

maximum inelastic cross-section can only ever be one-fourth of the elastic cross-section.

Another important quantity related to the scattering process is the scattering length. To get

this quantity we assume a threshold model where the effective interaction potential is,

Uint =
ℏ2l(l + 1)

2µr2
− Cs

rs
, (6.5)

where the first term is the centrifugal barrier height and the second term describes the interaction

(van der Waals, s = 6). The barrier peaks at a distance of [57],

rb =

(
µsCs

ℏ2l(l + 1)

) l
s−2

, (6.6)
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with a corresponding barrier height defined as,

Vb =
ℏ2l(l + 1)

2µr2b
− Cs

rsb
. (6.7)

We also assume that the Ein << Vb which is defined as the threshold regime. When you make

these assumptions and you match the forms of the wavefunctions at rb, you find that the phase

shift has a relation given as [57],

tan δl(k) = lim
k→0

−L k2l+1. (6.8)

The parameter L has the unit of length. This parameter L is the scattering length for partial wave

l. For example, the lowest-order scattering length would be that of s-wave defined as,

as = lim
k→0

−tan δl=0(k)

k
. (6.9)

This is an extremely convenient expression. If we take Eq.6.10 and plug it into the RHS of Eq.6.2

we find that for s-wave collisions the cross-section is,

σl=0(k) = lim
k→0

4πa2s. (6.10)

With this form, we have replaced the effective interaction with that of a simple hard sphere scatter-

ing model at low energy where as describes the collisional process. However, there are some caveats

with this expression. The scaling with k in Eq.6.8 when s = 6 is only true for s and p-waves.

Higher-order partial waves have a different scaling. The details can be found in [57] (pg. 30).

There is an interesting consequence that occurs when δl=0(k) =
π
2 in Eq.6.10. We see that

as diverges and approaches infinity. This seems to suggest that there are particular values of

Ein vs. Uint that cause resonant behavior. We can recall that very interesting behavior occurred

around sharp resonances when we discussed Λ-enhanced GMC and the BDM. The same is true for

collisions. If we probe this further by defining the incident energy that the resonance occurs as E0

you can Taylor expand cot δl(E) and you will find,
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cot δl(E) ≈ − 2

Γ
(E − E0) + ... (6.11)

where Γ =
(
dδl(E)
dE

)
E=E0

. If you sub this again into the RHS of Eq.6.2 you will find,

σl(k) ≈
4π

k2
(2l + 1)

Γ2/4

(E − E0)2 + Γ2/4
, (6.12)

which is the famous Breit-Wigner formula for resonant enhancement. Γ is defined as the width of

the resonance. The physical intuition here is that some quasi-stable bound state is formed with a

lifetime of τ = ℏ/Γ. Also, we note that when E = E0 we re-obtain the unitary limit. As such, many

resonant collisions can and will approach the unitary limit. There is a naive assumption here that

sitting at a resonance is beneficial because you can dramatically enhance the elastic cross-section

which could enhance processes such as evaporative cooling. However, we note that the inelastic

cross-section will only be a factor of 4 smaller than the elastic cross-section from Eq.6.4 which can

cause strong inelastic/collisional loss.

Many resonant processes can occur in collisional processes. One example is a shape resonance.

This happens if there is reflection off the short-range interaction potential Uint. If the reflected flux is

large enough and the phase δl(k) is correct, the reflected wave and incoming wave can constructively

interfere causing the wave function to peak at short range. Note that for purely s-wave collisions

shape resonances are impossible as there is no reflection off the short-range potential.

Another example is that of a Feschbach resonance. This occurs when two magnetic sublevels

are brought to degeneracy through the application of a strong magnetic field (≈ 100s G). In this

case unlike the shape resonance you can tune the resonance energy E0. This is a powerful technique

and is the basis for the formation of all ultracold bi-alkali molecules.

