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tions

Thesis directed by Prof. Ana Maria Rey

Highly controllable atomic, molecular, and optical systems have emerged as an increasingly

powerful toolkit in advancing the frontiers of quantum simulation, metrology, computation, and

fundamental physics. In this thesis, we present theoretical work on manipulation of contact and

photon-mediated interactions in optical lattice clocks and cavity QED systems, as well as explo-

rations of their possible applications on problems relevant for quantum simulation and metrology.

We start from an overview of the relevant theoretical background for this thesis, including op-

tical lattices, contact interactions, spin systems, photon-mediated interactions and measurements,

as well as metrological concepts. We then present research in three closely related directions.

Firstly, we discuss theory ideas for optimizing the performance of optical lattice clocks via

Hamiltonian engineering. Based on the tunable delocalization of Wannier-Stark states in tilted

lattices, we can fine-tune the relative strength of on-site p-wave and nearest-neighbor s-wave inter-

actions, leading to a minimization of density shifts in a 1D optical lattice clock. We also discuss the

tunability of nearest-neighbor interactions by lattice geometry. Considering the improved sensitiv-

ity of optical lattice clocks, we further analyze the manifestation of general relativistic effects in a

quantum many-body optical lattice clock and discuss protocols for their near-term observation.

Additionally, we discuss theory ideas for exploring emergent collective behaviors and dynami-

cal phases in interacting arrays. We utilize sideband transitions in trapped bosonic gases to engineer

Lipkin-Meshkov-Glick model and identify dynamical phase transitions between ferromagnetic and

paramagnetic phases. We also provide a theoretical proposal for correlated hopping processes fa-

cilitated by multilevel atoms in cavity QED systems, which features intriguing phenomena such as

chiral transport and correlation spreading behaviors. We then consider protocols for the control and



iii

amplification of atomic Bloch oscillations via cavity-mediated interactions. Moreover, we realize

the Bardeen–Cooper–Schrieffer (BCS) model, an iconic model that describes the behavior of su-

perfluids and superconductors, by photon-mediated spin exchange interactions using the Anderson

pseudospin mapping, and for the first time observe a dynamical phase with persistent oscillations

of the BCS order parameter.

Finally, we discuss theory ideas for entanglement generation via photon-mediated interactions

and measurements. We provide a theory proposal for implementing homogeneous one-axis twisting

interactions in a lattice-based atom interferometer using partial delocalized Wannier-Stark states in

tilted lattices, which suppresses inhomogeneities in atom-light couplings at a magic lattice depth.

We also compare two common approaches experimentally used to generate spin squeezing in cavity

QED systems, quantum nondemolition measurements and unitary one-axis twisting dynamics. We

derived simple criteria to determine the best protocol based on the detector’s quantum efficiency.
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Peiru He, Asier Piñeiro Orioli, Diego Barberena, Robert Lewis-Swan, David Wellnitz, Bhuvanesh

Sundar, Haoqing Zhang, Tianrui Xu, Mikhail Mamaev, Chunlei Qu, Thomas Bilitewski, Itamar

Kimchi, Michael Perlin, Sean Muleady, Jeremy Young, Miskeen Khan, Raphael Kaubruegger, Sanaa

Agarwal, Kris Tucker, Edwin Chaparro, Yongju Hai and Conall McCabe. It is a great pleasure to

work together, have lunch together, and enjoy science together with all of you.

My sincere thanks also go to Prof. James Thompson, Prof. Jun Ye and for their help and

inspiration as my experimental collaborators at JILA. I would also like to acknowledge their group

members I have great scientific discussions with, including Dylan Young, Eric Song, Chengyi Luo,
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Chapter 1

Introduction

1.1 Quantum technology in modern science

Nature isn’t classical, dammit, and if you want to make a simulation of nature,
you’d better make it quantum mechanical, and by golly it’s a wonderful problem,
because it doesn’t look so easy.

—— Richard P. Feynman

Forty years ago, Richard Feynman delivered his seminal lecture “Simulating Physics with

Computers” [1], in which he proposed the idea of harnessing quantum physics to build a more pow-

erful computer and perform large scale simulation of nature. Richard Feynman’s vision stemmed

from the unique properties of quantum mechanics, such as superposition and entanglement. Su-

perposition means particles can exist in multiple states simultaneously until measured, and en-

tanglement means the quantum state of each particle cannot be described independently of the

state of other particles, even when separating them by a large distance. Taking advantage of these

properties, one can in principle handle certain types of problems with a substantial improvement

compared to using the classical counterparts. Over the pass few decades, we have seen an explosion

of theoretical and experimental advances in this direction. The key efforts can be divided into two

aspects that are closely related with each other: 1) Deepening the understanding and improving the

controllability of quantum many-body systems, which should enable physical realizations of such a

quantum device; 2) Developing practical applications for controllable quantum systems including

computation, simulation, metrology, communication, as well as fundamental studies of the mystery

of the universe [2–9].
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While quantum technology holds immense promise, several key challenges must be addressed

to realize its full potential. Quantum systems are extremely sensitive to their environment, and

inevitable decoherence effects can easily destroy the delicate entangled states required for quantum

advantages. The pursue of a large-scale quantum device to surpass its classical counterpart also

leads to significant challenges in scalability and complexity. In light of these challenges, further

theoretical understanding of the complex many-body phenomena present in these systems can

shed light on new experimental designs to suppress and mitigate undesired effects. Additionally,

the theoretical exploration of robust quantum protocols against experimental noise would be very

helpful for near-term application of quantum technology. In this thesis, we mainly focus on the

problems related to quantum simulation and quantum metrology, so we provide a general overview

of these two concepts below.

Quantum simulation [2, 3] aims to utilize a highly controllable quantum system as a proxy

to explore other quantum systems that are difficult to probe directly or calculate numerically. For

example, strongly correlated quantum systems feature exponential growth of the relevant Hilbert

space dimension with system size, which is beyond the reach of classical simulation algorithms.

The complexity in real physical systems in the field of condensed matter or high energy might

also prevent a clean observation for certain types of phenomena. There is also great interest for

exploring novel many-body phenomena that has never been seen in nature, such as certain classes

of non-equilibrium quantum many-body dynamics. In all these directions, quantum simulation

is believed to exhibit a form of quantum advantage compared to classical approaches, and has

started to play a significant role for enriching our physical understandings in recent years. There

are different approaches for the realization of quantum simulation, including highly tunable analog

simulators that naturally feature the same Hamiltonian as the physics problem of interest, or fully

programmable digital simulators that produce Hamiltonian evolution via quantum circuits. The

former approach is straightforward to implement experimentally, while it is restricted to specific

types of models in a given experimental platform and the relevant error sources in analog simulators

are not completely understood. The latter approach can be applied to a wide range of many-body
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phenomena, while it is limited by the system size and the circuit depth in the current generation

of digital simulators. In this thesis, we describe our efforts in broadening the range of physics

problems one can target in certain types of analog simulators, in the collaboration with experiment

efforts towards the implementation of the desired protocols.

Quantum metrology [6, 7] aims to develop quantum enhanced techniques to improve the

measurement precision of physical quantities to an unprecedented level and surpass the precision

of classical counterparts. This is one of the most promising applications of quantum science in

the near term. At the heart of quantum metrology is the use of quantum entanglement, which

allows for correlations between particles that are not possible classically, leading to a reduction of

measurement uncertainty below quantum projection noise. Quantum enhancement in state-of-the-

art practical sensors is already demonstrated in gravitational wave detection in LIGO and Virgo [10,

11], as well as dark matter search in optomechanical systems [12,13]. Proof of principle experiments

have also been achieved in optical clocks and atom interferometers [14–16]. However, maintaining

quantum coherence and entanglement over long periods, which is crucial for a precise measurement,

still remains technically challenging. The utility of quantum metrology under certain types of

environmental noise might be limited [17]. In this thesis, we describe our efforts in developing

optimal quantum enhanced protocols robust against decoherence effects, as well as furthering the

understanding of experimental noise sources for improved design of experiments.

1.2 AMO toolboxes for modern science

When we get to the very, very small world — say circuits of seven atoms — we have
a lot of new things that would happen that represent completely new opportunities
for design. Atoms on a small scale behave like nothing on a large scale, for they
satisfy the laws of quantum mechanics.

—— Richard P. Feynman

In Richard Feynman’s famous lecture “There’s Plenty of Room at the Bottom” [18], he de-

scribed the prospect of great opportunities for manipulating matter down to the level of individual

atoms, which have significant influence on a wide range of fields in modern science. In the field of
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atomic, molecular, and optical (AMO) physics, the laser cooling and trapping techniques [19] allows

for precise control of the quantum properties for individual or small groups of atoms at ultracold

temperatures. These highly controllable AMO systems has already become a toolbox not only

for practical applications of quantum technologies but also for the fundamental understanding of

many-body physics. Here we provide a general overview of the two leading AMO platforms studied

in this thesis: optical lattice clocks and cavity quantum electrodynamics (QED) systems.

1.2.1 Optical lattice clocks

Timekeeping has been one of the most important tasks since the beginning of civilization

[20, 21]. The devices used for timekeeping, known as clocks, are oscillators that vibrate at a

particular frequency ν. The unit of time can be defined as the oscillation period, and timekeeping

is done by counting the number of oscillations. Since 1967, the SI unit of time, the second, has

been defined as the duration of 9192631770 oscillations in the unperturbed ground state hyperfine

transition of the 133Cs atom [22]. The advantage of atomic clocks is ensured by the nature of

quantum mechanics, since all atoms (or ions) of the same element and isotope are identical and

thus feature exactly the same transitions between internal states.

Optical clocks are a new generation of atomic clocks built by replacing the microwave transi-

tion (ν ∼ 9.2 GHz) between hyperfine levels by an optical transition (ν ∼ 102 − 103 THz) between

electronic levels with ultranarrow linewidth (∆ν ∼ 1 − 10 mHz). The enhancement of quality

factor Q = ν/∆ν can in principle lead to an improvement of clock precision. There are mainly two

different designs of optical clocks: 1) Optical lattice clocks, based on alkaline earth atoms (e.g. Sr,

Yb), i.e. atoms with two valence electrons, trapped in an optical lattice, i.e. a periodic standing

wave potential generated by laser beams; 2) Ion clocks, based on ions with two valence electrons

(e.g. Al+), trapped in an ion trap. These atoms (or ions) feature an ultranarrow optical transition

between 1S0 and 3P0 states.

Here we mainly focus on optical lattice clocks. Up to date (June 2024), the lowest frequency

instability of optical clocks has reached 7.6 × 10−21 [23], and the lowest systematic uncertainty is
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now at 8.1 × 10−19 [24], both in fractional frequency unit. These results have been achieved at

JILA in the so called Wannier-Stark 1D optical lattice clock [23, 25], where atoms are trapped in

a shallow lattice along the direction of gravity. The tilt on the optical lattice generated by gravity

can not only lead to localized atomic wave functions known as Wannier-Stark states, but also

enhances the tunability of the system significantly. In this thesis, we describe theoretical efforts

on modeling the Wannier-Stark optical lattice clock and our understanding of the suppression of

dominant systematic effects.

One of the key systematic effects in optical clocks is the so-called density shift, i.e. frequency

shift due to atomic collisions. Since packing more atoms is the easiest way to improve the frequency

stability in a given system, the density shift proportional to atom number N and therefore is an

inevitable process when scaling up the clock. Note that atomic collisions at ultralow temperature

can be understood based on a partial wave expansion, and the leading contributions includes s-wave

interactions (spatially symmetric) and p-wave interactions (spatially antisymmetric). In order to

suppress the density shift, researchers are focusing on fermionic alkaline earth atoms (e.g. 87Sr,

171Yb), since s-wave contributions are forbidden for identical fermionic particles (here we mean

particles within the same lattice site) due to quantum statistics. However, even the weak on-site

p-wave interactions or off-site s-wave interactions in the 1D lattice setting can lead to non-negligible

effects on the clock operation. We propose the use of Wannier-Stark states to tune the relative

strength of s-wave and p-wave interactions, leading to a cancellation of density shift at a magic

lattice depth.

Apart from timekeeping applications, optical lattice clocks provide exciting new opportunities

to explore the frontiers of quantum simulation, quantum metrology and fundamental physics. For

example, the long atomic coherence time and the high spectroscopic resolution in optical lattice

clocks can lead to new probing techniques for the iconic Fermi Hubbard model relevant for high

Tc superconductors. Another example is the gravitational redshift, which is a general relativistic

effect describing time dilation due to the earth’s gravity. The resolution of the gravitational redshift

within a single atomic ensemble has already been achieved at JILA [23]. This observation is a push
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forward to witness the simultaneous interplay between general relativity and quantum mechanics.

My PhD research includes theoretical analysis in all these directions for optical lattice clocks.

1.2.2 Cavity QED systems

Understanding and controlling the quantum nature of light-matter interactions is a key pur-

suit of modern quantum science. One of the most important experimental platforms in this pursuit

is the so-called cavity QED system [26–28]. The term “cavity” refers to a system that confines

electromagnetic (EM) fields using highly reflective mirrors, and “QED” emphasizes the quantum

nature of interaction between atoms and photons, i.e. quantized EM fields, inside the cavity. Cavity

QED systems have long been a central paradigm for the study of open quantum systems and a re-

source to illuminate the fundamental aspects of coherence and decoherence in quantum mechanics.

At the heart of the physics is the interplay between coherent atom-photon couplings and dissipative

effects such as cavity decay and atomic spontaneous emission. The early stage developments of this

field were recognized by the 2012 Nobel Prize for physics [29].

In recent years, cavity QED systems have become a novel platform to manipulate atom-

atom interactions. Neutral atoms typically interact via atomic collisions (short-range van der

Waals interactions), but inside a cavity, atoms can have long-range or all-to-all interactions via

exchanging virtual cavity photons. One example of photon-mediated interactions is the so-called

spin exchange interaction, where an excited state atom emits a photon into the cavity mode and

transitions into the ground state, and the same photon is reabsorbed by a ground state atom that

transitions into the excited state. Such type of interactions are very suitable for simulating long-

range interacting models in condensed matter physics, as well as for the implementation of synthetic

quantum materials never seen in nature. An important part of my PhD research was dedicated to

explore the mapping between spin exchange interactions and the Bardeen–Cooper–Schrieffer (BCS)

model in condensed matter physics. I collaborated with experimentalists to observe a dynamical

phase with persistent oscillations of the BCS order parameter for the first time. We also extended

our exploration of spin exchange interactions to the case when the excited and ground manifold
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contain multiple hyperfine levels.

Apart from near resonant couplings to atomic excited states, another focus was on the dis-

persive atom-light couplings in the atomic ground manifold. Based on the dispersive coupling, the

frequency of cavity resonance is shifted depending on the atomic magnetization, and its feedback to

atom dynamics can be interpreted as an infinite range Ising interaction known as one-axis twisting

(OAT), an iconic model for generating spin squeezed states [30]. On the other hand, dispersive

coupling allows for quantum non-demolition (QND) measurement of atomic magnetization via con-

tinuously monitoring the light leaking out of the cavity [7]. Without destroying the atomic state,

such type of measurement can gradually decrease the quantum noise along the magnetization axis,

leading to spin squeezing. Spin squeezing [31] is a type of quantum entanglement with a reduction

of spin variance in some directions (increasing variance in other directions), which is a powerful

and robust technique to enhance measurement precision compared to the classical counterparts.

These techniques can also combine with practical sensors such as optical lattice clocks and atom

interferometers to achieve quantum enhanced measurements. In this thesis, we discuss the optimal

protocol for spin squeezing generation by comparing QND and OAT protocols, and also develop

quantum enhanced protocols for lattice-based atom interferometers with Wannier-Stark states.

1.3 Outline of this thesis

In Chapter 2, we provide an overview of the relevant theoretical background for this the-

sis, including optical lattices, contact interactions, spin systems, photon-mediated interaction and

measurements, as well as metrological concepts.

In Chapter 3, we discuss theoretical protocols and experimental collaborations on improving

optical lattice clocks via Hamiltonian engineering, as well as the new possibilities on exploring the

interplay between GR effects and many-body physics in optical clocks. This chapter is based on

the following publications [25,32,33]:

• Alexander Aeppli∗, Anjun Chu∗, Tobias Bothwell∗, Colin J. Kennedy, Dhruv Kedar, Peiru
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He, Ana Maria Rey, Jun Ye, Hamiltonian engineering of spin-orbit coupled fermions in a

Wannier-Stark optical lattice clock, Science Advances 8, eadc9242 (2022)

• William R. Milner, Stefan Lannig, Mikhail Mamaev, Lingfeng Yan, Anjun Chu, Ben

Lewis, Max N. Frankel, Ross B. Hutson, Ana Maria Rey, Jun Ye, Coherent evolution

of superexchange interaction in seconds long optical clock spectroscopy, arXiv:2402.13398

(2024)

• Anjun Chu, Victor J. Mart́ınez-Lahuerta, Maya Miklos, Kyungtae Kim, Peter Zoller, Kle-

mens Hammerer, Jun Ye, and Ana Maria Rey, Exploring the interplay between mass-energy

equivalence, interactions and entanglement in an optical lattice clock, arXiv:2406.03804

(2024)

In Chapter 4, we discuss theoretical protocols and experimental collaborations on emergent

collective behaviors and dynamical phases in interacting arrays, such as cavity QED systems and

trapped bosonic gases. This chapter is based on the following publications [34–37]:

• Anjun Chu, Johannes Will, Jan Arlt, Carsten Klempt, Ana Maria Rey, Simulation of XXZ

spin models using sideband transitions in trapped bosonic gases, Physical Review Letters

125, 240504 (2020)

• Anjun Chu, Asier Piñeiro Orioli, Diego Barberena, James K. Thompson, Ana Maria

Rey, Photon-mediated correlated hopping in a synthetic ladder, Physical Review Research

5, L022034 (2023)

• Haoqing Zhang, Anjun Chu, Chengyi Luo, James K. Thompson, Ana Maria Rey, Control

and amplification of Bloch oscillations via photon-mediated interactions, Physical Review

Research 5, L032039 (2023)

• Dylan J. Young∗, Anjun Chu∗, Eric Yilun Song, Diego Barberena, David Wellnitz, Zhi-

jing Niu, Vera M. Schäfer, Robert J. Lewis-Swan, Ana Maria Rey, James K. Thompson,

https://doi.org/10.1126/sciadv.adc9242
https://doi.org/10.48550/arXiv.2402.13398
https://doi.org/10.48550/arXiv.2402.13398
https://doi.org/10.48550/arXiv.2406.03804
https://doi.org/10.48550/arXiv.2406.03804
https://doi.org/10.1103/PhysRevLett.125.240504
https://doi.org/10.1103/PhysRevLett.125.240504
https://doi.org/10.1103/PhysRevResearch.5.L022034
https://doi.org/10.1103/PhysRevResearch.5.L022034
https://doi.org/10.1103/PhysRevResearch.5.L032039
https://doi.org/10.1103/PhysRevResearch.5.L032039
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Observing dynamical phases of BCS superconductors in a cavity QED simulator, Nature

625, 679 (2024)

In Chapter 5, we discuss theoretical protocols in entanglement generation via photon-mediated

interactions and measurements. This chapter is based on the following publications [38,39]:

• Anjun Chu, Peiru He, James K. Thompson, Ana Maria Rey, Quantum enhanced cavity

QED interferometer with partially delocalized atoms in lattices, Physical Review Letters

127, 210401 (2021)

• Diego Barberena, Anjun Chu, James K. Thompson, Ana Maria Rey, Trade-offs between

unitary and measurement induced spin squeezing in cavity QED, Physical Review Research,

in press (2024) [arXiv:2309.15353]

In Chapter 6, we provide a summary of the thesis, and discuss on-going projects as well as

possible future research directions.

For the sake of brevity and cohesion, we don’t include the following publications [40–43] in

the thesis, although they are equally important parts of my PhD work.

• Bhuvanesh Sundar, Diego Barberena, Asier Piñeiro Orioli, Anjun Chu, James K. Thomp-

son, Ana Maria Rey, Robert J. Lewis-Swan, Bosonic pair production and squeezing for op-

tical phase measurements in long-lived dipoles coupled to a cavity, Physical Review Letters

130, 113202 (2023)

• Chengyi Luo, Haoqing Zhang, Vanessa P. W. Koh, John D. Wilson, Anjun Chu, Murray

J. Holland, Ana Maria Rey, James K. Thompson, Momentum-exchange interactions in a

Bragg atom interferometer suppress Doppler dephasing, Science 384, 551 (2024)

• Chengyi Luo, Haoqing Zhang, Anjun Chu, Chitose Maruko, Ana Maria Rey, James K.

Thompson, Hamiltonian engineering of collective XYZ spin models in an optical cavity:

From one-axis twisting to two-axis counter twisting models, arXiv:2402.19429 (2024)

https://doi.org/10.1038/s41586-023-06911-x
https://doi.org/10.1038/s41586-023-06911-x
https://doi.org/10.1103/PhysRevLett.127.210401
https://doi.org/10.1103/PhysRevLett.127.210401
https://doi.org/10.48550/arXiv.2309.15353
https://doi.org/10.1103/PhysRevLett.130.113202
https://doi.org/10.1103/PhysRevLett.130.113202
https://doi.org/10.1126/science.adi1393
https://doi.org/10.48550/arXiv.2402.19429
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• John D. Wilson, Jarrod T. Reilly, Haoqing Zhang, Chengyi Luo, Anjun Chu, James

K. Thompson, Ana Maria Rey, Murray J. Holland, Entangled matter-waves for quantum

enhanced sensing, arXiv:2406.13616 (2024)

https://doi.org/10.48550/arXiv:2406.13616


Chapter 2

Theoretical background

2.1 Optical lattices

In this section, we introduce the concept of an optical lattice. We start from the AC Stark

effect, which is the key physical mechanism for engineering optical lattice. Then we focus on the

single-particle Hamiltonian and its wave functions within a 1D geometry, including the definition

of the Bloch function, the Wannier function, as well as the tight-binding Hamiltonian. After that,

we analyze the role of radial modes in a 1D lattice. Finally, we discuss the effects induced by

an additional linear tilt applied to the optical lattice, which can lead to Bloch oscillation and

Wannier-Stark localization.

2.1.1 AC Stark effect

We consider the interaction of an atom with a classical light field E,

E(R) =
1

2
E0(R)ε⃗e−iωt + c.c., (2.1)

where ε⃗ = cos(θ)ε⃗1 + i sin(θ)ε⃗2 labels the direction of polarization, with ε⃗1 and ε⃗2 orthogonal

unit vectors. Here θ is the ellipticity angle, and we define the light propagation direction as

k⃗ = ε⃗1 × ε⃗2. Under electric dipole approximation, the atom-light coupling is described by the

following Hamiltonian,

ĤAL = −d̂ ·E, (2.2)

where d̂ is the electric dipole moment.
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We first discuss the simplest case of a two-level atom. The transition frequency between

ground (|g⟩) and excited (|e⟩) states is given by ω0 = ωe − ωg. Assuming the light field is far from

resonance with the atomic transition, the effective Hamiltonian for the |g⟩ state can be estimated

based on second order perturbation theory (see Appendix A),

ĤAL,eff =

(
− 1

4
αg(ω)|E0(R)|2

)
|g⟩⟨g|, (2.3)

where αg(ω) is the electric dipole polarizability,

αg(ω) =
|⟨e|d̂ · ε⃗|g⟩|2
h̄(ω0 − ω)

+
|⟨e|d̂ · ε⃗∗|g⟩|2
h̄(ω0 + ω)

. (2.4)

Here we have included the contribution from both rotating (ω0 − ω) and counter-rotating (ω0 + ω)

terms. Usually αg(ω) is dominated by the rotating term. In this case, when the light field is red

detuned (ω < ω0), we have αg(ω) > 0, which means atoms are trapped in the intensity maximum

points of the light field; When the light field is blue detuned (ω > ω0), we have αg(ω) < 0, which

means atoms are trapped in the intensity minimum points. Optical lattices are used to trap atoms

in a periodic structure of intensity extremum points, which is generated by interfering laser beams.

For example, E0(R) ∝ cos(kLX) can lead to a 1D optical lattice along X⃗, with kL the wave number

of the lattice beam.

Now we generalize the discussion to the case when the atomic ground and excited states have

angular momentum F and Fn respectively, where n is the index for excited states. We denote the

transition frequency by ωn = ωen − ωg. For simplicity, we assume the quantization axis z⃗ is set by

a strong external magnetic field, which implies the couplings between different Zeeman levels due

to AC Stark effects are suppressed. Similar to Eq. (2.4), we get

αg(F,mF ;ω) =
∑
n

∑
ij

⟨FmF |T̂ij(Fn)|FmF ⟩
(

ε∗i εj
h̄(ωn − ω)

+
εiε

∗
j

h̄(ωn + ω)

)
. (2.5)

Here, T̂ij(Fn) is a rank-2 Cartesian tensor operator,

T̂ij(Fn) = d̂i

(∑
mFn

|FnmFn⟩⟨FnmFn |
)
d̂j , (2.6)
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which can be decomposed in terms of spherical tensors T̂
(k)
q (Fn), with the rank k = 0, 1, 2 indicating

scalar, vector and tensor contributions, and q = −k,−k+ 1 · · · , k (see Appendix B). This generates

the so-called scalar, vector and tensor shifts correspondingly. In the following, we sketch the key

steps of the derivation (see Ref. [44]).

Based on the Wigner-Eckart theorem (see Eq. (B.3)), the expectation value of a spherical

tensor in angular momentum basis is proportional to the corresponding Clebsch-Gordan coefficients.

As a result, only the spherical tensors T̂
(0)
0 (Fn), T̂

(1)
0 (Fn), T̂

(2)
0 (Fn) have non-zero matrix element,

⟨FmF |T̂ (0)
0 |FmF ⟩ ∝ ⟨FmF ; 00|FmF ⟩ = 1, (2.7)

⟨FmF |T̂ (0)
1 |FmF ⟩ ∝ ⟨FmF ; 10|FmF ⟩ =

mF√
F (F + 1)

, (2.8)

⟨FmF |T̂ (2)
0 |FmF ⟩ ∝ ⟨FmF ; 20|FmF ⟩ =

3m2
F − F (F + 1)√

F (F + 1)(2F − 1)(2F + 3)
, (2.9)

where ⟨jm; kq|j′m′⟩ are Clebsch-Gordan coefficients. In terms of the spherical tensors, we have

αg(F,mF ;ω) =
∑
nF ′

− 1√
3

2ωn⟨FmF |T̂ (0)
0 (Fn)|FmF ⟩

h̄(ω2
n − ω2)

+
√

2Im(ε∗xεy)
2ω⟨FmF |T̂ (1)

0 (Fn)|FmF ⟩
h̄(ω2

n − ω2)

+
3ε∗zεz − 1√

6

2ωn⟨FmF |T̂ (0)
2 (Fn)|FmF ⟩

h̄(ω2
n − ω2)

.

(2.10)

One can further rewrite Eq. (2.10) in terms of reduced dipole matrix elements ⟨F ||d̂||Fn⟩ (see

Appendix B). Finally, we get

αg(F,mF ;ω) = αs
g(F ;ω) + αv

g(F ;ω) sin(2θ)kz
mF

F
+ αt

g(F ;ω)
3|εz|2−1

2

3m2
F − F (F + 1)

F (2F − 1)
. (2.11)

Here, αs
g(F ;ω) is the scalar polarizability,

αs
g(F ;ω) =

∑
n

2

3(2F + 1)

ωn|⟨F ||d̂||Fn⟩|2
h̄(ω2

n − ω2)
, (2.12)

αv
g(F ;ω) is the vector polarizability,

αv
g(F ;ω) = −

∑
n

(−1)F+Fn

√
6F

(F + 1)(2F + 1)

1 1 1

F F Fn

 ω|⟨F ||d̂||Fn⟩|2
h̄(ω2

n − ω2)
, (2.13)
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and αt
g(F ;ω) is the tensor polarizability,

αt
g(F ;ω) =

∑
n

(−1)F+Fn

√
40F (2F − 1)

3(F + 1)(2F + 1)(2F + 3)

1 1 2

F F Fn

 ωn|⟨F ||d̂||Fn⟩|2
h̄(ω2

n − ω2)
, (2.14)

where the curly bracket marks the Wigner-6j symbol [45]. Note that the scalar shift is uniform for

all mF , the vector shift is similar to a magnetic field acting linearly on mF , and the tensor shift is

acting quadratically on mF . The vector shift vanishes for linear polarized light. Due to the factor

(−1)F+Fn in the summation, both vector and tensor shifts are usually smaller compared to the

scalar shift.

The derivation above can be directly generalized to the case when the couplings between

Zeeman levels are not negligible, which leads to the following effective Hamiltonian in the ground

manifold [44],

ĤAL,eff = −1

4
|E0(R)|2

(
αs
g(F ;ω)Î − iαv

g(F ;ω)
(ε⃗∗ × ε⃗) · F̂

F
+ αt

g(F ;ω)
3{ε⃗∗ · F̂, ε⃗ · F̂} − 2F̂2

2F (2F − 1)

)
,

(2.15)

where Î is the identity matrix, F̂ are the spin-F operators, and {Â, B̂} = ÂB̂+ B̂Â. In the case of

vanishing external magnetic field, the vector or tensor contributions also play the role of defining

the quantization axis (choice of spin basis to make the Hamiltonian diagonal). When the vector

contribution dominates, the quantization axis is along k⃗; When the tensor contribution dominates

(assuming linear polarization), the quantization axis is along ε⃗.

In an optical lattice clock, we consider the clock transition between 1S0 |FmF ⟩ and 3P0

|F ′mF ′⟩ states. The magic wavelength lattice is defined at the wavelength at which the two clock

states share the same lattice potential, ensuring by the following condition of electric dipole polar-

izability,

α1S0
(F,mF ;ω) = α3P0

(F ′,mF ′ ;ω). (2.16)

For Sr atoms, one can obtain a magic wavelength lattice near 813 nm (red detuned) or 390 nm

(blue detuned), as shown in Fig. 2.1. The value of reduced dipole matrix elements and transition

frequencies are listed in Ref. [24, 46]. Since both 1S0 and 3P0 states have J = 0, vector shift and
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α
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.u
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Figure 2.1: Scalar polarizability of 1S0 and 3P0 states of Sr atom. The calculation is based on
the reduced dipole matrix elements and transition frequencies listed in Ref. [24, 46]. The atom
unit of polarizability is given by 4πϵ0a

3
0, where ϵ0 is the vacuum permittivity, and a0 is the Bohr

radius. The intersections of the two polarizability curves (marked by black circles) indicate the
magic wavelengths.

tensor shift are highly suppressed [47]. The magic wavelength lattice is a key technique to minimize

the frequency shift of the clock transition induced by the lattice beams.

2.1.2 Band structure of 1D lattice

We consider the single-particle physics in an optical lattice described by the trapping potential

V (X) = V0 sin2(kLX), (2.17)

where V0 is the lattice depth, kL = 2π/λL is the wave number of the lattice beam, with λL the

lattice wavelength. The lattice spacing is given by aL = λL/2. So the single-particle Hamiltonian

for atoms trapped in this optical lattice is given by the following second-quantized form,

Ĥ0 =

∫
dXψ̂†(X)

[
P̂ 2

2M
+ V (X)

]
ψ̂(X), (2.18)

where ψ̂(X) is the annihilation field operator for an atom at position X.

Notice that V (X) is a periodic potential with V (X+aL) = V (X). Based on Bloch’s theorem,

H0 has a set of eigenstates (known as Bloch functions) ϕnk(X) with eigenvalues En(k), where n is

the band index and k is the quasi-momentum restricted in the first Brillouin zone, k ∈ [−kL, kL).
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The Bloch functions satisfy ϕnk(X + aL) = eikaLϕnk(X). For V (X) described by Eq. (2.17), it is

possible to obtain analytic solutions for the Bloch functions using Mathieu functions [45]. The key

idea is to rewrite the single-particle Hamiltonian in the following way,

Ĥ0 =
P̂ 2

2M
+ V0 sin2(kLX) =

P̂ 2

2M
− V0

2
cos(2kLX) +

V0
2
. (2.19)

Without the constant term V0/2, the time-independent Schrodigner equation Ĥ0ϕ = Eϕ is equiva-

lent to the Mathieu’s differential equation as follow,

d2ϕ

dξ2
+
(
λ− 2q cos(2ξ)

)
ϕ = 0, (2.20)

where

ξ = kLX ± π

2
, λ =

E

ER
, q =

V0
4ER

, ER =
h̄2k2L
2M

. (2.21)

The eigenfunctions of Eq. (2.20) are denoted by Mathieu functions meν(ξ, q) with eigenvalues

λ = λν(q), where ν can be any real numbers. Mathieu functions satisfy meν(ξ+π, q) = eiπνmeν(ξ, q).

One can express meν using real-valued Mathieu functions ceν and seν (see Appendix C), and then

map the Mathieu functions with ν ∈ [−n−1,−n)∪ [n, n+1) to Bloch functions with band index n,

and the lowest band is denoted by n = 0. The results are summarized in Table. 2.1 and Fig. 2.2(a),

where an(q) and bn(q) are Mathieu characteristic values. Similar to plane waves, the normalization

of the Bloch function ϕnk(X) is obtained by assuming a system with L lattice sites,∫ LaL

0
dX|ϕnk(X)|2= 1. (2.22)

We can define Wannier functions wnj(X) centered at lattice site j as a Fourier transform of

Bloch functions ϕnk(X),

wnj(X) =
1√
L

∑
k

e−ikjaLϕnk(X). (2.23)

We focus on the Wannier functions at lattice site j = 0,

wn(X) =
1√
L

∑
k

ϕnk(X), (2.24)
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Table 2.1: Analytic solutions of 1D optical lattice

n k ϕnk(X) = (1/
√
Lπ) × En(k)/ER =

Even 0
√

2 cen(ξ, q) an(q) + 2q

Even −kL −
√

2i sen+1(ξ, q) bn+1(q) + 2q

Even (0, kL) cen+k/kL(ξ, q) + i sen+k/kL(ξ, q) λn+k/kL(q) + 2q

Even (−kL, 0) ce−n+k/kL(ξ, q) + i se−n+k/kL(ξ, q) λ−n+k/kL(q) + 2q

Odd 0 −
√

2i sen+1(ξ, q) bn+1(q) + 2q

Odd −kL
√

2 cen(ξ, q) an(q) + 2q

Odd (0, kL) ce−n−1+k/kL(ξ, q) + i se−n−1+k/kL(ξ, q) λ−n−1+k/kL(q) + 2q

Odd (−kL, 0) cen+1+k/kL(ξ, q) + i sen+1+k/kL(ξ, q) λn+1+k/kL(q) + 2q
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Figure 2.2: (a) Band structure for lattice depth V0 = 5ER. (b-e) Wannier functions for lattice
depth V0 = 5ER at (b) band n = 0; (c) band n = 1; (d) band n = 2; (e) band n = 3. The gray
dashed line indicates the lattice potential.
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since the other Wannier functions can be obtained via translation, wnj(X) = wn(X−jaL). However,

the choice of Wannier function is still up to a gauge freedom in the definition of the Bloch function

ϕnk(X),

ϕ̃nk(X) = eiφn(k)ϕnk(X). (2.25)

A convenient gauge choice is the so-called maximally localized Wannier function [48], which leads to

an exponentially localized wave function in a lattice site. For a general form of lattices, maximally

localized Wannier function can only be obtained via numerical calculations. However, Ref. [49]

showed that there is a simple gauge choice for 1D system as follows:

• If ϕn,k=0(0) ̸= 0 and ϕn,k=−kL(0) ̸= 0, which is satisfied by even n in our case (see Ta-

ble. 2.1), one can choose the phase φn(k) such that ϕn,k(0) is real. Here we set

φn(k) = −kaL
2
. (2.26)

One can show that the Wannier function under this gauge choice is real and symmetric

about X = 0 (see Fig. 2.2(b,d)).

• If ϕn,k=0(0) = 0 and ϕn,k=−kL(0) = 0, which is satisfied by odd n in our case (see Table. 2.1),

one can choose the phase φn(k) such that ϕn,k(0) is purely imaginary. Here we set

φn(k) =


−kaL

2
− π

2
k ∈ [−kL, 0)

−kaL
2

+
π

2
k ∈ [0, kL)

. (2.27)

One can show that the Wannier function under this gauge choice is real and antisymmetric

about X = 0 (see Fig. 2.2(c,e)).

We expand the field operator ψ̂(X) in terms of the maximally localized Wannier function,

ψ̂(X) =
∑
nj

ĉnjwnj(X), (2.28)

and the single-particle Hamiltonian becomes

Ĥ0 = −
∑
njl

τn,l−j ĉ
†
nj ĉnl, (2.29)
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where

τn,l−j = −
∫
dXw∗

nj(X)

[
P̂ 2

2M
+ V (X)

]
wnl(X) = − 1

L

∑
k

e−ik(l−j)aLEn(k). (2.30)

Note that En(k) = En(−k), we have τn,l−j = τn,j−l is a real number. Since En(k) is a periodic

function of k with period 2π/aL, we can interpret τn,m as the coefficients of the Fourier series of

En(k), which gives

En(k) = En,0 −
∞∑

m=1

2τn,m cos(kmaL), (2.31)

where En,0 is the average energy of band n,

En,0 =
1

L

∑
k

En(k). (2.32)

In the case where the Wannier functions are localized in a single lattice site, then we can

only consider the nearest-neighbor tunneling terms, τn ≡ τn,1. In this situation we get the so-called

tight-binding Hamiltonian,

ĤTB =
∑
nj

En,0ĉ
†
nj ĉnj −

∑
nj

τn(ĉ†n,j+1ĉnj + H.c.). (2.33)

Based on the properties of Mathieu functions (see Appendix C), we can provide an estimation

of En,0 and τn in the tight-binding limit (V0/ER ≫ 1). For the average band energy, we have

En,0

ER
≈ (2n+ 1)

√
V0
ER

− 2n2 + 2n+ 1

4
, (2.34)

and the band gap is given by

∆En

ER
=
En+1,0 − En,0

ER
= 2

√
V0
ER

− (n+ 1). (2.35)

For the nearest-neighbor tunneling rate, one can truncate Eq. (2.31) to m = 1, which gives

τn =
En(k = −kL) − En(k = 0)

4
. (2.36)

This formula relates the nearest-neighbor tunneling rate to the width of the energy band. For the

ground band n = 0, we have

τ0
ER

=
b1(q) − a0(q)

4
≈ 4√

π

(
V0
ER

)3/4

exp

[
− 2

√
V0
ER

]
, (2.37)



20

For the first excited band n = 1, we have

τ1
ER

= −b2(q) − a1(q)

4
≈ − 32√

π

(
V0
ER

)5/4

exp

[
− 2

√
V0
ER

]
. (2.38)

2.1.3 Effects of radial modes in a 1D lattice

In the previous subsection, we provide an exact solution of the energy spectrum and single-

particle wave functions in a 1D optical lattice. In the tight-binding limit, we notice that the average

band energy (see Eq. (2.34)) is similar to the one of a nonlinear harmonic oscillator. So we can

approximate the lattice potential for each site as a harmonic potential plus extra correction terms.

This approach allows us to go beyond the pure 1D regime and include the effects of radial modes

in a 1D optical lattice.

In experiments, a 1D optical lattice is typically engineered by a pair of counter-propagating

Gaussian beams, and described by the following trapping potential,

V (R) = V0 − V0 exp

(
− 2r2

w2
0

)
cos2(kLZ), (2.39)

where w0 is the beam waist, and r2 = X2 + Y 2. Notice that V (R) is a non-separable potential,

which couples the axial degrees of freedom Z and the radial degrees of freedom r. If one expands

the potential near the lattice site at Z = 0 to the fourth order of Z and the second order of r

(assuming the radial trapping is relatively weak and higher order terms can be ignored), we have

V (R) ≈ Vharm(R) + Vcorr(R), (2.40)

where Vharm(R) is a harmonic potential,

Vharm(R) = V0k
2
LZ

2 +
2V0
w2
0

r2 =
1

2
Mω2

ZZ
2 +

1

2
Mω2

rr
2. (2.41)

Here, ωZ =
√

4V0ER/h̄ is the axial trapping frequency, and ωr =
√

4V0/Mw2
0 is the radial trapping

frequency. The eigenenergy of an atom trapped in Vharm(R) is given by (nX + nY + 1)h̄ωr +

(nZ + 1/2)h̄ωZ , where nX , nY label the radial harmonic oscillator modes, and nZ labels the axial

harmonic oscillator modes. We then consider the correction of anharmonicity,

Vcorr(R) = −V0k
4
L

3
Z4 − 2V0k

2
L

w2
0

r2Z2. (2.42)
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Based on first-order perturbation theory, one can obtain energy corrections to harmonic oscillator

modes,

⟨nX , nY , nZ |Vcorr|nX , nY , nZ⟩ = −ER

4
(2n2Z + 2nZ + 1) − ER

ωr

ωZ
(nX + nY + 1)

(
nZ +

1

2

)
. (2.43)

Combining them with the harmonic oscillator part, we have

E(nX , nY , nZ)

ER
≈ (2nZ+1)

√
V0
ER

− 2n2Z + 2nZ + 1

4
+(nX +nY +1)

h̄ωr

ER
− ωr

ωZ
(nX +nY +1)

(
nZ+

1

2

)
,

(2.44)

which agrees with Eq. (2.34) for ωr → 0. So the band gap (axial sideband transition energy),

∆EnZ (nX , nY ) ≡ E(nX , nY , nZ + 1) − E(nX , nY , nZ), is given by

∆EnZ (nX , nY )

ER
≈ 2

√
V0
ER

− (nZ + 1) − ωr

ωZ
(nX + nY + 1). (2.45)

Notice that the axial sideband frequency varies for different radial modes, due to the coupling

between axial and radial degrees of freedom generated by the Gaussian beams. In experiments,

if the radial modes are populated by atoms with a thermal distribution of radial temperature Tr,

which gives h̄ωr(nX + nY ) ∼ 2kBTr, one should observe a shift of axial sideband frequency as well

as broadening of the axial sideband linewidth.

Moreover, the coupling between axial and radial degrees of freedom can also lead to modi-

fications of the nearest-neighbor tunneling rate. In this case we only expand r up to the second

order and keep all the terms of Z. This gives

V (R) ≈ 1

2
Mω2

rr
2 +

(
V0 −

1

2
Mω2

rr
2

)
sin2(kLZ). (2.46)

From Eq. 2.46, one can see that the radial modes can lead to a effective lowering of the lattice

depth, V0 → V0 − Mω2
rr

2/2. Here we assume the radial motion are much slower compared to

the tunneling process such that the atoms tunnel with a fixed radial mode. We also assume weak

coupling between axial and radial degrees of freedom such that we can still approximate the radial

energy as EnX ,nY = (nx + nY + 1)h̄ωr. The correction to tunneling rate τ is given by

∆τ ≈
(
∂τ

∂V0

)
∆V0 = −1

2

(
∂τ

∂V0

)
EnX ,nY . (2.47)
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Note that the factor 1/2 is because the radial potential energy is 1/2 of the radial energy EnX ,nY .

It is worth to mention that all the calculations in this subsection approximate the radial modes

as harmonic oscillator modes. For a more precise result, one can perform numerical calculation

based on the so-called Born-Oppenheimer approximation, assuming the radial motion are typically

much slower compared to the axial motion. Such type of calculations are discussed in Ref. [50].

2.1.4 Linearly tilted 1D lattice

In this subsection, we discuss the single-particle physics in a 1D optical lattice with linear

tilt, which is described by the following Hamiltonian,

Ĥ =
P̂ 2

2m
+ V0 sin2(kLX) + FX, (2.48)

where F is an external constant force generating a linear potential along the lattice direction. For

example, if the 1D lattice is in the vertical direction aligned with gravity, we have F = Mg, with

g the gravitational acceleration. In the semiclassical picture, the existence of a force F along the

lattice direction induces Bloch oscillations. The quasi-momentum k of the particle satisfies

h̄
dk

dt
= −F ⇒ k(t) = k0 −

Ft

h̄
, (2.49)

Notice that k ∈ [−π/aL, π/aL), where aL = π/kL is the lattice spacing, so the Bloch oscillation

frequency is given by

ωB =
FaL
h̄

. (2.50)

Note that the group velocity vg can be determined by the dispersion relation E(k) ≈ ϵ0−2τ cos(kaL),

with ϵ0 the average band energy and τ the nearest-neighbor tunneling rate,

vg(t) =
1

h̄

dE(k)

dk
=

2τaL
h̄

sin
(
k(t)aL

)
=

2τaL
h̄

sin(k0aL − ωBt), (2.51)

so the center-of-mass oscillation is given by

X(t) =

∫
dtvg(t) =

2τ

F

(
cos(k0aL − ωBt) − cos(k0aL)

)
, (2.52)
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Figure 2.3: (a,b) Wave functions of Wannier-Stark states at lattice depth (a) V0 = 12ER and (b)
V0 = 3ER. W (X) is a shorthand notation for the wave function of Wannier-Stark states centered
at X = 0. (c) Rabi frequencies of carrier transitions and Wannier-Stark sidebands as a function
of lattice depth. The gray shadow marks the region where the Wannier-Stark states becomes
unstable due to Landau-Zener tunneling. For the numerical evaluation of wave functions and Rabi
frequencies, we consider 87Sr atoms trapped in a vertical 1D lattice tilted by gravity.

in which we assume X(0) = 0. The semiclassical picture for Bloch oscillation above is well-known

in solid state physics. Here we would like to make a step further using a full quantum treatment.

We assume an atom is trapped in the ground band of the lattice, and the linear tilt is not

strong enough to make the single-band approximation invalid. In the Wannier basis, one can write

down the following tight-binding Hamiltonian,

Ĥ =
∑
j

(ϵ0 + FaLj)ĉ
†
j ĉj −

∑
j

τ(ĉ†j+1ĉj + H.c.). (2.53)

We assume the single-particle eigenstates take the following form,

|ψ⟩ =
∑
l

Cl|l⟩, (2.54)

where |l⟩ = ĉ†l |vac⟩. Plugging it in the equation H|ψ⟩ = E|ψ⟩, we get

(ϵ0 + FaLl − E)Cl − τCl+1 − τCl−1 = 0. (2.55)

Recall the following recurrence relation of Bessel function,

2α

x
Jα(x) = Jα−1(x) + Jα+1(x), (2.56)

by comparison we have

En = ϵ0 + FaLn, α = l − n, x =
2τ

FaL
. (2.57)
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Therefore, we get the eigenstates |Wn⟩ (known as Wannier-Stark states) and corresponding eigenen-

ergies En (known as Wannier-Stark ladder) for Eq. (2.53) as follow:

En = ϵ0 + FaLn, n = 0,±1,±2, · · · , (2.58)

|Wn⟩ =
∑
l

Jl−n

(
2τ

FaL

)
|l⟩. (2.59)

By tuning the lattice depth V0, one can control the tunneling rate τ and thus the width of Wannier-

Stark wave functions (see Fig. 2.3(a,b)). An important part of my research is to apply this idea to

control atomic contact interactions (see Chapter 3.2) and cavity-mediated interactions (see Chapter

5.2).

Considering a Rabi drive along the lattice direction, one can obtain the Rabi frequencies in

the Wannier-Stark basis,

Ωnm = Ω0

∫
dXeikdXWn(X)Wm(X)

≈
∑
l

Jl−n

(
2τ

FaL

)
Jl−m

(
2τ

FaL

)
eikdlaL

∫
dXeikdX [w(z)]2,

(2.60)

where Ω0 is the bare Rabi frequency, kd is the wave number of the drive, and we assume the ground

band Wannier function w(z) is localized in a single lattice site. Using the Graf’s addition theorem

for Bessel functions [45],
∞∑

k=−∞
Jν+k(u)Jk(v)eikα = Jν(w)eiνχ, (2.61)

where w =
√
u2 + v2 − 2uv cosα, u − v cosα = w cosχ, v sinα = w sinχ. Focusing mainly on the

case when u = v, we obtain

∞∑
k=−∞

Jν+k(u)Jk(u)eikα = Jν

(
2u sin(α/2)

)
eiν(π−α)/2. (2.62)

Therefore,

Ωnm ≈ Jn−m

(
4τ

FaL
sin(φ/2)

)
ei(n−m)(π−φ)/2eimφ

∫
dXeikdX [w(z)]2, (2.63)

where φ = kdaL is the laser phase difference between nearest-neighbor lattice sites. One can

also approximate w(z) as the harmonic oscillator ground state wave function (trapping frequency
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ω =
√

4V0ER/h̄), which gives∫
dXeikdX [w(z)]2 ≈ e−η2/2, η = kd

√
h̄

2Mω
=
kd
kL

(
4V0
ER

)−1/4

. (2.64)

Here η is called the Lamb-Dicke parameter. Eq. (2.63) marks a key feature of the Wannier-Stark

optical lattice clock described in Chapter 3: one can drive not only carrier transitions with n = m,

but also Wannier-Stark sidebands with n ̸= m. The relative strength of the Rabi frequencies can

be controlled by the lattice depth V0 (see Fig. 2.3(c)).

Now we discuss Bloch oscillations in a full quantum treatment. Generally speaking, Bloch

oscillations are center-of-mass oscillations or coherent breathing experienced by independent par-

ticles in a periodic lattice potential in the presence of a constant force [51]. The case of coherent

breathing can be easily understood using Wannier-Stark states. We consider the initial state as a

Wannier state localized in a single lattice site (l = 0),

|ψ(t = 0)⟩ = |0⟩. (2.65)

The time evolution of the wave function is given by

|ψ(t)⟩ = e−iϵ0t
∑
n

J−n

(
2τ

FaL

)
e−iωBnt|Wn⟩

= e−iϵ0t
∑
nl

J−n

(
2τ

FaL

)
e−iωBntJl−n

(
2τ

FaL

)
|l⟩.

(2.66)

Based on Eq. (2.62), we get

|ψ(t)⟩ = e−iϵ0t
∑
l

eil(π−ωBt)/2Jl

(
4τ

FaL
sin(ωBt/2)

)
|l⟩. (2.67)

The sinusoidal oscillations in the argument of the Bessel function generates the coherent breathing,

as we shown in Eq. (2.67). One can characterize the coherent breathing using the position operator

X̂ =
∑

l aLl|l⟩⟨l|, which gives ⟨ψ(t)|X̂|ψ(t)⟩ = 0, and

⟨ψ(t)|X̂2|ψ(t)⟩ = a2L
∑
l

l2
[
Jl

(
4τ

FaL
sin(ωBt/2)

)]2
. (2.68)

Since the width of the atomic wave function is given by 2

√
⟨ψ(t)|X̂2|ψ(t)⟩, we can conclude that

in this case, the wave function width oscillates with the Bloch oscillation frequency ωB, while the

wave function position remains unchanged.
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For center-of-mass oscillations, we initialize a Gaussian wavepacket as follows,

|ψ(t = 0)⟩ =
∑
s

f(s)|s⟩, (2.69)

where

f(s) = N−1/2 exp

(
− s2

4σ2

)
, (2.70)

where N is the normalization factor. Here we assume the wavepacket is broad enough, so we can

replace the summation by integration,
∫
ds|f(s)|2= 1. Similar to Eq. (2.67), we have

|ψ(t)⟩ = e−iϵ0t
∑
l

eil(π−ωBt)/2Al|l⟩, (2.71)

where

Al =
∑
s

f(s)e−is(π+ωBt)/2Jl−s(z) ≈
∫
dsf(s)e−is(π+ωBt)/2Jl−s(z). (2.72)

where we have set z = 4τ sin(ωBt/2)/FaL. Using the integral representation of Bessel function,

Jn(z) =
1

2π

∫ π

−π
dζei(nζ−z sin ζ), (2.73)

we have

Al ≈
1

2π

∫ π

−π
dζeilζ−iz sin ζ

∫
dsf(s)e−is(ζ−ζ0) =

N−1/2

2π

∫ π

−π
dζeilζ−iz sin ζ2

√
πσ2e−(ζ−ζ0)2σ2

, (2.74)

where we define ζ0 = −(π + ωBt)/2. Notice that σ is a large value due to the broad wavepacket in

consideration, we define ζ̃ = ζ − ζ0 and expand to in linear order of ζ̃ in eilζ−iz sin ζ , which gives

Al ≈ eilζ0−iz sin ζ0 N−1/2

2π

∫ π

−π
dζ̃ei(l−z cos ζ0)ζ̃2

√
πσ2e−ζ̃2σ2

≈ N−1/2eilζ0−iz sin ζ0 exp

(
− (l − z cos ζ0)

2

4σ2

)
.

(2.75)

Therefore, the wave function position is given by

⟨ψ(t)|X̂|ψ(t)⟩ = aLz cos ζ0 = −4τ

F
sin2(ωBt/2), (2.76)

indicating center-of-mass oscillations with frequency ωB. Note that in this case the width of the

wave packet is roughly unchanged. This formula agrees with the semiclassical picture with k0 = 0

(see Eq. (2.52)).
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So far we have assumed the atoms always stay in the ground band. However, based on

the semiclassical picture, the role of the external force F is to scan the quasimomentum in the

ground band, so the probability of an atom in the ground band tunnel into higher bands can be

approximately described by the Landau-Zener tunneling probability,

P = exp

(
− π∆2

2α

)
. (2.77)

In our case, ∆ is the band gap, and α is the scanning rate of the energy difference, which can be

estimated by 2(dE/dt) at k = −π/aL (the position of the band gap) in free particle case,

α ≈ 2

h̄
· dE
dk

· dk
dt

=
2

h̄
· h̄

2(−π/a)

M
· −F

h̄
=

2πF

MaL
. (2.78)

So the probability of an interband transition per Bloch oscillation period TB = 2π/ωB can be

approximated as

P ≈ exp

(
− MaL∆2

4F

)
. (2.79)

Notice that 1 − P ≈ e−TB/Tdecay , where Tdecay is the decay time of ground band atoms. So we can

approximate the decay time as

Tdecay ≈ − TB
ln(1 − P )

≈ TB
P

=
2πh̄

FaL
exp

(
MaL∆2

4F

)
. (2.80)

For 87Sr atoms trapped in a 813 nm lattice along the vertical direction, one can estimate Tdecay ∼

0.15 s for 2ER lattice in the ground band, while Tdecay > 106 s for lattice depths larger than 4ER.

Therefore, Landau-Zener tunneling can limit the capability to trap atoms for low enough lattice

depths along the vertical direction.

As for higher bands with band index n, the decay time Tdecay can be estimated in a similar

way, while we need to estimate α at k = −nπ/aL in the free particle case. This can lead to

an exponentially larger Tdecay for higher bands. For 87Sr atoms in the same condition, we have

Tdecay ∼ 0.28 s for 8ER lattice in the first excited band, so only the ground band remains trapped

below 8ER along the vertical direction.
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2.2 Contact interactions

In this section, we introduce the theory of atomic collisions under ultracold temperature. We

start from the partial wave expansion of the two-body wave function. This is a useful expansion

at ultracold temperatures since the centrifugal barriers strongly suppresses the contributions of

higher partial waves. Then we discuss the technique known as pseudopotential, which approximates

short-range interactions as contact interactions. In this way, it is very convenient to write down

the many-body Hamiltonian in the second quantized form, and the description of atomic collisions

can be simplified to a single parameter known as scattering length for each partial wave. We also

provide an example for calculation of the scattering length under van der Waals interactions. After

that, we discuss the concept of SU(n) symmetry, which plays a key role in ultracold collisions of

fermionic alkaline earth atoms. Finally, we discuss the approximations we used in this thesis for

analyzing many-body dynamics, depending on the regime where the interaction strength is weak

or strong compared to the single-particle energy.

2.2.1 Partial wave expansion

We consider the following Hamiltonian for general two-body interactions,

Ĥ = − h̄2

2M1
∇2

r1 −
h̄2

2M2
∇2

r2 + V (r1 − r2). (2.81)

If we define the center-of-mass coordinate R and the relative coordinate r as

R =
M1r1 +M2r2
M1 +M2

, r = r1 − r2, (2.82)

the Hamiltonian can be transformed into

Ĥ = − h̄2

2Mtot
∇2

R − h̄2

2µ
∇2

r + V (r), (2.83)

where Mtot = M1 +M2 is the total mass, and µ = M1M2/(M1 +M2) is the reduced mass. In this

way, we can express the wave function of the two particles as

ψ(r1, r2) = ψcom(R)ψrel(r), (2.84)
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where ψcom is the wave function in the center-of-mass degrees of freedom, and ψrel(r) is the wave

function in the relative coordinates. Notice that the two-body interaction term only affects ψrel(r),

so we reduce the two-body problem to an effective one-body problem in relative coordinates. In

the following discussion, we use ψ(r) as a simplified notation for ψrel(r).

The two-body Schrödinger equation in the relative coordinates is given as follows,

h̄2

2µ
(∇2 + k2)ψ(r) = V (r)ψ(r), (2.85)

where k2 = 2µE/h̄2, and for simplicity we assume V (r) is a central and finite-range potential which

is non-zero in the regime r < r0, with r = |r|. Using a partial wave expansion, we can expand the

wave function ψ(r) in terms of the spherical harmonics Ylm(θ, ϕ),

ψ(r) =
∑
lm

Rlm(r)Ylm(θ, ϕ). (2.86)

The label l marks the l-partial wave. For l = 0, 1, 2, we call the partial waves as s-wave, p-wave,

and d-wave. One can interpret l as the orbital angular momentum of the two-body wave function.

Plugging Eq. (2.86) into Eq. (2.85) outside the range of the potential (r > r0), we get the following

differential equation for the radial part of the wave function,

1

r2
d

dr

(
r2
dRlm

dr

)
+

(
k2 − l(l + 1)

r2

)
Rlm = 0. (2.87)

Here, l(l + 1)/r2 is the centrifugal barrier, which increases with increasing partial wave label l. In

the case of ultracold temperatures (k → 0), the centrifugal barrier suppresses the contributions of

higher partial waves, so we are able to truncate the partial wave expansion to a few values of l.

The general solution of Eq. (2.87) is given by

Rlm(r) = Almjl(kr) +Blmnl(kr), (2.88)

where jl(r) and nl(r) are the spherical Bessel functions, and Alm and Blm are coefficients depending

on the detail of the finite-range potential V (r). In principle Alm and Blm can be estimated by

matching the wave functions inside and outside the range of the potential at r = r0. The asymptotic
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behavior of Rlm(r) for kr → ∞ is given by

Rlm(r) → 1

kr

[
Alm sin

(
kr − lπ

2

)
−Blm cos

(
kr − lπ

2

)]
∝ 1

kr
sin

(
kr − lπ

2
+ δl

)
, (2.89)

where δl is defined as the scattering phase shift of the l-partial wave,

tan δl = −Blm

Alm
. (2.90)

Since V (r) is a central potential, there should be no m-dependence in the phase shift. In terms of

phase shift δl, we can rewrite Rlm(r) as follows,

Rlm(r) = Alm[jl(kr) − tan δl nl(kr)] (r > r0). (2.91)

In the following discussions, we call the wave function in the regime r > r0 as ψ>(r).

It is worth to mention that we assumed V (r) a finite-range potential with a hard cutoff at

r = r0 in the discussion above. As discussed in Ref. [52], the finite-range assumption is still partially

valid for potentials with power-law decay V (r) ∝ 1/rα: Eq. (2.87) is valid for the l-partial wave if

α > 2l + 3. For van der Waals interactions (α = 6), our strategy is valid for s-wave and p-wave.

For higher partial waves, we cannot ignore V (r) in Eq. (2.87).

2.2.2 Huang-Yang pseudopotential

The idea of Huang-Yang pseudopotential [53–57] is to replace the potential V (r) in Eq. (2.85)

by a contact potential Vps(r), which acts only at r = 0 and gives the same wave function ψ>(r)

outside the range of the potential at the low-energy threshold (k → 0). Notice that the asymptotic

behavior of Rlm(r) for kr → 0 is given by

Rlm(kr) → Alm

[
(kr)l

(2l + 1)! !
+ tan δl

(2l − 1)! !

(kr)l+1

]
, (2.92)

the Huang-Yang pseudopotential Vps(r) can be constructed as

Vps(r)ψ>(r) =
h̄2

2µ
∇2ψ>(kr → 0)

=
h̄2

2µ

∑
lm

AlmYlm(θ, ϕ)

(
∇2 − l(l + 1)

r2

)[
(kr)l

(2l + 1)! !
+ tan δl

(2l − 1)! !

(kr)l+1

]
.

(2.93)
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Using the fact that

∇2(rl) =
l(l + 1)

r2
rl, (2.94)(

∇2 − l(l + 1)

r2

)
1

rl+1
=

1

rl

[
rl∇2

(
1

rl+1

)
− 1

rl+1
∇2(rl)

]
=

1

rl
∇ ·
[
rl∇

(
1

rl+1

)
− 1

rl+1
∇(rl)

]
= −2l + 1

rl
∇ ·
(
r̂

r2

)
= −2l + 1

rl
4πδ(r),

(2.95)

with r̂ = r/r, we have

Vps(r)ψ>(r) = − h̄
2

2µ

∑
lm

Alm tan δl
(2l + 1)! !

kl+1

δ(r)

rl+2
Ylm(θ, ϕ), (2.96)

where δ(r) = 4πr2δ(r). Based on Eq. (2.92), we can also express Alm as follows,

Alm =
1

kl(2l)! !

[(
d

dr

)2l+1

rl+1Rlm(kr)

]∣∣∣∣
r=0

=
1

kl(2l)! !

[(
∂

∂r

)2l+1

rl+1

∫
dΩY ∗

lmψ>(r)

]∣∣∣∣
r=0

,

(2.97)

where dΩ = sin θdθdϕ/4π. Plugging Eq. (2.97) into Eq. (2.96), we have

Vps(r)ψ>(r) =
∑
lm

h̄2a2l+1
l

2µ

(2l + 1)! !

(2l)! !

δ(r)

rl+2
Ylm(θ, ϕ)

[(
∂

∂r

)2l+1

rl+1

∫
dΩY ∗

lmψ>(r)

]∣∣∣∣
r=0

, (2.98)

where we defined the scattering length for the l-partial wave as

a2l+1
l = − lim

k→0

tan δl
k2l+1

. (2.99)

Now we calculate the form of Huang-Yang pseudopotential in momentum space. Consider

the plane wave basis,

⟨r|k⟩ =
1√
V

eik·r, (2.100)

and

⟨k|Vps|k′⟩ =
1

V

∫
d3r e−ik·rVps(r)eik

′·r, (2.101)

we have

⟨k|Vps|k′⟩ =
∑
lm

h̄2a2l+1
l

2µV

(2l + 1)! !

(2l)! !

[ ∫
d3r e−ik·r δ(r)

rl+2
Ylm(θ, ϕ)

]

×
[(

∂

∂r

)2l+1

rl+1

∫
dΩY ∗

lmeik
′·r
]∣∣∣∣

r=0

.

(2.102)
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Using the fact that

eik·r = 4π
∑
lm

iljl(kr)Y
∗
lm(k̂)Ylm(r̂), (2.103)

where the notation Ylm(r̂) means Ylm(θ, ϕ) with θ and ϕ set to the direction of r̂. We have∫
d3r e−ik·r δ(r)

rl+2
Ylm(θ, ϕ) = 4π

∑
l′m′

(−i)l′Yl′m′(k̂)

∫
r2dr jl′(kr)

δ(r)

rl+2
·
∫
dΩY ∗

l′m′Ylm

= 4π(−i)lYlm(k̂)

∫
r2dr jl(kr)

δ(r)

rl+2
=

4π(−i)lYlm(k̂)kl

(2l + 1)! !
,

(2.104)

[(
∂

∂r

)2l+1

rl+1

∫
dΩY ∗

lm(Ω)eik
′·r
]∣∣∣∣

r=0

= 4π
∑
l′m′

il
′
Y ∗
l′m′(k̂′)

[(
∂

∂r

)2l+1

rl+1jl′(k
′r)

∫
dΩY ∗

lmYl′m′

]∣∣∣∣
r=0

= 4π ilY ∗
lm(k̂′)

[(
∂

∂r

)2l+1

rl+1jl(k
′r)

]∣∣∣∣
r=0

= 4π ilY ∗
lm(k̂′)(k′)l(2l)! ! ,

(2.105)

which gives

⟨k|Vps|k′⟩ =
8h̄2π2

µV

∑
lm

a2l+1
l (k′)lklY ∗

lm(k̂′)Ylm(k̂). (2.106)

Recall the addition theorem for spherical harmonics,

Pl(k̂ · k̂′) =
4π

2l + 1

∑
m

Ylm(k̂)Y ∗
lm(k̂′), (2.107)

where Pl(x) is the Legendre polynomial. We then have

⟨k|Vps|k′⟩ =
2h̄2π

µV

∑
l

(2l + 1)a2l+1
l (k′)lklPl(k̂ · k̂′). (2.108)

For s-wave (l = 0), we have

⟨k|Vps|k′⟩ =
2h̄2π

µV
a0. (2.109)

For p-wave (l = 1), we have

⟨k|Vps|k′⟩ =
6h̄2π

µV
a31(k · k′). (2.110)

Based on the Huang-Yang pseudopotential, it is convenient to express the many-body Hamil-

tonian for identical particles (µ = M/2, with M ≡ M1 = M2) in the second quantized form as
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follows,

Ĥ = Ĥ0 + Ĥ1,

Ĥ0 =
∑
α

∫
d3r ψ̂†

α(r)

[
− h̄2

2M
∇2

]
ψ̂α(r),

Ĥ1 =
1

2

∑
αβ

∫
d3r1d

3r2 ψ̂
†
α(r1)ψ̂

†
β(r2)V

αβ
ps (r1 − r2)ψ̂β(r2)ψ̂α(r1),

(2.111)

in which V αβ
ps (r1−r2) is the pseudopotential for two-body interaction, α, β denote the internal levels

of the particles, and we use aαβ (b3αβ) to denote the s-wave scattering length (p-wave scattering

volume) between particles in internal levels α and β. In momentum space, the field operator can

be expressed as

ψ̂α(r) =
1√
V

∑
k

eik·râkα, (2.112)

so the interaction term can be written as

Ĥ1 =
1

2V 2

∑
αβ

∑
k1k2k3k4

â†k1α
â†k2β

âk3β âk4α

∫
d3r1d

3r2 e−ik1·r1e−ik2·r2V αβ
ps (r1 − r2)e

ik3·r2eik4·r1

=
1

2V 2

∑
αβ

∑
k1k2k3k4

â†k1α
â†k2β

âk3β âk4α

∫
d3R e−i(k1+k2−k3−k4)·R

×
∫
d3r e−i

k1−k2
2

·rV αβ
ps (r1 − r2)e

i
k4−k3

2
·r

=
1

2

∑
αβ

∑
k1k2k3k4

â†k1α
â†k2β

âk3β âk4α

〈
k1 − k2

2

∣∣∣∣V αβ
ps

∣∣∣∣k4 − k3

2

〉
δk1+k2,k3+k4 ,

(2.113)

where R = (r1 + r2)/2, and r = r1 − r2. For s-wave interactions, using Eq. (2.109), we have

Ĥ1 =
1

2

∑
αβ

4πh̄2aαβ
MV

∑
k1k2k3k4

â†k1α
â†k2β

âk3β âk4α δk1+k2,k3+k4

=
1

2

∑
αβ

4πh̄2aαβ
MV 2

∑
k1k2k3k4

â†k1α
â†k2β

âk3β âk4α

∫
d3r e−i(k1+k2−k3−k4)·r

=
1

2

∑
αβ

4πh̄2aαβ
M

∫
d3r ψ̂†

α(r)ψ̂†
β(r)ψ̂β(r)ψ̂α(r).

(2.114)
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For p-wave interactions, using Eq. (2.110), we have

Ĥ1 =
1

2

∑
αβ

3πh̄2b3αβ
MV

∑
k1k2k3k4

â†k1α
â†k2β

âk3β âk4α[(k1 − k2) · (k4 − k3)] δk1+k2,k3+k4

=
1

2

∑
αβ

3πh̄2b3αβ
MV 2

∑
k1k2k3k4

â†k1α
â†k2β

âk3β âk4α

∫
d3r [(k1 − k2) · (k4 − k3)]e

−i(k1+k2−k3−k4)·r

=
1

2

∑
αβ

3πh̄2b3αβ
M

∫
d3r [(∇ψ̂†

α)ψ̂†
β − ψ̂†

α(∇ψ̂†
β)] · [ψ̂β(∇ψ̂α) − (∇ψ̂β)ψ̂α].

(2.115)

It is worth to mention that the contact potential for s-wave and p-wave interaction above might

lead to ultraviolet divergence in some type of calculations, where proper regularization techniques

would be in need to eliminate the divergence (see Ref. [58]). For all the calculations in this thesis,

we have never encountered the divergence problem.

Now we use the many-body Hamiltonian for two-level atoms as an example to illustrate the

s-wave and p-wave interaction. For a two-component Fermi gas with internal levels |g⟩ and |e⟩,

since the total wave function for two fermionic atoms needs to be antisymmetric, the spatial wave

function related to the spin state (|ge⟩− |eg⟩)/
√

2 is symmetric (s-wave interaction with scattering

length aeg), while the spatial wave functions related to spin states |gg⟩, (|ge⟩ + |eg⟩)/
√

2, |ee⟩ are

antisymmetric (p-wave interaction with scattering volumes b3gg, b
3
eg, b

3
ee respectively). So the two-

body interaction term Ĥ1 takes the following form,

Ĥ1 =
4πh̄2aeg
M

∫
d3r ψ̂†

e(r)ψ̂†
g(r)ψ̂g(r)ψ̂e(r)

+
∑
αβ

3πh̄2b3αβ
2M

∫
d3r [(∇ψ̂†

α)ψ̂†
β − ψ̂†

α(∇ψ̂†
β)] · [ψ̂β(∇ψ̂α) − (∇ψ̂β)ψ̂α].

(2.116)

For a two-component Bose gas with internal levels |g⟩ and |e⟩, since the total wave function for two

bosonic atoms must be symmetric, the spatial wave functions related to spin states |gg⟩, (|ge⟩ +

|eg⟩)/
√

2, |ee⟩ are symmetric (s-wave interaction with scattering lengths agg, aeg, aee respectively),

while the spatial wave function related to the spin state (|ge⟩ − |eg⟩)/
√

2 is antisymmetric (p-wave

interaction with scattering volume b3eg). So the two-body interaction term Ĥ1 takes the following
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form,

Ĥ1 =
∑
αβ

2πh̄2aαβ
M

∫
d3r ψ̂†

α(r)ψ̂†
β(r)ψ̂β(r)ψ̂α(r)

+
3πh̄2b3eg
M

∫
d3r [(∇ψ̂†

e)ψ̂
†
g − ψ̂†

e(∇ψ̂†
g)] · [ψ̂g(∇ψ̂e) − (∇ψ̂g)ψ̂e].

(2.117)

2.2.3 Semiclassical approximation of scattering lengths

In the previous subsection, we derive the many-body Hamiltonian based on a single parameter

known as scattering length (see Eq. (2.99)) for each partial wave. In general, the interactions

between two neutral atoms can be described by the so-called Lennard-Jones potential,

V (r) = −C6

r6

(
1 − (σ/r)6

)
. (2.118)

In the long range, V (r) ≈ −C6/r
6 describes the van der Waals interaction characterized by the C6

coefficient. In the short range, σ is a fitting parameter describing the repulsive core.

Here we would like to discuss the key idea of evaluating the scattering lengths based on V (r),

following the procedure in Ref. [59]. We define χ(r) = rRlm(r), so the radial part of the two-body

Schrödinger equation (see Eq. (2.85)) becomes

d2χ

dr2
+

(
k2 − 2µV (r)

h̄2
− l(l + 1)

r2

)
χ = 0. (2.119)

We separate the solution of χ(r) in three different regions:

(1) r < r1: The physics is dominated by the short-range part of V (r), and we can ignore the

terms with k2 and l(l+1)/r2. In this region, we solve Eq. (2.119) using WKB approximation,

χ(r) ∝ 1√
P(r)

cos

(
1

h̄

∫ r

r∗

P(r)dr − π

4

)
, P(r) =

√
−2µV (r), (2.120)

where r∗ is the classical turning point satisfying V (r∗) = 0, and the phase −π/4 originates

from the WKB connection condition.

(2) r1 < r < r0: The physics is dominated by van der Waals interaction V (r) ≈ −C6/r
6 as well

as the centrifugal barrier l(l+ 1)/r2, and we can still ignore k2. Thus Eq. (2.119) becomes

d2χ

dr2
+

(
γ2

r6
− l(l + 1)

r2

)
χ = 0, (2.121)
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where γ =
√

2µC6/h̄. The general solution of this differential equation is given by

χ(r) =
√
r

[
c1J 2l+1

4

(
γ

2r2

)
− c2N 2l+1

4

(
γ

2r2

)]
, (2.122)

where Jα(x) is the Bessel function of the first kind, Nα(x) is the Bessel function of the

second kind, and Γ(x) is the gamma function.

(3) r > r0: The physics is dominated by k2 and l(l+ 1)/r2, and we can drop V (r). This region

is already discussed in the subsection of partial wave expansion, and the general solution

for χ(r) is given by

χ(r) = r

[
Ajl(kr) +Bnl(kr)

]
, tan δl = −B

A
, (2.123)

where jl(r) and nl(r) are the spherical Bessel functions, and δl is the phase shift for the

l-partial wave.

Then we consider wave function matching at r = r0 and r = r1, which is to match the

logarithmic derivatives χ−1(dχ/dr). We assume r → ∞ in Eq. (2.122) and kr → 0 in Eq. (2.123)

for matching the logarithmic derivatives at r = r0, which relates the s-wave scattering length (l = 0)

and the p-wave scattering volume (l = 1) with coefficients c1 and c2,

a =
2πγ1/2

[Γ(1/4)]2

(
1 − c1,l=0

c2,l=0

)
, b3 = − γ3/2π

18[Γ(3/4)]2

(
1 +

c1,l=1

c2,l=1

)
. (2.124)

We also assume r → 0 in Eq. (2.122) and V (r) ≈ −C6/r
6 in Eq. (2.120) for matching the logarithmic

derivatives at r = r1, which gives

c1,l
c2,l

= tan

(
Φ − 2l + 1

8
π

)
, (2.125)

where the semiclassical phase Φ is given by

Φ =
1

h̄

∫ ∞

r∗

√
−2µV (r)dr. (2.126)

Therefore, one can finally arrive the formula for s-wave scattering length (l = 0),

a = ā

(
1 − tan

(
Φ − π

8

))
, ā =

2π

[Γ(1/4)]2

(
2µC6

h̄2

)1/4

, (2.127)
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and the formula for the p-wave scattering volume (l = 1),

b3 = −ā3 [Γ(1/4)]6

144π4[Γ(3/4)]2

(
1 + tan

(
Φ − 3π

8

))
. (2.128)

Eliminating the semiclassical phase Φ, one can achieve a universal relation between s-wave scatter-

ing length and p-wave scattering volume [60],

a/ā = 1 +
b3/ā3

b3/ā3 + η
, η =

[Γ(1/4)]6

72π4[Γ(3/4)]2
≈ 2.12856, (2.129)

if they are generated by the same van der Waals interaction.

2.2.4 SU(n) symmetry

Fermionic 87Sr atoms have two long-lived electronic orbitals, the 1S0 and 3P0 clock states,

as well as a nuclear spin degree of freedom with I = 9/2. We denote the electronic states as |g⟩

and |e⟩ respectively and the n = 2I + 1 nuclear spin levels as m = −I,−I + 1, · · · , I. Due to the

lack of hyperfine coupling between the nuclear and electronic degrees of freedom, the scattering

parameters that describe two-body interactions are independent of the nuclear spin states. This

property gives rise to an interaction Hamiltonian invariant under SU(n) rotations [61,62].

It is easy to show that the permutation of nuclear spin states between two particles,

P̂12 =
∑

m,m′={−I,···,I}

|m⟩1⟨m′|⊗|m′⟩2⟨m|, (2.130)

commute with the single-particle SU(n) rotations. So we consider two possible interaction chan-

nels, permutation-symmetric (denoted by projection operator P̂+) and permutation-antisymmetric

(denoted by projection operator P̂−), and the interaction potential can be written as

V̂ (r12) = V+(r12)P̂+ + V−(r12)P̂−, P̂± =
Î ± P̂12

2
. (2.131)

For the construction of the many-body Hamiltonian, it is more convenient to rewrite the interaction

potential into the following form,

V̂ (r12) =
V+(r12) + V−(r12)

2
Î +

V+(r12) − V−(r12)

2
P̂12. (2.132)
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The s-wave interactions occur under spatially symmetric collisions. Due to the requirement

for fermionic atoms to feature a fully antisymmetric total wave function, to collide under the s-wave

channel, symmetric nuclear spin states require their electronic orbitals to be antisymmetric. There-

fore, the state (|ge⟩ − |eg⟩)/
√

2 is the only one that can feature s-wave interactions, characterized

by the s-wave scattering length a−eg. Similarly, to collide via s-wave interactions, antisymmetric

nuclear spin states require their electronic orbitals to be symmetric. So there are three possi-

ble combination of electronic states |gg⟩, |ee⟩, (|ge⟩ + |eg⟩)/
√

2 that can collide via s-wave. Their

interactions are characterized by the s-wave scattering lengths agg, aee and a+eg respectively. The re-

sulting s-wave pseudopotential for SU(n) interaction takes the following form: V̂ gg
s (r12) ∝ aggP̂−,

V̂ ee
s (r12) ∝ aeeP̂−, V̂ eg

s (r12) ∝ (a−eg + a+eg)Î/2 + (a−eg − a+eg)P̂12/2. Thus the s-wave interaction

Hamiltonian in the second quantized form,

Ĥs =
2πh̄2agg
M

∑
mm′

(m̸=m′)

∫
d3r ψ̂†

gm(r)ψ̂†
gm′(r)ψ̂gm′(r)ψ̂gm(r)

+
2πh̄2aee
M

∑
mm′

(m̸=m′)

∫
d3r ψ̂†

em(r)ψ̂†
em′(r)ψ̂em′(r)ψ̂em(r)

+
2πh̄2(a−eg + a+eg)

M

∑
mm′

∫
d3r ψ̂†

gm(r)ψ̂†
em′(r)ψ̂em′(r)ψ̂gm(r)

+
2πh̄2(a−eg − a+eg)

M

∑
mm′

∫
d3r ψ̂†

gm(r)ψ̂†
em′(r)ψ̂em(r)ψ̂gm′(r),

(2.133)

where M is the mass of a 87Sr atom, ψ̂gm(r) and ψ̂em′(r) are fermionic annihilation field operators

of nuclear spin m in the ground manifold and nuclear spin m′ in the excited manifold respectively.

For spatially antisymmetric p-wave interactions, antisymmetric nuclear spin states require

their electronic orbitals to be antisymmetric for an antisymmetric total wavefunction, so the only

possible electronic state is (|ge⟩−|eg⟩)/
√

2, which interacts via the p-wave scattering volume (b−eg)3.

Symmetric nuclear spin states require their electronic orbitals to be symmetric, so the three possible

electronic states are |gg⟩, |ee⟩, (|ge⟩+|eg⟩)/
√

2, which interact via the p-wave scattering volumes b3gg,

b3ee and (b+eg)3 respectively. The p-wave pseudopotential for SU(n) interactions takes the following

form: V̂ gg
p (r12) ∝ b3ggP̂+, V̂ ee

p (r12) ∝ b3eeP̂+, V̂ eg
p (r12) ∝ [(b+eg)3 + (b−eg)3]Î/2 + [(b+eg)3 − (b−eg)3]P̂12/2.
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This leads to the p-wave interaction Hamiltonian in the second quantized form,

Ĥp =
3πh̄2b3gg

2M

∑
mm′

∫
d3r [(∇ψ̂†

gm)ψ̂†
gm′ − ψ̂†

gm(∇ψ̂†
gm′)] · [ψ̂gm′(∇ψ̂gm) − (∇ψ̂gm′)ψ̂gm]

+
3πh̄2b3ee

2M

∑
mm′

∫
d3r [(∇ψ̂†

em)ψ̂†
em′ − ψ̂†

em(∇ψ̂†
em′)] · [ψ̂em′(∇ψ̂em) − (∇ψ̂em′)ψ̂em]

+
3πh̄2[(b+eg)3 + (b−eg)3]

2M

∑
mm′

∫
d3r [(∇ψ̂†

gm)ψ̂†
em′ − ψ̂†

gm(∇ψ̂†
em′)] · [ψ̂em′(∇ψ̂gm) − (∇ψ̂em′)ψ̂gm]

+
3πh̄2[(b+eg)3 − (b−eg)3]

2M

∑
mm′

∫
d3r [(∇ψ̂†

gm)ψ̂†
em′ − ψ̂†

gm(∇ψ̂†
em′)] · [ψ̂em(∇ψ̂gm′) − (∇ψ̂em)ψ̂gm′ ].