6.2 Collisions of YO Molecules

If there are no external static or oscillating electric fields that can strongly interact with

the permanent dipole moment of hetero-nuclear molecules, the interaction between molecules is
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described by the long-range van der Waals interaction potential Uint. The form of this equation is

the same as Eq.6.5 with (s = 6) given as,

Uint(r) = −C6

r6
+

ℏ2l(l + 1)

2µr2
+ γsr(r), (6.13)

the additional term γsr(r) represents any very short range potentials that occur at distances r <<

rb. From the shape of this potential, the collisional dynamics are strongly influenced by the height

of centrifugal barrier heights for each partial wave determined by Eq.6.7. For the molecules to reach

short range where inelastic/collisional loss can occur they need to have sufficient kinetic energy to

overcome the barriers, or need to tunnel through the barriers where the tunneling probability can

be estimated with the WKB approximation as T (Ein) = e
−2

∫ r2
r1

√
2µ

ℏ2 (Uint(x)−Ein)dr. Therefore by

adjusting the average thermal kinetic energy of the molecules relative to the barrier heights Vb, or

by comparing a spin mixture vs spin-polarized ensemble, we can determine the effect of individual

partial waves on the collisional loss rates. This is shown diagrammatically in Fig.6.2.

The magnitude of the C6 coefficient is determined from two different contributions. The

first is a second-order response through electronic states. These contributions are small and only

contribute on the order of 10% to the C6 coefficient. The much larger contribution to the coefficient

is from the rotational dipolar part, and is defined as C6 = 1
(4πϵ0)2

d4

6B where B is the rotational

constant and d is the dipole moment in the ground state. An important related quantity is the

characteristic van der Waals length ā = 0.47799(2µC6

ℏ2 )1/4. This quantity sets the ”effective size” of

the potential where any molecules that approach each other at distances much shorter than this

length can undergo collisional loss. For YO this value can be calculated and is 411 a0.

As mentioned briefly in the previous section, the hallmark sign of ultracold collisions of

molecules is strong collisional loss. Intuitively you can imagine that the largest cause of loss would

be chemical reactions when the molecules reach short-range, and indeed this has been the case for

some molecules. For example in a remarkable experiment the reaction products and intermediate

products of KRb molecules have been measured in the ultracold regime [46]. For YO the relevant
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Figure 6.2: Shown is the basic physical intuition of the ultracold collisions of YO molecules. First
at the TOP are Images of YO molecules loaded into a crossed optical dipole trap (XODT) where
the experiment takes place. A record phase-space density for laser-cooled molecules of 2.5 × 10−5

is achieved inside the XODT. Bottom: Shown is the form of the interaction potential Uint(r). At
sufficiently low collision energies, distinguishable molecules enter through both even (s,d) and odd
(p,f) partial-wave channels, where partial waves beyond s-wave feature a centrifugal barrier. The
corresponding centrifugal barrier heights are shown in the table. Since YO is a boson, indistinguish-
able molecules collide only via even partial waves. Upon reaching short range, molecules undergo
collisional loss.

chemical reactions are with the bond-swapping reaction, YO + YO → Y2 +O2 which is forbidden

by the high binding energy of YO of 7.3 eV [1]. The other reaction channels are trimer formation

channels of YO + YO → Y2O + O and YO2 + Y and it is not known whether the occur, but the

current best estimations is that they do not.

So if YO is non-reactive where does the loss come from? The current best guess for the
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collisional loss of nonreactive molecules is that of ”Sticky Collisions” [48, 47, 18, 19]. Many other

molecular species other than YO that are non-reactive have seen strong collisional loss as well.

The simple interpretation of these collisions is when the molecules come close together they make

a transient quasi-bound molecular complex. This is a problem as the molecules are subjected to

high-intensity 1064 nm light for trapping. This light can drive transitions to a large density of

excited states. When this happens the molecules are lost to the trapping light.

Now we will discuss the experimental results. The experiment takes place in the XODT

which is formed by the intersection of two independent 1064 nm beams at 45 degrees which provide

strong conservative trapping of the molecules. The XODT beams are ramped on and held constant

during the last 50 ms of our blue-detuned MOT. The quadrupole magnetic field for the MOT is

then turned off and GMC is applied in the presence of the XODT beams. This cools the molecules

in the XODT and aids in loading the trap during a 40 ms GMC overlap. We note that the final

temperature of the molecules in the XODT from GMC is degraded due to the presence of the

trapping beams. As a consequence, higher temperatures are found compared to free space cooling.

The first experiment is performed by preparing the YO molecules in a large spin mixture

in the N = 1 manifold and adjusting the average thermal energy of the molecules vs the barrier

heights. Collisional studies of a large spin mixture in different internal states in the N = 1 rotational

manifold follow easily after GMC. In a steady state, the molecules are mixed over 12 spin states

during the overlap with the XODT beams. The number of molecules left in the XODT as a

function of time is measured by applying a pulse of light for 1.5 ms nearly resonant with the main

laser-cooling transition v = 0, X2Σ+, N = 1− → v = 0, A2Π1/2, J = 1/2+.

We study the collisional loss rate at three different temperatures which is shown in Fig.6.3.

The first trace shown in blue is taken at a lower trap depth of 85 µK with an average temperature of

3.7(5) µK which is below the p-wave barrier height. The second and third trace in green and red has

a trap depth in the XODT of 150 µK. The average temperature of the molecules is 8.3(1.1) µK and

14.5(1.7) µK which are both above the temperature of the p-wave barrier height of 4.2 µK, but below

the d-wave barrier height of 22 µK. The average temperature is defined as Tavg = T
2/3
radial × T

1/3
axial.
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Figure 6.3: Shown is collisional loss in a large spin mixture of YO molecules in the N = 1 rotational
manifold spread over 12 magnetic sublevels. The loss was measured at three different average
temperatures. The first trace at 3.7(5) µK (blue-filled squares) has an average kinetic energy below
the p-wave barrier height. The other two traces at 8.3(1.1) µK (green-filled circles), and 14.5(1.7)
µK (red-filled circles) are above the p-wave centrifugal barrier height. The solid lines represent the
fit of the data points to the density loss rate according to Eq. 6.14, and the dashed lines represent
the 95% confidence interval bands from the fits. To quantify the fitting results we find χ2/dof of
0.2, 0.3, and 1.4 for the respective fits. The inset shows the one-body lifetime of 590(22) ms.

We obtain trap frequencies of ω150µK = 2π × {336,123,371} Hz and ω85µK = 2π × {253,94,263}

Hz. These trap frequencies scale closely with
√
I where I is the total intensity of the XODT beams

as expected. The number of trapped molecules is around ≈ 5000 in both cases with a capture

efficiency from the BDM of 40% in the N = 1 manifold. The one-body lifetime is shown as an

inset for long hold times where we obtain a lifetime of 590(22) ms. A record phase-space density

for laser-cooled molecules of 2.5× 10−5 is achieved inside the XODT.

The solid lines represent fits to the density loss rate ṅmol defined as

ṅmol = −αnmol − (2k2)n
2
mol, (6.14)

where α and k2 are the one-body and two-body loss rate coefficients. The density is determined
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using the molecule number and Veff which is the effective volume defined as Veff = 8
√
π3σxσyσz

where σi is the rms width of the thermal distribution along each direction in the XODT with i

= {x, y, z}. The rms widths are determined by the equipartition theorem mω2
i σ

2
i = kBTi, where

kB is Boltzmann’s constant, Ti is the temperature, and m is the mass of YO. The temperature

of the molecules is measured by time-of-flight expansion in the radial {x, y} direction and the

axial {z} direction. We do not measure an increase in the temperature of the molecules with

time within error. Therefore, it is justified to keep Veff constant. The trapping frequencies ωi

are determined by parametrically heating the molecules out of the XODT with an example shown

previously in Fig.5.2. The experimental results are loss rates of k2(3.7µK) = 2.2(0.6) × 10−10

cm3 s−1, k2(8.3µK) = 5.6(1.8)× 10−10 cm3 s−1 and k2(14.5µK) = 4.9(1.4)× 10−10 cm3 s−1.