(2.134)

In an optical lattice clock experiment, we consider the least magnetically sensitive clock

transition in 87Sr, |1S0,mF = ±5/2⟩ → |3P0,mF = ±3/2⟩, denoted by |g̃⟩ and |ẽ⟩ respectively. In

a large magnetic field, the flip-flop process of nuclear spin states in Eq. (2.133) and Eq. (2.134)

can be ignored, so the interaction Hamiltonian including s-wave and p-wave contributions can be

restricted to these two states,

Ĥint =
2πh̄2(a−eg + a+eg)

M

∫
d3r ψ̂†

ẽ(r)ψ̂†
g̃(r)ψ̂g̃(r)ψ̂ẽ(r)

+
3πh̄2b3gg

2M

∫
d3r [(∇ψ̂†

g̃)ψ̂†
g̃ − ψ̂†

g̃(∇ψ̂†
g̃)] · [ψ̂g̃(∇ψ̂g̃) − (∇ψ̂g̃)ψ̂g̃]

+
3πh̄2b3ee

2M

∫
d3r [(∇ψ̂†

ẽ)ψ̂
†
ẽ − ψ̂†

ẽ(∇ψ̂
†
ẽ)] · [ψ̂ẽ(∇ψ̂ẽ) − (∇ψ̂ẽ)ψ̂ẽ]

+
3πh̄2[(b+eg)3 + (b−eg)3]

2M

∫
d3r [(∇ψ̂†

g̃)ψ̂†
ẽ − ψ̂†

g̃(∇ψ̂†
ẽ)] · [ψ̂ẽ(∇ψ̂g̃) − (∇ψ̂ẽ)ψ̂g̃].

(2.135)

Another convenient choice of clock transition in 87Sr is |1S0,mF = ±9/2⟩ → |3P0,mF =

±9/2⟩, also denoted by |g̃⟩ and |ẽ⟩ respectively. In this case with the same nuclear spin state, the

eg collision is described by a−eg for s-wave and (b+eg)3 for p-wave, so the interaction Hamiltonian

within these two states is given by

Ĥint =
4πh̄2a−eg
M

∫
d3r ψ̂†

ẽ(r)ψ̂†
g̃(r)ψ̂g̃(r)ψ̂ẽ(r)

+
3πh̄2b3gg

2M

∫
d3r [(∇ψ̂†

g̃)ψ̂†
g̃ − ψ̂†

g̃(∇ψ̂†
g̃)] · [ψ̂g̃(∇ψ̂g̃) − (∇ψ̂g̃)ψ̂g̃]

+
3πh̄2b3ee

2M

∫
d3r [(∇ψ̂†

ẽ)ψ̂
†
ẽ − ψ̂†

ẽ(∇ψ̂
†
ẽ)] · [ψ̂ẽ(∇ψ̂ẽ) − (∇ψ̂ẽ)ψ̂ẽ]

+
3πh̄2(b+eg)3

M

∫
d3r [(∇ψ̂†

g̃)ψ̂†
ẽ − ψ̂†

g̃(∇ψ̂†
ẽ)] · [ψ̂ẽ(∇ψ̂g̃) − (∇ψ̂ẽ)ψ̂g̃].

(2.136)
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2.2.5 Approximations for many-body dynamics

Here we use the following Hamiltonian Ĥ containing the single-particle Hamiltonian Ĥ0 and

the s-wave interaction for fermions Ĥs,

Ĥ = Ĥ0 + Ĥs,

Ĥ0 =
∑

α={e,g}

∫
d3r ψ̂†

α(r)

[
− h̄2

2M
∇2 + V (r)

]
ψ̂α(r),

Ĥs =
4πh̄2aeg
M

∫
d3r ψ̂†

e(r)ψ̂†
g(r)ψ̂g(r)ψ̂e(r),

(2.137)

to illustrate the key ideas of the approximations we made in this thesis for analyzing many-body

dynamics. We typically assume the single-particle Hamiltonian Ĥ0 has eigenstates ϕj(r) with

corresponding eigenenergies Ej , with j the eigenstate index.

When the interaction strength is weak compared to the single-particle energy gap (∆E =

min(Ej+1 − Ej)), we prefer to expand the field operators using the eigenbasis of Ĥ0,

ψ̂α(r) =
∑
jα

ĉjαϕj(r), (2.138)

where ĉjα is the fermonic annihilation operator for state |α; j⟩. The interaction Hamiltonian be-

comes

Ĥs =
∑
ijkl

Uijklĉ
†
ieĉ

†
jg ĉkg ĉle, Uijkl =

4πh̄2aeg
M

∫
d3rϕ∗i (r)ϕ∗j (r)ϕk(r)ϕl(r). (2.139)

Then we only keep the interaction processes conserving the total single-particle energy, since the

other processes would be off-resonant due to the energy penalty. Typically there are two types of

processes conserving the total single-particle energy:

• Direct coupling Uijji, i.e. |e; i⟩|g; j⟩ → |e; i⟩|g; j⟩,

• Exchange coupling Uijij , i.e. |e; i⟩|g; j⟩ → |g; i⟩|e; j⟩.

In these two types of processes, atoms are frozen in the single-particle eigenmodes and only feature

spin dynamics between e and g states, thus this procedure is called frozen-mode approximation.



41

Under this approximation, Ĥ0 becomes a constant, and

Ĥs ≈
∑
ij

(Uijjiĉ
†
ieĉ

†
jg ĉjg ĉie + Uijij ĉ

†
ieĉ

†
jg ĉig ĉje)

≈ 1

2

∑
ij

Jij(ĉ
†
ieĉieĉ

†
jg ĉjg + ĉ†ig ĉig ĉ

†
jeĉje − ĉ†ieĉig ĉ

†
jg ĉje − ĉ†jeĉjg ĉ

†
ig ĉie),

(2.140)

where Jij = Uijji = Uijij , and we also assume no double occupancy in a single eigenmode. For

fermions, this condition is strictly ensured by Pauli blocking if we initialize all the atoms in the

same internal state. Similar idea can also apply to non-degenerate bosons, and this condition is

ensured by low double occupancy probability under thermal distribution.

Now we define spin operators as

Ŝx
j =

1

2
(ĉ†jeĉjg + ĉ†jg ĉje), Ŝy

j = − i

2
(ĉ†jeĉjg − ĉ†jg ĉje),

Ŝz
j =

1

2
(ĉ†jeĉje − ĉ†jg ĉjg), N̂j = ĉ†jeĉje + ĉ†jg ĉjg.

(2.141)

The interaction Hamiltonian Ĥs can be rewritten as

Ĥs ≈
1

2

∑
ij

Jij

(
(N̂i/2 + Ŝz

i )(N̂j/2 − Ŝz
j ) + (N̂i/2 − Ŝz

i )(N̂j/2 + Ŝz
j ) − 2(Ŝx

i Ŝ
x
j + Ŝy

i Ŝ
y
j )
)

= −
∑
ij

JijŜi · Ŝj ,

(2.142)

in which we drop the constant term N̂iN̂j . In this way, we approximate Ĥs as Heisenberg spin-

spin interactions. In this thesis, we generalize this result to the case when the eigenmodes for e

and g states are different, labelled by ϕjα(r). In this case, we have Uijji ̸= Uijij , which allows

us to add anisotropy to the Heisenberg interactions. It is worth to mention that there might be

mode-changing collisions |e; j1⟩|g; j2⟩ → |e; j3⟩|g; j4⟩ accidentally satisfying Ej1 + Ej2 ≈ Ej3 + Ej4 ,

especially in harmonic oscillator potential with equally spacing energy levels. Since there is no

initial coherence for the mode-changing processes (start from vacuum), it is still safe to ignore

mode-changing processes for short-time dynamics, while for a longer time scale these processes can

lead to decoherence of the spin dynamics.

On the other hand, when the interaction strength is strong compared to the single-particle

energy gap, we prefer to expand the field operators using the a maximally localized basis, e.g. the
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maximally localized Wannier states in an optical lattice. Here we denote the wave function in the

maximally localized basis by wj(r), where j is the position index. In this case we can ignore the

processes with non-local interactions due to the negligible wave function overlap, so the interaction

Hamiltonian becomes

Ĥs ≈
∑
j

Uj ĉ
†
jeĉjeĉ

†
jg ĉjg, Uj =

4πh̄2aeg
M

∫
d3r|wj(r)|4. (2.143)

Note that in this basis Ĥ0 is not a diagonal matrix, and the leading order off-diagonal term is the

nearest neighbor tunneling due to the maximally localized basis. So the system Hamiltonian can

be approximated as

Ĥ ≈ −
∑
⟨ij⟩α

(τij ĉ
†
iαĉjα + H.c.) +

∑
j

Uj ĉ
†
jeĉjeĉ

†
jg ĉjg, (2.144)

where τij = −
∫
d3rw∗

i (r)Ĥ0wj(r) are tunneling rates, ⟨ij⟩ means the nearest neighbor pairs. The

Hamiltonian above with τij and Uj translational invariant is the so-called Fermi Hubbard model,

which is an iconic model for understanding strongly correlated materials.

Here we show the Fermi-Hubbard Hamiltonian in 1D to simplify the discussions,

ĤFH = −τ
∑
j

(ĉ†jαĉj+1,α + H.c.) + U
∑
j

ĉ†jeĉjeĉ
†
jg ĉjg. (2.145)

In this thesis, we typically focus on the Mott insulator regime with U ≫ τ , where the double-

occupied states are separated by a large energy gap ∼ U , allowing us to restrict of dynamics in the

single-occupied states via second-order perturbation theory (see Appendix A). In the case of half

filling, we get an effective Hamiltonian describing superexchange interactions,

Ĥeff = JSE
∑
j

(
Ŝj · Ŝj+1 −

1

4

)
, JSE =

4τ2

U
. (2.146)

The spin operators are defined as Eq. (2.141), while the j means 1D lattice site index here.

2.3 Spin systems

In this section, we introduce a variety of tools for the theory treatment of spin systems. Firstly

we discuss the boson representation of spins, including Holstein-Primakoff bosons and Schwinger
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bosons. Then we focus on the phase space representation of spins, including the Wigner function,

the Glauber-P function and the Husimi-Q function. Finally we discuss the tensor product space of

spin-1/2 operators and its subspaces including the Dicke manifold and the spin-wave manifold.

2.3.1 Boson representation of spins

The spin operators (SU(2) generators) are vector operators obeying the following commuta-

tion relations,

[Ŝα, Ŝβ] = iϵαβγŜ
γ , (2.147)

where α, β, γ run over x, y, z. We also define Ŝ± = Ŝx±iŜy, and the commutation relation becomes

[Ŝz, Ŝ±] = ±Ŝ±, [Ŝ+, Ŝ−] = 2Ŝz. (2.148)

The idea of the Holstein-Primakoff representation is to introduce a bosonic operator b̂ to

represent the spin operators as follows [63]:

Ŝ+ = (2S − b̂†b̂)1/2 b̂, Ŝ− = b̂† (2S − b̂†b̂)1/2, Ŝz = S − b̂†b̂. (2.149)

Here we consider spin-S operators satisfying Ŝ·Ŝ = ŜxŜx+ŜyŜy+ŜzŜz = S(S+1), with S integers

or half-integers. Using the commutation relation [b̂, b̂†] = 1, one can check that the Holstein-

Primakoff representation above agrees with the spin commutation relations (see Eq. (2.148)). The

spin-wave theory is based on Holstein-Primakoff representation assuming 2S ≫ ⟨b̂†b̂⟩. So we can

insert Eq. (2.149) into the spin Hamiltonian and keep the terms up to quadratic order of bosonic

operators. Note that Eq. (2.148) is a special case when the spin-wave expansion is near the |Sz = S⟩

state. In general, one can perform arbitrary rotation to the LHS of Eq. (2.148) and consider spin-

wave expansion near any spin coherent states (see definition in the next subsection).

The idea of the Schwinger representation is to introduce bosonic operators â and b̂ to represent

the spin operators as follows [63]:

Ŝ+ = â†b̂, Ŝ− = b̂†â, Ŝz =
1

2
(â†â− b̂†b̂). (2.150)
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For spin-S operators satisfying Ŝ · Ŝ = S(S + 1), we have a constraint â†â + b̂†b̂ = 2S. One can

check that the Schwinger representation above agrees with the spin commutation relations (see

Eq. (2.148)). In terms of Schwinger bosons, we can represent the spin states as

|S,m⟩ =
(â†)S+m√
(S +m)!

(b̂†)S−m√
(S −m)!

|vac⟩. (2.151)

Since the spin operators are generators of the SU(2) group, we can parametrize the SU(2) group

members by three Euler angles ϕ, θ, χ,

R̂(χ, θ, ϕ) = eiϕŜ
z
eiθŜ

y
eiχŜ

z
. (2.152)

Using the Baker–Campbell–Hausdorff formula,

eXY e−X = Y + [X,Y ] +
[X, [X,Y ]]

2!
+

[X, [X, [X,Y ]]]

3!
+ · · · , (2.153)

we get the transformation rules for Schwinger bosons,ˆ̃a†

ˆ̃
b†

 = R̂

â†
b̂†

 R̂−1 =

 ueiχ/2 veiχ/2

−v∗e−iχ/2 u∗e−iχ/2


â†
b̂†

 , (2.154)

where

u = cos(θ/2)eiϕ/2, v = sin(θ/2)e−iϕ/2. (2.155)

The Schwinger boson representation can be easily generalized to the case of SU(n) generators

by increasing the number of Schwinger boson flavors from 2 to n, (â, b̂) → (â1, â2, · · · , ân). The

SU(n) generators can be expressed as [63]

Ŝmm′
= â†mâm′ , (2.156)

which satisfying the SU(n) commutation relation,

[Ŝmm′
, Ŝµµ′

] = δm′µŜ
mµ′ − δmµ′Ŝµm′

. (2.157)

Similar to the constraint in SU(2) case, the SU(n) Schwinger bosons have the constraint

n∑
m=1

â†mâm = 0, 1, 2, · · · . (2.158)
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2.3.2 Phase space representation of spins

The phase space representation of spins is based on spin coherent states, which is an analogy

of the phase space representation of bosons based on bosonic coherent states (see Appendix D).

A spin coherent state is defined by applying the rotation operator R̂(θ, ϕ) ≡ R̂(χ = 0, θ, ϕ) to the

maximally polarized state |S, S⟩ (see Eq. (2.152)) [63],

|θ, ϕ⟩ = R̂(θ, ϕ)|S, S⟩ =
S∑

m=−S

√(
2S

S +m

)
uS+mvS−m|S,m⟩. (2.159)

where
(
n
k

)
are binomial coefficients, and u, v are given by Eq. (2.155). Note that different spin

coherent states are not orthogonal,

⟨θ, ϕ|θ′, ϕ′⟩ = (u∗u′ + v∗v′)2S , (2.160)

and thus form an overcomplete basis,

2S + 1

4π

∫
sin θdθdϕ|θ, ϕ⟩⟨θ, ϕ|= Î . (2.161)

We then introduce the concept of the multipole operators [64],

T̂kq =
∑
mm′

(−1)S−m
√

2k + 1

 S k S

−m q m′

 |S,m⟩⟨S,m′|, (2.162)

where the matrix in round brackets is the Wigner-3j symbol. Note that T̂kq are spherical tensor

operators (see Appendix B). The multipole operators satisfies the following orthogonality property:

Tr[T̂ †
k1q1

T̂k2q2 ] = δk1k2δq1q2 , T̂ †
kq = (−1)q T̂k,−q. (2.163)

Thus any operators acting on the spin Hilbert space can be expanded in terms of the multipole

operators,

Ô =
2S∑
k=0

k∑
q=−k

OkqT̂kq, Okq = Tr[ÔT̂ †
kq]. (2.164)

As discussed in Ref. [64], one can define the kernel operator

∆̂(Ω)(θ, ϕ) =
∑
kq

ΩkqY
∗
kq(θ, ϕ)T̂kq, (2.165)



46

as well as the inverse kernel operator

∆̂(Ω̃)(θ, ϕ) =
∑
kq

Ω̃kqY
∗
kq(θ, ϕ)T̂kq, (2.166)

where Ω̃kq = [Ωk,−q]
−1, and Ykq(θ, ϕ) are spherical harmonics. Different choice of filter function

Ωkq leads to different types of phase space representation as we will discuss later. Based on the

orthogonality property of multipole operators, one can prove that

Tr[∆̂(Ω)(θ1, ϕ1)∆̂
(Ω̃)(θ2, ϕ2)] = δ(cos θ1 − cos θ2)δ(ϕ1 − ϕ2). (2.167)

Based on Eq. (2.167), one can establish a mapping between the operator Ô and the c-number

function F (Ω)(θ, ϕ) using the kernel operators,

Ô =

∫
sin θdθdϕF (Ω)(θ, ϕ)∆̂(Ω)(θ, ϕ), (2.168)

F (Ω)(θ, ϕ) = Tr[Ô∆̂(Ω̃)(θ, ϕ)]. (2.169)

We call the c-number function F (Ω)(θ, ϕ) as phase space representation of operator Ô. A special

case is that the operator Ô is the density matrix ρ̂, and in this case the c-number function F
(Ω)
ρ (θ, ϕ)

is called phase space representation of a quantum state. Since Tr[ρ̂] = 1, we have√
2S + 1

4π
Ω0,0

∫
sin θdθdϕF (Ω)

ρ (θ, ϕ) = 1. (2.170)

So one can interpret F (Ω)(θ, ϕ) under proper normalization as a quasi-probability distribution in

phase space. Also based on Eq. (2.167), it is clear that

Tr[Ô1Ô2] =

∫
sin θdθdϕF (Ω)(θ, ϕ)F (Ω̃)(θ, ϕ). (2.171)

Here we introduce some examples of the filter function Ωkq:

• Wigner representation

Ωkq = Ω̃kq = 1. (2.172)

Here we use W (θ, ϕ) to represent the c-number function F
(W )
ρ (θ, ϕ) for density matrix ρ̂.

In this case we have
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(a) Spin coherent state (b) Spin squeezed state (c) GHZ state

Figure 2.4: Examples of the Husimi Q-representation (above) and the Wigner representation (be-

low) for collective spin states with 32 atoms, including (a) spin coherent state, (b) spin squeezed

state, and (c) GHZ state. See Chapter 2.5 for definitions of the spin squeezed state and the GHZ

state. For the Wigner representation, the red/blue color means the positive/negative sign.

∆̂(W )(θ, ϕ) =
∑
kq

Y ∗
kq(θ, ϕ)T̂kq, (2.173)

W (θ, ϕ) =
∑
kq

ρkqYkq(θ, ϕ), ρkq = Tr[ρ̂T̂ †
kq]. (2.174)

• Glauber P-representation (Ωkq), Husimi Q-representation (Ω̃kq)

Ωkq = (−1)k−q 1√
4π

(2S + 1)!

[(2S − k)! (2S + k + 1)! ]1/2
. (2.175)

Here we use P (θ, ϕ) to represent the c-number function F
(P )
ρ (θ, ϕ), and Q(θ, ϕ) to represent

the c-number function F
(Q)
ρ (θ, ϕ). Using the fact that

⟨θ, ϕ|T̂ †
kq|θ, ϕ⟩ = Y ∗

kq(θ, ϕ)(−1)k−q
√

4π
(2S)!

[(2S − k)! (2S + k + 1)! ]1/2
, (2.176)
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we have

∆̂(P )(θ, ϕ) = |θ, ϕ⟩⟨θ, ϕ|, (2.177)

which gives

ρ̂ =

∫
sin θdθdϕP (θ, ϕ)|θ, ϕ⟩⟨θ, ϕ|. (2.178)

On the other hand, we have

⟨θ′, ϕ′|∆̂(Q)(θ, ϕ)|θ′, ϕ′⟩ =
4π

2S + 1
δ(cos θ − cos θ′)δ(ϕ− ϕ′), (2.179)

which gives

Q(θ, ϕ) =
2S + 1

4π
⟨θ, ϕ|ρ̂|θ, ϕ⟩. (2.180)

Notice that ∫
sin θdθdϕQ(θ, ϕ) = 1. (2.181)

In Fig. 2.4, we show examples of the Husimi Q-representation and the Wigner representation

for different kinds of collective spin states.

2.3.3 Tensor product of spin-1/2 systems

Here we focus on the spin system with N spin-1/2 particles. Based on the addition of angular

momentum, one can decompose the Hilbert space into subspaces of total spin S = N/2, N/2 −

1, · · · , N/2 − ⌊N/2⌋. If we use (2S + 1) to label the Hilbert space of a spin-S particle (dimension

2S + 1), one can prove that

2⊗N =

⌊N/2⌋⊕
k=0

ηk(N + 1− 2k), ηk =
N − 2k + 1

N − k + 1

(
N

k

)
, (2.182)

where
(
N
k

)
is binomial coefficients, ⊗ represents tensor product, and ⊕ represents direct sum. For

clarification, we multiply the dimensions of Hilbert spaces for tensor product, while we sum the

dimensions of Hilbert spaces for direct sum. The coefficients ηk means direct sum of ηk copies of

Hilbert spaces. Here we briefly discuss the key idea of calculating ηk: Following the addition of

angular momentum, ηk is the number of ways to construct a sequence with n − k copies of +1
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and k copies of −1 such that the partial sums of the sequence are always non-negative. Based on

Ref. [65], we can describe ηk by Catalan’s triangle, which gives rise to Eq. (2.182). For example,

we have η0 = 1 for S = N/2, η1 = N − 1 for S = N/2 − 1, and ηN/2 =
(

N
N/2

)
/(N/2 + 1) for S = 0

(assuming N is a even number).

The subspace with S = N/2 is the so-called Dicke manifold, which contains all the permuta-

tionally symmetric states,

|ψ⟩ ∝
∑
P

|ψP(1)⟩1 ⊗ |ψP(2)⟩2 ⊗ · · · ⊗ |ψP(N)⟩N , (2.183)

where P is a permutation operation mapping particle indices j → P(j), and we sum over all the

possible permutations. The proof of the statement is straightforward: We start from the state

with all the particles in the |↓⟩ state, which is the state |S = N/2,m = −N/2⟩. Then we apply

the operator Ŝ+ =
∑

j Ŝ
+
j multiple times to the state |N/2,−N/2⟩ to get the other basis states of

S = N/2. Since the operator Ŝ+ is permutationally symmetric, all the basis states (Dicke states)

|N/2,m⟩ should be permutationally symmetric. The states in the Dicke manifold are the ground

state of the infinite-range ferromagnetic Heisenberg model, Ĥ = −J Ŝ · Ŝ with J > 0.

The subspace with S = N/2 − 1 is the so-called spin-wave manifold, since the states in this

subspace are spin-wave excitations of the ferromagnetic Heisenberg model. We typically construct

the states based on Dicke states. First we can prove that a single spin flip on the Dicke state,

Ŝ+
j |N/2,m − 1⟩, should be a superposition of states in the Dicke manifold (S = N/2) and spin-

wave manifold (S = N/2−1) with the same magnetization mS . This is because we can consider the

addition of angular momentum for particle j (Sj = 1/2) and the other particles (Sother = (N−1)/2

with permutation symmetry), which gives S = N/2 or S = N/2 − 1. Therefore, Ŝ+
j |N/2,m − 1⟩

states with j = 0, · · · , N − 1 form a linear independent (not orthogonal) basis for the states with

mS in the Dicke manifold and spin-wave manifold. So we can diagonalize the following matrix,

Ajl = ⟨N/2,m− 1|Ŝ−
j Ŝ

+
l |N/2,m− 1⟩, (2.184)

to obtain a orthonormal basis of these states. Based on the permutation symmetry of Dicke state
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|N/2,m− 1⟩, we have

Ajj =
N/2 −m+ 1

N
, Ajl =

(N/2 −m+ 1)(N/2 +m− 1)

N(N − 1)
(j ̸= l). (2.185)

Note that the matrix Ajl is a circulant matrix, whose eigenvectors are the Fourier modes vk =

(1, ei2π k/N , ei2π 2k/N , · · · , ei2π (N−1)k/N ), with k = 0, · · · , N − 1. Since permutation symmetry en-

sures there is only one Dicke state |N/2,m⟩ with k = 0,

|N/2,m⟩ =
1√

(N/2 +m)(N/2 −m+ 1)

∑
j

Ŝ+
j |N/2,m− 1⟩, (2.186)

the other N − 1 states lie in the spin-wave manifold with k = 1, · · · , N − 1,

|N/2 − 1,m, k⟩ =

√
N − 1

(N/2 −m)(N/2 −m+ 1)

∑
j

ei2πkj/N Ŝ+
j |N/2,m− 1⟩. (2.187)

The following matrix elements are useful for perturbative calculations (note that there are

typos in the formula of ⟨N/2,m|Ŝ+
j |N/2 − 1,m− 1, k⟩ in Ref. [66]),

⟨N/2,m|Ŝz
j |N/2,m⟩ =

m

N
, (2.188)

⟨N/2,m|Ŝz
j |N/2 − 1,m, k⟩ = ei2πkj/N

√
(N/2)2 −m2

N2(N − 1)
, (2.189)

⟨N/2,m|Ŝ+
j |N/2,m− 1⟩ =

√
(N/2 +m)(N/2 −m+ 1)

N2
, (2.190)

⟨N/2,m|Ŝ+
j |N/2 − 1,m− 1, k⟩ = −ei2πkj/N

√
(N/2 +m)(N/2 +m− 1)

N2(N − 1)
, (2.191)

⟨N/2,m|Ŝ−
j |N/2 − 1,m+ 1, k⟩ = ei2πkj/N

√
(N/2 −m)(N/2 −m− 1)

N2(N − 1)
. (2.192)

2.4 Photon-mediated interactions and measurements

In this section, we first introduce the concepts of open quantum systems and derive the

Lindblad master equation using the Markovian approximation, since the cavity QED system is

an important example of an open quantum system. We then briefly discuss the quantization of

electromagnetic fields in cavity QED systems, and list out the unitary evolution and dissipation

terms in the Lindblad master equation for cavity QED systems. After that, we show the derivation
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for two examples of photon-mediated interactions: spin exchange interactions and one-axis twisting

interactions. Finally, we discuss continuous quantum measurements in cavity QED systems, which

is easy to achieve in experiments by tracking the light leaking out of the cavity.

2.4.1 Open quantum system and Lindblad master equation

Here we would like to introduce theory tools for open quantum systems, which are quantum

systems that interact with an external quantum system known as environment. The cavity QED

system discussed in this thesis is an important example of an open quantum system. Here we

provide a short review for the origin of the Lindblad master equation in open quantum systems,

using a quantum information oriented way (see Ref. [67]) for the derivation. One can also refer to

Ref. [68] for the traditional way of derivation in quantum optics.

The first step for understanding open quantum systems is to employ the existing theory tools

in close quantum systems. Here we assume the environment is a quantum system with orthonormal

basis {|a⟩, a = 0, 1, · · · , n−1}, and then consider a joint system including the physical system A and

environment B. The physics of open quantum systems should be captured by unitary dynamics

and projective measurements in the joint system. For example, we consider the system A and

environment B are initially in a product state, and then apply a unitary transformation Û to the

joint system. Expanding Û in the orthonormal basis of B, we have

Û |ψ̃⟩AB = Û(|ψ⟩A ⊗ |0⟩B) =
∑
a

M̂a|ψ⟩A ⊗ |a⟩B. (2.193)

Since Û is a unitary operator, we have

⟨ψ̃|Û †Û |ψ̃⟩AB = 1 ⇒
∑
a

⟨ψ|M̂ †
aM̂a|ψ⟩A = 1. (2.194)

Note that |ψ⟩A is an arbitrary state in A, hence

∑
a

M̂ †
aM̂a = Î . (2.195)

Consider projective measurements in the orthonormal basis of B (projection operator Î ⊗
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|a⟩⟨a|), the probability of outcome a and the post-measurement state of the system are given by

Prob(a) = Tr[M̂aρ̂M̂
†
a ], ρ̂a =

M̂aρ̂M̂
†
a√

Prob(a)
. (2.196)

Here we only prove for pure states ρ̂ = |ψ⟩⟨ψ|, and it is easy to show that the same formula also

works for mixed states. Such type of measurement (satisfying Eq. (2.195)) is the most general form

of measurement for system A, which is called a positive operator-valued measure (POVM), and M̂a

is a measurement operator.

We can also consider the evolution of the joint state under Û , and then trace out environment

B to get the state in A. We have

ρ̂→ E(ρ̂) =
∑
a

M̂aρ̂M̂
†
a . (2.197)

The linear map E(ρ̂) (satisfying Eq. (2.195)) is called a quantum channel, which is a general form of

density matrix evolution in system A. This is equivalent to projective measurements in environment

B while losing records of the measurement outcome, leading to a mixed state
∑

a Prob(a)ρ̂a. One

can also consider the Heisenberg picture of the quantum channel, where the linear map is applied

to operator Ô and ρ̂ remains unchanged. One may write

Ô → E∗(Ô) =
∑
a

M̂ †
aÔM̂a, (2.198)

which leads to the same expectation value ⟨Ô⟩ = Tr[ρ̂Ô] as the Schrödinger picture.

In most cases, the evolution of the density matrix can be described by a differential equation

known as Lindblad master equation. This is based on the Markovian approximation, which assumes

ρ̂(t+ dt) is completely determined by ρ̂(t). The Markovian approximation is valid if the relaxation

time scale of the environment B is much faster than the evolution time scale of the system A, and

this is a reasonably good approximation for cavity QED systems. In the following, we will show

that the Lindblad master equation is a direct consequence of the Markovian approximation. The

Markovian evolution for a infinitesimal time step dt can be written as

ρ̂(t+ dt) = Edt(ρ̂(t)) =
∑
a

M̂aρ̂(t)M̂ †
a = ρ̂(t) +O(dt). (2.199)
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Without loss of generality, we may assume M̂0 = Î + O(dt), and M̂a = O(
√
dt) for a > 0. M̂0

smoothly connects to identity and describes how the system evolves when no quantum jump occurs,

while M̂a describes a possible quantum jump in the system. We may write

M̂0 = Î +

(
− i

h̄
Ĥ + K̂

)
dt, M̂a =

√
dtL̂a (a > 0), (2.200)

where Ĥ and K̂ are both Hermitian matrices. Based on Eq. (2.195), we have

Î =
∑
a

M̂ †
aM̂a = Î + dt

(
2K̂ +

∑
a>0

L̂†
aL̂a

)
+ · · · ⇒ K̂ = −1

2

∑
a>0

L̂†
aL̂a. (2.201)

Plug in Eq. (2.199), one can obtain the so-call Lindblad master equation,

d

dt
ρ̂ = − i

h̄
[Ĥ, ρ̂] +

∑
a>0

(
L̂aρ̂L̂

†
a −

1

2
L̂†
aL̂aρ̂−

1

2
ρ̂L̂†

aL̂a

)
= − i

h̄
[Ĥ, ρ̂] +

∑
a>0

L[L̂a]ρ̂,

(2.202)

where Ĥ is the Hamiltonian, L̂a are Lindblad jump operators, and L[L̂a]ρ̂ is a shorthand notation

for the dissipation part of the Lindblad master equation. We can also derive the equation of motion

for operator Ô in the Heisenberg picture, where the Markovian evolution becomes

Ô(t+ dt) = E∗
dt(Ô(t)) =

∑
a

M̂ †
aÔ(t)M̂a, (2.203)

so the Heisenberg equation of motion would be

d

dt
Ô =

i

h̄
[Ĥ, Ô] +

∑
a>0

(
L̂†
aÔL̂a −

1

2
L̂†
aL̂aÔ − 1

2
ÔL̂†

aL̂a

)
. (2.204)

2.4.2 Unitary and dissipative physics in cavity QED

The physics of cavity QED systems is based on the interaction between atoms and quantized

electromagnetic (EM) fields inside the cavity. First we would like to briefly introduce the quanti-

zation of single-mode EM fields. Based on the Maxwell equations, the electric field E(r, t) satisfies

the wave equation,

∇2E− 1

c2
∂2E

∂t2
= 0. (2.205)
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Here we consider E(r, t) = αE(t)f(r) + c.c., where αE(t) = E0e
−iωt containing the temporal depen-

dence, f(r) is the mode function containing all the spatial dependence, with normalization∫
d3r|f(r)|2= 1. (2.206)

By plugging the above relation into the wave equation, we find that the mode function f(r) satisfies

the Helmholtz equation,

(∇2 + k2)f(r) = 0. (2.207)

where k = ω/c. Considering ∇ ·E = 0, we have ∇ · f(r) = 0. Considering ∇×E = −∂tB, we have

B(r, t) = αB(t)(∇ × f(r)) + c.c., where αB(t) = − i
ωE0e

−iωt. Notice that αE(t) = −∂tαB(t), and

therefore we can define p(t) = ϵ0(−iαE(t) + c.c.), q(t) = (iαB(t) + c.c.). Using the fact that∫
d3r(∇× f∗) · (∇× f) =

∫
d3r f∗ · (∇× (∇× f)) = −

∫
d3r f∗ · (∇2f) = k2

∫
d3r |f |2, (2.208)

we can rewrite the total energy of the EM field as

H =
ϵ0
2

∫
d3r
(
|E|2+c2|B|2

)
= ϵ0

(
|αE(t)|2+ω2|αB(t)|2

)
=

p2

2ϵ0
+

1

2
ϵ0ω

2q2,

(2.209)

which is the same as an harmonic oscillator Hamiltonian with mass m = ϵ0. Following the quan-

tization of an harmonic oscillator Hamiltonian, one can express q̂ and p̂ in terms of creation and

annihilation operators,

q̂ =

√
h̄

2mω
(â+ â†), p̂ = i

√
h̄mω

2
(â† − â). (2.210)

In this way we can replace αE →
√

h̄ω
2ϵ0
â, αB → −i

√
h̄

2ωϵ0
â. By plugging these expressions into the

expressions of EM fields, we get

Ê =

√
h̄ω

2ϵ0
f(r)â+ H.c., B̂ = −i

√
h̄

2ωϵ0
(∇× f(r))â+ H.c., (2.211)

and the quantum Hamiltonian,

Ĥ = h̄ω

(
â†â+

1

2

)
. (2.212)
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This Hamiltonian is consistent with each photon carrying energy h̄ω, where â† and â are photon

creation and annihilation operators respectively. â†â can be interpreted as the photon number in

the system. The constant h̄ω/2 is the zero-point energy of the EM field.

Now we list some examples of running-wave mode functions f(r). Standing-wave mode

functions can be constructed by superposition of two counter-propagating running-wave modes

(r ↔ −r).

• Free space:

f(r) =
1√
V
ε⃗eik·r, (2.213)

where ε⃗ is the polarization vector with ε⃗ ⊥ k.

• Paraxial approximation:

f(r) = f(x, y, z)ε⃗eikz, (2.214)

where f(x, y, z) is a slowly varying function. Considering |∂2f
∂z2

|≪ |k ∂f
∂z |, the Helmholtz

equation can be approximated by

∂2f

∂x2
+
∂2f

∂y2
+ 2ik

∂f

∂z
= 0. (2.215)

Solutions of this equation are known as Hermite-Gaussian modes or Laguerre-Gaussian

modes. We mainly focus on the lowest order mode (Gaussian beam) given by the following

formula,

f(x, y, z) =
1√
V

w0

w(z)
exp

(
− x2 + y2

[w(z)]2

)
exp

(
ik
x2 + y2

2R(z)
− iΦGouy(z)

)
, (2.216)

where w0 is the beam waist, w(z) = w0

√
1 + (z/zR)2 is the beam radius at position z,

R(z) = z[1 + (zR/z)
2] is the radius of curvature, ΦGouy(z) = arctan(z/zR) is the Gouy

phase, with zR = kw2
0/2 the Rayleigh range. The mode volume V = πw2

0L/2 is the

normalization factor for f(r) if we restrict the range of z ∈ [−L/2, L/2].

After quantizing the EM fields, we now use the electric dipole approximation of the atom-light
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coupling, ĤAL = −d̂ · Ê, leading to the following Hamiltonian for an array of two-level atoms,

ĤAL/h̄ =
∑
i

(GiâŜ
+
i + H.c.), (2.217)

where we dropped the counter-rotating terms. Here the atom-light coupling strength is given by

Gi = −
√
h̄ω

2ϵ0

⟨e|d̂ · ε⃗|g⟩
h̄

∫
d3rϕ∗i,e(r)f(r)ϕi,g(r), (2.218)

where f(r) = f(r)ε⃗, ϕi,e(r) and ϕi,g(r) are the spatial wave functions for the i-th atom.

For simplicity, here we consider the case with homogeneous couplings, Gi = G. We also

assume G is a real number. Combining with the Hamiltonian for EM field energy and atomic

internal energy, one can obtain the so-called Tavis-Cumming model,

ĤTC/h̄ = ωcâ
†â+ ωaŜ

z + G(âŜ+ + H.c.), (2.219)

where ωc is the frequency of cavity resonance, and ωa is the atomic transition frequency. Now we

would like to discuss the single-photon dressed states in the Tavis-Cumming model. We use |n⟩ to

label the photon number in the cavity, and |S,m⟩ to label the collective atomic states. When we

restrict to the subspace form by |1⟩|N/2,−N/2⟩ and |0⟩|N/2,−N/2 + 1⟩, with N the total atom

number, we have

Ĥsubspace/h̄ =

 ωc G
√
N

G
√
N ωa

 . (2.220)

The eigenenergies of Ĥsubspace are as follows,

|+⟩ = C1|1⟩|N/2,−N/2⟩ + C2|0⟩|N/2,−N/2 + 1⟩, E+/h̄ =
ωc + ωa

2
+

1

2

√
(ωc − ωa)2 + 4G2N,

|−⟩ = −C2|1⟩|N/2,−N/2⟩ + C1|0⟩|N/2,−N/2 + 1⟩, E−/h̄ =
ωc + ωa

2
− 1

2

√
(ωc − ωa)2 + 4G2N.

(2.221)

where

C1 =
1√
2

(
1 +

ωc − ωa√
(ωc − ωa)2 + 4G2N

)1/2

, C2 =
1√
2

(
1 − ωc − ωa√

(ωc − ωa)2 + 4G2N

)1/2

. (2.222)

When ωc = ωa, we have E+ − E− = 2G
√
N , which gives the vacuum Rabi splitting for N atoms.

When |ωc−ωa|≫ G
√
N , the two vacuum Rabi splitting peak will reduce to cavity-like and atom-like

peak: E+ → ωc, E− → ωa if ωc > ωa; E+ → ωa, E− → ωc if ωc < ωa.
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Apart from unitary dynamics, cavity QED systems intrinsically feature dissipative processes

such as cavity decay and atom spontaneous emission. Cavity decay can be described by a Lindblad

jump operator L̂ =
√
κâ, which corresponds a photon leaking out of the cavity and never coming

back. Atom spontaneous emission can be described by Lindblad jump operators L̂i =
√
γŜ−

i ,

which are single-direction decays from the atomic excited state to the ground state. Therefore, the

Lindblad master equation can be written as

d

dt
ρ̂ = − i

h̄
[ĤTC, ρ̂] + κL[â]ρ̂+ γ

∑
j

L[Ŝ−
j ]ρ̂. (2.223)

We define a dimensionless parameter C known as cooperativity to characterize the competition of

elastic vs. inelastic processes,

C =
4G2

κγ
. (2.224)

The regime with C < 1 is called weak coupling regime, where an excited atom is more likely to

scatter a photon into free space. While in the regime with C > 1, an excited atom is more likely

to scatter a photon into the cavity. Note that C only depends on cavity parameters, since the

dependence on the atomic dipole matrix element cancels out in the formula above. For the case of

an atomic ensemble with N atoms, we can define the collective cooperativity as NC. The quantity

NC is fundamental to characterize many-body cavity QED processes such as superradiance and

spin squeezing, which are key topics of my PhD research (see chapter 5).