Next, beyond just adjusting the average thermal energy of the molecular ensemble we can

fix the temperature and compare the loss rates in a spin-mixture vs spin-polarized in the absolute

ground state v = 0, X2Σ+, N = 0+, G = 1F = 1 and v = 0, X2Σ+, N = 0+, G = 1F = 1,mf = −1.

This is advantageous as any collisional loss from rotational or hyperfine relaxation is absent, unlike

the case in N = 1. Therefore we can directly measure the effect of sticky collisions on the loss

rate. Additionally, we can directly compare the effect of all relevant partial waves vs just the even

partial waves as shown in Fig.6.2. I would like to say that this was an enormous step forward in

the quantum state control of the experiment. As for the first time, YO molecules can be prepared

in a single quantum state.

When performing the state preparation great care must be taken to ensure the molecules are

only occupying the desired quantum state without contaminating other undesired manifolds. To

remove any unwanted population in N=0, during the last two milliseconds of GMC a laser pulse

addressing the N = 0, G = 0,1, F = 0,1 manifolds is applied driving the v = 0, X2Σ+, N = 0+ →

v = 0, A2Π1/2, J = 3/2−, F = 2 transition. This optically pumps all molecules that may have built

up in N = 0 during the GMC cooling into N = 2. Next, the transfer of the molecules into the

absolute ground state begins by optically pumping into a single quantum state N = 1, G = 1, F = 0

by applying two laser tones blue detuned from the N = 1, G = 0, F = 1, and N = 1, G = 1, F = 2.
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Figure 6.4: Shown are the preparation and collisional results of YO molecules in a spin mixture
and polarized in the absolute ground state. (a) The transfer sequence to transfer molecules into
N = 0, G = 1, F = 1 as described in the text (b) Microwave spectroscopy of the transition with
an applied magnetic field, showing splitting of the hyperfine sublevels in N = 0, G = 1, F = 1. (c)
Rabi oscillations between N = 1 and N = 0. (d) Collisional loss of YO molecules prepared in an
equal mixture of spin states in N = 0, G = 1, F = 1 (green-filled squares). (e) Collisional loss in
single spin-polarized state N = 0, G = 1, F = 1,mF = −1 (purple-filled circles). The solid lines
represent the fitting of the data points to the rate equation given in Eq. 6.14, and the dashed lines
represent the 95% confidence interval bands from the fits. To quantify the fitting results χ2/dof of
0.8 and 0.7 are determined for the respective fits.

This process is shown in Fig.6.4 (a). A magnetic field is then applied along the z-direction to split

the degeneracy of the N = 0, G = 1, F = 1 hyper-fine sub-manifolds. For an incoherent mixture,

no magnetic field is applied. A microwave Landau-Zener sweep is then applied linearly polarized

perpendicular to the quantization axis induced by the magnetic field (if present) to transfer the

molecules into a particular spin-manifold in the ground state. The resonant frequency addressing

the N = 1, G = 1, F = 0 → N = 0, G = 1, F = 1 transition is 23.282405 GHz [70]. The microwave

signal is generated by mixing in a tone at around 700 MHz generated from a Zurich Instruments

HDAWG with an idler tone generated by a Signalcore SC5521A. This allows for arbitrary phase and

amplitude modulation of the microwave signal which is beneficial for efficient population transfer



117

using the HDAWG. The signal is then amplified and launched out of a horn with a direct line of

sight to the molecules at a distance of 80 mm. The direct line of sight was extremely important to

be able to observe Rabi oscillations as without it, the decoherence rate was too fast.

Microwave spectroscopy is shown in Fig.6.4 (b) with an applied magnetic field. The mea-

surement was taken in free space by applying a microwave field near 23.282405 GHz and letting

the molecules decohere into a mixture between the N = 1 and N = 0 manifolds. The remaining

population in N = 1 was then measured with an MOT beam pulse of 2 ms as the frequency of the

applied microwave field was adjusted. The offset magnetic field that splits the magnetic Zeeman

levels is provided by a shim coil that is normally used to zero Earth’s magnetic field. The current

driver is home-built based on an APEX PA52 op-amp which is controlled by an arbitrary waveform

generator. This allows for arbitrary ramping and modulation of the shim field which lays along the

z-axis (along gravity). The speed of the modulation is only limited by the RL time constant of the

coils which has been measured to be 2 ms.

From the figure, a clear separation of the three sub-manifolds with an applied B-field is

observed. The optical pumping efficiency has high fidelity > 95 % at zero field as when the

microwave frequency is red detuned, no mixing of the population between N = 1, G = 1, F = 1,2

and N = 0, G = 1, F = 1 is found. Figure 6.4 (c) shows Rabi oscillations between the N = 1 and N

= 0 rotational levels in free space as we had seen in Chapter 2. Rabi rates of ≈ 1 MHz are achieved

this allows for fast Landau-Zener sweeps on the order of 10 µs. Fast dephasing of the oscillations is

observed with a coherence time of 8.8 µs. We attribute this to the sidebands created by reflections

off our metal chamber modulated by our vacuum turbo pumps. Similar modulations have been seen

and measured in other experiments. This limits our coherent transfer of the molecules to 70% to

the desired manifold in N = 0. As such, to remove all molecules after the microwave sweep in other

rotational manifolds, 46 GHz microwaves mixing the N = 1 & N = 2 rotational levels are applied

along with near-resonant light from the cooling transition. This boils all unwanted population in

these manifolds out of the XODT. The loss of molecules in N = 0 is read out by turning on 23 GHz

microwave fields and near-resonant beams on the main cooling transition.
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Figure 6.5: Shown are contour plots using QDT of measured ratios of the loss rates in N = 1
(left) and N = 0 (right). Experimentally measured ratios are shown as solid black lines, with
uncertainties indicated by dashed lines. We see there are large regions that predict enhanced loss
through resonant behavior. A covariance of 0.5 is assumed in the ratio of the rates.

The results for the spin mixture and spin-polarized are shown in panels Fig.6.4 c) and d).

Rates of kpol = 3.2(1.0) × 10−10 cm3 s−1 and kmix = 5.4(1.5) × 10−10 cm3 s−1 at 5.8 µK in the N

= 0 ground state at a trap depth of 85 µK are measured. The ratio of the measured rates in N

= 1 between the 3.7 and 14.5 µK traces and spin-polarized vs a spin-mixture in N = 0, are 2.2 ±

0.6 and 1.7 ± 0.6 assuming a covariance of 0.5. We see that for both cases the presence of higher

order partial waves increases the rates particularly much more so in N = 1. This could suggest the

presence of shape resonances.

Therefore we had some of our theory colleagues specifically Matthew D. Frye and Jeremy

Hutson perform calculations on the predicted loss rates. The theory models are based on ”Quantum

Defect Theory” (QDT) which is a method that has been quite successful in describing collisional
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loss in ultracold molecular systems [37, 30, 31]. The basic physical premise is to put an absolute

absorbing boundary condition at a short range where the collision physics is determined by two

parameters y and the phase shift δl(k). Where y represents the percentage of flux that reaches

short-range distances less than ā and undergoes collisional loss, and delta as we had previously

described contains all the information of the interaction of the molecules at short range from Uint.

Their results are shown in Fig.6.5.

The left contour plot shows the ratio of the rates in N = 1 while scanning both y and

δl(k). The dashed lines represent the experimental uncertainty. Two large regions correspond to

resonant behavior from either a d or f-wave resonance. There is similar behavior for N = 0 which

corresponds to a p-wave resonance. If there are resonances in play, particularly in N = 1 it would

be interesting to map out the behavior. If the molecules could be brought to a lower temperature

through evaporation the resonant behavior could be mapped out with lower error. Applying electric

fields would shift these resonances around and confirm their existence.