Cavity
field

Atoms

External 
drive

Cavity Drive

Figure 2.5: (a) Schematic of a cavity QED system. (b) Energy level diagram for spin exchange
interactions, ωa is the frequency of the atomic transition, ωd is the frequency of the external
drive, and ωc is the frequency of cavity resonance. (c) Energy level diagram for one-axis twisting
interactions. ω0 is the frequency splitting of the ground state hyperfine spin.
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2.4.3 Derivation of spin exchange interactions

In this subsection, we focus on the regime |ωc−ωa|≫ G
√
N , where the cavity resonance is far

detuned from the atomic transition. In this case, an atom in the excited state can virtually emit a

photon into the cavity mode and flip to the ground state, while another atom in the ground state

can absorb the same photon and flip to the excited state. This process is known as spin exchange

interactions.

Since the preparation of atomic excited states requires an external laser, the appropriate

theory discussion should lie in the laser rotating frame. Here we add an external drive to the cavity

mode in ĤTC, which gives (see Fig. 2.5(a,b))

Ĥ/h̄ = ωcâ
†â+ ωaŜ

z + (ϵ e−iωdtâ† + ϵ∗ eiωdtâ) + G(âŜ+ + â†Ŝ−), (2.225)

where ϵ is the intracavity drive amplitude. The whole system can now be described by the Lindblad

master equation,

d

dt
ρ̂ = − i

h̄
[Ĥ, ρ̂] + κL[â]ρ̂+ γ

∑
j

L[Ŝ−
j ]ρ̂. (2.226)

If we introduce a time-dependent unitary transformation Û(t), the new Lindblad master

equation for ρ̂′ = Û ρ̂Û † has a new effective Hamiltonian given by

Ĥ ′ = ÛĤÛ † + ih̄
dÛ

dt
Û †, (2.227)

and the Lindblad jump operators becomes L̂′
j = Û L̂jÛ

†.

For the case when the unitary transformation is to move to the rotating frame of the driving

laser, Û(t) is a time-dependent unitary transformation as follows,

Û = exp
(
iωdt(Ŝ

z + â†â)
)
, (2.228)

under which the Hamiltonian becomes

Ĥ ′/h̄ = −∆câ
†â− ∆aŜ

z + (ϵ â† + ϵ∗ â) + G(âŜ+ + â†Ŝ−). (2.229)
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Here, ∆c = ωd − ωc is the detuning between the laser frequency and the cavity resonance, and

∆a = ωd−ωa is the detuning between the laser frequency and the atomic transition frequency. The

other parts of Lindblad master equation remains unchanged.

With no atoms in the cavity, the steady state of the system in the presense of an external

drive and cavity decay, is a coherent state |α⟩. By plugging in ρ̂ = |α⟩⟨α| and setting ∂tρ̂ = 0. we

get

α =
ϵ

∆c + iκ/2
. (2.230)

When adding atoms to the cavity, we can rewrite the cavity field operator as â = α + b̂, where

b̂ describes the quantum fluctuations of the coherent state. In terms of b̂, the Lindblad master

equation becomes

d

dt
ρ̂ = − i

h̄
[Ĥ ′, ρ̂] + κL[b̂]ρ̂+ γ

∑
j

L[Ŝ−
j ]ρ̂,

Ĥ ′/h̄ = −∆cb̂
†b̂− ∆aŜ

z +
1

2
(ΩŜ+ + Ω∗Ŝ−) + G(b̂Ŝ+ + b̂†Ŝ−),

(2.231)

where Ω = 2Gα is the Rabi frequency. We assume ∆c or κ is the largest frequency scale compared to

G
√
N,∆a,Ω, γ (we estimate the validity at the end of this subsection), which allows us to consider

the ground manifold as states with no photons in field b̂, and the excited manifold as states with

a single photon excitation. The effective atom-only master equation can be calculated based on

second-order perturbation theory described in Appendix A,

d

dt
ρ̂ = − i

h̄
[Ĥeff , ρ̂] + ΓL[Ŝ−]ρ̂+ γ

∑
j

L[Ŝ−
j ]ρ̂,

Ĥeff/h̄ = χŜ+Ŝ− − ∆aŜ
z +

1

2
(ΩŜ+ + Ω∗Ŝ−).

(2.232)

Here χN is the spin exchange interaction strength, and ΓN is the superradiant decay rate, which

are given by

χ =
G2∆c

∆2
c + κ2/4

, Γ =
G2κ

∆2
c + κ2/4

. (2.233)

Now we explain why G
√
N is a good estimation for the strength of atom-light coupling,

ĤAL/h̄ = G(b̂Ŝ+ + b̂†Ŝ−). (2.234)
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We consider the mean-field dynamics of ĤAL, which gives

d

dt
⟨b̂⟩ = −iG⟨Ŝ−⟩, d

dt
⟨Ŝ−⟩ = 2iG⟨Ŝz⟩⟨b̂⟩, d

dt
⟨Ŝz⟩ = iG(⟨b̂†⟩ − ⟨b̂⟩). (2.235)

Without loss of generality, we assume ⟨Ŝ+⟩ is a real number, which gives ⟨b̂⟩ is pure imaginary.

So we can define i⟨b̂⟩ = i⟨b̂†⟩ = β, ⟨Ŝ+⟩ = ⟨Ŝ−⟩ = N sin θ/2, ⟨Ŝz⟩ = N cos θ/2. Based on the

two conserved quantities: ⟨Ŝ+⟩⟨Ŝ−⟩ + ⟨Ŝz⟩⟨Ŝz⟩ = N2/4, ⟨b̂†⟩⟨b̂⟩ + ⟨Ŝz⟩ = C, with C a constant

depending on initial state, we have

d

dt
θ = 2Gβ, d

dt
β =

GN
2

sin θ ⇒ d2

dt2
θ = G2N sin θ. (2.236)

Note that this is the differential equation of a pendulum, and the oscillation frequency is at the

order of G
√
N .

2.4.4 Derivation of one-axis twisting interactions

So far we have discussed the case that atomic spins are directly coupled by cavity photons.

Now we focus on another type of photon-mediated interactions based on dispersive coupling between

cavity photons and atomic spins. In this case, the atomic spins are maintained in their atomic

ground states. Cavity photons can lead to differential AC Stark shifts on the atomic spins, while

the atom dynamics also shifts the frequency of the cavity resonance. The overall effect of the

atom dynamics due to the feedback of cavity photons can be interpreted as an infinite range Ising

interaction known as one-axis twisting.

Here we consider atomic internal levels |↓⟩, |↑⟩ and |e⟩. The transition |↓⟩ → |e⟩ and |↑⟩ → |e⟩

are off-resonantly coupled by a single cavity mode (we use the same Clebsch-Gordan coefficient for

both transition for simplicity), which gives the following Hamiltonian (see Fig. 2.5(a,c)),

Ĥ/h̄ = ωaP̂e + ωcâ
†â+ ω0Ŝ

z + (ϵ e−iωdtâ† + ϵ∗ eiωdtâ) +
G√
2

(âŜ+
↑e + âŜ+

↓e + H.c.), (2.237)

where P̂e =
∑

j |e⟩j⟨e|, Ŝ+
↑e =

∑
j |e⟩j⟨↑|, and Ŝ+

↓e =
∑

j |e⟩j⟨↓|. Here, ω0 is the frequency difference

between |↓⟩, |↑⟩ states, which is much smaller compared to ωa and ωc. Similar to the previous
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subsection, we move to the rotating frame of the driving laser using the following time-dependent

unitary transformation,

Û = exp
(
iωdt(P̂e + â†â)

)
, (2.238)

which gives

Ĥ ′/h̄ = −∆aP̂e − ∆câ
†â+ ω0Ŝ

z + (ϵ â† + ϵ∗ â) +
G√
2

(âŜ+
↑e + âŜ+

↓e + H.c.), (2.239)

where ∆c = ωd − ωc is the cavity detuning, and ∆a = ωd − ωa is the atomic detuning. Combining

with cavity decay and atomic spontaneous emission, one can obtain the following Lindblad master

equation,

d

dt
ρ̂ = − i

h̄
[Ĥ ′, ρ̂] + κL[â]ρ̂+

γ

2

∑
j

L[Ŝ−
j,↑e]ρ̂+

γ

2

∑
j

L[Ŝ−
j,↓e]ρ̂. (2.240)

We assume ∆a ± ω0/2 is much larger compared to G⟨â⟩, γ, which allows us to consider the

ground manifold as all the atoms in |↓⟩ and |↑⟩ states, and the excited manifold as only one

atom in excited states. The effective master equation can be calculated based on the second-order

perturbation theory described in Appendix A,

d

dt
ρ̂ = − i

h̄
[Ĥ ′′, ρ̂] + κL[â]ρ̂+

G2γ

2(∆a + ω0/2)2

∑
j

(L[âP̂j,↑]ρ̂+ L[âŜ−
j ]ρ̂)

+
G2γ

2(∆a − ω0/2)2

∑
j

(L[âP̂j,↓]ρ̂+ L[âŜ+
j ]ρ̂),

(2.241)

where

Ĥ ′′ = −∆̃câ
†â+ ω0Ŝ

z + (ϵ â† + ϵ∗ â) + G̃â†âŜz. (2.242)

Here the effective cavity detuning ∆̃c and dispersive atom-light coupling strength G̃ are given by

∆̃c = ∆c +
G2N∆a

2(ω2
0/4 − ∆2

a)
, G̃ =

G2ω0

2(ω2
0/4 − ∆2

a)
. (2.243)

We also assume ω0 is the largest frequency scale in the effective master equation, which allows us

to rotate out all the crossed coupling terms, such as Ŝ+ terms in Hamiltonian part and Ŝ+
j ρ̂P̂j,↑,

Ŝ+
j ρ̂ terms is the dissipation part.

Similar to the previous subsection, we can rewrite the cavity field operator as â = α + b̂,

where α = ϵ/(∆̃c + iκ/2), b̂ describes the quantum fluctuations of the coherent state. We neglect
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the terms b̂†b̂Ŝz in the Hamiltonian and the terms containing b̂ in the Lindblad jump operators,

since they are higher order quantum fluctuation terms. The Lindblad master equation becomes

d

dt
ρ̂ = − i

h̄
[Ĥ ′′, ρ̂] + κL[â]ρ̂+ γ+

∑
j

L[Ŝ+
j ]ρ̂+ γ−

∑
j

L[Ŝ−
j ]ρ̂+ γz

∑
j

L[Ŝz
j ]ρ̂, (2.244)

where

Ĥ ′′ = −∆̃cb̂
†b̂+ (ω0 + G̃|α|2)Ŝz + G̃(α∗b̂+ αb̂†)Ŝz. (2.245)

Here we have defined

γ+ =
G2|α|2γ

2(∆a − ω0/2)2
, γ− =

G2|α|2γ
2(∆a + ω0/2)2

, γz = γ+ + γ−. (2.246)

Then we assume ∆̃c or κ is much larger than G̃α
√
N, γ+, γ−, which allows us to consider the

ground manifold with no photons in field b̂, and the excited manifold as a single photon excitation.

The effective atom-only master equation can be calculated based on second-order perturbation

theory described in Appendix A,

d

dt
ρ̂ = − i

h̄
[Ĥeff , ρ̂] + ΓzL[Ŝz]ρ̂+ γ+

∑
j

L[Ŝ+
j ]ρ̂+ γ−

∑
j

L[Ŝ−
j ]ρ̂+ γz

∑
j

L[Ŝz
j ]ρ̂, (2.247)

where

Ĥeff = χŜzŜz + (ω0 + G̃|α|2)Ŝz. (2.248)

Here χN is the one-axis twisting interaction strength, ΓzN is the collective dephasing rate, which

are given by

χ =
G̃2|α|2∆̃c

∆̃2
c + κ2/4

, Γz =
G̃2|α|2κ

∆̃2
c + κ2/4

. (2.249)

2.4.5 Continuous quantum measurements

The concept of continuous quantum measurements originates from the derivation of the

Lindblad master equation. As discussed in section 2.5.1, one interpretation of the Lindblad master

equation is to perform POVM measurements M̂a for infinitesimal time steps, and then losing the

record of the measurement outcome. If we keep track of all the measurement outcome, for each

time step, the system will have random quantum jumps or no jump to the post-measurement
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state depending on the probability of the measurement outcome. In this case, we are performing

continuous quantum measurements to the system, and the measurement outcome uniquely defines

a quantum trajectory. Here we will mainly focus on the special case of cavity QED systems, and

one can refer to Ref. [69] for a more general discussion.

We start from the Lindblad master equation for cavity decay,

d

dt
ρ̂ = − i

h̄
[Ĥ, ρ̂] + κ

(
âρ̂â† − 1

2
â†âρ̂− 1

2
ρ̂â†â

)
, (2.250)

which is equivalent to the following measurement operators,

M̂0 = Î +

(
− i

h̄
Ĥ − κ

2
a†â

)
dt, M̂1 =

√
κdt â. (2.251)

If we put a single-photon detector to keep track of the measurement outcome, i.e. the detected

photon number N(t) increases by 1 if a photon leaks out of the cavity and reaches the detector

(described by annihilation operator â). For simplicity, we first assume all the photons leaking

out will be collected by the detector. We consider an infinitesimal time step such that dN(t) =

N(t + dt) −N(t) is a random integer 0 or 1, with expectation value E[dN ] = κ⟨â†â⟩dt. Based on

the random number dN , we can describe the system dynamics in the following way,

ρ̂(t+ dt) =
M̂0ρ̂(t)M̂ †

0

1 − Tr[M̂1ρ̂(t)M̂ †
1 ]

(1 − dN) +
M̂1ρ̂(t)M̂ †

1

Tr[M̂1ρ̂(t)M̂ †
1 ]
dN. (2.252)

Dropping the terms at the order of O(dt2) and O(dN dt), we have

dρ̂ = − i

h̄
[Ĥ, ρ̂]dt− κ

2
(â†âρ̂− ρ̂â†â)dt+ κ⟨â†â⟩ρ̂dt+

(
âρ̂â†

⟨â†â⟩ − ρ̂

)
dN. (2.253)

In a cavity QED system, a key example of continuous quantum measurements is the homo-

dyne detection of cavity field (see Fig. 2.6). This is to mix the cavity output field (b̂1) with a local

oscillator field (b̂2) by a 50:50 beamsplitter, so the two output fields of the beamsplitter would be

ĉ1 =
1√
2

(b̂1 + ib̂2), ĉ2 =
1√
2

(ib̂1 + b̂2). (2.254)

Then we use two single-photon detectors to keep track of the two output fields of the beamsplitter,

with detected photon number N1(t) and N2(t). So we can define measurement operators

M̂1 =
√
κdt

â+ iβ√
2
, M̂2 =

√
κdt

iâ+ β√
2
, (2.255)
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Cavity
field

Atoms

Figure 2.6: Schematic of the homodyne detection of the cavity field. We mix the cavity output
field with a local oscillator field by a 50:50 beamsplitter, and use single-photon detectors to keep
track of the two output paths of the beamsplitter.

where β is a c-number describing the coherent state of a local oscillator. As for M̂0, we consider

the restriction M̂ †
0M̂0 + M̂ †

1M̂1 + M̂ †
2M̂2 = Î, as well as the Lindblad master equation (Eq. (2.250))

remains unchanged if losing all the measurement record, which gives

M̂0 = Î +

(
− i

h̄
Ĥ − κ

2
(â†â+ |β|2)

)
dt. (2.256)

Similarly, we consider an infinitesimal time step such that dN1(t) = N1(t+dt)−N1(t) and dN2(t) =

N2(t+dt)−N2(t) are random integers 0 or 1 (negligible probability for simultaneously reaching 1),

with expectation values E[dN1] = κ⟨(â† − iβ∗)(â+ iβ)⟩dt/2, E[dN2] = κ⟨(−iâ† + β∗)(iâ+ β)⟩dt/2.

Based on the random number dN1 and dN2, we can describe the system dynamics in the following

way,

ρ̂(t+ dt) =
M̂0ρ̂(t)M̂ †

0

1 − Tr[M̂1ρ̂(t)M̂ †
1 ] − Tr[M̂2ρ̂(t)M̂ †

2 ]
(1 − dN1)(1 − dN2)

+
M̂1ρ̂(t)M̂ †

1

Tr[M̂1ρ̂(t)M̂ †
1 ]
dN1 +

M̂2ρ̂(t)M̂ †
2

Tr[M̂2ρ̂(t)M̂ †
2 ]
dN2.

(2.257)

Dropping the terms at the order of O(dt2), O(dN1 dt), O(dN2 dt) and O(dN1 dN2), we have

dρ̂ = − i

h̄
[Ĥ, ρ̂]dt− κ

2
(â†âρ̂− ρ̂â†â)dt+ κ⟨â†â⟩ρ̂dt+

(
(â+ iβ)ρ̂(â† − iβ∗)

⟨(â† − iβ∗)(â+ iβ)⟩ − ρ̂

)
dN1

+

(
(iâ+ β)ρ̂(−iâ† + β∗)

⟨(−iâ† + β∗)(iâ+ β)⟩ − ρ̂

)
dN2.

(2.258)

Since the the two output fields of the beamsplitter are dominated by the local oscillator

field, N1(t) and N2(t) are well described by Poisson processes with large detected photon num-
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bers. In this case, we can approximate a Poisson distribution with expectation λ by a Gaussian

distribution N (µ = λ, σ2 = λ), which gives dN1 ∼ N (E[dN1/dt]dt, E[dN1/dt]dt) and dN1 ∼

N (E[dN2/dt]dt, E[dN2/dt]dt). Here we define a Wiener process as the continuous limit of a ran-

dom walk, such that W (0) = 0, dW = W (t + dt) −W (t) ∼ N (0, dt) are independent Gaussian

random numbers, and dW 2 = dt is a fixed number without randomness. In order to reach the

standard form of Itô stochastic differential equations, we can rewrite dN1 and dN2 in terms of

Wiener processes,

dN1 = E[dN1/dt] dt+
√
E[dN1/dt] dW1, dN2 = E[dN2/dt] dt+

√
E[dN2/dt] dW2. (2.259)

Defining β/|β|= −ieiϕ, and taking the limit of |β|→ ∞, we have

dρ̂ = − i

h̄
[Ĥ, ρ̂]dt− κ

2
(â†âρ̂− ρ̂â†â)dt+ κ⟨â†â⟩ρ̂dt+ κ

(
âρ̂â† − ⟨â†â⟩ρ̂

)
dt

+

√
κ

2

(
ρ̂â†eiϕ + âe−iϕρ̂− ⟨â†eiϕ + âe−iϕ⟩ρ̂

)
(dW1 − dW2).

(2.260)

Since the sum of independent Gaussian random variables is still a Gaussian random variable with

a summed expectation value and variance, we have dW = (dW1 − dW2)/
√

2. Therefore, we get

dρ̂ = − i

h̄
[Ĥ, ρ̂]dt+ κ

(
âρ̂â† − 1

2
â†âρ̂− 1

2
ρ̂â†â

)
+
√
κ

(
ρ̂â†eiϕ + âe−iϕρ̂− ⟨â†eiϕ + âe−iϕ⟩ρ̂

)
dW.

(2.261)

The measurement record for the homodyne detection is the difference between the signals of the

two photon detectors,

Idetdt = dN1 − dN2 = |β|
(
κ⟨â†eiϕ + âe−iϕ⟩dt+

√
κdW

)
. (2.262)

In an experiment, it is not possible to collect all the photons leaking out from the cavity. Here

we define the quantum efficiency η ∈ [0, 1] to describe the case that we only detect ηN photons

from the N photons leaking out. In this case, the system dynamics under homodyne detection
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becomes

ρ̂(t+ dt) =
M̂0ρ̂(t)M̂ †

0

1 − Tr[M̂1ρ̂(t)M̂ †
1 ] − Tr[M̂2ρ̂(t)M̂ †

2 ]
(1 − dN1)(1 − dN2)

+ (1 − η)

(
M̂1ρ̂(t)M̂ †

1

Tr[M̂1ρ̂(t)M̂ †
1 ]

+
M̂2ρ̂(t)M̂ †

2

Tr[M̂2ρ̂(t)M̂ †
2 ]

)
(1 − dN1)(1 − dN2)

+ η
M̂1ρ̂(t)M̂ †

1

Tr[M̂1ρ̂(t)M̂ †
1 ]
dN1 + η

M̂2ρ̂(t)M̂ †
2

Tr[M̂2ρ̂(t)M̂ †
2 ]
dN2.

(2.263)

Using the same calculation procedure, one can obtain the following stochastic master equation,

dρ̂ = − i

h̄
[Ĥ, ρ̂]dt+ κ

(
âρ̂â† − 1

2
â†âρ̂− 1

2
ρ̂â†â

)
+
√
κη

(
ρ̂â†eiϕ + âe−iϕρ̂− ⟨â†eiϕ + âe−iϕ⟩ρ̂

)
dW.

(2.264)

as well as the measurement record,

Idetdt = dN1 − dN2 = |β|
(
κη⟨â†eiϕ + âe−iϕ⟩dt+

√
κη dW

)
. (2.265)

Following a similar derivation to the one we did for the one-axis twisting interaction, for

the dispersive atom-light coupling Hamiltonian (see Eq. (2.242)), we can rewrite the cavity field

operator as â = α + b̂, where α = ϵ/(∆̃c + iκ/2), b̂ describes the quantum fluctuations near the

coherent state. In the regime with ∆̃c or κ the largest frequency scale, one can eliminate the photon

field by replacing

b̂→ G̃αŜz

∆̃c + iκ/2
, (2.266)

and obtain the atom-only stochastic master equation (dropping single-particle rotation terms),

dρ̂ = −i[χŜzŜz, ρ̂]dt+ Γz

(
Ŝzρ̂Ŝz − 1

2
ŜzŜzρ̂− 1

2
ρ̂ŜzŜz

)
+
√

Γzη

(
ρ̂Ŝz + Ŝzρ̂− 2⟨Ŝz⟩ρ̂

)
dW.

(2.267)

with χ and Γz given by Eq. (2.249), as well as the measurement record,

Idetdt ∝
(

2
√

Γzη⟨Ŝz⟩dt+ dW
)
. (2.268)

Here we choose the homodyne angle ϕ = 2 arctan
(

2∆̃c/κ
)

to maximize the average measurement

record E[Idet], if we assume the intracavity pump ϵ is a real number. Since the measurement

observable Ŝz commutes with the system Hamiltonian, such type of measurement is known as a

quantum nondemolition (QND) measurement.
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2.5 Quantum metrology

In this section, we introduce the theory tools for quantum metrology. We start from a brief

review of the concepts of quantum Fisher information and quantum Cramér–Rao bound, and then

discuss the standard quantum limit and Heisenberg limit in phase shift measurements widely used

in atomic clocks and atom interferometers. We then introduce the concept of spin squeezing arise

from phase shift measurements, and discuss an analytic solvable model known as one-axis twisting

model for spin squeezing and quantum Fisher information.

2.5.1 Quantum Fisher information

Here we introduce the concept of quantum Fisher information, which is a key concept for

understanding the precision of quantum measurements. Instead of providing a direct definition

that comes out of nowhere, we prefer to first explain the context of evaluation of the precision of

a measurement, and one could see the idea of quantum Fisher information comes out naturally

when exploring the precision limit. For simplicity, here we discuss the case of measuring a single

parameter ϕ.

A general measurement procedure is to prepare an initial state described by density matrix

ρ̂0, then let the system evolve based on the unknown parameter ϕ which transforms the density

matrix into ρ̂ϕ, and finally measure an observable to obtain outcome x. The measurement outcome

x can be described by a conditional probability p(x|ϕ). Based on our knowledge of the system

dynamics, we can construct an estimator function ϕest(x) to infer the parameter from measurement

outcome x. The measurement precision is characterized by the mean square error between the infer

parameter ϕest(x) and the actual parameter ϕ,

(∆ϕ)2 =

∫
dx[ϕ− ϕest(x)]2p(x|ϕ). (2.269)

We also assume the estimator is unbiased such that the expectation of the estimator equals the

actual parameter ϕ, i.e. ∫
dx[ϕ− ϕest(x)]p(x|ϕ) = 0. (2.270)
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Different types of estimators are discussed in Ref. [7]. Here we only discuss one example of estimator

widely used in experiments, which is based on the expectation value of the measurement outcome,

x̄(ϕ) =
∫
dxx p(x|ϕ). If we consider the actual parameter is near a constant value ϕ0, ϕ = ϕ0 + dϕ,

Taylor expansion of x̄(ϕ) gives x̄(ϕ) ≃ x̄(ϕ0) + dx̄
dϕ |ϕ0dϕ, so the estimator function is given by

ϕest(x) ≃ ϕ0 +
x− x̄(ϕ0)

dx̄
dϕ |ϕ0

. (2.271)

The mean square error is this case is given by the error propagation formula,

(∆ϕ)2 ≃ (∆x)2|ϕ0

( dx̄dϕ |ϕ0)2
, (2.272)

where (∆x)2 =
∫
dx[x− x̄(ϕ)]2p(x|ϕ).

The first step is to analyze a lower bound of (∆ϕ)2 regardless of the choice of estimator

function ϕest(x). Taking derivative to Eq. (2.270) with respect to ϕ, we have∫
dx [ϕest(x) − ϕ] p(x|ϕ)

∂ ln p(x|ϕ)

∂ϕ
= 1. (2.273)

We consider the LHS of the equation above is the inner product of a function f = [ϕest(x) −

ϕ]
√
p(x|ϕ) and another function g =

√
p(x|ϕ)∂ ln p(x|ϕ)

∂ϕ . Based on the Cauchy-Schwarz inequality,

(
∫
dx fg)2 ≤ (

∫
dx f2)(

∫
dx g2), which gives

(∆ϕ)2 ≥ 1

Fϕ
, Fϕ =

∫
dx p(x|ϕ)

(
∂ ln p(x|ϕ)

∂ϕ

)2

. (2.274)

This is the so-called classical Cramér–Rao bound, and Fϕ is the so-called classical Fisher informa-

tion.

Note that classical Fisher information Fϕ depends on the conditional probability p(x|ϕ),

which is determined by the details of measurement procedure. So the second step is to analyze a

lower bound of Fϕ regardless of the choice of measurement. The most general form of quantum

measurement is described by a positive operator valued measure (POVM), which is a set {Π̂x} of

positive Hermitian operators such that
∫
dxΠ̂x = Î. Based on POVM, we have p(x|ϕ) = Tr[ρ̂ϕΠ̂x].

If we define the symmetric logarithmic derivative (SLD) L̂ϕ as a Hermitian operator satisfying the
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equation

∂ρ̂ϕ
∂ϕ

=
1

2
(L̂ϕρ̂ϕ + ρ̂ϕL̂ϕ), (2.275)

which gives ∂ϕp(x|ϕ) = Re(Tr[ρ̂ϕΠ̂xL̂ϕ]). Plugging this in Eq. (2.274), we have

Fϕ =

∫
dx

Re(Tr[ρ̂ϕΠ̂xL̂ϕ])2

Tr[ρ̂ϕΠ̂x]
. (2.276)

The lower bound of Fϕ can be calculated in the following way [70]:

Fϕ ≤
∫
dx

∣∣∣∣∣∣Tr[ρ̂ϕΠ̂xL̂ϕ]√
Tr[ρ̂ϕΠ̂x]

∣∣∣∣∣∣
2

=

∫
dx

∣∣∣∣∣∣Tr

 √ρ̂ϕ√Π̂x√
Tr[ρ̂ϕΠ̂x]

√
Π̂xL̂ϕ

√
ρ̂ϕ

∣∣∣∣∣∣
2

≤
∫
dxTr[Π̂xL̂ϕρ̂ϕL̂ϕ] = Tr[ρ̂ϕL̂

2
ϕ].

(2.277)

Between the first and the second line, we used the Cauchy-Schwarz inequality for Frobenius inner

product of matrices, |Tr[Â†B̂]|2≤ Tr[Â†Â]Tr[B̂†B̂]. So we reach the quantum Cramér–Rao bound,

with Fϕ the quantum Fisher information,

(∆ϕ)2 ≥ 1

Fϕ
, Fϕ = Tr[ρ̂ϕL̂

2
ϕ] = Tr[L̂ϕ(∂ϕρ̂ϕ)]. (2.278)

Note that quantum Fisher information Fϕ still depends on the initial state of the system and the

ways to encode ϕ into the system evolution. We discuss the further optimization of Fϕ in the next

subsection.

The discussion above can be easily generalized to the case of measuring multiple parameters

ϕ = (ϕ1, ϕ2, · · · , ϕn). In this case we can define the quantum Fisher information matrix (QFIM)

F , whose matrix elements are given by

Fµν =
1

2
Tr[ρ̂(L̂µL̂ν + L̂νL̂µ)] = Tr[L̂µ(∂ν ρ̂)], (2.279)

where L̂µ is the SLD defined by Eq. (2.275) with respect to ϕµ, ∂ν ≡ ∂ϕν , and ρ̂ ≡ ρ̂ϕ. In this case

the quantum Cramér–Rao bound becomes [71]

Cov(ϕ) ≥ F−1. (2.280)
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Here the matrix inequality means Cov(ϕ) − F−1 is a positive semi-definite matrix. Since the

diagonal element of a positive semi-definite matrix is non-negative, the matrix inequality can be

converted into n different quantum Cramér–Rao bounds for measurements in the eigenbasis of F .

Explicit expressions for the QFIM [71] can be obtained via formal integration of Eq. (2.275),

L̂µ = 2

∫ ∞

0
dse−ρ̂s(∂µρ̂)e−ρ̂s, (2.281)

which leads to

Fµν = 2

∫ ∞

0
dsTr[e−ρ̂s(∂µρ̂)e−ρ̂s(∂ν ρ̂)]. (2.282)

If we expand the density matrix ρ̂ in its eigendecomposition ρ̂ =
∑

j λj |λj⟩⟨λj |, plug in Eq. (2.282)

we get

Fµν = 2
∑
jk

(λj+λk>0)

Re(⟨λj |∂µρ̂|λk⟩⟨λk|∂ν ρ̂|λj⟩)
λj + λk

. (2.283)

In the case of a pure state parametrized by ϕ, |ψ⟩ ≡ |ψ(ϕ)⟩, we can plug in ρ̂ = |ψ⟩⟨ψ|, which gives

Fµν = 4 Re
(
⟨∂µψ|∂νψ⟩ − ⟨∂µψ|ψ⟩⟨ψ|∂νψ⟩

)
. (2.284)

Note that the calculation above is based on the fact that ∂µ⟨ψ|ψ⟩ = ⟨∂µψ|ψ⟩ + ⟨ψ|∂µψ⟩ = 0.

In the following we would like to discuss the physical meaning of the QFIM. Since a more

precise measurement of a parameter ϕ is equivalent to a larger distance between |ψ(ϕ)⟩ and |ψ(ϕ+

dϕ)⟩ states with an infinitesimal change of parameter dϕ, we can interpret QFIM as a measure for

the distance between these two states. The Bures distance between quantum states are defined by

the reduction of fidelity [72], which gives

D2
B = 2 − 2|⟨ψ(ϕ)|ψ(ϕ + dϕ)⟩|

= −
(
⟨∂µψ|ψ⟩⟨ψ|∂νψ⟩ + ⟨ψ|∂µ∂νψ⟩ + ⟨∂µ∂νψ|ψ⟩

)
dϕµdϕν .

(2.285)

Since we require ⟨ψ(ϕ + dϕ)|ψ(ϕ + dϕ)⟩ = 1, which is equivalent to ⟨∂µψ|∂νψ⟩ + ⟨∂νψ|∂µψ⟩ +

⟨ψ|∂µ∂νψ⟩ + ⟨∂µ∂νψ|ψ⟩ = 0. So we have

D2
B =

(
⟨∂µψ|∂νψ⟩ + ⟨∂νψ|∂µψ⟩ − ⟨∂µψ|ψ⟩⟨ψ|∂νψ⟩

)
dϕµdϕν =

1

4
Fµνdϕµdϕν , (2.286)
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where we used the fact that ⟨∂µψ|ψ⟩ is pure imaginary, hence ⟨∂µψ|ψ⟩⟨ψ|∂νψ⟩ is a real number.

Note that this relation also holds for mixed states if we replace the definition of fidelity |⟨ψ1|ψ2⟩|2

by the miexed state fidelity
(

Tr[
√√

ρ̂1ρ̂2
√
ρ̂1 ]
)2

.

It is also worth to mention a interesting connection between QFIM and Berry curvature in

the case of pure states. Here we define a quantum geometry tensor [72],

Qµν = ⟨∂µψ|∂νψ⟩ − ⟨∂µψ|ψ⟩⟨ψ|∂νψ⟩. (2.287)

The real part of Qµν is related to QFIM by

Re(Qµν) =
1

4
Fµν , (2.288)

while the imaginary part of Qµν is related to Berry curvature Ωµν by

Im(Qµν) = Im(⟨∂µψ|∂νψ⟩) = −1

2
Ωµν . (2.289)

Note that Ωµν = ∂µAν−∂νAµ, where Aµ = i⟨ψ|∂µψ⟩ is the Berry connection. The geometric phase

γ for a close loop can be obtained by

γ =

∮
∂S

Aµdϕµ =
1

2

∫
S

Ωµνdϕµ ∧ dϕν , (2.290)

where ∂S is a close loop around the surface S, and ∧ means the exterior product satisfying dϕµ ∧

dϕν = −dϕν ∧ dϕµ. We understand the connection between QFIM and Berry curvature in the

following way: The Berry connection originates from the phase difference dφ between two wave

functions |ψ(ϕ)⟩ and |ψ(ϕ + dϕ)⟩ with an infinitesimal change of parameter dϕ,

e−i(dφ) =
⟨ψ(ϕ)|ψ(ϕ + dϕ)⟩
|⟨ψ(ϕ)|ψ(ϕ + dϕ)⟩| ⇒ dφ = Aµdϕµ. (2.291)

As we discussed in Eq. (2.286), QFIM measures the distance between |ψ(ϕ)⟩ and |ψ(ϕ + dϕ)⟩. So

one can unify QFIM and Berry curvature when discussing the difference between these two states.

2.5.2 Standard quantum limit and Heisenberg limit

Here we are considering the upper bound of the quantum Fisher information for a system

with N two-level spins, which gives a lower bound of measurement precision. We focus on the
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phase shift measurement widely used in atomic clocks and atom interferometers, where the phase

ϕ is encoded into the density matrix in the following way,

ρ̂ϕ = e−iϕŜz
ρ̂0 e

iϕŜz
, (2.292)

so the quantum Fisher information becomes

Fϕ = 2
∑
jk

(λj+λk>0)

(λj − λk)2

λj + λk
|⟨λj |Ŝz|λk⟩|2. (2.293)

In the case of pure state, we have

Fϕ = 4
(
⟨ψ|ŜzŜz|ψ⟩ − ⟨ψ|Ŝz|ψ⟩2

)
. (2.294)

Based on the convexity of quantum Fisher information, Fϕ[pρ̂1+(1−p)ρ̂2] ≤ pFϕ[ρ̂1]+(1−p)Fϕ[ρ̂2],

the upper bound of quantum Fisher information should be achieved by pure states.

First we consider product states with |ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψN ⟩, so the quantum Fisher

information becomes

Fϕ =
∑
j

4
(
⟨ψj |Ŝz

j Ŝ
z
j |ψj⟩ − ⟨ψj |Ŝz

j |ψj⟩2
)

=
∑
j

(
1 − ⟨ψj |Ŝz

j |ψj⟩2
)
≤ N. (2.295)

The equal sign can be reached for product states on the equator, ⟨ψj |Ŝz
j |ψj⟩ = 0. This leads to the

standard quantum limit (SQL) restricted to product states [73]

(∆ϕ)2 ≥ 1

N
. (2.296)

Then we consider the case with all possible quantum states, and in this case we have

Fϕ ≤ 4⟨ψ|ŜzŜz|ψ⟩ ≤ N2. (2.297)

The equal sign can be achieved by a GHZ state,

|ψGHZ⟩ =
1√
2

(
|N/2, N/2⟩ + e−iφ|N/2,−N/2⟩

)
. (2.298)

This leads to the Heisenberg limit (for all possible quantum states) [73]

(∆ϕ)2 ≥ 1

N2
. (2.299)
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2.5.3 Spin squeezing and one-axis twisting

For the phase accumulation described by Eq. (2.292), suppose the initial state is along the

x direction of the Bloch sphere, i.e. ⟨Ŝx⟩ϕ=0 ̸= 0, ⟨Ŝy⟩ϕ=0 = ⟨Ŝz⟩ϕ=0 = 0, and we perform a

projective measurement Ŝy after phase accumulation. Since ⟨Ŝy⟩ = sinϕ⟨Ŝx⟩ϕ=0, we can calculate

the phase sensitivity for small ϕ based on the error propagation formula (see Eq. (2.272)),

(∆ϕ)2 =
(∆Sy)2

(∂ϕ⟨Ŝy⟩)2
≃

(∆Sy)2ϕ=0

|⟨Ŝx⟩ϕ=0|2
, (2.300)

where (∆Sy)2 = ⟨ŜyŜy⟩ − ⟨Ŝy⟩2. Generalizing to the case of arbitrary spin orientation, the phase

sensitivity is given by (we drop the subscript ϕ = 0 for simplicity)

(∆ϕ)2 = min
θ

(∆S⊥
θ )2

|⟨Ŝ⟩|2
, (2.301)

where (∆S⊥
θ )2 is the spin variance perpendicular to the spin orientation parametrized by θ. In the

case of product states, if we assume all the spins pointing to the same direction, we get |⟨Ŝ⟩|= N/2,

(∆S⊥
θ )2 = N/4, which leads to (∆ϕ)2 = 1/N , which is the standard quantum limit (SQL). Spin

squeezing is referred to the reduction of the spin variance (∆S⊥
θ )2 for some choices of θ, which

leads to a enhancement of phase sensitivity beyond the SQL. Based on the Heisenberg uncertainty

principle, (∆S⊥
θ )2(∆S⊥

θ+π/2)
2 ≥ |⟨Ŝ⟩|2/4, which gives (∆ϕ)2 ≥ 1/[4 maxθ(∆S

⊥
θ )2]. Similar to the

discussions in the previous subsection, this leads to the Heisenberg limit (∆ϕ)2 ≥ 1/N2.

Comparing the phase sensitivity with the SQL, one can obtain the Wineland spin squeezing

parameter [74],

ξ2 =
(∆ϕ)2

(∆ϕ)2SQL

= min
θ

N(∆S⊥
θ )2

|⟨Ŝ⟩|2
. (2.302)

Note that we have ξ2 = 1 for SQL, ξ2 < 1 when spin squeezing occurs, with a lower bound ξ2 ≥ 1/N

set by the Heisenberg limit. Usually the spin squeezing parameter is reported in terms of decibel

(dB), i.e. 10 log10 ξ
2.

As proposed by Ref. [30], an iconic model for spin squeezing generation is known as the

one-axis twisting (OAT) model,

ĤOAT = χŜzŜz. (2.303)
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This model features an analytical solution for the expectation value of all possible combinations of

spin operators as we discuss below. We consider the Heisenberg equation of motion under one-axis

twisting (OAT),

d

dt
Ô = i

[χ
2

∑
j<k

σ̂zj σ̂
z
k, Ô

]
, (2.304)

where σ̂x,y,zj are Pauli matrices for the j-th spin. A general form of operator Ô up to permutation

symmetry can be written as

Ô(n1, n2, n3) =

n1+n2∏
j1=1

σ̂+j1

n1+2n2∏
j2=n1+n2+1

σ̂−j2

n1+2n2+n3∏
j3=n1+2n2+1

σ̂zj3 , (2.305)

where n1+2n2+n3 ≤ N . We focus on the initial state with all the spin aligned to the +x direction.