Of course, the collisional loss is undesirable behavior and the collision of molecules is what

I would call a ”dirty” problem in that the loss is unwanted and the interaction potentials Uint are

complicated. As such, in the field, I believe there has been a shift away from studying collisional

physics and just jumping to shielding the collisional loss through either microwave or electric field

shielding. These shielding techniques have been very successful and have brought three bialkali

molecular species to degeneracy already [22, 75, 62, 13, 7]. Currently, we are building a setup

for microwave shielding as shown in Fig.6.6. The setup creates very pure circular polarization

by feeding a dual-fed degenerate waveguide with crossed linear polarization. Two gold parabolic

mirrors then collimate and then focus the microwaves. This has the benefit of reducing reflections

in the vacuum chamber and drastically increasing the intensity for higher Rabi frequencies. The

details of the setup will be described in future publications.
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Figure 6.6: Shown is the new microwave shielding setup for shielding of collisional loss and subse-
quent evaporative cooling of YO molecules.



Chapter 7

Conclusion and Future Prospects

In this chapter, I would like to briefly discuss future experiments applicable to YO. It is

indeed exciting that we now have a gas of directly laser-cooled molecules with an appreciably large

ground state dipole moment, and a PSD high enough such that the molecules are interacting with

each other, and we can study their collisional properties. Therefore I would like to delve into some

future prospects.

7.1 Magnetic Trapping

One interesting pursuit is that of magnetic trapping which has been mentioned in previous

chapters. If we recall the absolute ground state of YO consists of the triplet state v = 0, X2Σ+, N =

0+, G = 1, F = 1. From section 2.4, we know that this state is magnetically sensitive in that we

have 1 µB sitting in the ground state from the unpaired electron spin. This is unique to most of the

laser-cooled diatomic species as generally, the absolute ground state is not magnetically sensitive.

The low field seeking state would be that of v = 0, X2Σ+, N = 0+, G = 1, F = 1,mf = 1 in YO.

First, this has direct applications to magnetic transport. Currently, our vacuum lifetime is

limited to around 600 ms due to the constant flow of helium into the chamber even with the in-

vacuum shutters. To perform evaporation for future experiments, we need to significantly increase

the vacuum lifetime. One way to do this (similar to our sister experiment on KRb molecules) is to

trap the molecules in a strong quadrupole field and transport the molecules over roughly 0.5 m to

a glass cell with lots of differential pumping (low conductance between chamber and cell). If the
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molecules are appreciably hot then spin flip losses at the null of the field will be negligible, and we

can transport a significant fraction of the molecules.

Additionally, it would be interesting to study collisional processes in the magnetic trap. Since

YO is non-reactive the leading theory for such loss is sticky collisions described in the previous

chapter. If the molecules are prepared into a significantly deep trap at low temperature it would

be interesting to see if there is still two body loss. I would note similar experiments have been

performed in Wolfgang Ketterle’s group on NaLi molecules where two body losses were still seen.

However, NaLi is reactive unlike YO and it would be interesting to repeat such an experiment on

YO.

An update on magnetic trapping is shown in Fig.7.1. A magnetic trap of YO is shown

in the top left panel of the figure after holding for 200 ms. The molecules are polarized in the

v = 0, X2Σ+, N = 0+, G = 1, F = 1,mf = 1 state. The lifetime is ≈ 850 ms with around 7000

molecules loaded at the time. The lifetime is limited by the background gas pressure. The average

temperature of the the molecules after holding in the trap for 60 ms is ≈ 7 µK. The density is

2.5 × 107 cm−3, with a phase space density of 2.5 × 10−9. While this is significantly lower than

the XODT, it is by far the highest densities achieved in a magnetic trap of directly laser-cooled

molecules. Efforts are currently underway in the lab to improve the mode matching with the trap.

7.2 Microwave Shielding of YO

Another exciting avenue is that of microwave shielding discussed in brief in the previous

chapter. This is currently being pursued in the lab as of writing this thesis. The basic intuition

is that applying a blue-detuned circularly polarised microwave field dresses two rotational states.

This creates an upper field dressed state that has a repulsive interaction at short range and a lower

field dressed state that has an attractive interaction at a short range [62]. A simple diagram of the

dressing is shown in Fig.7.2.