Note that in the case of n1 = 0, Ô commutes with the OAT Hamiltonian, so we can directly evaluate

the expectation value using the initial state,

⟨Ô(0, n2, 0)⟩ =
1

22n2
, ⟨Ô(0, n2, n3 > 0)⟩ = 0. (2.306)

Then we consider the case when n1 > 0. The Heisenberg equations of motion can now be written

as a set of coupled differential equations based on permutation symmetry of the spin indices,

d

dt
⟨Ô(n1, n2, j)⟩ = iχ

∑
k

Ajk⟨Ô(n1, n2, k)⟩, j, k = 0, 1, · · · , N − n1 − 2n2. (2.307)

where the non-zero matrix elements of Ajk are

Aj,j+1 = (N − n1 − 2n2 − j)n1, Aj,j−1 = jn1. (2.308)

We solve the differential equations above via a trial solution as follows,

⟨Ô(n1, n2, j)⟩ =
1

2n1+2n2
[f(t)]N−n1−2n2−j

(
f ′(t)

in1χ

)j

. (2.309)

This trial solution simplifies the coupled differential equations into the following form,

f ′′(t) + χ2n21f(t) = 0, (2.310)

with initial condition f(0) = 1, f ′(0) = 0, which gives

f(t) = cos(n1χt),
f ′(t)

in1χ
= i sin(n1χt). (2.311)
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Therefore, we have a single expression for all choices of n1, n2, n3 (define 00 = 1),

⟨Ô(n1, n2, n3)⟩ =
in3

2n1+2n2
[cos(n1χt)]

N−n1−2n2−n3 [sin(n1χt)]
n3 . (2.312)

Based on the analytical solution above, one can obtain the following list of expectation values

of collective spin operators:

⟨Sx⟩ =
N

2
cosN−1(χt), ⟨Ŝz⟩ = ⟨Ŝy⟩ = ⟨ŜxŜy + ŜyŜx⟩ = ⟨ŜxŜz + ŜzŜx⟩ = 0,

⟨ŜxŜx⟩ =
N

4
+
N(N − 1)

8

[
1 + cosN−2(2χt)

]
, ⟨ŜyŜy⟩ =

N

4
+
N(N − 1)

8

[
1 − cosN−2(2χt)

]
,

⟨ŜzŜz⟩ =
N

4
, ⟨ŜyŜz + ŜzŜy⟩ =

N(N − 1)

2
sin(χt) cosN−2(χt).

(2.313)

This approach can be easily generalized to the cases including dissipations (see Chapter 5.2).

If we only focus on the unitary dynamics, these formula are also possible to achieve in the

collective spin basis |S,m⟩. Here we use the collective spin basis |S,m⟩ to discuss the resulting

state at χt = π/2 (assuming S is an integer or equivalently N is even). Considering an initial state

|ψ0⟩ =
∑
m

cm|S,m⟩, (2.314)

the time evolution under the OAT model leads to

|ψ(t)⟩ =
∑
m

cme
−iχm2t|S,m⟩. (2.315)

Note that m2 mod 4 ≡ 0 for even m and m2 mod 4 ≡ 1 for odd m. For χt = π/2, we have

|ψ(χt = π/2)⟩ =
∑

m∈even
cm|S,m⟩ − i

∑
m∈odd

cm|S,m⟩. (2.316)

Based on the definition of spin coherent state (see Eq. (2.159)), we have

|+x⟩ =
1

2S

S∑
m=−S

√(
2S

S +m

)
|S,m⟩, |−x⟩ =

1

2S

S∑
m=−S

√(
2S

S +m

)
(−1)m|S,m⟩. (2.317)

Considering |ψ0⟩ = |+x⟩, one can obtain
∑

m∈even cm|S,m⟩ = (|+x⟩+ |−x⟩)/2,
∑

m∈odd cm|S,m⟩ =

(|+x⟩ − |−x⟩)/2, leading to

|ψ(χt = π/2)⟩ =
1 − i

2
|+x⟩ +

1 + i

2
|−x⟩ =

1√
2

(
|+x⟩ + i|−x⟩

)
. (2.318)
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Here we removed a global phase in the last step. Therefore, the time evolution with χt = π/2

under OAT model leads to a GHZ state.

In the following, we analyze several metrological properties of the OAT model using

Eq. (2.313):

• Optimal spin squeezing

In this case we have ⟨Ŝ⟩ = ⟨Ŝx⟩, and (∆S⊥
θ )2 = A cos2 θ + B sin2 θ + C cos θ sin θ, where

A = ⟨ŜzŜz⟩, B = ⟨ŜyŜy⟩, C = ⟨ŜyŜz + ŜzŜy⟩. Minimizing over θ, we have

min
θ

(∆S⊥
θ )2 =

A + B
2

− 1

2

√
(B −A)2 + C2, (2.319)

and it is convenient to consider the following approximation for intermediate time (B ≫

A, C)

min
θ

(∆S⊥
θ )2 =

1

2

4AB − C2

A + B +
√

(B −A)2 + C2
≈ 4AB − C2

4B . (2.320)

Notice that intermediate time means β = S(χt)2 ≪ 1 and Sβ ≫ 1, with S = N/2, we have

4AB−C2 ≈ S2 + 8
3S

3β3, and B ≈ 2S2β. Also plugging in ⟨Ŝx⟩ ≈ S, we get (see Fig. 2.7(a))

ξ2 ≈ 1

2Nβ
+

2

3
β2 ⇒ ξ2opt ≈

32/3

2

1

N2/3
. (2.321)

Therefore, we have shown that the scaling of optimal spin squeezing parameter for the OAT

model ξ2opt ∼ N−2/3, which leads to the scaling of phase sensitivity ∆ϕ ∼ N−5/6.

• Maximal quantum Fisher information

Here we consider phase accumulation parametrized by Û = e−iϕµŜµ
, with µ = x, y, z. In

this case, QFIM becomes

Fµν = 4

(
1

2
⟨ψ|ŜµŜν + Ŝν Ŝµ|ψ⟩ − ⟨ψ|Ŝµ|ψ⟩⟨ψ|Ŝν |ψ⟩

)
. (2.322)

We then diagonalize the QFIM to find the optimal axis (eigenvector) associated with the

maximal eigenvalue of the QFIM. If the phase accumulation is along the optimal axis,

the maximal eigenvalue is the corresponding quantum Fisher information, and this is the

largest quantum Fisher information for phase accumulation with state |ψ⟩.
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Based on the analytical solution of the OAT model, the 3 eigenvalues of Fµν is given by

4 minθ(∆S
⊥
θ )2, 4 maxθ(∆S

⊥
θ )2, 4(∆Sx)2, where

max
θ

(∆S⊥
θ )2 =

A + B
2

+
1

2

√
(B −A)2 + C2. (2.323)

The maximal quantum Fisher information (see Fig. 2.7(b)) would be the maximal eigen-

value, which indicating the phase sensitivity if choosing the optimal rotation axis,

Fmax = 4 max{max
θ

(∆S⊥
θ )2, (∆Sx)2}. (2.324)

One can check that in the time scale relevant for spin squeezing, we always have Fmax =

4 maxθ(∆S
⊥
θ )2, and ξ2 ≈ N/Fmax. While for χt = π/2, we have Fmax = N2, since the

system evolves into a GHZ state.
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Figure 2.7: (a) Spin squeezing parameter ξ2 under OAT evolution (32 atoms). (b) Maximal quan-
tum Fisher information Fmax under OAT evolution. The inset is the comparison of Fmax/N and
ξ−2 in the time scale relevant for spin squeezing.



Chapter 3

Improving optical lattice clocks via Hamiltonian engineering

3.1 Overview

The recent generation of optical lattice clocks, known as the Wannier-Stark optical lattice

clocks, have led to a significant enhancement of precision and accuracy [23–25, 75]. Wannier-

Stark optical lattice clock uses a vertically oriented lattice to trap the atoms. Since the linear

tilt generated by gravity imposes an energy penalty to hop between lattice sites, one can achieve

localized atomic wave functions even in shallow lattice depths, which is known as the Wannier-Stark

localization. Operating at shallower lattice depths allows for a reduction of the decoherence effects

and frequency shifts generated by the lattice potential, while the motional dephasing effects are still

under controlled due to the Wannier-Stark localization. Most importantly, as we discussed in this

chapter, Wannier-Stark optical lattice clocks also allow for a suppression of density shifts and an

enhancement of coherence time by balancing the s-wave and p-wave contributions via Hamiltonian

engineering. We applied Hamiltonian engineering tools to explore dynamical phase transitions and

coherent superexchange interactions. Moreover, we have shown that the development of Wannier-

Stark optical lattice clocks could enable the exploration of the interplay between general relativity

and quantum many-body dynamics.
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3.2 Hamiltonian engineering of spin-orbit coupled fermions in a Wannier-

Stark optical lattice clock

This section is adapted from: Alexander Aeppli∗, Anjun Chu∗, Tobias Bothwell∗, Colin J.

Kennedy, Dhruv Kedar, Peiru He, Ana Maria Rey, Jun Ye, Hamiltonian engineering of spin-orbit

coupled fermions in a Wannier-Stark optical lattice clock, Science Advances 8, eadc9242 (2022).

3.2.1 Introduction

The joint advance of quantum metrology and quantum simulation provides exciting new

opportunities to explore the frontiers of measurement science and the emergence of many-body

complexity. An outstanding example has been the development of optical lattice clocks (OLCs)

where excellent quantum coherence and exquisite quantum control of many atoms have enabled

rapid advances in metrological capabilities [20,23,76–80], culminating in the recent demonstration of

clock measurement precision at 7.6×10−21 and near minute-long atomic coherence [23]. To achieve

this level of performance, we use a shallow, vertically aligned optical lattice. The acceleration due

to local gravity lifts the degeneracy of neighboring sites, supporting partially delocalized Wannier-

Stark eigenstates. This trapping scheme, first suggested in 2005 [81], allows us to operate the clock

at substantially smaller lattice depths, greatly suppressing detrimental motional, light scattering,

and atomic density induced decoherence.

The use of tilted optical lattices to manipulate motional degrees of freedom in ultracold gases

has been widely reported. They have been used to suppress direct tunneling but not spin transport

and realize new types of spin Hamiltonians [82–84], generate spin-orbit coupling via laser-assisted

tunneling [85–88], emulate magnetic models in spinless bosons [89, 90], probe non-ergodicity due

to kinetic constraints [91] and subdiffusive transport [92] in Fermi-Hubbard chains and many-body

localization in trapped ions [93], as well as measure gravity in Raman interferometers [94–96]. In

this work, we demonstrate how a tilted optical lattice combined with pristine quantum coherence

and exquisite spectral resolution offer new capabilities to engineer, drive, and understand many-

https://doi.org/10.1126/sciadv.adc9242
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body systems.

As we continue to push the OLC to new levels of precision, a key remaining issue for clock

accuracy is related to frequency shifts associated with atomic interactions. Quantum statistics

dictates that identical fermions experience only odd partial wave interactions that are suppressed

at ultralow temperatures [66,97–101]. Yet, even the weak elastic and inelastic p-wave collisions were

found to significantly affect clock operation and limit the number of interrogated atoms at deep

lattice depths. As atoms delocalize along neighboring sites in the shallow lattice, p-wave collisions

are reduced but s-wave interactions can emerge from the spin-orbit coupling (SOC) generated

by the differential clock laser phase [102–104]. The superior quantum coherence obtained in our

gravity-tilted optical lattice clock stems from better control over motional and internal degrees of

freedom [23], allowing the engineering of s- and p-wave interactions in driven spin-orbit coupled

fermionic atoms. By operating at the ‘magic’ lattice depth where s-wave interactions precisely

cancel residual p-wave interactions, we reduce atomic-interaction induced shifts in our 1D lattice

clock to a fractional frequency shift of 5.0(1.7) × 10−21 per atom at a single site.

We further explore the tunability of atomic interactions by driving a site-changing Wannier-

Stark transition. This leads to an atomic superposition that not only carries a distinct internal

label but also features different motional orbitals. As a consequence, s-wave interactions are signif-

icantly enhanced. This gives rise to a many-body dynamical phase transition between dynamical

ferromagnetic and paramagnetic states controlled by the interplay between the clock drive and

atomic interactions. Although similar dynamical phase transitions have been observed in trapped

ions [105], superconducting qubits [106], and atoms in cavities [107] and optical traps [34], here

we use in situ imaging to locally resolve the emergence of a non-linear excitation lineshape as a

function of atom number.

3.2.2 Experimental system and theoretical model

Several hundred thousand nuclear-spin-polarized fermionic 87Sr atoms are cooled via standard

techniques and loaded into a vertical one-dimensional optical lattice that defines the Ẑ axis [23].



81

A

B

C
l

Energy

Z

<

MgλL/2

aL = λL/2

g

1S0

3P0

3 Erec

4 Erec

8 Erec

12 Erec

-3 -2 -1 0 +1 +2 +3
Ex

ci
ta

tio
n

W
0(Z

)

Z/aL

-3 -2 -1 0 +1 +2 +3

3 Erec

4 Erec

8 Erec

12 Erec

Figure 3.1: The Wannier-Stark Clock. (A) We trap 87Sr atoms in a 1D optical lattice along the
Ẑ direction aligned with local gravitational acceleration g. This type of external confinement realizes
Wannier-Stark states, eigenstates of the joint lattice plus gravitational potential. The nth Wannier
state Wn(Z) is centered at lattice site n and has energy MgaLn, where M is the mass of 87Sr and
aL = λL/2 is the lattice spacing with lattice wavelength λL. The Wannier-Stark ladder creates a
set of transitions from the ground (|g⟩ ≡ |1S0,mF = ±5/2⟩) to clock (|e⟩ ≡ |3P0,mF = ±3/2⟩)
state at different lattice sites accessible by the differential clock laser phase between them. The
black line indicates a carrier |g ; Wn⟩ → |e ; Wn⟩ transition. At shallow lattice depths, a set of
off-site transitions |g ; Wn⟩ → |e ; Wn±l⟩ for integer l are indicated by blue and red lines. (B) At
shallow lattice depths, the atomic wavefunction becomes delocalized, allowing |g ; Wn⟩ → |e ; Wn±l⟩
transition for a range of l to be addressed. Here we show Rabi scans of these transitions at four
different lattice depths, given in lattice photon recoil energy (Erec). As the depth decreases, the
Rabi frequency on the carrier transition decreases. We correspondingly lengthen the pulse time
to maintain a π pulse on the carrier leading to narrower lineshapes at shallow depths. (C) The
wavefunctionW0(Z) for the four corresponding lattice depths, illustrating the tunable delocalization
due to the interplay between lattice and gravitational potential.
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We load the lattice at a depth of 300 lattice photon recoil energies (Erec) with atoms in the lowest

motional band along the Ẑ axis. Perpendicular to the lattice axis, the atoms are weakly confined and

thermally populate the resultant radial modes with a temperature of 800 nK. We then adiabatically

reduce the lattice depth to a much lower operational depth with a correspondingly reduced radial

temperature measured with Doppler spectroscopy.

The gravitational potential with local acceleration g adds a linear energy gradient across the

lattice, with the combined single-particle Hamiltonian supporting Wannier-Stark (WS) eigenstates.

The WS state Wn(Z) is centered at lattice site n and has eigenenergy MgaLn, where M is the

mass of 87Sr and aL = λL/2 is the lattice site spacing (Fig. 3.1(A)). Here, we use the strontium

‘magic’ wavelength λL = 813 nm, guaranteeing identical confinement for both clock states.

The clock laser λc = 698 nm, aligned along the lattice, drives the ultranarrow |1S0,mF =

±5/2⟩ → |3P0,mF = ±3/2⟩ (|g⟩ → |e⟩) clock transition, where mF is the nuclear Zeeman level.

This σ-polarized transition is the least magnetically sensitive clock transition in 87Sr. Because

the clock laser wavelength differs from the lattice spacing, adjacent lattice sites see a different

clock phase φ = πλL/λc ≈ 7π/6. This phase difference generates SOC when the lattice depth

is sufficiently low for atoms to tunnel during the course of the experiment. Thus, when tuned to

appropriate frequencies, the clock laser effectively couples Wannier-Stark states between different

lattice sites, i.e. |g ; Wn⟩ → |e ; Wn+l⟩, for a range of integer l. The corresponding Rabi frequency

Ωl set by the wavefunction overlap is

Ωl ∝ exp

(
− λ2L

4λ2c
√
V0

)
Jl

(
4J0
MgaL

sin(φ/2)

)
. (3.1)

Here, Jl is a Bessel function, J0 is the nearest neighbor tunneling energy of the ground band, and

V0 is the lattice depth in Erec.

We utilize Rabi spectroscopy in a dilute ensemble to demonstrate the partially delocalized

nature of the single-particle wavefunctions in shallow, tilted lattices of four different values of V0,

shown in Fig. 3.1(B). The corresponding WS wavefunctions W0(Z) are shown in Fig. 3.1(C). For

each V0, we optimize the transition probability on the carrier transition, |g ; Wn⟩ → |e ; Wn⟩. For
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V0 = 12 Erec, the atoms are still well localized, and thus the |g ; Wn⟩ → |e ; Wn±1⟩ transition

amplitudes are significantly suppressed in comparison to the carrier. As V0 is reduced, we resolve

a set of Rabi lines spectrally separated by MgaL/h = 867 Hz, where h is Planck’s constant.

At 4 Erec, the Rabi frequency for the carrier and |g ; Wn⟩ → |e ; Wn±1⟩ transitions are roughly

equivalent. At 3 Erec, the carrier and |g ; Wn⟩ → |e ; Wn±2⟩ have similar Rabi frequencies, while

the |g ; Wn⟩ → |e ; Wn±1⟩ transition has the greatest Rabi frequency and is thus overdriven. At

low atomic density, we observe coherence times well past 10 s on |g ; Wn⟩ → |e ; Wn+1⟩.

Under our operating conditions, where the collisional rate for motional relaxation is smaller

than the internal spin dynamics and trap frequencies, atoms remain effectively frozen in single-

particle eigenstates during clock interrogation. Since all atoms are initially prepared in a single

internal state, Fermi statistics forbids double occupancy of motional states. Under these conditions,

the quantum dynamics can be described with a spin Hamiltonian in energy space spanned by the

appropriate single-particle trap eigenmodes [34,62,100,101,108]. We identify a two level system for

an atom in mode n as |↑n⟩ ≡ |e;nX , nY ,Wn⟩ and |↓n⟩ ≡ |g;nX , nY ,Wn⟩. Here, nX and nY label

the radial harmonic oscillator modes.

Two dominant types of interatomic interactions determine the coupling constants in the

spin model: local interactions between atoms within a single lattice site and nearest-neighbour

interactions between atoms in adjacent sites. Next to nearest-neighbor interactions are on the

order of 10−2 of nearest-neighbor interactions or smaller for the operating conditions in our system

and are neglected. The couplings between radial harmonic oscillator modes are highly collective

as shown in prior experiments [62, 100, 101]. Therefore, to an excellent approximation, we define

collective spin operators at each lattice site after summing over occupied harmonic oscillator modes,

Ŝx,y,z
n =

∑
nX ,nY

Ŝx,y,z
n . The dynamics of the collective spin vector ⟨Ŝn⟩ = {⟨Ŝx

n⟩, ⟨Ŝy
n⟩, ⟨Ŝz

n⟩} are

described by the following mean-field equation of motion written in a gauge frame where the laser

drive is homogeneous (see SOM):

d

dt
⟨Ŝn⟩ = B⊥ × ⟨Ŝn⟩. (3.2)



84

The synthetic magnetic field B⊥ contains contributions of the laser drive with detuning δ from the

bare transition and the self-generated interactions terms:

B⊥ = {Ω0, 0,−δ + 2(χ0 + χ1)⟨Ŝz⟩ + C0Nloc}. (3.3)

Here ⟨Ŝz⟩ = 1
2L+1

∑L
m=−L⟨Ŝz

n+m⟩ is the average magnetization over a region of 2L+ 1 ∼ 15 lattice

sites (corresponding to 1 camera pixel or 6 µm in our imaging spectroscopy) centered around

n. Nloc is the number of atoms per lattice site averaged over the same region. The couplings,

χ0 = η0(Vee+Vgg−2Veg)/2, C0 = η0(Vee−Vgg)/2, and χ1 = −η1Ueg(1−cosφ), respectively describe

thermally averaged p-wave and s-wave interaction parameters between internal clock states, as well

as on the on-site (η0) and nearest-neighbour (η1) overlap matrix elements along the lattice. In the

absence of SOC, φ = 0, the s-wave interactions vanish.

Without interactions, the collective spin features a characteristic Rabi lineshape profile when

driven during a pulse area Ω0T = π with excitation fraction n↑(t) = ⟨Ŝz(t)⟩/Nloc + 1/2, symmetric

and centered around δ = 0. With interactions the time evolution takes place in the presence of an

additional self-generated axial magnetic field-like term that induces a non-linear response, resulting

in an asymmetric lineshape. A simple estimation of the density shift can be obtained by setting it

to be the value of δ at which B⊥
z = 0:

∆να→β = ∆νsα→β + ∆νpα→β, (3.4)

2π∆νpα→β ≈ 2χ0ς
z
α→β + C0, 2π∆νsα→β ≈ 2χ1ς

z
α→β. (3.5)

Here, ∆νs,pα→β are the s-wave and p-wave contributions to the density shift, α and β indicate initial

and final states, |g⟩ or |e⟩. ςzα→β is a fitting parameter that accounts for the time evolution of

⟨Ŝz⟩/Nloc during the Rabi dynamics, which depends on the details of the Rabi drive such as the

pulse area, excitation fraction, and initial conditions used in the experiment (see SOM).

3.2.3 Density shifts in the carrier transition

To measure the effect of collisional shifts on the clock transition, we perform extended mea-

surements using a ‘clock lock’ to track the drift of the laser. Each clock lock consists of a set of
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Figure 3.2: Engineering Interactions. (A) By varying the lattice depth during clock spec-
troscopy, we modify the ratio of off-site s-wave to on-site p-wave collisional shifts, ∆νsα→β/∆ν

p
α→β,

where α and β indicate clock states. Atoms are trapped in an optical lattice with wavelength
λL and probed by clock light with wavelength λC . Each antinode of the lattice light traps a
number of atoms which interact via p-wave collisions. The 698 nm clock wavelength is incom-
mensurate with the lattice spacing, so atoms in neighboring lattice sites see different clock phases,
φ = πλL/λC ≈ 7π/6, allowing s-wave interactions at low lattice depths. (B) The fractional fre-
quency density shift ∆νg→e/ν over a range of lattice depths. Red points and error bars indicate
experimental data and corresponding uncertainty in density shift and lattice depth. The theoretical
density shift is shown as a solid blue line with the shaded blue region accounting for uncertainties in
the s-wave scattering length and p-wave scattering volumes [62,109], as well as 10 nK temperature
uncertainty. (C) The density shift ∆νe→g/ν over a range of lattice depths.
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than previous regimes. The heat map and contours show the calculated fractional frequency shift
coefficient ∆νg→e/ν for a range of radial temperatures Tr and lattice depths in our system. (B)
Over a 10 hour measurement, we report a mean coefficient ∆νg→e/ν = 5.0(1.7) × 10−21. For each
set of four lock points, we extract a density shift coefficient, shown with corresponding uncertainty
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density shift coefficient (purple dots) with corresponding uncertainty reported in error bars. The
green line is an instability fit with slope 1.3 × 10−19/
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four lock points, a standard interleaved sequence probing opposite sign mF states to reject first

order Zeeman shifts. As reported in [23], we employ in situ imaging to construct a microscopic

frequency map throughout the extended sample, fitting a linear slope to the relationship between

frequency and number of atoms per site at each lock point. We define a linear density shift coeffi-

cient ∆να→β/ν such that the total fractional frequency shift is the product of this coefficient and

Nloc, calibrated using quantum projection noise techniques. The reported values of ∆να→β/ν are

the weighted mean of ∆να→β/ν at every lock point during an extended clock lock measurement

campaign. The statistical uncertainty is given by the Allan deviation fit at 1/6 total measuring

time.

In Fig. 3.2 we plot the measured coefficients over a range of V0 for both the |g⟩ → |e⟩ and

|e⟩ → |g⟩ transition. We typically utilize a 3.2 s π pulse duration. To account for increased

delocalization and reduced Rabi frequencies at the shallowest depths we lengthen the pulse time.

The effect of s-wave collisions at low lattice depths is readily apparent, with a dramatic increase in

density shift between 12 Erec and 5 Erec, consistent with the growth of the off-site matrix element

η1 as V0 is reduced. For the |g⟩ → |e⟩ transition presented in Fig. 3.2(B), the s-wave frequency shift

has an opposite sign compared to that of the p-wave. At the magic lattice depth, the s-wave and

p-wave shifts have the same magnitude, resulting in a nearly perfect cancellation for a vanishingly

small collisional frequency shift. In the |e⟩ → |g⟩ case presented in Fig. 3.2(C), the s-wave frequency

shift has the same sign as that of the p-wave, and thus the density shift remains negative over all

lattice depths. This behavior is well described by the mean-field solution from Eq. (3.2), represented

by the solid blue lines in Fig. 3.2(B) and Fig. 3.2(C). The disagreement at a large V0 of 32 Erec,

as shown in Fig. 3.2(C), likely arises from lattice photon assisted excited state decay to other spin

states, leading to background s-wave interactions not included in our theoretical model.

In Fig. 3.3(A), we model the fractional frequency shift over a range of experimentally relevant

lattice depths and radial temperatures near this magic point. The density shift is sensitive to

ensemble temperature, lattice depth, and excitation fraction. Experimentally, the lattice depth is

maintained through a precise and large bandwidth lattice intensity servo, and our clock lock tracks
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the laser drift to ensure a similar excitation fraction throughout the measurement duration. The

atomic temperature is less precisely controlled, with small drifts in the cooling laser frequency and

stray magnetic fields contributing to reduced cooling reproducibility and observed 10 nK variation.

To evaluate the robustness of operating at the magic lattice depth, we demonstrate a 10 hour

clock lock using a 3.2 s Rabi probe near the magic depth and report a 5.0(1.7) × 10−21 fractional

frequency shift per atom, as shown in Fig. 3.3(B). There is no apparent long term trend in the

density shift, and the coefficient seems to reach a flicker beyond ∼1000 s, as shown by the Allan

deviation in Fig. 3.3(C).

The data presented in Fig. 3.3 was collected with an average of 51 atoms per site in the

studied region. For comparison, the synchronous measurement presented in [23] with single clock

instability of 3.1 × 10−18 at 1 s utilized 0.5 mm length samples with an average of 38 atoms per

site. Operating in the density shift regime near the magic lattice depth presented here, the average

density shift magnitude would be approximately 1.9(0.6) × 10−19.

3.2.4 Dynamical phase transition in the Wannier-Stark sidebands

By addressing a transition to a different WS state, we further modify the atomic interactions.

We can still define an interaction spin model by identifying the states |↑n⟩ ≡ |e;nX , nY ,Wn+l⟩

and |↓n⟩ ≡ |g;nX , nY ,Wn⟩ as the spin-1/2 internal levels. In particular, we interrogate the l = 1

transition. The many-body dynamics are then described by the same mean field equation of motion,

Eq. (3.2), but with a different effective magnetic field (see SOM):

B⊥
l=1 ≈ {Ω1, 0,−δ1 + 2χl=1

1 ⟨Ŝz⟩}, (3.6)

where χl=1
1 = −η0Ueg/2 and δ1 is the detuning of the laser to the l = 1 transition. Note that because

the wavefunction of the excited state is displaced by one lattice site (see Fig. 3.4(B)), the overlap

matrix element that characterizes the s-wave interactions is proportional to η0. Therefore atomic

interactions are significantly enhanced in this case and increase with higher trap depth. Although

the SOC phase does not enter directly in χl=1
1 , SOC still plays a key role by allowing the transition to
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Figure 3.4: Dynamical Phase Transition. (A) An image of lattice trapped atoms, indicating
a spatial extent over a millimeter in length. Within a single image we can study lattice site den-
sity regimes ranging over two orders of magnitude, shown here as camera counts. (B) Addressing
the |g ; Wn⟩ → |e ; Wn+1⟩ transition, s-wave interactions effectively become on-site, leading to a
strong collisional shift. (C) The excitation fraction as a function of detuning and atom number
on the |g ; Wm⟩ → |e ; Wm+1⟩ transition at 22 Erec. Above ∼ 63 atoms per site, denoted by the
dashed black line, the system features a dynamical phase transition between ferromagnetic and
paramagnetic phases when varying the laser detuning and atomic density. The phase boundary is
denoted by a solid black line from theoretical calculations and green points from the experimental
data. The normalized asymmetry of the lineshape ALR is indicated by the shade of these points.
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detuning. (D) Excitation fraction as a function of detuning at different atom numbers demon-
strates the significant distortion and asymmetry that arises in the strongly interacting regime. (E)
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phase transition (0 Hz), and in the paramagnetic phase (0.72 Hz). Solid lines in D and E indicate
theoretical calculations.
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be driven, see Eq. (3.1). The stronger interactions modify the spin dynamics more dramatically and

give rise to a dynamical phase transition (DPT) between dynamical ferromagnetic and paramagnetic

phases (see SOM). The DPT appears as a sharp change in behavior of the long-time average

excitation fraction for an initial state prepared with all atoms in |g⟩, n↑ = limT→∞
1
T

∫ T
0 n↑(t)dt. In

the dynamical ferromagnetic phase, interactions dominate and the system features small oscillations

near a single pole of the Bloch sphere, with n↑ ≈ 0. In the dynamical paramagnetic phase, the

system exhibits large excursions around the Bloch sphere and n↑ dynamically adjusts itself as δ1

is varied. In the interaction dominant regime, the DPT generates a second order critical line that

distinguishes the two dynamical phases. The transition evolves into a smooth crossover region in

the weakly interacting regime, where the dynamics are dominated by single-particle Rabi flopping.

Similar to other DPT experiments, instead of direct measurements of n↑, the order parameter

is estimated by measuring the excitation fraction at a fixed probe time. We use a 2.3 s Rabi π pulse

with lattice depth V0 = 22 Erec and radial temperature Tr = 190 nK. Within a single image we

observe a density range spanning over two orders of magnitude (Fig. 3.4(A)). We spatially resolve

the excitation fraction within the sample and construct the dynamical phase diagram shown in

Fig. 3.4(C).

For a given Nloc we extract the lineshape asymmetry ALR defined as (nR−nL)/(nR+nL) from

experimental data, and normalize by the maximum value of ALR. Here, nR =
∫ δmax+f
δmax

n↑(δ)dδ,

nL =
∫ δmax

δmax−f n↑(δ)dδ, where δmax is the detuning for the peak value of the Rabi lineshape, and

f/2π = 1 Hz covers almost the entire frequency range of the Rabi lineshape. The lineshape

asymmetry allows us to characterize the dynamical phases. For Nloc < 63, below the dashed black

line in Fig. 3.4(C), the system is in a crossover regime featuring a linear density shift and asymmetry

ALR that becomes more pronounced as the atom number increases. Over 63 atoms per site, the

lineshape is near maximally asymmetric, and distinct ferromagnetic and paramagnetic dynamical

phases are identified. The phase boundary is experimentally determined by finding the maximum

derivative of the lineshape as a function of detuning, plotted as green points in Fig. 3.4(C), with

ALR indicated by the shade. The points lie very close to the theoretically calculated phase boundary
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shown as a solid black line.

The asymmetry in the lineshape becomes apparent by viewing the excitation at a constant

atom number, as in Fig. 3.4(D). At densities well below the crossover boundary, the lineshape is only

slightly distorted from that of an ideal Rabi response. Above the crossover density, the excitation

displays very different behaviors for the two opposite signs of detuning, and the excitation becomes

highly insensitive to changes of detuning deep in the ferromagnetic phase. The constant detuning

profiles presented in Fig. 3.4(E) further illustrate this dynamical phase transition. At δ1/2π = 0 Hz,

the laser drive is on resonance with the non-interacting transition. Above the crossover regime, the

ensemble features both dynamical phases, evolving from a dynamical paramagnet to a dynamical

ferromagnet for Nloc > 82. At δ1/2π = −0.72 Hz the system is in the dynamical ferromagnetic

phase above the crossover region. However, with δ1/2π = 0.72 Hz detuning, the excitation fraction

initially rises with atom number when the system is in the paramagnetic phase and saturates close

to the phase boundary. In both panels D and E the solid lines are theoretical predictions from the

mean field spin model with an additional dephasing term accounting for mode-changing collisions

(see SOM).

3.2.5 Conclusion and outlook

Operating in the Wannier-Stark regime has realized a new and optimized platform for optical

lattice clocks, with record coherence time and clock precision [23]. The work here highlights the use

of Hamiltonian engineering and control of atomic interactions to remove the compromise between

increased precision and reduced systematic uncertainties. Operating with hundreds of thousands of

atoms we still limit the density-related frequency shift well below the current state of the art, and

further reduction in density shift is readily attainable. Importantly, this work utilizes precise tuning

of interactions to explore rich many-body behavior. With selective Wannier-Stark interrogation and

in situ imaging, we efficiently map out a dynamical phase transition over a range of density of more

than two orders of magnitude.

So far we operate in a regime where a mean-field model is sufficient to describe the many-
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body dynamics. Driving the system with more sophisticated pulse sequences will allow us to further

explore quantum correlation and beyond mean-field effects. This will open a path for the generation

of spin squeezed states with a net quantum metrological advantage for state-of-the-art quantum

sensors.

3.2.6 Supplemental Materials: Spin model for the carrier transition

As described in the main text, our experimental system is a vertical 1D lattice with magic

wavelength (λL = 813 nm), so the external trapping potential Vext(R) is the same for |g⟩ and |e⟩

states. To the leading order, we have

Vext(R) ≈ V0 sin2(kLZ) +MgZ +
1

2
Mω2

R(X2 + Y 2). (3.7)

Here, kL = 2π/λL is the wavenumber of the lattice that sets the atomic recoil energy Erec =

h̄2k2L/2M , g is the gravitational acceleration, and ωR is the radial trapping frequency. In addition,

the clock laser (λc = 698 nm), aligned with the lattice direction, drives the transitions between |g⟩

and |e⟩ states with bare Rabi frequency Ω and detuning δ. In the rotating frame of the clock laser,

the second quantized Hamiltonian take the following form,

Ĥ = Ĥ0 + Ĥint + Ĥlaser, (3.8)

where

Ĥ0 =
∑

α={g,e}

∫
d3R ψ̂†

α(R)

[
− h̄2

2M
∇2 + Vext(R)

]
ψ̂α(R), (3.9)

Ĥint =
2πh̄2(a−eg + a+eg)

M

∫
d3r ψ̂†

e(r)ψ̂†
g(r)ψ̂g(r)ψ̂e(r)

+
3πh̄2b3gg

2M

∫
d3r [(∇ψ̂†

g)ψ̂†
g − ψ̂†

g(∇ψ̂†
g)] · [ψ̂g(∇ψ̂g) − (∇ψ̂g)ψ̂g]

+
3πh̄2b3ee

2M

∫
d3r [(∇ψ̂†

e)ψ̂
†
e − ψ̂†

e(∇ψ̂†
e)] · [ψ̂e(∇ψ̂e) − (∇ψ̂e)ψ̂e]

+
3πh̄2[(b+eg)3 + (b−eg)3]

2M

∫
d3r [(∇ψ̂†

g)ψ̂†
e − ψ̂†

g(∇ψ̂†
e)] · [ψ̂e(∇ψ̂g) − (∇ψ̂e)ψ̂g],

(3.10)

Ĥlaser =
h̄Ω

2

∫
d3R

[
eikcZψ̂†

e(R)ψ̂g(R) + h.c.

]
− h̄δ

2

∫
d3R

[
ψ̂†
e(R)ψ̂e(R) − ψ̂†

g(R)ψ̂g(R)

]
. (3.11)
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Here, kc = 2π/λc is the wave number of the clock laser, and ψα(R) is the annihilation field

operator for a fermionic atom of internal state α. One can refer to chapter 2.3 for the derivation

of the interaction Hamiltonian in the case of nuclear spin changing clock transition, with aαβ the

s-wave scattering lengths and b3αβ the p-wave scattering volumes.

Our experiment operates in the regime where the collisional rate of relaxation for motional

degrees of freedom is slower than internal spin dynamics and trapping frequencies [34, 62, 100,

101, 108]. This condition ensures only internal levels evolve while atoms remain frozen in their

single-particle eigenstates during the dynamics. We first focus on the case of the carrier transition,

where the clock laser couples the following two single particle states: |↑n⟩ ≡ |e;nX , nY ,Wn⟩ and

|↓n⟩ ≡ |g;nX , nY ,Wn⟩, where n = {nX , nY , n}, with nX , nY denoting the radial harmonic oscillator

modes and n the lattice site index of the center of the Wannier-Stark state |Wn⟩. We expand the

field operator ψ̂α(R) in terms of single-particle eigenstates as follows,

ψ̂e(R) =
∑
n

ϕnX (X)ϕnY (Y )Wn(Z)ĉn↑, ψ̂g(R) =
∑
n

ϕnX (X)ϕnY (Y )Wn(Z)ĉn↓, (3.12)

where ĉn↑ and ĉn↓ are fermionic annihilation operators for |↑n⟩ and |↓n⟩ states respectively. Here,

the harmonic oscillator wave function is

ϕnX (X) =
1√

2nXnX !

(
MωR

πh̄

)1/4

e−MωRX2/2h̄HnX

(√
Mωr

h̄
X

)
, (3.13)

where HnX (X) are Hermite polynomials. The wave function for the Wannier-Stark state is

Wn(Z) =
∑
m

Jm−n

(
2J0
Mgal

)
w(Z −maL), (3.14)

where Jn(x) are Bessel functions, J0 ≈ (4/
√
π)E

1/4
rec V

3/4
0 exp

[
−2
√
V0/Erec

]
is the ground band

nearest-neighbor tunneling energy, aL = λL/2 is the lattice spacing, and w(Z) is the ground band

Wannier function centering at Z = 0.

Under the frozen mode approximation, we treat each atom as a spin-1/2 system spanned by

|↑n⟩ and |↓n⟩ states. Therefore, we define the spin operators,

Ŝx
n =

1

2
(ĉ†n↑ĉn↓ + ĉ†n↓ĉn↑), Ŝy

n = − i

2
(ĉ†n↑ĉn↓ − ĉ†n↓ĉn↑),

Ŝz
n =

1

2
(ĉ†n↑ĉn↑ − ĉ†n↓ĉn↓), N̂n = ĉ†n↑ĉn↑ + ĉ†n↓ĉn↓,

(3.15)
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and rewrite the interaction Hamiltonian,

Ĥint/h̄ =
∑
nm

(n̸=m)

[
J⊥
nmŜn · Ŝm + χnmŜ

z
nŜ

z
m +

Cnm

2
(Ŝz

nN̂m + N̂nŜ
z
m)

]
, (3.16)

where

J⊥
nm = η|n−m|(V

eg
nm − U eg

nm)/2, χnm = η|n−m|(V
ee
nm + V gg

nm − 2V eg
nm)/2,

Cnm = η|n−m|(V
ee
nm − V gg

nm)/2.

(3.17)

Here, η|n−m| is a dimensionless overlap integral of Wannier-Stark states defined as

η|n−m| =
λL√
2π

(
V0
Erec

)−1/4 ∫
dZ [Wn(Z)]2[Wm(Z)]2. (3.18)

Uαβ
nm and V αβ

nm are s-wave and p-wave interaction parameters respectively (α, β = {g, e}),

Uαβ
nm =

8πh̄aαβ
M

snxmxsnymy

kL√
2π

(
V0
Erec

)1/4

,

V αβ
nm =

6πh̄b3αβ
M

(pnxmxsnymy + snxmxpnymy)
kL√
2π

(
V0
Erec

)1/4

,

(3.19)

where aeg ≡ (a+eg + a−eg)/2, b3eg ≡ [(b+eg)3 + (b−eg)3]/2, snm =
∫

dX [ϕn(X)]2[ϕm(X)]2, and pnm =∫
dX [(∂Xϕn(X))ϕm(X) − ϕn(X)(∂Xϕm(X))]2. Note that in V αβ

nm we ignore the p-wave contribu-

tions in the Ẑ direction, because its leading order terms are overlap matrix elements of gradients

of Wannier functions in nearest-neighbor lattice sites based on the expansion in Eq. (3.14). These

matrix elements are small for parameters used in the experiment.