At long-range the dressing creates a dipole-dipole interaction given by [62],
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Figure 7.1: Shown is the recent results on a magnetic trap of YO molecules. A background gas
limited lifetime of ≈ 850 ms is measured, and an average temperature of ≈ 7 µK is achieved.

Vdipole =
−d2

4πϵ0

1− 3 cos2 θ

12(∆2 +Ω2)R3
, (7.1)

where R is the intermolecular distance between the molecules, d is the zero-field dipole moment,

∆ is the field detuning, θ is the angle between the rotation axis from the microwave field and the

intermolecular axis, and Ω is the Rabi frequency. The beauty of this methodology is that you

simply need to apply a sufficiently strong microwave field such that Rabi frequency is on the order

of 10’s of MHz without the need for large static DC fields to mix rotational states. The downside is

that the polarization needs to be circular with a strong purity of around 100 left to right handiness
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Figure 7.2: Dressing of rotational manifolds through blue-detuned microwaves.

or vice versa.

The shielding works regardless of the approach angle θ and provides true 3D shielding. One

caveat however is that at short range there can be a slight bound potential [7]. This can actually

cause large three-body loss at short range in bosonic species. The demonstration of achieving

degeneracy through microwave shielding in Sebastian Will’s group used a π polarized field to tune

the dipolar scattering length at short range to be relatively small vs the contact s-wave scattering

length to create a stable dipolar BEC. I would like to note that a static DC field creates the same

effect, but maybe with more experimental complexity.

We expect these methodologies to work well on YO where elastic to inelastic rates over a

factor of 10 should be achievable and allow for evaporative cooling. However, we will be starting

at a few µK which is hotter than most bi-alkali species before evaporation. As such, it will be

imperative to increase the molecular number through several of the previously mentioned possible

improvements throughout this thesis to achieve a BEC with a few thousand YO molecules.
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7.3 Narrowline-Cooling of YO Molecules

The last prospect I would like to discuss is that of narrowline cooling of YO molecules

which is also underway currently on the experiment. As stated previously the lifetime of the

A2∆3/2, J = 3/2± state is 23 µs. This provides a tantalizing prospect for recoil-limited Doppler

cooling similar to that used with great success in alkaline earth atomic species.

However, in YO it is much more complicated due to the large branching from this state.

As a reminder the allowed branching from the delta state is A′2∆3/2, J = 3/2± → X2Σ+, N =

0+, 1−, 2+, 3− if there are stray fields present that can polarize the molecules. As shown in Fig.2.14,

fields of around 1 V/cm are detrimental. The current plan is to apply a few V/cm field and perform

cooling on the pure parity stark states mf = 0 which do not have a linear stark shift at these

small fields as per Eq.2.14. This has the advantage of reducing the branching to certain hyperfine

manifolds and rotational manifolds as there is no mixing of the parity doublets in these states.

The current methodology is to apply a laser addressing X2Σ+, G = 1, F = 0,mf = 0 →

A′2∆3/2, J = 3/2+, F = 1,mf = 0 this will allow a few photons to be scattered with around 1 µK

in temperature reduction. While this might not seem like a lot, the molecules are already 1.5 µK

in free space and around 4 µK in a crossed dipole trap. So any temperature reduction will be very

beneficial to the evaporative cooling efficiency.

One problem however is that the differential stark shifts between the delta state and the

ground state from the trapping light at 1064 nm is quite egregious, and we have seen line broadening

on the order of 100’s of kHz. So the current plan is to perform the cooling in free space first and

hope to create a magic trapping condition which could be created by seeding our ytterbium fiber

amplifiers with a different seed. With the new seed the A′2∆3/2, J = 3/2+ → D2Σ+ and the

X2Σ+, N = 1−, G = 1, F = 0,mf = 0 → A2Π1/2,3/2 transitions would be simultaneously driven

which would match trap depths in the excited state and the ground state. This could be quite

powerful in the future for resolved sideband cooling of the molecules in a 1D optical lattice.
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