On the carrier transition, Ĥlaser becomes

Ĥlaser/h̄ =
1

2

∑
n

(ΩnŜ
+
n + h.c.) − δ

∑
n

Ŝz
n, (3.20)

where

Ωn = Ω

∫
dZ eikcZ [Wn(Z)]2 = Ω0e

inφ. (3.21)

Here, φ = kcaL = πλL/λc is the clock laser phase difference between nearest-neighbor Wannier-

Stark states, generating spin-orbit coupling. The Rabi frequency for carrier transition is

Ω0 = Ω · CJ0

(
4J0
MgaL

sin(φ/2)

)
, (3.22)
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where C =
∫

dZ eikcZ [w(Z)]2 ≈ exp [−λ2L/4λ2c
√
V0/Erec]. The dependence of Ω0 on lattice depth V0

is shown in Fig. 3.5(A). In the following discussions, it is convenient to remove the phase dependence

on lattice sites in the Ĥlaser term by a gauge transformation ˆ̃cn↑ = e−inφĉn↑, ˆ̃cn↓ = ĉn↓. Under the

gauge transformation the spin operators become:

ˆ̃Sx
n = cos(nφ)Ŝx

n − sin(nφ)Ŝy
n,

ˆ̃Sy
n = sin(nφ)Ŝx

n + cos(nφ)Ŝy
n,

ˆ̃Sz
n = Ŝz

n,
ˆ̃Nn = N̂n.

(3.23)

Combining the discussions above, the effective Hamiltonian in the gauged frame becomes

Ĥ/h̄ =
∑
nm

(n̸=m)

[
J̃⊥
nm

ˆ̃Sn · ˆ̃Sm + χ̃nm
ˆ̃Sz
n

ˆ̃Sz
m +Dnm( ˆ̃Sx

n
ˆ̃Sy
m − ˆ̃Sy

n
ˆ̃Sx
m) +

Cnm

2
( ˆ̃Sz

n
ˆ̃Nm + ˆ̃Nn

ˆ̃Sz
m)

]

− h̄δ
∑
n

ˆ̃Sz
n + h̄Ω0

∑
n

ˆ̃Sx
n,

(3.24)

where J̃⊥
nm = cos[(n−m)φ]J⊥

nm, χ̃nm = χnm + J⊥
nm − J̃⊥

nm, and Dnm = − sin[(n−m)φ]J⊥
nm.

Now we discuss the dependence of interaction parameters J̃⊥
nm, χ̃nm and Dnm on radial

harmonic oscillator modes (nX , nY ,mX ,mY ) and the distance along lattice direction (|n − m|).

As reported in [34, 62, 100], the overlap integrals are not overly sensitive to the radial modes in

consideration, allowing us to simplify the Hamiltonian dynamics in terms of collective spin operators

at each lattice site, Ŝx,y,z
n =

∑
nXnY

ˆ̃Sx,y,z
n , N̂n =

∑
nXnY

ˆ̃Nn. Due to the partial delocalization of

the Wannier-Stark states along the lattice direction, the dominant terms are on-site and nearest-

neighbor interactions. Since the characteristic s-wave interaction strength is much larger than

p-wave interaction strength at ultracold temperatures (∼ 100 nK in our case), we include p-wave

interaction only for on-site terms. All these approximations simplify Eq. (3.24) into a large-spin

Hamiltonian in a 1D lattice,

Ĥ = Ĥon−site + Ĥoff−site + Ĥlaser,

Ĥon−site/h̄ =
∑
n

[
J⊥
0 Ŝn · Ŝn + χ0Ŝ

z
nŜ

z
n + C0N̂nŜ

z
n

]
,

Ĥoff−site/h̄ =
∑
n

[
J⊥
1 Ŝn · Ŝn+1 + χ1Ŝ

z
nŜ

z
n+1 +D1(Ŝ

x
nŜ

y
n+1 − Ŝy

nŜ
x
n+1)

]
,

Ĥlaser/h̄ =
∑
n

[
− δŜz

n + Ω0Ŝ
x
n

]
.

(3.25)
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The interaction parameters for these collective spin operators are calculated by performing a ther-

mal average over radial harmonic oscillator modes,

J⊥
0 = η0(Veg − Ueg)/2, χ0 = η0(Vee + Vgg − 2Veg)/2, C0 = η0(Vee − Vgg)/2,

J⊥
1 = −η1Ueg cosφ, χ1 = −η1Ueg(1 − cosφ), D1 = −η1Ueg sinφ.

(3.26)

Here, η0 and η1 are dimensionless overlap integrals for on-site and nearest-neighbor interaction

respectively [defined in Eq. (3.18)], and the thermal average for s-wave (Uαβ) and p-wave (Vαβ)

interaction strengths are

Uαβ =
8πh̄aαβ
M

Mω2
R

4πkBT

kL√
2π

(
V0
Erec

)1/4

, Vαβ =
6πh̄b3αβ
M

1

π

(
MωR

h̄

)2 kL√
2π

(
V0
Erec

)1/4

. (3.27)

The dependence of interaction parameters χ0, χ1, C0 on lattice depth V0 is shown in Fig. 3.5(B).

As described in the main text, we measure the density shift of the carrier transition in Rabi

spectroscopy. Note that the clock transition frequency is obtained by the average of two frequencies

with the same excitation fraction on the positive and negative detuned side of the π-pulse Rabi

spectrum, typically with an excitation fraction near 0.45 (the maximum excitation fraction is near

0.9). The density shift per atom

∆ν =
δleft + δright

4πNloc
, (3.28)

where δleft and δright are the laser detuning from clock transition resonance for the excitation

fraction we set on the positive and negative detuned side of the Rabi spectrum, and Nloc =

1
2L+1

∑L
m=−LNn+m is the averaged atom number per site in a local region centered around site n.

The local region is 2L+ 1 ∼ 15 lattice sites, corresponding to our 6 µm imaging resolution.

To calculate the density shift, we apply a mean-field approximation to Eq. (3.25),

ĤMF/h̄ =
∑
n

Ŝn ·Bn, (3.29)

where

Bx
n = Ω0 + J⊥

1 (⟨Ŝx
n−1⟩ + ⟨Ŝx

n+1⟩) +D1(⟨Ŝy
n+1⟩ − ⟨Ŝy

n−1⟩),

By
n = J⊥

1 (⟨Ŝy
n−1⟩ + ⟨Ŝy

n+1⟩) −D1(⟨Ŝx
n+1⟩ − ⟨Ŝx

n−1⟩),

Bz
n = −δ + 2χ0⟨Ŝz

n⟩ + C0Nn + J⊥
1 (⟨Ŝz

n−1⟩ + ⟨Ŝz
n+1⟩) + χ1(⟨Ŝz

n−1⟩ + ⟨Ŝz
n+1⟩).

(3.30)
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Note that we drop the J⊥
0 term in Eq. (3.25) because this term is a constant for any collective state

at each lattice site.

We further simplify Eq. (3.29) by assuming all lattice sites share the same atom number

Nloc in a local region (15 lattice sites). We calculate the spin dynamics in this local region by

assuming translationally invariant conditions ⟨Ŝx,y,z
n ⟩ = ⟨Ŝx,y,z⟩ to Eq. (3.30), where ⟨Ŝx,y,z⟩ =

1
2L+1

∑L
m=−L⟨Ŝ

x,y,z
n+m⟩. In this way, we have a homogeneous field on each site, Bn = B. The

mean-field Hamiltonian becomes

ĤMF/h̄ =
∑
n

Ŝn ·B⊥, (3.31)

where B⊥ ⊥ ⟨S⟩ is the perpendicular component of B, with

B⊥ = {Ω0, 0,−δ + 2(χ0 + χ1)⟨Ŝz⟩ + C0Nloc}. (3.32)

Dropping the parallel component of B because it does not contribute to the mean-field dynamics,

d

dt
⟨Ŝn⟩ = B⊥ × ⟨Ŝn⟩. (3.33)

Using the mean-field equations above, we simulate the experimental protocol and obtain theoretical

predictions for the density shift. In Rabi spectroscopy, we initialize all the atoms in the ground

state (⟨Ŝz
n⟩ = −Nloc/2) for g → e case, and all the atoms in the excited state (⟨Ŝz

n⟩ = Nloc/2) for

e→ g case.

From Eq. (3.32), we obtain a simple expression for the density shift by setting it to be the

value of δ at which B⊥
z = 0:

∆να→β = ∆νsα→β + ∆νpα→β,

2π∆νpα→β ≈ 2χ0ς
z
α→β + C0, 2π∆νsα→β ≈ 2χ1ς

z
α→β.

(3.34)

Here, ∆νs,pα→β are the s-wave and p-wave contributions to the density shift, ςzα→β is a fitting param-

eter that accounts for the time evolution of ⟨Ŝz⟩/Nloc during the Rabi dynamics, which depends

on the details of the Rabi drive such as the pulse area, excitation fraction, and initial conditions

used in the experiment, g → e or e → g. Based on our experimental condition in the carrier tran-

sition, we find ςzg→e = −0.12 and ςze→g = 0.095 [see Fig. 3.5(C)]. Note that ∆νpα→β are generated
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by on-site p-wave interactions, while ∆νsα→β are generated by nearest-neighbor s-wave interaction.

This dependence allows us to control the density shift by adjusting the spatial extension of the

Wannier-Stark states, which is tunable by varying the lattice depth, the key idea to eliminating

the density shift presented in the main text.

3.2.7 Supplemental Materials: Spin model for the Wannier-Stark sidebands

Apart from the carrier transition, we can also drive transitions to other Wannier-Stark

states by using the clock laser to couple two different internal and motional states of an atom,

|↑n⟩ ≡ |e;nX , nY ,Wn+l⟩ and |↓n⟩ ≡ |g;nX , nY ,Wn⟩, with l = ±1,±2, · · ·. Compared to the car-

rier transition, the subscript n labels different motional states for |↑n⟩ and |↓n⟩ states in off-site

Wannier-Stark transitions. In this case, we expand the field operator ψ̂α(r) in terms of single-

particle eigenstates,

ψ̂e(R) =
∑
n

ϕnX (X)ϕnY (Y )Wn+l(Z)ĉn↑, ψ̂g(R) =
∑
n

ϕnX (X)ϕnY (Y )Wn(Z)ĉn↓. (3.35)

Similar to the frozen-mode approximation used for the carrier transition, we treat each atom

as a spin-1/2 system spanned by the |↑n⟩ and |↓n⟩ states defined for the specific Wannier-Stark

states coupled by the laser, and rewrite the interaction Hamiltonian in terms of the corresponding

spin operators,

Ĥint/h̄ =
∑
nm

(n̸=m)

[
J⊥,l
nmŜn ·Ŝm+χl

nmŜ
z
nŜ

z
m+

Cnm

2
(Ŝz

nN̂m+N̂nŜ
z
m)+

K l
nm

2
(Ŝz

nN̂m−N̂nŜ
z
m)

]
, (3.36)

where

J⊥,l
nm = ηex,l|n−m|(V

eg
nm − U eg

nm)/2,

χl
nm = η|n−m|(V

ee
nm + V gg

nm)/2 − ηdir,l|n−m|(V
eg
nm + U eg

nm)/2 − ηex,l|n−m|(V
eg
nm − U eg

nm)/2,

Cnm = η|n−m|(V
ee
nm − V gg

nm)/2,

K l
nm = ηdiff,lnm (V eg

nm + U eg
nm)/2.

(3.37)

Here, η|n−m|, U
αβ
nm, V αβ

nm have the same definition as the ones used for the carrier transition [see
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Figure 3.5: Spin Model Parameters. (A) Rabi frequency for the carrier transition (Ω0) and
l = 1, 2, 3 Wannier-Stark sidebands (Ω1,Ω2,Ω3) as a function of lattice depth. (B) Spin model
parameters for the carrier transition as a function of lattice depth. The radial temperature at each
lattice depth used is the reported experimental value (See Fig. 3.7). (C) Theoretical predictions
of the fractional frequency shift per atom (orange points for g → e case, blue points for e → g
case) and numerical fits based on Eq. (3.34) shown as black lines. The fitting parameter used
are ςzg→e = −0.12 and ςze→g = 0.095. (D) Wannier-Stark sideband interaction parameter (χl=1

1 )
compared to the carrier transition parameter (χ0 + χ1), with the former significantly enhanced
compared to the latter. In this case as well the radial temperature at each lattice depth is the
reported experimental value in subsection 3.2.8.
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Eq. (3.18) and Eq. (3.19)], and the definitions for the extra dimensionless overlap intergrals are

ηdir,l|n−m| =
1

2
(η|n−m+l| + η|n−m−l|),

ηdiff,lnm =
1

2
(η|n−m+l| − η|n−m−l|),

ηex,l|n−m| =
λL√
2π

(
V0
Erec

)−1/4 ∫
dZWn(Z)Wm(Z)Wn+l(Z)Wm+l(Z).

(3.38)

Note that the Rabi frequency for the Wannier-Stark sidebands experiences the same spin-

orbit coupling phase as the carrier transition. We use the gauge transformation as in the carrier

transition to redefine the spin operators [see Eq. (3.23)], and the effective Hamiltonian in the gauged

frame becomes

Ĥ/h̄ =
∑
nm

(n̸=m)

[
J̃⊥,l
nm

ˆ̃Sn · ˆ̃Sm + χ̃l
nm

ˆ̃Sz
n

ˆ̃Sz
m +Dl

nm( ˆ̃Sx
n

ˆ̃Sy
m − ˆ̃Sy

n
ˆ̃Sx
m) +

Cnm

2
( ˆ̃Sz

n
ˆ̃Nm + ˆ̃Nn

ˆ̃Sz
m)

K l
nm

2
( ˆ̃Sz

n
ˆ̃Nm − ˆ̃Nn

ˆ̃Sz
m)

]
− h̄δl

∑
n

ˆ̃Sz
n + h̄Ωl

∑
n

ˆ̃Sx
n,

(3.39)

where J̃⊥,l
nm = cos[(n − m)φ]J⊥

nm, χ̃l
nm = χl

nm + J⊥,l
nm − J̃⊥,l

nm, Dl
nm = − sin[(n − m)φ]J⊥,l

nm, δl =

δ − lMgaL/h̄, and

Ωl = Ω · CJl

(
4J0
MgaL

sin(φ/2)

)
. (3.40)

The dependence of Ωl (l = 1, 2, 3) on lattice depth V0 is shown in Fig. 3.5(A).

In the following discussions, we focus on the l = 1 Wannier-Stark transition. Following

the same procedure we used for the carrier transition, we can express the Hamiltonian dynamics in

terms of collective spin operators, Ŝx,y,z
n =

∑
nxny

ˆ̃Sx,y,z
n , N̂n =

∑
nxny

ˆ̃Nn. Recall that for the carrier

transition we discussed in previous sections, on-site s-wave interactions only gave rise to a constant

term (J⊥
0 term) which does not play any role in the mean-field dynamics. The dominant interaction

comes from on-site p-wave interactions and nearest-neighbor s-wave interactions. However, in the

case of the l = 1 site-changing Wannier-Stark transition, a ground state atom in |Wn⟩ acquires a

non-zero admixture of the excited state in |Wn+1⟩. This component can interact with a ground

state atom in |Wn+1⟩ via s-wave interactions. Since the on-site s-wave interactions play a significant

role in this case, we drop all the interaction terms smaller than such on-site s-wave interactions.
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We can also drop the K l
nm term due to the uniform atom population for lattice sites in a local

regime. These approximations lead to the following large-spin Hamiltonian in a 1D lattice,

Ĥ/h̄ =
∑
n

[
χl=1
1 Ŝz

nŜ
z
n+1 − δ1Ŝ

z
n + Ω1Ŝ

x
n

]
, (3.41)

where

χl=1
1 = −η0Ueg/2. (3.42)

In Fig. 3.5(D), we compare χl=1
1 with its counterpart χ0 + χ1 in the carrier transition. It is clear

that the interaction is significantly enhanced due to site-changing Wannier-Stark transitions.

In the main text we presented theoretical and experimental results on the ferromagnetic

to paramagentic dynamical phase transition (DPT) when we address the l = 1 Wannier-Stark

transition. Given that Eq. (3.41) is a large-spin Hamiltonian, its dynamical phase diagram is

well captured by a mean-field approximation. Similar to the carrier transition, we apply the

translationally invariant condition ⟨Ŝx,y,z
n ⟩ = ⟨Ŝx,y,z⟩ in a local regime (15 lattice sites), where

⟨Ŝx,y,z⟩ = 1
2L+1

∑L
m=−L⟨Ŝ

x,y,z
n+m⟩. This leads to the following mean-field Hamiltonian,

ĤMF/h̄ =
∑
n

Ŝn ·B, (3.43)

where

B = {Ω1, 0,−δ1 + 2χl=1
1 ⟨Ŝz⟩}. (3.44)

Writing mean-field equations can be written in terms of normalized expectation value of collective

spin operators on a single site sx,y,z = 2⟨Ŝx,y,z⟩/Nloc,

d

dt
sx = −Nlocχ

l=1
1 szsy + δ1s

y,

d

dt
sy = Nlocχ

l=1
1 szsx − δ1s

x − Ω1s
z,

d

dt
sz = Ω1s

y.

(3.45)

Note that Eq. (3.45) takes the same form as the mean-field equations obtained in [34, 107], which

predicted a DPT between ferromagnetic and paramagnetic phases.

In general terms, a DPT is characterized by the existence of a critical point separating phases

with distinct dynamical properties in many-body systems after a sudden quench. The analog of
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thermodynamic order parameters is found in long-time average observables, which have a non-

analytic dependence on system parameters. We initialize all the atoms in the |↓⟩ state, the ground

state of our model when δ1 → −∞, and then perform a sudden quench of the longitudinal field

to its final value δ1. The DPT is signaled by a sharp change in behavior of the long-time average

excitation fraction n↑ = (sz + 1)/2, where sz = limT→∞
1
T

∫ T
0 sz(t)dt. In the dynamical ferromag-

netic phase, n↑ ≈ 0 persists even when the final longitudinal field δ1 is varied. In the dynamical

paramagnetic phase, n↑ dynamically adjusts itself following the change of final longitudinal field δ1

[See Fig. 3.6(C)].

In the following, we analyze the critical points for the DPT in our system based on the

procedure described in [34, 107]. Using energy conservation in HMF for an initial state with sz =

−1, sx = sy = 0,

Nlocχ
l=1
1

2
szsz − δ1s

z + Ω1sx =
Nlocχ

l=1
1

2
+ δ1, (3.46)

as well as the identity,

(sx)2 + (sy)2 + (sz)2 = 1. (3.47)

In the large-Nloc limit, we can eliminate sx and sy, and obtain the following differential equation

for sz,

1

2

(
d

dt
sz
)2

+ V (sz) = 0, (3.48)

where

V (sz) = (sz + 1)

{
(Nlocχ

l=1
1 )2

8
(sz)3 −

[
(Nlocχ

l=1
1 )2

8
+
Nlocχ

l=1
1 δ1

2

]
(sz)2

+

[
δ21 + Ω2

1

2
− (Nlocχ

l=1
1 )2

8

]
sz +

[
δ21 − Ω2

1

2
+
Nlocχ

l=1
1 δ1

2
+

(Nlocχ
l=1
1 )2

8

]}
.

(3.49)

Our experimental conditions lie in the parameter regime where Nlocχ
l=1
1 < 0 with a fixed positive

Ω1.

We interpret Eq. (3.48) as the Hamiltonian of a classical particle with position sz moving in

the effective potential V (sz), which is shown in Fig. 3.6(A). The condition V (sz) = 0 determines the

physical turnover points of sz. Since V (−1) = 0, V ′(−1) = −1, V (1) = 2δ21 , this effective potential
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Figure 3.6: Dynamical Phase Transition. (A) The effective potential V (sz) with Nlocχ
l=1
1 /Ω1 =

−5. In the case of δ1/Ω1 = 2.2, V (sz) has two real roots; In the case of δ1/Ω1 = 1.8, V (sz) has four
real roots. The nearest turnover point is labelled by sz∗, and the jump of sz∗ indicates the DPT. (B)
The mean-field dynamics of our model with Nlocχ

l=1
1 /Ω1 = −5 and δ1/Ω1 = 2.2, 1.8, which shows a

sharp change of mean-field dynamical behavior. The choice of color for the lines is the same as (A).
(C) The long-time average excitation fraction n↑ (red line) and the Rabi lineshape after a π-pulse
(blue line) with Nlocχ

l=1
1 /Ω1 = −5. The critical point (marked by gray line) that separates the

ferromagnetic phase (left) and paramagnetic phase (right) is captured by the maximum derivative
in both of the curves. (D) Asymmetry of the long-time averaged excitation fraction and Rabi
lineshape in (C) with the same choice of color. The gray line separates the crossover regime (left)
and DPT regime (right).
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has at least two real roots in [−1, 1]. The dynamics of sz can be understood as the oscillations

between −1 and the nearest turnover point sz∗ [see Fig. 3.6(B)]. Suppose we start from a V (sz) with

two real roots, and continuously tune the parameters of V (sz) so that two new real roots appear in

between. Then a jump of the nearest turnover point sz∗ should occur in this process. This abrupt

change in behavior is what sets the dynamical phase transition [see Fig. 3.6(A,B)].

To count the number of roots in V (sz), we factor out the known root sz = −1, and then

consider the discriminant ∆ = 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2 of cubic equation ax3 + bx2 +

cx+ d = 0. If ∆ > 0, the cubic equation has three distinct real roots; if ∆ < 0, the cubic equation

has one real root. So ∆ = 0 sets the critical points of the DPT, presented as the black solid line in

Fig. 3.4(C) of the main text. As shown in Fig. 3.6(C), the critical points can be captured by the

divergence of the first derivative of n↑. Similar to [34,107], our experiment measures the excitation

fraction at a finite time (after a π pulse) instead of the long-time averaged excitation fraction.

Although the derivative does not diverge in experiment, the maximum derivative can still be used

to capture the critical point as shown in Fig. 3.6(C)]. In Fig. 3.4(C) of the main text, we construct

the phase boundary of the DPT with the maximum derivative of the experimental Rabi lineshapes.

We find that the many-body decoherence discussed in the next section has negligible effect on the

position of the critical points, nevertheless it obscures the sharp features at the DPT expected from

Eq. (3.43).

Moreover, based on the existence of real roots in equation ∆ = 0, we can also differentiate the

DPT regime (Nlocχ
l=1
1 /Ω1 < −8

√
3/9) dominated by interactions and the smooth crossover regime

(−8
√

3/9 < Nlocχ
l=1
1 /Ω1 < 0) dominated by single-particle Rabi flopping where no DPT takes

place. Based on our experimental condition (22Erec, 190nK and 2.3s π-pulse), the boundary of these

two regimes Nlocχ
l=1
1 /Ω1 = −8

√
3/9 is equivalent to Nloc = 63.4, indicated by the black dashed line

in Fig. 3.4(C) of the main text. These two regimes can also be determined by the asymmetry of the

long-time averaged excitation fraction or Rabi lineshape, defined as ALR = (nR − nL)/(nR + nL).

Here, nR =
∫ δmax+f
δmax

n↑(δ)dδ, nL =
∫ δmax

δmax−f n↑(δ)dδ, where δmax is the detuning at which the peak

value of n↑ is reached, and we choose f to cover almost the entire frequency range of non-vanishing
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n↑. In Fig. 3.6(D), we compare the ALR obtained from the long-time averaged excitation fraction

and the the one obtained from the Rabi lineshape after a π pulse. In both cases, the asymmetry

ALR becomes more pronounced as the atom number increases in the crossover regime, while ALR

saturates near the maximum value in the DPT regime. Note that the many-body decoherence

discussed in the next section generally reduces the asymmetry. Nevertheless the saturation behavior

observed in the DPT regime is maintained. For convenience, in Fig. 3.4(C) of the main text we

normalize the maximum value of ALR obtained from experimental lineshapes to 1.

3.2.8 Supplemental Materials: Details in theory-experiment comparison

Lattice depth (Erec)
0 20 40 60 80 100

T r (
nK

)

0

100

200

300

400

Figure 3.7: Radial Temperature. Radial temperature Tr measured over a range of operational
lattice depths V0 in units of lattice photon recoil energies, Erec. The red points indicate experimental
data, and the solid blue lines show the piecewise fit of Eq. (3.50).

Here we would like to discuss additional details in theory-experiment comparison:

• Determination of radial temperature

In experiment, we prepare a nuclear spin polarized, cold sample of 87Sr at a high lattice

depth of 300 Erec and then adiabatically reduce the lattice depth. We measure the radial

temperature Tr of the ensemble before each density shift measurement by driving the narrow

clock transition with a beam oriented perpendicular to the lattice direction and extracting

a Doppler absorption profile. Our camera based imaging spectroscopy technique provides a

spatial map of the temperature throughout the mm length cloud. We observe temperature



106

variations of up to 10 nK over the entire sample. The temperature over the range of

operational lattice depths V0 is well described by:

Tr(nK) =


−45.2 + 14.1V0/Erec (V0 < 15Erec),

42
√
V0/Erec (V0 > 15Erec).

(3.50)

For V0 > 15 Erec, the trend of Tr matches that expected from an adiabatic lowering of

the trap depth. At sufficiently low lattice depths, the anharmonic radial trap behavior

leads to a deviation from adiabatic temperatures. For the lowest values of Tr approaching

20 nK, our Doppler spectroscopy technique also reaches its limit of reliability. The radial

temperature Tr over a range of lattice depths is shown in Fig. 3.7. The piecewise function

Eq. (3.50) is plotted alongside the red experimental data points.

• Many-body decoherence in off-site Wannier-Stark transitions

Our theoretical model is based on the frozen-mode approximation, which restricts the ac-

cessible Hilbert space of each atom into a spin-1/2 degree of freedom spanned by the |↑n⟩

and |↓n⟩ states. Our spin model is valid in the collisionless regime, breaking down at long

times or at high enough densities where mode relaxation is not negligible. Since the interac-

tion strength is significantly enhanced when interrogating site-changing WS transitions, as

discussed in previous sections, the mode relaxation rate is expected to be more significant.

We take into account the mode-changing collisions phenomenologically by adding a density-

dependent dephasing term (γz) into our mean-field equations for the l = 1 Wannier-Stark

sideband [see Eq. (3.45)],

d

dt
sx = −Nlocχ

l=1
1 szsy + δ1s

y − γzs
x,

d

dt
sy = Nlocχ

l=1
1 szsx − δ1s

x − Ω1s
z − γzs

y,

d

dt
sz = Ω1s

y,

(3.51)

We use γz as a fitting parameter and find it has a linear dependence on Nloc as expected

from mode changing decoherence. In Fig. 3.8, we compare our theoretical predictions with
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Figure 3.8: Many-body Decoherence. Rabi lineshapes for the l = 1 Wannier-Stark l = 1
transition and corresponding theoretical fits at different Nloc. The dephasing rate γz is the only
fitting parameter, which is shown in the inset using the same color as the Rabi lineshapes. The
linear dependence of γz on atom number per site (γz = 0.35+0.009Nloc) confirms that the dephasing
effect is generated by mode-changing collisions.
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the Rabi lineshapes observed in experiment at different Nloc, with good agreement by

setting the dephasing rate γz = 0.35 + 0.009Nloc. Small deviations are observed at the

highest densities approaching 200 atoms per site.

• Scattering parameters

In Ref. [62, 100], the relation between the p-wave interaction and p-wave scattering length

was missing a factor of 1/2, with the correct coefficient being 3πh̄2b3αβ/2M . Using the past

notation, in Ref. [62] the p-wave scattering lengths were found to be: b̃+eg = (−169± 23)a0,

b̃ee = (−119± 18)a0. These values can be corrected by solving: b3ee− b3gg = 2(b̃3ee− b3gg) and

(b+eg)3−b3gg = 2((b̃+eg)3−b3gg), which gives b+eg = (−215.9±28.2)a0 and bee = (−155.8±21.1)a0.

For p-wave inelastic scattering length βee, one can multiply the factor 21/3 to the value in

Ref. [62], which gives βee = (152.5 ± 16.4)a0. Using these corrected values of the p-wave

parameters, combined with the measured s-wave scattering lengths in Ref. [109], as well as

the universal relation between the complex s-wave scattering length A = a − iα and the

complex p-wave scattering volume B3 = b3−iβ3 for a single van der Waals potential [60,62],

one can finally obtain Table 3.1 that includes the updated s-wave and p-wave scattering

lengths that are used in this work.

Table 3.1: 87Sr s-wave and p-wave scattering lengths in Bohr radius (a0)

Channel s-wave p-wave

gg 96.2 ± 0.1 74.5 ± 0.3

eg+ 161.3 ± 2.5 −215.9 ± 28.2

eg− 69.1 ± 0.9 −41.3 ± 2.7

ee (elastic) 176.3 ± 9.5 −155.8 ± 21.1

ee (inelastic) 17.3+14
−8 152.5 ± 16.4

• Corrections in the tunneling rate from Gaussian beam geometry

In previous sections, we assume a separable confinement potential and tunneling only along
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the direction of gravity. However in the experimental system, the Gaussian geometry of

the laser beams inevitably couple the axial and radial wave functions. This coupling leads

to corrections in the nearest-neighbor tunneling rate which now depends on the thermal

distribution of the radial modes. Notice that the Gaussian beam profile of a 1D lattice

leads to the following trapping potential,

V (X,Y, Z) = V0 − V0 cos2(kLZ) exp
[
−2(X2 + Y 2)/w2

L

]
, (3.52)

where kL = 2π/λL is the lattice wave number, wL is the beam waist, and V0 > 0 is the

lattice depth. Based on Eq. (2.46) and Eq. (2.47), an atomic gas with radial temperature

Tr feels an effective lattice depth given by V0 − kBTr. Although kBTr ≪ V0, it may

still lead to non-negligible corrections to the nearest-neighbor tunneling rate, which shows

exponential dependence on lattice depth. Note that in the large-spin Hamiltonian discussed

in previous subsections, the interaction parameters are determined by thermal average over

radial modes. To take into account the leading order effects of the thermal distribution, we

replace the ground band tunnel coupling by

J0(Tr) ≈
4√
π
E1/4

rec (V0 − kBTr)
3/4 exp

[
− 2

√
V0 − kBTr
Erec

]
. (3.53)

This correction leads to ∼ 40% increase of nearest-neighbor s-wave interaction strength

near the zero-crossing point.

3.3 Coherent evolution of superexchange interaction in seconds long optical

clock spectroscopy

This section is adapted from: William R. Milner, Stefan Lannig, Mikhail Mamaev, Lingfeng

Yan, Anjun Chu, Ben Lewis, Max N. Frankel, Ross B. Hutson, Ana Maria Rey, Jun Ye, Coherent

evolution of superexchange interaction in seconds long optical clock spectroscopy, arXiv:2402.13398

(2024).

https://doi.org/10.48550/arXiv.2402.13398
https://doi.org/10.48550/arXiv.2402.13398
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3.3.1 Introduction

Optical lattice clocks are advancing studies of fundamental physics, metrology, and quantum

simulation [23,79,110–113]. By controlling all external perturbations to the ground and metastable

“clock” state, each one of the confined atoms becomes a pristine, two-level system. With clock

precision limited fundamentally by quantum projection noise [114], a natural approach for im-

proving clock performance is to probe the largest possible number of atoms combined with the

longest possible coherence time. However, given a densely packed sample of atoms, we must ad-

dress outstanding challenges including maintaining a maximum coherence time for clock precision

and evaluating systematic effects for clock accuracy. Often it is desirable to minimize atomic in-

teractions to enhance single-particle coherence and control systematic effects. At the same time,

as the level of understanding of these interactions becomes more mature and sophisticated, we

can engineer a large, coherent spin ensemble with interaction precisely controlled to introduce and

optimize quantum coherence, correlation, and entanglement to advance the frontier of quantum

metrology [14,16,115,116]. With the ease of geometry tunability, optical lattices provide a versatile

platform to confine large numbers of atoms and control their interactions and motion. Over the

past two decades, progress in clock precision [20, 77] has been largely advanced by the study and

control of interactions in one-dimensional (1D) optical lattice clocks. The corresponding interac-

tion dynamics are well described by a collective spin model [62, 100] that includes both on-site

p-wave interactions between atoms in different radial modes and off-site s-wave interactions. The

latter are induced by the spin-orbit coupling (SOC), arising from a difference in wavelength be-

tween the clock probe and the lattice laser [102, 103], which lifts the indistinguishability between

spin-polarized fermions on neighboring lattice layers along the clock k-vector. Systematic explo-

ration of this 1D spin model identified a confinement depth at which the combination of s and

p-wave interactions suppressed detrimental mean-field density shifts [23,25]. These advances based

on precise experimental control motivates quantum simulation investigations of the comparatively

less-studied three-dimensional (3D) lattice spin model [76].
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In a 3D lattice filled with a degenerate Fermi gas of spin-polarized 87Sr atoms in the motional

ground state [117], the system can be modelled with the Fermi-Hubbard Hamitonian where ground

and excited state atoms on the same lattice site interact via the Hubbard interaction parameter

U , and motion is captured by a tunneling parameter t. In the unity filled limit a Mott-insulating

regime emerges at U ≫ t, atomic motion is restricted, and atoms interact only via virtual second

order tunneling processes that induce spin-exchange couplings between nearest neighbour atomic

spins known as superexchange [84, 118, 119]. The physics of superexchange is central in describ-

ing magnetic phenomena such as antiferromagnetism [63, 120] and is believed to play a role in

superconductivity [121]. Several ultracold atom experiments have employed optical lattices to ex-

plore low-temperature bosonic ferromagnetic and fermionic antiferromagnetic correlations induced

by superexchange [122–129], as well as some non-equilibrium superexchange-driven quantum dy-

namics in local density probes [83,130,131]. With the goal of achieving optimal and scalable clock

performance at a unity filled 3D lattice, understanding and controlling the effects of superexchange

on collective spin dynamics becomes necessary [76,109]. The current work employing seconds long

Ramsey spectroscopy on tens of thousands of atoms directly probes the coherent nature of superex-

change interaction, thus strengthening our understanding of interaction regimes that are favorable

for robust quantum coherence and entanglement.

In the current experiment we independently vary the lattice confinement to explore the 1D

and 3D lattice spin models, including the crossover between the two regimes for the first time. To do

so we load a degenerate Fermi gas of 87Sr atoms into a 3D lattice with tunable confinement, allowing

us to vary the interaction strength and tunneling rates. The interaction effects on spin coherence

between the ground and metastable clock state are directly recorded on Ramsey fringes. In a vertical

1D lattice, we achieve coherence times of ∼20 s when minimizing the contribution of s and p-wave

interactions. As a weak transverse confinement is turned on, s-wave interactions are increased

by orders of magnitude and very fast dephasing is observed. At deep transverse confinement,

favorable coherence times are partially recovered, and coherent superexchange interactions are

manifested directly in oscillations of the Ramsey fringe contrast persisting over a timescale of
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multiple seconds. These experimental observations are well captured by an anisotropic lattice spin

model (XXZ plus antisymmetric exchange terms), which breaks the Heisenberg SU(2) symmetry of

the Fermi-Hubbard physics due to the spin-orbital coupling phase [102,103,132,133]. Realization of

anisotropic spin interactions in controlled cold atomic systems has only recently seen exploration,

and is highly relevant to studies of spin magnetism [127] and transport [134]. In clocks, such

interactions can also be directly employed for the generation of large scale quantum entanglement

over the entire 3D lattice system [135–137].

3.3.2 System

The experimental schematic is depicted in Fig. 3.9(a). After evaporation, we confine the

atoms in a retroreflected, cubic lattice operating at the magic wavelength of λmagic = 813 nm

with lattice constant a ≈ 407 nm [76]. Beginning with a nuclear-spin polarized Fermi gas with

a temperature T/TF ≈ 0.2, the atoms are adiabatically loaded into the ground band of the 3D

lattice [76, 117]. In the deep lattice, the initial state is nearly a band insulator with a peak filling

of one atom per lattice site [111, 139]. The lattice depth (V⊥) of the transverse (horizontal with

respect to gravity) confinement is tuned independently from the depth of the vertical confinement

(Vz) by adjusting the optical power in the corresponding lattice beams. Our two-level spin system

is established between the ground 1S0 (|g⟩) and metastable electronic ”clock” state 3P0 (|e⟩). We

coherently drive the clock transition |g,mF = −9/2⟩ ↔ |e,mF = −9/2⟩ at λclk ≈ 698 nm with a

vertical laser beam using an optical local oscillator locked to an ultrastable silicon cavity [140].

After loading the lattice, we put the atoms into a superposition of |g⟩ and |e⟩ and perform

Ramsey spectroscopy. For detection, in situ absorption imaging along the vertical direction is

employed and approximately 100 photons per atom are scattered over a 1 µs pulse duration with

minimal blurring compared to the diffraction-limited point-spread function of 1.3 µm [111, 139].

Two images of the ground and clock state atoms, their numbers denoted Ng and Ne, are taken to

determine the excitation fraction pe = Ne/(Ne + Ng). For a chosen region-of-interest PA of our

imaged density distribution, we record the local excitation fraction pAe = NA
e /(N

A
e +NA

g ). This is
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Figure 3.9: Experimental setup and interaction model. a, Ultracold fermions are confined
in the ground band of a three-dimensional optical lattice with tunable confinement. Lattice depths
can be independently varied by changing the optical power of retro-reflected beams in the transverse
V⊥ or vertical direction Vz. In situ imaging allows to spatially resolve interactions and dephasing
via imaging spectroscopy [138]. b, Dynamics are described via the Fermi-Hubbard model with
tunneling tz, interaction energy U , and a site-to-site energy shift ∆Ej from the lattice Gaussian
confinement. Atoms along the z axis on sites indexed j−1, j are initialized in a superposition state
of the ground state |g = 1S0⟩ and the metastable electronic state (“clock” state) |e = 3P0⟩, where
the clock laser imprints local phase shift φ due to spin-orbit coupling. Dephasing of the coherence
is proportion to an effective superexchange rate: 4t2zU/(U

2 − ∆E2
j )
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shown in Fig. 3.9(a), where the excitation fractions are evaluated in spatially separate regions P1

and P2 to determine both the Ramsey fringe contrast and relative atomic coherence using imaging

spectroscopy [138].

During the Ramsey interrogation time the atoms interact via the Fermi-Hubbard model

presented in Fig. 3.9(b) [141]. The on-site interaction U = 4πh̄2

m aeg−
∫
|W (r)|4d3r is determined

by the anti-symmetric scattering length aeg− = 69.1(0.9)aB [62, 109] and the 3D, single-particle

Wannier function W (r) is determined by the lattice confinement. Along the vertical direction, z,

the atoms on neighboring sites are coupled with the tunneling rate tz, and also experience both

the linear gravitational potential and the confinement from the Gaussian transverse lattice beams,

leading to an energy offset ∆Ej between adjacent vertical lattice planes indexed by j [81]. The

clock laser is also launched along the vertical direction imprinting a spin-orbit-coupling (SOC)

phase φ = 2πa/λclk ≈ 7π/6 between neighboring vertical lattice planes [102, 142] as depicted in

Fig. 3.9(b).

The superexchange oscillations, observed in the deep 3D confinement regime of our experi-

ment, can be understood from a simple double-well model describing two atoms (spin s = 1
2) on two

adjacent lattice sites j = 0, 1 along the z lattice direction. The Ramsey spectroscopy protocol ini-

tializes the atoms in a superposition state |ψinit⟩ = (|g⟩0+ |e⟩0)/
√

2 ⊗ (e−iφ/2 |g⟩1+e+iφ/2 |e⟩1)/
√

2.

Crucially, due to the site-dependent, spin-orbit coupling phase φ, aside from a global phase this

initial state is an admixture of the spin triplet and singlet states, with |ψinit⟩ ∼ e−iφ/2 |g, g⟩ +

eiφ/2 |e, e⟩ + cos(φ/2)(|g, e⟩ + |e, g⟩) + i sin(φ/2)(|g, e⟩ − |e, g⟩). At half-filling and in the strongly

interacting limit, U ≫ tz, superexchange interactions arising between neighboring spins, JSEˆ̃s0 · ˆ̃s1,

introduce an energy shift for the singlet state, which translates to a phase difference JSET com-

pared to the triplet states during the coherent evolution time T . Here ˆ̃sαj for α ∈ {X,Y, Z} refers

to spin-1/2 matrices describing atoms on sites j in the lab frame.

More formally, we rotate into a “spiral” frame where the initial state is uniform (all atoms

in the same superposition state) and the site-dependent laser phase φ is absorbed into the spin

operators across the lattice, ŝ±j = ˆ̃s±j e
±ijφ, ŝZj = ˆ̃sZj . Thus, we obtain a superexchange spin
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Hamiltonian in the spiral frame (see SOM)

ĤSE =
∑
j

JSE(j)
[1

2

(
eiφŝ+j ŝ

−
j+1 +H.c.

)
+ ŝZj ŝ

Z
j+1

]
. (3.54)

The superexchange interaction strength is JSE(j) = 4t2zU/(U
2 − ∆E2

j ), which is inhomogeneous

due to the local potential difference between adjacent sites ∆Ej , including gravity and the lattice

Gaussian confinement. Furthermore, the spiral phase makes this spin Hamiltonian go beyond

conventional superexchange interactions in optical lattices, as it exhibits exchange-symmetric XXZ-

style anisotropy and an antisymmetric spin exchange term (see SOM). Observables such as atomic

coherence reveal collective quantum dynamics on timescales of the averaged J̄SE over the ensemble,

which is tuned by controlling the inhomogeneity and the lattice depth.

The above theoretical description is valid in the regime Vz ≪ V⊥, for which the system acts

as individual vertical tubes and each site with an atom acts as a spin-1/2 particle. Prior work [25]

has also shown that in the 1D lattice confinement along z (V⊥ = 0), each lattice site holds many

atoms. In this 1D limit, on-site interactions favor spin alignment between atoms, locking them

into large collective spins of Wannier-Stark level n along gravity (see SOM), Ŝα
n , whose dynamics is

described by the same type of spin Hamiltonian as superexchange but with modified couplings and

an additional onsite term. ĤLS = Ĥon−site + Ĥoff−site. Here, Ĥon−site ∼ ∑
n Ŝ

Z
n Ŝ

Z
n describes the

on-site p-wave interactions (see Fig. 3.11(a)), and Ĥoff−site includes the off-site s-wave interactions

and takes the same form as ĤSE by replacing the spin-1/2 operators with large-spin operators.

In this work, we bridge these two regimes by varying the transverse lattice confinement V⊥. We

extend the theoretical description of Ref. [25] to the regime Vz ≫ V⊥, where in each pancake the

weak transverse lattice defines a new set of transverse eigenmodes with renormalized spin couplings

(see SOM).

To evaluate atomic coherence that is related to clock performance at different lattice confine-

ment, we measure the Ramsey fringe contrast for varying dark time T . An XY8 sequence consisting

of eight π pulses along the two orthogonal rotation axes in the equatorial place of the Bloch sphere

is used to remove single particle dephasing as depicted in Fig. 3.10(a) [143, 144]. To decouple the
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Figure 3.10: Coherence time measurement. a, Ramsey spectroscopy is employed to study the
coherence time. An XY8 pulse sequence is used to mitigate single-particle dephasing. The dephas-
ing and rephasing of individual spins is depicted on the Bloch sphere during the echo sequence.
For the final π/2 pulse two choices of the randomized phase φ1,2 are shown (light and dark purple)
to illustrate the spread of resulting excitation fractions in individual realizations. b, To determine
the coherence time T2, the contrast decay is fit to a stretched exponential C(T ) = C0e

−(T/T2)α as
a function of dark time T . The contrast is determined via parametric plots of excitation fractions
in regions P1 and P2 of the ensemble as depicted in Fig. 1. Error bars are 1σ (standard deviation)
obtained from jackknifing (see SOM). c, The quality factor Q = πC0T2ν where ν ≈ 429 THz is
plotted over a wide range of transverse and vertical confinement. Two candidate regimes are iden-
tified to investigate further. The weak or zero transverse confinement regime (i), where the longest
optical lattice clock T2 times have been reported [23]. Regime (ii), where fast initial contrast decay
is observed due to superexchange interactions. The deep 3D lattice regime (iii) was studied on this
platform in [142] where the coherence time is limited by Raman scattering of lattice photons.
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atomic coherence measurement from the finite atom-light coherence time (∼3 s) [140], the phase

of the final Ramsey π/2 pulse is randomized. Parametric plots of the excitation fractions from

concentric regions P1 and P2 (P1 < 6µm and 6 µm < P2 < 12µm with respect to the trap center)

are used to determine the contrast as shown in Fig. 3.10(b). These parametric plots show ellipses,

where a maximum likelihood estimator determines the ellipse contrast and jackknifing is used to

extract 1σ (standard deviation) errorbars for all Ramsey contrast measurements [138]. The system

is sufficiently homogeneous in the spatial regions P1 and P2 that the contrast C is approximately the

same (see SOM). No statistically significant phase shift between P1 and P2 is measured, indicating

that the XY8 pulse sequence largely removes any spatially varying frequency shift.

As a function of dark time T , a stretched exponential function C0e
−(T/T2)α is fit to the

Ramsey contrast to extract a T2 coherence time for T > 1 s. For V⊥ = 0, we expect intra-site,

all-to-all p-wave interactions to lead to Gaussian decoherence. We extract a single value α = 1.38

by minimizing the combined χ2 for all measurements for V⊥ = 0 . For all other measurements

with V⊥ > 0, we set α = 1 when fitting T2. The extracted quality factor Q = πC0T2ν is plotted

in Fig. 3.10(c), where ν is the clock transition frequency ≈ 429 THz. We identify two interesting

regimes to investigate further: (1) In the 1D lattice regime with no transverse confinement the

longest coherence times are observed; (2) With deep transverse confinement where the average

J̄SE/h ≳ 1 Hz, coherent superexchange dynamics are observed on the Ramsey fringe contrast

over a timescale of seconds. As previously reported [142], the deep 3D lattice regime (3) where

J̄SE/h ≪ 1 Hz reveals a limit on the coherence time primarily due to Raman scattering of lattice

photons on |e⟩ atoms. The dark times in this study (T < 16 s) are short compared to both the 1S0

lattice lifetime and vacuum lifetime (see SOM).
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Figure 3.11: Weak transverse confinement regime. a, In the weak transverse confinement

regime, both off-site s-wave interactions, induced by the SOC phase between lattice sites, and on-

site p-wave interactions between atoms contribute to dephasing [25]. Their strength is controlled

by the vertical confinement Vz and transverse confinement V⊥, strongly influencing the observed

coherence time T2. b, T2 is measured without transverse confinement (V⊥ = 0). In the inset the

atom lifetime τ , limited by inelastic p-wave loss, is plotted as a function of Vz (see SOM). Theory

modeling Ramsey contrast decay based on the 1D spin Hamiltonian using experimental measured

parameters is overlaid in red. The error bands are based on the uncertanties of the experimental

parameters (see SOM). Error bars are 1σ (standard deviation) uncertainty of the fitted T2 and τ

values. c, A weak transverse confinement V⊥ is applied. This leads to increased τ , as well as a

reduction of T2 at intermediate Vz = 23.2ER and a enhancement of T2 at deep Vz = 46.4ER.

3.3.3 Weak transverse confinement regime

Intrigued by the results in Fig. 3.10(c), we compare the 1D and 3D confinement regimes

(1) and (2). In 1D (V⊥ = 0), both on-site p-wave and off-site s-wave interactions contribute

to the contrast decay (see Fig. 3.11(a)). The observed T2 coherence time and atom lifetime are

plotted as a function of Vz in Fig. 3.11(b). Varying Vz provides two distinct regimes to probe

the physics of contrast decay. At large Vz, atoms become localized in Wannier orbitals along

the z-lattice and interact predominantly via on-site Ising-type p-wave interactions that contribute

to slow contrast decay with T2 ∼ 1/
√
Ns (Ns is the atom number per pancake, see SOM), as
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observed in previous studies [100]. As Vz decreases, the reduced p-wave interaction leads to slower

decoherence rate. However, the Wannier-Stark states become increasingly delocalized along z

and atoms experience progressively stronger off-site s-wave interactions. The interplay between

s-wave and p-wave interactions leads to spin wave instabilities that contribute to fast contrast

decay with T2 ∼ 1/Ns (see SOM). With increasing s-wave interaction strength, this instability rate

increases as Vz decreases. The crossover between these two mechanisms occurs around Vz = 17.4ER,

where ER = h2/8ma2 ≈ h × 3.5 kHz is the lattice photon recoil energy, with a correspondingly

longest coherence time of 19(5) s. While experiment and theory largely agree with each other, the

discrepancy at long coherence times could arise from unexpected reduction of the s-wave interaction

strength from re-thermalization processes neglected in the theory. The 1D lattice employed in this

study operates with a much higher density than previous studies [23,25]. Thus, the atom lifetimes

(see Fig. 3.11(b) inset), limited by inelastic p-wave loss are correspondingly much shorter [23].

Upon introduction of a weak transverse confinement (V⊥ ≪ Vz), the increasing localization

of the transverse modes in the x-y plane leads to enhancement of s-wave interactions. Additionally,

due to decreased overlap of transverse modes, p-wave interactions are suppressed, which in turn

substantially improves atom lifetimes as shown in Fig. 3.11(c). Meanwhile, different trends in the

coherence time are observed between the intermediate Vz = 23.2ER and deep Vz = 46.4ER lattices.

For Vz = 23.2ER, the weak transverse confinement increases s-wave interactions within pancakes,

enhancing the population of unstable spin wave modes, and a subsequent decrease of T2. For

Vz = 46.4ER, the system remains in the quasi-stable Ising dominated regime and T2 increases as

p-wave interactions decrease.

3.3.4 Strong transverse confinement regime

As the transverse confinement is increased further, only s-wave interactions remain rele-

vant. When the system enters the strongly interacting regime doubly occupied lattice sites across

the whole array are suppressed and coherent superexchange interactions dominate the quantum

dynamics. In Figs. 3.12(a), 3.12(b) we show the contrast decay as a function of dark time for
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Figure 3.12: Observing superexchange interactions. Ramsey contrast decay is studied in a
3D lattice at fixed Vz = 17.4 ER and thus tz, while V⊥ is varied between approximately 70 and
20 ER primarily modifying U . Decay curves at V⊥ = 28.1 ER a, and 44.9 ER b, are plotted.
Error bars are 1σ (standard deviation). Red lines are theory, averaging contrast decay in 1D chains
initialized from a thermal distribution of the 3D cloud including error bands stemming from T2
uncertainties (see SOM). c, Fitted contrast oscillation frequencies (black points) are compared to
the calculated superexchange frequency (blue line) including bond-charge corrections to tz (see
SOM), which averages the expected oscillations with local ∆Ej and U along the imaging direction.
Contrast oscillation frequencies are also fit to the function κ× J̄SE (red line), with J̄SE including
no corrections to tz, finding κ = 1.42(7). Error bars are 1σ (standard deviation) uncertainty of
the fitted frequency f . d, Contrast curves approximately collapse when dark times are rescaled by
the fitted oscillation frequency (red line) in Fig. 3.12(c). A simple simulation sampling spin chains
with different lengths and coupling strengths (gray dashed line) is overlaid.
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V⊥ > Vz, finding a clear oscillatory feature on timescales of the superexchange rate J̄SE. For these

measurements Vz is fixed to 17.4ER at which tz ≈ 14.2 Hz. J̄SE is tuned by varying V⊥ between 19.7

and 67.4ER, thus varying U from 1.2 to 2.3 kHz. In the V⊥ ≫ Vz regime, the system is comprised

of isolated vertical tubes along z as shown in Fig. 3.10(c). We assume all atoms within each tube

are pinned in place even for non-unit filling, since the local potential difference is much stronger

than tunneling (∆Ej ≫ tz). We further assume that every uninterrupted chain of neighbouring

atoms within a given tube undergoes evolution under the superexchange Hamiltonian ĤSE. Their

evolution is independent of other chains, and the contrast is an average over all chains. The curves

in Figs. 3.12(a), 3.12(b) show numerical predictions averaging over the full 3D system using cal-

ibrated experimental parameters except entropy-per-particle in the lattice (see SOM), which find

good agreement when the overall slow decay in contrast reported in Fig. 3.10(c) is factored in.

To extract the measured superexchange rates, we vary V⊥ and fit the experimentally measured

contrast decay to the function CSE(T ) = Ae−T/T2 + Bcos(2πfT )e−T/Tosc + D. The measured

oscillation frequencies f are compared to a theoretically modelled superexchange frequency (blue

line) accounting for the lattice inhomogeneity and bond-charge corrections (see SOM) of tz in

Fig. 3.12(c). To mitigate uncertainties of higher order corrections to Hubbard parameters like

tz, the contrast oscillation frequencies are also fit to the function κ × J̄SE (red line), where we

determine κ = 1.42(7). The simplified model for calculating J̄SE assigns individual U and ∆Ej

to localized atom pairs and averages the resulting local contrast oscillations in vertical direction

to extract an oscillation frequency (see SOM for more details). The agreement is good for all

but the deepest V⊥, for which the experimentally measured rate appears to be higher-frequency.

Numerical calculations suggest this could arise from additional interaction inhomogeneity that

favors higher frequency contributions. In Fig. 3.12(d), the dark times of the contrast decay data

are rescaled by the fitted superexchange rate κ× J̄SE from Fig. 3.12(c). The rescaled data collapse

to a single curve, reflecting the underlying superexchange dynamics in all measurements. This is

also in agreement with a theoretical model with randomly sampled spin chains of different lengths

and coupling strengths to capture the effects of finite temperature and trap inhomogeneity without
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invoking explicit parameters (see discussion of Fig. 3.13(c-e) and SOM for more detail). We note

that the lattice curvature is changing as a function of V⊥, thus increasing JSE(j) inhomogeneity

which prevents rescaling surpassing the measurement errors.

In order to study the properties of the interactions further, we vary the lattice filling and the

energy offsets ∆Ej of the local lattice tilt in Fig. 3.13. First, the fraction of atoms participating

in superexchange is reduced by imprinting holes in the lattice. Beginning with maximum filling,

before Ramsey spectroscopy a variable clock laser pulse duration is used to shelve atoms in |e⟩ with

spatially uniform probability, and subsequently the remaining |g⟩ atoms are removed with resonant

light at 461 nm (see Fig. 3.13(a)). The ensuing contrast decay as a function of the total atom

number N is plotted in Fig. 3.13(b). The oscillation amplitude, reflecting the fraction of atoms

participating in superexchange, is strongly decreased as N is reduced due to the increasing number

of holes. Due to the reduced filling fraction at the wings of the atom cloud, this effect is also

observed when choosing the region of interest to be an annulus and increasing its radius compared

to P2 (see SOM).

As the position of the atoms in the combined potential of gravity and the lattice confinement

is shifted vertically the site-to-site energy shift ∆Ej , and consequently the superexchange inter-

action strength, is strongly modified. We precisely move the cloud position at the µm scale (see

SOM). Figure 3.13(d) displays these oscillations as a function of cloud position z. We compare

the oscillation frequency with a heuristic simulation analogous to Fig. 3.12(c) of the Ramsey con-

trast in Fig. 3.13(e) (red line). Averaging the Ramsey signal along the z-direction during imaging

strongly suppresses the effect of locally enhanced JSE(j) where U = ∆Ej . The asymmetry of the

background trap gradient around z = 0 leads to a reduction of the oscillation frequency at large z

where ∆Ej > U . The frequency of the simulation shows qualitative agreement with the measured

oscillation.
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Figure 3.13: Controlling superexchange interactions. All measurements presented here are
performed at trap depths Vz = 17.4 ER and V⊥ = 44.9 ER. The fraction of atoms participating in
superexchange is modified by reducing the filling fraction via uniformly adding holes as depicted
in panel a. In (i), the initial state is a near unity filled sample of ground state atoms. Next, atoms
are placed in a superposition state with tunable pulse area. Light resonant with |1S0⟩ is turned on
to imprint holes, with the remaining atoms in |3P0⟩ as shown in (ii). The contrast decay is plotted
in b as the clock pulse area and thus total atom number N is reduced compared to the initial
atom number N0. The solid lines shown in panels b, d are fits using the model CSE(T ) provided in
the main text. Error bars are 1σ (standard deviation). In panel c, the superexchange coupling is
modified by changing the position of the atoms in the lattice potential varying the site-to-site energy
shift ∆Ej . At the positions indicated by vertical red lines tunneling becomes resonant and strongly
enhances the local JSE(j). However, averaged over the whole cloud this only slightly modifies the
oscillation frequencies. Oscillations in contrast at different vertical positions z are shown in panel
d; curves are shifted vertically according to z position. These measured oscillation frequencies are
compared with a heuristic superexchange simulation (red line) of the Ramsey contrast in panel e
(see SOM).
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3.3.5 Conclusion and outlook

In conclusion, we have used our degenerate Fermi gas 3D optical lattice clock with anisotropic

and tunable tunneling rates in the presence of spin-orbit coupling to directly probe different regimes

of interaction effects described by the Fermi-Hubbard Hamiltonian. Superexchange interactions

are identified as an important systematic effect that degrade the precision of optical lattice clocks

operating with high filling at timescales h/J̄SE. We demonstrate that we can both microscopically

model and control these interactions in the 3D optical lattice.

For clock metrology, we can either reduce the magnitude or control the form of the superex-

change interactions to enhance clock performance. For example, we can increase the lattice constant

a sufficiently large to reduce the tunneling rate to a negligible value [142]. Alternatively, a variable

lattice spacing can be used to make a commensurate with λclk to achieve φ mod 2π = 0. Without

SOC (φ mod 2π = 0) the isotropic Heisenberg Hamiltonian
∑
j
JSE(j)ŝj · ŝj+1 is recovered, and any

coherent spin state becomes an eigenstate accumulating only a trivial global phase. On the other

hand, collective superexchange interactions can be used to produce spin entanglement for quantum

enhanced sensing [145]. At intermediate in-plane tunnelling rates, these isotropic, Heisenberg in-

teractions couple the single particles within each plane to collective spins [137]. Thus, by reducing

single-particle inhomogeneities via potential shaping or layer selection [146], the collective spins

across all planes can be squeezed by SOC-induced XXZ interactions investigated here.

3.3.6 Supplemental Materials: Two-well Fermi-Hubbard Hamiltonian

To understand the superexchange dynamics, we start from the two-well Fermi-Hubbard

Hamiltonian with a energy tilt ∆E between sites,

ĤFH = −tz
∑

σ∈{g,e}

(ˆ̃c†0,σ
ˆ̃c1,σ +H.c.) + U

∑
j∈{0,1}

n̂j,en̂j,g +
∆E

2
(n̂1 − n̂0), (3.55)

Here, ˆ̃c†j,σ(ˆ̃cj,σ) creates (annihilates) a fermion on site j with spin σ in the lab frame. We define

n̂j,σ = ˆ̃c†j,σ
ˆ̃cj,σ, and n̂j = n̂j,e + n̂j,g. In the Mott-insulating limit U ≫ tz, the double-occupied

states are separated by a large energy gap ∼ U , which allows for restriction of dynamics in the
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single-occupied states via second-order perturbation theory. We get the effective Hamiltonian for

superexchange interaction,

Ĥeff = JSE

(
ˆ̃s0 · ˆ̃s1 −

1

4

)
, (3.56)

where

JSE =
4t2zU

U2 − ∆E2
. (3.57)

Here the spin operators are defined as ˆ̃sj =
∑

αβ={e,g}
ˆ̃c†j,ασαβ

ˆ̃cj,β/2, where σαβ are Pauli matrices.

Expanding ˆ̃s0 · ˆ̃s1 = (ˆ̃s0 + ˆ̃s1)
2/2 − 3/4, we obtain triplet states (|d⟩ ≡ |g, g⟩, |u⟩ ≡ |e, e⟩,|t⟩ ≡

(|g, e⟩ + |e, g⟩)/
√

2) with zero energy, and the singlet state (|s⟩ ≡ (|g, e⟩ − |e, g⟩)/
√

2) with energy

−JSE with respect to the triplet states.

The oscillation of the Ramsey contrast can be understood based on the time evolution of the

initial state generated by the first Ramsey pulse. This state has a spiral phase eijφ imprinted by the

clock laser with Rabi frequency Ω, Ĥclock(θ)/h̄ = 1
2

∑
j(|Ω|eiθ× ˆ̃s+j e

ijφ +H.c.), where θ controls the

rotation axis. We consider the initial state generated by the first Ramsey pulse with |Ω|T1 = π/2,

|ψinit⟩ = e−iĤclock(θ=π/2)T1/h̄ |g⟩0 ⊗ |g⟩1

=
1√
2

(|g⟩0 + |e⟩0) ⊗
1√
2

(e−iφ/2 |g⟩1 + eiφ/2 |e⟩1)

=
1

2

[
e−iφ/2 |d⟩ + eiφ/2 |u⟩ +

√
2 cos(φ/2) |t⟩ + i

√
2 sin(φ/2) |s⟩

]
.

(3.58)

For simplicity, we ignore all the echo pulses during the dark time. So the dynamics in the dark

time can be described by the singlet state |s⟩ acquiring a phase eiJSET/h̄. Then we apply the second

Ramsey pulse with |Ω|T2 = π/2 with the same θ, and get the final state

|ψf ⟩ = −ieiφ/2 sin(JSET/2h̄) sin2(φ/2) |d⟩ +
1

4
e−iφ/2

(
3e−iJSET/2h̄ + (1 − cos(φ))eiJSET/2h̄

+ cos(φ)

)
|u⟩ +

i√
2

sin(JSET/2h̄) sin(φ/2) sin(φ) |t⟩ − 1√
2

sin(JSET/2h̄) cos(φ/2) sin(φ) |s⟩ .
(3.59)

In this case the Ramsey contrast is given by C = 2|⟨ψf |ˆ̃sz|ψf ⟩|/N , where ˆ̃sz = ˆ̃sz1 + ˆ̃sz2. The

Ramsey contrast will thus undergo oscillatory dynamics,

C(T ) =

∣∣∣∣ cos2
(
φ

2

)
+ sin2

(
φ

2

)
cos(JSET/h̄)

∣∣∣∣. (3.60)
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In our experiment operating under the conditions Vz ≪ V⊥, we ignore tunneling in the

transverse directions and consider superexchange dynamics only along the z direction. To capture

the superexchange dynamics, we need to include a spatially varying superexchange rate JSE(j), due

to the tilt generated by gravity and the confinement generated by the Gaussian profile of the lattice

beam. In addition to the site-to-site energy shift ∆Ej , the reduction of the transverse lattice power

at |j − js| ≳ w/a (with lattice constant a) also decreases the on-site interactions Uj and therefore

induces a weak j-dependence. Instead of applying Eq. (3.57), to avoid artifacts from the divergence

present in this approximation, we obtain JSE(j) from an independent diagonalization of Eq. (3.55)

at each lattice site j. For simplicity, we focus on the region with uniform density in the x-y plane

and therefore consider the variation of JSE only in vertical direction.

Here we assume the oscillatory dynamics are mainly generated by two-atom chains. So we

can heuristically generalize Eq. (3.60) to average over all possible local one-atom and two-atom

chains in our system. We define n(j) as the local filling fraction of lattice sites labelled by j,

such that the total atom number in each vertical tube is Ntube =
∑

j n(j). In the following, two

adjacent lattice sites along z direction are considered but all quantities are given with respect

to individual lattice sites. The probability to have only one atom in these two lattice sites is

p(1)(j) = n(j)[1 − n(j)], and the probability to have two atoms is p(2)(j) = [n(j)]2. Here, the

magnetization of a one-atom chain is ⟨s̃z,(1)(j)⟩ = ⟨ψf |ˆ̃sz|ψf ⟩ = 1/2, and in a local two-atom

chain ⟨s̃z,(2)(j)⟩ = {cos2(φ/2) + sin2(φ/2) cos[JSE(j)T/h̄]}/2 (see Eq. (3.60)) and thus the average

magnetization per size is ⟨s̃z(j)⟩ =
∑

k p
(k)⟨s̃z,(k)⟩. We then average over all spatial positions to

obtain the Ramsey contrast

C(T ) =
1

Ntube

∣∣∣∣∑
j

2⟨s̃z(j)⟩
∣∣∣∣

=

∣∣∣∣1 −
∑
j

[n(j)]2

Ntube
sin2

(
φ

2

)
+
∑
j

[n(j)]2

Ntube
sin2

(
φ

2

)
cos(JSE(j)T/h̄)

∣∣∣∣. (3.61)

By fitting a function of the from Ae−T/τosc cos
(
J̄SET/h̄

)
to the oscillatory term in C(T ) we obtain

the oscillation frequency J̄SE/h, which is the basis for the solid red lines in Figs. 3.12(c) and 3.13(e).

The bond-charge corrections ∆tz taken into account for the blue line in Fig. 3.12(c) are scaled with
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Uj to account for the inhomogeneity across the atom cloud. The error bands are derived from the

uncertainty of this fit parameter. We choose a temperature of ∼ 370nK to roughly match the peak-

to-peak oscillation amplitude of 2 sin2(φ/2)
∑

j [n(j)]2/Ntube ∼ 0.7 observed in most measurements

(cf. Figs. 3.13(d) or 3.12(b)).

We note that this approach of estimating the oscillation frequency does not provide a com-

prehensive and quantitative model for the coherence as it neglects effects from longer chains and

the dynamical decoupling pulse sequence. These are taken into account in the following discussion.

3.3.7 Supplemental Materials: Superexchange contrast dynamics

Now we generalize Eq. (3.56) to the case of many-atoms. Here we work in a “spiral” frame

where the initial state is uniform (all atoms in the same superposition state) and the site-dependent

laser phase φ is absorbed into the spin operators across the lattice, ŝ±j = ˆ̃s±j e
±ijφ, ŝZj = ˆ̃sZj , where

j is the lattice index along z direction. This transformation lead to the following 1D spin-spin

interaction Hamiltonian [132],

ĤSE =
L−1∑
j=1

JSE(j)
[
cos(φ)

(
ŝXj ŝ

X
j+1 + ŝYj ŝ

Y
j+1

)
+ ŝZj ŝ

Z
j+1 + sin(φ)

(
ŝXj ŝ

Y
j+1 − ŝYj ŝ

X
j+1

)]
,

JSE(j) =
4t2zU

U2 − ∆E2
j

,

(3.62)

where L is the number of sites, and JSE(j) the superexchange interaction strength. The lat-

ter depends on both the on-site Hubbard interactions and the local potential difference ∆Ej =

1
2mω

2
lata

2[(j + 1 − j0)
2 − (j − j0)

2], where j0 is the bottom of the lattice confining potential.

The first three terms act as an XXZ Hamiltonian with spin anisotropy ∼ sec(φ), which

induces contrast decay. The last two terms are a Dzyaloshinskii-Moriya (DM) type interaction,

which breaks exchange symmetry due to the chirality of the imprinted clock laser phase. The latter

has been studied in the context of exotic chiral properties such as skyrmions. At the collective

mean-field level such an interaction has no effect. In our case since the interaction strengths JSE(j)

are inhomogeneous, the DM interaction will also generate contrast decay, as each atom will feel an

unequal force from its left and right neighbours due to the lack of exchange symmetry.
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The Ramsey decay dynamics are modeled by initializing a product state of all spins in a

uniform superposition state following the first Ramsey pulse as written above,

|ψinit⟩ = e−iπ
2

∑
j ŝ

Y
j

⊗
j

|↓⟩j . (3.63)

The chain then undergoes time-evolution under the Hamiltonian, interspersed with echo pulses

during the XY8 sequence. For a sequence including a single echo pulse we write,

|ψf (t)⟩ = e−iĤSEt/2e−iπ
∑

j ŝ
X
j e−iĤSEt/2 |ψinit⟩ . (3.64)

An XY8 sequence instead applies eight pulses about different axes as depicted in the main text

Fig. 3.10(a). After time-evolving the state, a final Ramsey pulse with an arbitrary phase θ is

performed,

|ψf,θ(t)⟩ = e−iπ
2

∑
j[cos(θ)ŝYj +sin(θ)ŝXj ] |ψf (t)⟩ . (3.65)

The contrast of the uninterrupted chain is obtained by measuring the excited state fraction,

Nθ(t) = ⟨ψf,θ(t)|

∑
j

(
ŝZj +

1

2

) |ψf,θ(t)⟩ . (3.66)

For a single independent chain, contrast is obtained via,

C(t) =
1

L
[maxθNθ(t) − minθNθ(t)] . (3.67)

If there are multiple independent chains, their contributions to the excited state fraction Nθ(t)

must be summed together for each angle θ before performing the maximization and minimization

above.

A single site L = 1 has unity contrast C = 1 at all times. Chains with few sites will exhibit

persistent oscillations of contrast, whereas chains with many sites will undergo decay, with revivals

only occuring on timescales ∼ 1/L. Inhomogeneity in the superexchange couplings JSE(j) will

also wash out revivals or oscillatory dynamics at longer times. The contrast dynamics from many

summed, disordered chains thus generally exhibits only one or two oscillations before saturating to

a constant value determined by how many of the chains had isolated single sites.



129

We compare this theory to the experiment by using specific lattice parameters, interaction

coupling coefficients, and averaging over the 3D distribution, as detailed in the Supplementary

Material, which yields a theoretically predicted contrast C(T ). Since the experiment also finds

a slower decay on timescale ∼ 1/T2 measured in Fig. 3.10(c), we normalize the resulting con-

trast obtained from numerical simulation of the superexchange Hamiltonian by a further factor

C(T ) → C(T )e−T/T2 . The resulting theoretically predicted contrast is shown as solid lines in

Figs. 3.12(a), 3.12(b) of the main text, which is in good agreement with the measurements. The

shaded region on the theory curves corresponds to an uncertainty of ±2 s for the T2 in this adjust-

ment factor (in line with the T2 measurement uncertainty).

In addition, we provide a more simple theoretical prediction without invoking explicit exper-

imental conditions. We randomly sample a large number of chains with lengths L drawn from a

Poisson distribution P (λ) with low Poisson parameter λ < 1, appropriate for an initial thermal

distribution. The coupling strengths Vj in each chain are drawn from a Gaussian distribution of

mean JSE(j) and standard deviation ϵJSE(j), with ϵ meant to capture inhomogeneity in the su-

perexchange interactions. As ϵ increases, the contrast oscillations reduce in amplitude to the profile

observed in the experiment. The curve in Fig. 3.12(d) of the main text shows the prediction for

Poisson parameter λ = 0.25 and ϵ = 0.4. This curve is also adjusted by a factor of e−
1
5
TJSE/h to

account for slower atomic decay, using an effective lifetime of five superexchange cycles, which is

in line with the experimental lifetimes and yields good agreement with all measured data.

Due to wavefunction overlap with adjacent sites, additional interaction and tunneling terms

are present in the Fermi-Hubbard Hamiltonian. We identify the main contributions to be bond-

charge type effects [147] and an admixture of higher bands due to the gravitational tilt.

Bond-charge interactions are those with interactions between adjacent sites and additionally

an exchange of the particles. This can be cast into the form of a tunneling term, thus directly

correcting the tunneling energy t′z = tz + ∆tz for single-occupied sites with

∆tz = −
4πh̄2a−eg
m

∫
d3xψ3

0ψ1, (3.68)



130

where ψj = ψ(x, y, z − ja) describes the ground band Wannier function ψ at lattice site j. For

lattice depths of Vz = 17.4 ER and V⊥ = 44.9 ER we obtain ∆t ≈ h× 1.2Hz, which corresponds to

an increase of about 8% with respect to the bare value of tz ≈ h× 14.2Hz.

A direct calculation of the Wannier-Stark wavefunction suggests an additional correction to

the tunneling energy on the order of ∼ 10%. However, the exact calculation of the full contribution

remains challenging because we estimate that all higher bands would be needed to be taken into

account for a faithful quantification [109]. Because these effects are barely above our experimental

uncertainty we are mostly neglecting these corrections in this work.

3.3.8 Supplemental Materials: 1D large-spin Hamiltonian

To model the contrast decay in Fig. 3.11 we describe the Vz ≫ V⊥ regime in 3D optical lattice

clocks using the assumption that the spins in each pancake are locking into a large spin based on

Ref. [25, 100], which leads to the following 1D large-spin Hamiltonian:

ĤLS = Ĥon−site + Ĥoff−site,

Ĥon−site/h̄ =
∑
n

[
J0,nŜn · Ŝn + χ0,nŜ

Z
n Ŝ

Z
n + C0,nN̂nŜ

Z
n

]
,

Ĥoff−site/h̄ =
∑
n

[
J1,nŜn · Ŝn+1 + χ1,nŜ

Z
n Ŝ

Z
n+1 +D1,n(ŜX

n Ŝ
Y
n+1 − ŜY

n Ŝ
X
n+1)

]
.

(3.69)

The collective spin operators are defined as ˆ̃Sn =
∑

nxny

∑
αβ={e,g}

ˆ̃c†nxnyn,ασαβ
ˆ̃cnxnyn,β/2 in the lab

frame, where σαβ are Pauli matrices, ˆ̃cnxnyn,α are fermionic annihilation operators for radial mode

labelled by (nx, ny) assuming separable potential in pancakes, Wannier-Stark level n along gravity

and internal state α. N̂n is the atom number operator for Wannier-Stark level n. We transform

into the “spiral” frame by unitary transformation Ŝ±
n = e±inφ ˆ̃S±

n and Ŝz
n = ˆ̃Sz

n. The interaction

parameters are

J0,n = η0(V
n,n
eg − Un,n

eg )/2, χ0,n = η0(V
n,n
ee + V n,n

gg − 2V n,n
eg )/2,

C0,n = η0(V
n,n
ee − V n,n

gg )/2, J1,n = −η1Un,n+1
eg cosφ,

χ1,n = −η1Un,n+1
eg (1 − cosφ), D1,n = −η1Un,n+1

eg sinφ.

(3.70)
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where φ = 2πa/λclk is the spin-orbit-coupled clock phase between nearest-neighbor sites of the

lattice, with a the lattice spacing. η0 and η1 are dimensionless overlap integrals for on-site and

nearest-neighbor interaction respectively,

η|n−m| =

√
2π

kL

(
Vz
ER

)−1/4 ∫
dz [Wn(z)]2[Wm(z)]2, (3.71)

where ER = h̄2k2L/2m is the lattice recoil energy, with wave number kL = π/a, and Wn(z) is the

wave function of a Wannier-Stark state centered at site n.

The s-wave (Uαβ) and p-wave (Vαβ) interaction strengths (α, β = {g, e}) are calculated by

averaging a Fermi-Dirac distribution over radial modes,

Un,m
αβ =

8πh̄aαβ
m

kL√
2π

(
Vz
ER

)1/4 ∑
nxmxnymy

snxmxsnymy

Nnxnyn

Nn,init

Nmxmym

Nm,init
,

V n,m
αβ =

6πh̄b3αβ
m

kL√
2π

(
Vz
ER

)1/4 ∑
nxmxnymy

(pnxmxsnymy + snxmxpnymy)
Nnxnyn

Nn,init

Nmxmym

Nm,init
,

(3.72)

where aαβ is the elastic s-wave scattering length, and b3αβ is the elastic p-wave scattering volume.

As the atoms are nuclear-spin polarized (mF = ±9/2 → m′
F = ±9/2 transition between 1S0 and

3P0 states), to fully anti-symmeterize the wavefunction the following scattering lengths are required

aeg = a−eg, b3eg = (b+eg)3 [25,62]. Defining the wave function for a radial mode (nx, ny) is ϕnxϕny , we

have snm =
∫

dx [ϕn(x)]2[ϕm(x)]2, pnm =
∫

dx [(∂xϕn(x))ϕm(x) − ϕn(x)(∂xϕm(x))]2. Here Nnxnyn

are the initial population in radial mode (nx, ny) and lattice site n under a Fermi-Dirac distribution,

Nnxnyn =
[

exp
[
(ϵnxny − µn)/kBTR

]
+ 1
]−1

, where the chemical potential for each lattice site µn

is chosen to match the initial atom number for each Wannier-Stark level Nn,init =
∑

nxny
Nnxnyn,

and TR is the radial temperature. Errorbands in Fig. 3.11 include the uncertainty of s-wave and

p-wave scattering parameters, 0.5ER uncertainty of lattice depth, as well as 20% uncertainty in

radial temperature.

Apart from unitary evolution under ĤLS, inelastic on-site p-wave e-e collision can lead to

two-body loss of the atom number as observed in previous studies [62,100]. We describe the atom

loss based on the following Lindblad master equation,

h̄
d

dT
ρ̂ = −i[ĤLS, ρ̂] +

∑
n

Γ0,nLn(ρ̂), (3.73)
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where ĤLS is the Hamiltonian given in Eq. (3.69). The Liouvillian for e-e loss is given by

Ln(ρ̂) =
∑

nxnymxmy

[
L̂nxnymxmy ρ̂L̂

†
nxnymxmy

− 1

2
{L̂†

nxnymxmy
L̂nxnymxmy , ρ̂}

]
, (3.74)

where L̂nxnymxmy = ˆ̃cnxnyn,e
ˆ̃cmxmyn,e. We use the averaged e-e loss rate over the radial modes to

maintain the large-spin description,

Γ0,n = η0Ṽ
n,n
ee /4, (3.75)

where we replace the elastic p-wave scattering volume b3ee in V n,m
ee by inelastic p-wave scattering

volume β3ee to get Ṽ n,m
ee . For simplicity, we assume Un,m

αβ , V n,m
αβ and Ṽ n,m

ee approximately unchanged

under atom loss. Due to the XY8 pulse sequence, one can assume the atom loss for ground and

excited states is symmetric, and obtain the following equation for atom loss,

d

dT
Nn = −Γ0,n

2
N2

n, (3.76)

which gives an exact solution

Nn(T ) =
Nn,init

1 + Γ0,nNn,initT/2
. (3.77)

We fit the total atom number measured in the experiment integrating through all lattice layers

with the fitting function A/(1 + BT ) using fitting parameters A,B to extract the atom loss rate,

and then compare with the analytic solution above.

We perform numerical simulation based on truncated Wigner approximation (TWA) [148].

The key idea is to solve the mean-field equations of Eq. (3.73) with random sampling of initial con-

ditions. For the initial state (“spiral” frame) with all the spins pointing towards +X direction, we

set SX
n (0) = Nn,init/2, Nn(0) = Nn,init, and sample SY

n (0) and SZ
n (0) using a Gaussian distribution

N (µ = 0, σ2 = Nn,init/2).

In the case of V⊥ = 0, we consider the radial modes as harmonic oscillator modes with

trapping frequency ωR =
√

4Vz/mw2
L, where wL is the Gaussian beam waist of the vertical lattice.

We determine the radial temperature TR by comparing the density distribution projected to the

x-y plane between theory and experiment at 17.4ER, which leads to TR = 250nK at this lattice
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depth. Since the lattice depth is ramping up adiabatically, the ratio kBTR/h̄ωR should be roughly

a constant, we use TR(nK) = 60 ×
√
Vz/ER to generate atom distribution in radial modes.

In the case of V⊥ > 0, the radial modes are generated by the potential of a 2D lattice with

lattice depth V⊥ plus harmonic oscillator with trapping frequency ωR =
√

4(Vz + V⊥)/mw2
L, where

we assume the Gaussian beam waist is nearly the same for all lattice beams, i.e. wL ≈ w. The

compression step in the loading sequence leads to a lower temperature compared to the case of

V⊥ = 0, and we use radial temperature TR(V⊥ > 0) = 0.42 × TR(V⊥ = 0) to generate atom

distribution in radial modes.

The validity of the 1D spin model is based on the frozen-mode approximation [25, 100],

which is to assume all the atoms are fixed in their single-particle eigenstates due to negligible

effects of interaction on the single-particle energy spectrum, ensured by Nn,initJ0,n ≪ h̄ωR and

Nn,initJ0,n ≪ mga. We restrict our calculation within V⊥ ≤ 6ER to avoid the breakdown of this

approximation.

3.3.9 Supplemental Materials: Spin wave analysis for 1D spin model

Here we perform a spin wave analysis to ĤLS (see Eq. (3.69)) to have a further understanding

of Ramsey contrast decay beyond numerical simulations. We assume the same atom number Ns for

each lattice site, periodic boundary conditions, and no atom loss. We drop the terms proportional to

ŜZ
n since it is suppressed by the XY8 pulses. Considering the initial state with all the spins pointing

to +X direction, we perform a Holstein–Primakoff transformation to the large-spin operators,

ŜX
n = Ns/2 − â†nân, ŜY

n ≈ √
Ns(ân + â†n)/2, ŜZ

n ≈ √
Ns(ân − â†n)/(2i). In this way, the initial state

becomes the vacuum state of the bosonic operators. We keep the terms up to quadratic order of

bosonic operators, and then apply a Fourier transform to obtain the bosonic operators for spin

waves (k ∈ (−π, π]), ân =
∑

k e
iknâk/

√
L, with L the number of lattice sites.
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Figure 3.14: Impact of spin wave growth on coherence times in the 1D limit. The plots

show the qualitative impact of the quadratically and exponentially growing spin wave modes on the

coherence time T2 according to Eqs. (3.82) and (3.83). At large lattice depths the T2 time is limited

by the quadratically growing modes while the coherence in a shallow lattice is dominated by the

exponential instability around k = π. Here we present the coherence time in arbitrary unit since

Eqs. (3.82) and (3.83) are only order-of-magnitude estimations up to unknown constant factors of

order 1.

We get

ĤLS ≈ 1

2

∑
k

c1(â
†
kâk + â†kâk) − c2(â

†
kâ

†
−k + â−kâk), (3.78)

where

c1 = c2 −NsJ1

(
1 − cos(k)

)
, c2 =

Nsχ0

2
+
Nsχ1

2
cos(k). (3.79)

Here, J1, χ0, χ1 are the mean values of J1,n, χ0,n, χ1,n. So the excitation numbers for spin waves

is given by

n±k(T ) = ⟨vac|â†k(T )âk(T )|vac⟩ = ⟨vac|â†−k(T )â−k(T )|vac⟩ = c22

[
sin
(
T
√
c21 − |c2|2

)
√
c21 − |c2|2

]2
. (3.80)
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We can express the Ramsey contrast at short time in terms of the excitation numbers for spin

waves,

C(T ) = 1 − 2

NsL

∑
k

nk(T ). (3.81)

Now we discuss the physics of spin-wave excitations for spin-wave modes k = 0 (minimizing

the difference between c1 and c2) and k = π (maximizing the difference between c1 and c2). In

the case of k = 0, we have nk=0 = N2
s (χ0 + χ1)

2T 2/4, which leads to quadratic growth of the

k = 0 mode. In the case of k = π, we have nk=π = N2
s (χ0 − χ1)

2 sinh2(KT )/(4K2), where

K = Ns

√
2J1(χ0 − χ1 − 2J1). Experimental values of the interaction strengths ensure K is a real

number. It seems we always have exponential growth of the k = π mode. However, the spin wave

analysis breaks down for nk ∼ Ns. If K is small enough such that we reach nk=π ∼ Ns at a

time KT ≪ 1, we can approximate nk=π ≈ N2
s (χ0 −χ1)

2T 2/4, which returns to quadratic growth.

Therefore, exponential growth only occurs in the regime Ns(χ0 − χ1)
2 ≪ K2.

Based on the discussions above, we can separate the system dynamics considering quadratic

or exponential growth for the k = π mode. As discussed in [25], s-wave and p-wave interaction

strengths in the 1D lattice have different dependence on the lattice depth Vz. When increasing

Vz, p-wave interaction strength increases, χ0 ∝ V
5/4
z , while s-wave interaction strength decreases,

J1, χ1 ∝ e−4
√

Vz/ER . So we can access these two regimes at different Vz.

In the regime of large Vz, the system dynamics can be described by quadratic growth for

all the spin wave modes. So we obtain the Ramsey contrast by summing over all the spin wave

modes, C(T ) = 1−Ns(χ
2
0+χ2

1/2)T 2/2, which agrees with the short-time expansion under Ising-type

interactions by setting J1 = 0. We can estimate the T2 coherence time for quadratic growth,

T q
2 ∼ 1√

Ns

1√
χ2
0 + χ2

1/2
. (3.82)

Since this regime is mainly dominated by p-wave interactions, the coherence time decreases as we

increase Vz (see Fig. S5).

In the regime of small Vz, the system dynamics is dominated by exponential growth near the

k = π mode. To obtain the Ramsey contrast we only consider the spin wave modes near k = π,
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which leads to 1 − C(T ) ∼ Ns(χ0 − χ1)
2e2KT /K2. We can estimate the T2 coherence time for

exponential growth,

T e
2 ∼ 1

K
=

1

Ns

1√
2J1(χ0 − χ1 − 2J1)

. (3.83)

Since this regime requires the existence of s-wave interaction, the coherence time increases as we

increase Vz (see Fig. 3.14).

The crossover between these two regimes occurs when T q
2 is comparable with T e

2 . Due to

the different dependence of the atom number per site Ns in these two regimes, the crossover point

depends on Ns, i.e. NsJ1/χ0 ∼ 1. Note that at the crossover point the p-wave interaction strength

is already much larger than the s-wave interaction strength. This explains why the crossover point

occurs at a larger lattice depth Vz compared to the cancellation of density shift in [25].

3.4 Exploring the interplay between mass-energy equivalence, interactions

and entanglement in an optical lattice clock

This section is adapted from: Anjun Chu, Victor J. Mart́ınez-Lahuerta, Maya Miklos,

Kyungtae Kim, Peter Zoller, Klemens Hammerer, Jun Ye, and Ana Maria Rey, Exploring the

interplay between mass-energy equivalence, interactions and entanglement in an optical lattice clock,

arXiv:2406.03804 (2024)

3.4.1 Introduction

Understanding the interplay between quantum mechanics (QM) and general relativity (GR)

is a fundamental quest for modern science. Nevertheless up to date, measurements capable to

genuinely witness this simultaneous interplay have not been realized in tabletop experiments.

A push forward towards this milestone is becoming feasible thanks to recent improvements in

sensitivity, precision, and accuracy in atomic clocks and interferometers, including matter-wave

tests of GR [95, 149–154], the resolution of the gravitational redshift using spatially separated

clocks [155, 156] and more recently within a millimeter-scale sample [23, 157]. These develop-

ments [9, 95] open up unique opportunities to search for new physics that could help reconcile the

https://doi.org/10.48550/arXiv.2406.03804
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seemingly contradictory predictions of QM and GR.

Figure 3.15: (a) Schematic of an optical lattice clock (OLC) embedded in the curved spacetime

(metric gµν) formed by the earth’s gravity. Mass-energy equivalence is the leading order GR

correction that translates internal energy difference h̄ω0 between |e⟩ and |g⟩ states into a difference

in the rest mass of an atom h̄ω0/c
2. Such type of correction generates second-order Doppler shift

ESDS and gravitational redshift EGRS,j to the clock transition (see Eq. (3.86) and Eq. (3.87)). (b)

Schematic of the interplay between gravitational redshift and collective cavity-mediated interactions

(see Eq. (3.88)), with J⊥ and Jz collective exchange and Ising couplings.

Experimental developments have in parallel driven a great deal of theoretical effort towards

the understanding of quantum dynamics with GR corrections. These progresses encompass analy-

ses of relativistic corrections to Hamiltonians considered specifically in the context of neutral-atom

and trapped-ion systems [158–171], tests of mass-energy equivalence with atoms in internal su-

perposition states including predictions of energy-dependent phase shifts, loss of coherence and

spin-motion coupling induced by gravitational time dilation [172–177], among others [178–184].

However, understanding the direct consequence of GR effects in more complex scenarios such as

many-body systems, where particles can interact over the entire array, remains an outstanding

problem.
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In this work, we provide a first step in this direction by proposing near-term protocols to

explore the manifestations of the leading order single-atom GR corrections in quantum many-body

dynamics, taking advantage of the state-of-the-art Wannier-Stark OLCs with an array of fully

controllable interacting particles under gravity [23,25]. We perform detailed analysis of the effects

of mass-energy equivalence in a clock transition, i.e. net change in relativistic rest mass due to

internal energy, including the gravitational redshift and the second-order Doppler shift. We devise

a dressing protocol using an additional nuclear spin state that can be used to tune and uniquely

distinguish mass-energy equivalence in an OLC. Taking advantage of the dressing protocol, we

further analyze the interplay between photon-mediated interactions and the gravitational redshift

acting on individual atoms. While gravitational redshift is akin to a mere level shift due to a

magnetic field gradient, the observation in future OLCs will provide a direct test of GR effects

acting on a many-body system. Depending on the relative strength of the redshift to a many-body

energy gap induced by interactions, the system can feature local or global synchronization, as well

as entanglement generation for both cases. For the latter case, we show that the synchronization

time depends on the entanglement of the initial state and can be used as a proxy for the state’s

metrological utility.

3.4.2 Mass-energy equivalence in optical lattice clocks

We consider a single atom in earth’s gravity described by a curved spacetime metric gµν (see

Fig. 3.15(a)). We perform post-Newtonian expansion of gµν in power series of ϕ/c2 (see Ref. [185]

and SOM), with ϕ ≈ gZ the Newtonian gravitational potential near the earth’s surface and g the

local gravitational acceleration. Following the treatment in Ref. [158,161,163,168], one can obtain

a single-atom Hamiltonian ĤA accounting for the leading relativistic corrections:

ĤA = Ĥpoint

(
M +

ĤI

c2

)
+O(c−4). (3.84)

Here, Ĥpoint(M) = Mc2 + Ĥ0(M) + Ĥother is the Hamiltonian of a point particle with mass M ,

Ĥ0(M) = P̂2/(2M)+Mϕ contains the non-relativistic terms, and Ĥother contains other GR correc-
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tions arising from motion and metric geometry corrections (see SOM). The key idea of Eq. (3.84) can

be understood as the mass-energy equivalence, summarized by the replacement M → M + ĤI/c
2

in Ĥpoint. OLCs feature an ultranarrow optical transition (clock transition) between two long-lived

electronic states (excited state |e⟩, ground state |g⟩), which is described by the internal Hamiltonian

ĤI = h̄ω0|e⟩⟨e|, with ω0 the clock transition frequency measured at the lab position Z = 0 (see

Fig. 3.15(a)). Since in an OLC ĤI contains the largest frequency scale compared to other degrees

of freedom, the mass-energy equivalence is the leading order GR correction. It translates into a

difference in the rest mass of an atom in states |e⟩ and |g⟩: Mg = M , ∆M = Me −Mg = h̄ω0/c
2.

Note that the mass defect ∆M is not simply a fixed number, and its tunability (see Fig. 3.16) is

an important tool to determine the relativistic origin of the mass defect.

We assume that in OLCs atoms are trapped in a magic-wavelength 1D lattice along the

gravitational potential (Z axis), where |e⟩ and |g⟩ states experience the same potential, V (Z) =

VZ sin2(kLZ) +Mϕ [23,25]. Here VZ is the lattice depth, kL is the wave number of the lattice that

sets the atomic recoil energy ER = h̄2k2L/2M and lattice spacing aL = π/kL. Metric geometry can

also lead to corrections to optical lattices [171], which are negligible in our case. In a tilted 1D lattice

described by V (Z), the motional eigenstates in the ground band are the so-called Wannier-Stark

(WS) states |Wj⟩, with j the Z-lattice site index where the WS state is centered at. Assuming the

radial degrees of freedom are also confined to the lowest ground state by an additional 2D lattice,

with lattice depths VX,Y , the eigenenergies of WS states are given by Ej = MgaLj +Eband, where

Eband ≈∑α=X,Y,Z ER(
√
Vα/ER − 1/4) is the ground band zero-point energy. The GR corrections

due to mass-energy equivalence is given by

Ĥcorr =
∑
j

(EGRS,j + ESDS)|e,Wj⟩⟨e,Wj |, (3.85)

with EGRS,j the gravitational redshift (GRS) and ESDS the second-order Doppler shift (SDS). Their

orders of magnitude are discussed below for 87Sr atoms.

Applying the mass-energy equivalence to the gravitational potential energy Mϕ, we get the
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so-called GRS (or gravitational time dilation),

EGRS,j =
∆M

M
⟨Wj |Mϕ|Wj⟩ = h̄ω0

gaLj

c2
. (3.86)

The GRS leads to a gradient of frequency shift across the lattice. For example, the fractional

frequency difference for nearest-neighbor lattice sites is just 4.4 × 10−23, while it is at the order of

10−19 for 1 mm spatial separation as recently observed [23,157].

The contribution of mass-energy equivalence in the kinetic energy leads to a local modification

of the zero-point energy known as SDS (or motional time dilation),

ESDS = −∆M

M

⟨Wj |P̂2|Wj⟩
2M

= − h̄ω0

2Mc2
Eband. (3.87)

The magnitude of ESDS increases with the lattice depth. For example, a deep lattice with VX,Y,Z =

300ER leads to fractional frequency shift −4.5 × 10−21. Corrections in the kinetic energy can also

lead to a modification of the WS wave functions for |e⟩ atoms, while they play a negligible role

compared to EGRS,j and ESDS.

3.4.3 Tuning and distinguishing GR effects

In standard OLCs, the effects of GRS might be mimicked by a weak magnetic field gradient.

To observe genuine GR effects, one approach is to simultaneously observe EGRS,j and ESDS in the

same system. This should be possible in next-term OLCs by populating higher motional bands if

the systematic uncertainty of lattice Stark shifts [75] is suppressed below 10−20.

We propose an alternative approach to use dressed states as means to tune the mass defect

∆M and with it simultaneously change EGRS,j and ESDS. As shown in Fig. 3.16(a), we make use of

the intrinsic multilevel structure in fermionic alkaline earth atoms with nuclear spin F . We apply

a dressing beam with Rabi frequency Ω and detuning δ connecting |e,mF ⟩ with |g,mF − 1⟩ states,

leading to the dressed states, |+⟩ = C1|e,mF ⟩+C2|g,mF − 1⟩, |−⟩ = −C2|e,mF ⟩+C1|g,mF − 1⟩,

where C1 = (1 − δ/
√

Ω2 + δ2)1/2/
√

2, C2 = (1 + δ/
√

Ω2 + δ2)1/2/
√

2 in the rotating frame of the

dressing laser. By addressing transition between the |↑⟩ ≡ |−⟩ state and |↓⟩ ≡ |g,mF ⟩ with a
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clock laser for ∆mF = 0 transition, one can therefore get a tunable mass defect ∆M = |C2|2∆M0

in the dressed clock transition via scanning the dressing parameter δ/Ω (see Fig. 3.16(b)), where

∆M0 = h̄ω0/c
2 is the mass defect without the dressing laser. Since the nuclear spin states in the

ground manifold share the same mass M but different Zeeman shifts (see SOM), the dressing allows

us to differentiate between a gravitational redshift and a magnetic field gradient.
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...

...

...

...
mF-1 mF

δ
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Figure 3.16: Tuning mass-energy equivalence via dressed states. (a) Schematic of dressing the

clock transition with another nuclear spin. The left panel show the application of the dressing

laser, and the right panel show the new clock transition in the dressed basis. (b) The tunability of

the mass defect ∆M and gravitational redshift ωGRS as a function of dressing parameter δ/Ω. ∆M0

and ωGRS,0 are the corresponding values without dressing. (c) The tunability of cavity-mediated

interactions (see Ĥcav in Eq. (3.88)) as a function of dressing parameters δ/Ω and nuclear spin level

mF . Heisenberg interaction (J⊥ = Jz) can be reached with mF = 3/2.

In the lab frame, we can understand the tunability of the mass-energy equivalence achieved

by the dressing scheme by noticing that the state |−⟩ has a probability |C2|2 to be in the excited

optical level and therefore an average internal energy of |C2|2h̄ω0. This protocol is feasible thanks

to the fact that due to magnetic Zeeman shifts, the clock transitions between different nuclear
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spins are frequency resolved. We also assume all other dynamical frequencies are smaller than the

dressed state energy gap
√

Ω2 + δ2 and the Zeeman shifts between nuclear spins.

To guarantee the matching of laser phases for each atom, the dressing beam and the clock

beam should be co-propagating. Moreover, spatial inhomogeneities in atomic detunings δ and in the

dressing laser Rabi frequency Ω need to be controlled to avoid obscuring the effects of gravitational

redshift. For a mHz gravitational redshift arising from a cm-scale spatial separation, it would

be required to suppress the absolute variations of δ and Ω below 10−4 Hz. For the case of atomic

detunings δ, such level has been already achieved [23]. As for the Rabi frequency Ω, the requirement

could be achievable using a cavity to stabilize the spatial mode of the dressing laser. One can also

circumvent the stringent requirement by averaging the transition frequency of |g,mF ⟩ ↔ |−⟩ and

|g,mF ⟩ ↔ |+⟩ (see SOM), while sacrificing the tunability of mass defect (∆M = ∆M0/2).

3.4.4 Interplay with many-body dynamics

After providing a recipe to distinguish genuine GR effects in OLCs, we further explore their

manifestations in quantum many-body dynamics. We consider photon-mediated interactions gener-

ated by placing the atoms in an optical cavity [16,186], in a regime where atomic contact interactions

are controlled to be much weaker. The interplay between photon-mediated interactions and the

GRS is described by the following Hamiltonian (see Fig. 3.15(b)):

Ĥcav/h̄ = J⊥Ŝ · Ŝ + (Jz − J⊥)ŜzŜz + ωGRS

∑
j

jŜz
j , (3.88)

where h̄ωGRS = (∆M)gaL is the GRS between nearest neighbor sites, J⊥ and Jz are the collective

exchange and Ising couplings. Here Ŝx,y,z
j are collective spin operators summed over all atoms at

the same height jaL, and Ŝx,y,z =
∑

j Ŝ
x,y,z
j . Based on Eq. (3.88), a magnetic field gradient will

in principle give rise to similar single-atom inhomogeneities in the Hamiltonian. We drop the GR

corrections for interaction terms since they are negligible in our case (see SOM). While the use of

a single nuclear spin state restricts the cavity exchange interactions to a single polarization mode

(Jz = 0 only), the dressing to another nuclear spin allows for coupling two polarization modes
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of the cavity (see SOM), which enhances the tunability of Ĥcav and realizes collective Heisenberg

interactions (J⊥ = Jz) as shown in Fig. 3.16(c). In the following, we mainly focus on the case of

J⊥ = Jz, since the Ŝ · Ŝ term becomes a constant and does not alter entanglement in the fully

symmetric manifold. This requirement is unnecessary for observing frequency synchronization.

We propose to initialize all the atoms in the state (|g⟩ + |e⟩)/
√

2, perform time evolution

under Hamiltonian Ĥcav (Eq. (3.88)), and then measure the phase shift of ⟨Ŝ+
j ⟩ for every Z-lattice

site, resulting in frequency shift ωj(t) = tan−1
[
⟨Ŝy

j ⟩/⟨Ŝx
j ⟩
]
/t as a function of evolution time (see

Fig. 3.17(a)). It can be observed by the application of a π/2 pulse followed by local population

measurements. Without interactions or in the case of short interrogation times, one expects to

observe the GRS, ωj = jωGRS, as reported in Ref. [23]. In the interaction dominated regime,

the GRS persists only for a time scale shorter than the atomic interaction time scale. Beyond

this period, the frequencies become synchronized due to interaction locking and reach ωj ≈ 0 at

synchronization time tsyn (see Fig. 3.17(b)). Without loss of generality, the numerical simulations

in Fig. 3.17 and Fig. 3.18 are based on exact diagonalization for N = 16 atoms with one atom per

Z-lattice site.

The emergent synchronization is the result of many-body gap protection also observed in

prior experiments [37, 108, 186–189], which arises when ωsplit ≪ ∆E. Here ωsplit = (Ns − 1)ωGRS

is the maximum redshift in the array, with Ns the number of lattice sites, and ∆E is the many-

body gap due to Heisenberg couplings. On the contrary, in the regime ωsplit ∼ ∆E, the gap

cannot maintain global synchronization (see Fig. 3.17(c)). Using a spin wave analysis one obtains

∆E = NJ⊥ and NJ⊥tsyn = π for J⊥ = Jz, where N corresponds to the total atom number in the

array. For N ∼ 104 − 105 87Sr atoms [186], one can achieve NJ⊥/2π ∼ Hz (ωsplit/NJ⊥ ∼ 10−3 for

cm-scale separation), leading to an achievable synchronization time scale in experiment.
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Figure 3.17: Interplay between photon-mediated interactions and GRS. (a) We prepare a product

state with all atoms in |g⟩ state and apply a laser pulse R̂
−π/2
y = exp

(
iπ2 Ŝ

y
)

to start the dynamics.

We focus on a single chain with N = 16 atoms under the Hamiltonian Ĥcav (Eq. (3.88)) with

J⊥ = Jz. (b) Individual atomic frequency shift ωj with ωsplit/NJ⊥ = 0.3125. Synchronization

of atomic frequencies can be reach at time tsyn. (c) Individual atomic frequency shift ωj with

ωsplit/NJ⊥ = 3.125. Global synchronization fails to occur in this regime. (d) Spin squeezing

parameter ξ2 and normalized Rényi entropy S̃N/2 (inset) in the case of (b). (e) Normalized Rényi

entropy S̃N/2 in the case of (c).

Furthermore, we find that the simultaneous presence of single-atom GRS and photon-mediated

interactions can lead to quantum entanglement as shown in Fig. 3.17(d,e). In fact, in the regime

ωsplit ≪ ∆E, the projection of the wave function into the fully symmetric manifold imposed by the

many-body gap transforms the single-particle term into an effective one-axis twisting (OAT) [30,31]

interaction term χŜzŜz, with χ ∼ ω2
split/[N(∆E)] (see Ref. [135] where the splitting is generated

by a different mechanism). In this case, entanglement builds up for t > tsyn, as witnessed by a

squeezing parameter [31], ξ2 ≡ minφN(∆S⊥
φ )2/|⟨Ŝ⟩|2< 1 (see Fig. 3.17(d)). Here, (∆S⊥

φ )2 is the

variance of spin noise along an axis perpendicular to the collective spin ⟨Ŝ⟩. A faster growth of
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entanglement can be seen in the regime ωsplit ∼ ∆E (see Fig. 3.17(e)), while it is not captured by

the spin squeezing parameter. Instead we characterize the entanglement by the normalized Rényi

entropy S̃N/2 = −2 log2(tr(ρ
2
N/2))/N , where ρN/2 is the reduced density matrix by taking partial

trace over half of the system. The entanglement builds up for ωsplitt/2π > 1 in this case, which

might be due to population transfer to highly entangled states in manifolds of lower total spin (see

SOM). For the implementation of entanglement generation, ωsplit/NJ⊥ ∼ 0.1 − 1 is achievable for

10 cm − 1 m separation and NJ⊥/2π ∼ 0.1 Hz.
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
y
-π/2 U


OAT(Q) R


x
θ U



0.0 0.2 0.4 0.6 0.8 1.0

0.8

1.0

1.2

θ/π

t sy
n/
t sy
n,
0

0.0 0.2 0.4 0.6
0.0

0.1

0.2

0.3

0.4

0.5

Q/2π

Δ
t sy
n/
t sy
n,
0

0
2
4
6
8y

z

θ

(a)

(b) (c)

Δ
t sy
n/
t sy
n,
0

N=16 4Cov(y,z)/N

FQ N

Figure 3.18: Interplay between entanglement and GRS. (a) One-axis twisting (OAT) interactions

ÛOAT(Q) = exp
(
−iQŜzŜz/N

)
and rotations R̂θ

x = exp
(
−iθŜx

)
are first applied to generate a spin

squeezed initial state (at Q/2π = 0.6), followed by unitary evolution(b)The synchronization time,

tsyn depends on the orientation of the spin squeezed state determined by θ. (c) ∆tsyn (marked in

(b)) as a function of OAT shearing strength Q. We show 4Cov(y, z) is approaching the quantum

Fisher information FQ for spin squeezed states (inset). We compare the numerical simulations (blue

points) for N = 16 atoms under Ĥcav (J⊥ = Jz) with Eq. (3.89) (black dashed lines).

To study the effects of the GRS on quantum entanglement, we consider the scenario with

entangled initial states, such as the ones generated using cavity induced OAT interactions [14,190],
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ÛOAT(Q) = exp
(
−iQŜzŜz/N

)
, where Q is the shearing strength (Fig. 3.18(a)). The squeezing

direction corresponds to the direction with minimum value of (∆S⊥
φ )2, which can be controlled by

performing a rotation R̂θ
x = exp

(
−iθŜx

)
as shown in Fig. 3.18. We use |ψ0⟩ to denote the state

after OAT interactions, and |ψ(θ)⟩ for the state after the R̂θ
x rotation.

In Fig. 3.18(b), we show that it is possible to control tsyn below or above the value of a product

initial state tsyn,0 (obtained in Fig. 3.17) depending on the rotation R̂θ
x. The ratio tsyn/tsyn,0 under

Ĥcav (J⊥ = Jz) can be understood using the following analytic result (see SOM),

tsyn
tsyn,0

= 1 − 2

π
arctan

[
Cov(y, z)

(N − 1)⟨ψ0|Ŝx|ψ0⟩

]
, (3.89)

where Cov(α, β) ≡ ⟨ψ(θ)|(ŜαŜβ+ŜβŜα)|ψ(θ)⟩−2⟨ψ(θ)|Ŝα|ψ(θ)⟩⟨ψ(θ)|Ŝβ|ψ(θ)⟩, with α, β = x, y, z.

The tunability of tsyn is due to the θ-dependence of Cov(y, z). The tunable range ∆tsyn ≡

maxθ tsyn−minθ tsyn can be used as a measure of entanglement (see Fig. 3.18(c)), since 4Cov(y, z) is

approaching the quantum Fisher information FQ [31], which corresponds to the maximal eigenvalue

of the matrix FQ,αβ = 2Cov(α, β).

3.4.5 Conclusion and outlook

We discussed protocols accessible in OLCs that explore how the single-atom GR effects modify

many-body dynamics generated by photon-mediated interactions. A similar interplay should be

observable with atomic superexchange interactions (see SOM). While so far we have mostly focused

on highly localized atomic arrays, generalizations to the case of itinerant particles where motion

also and other GR corrections become relevant, will open unique opportunities for testing the basic

tenets of GR when extended into the complex quantum domain.
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3.4.6 Supplemental Materials: Post-Newtonian corrections

3.4.6.1 Post-Newtonian metric in the lab frame

Our starting point to include relativistic corrections is the parametrized post-Newtonian

metric [163,168,171,185] in the isotropic coordinates (ct, x, y, z),

ds2 = gµνdx
µdxν = −

(
1 + 2

ϕ̄

c2
+ 2β

ϕ̄2

c4

)
c2dt2 +

(
1 − 2γ

ϕ̄

c2

)
(dx2 + dy2 + dz2) +O

(
1

c4

)
, (3.90)

where ϕ̄(R) = −GM⊕/R is the Newtonian gravitational potential of the earth, with M⊕ the mass

of the earth and R =
√
x2 + y2 + z2. This metric agrees with the post-Newtonian expansion

of Schwarzschild metric if β = γ = 1. Note that Eq. (3.90) is reduced to Minkowski metric

(ds2 = ηµνdx
µdxν = −c2dt2 + dx2 + dy2 + dz2) when x, y, z → ∞.

Now we would like to define the lab frame, a reference frame which can be reduced to

Minkowski metric at the lab position. First, we replace z by R⊕ + z, with R⊕ the earth’s radius, so

the lab position at the earth’s surface is described by x = y = z = 0, where the radial direction is

along the z axis. In this step, Eq. (3.90) remains unchanged, and we can rewrite the gravitational

potential as ϕ̄ = ϕ0 + ϕ, where ϕ0 = ϕ̄(R⊕) is the gravitational potential at the earth’s surface.

Following Ref. [171], we consider the following coordinate transformation,

T =

(
1 +

ϕ0
c2

+
2β − 1

2

ϕ20
c4

)
t, X =

(
1−γϕ0

c2

)
x, Y =

(
1−γϕ0

c2

)
y, Z =

(
1−γϕ0

c2

)
z. (3.91)

The lab frame can be described in terms of the new coordinates (cT,X, Y, Z),

ds2 = −
(

1+2
ϕ

c2
+2β

ϕ2

c4
+4(β−1)ϕ0

ϕ

c4

)
c2dT 2+

(
1−2γ

ϕ

c2

)
(dX2+dY 2+dZ2)+O

(
1

c4

)
. (3.92)

Note that ϕ can be expanded as

ϕ(Z) = gZ +O(Z2), (3.93)

where g is the gravitational acceleration. In the case of GR theory (β = γ = 1), the post-Newtonian

metric in the two reference frames (see Eq. (3.90) and Eq. (3.92)) takes the same form, and this is

the metric we used in the main text.
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As a general remark, the gravitational redshift originates from the difference in the proper

time dτp = ds/c for clocks at rest at different spatial coordinates due to the metric (see Eq. (3.92)).

If there is a single observer at a fixed position, the way to measure gravitational redshift is to send

out laser beams with a unique frequency to different position, and the observer should find the

difference of atomic transition frequency (clock) at different positions. If there are several observers

at different positions, the way to measure gravitational redshift is to measure the frequency of the

same laser beam at different positions assuming they have the same atomic transition frequency

(clock), and they should observe different frequency for the light field. It is worth to mention that

all the following discussions are based on the lab frame (see Eq. (3.92)) defined here with a single

observer at rest at the lab position.

3.4.6.2 Post-Newtonian single-atom quantum Hamiltonian

Key steps towards mass-energy equivalence

Post-Newtonian corrections for a quantum Hamiltonian can be determined in the following

way [163, 168]: Write down the classical action/Lagrangian in the lab frame consistent with GR,

perform Legendre transformation to achieve the classical Hamiltonian, and then perform canonical

quantization to achieve the quantum Hamiltonian. In the following, we will discuss the key idea of

how mass-energy equivalence can be interpreted from the post-Newtonian corrections, and much

more details can be found in Ref. [163].

First we consider the post-Newtonian quantum Hamiltonian for a single free point particle

with mass M . We start from the following classical action,

Spoint = −Mc

∫
dT
√
gµν ẋµẋν , (3.94)

and the classical Lagrangian Lpoint is given by Spoint =
∫
LpointdT in the lab frame (cT,X, Y, Z).
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We have

Lpoint = −Mc2
√
−gµν ẋµẋν/c2

= −Mc2 +
MẊ2

2

(
1 +

Ẋ2

4c2

)
−Mϕ

(
1 +

2β − 1

2

ϕ

c2
+ 2(β − 1)

ϕ0
c2

)
− 2γ + 1

2

Mϕ

c2
Ẋ2 +O

(
1

c4

)
,

(3.95)

where Ẋ2 = Ẋ2 + Ẏ 2 + Ż2. The momentum P is given by

P =
∂Lpoint

∂Ẋ
= MẊ

(
1 +

Ẋ2

2c2
− (2γ + 1)

ϕ

c2

)
+O

(
1

c4

)
. (3.96)

We use Legendre transformation to get the classical Hamiltonian, Hpoint = P · Ẋ−Lpoint, and then

perform canonical quantization to achieve the quantum Hamiltonian,

Ĥpoint(X̂, P̂,M) = Mc2 + Ĥ0 + Ĥother, (3.97)

where Ĥ0 is the nonrelativistic Hamiltonian,

Ĥ0 =
P̂2

2M
+Mϕ, (3.98)

and Ĥother contains the relativistic corrections,

Ĥother = − P̂4

8M3c2
+Mϕ

(
2β − 1

2

ϕ

c2
+ 2(β − 1)

ϕ0
c2

)
+

2γ + 1

2

P̂ · ϕP̂
Mc2

+O

(
1

c4

)
. (3.99)

For simplicity, we then consider the atom is formed by two charged particles interacting via

EM fields, and there are no external EM fields coupled to the system. We also assume that the atom

is a localized object such that the gravitational potential ϕ remains unchanged within the size of

an atom. In the Coulomb gauge, one can finally reach the following atomic Hamiltonian [163,168],

ĤA =
( ∑

n=1,2

Mn

)
c2 +

∑
n=1,2

[
P̂2

n

2Mn
− P̂4

n

8M3
nc

2
+Mnϕ

(
1 +

2β − 1

2

ϕ

c2
+ 2(β − 1)

ϕ0
c2

)

+
2γ + 1

2

P̂n · ϕP̂n

Mnc2

]
+

(
1 + (γ + 1)

ϕ

c2

)
e1e2

4πϵ0|X̂12|
− e1e2

16πϵ0M1M2c2

[
P̂1 ·

1

|X̂12|
P̂2

+ P̂1 ·
(X̂12)(X̂12)

|X̂12|3
· P̂2 + h.c.

]
+O

(
1

c4

)
,

(3.100)

where X̂12 = X̂1 − X̂2. This Hamiltonian is the so-called Darwin Hamiltonian which includes

relativistic corrections except the terms related to the electron spin. Here we would like to use this
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Hamiltonian as a toy model to discuss the relativistic corrections to the center-of-mass frame and

the connection to the Hamiltonian of a point particle (see Eq.(3.97)).

In the non-relativistic case, we define center-of-mass (COM) coordinates (X̂′, P̂′) and internal

coordinates (x̂′, p̂′) in the following way,

X̂′ =
1

M
(M1X̂1 +M2X̂2), P̂′ = P̂1 + P̂2, x̂′ = X̂2 − X̂1, p̂′ =

M1

M
P̂2 −

M2

M
P̂1, (3.101)

where M = M1+M2 is the total mass, and µ = M1M2/M is the reduced mass. However, if applying

the coordinate transformation above to ĤA (see Eq. (3.100)), one can easily find that it fails to

separate the Hamiltonian into COM and internal degrees of freedom without crossed couplings. As

proposed by Ref. [158], one can apply relativistic corrections to the COM and internal coordinates

using the following unitary transformation,

X̂ = Û †X̂′Û , P̂ = Û †P̂′Û , x̂ = Û †x̂′Û , p̂ = Û †p̂′Û , (3.102)

where

Û = exp

[
i

1

4M2c2

(
(P̂′ · p̂′)(P̂′ · x̂′) + (P̂′ · x̂′)(P̂′ · p̂′)

)
+ i

M1 −M2

4µM2c2

(
(p̂′ · p̂′)(P̂′ · x̂′) + (P̂′ · x̂′)(p̂′ · p̂′)

)
+ i

e1e2(M1 −M2)

8πϵ0M2c2
P̂′ · x̂′

|x̂′|

]
.

(3.103)

Using these new coordinates in Hamiltonian ĤA (see Eq. (3.100)), we get

ĤA = Ĥpoint

(
X̂, P̂,M +

ĤI

c2

)
+O(c−4). (3.104)

This is the so-called mass-energy equivalence since the atom Hamiltonian ĤA can be generated by

replacing mass M by M + ĤI/c
2 in the point-particle Hamiltonian Ĥpoint. In other words, the

mass of a composite particle comprises the rest masses of the constituent particles as well as the

internal energy. Here the internal Hamiltonian ĤI is given by

ĤI = ĤI,0 + ĤI,SR + ĤI,GR, (3.105)

where ĤI,0 is the non-relativistic internal Hamiltonian,

ĤI,0 =
p̂2

2µ
+

e1e2
4πϵ0|x̂|

, (3.106)
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ĤI,SR contains the corrections due to special relativity,

ĤI,SR = − p̂4

8µ3c2
M3

1 +M3
2

M3
− e1e2

8πϵ0µMc2

(
p̂ · 1

|x̂| p̂ + p̂ · x̂x̂

|x̂|3 · p̂
)

+O

(
1

c4

)
, (3.107)

ĤI,GR contains the corrections due to metric geometry,

ĤI,GR = γ
ϕ(X̂)

c2

(
p̂2

µ
+

e1e2
4πϵ0|x̂|

)
+O

(
1

c4

)
. (3.108)

List of relevant post-Newtonian correction terms

Here we list all the relevant post-Newtonian corrections terms for the single-atom Hamiltonian

(see Fig. 3.19),

Ĥsp = ĤA + ĤAL. (3.109)

• ĤA is the atom Hamiltonian including center of mass and internal degrees of freedom. To

the leading order of post-Newtonian expansion, we have ĤA given by Eq. (3.104), with

internal Hamiltonian ĤI (the case of two charged particles) given by Eq. (3.105) and point-

particle Hamiltonian Ĥpoint given by Eq. (3.97). To clearly indicate the post-Newtonian

corrections, one can rewrite ĤA in the following form,

ĤA = Mc2 + Ĥ0 + ĤI + ĤSDS + ĤGRS + Ĥother. (3.110)

We understand these corrections in the following way:

(1) Mass-energy equivalence. This is to replace M by M + ĤI/c
2 in Ĥ0 (see Fig. 3.19(a)).

The replacement in the kinetic energy term of Ĥ0 can lead to second-order Doppler

shift,

ĤSDS = − P̂2

2M

ĤI

Mc2
. (3.111)

The replacement in the gravitational potential energy term of Ĥ0 can lead to gravita-

tional redshift,

ĤGRS =
ϕ

c2
ĤI . (3.112)
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We have discussed these two types of corrections in the main text, since they are

the dominant GR corrections for optical lattice clocks. Here we list their order of

magnitudes in Fig. 3.19(b).

(2) Ĥother (see Eq. (3.99)). Compared to mass-energy equivalence, Ĥother only acts on

motional degrees of freedom and does not lead to frequency shifts of the clock tran-

sition. For comparison, we still list their orders of magnitude in terms of fractional

frequency in Fig. 3.19(b). The first term of Ĥother represents the corrections to the

kinetic energy in Ĥ0 due to relativistic COM motion, which is at the order of frac-

tional frequency 10−29 assuming MHz scale of kinetic energy. The rest of the terms

are metric geometry corrections to the kinetic energy and potential energy terms in

Ĥ0, which is at the order of 10−25 for 1 cm spatial separation. It is worth to mention

that the term Mϕ2/c2 in metric geometry corrections depends quadratically on the

spatial separation (∼ Z2), and this term will become relevant in the case of larger

spatial separations such as atom interferometers.

(3) Corrections in ĤI (see Eq. (3.105)). The special relativistic corrections ĤI,SR, as

well as the terms related to electron spin, can give rise to atomic fine structure,

which has already been taken into account in standard AMO experiments. As for the

metric geometry corrections ĤI,GR, Ref. [168] points out that ĤI,GR is off-diagonal

in the unperturbed eigenbasis of internal states, so the corrections to internal energy

is negligible. Here, we typically assume ĤI is the same as the internal Hamiltonian

used in standard AMO experiments including atomic fine structure and hyperfine

structure. On the other hand, ĤI,GR might lead to corrections to the internal wave

function, so the dipole matrix elements might need to be corrected in ĤAL, although

it is suppressed due to the small spatial separation in optical clocks.
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Figure 3.19: (a) Schematic of an optical lattice clock with atoms trapped in a lattice tilted by

gravity. Internal energy difference h̄ω0 between |e⟩ and |g⟩ states can lead to mass difference

∆M in the Newtonian gravitational potential and generate gravitational redshift. It is possible to

tune the frequency of laser beams to excite either on-site (orange arrow) or off-site (light orange

arrows) transitions [23, 25]. (b) Order of magnitude of the GR corrections for ĤA in fractional

frequency of the clock transition (87Sr). The light orange color marks the corrections due to mass-

energy equivalence (see Eq. (3.111) and Eq. (3.112)), and the light purple color marks the other

source of corrections (see Eq. (3.99)). We assume MHz scale of kinetic energy and cm scale spatial

separation of gravitational potential. The dashed line shows the current record of optical clock

stability, 7.6 × 10−21 [23].

• ĤAL describes the couplings to external electromagnetic field, which is relevant for the

optical lattice beam as well as the clock laser beam. Although the higher order terms

in multipolar expansion can play a more important role compared to the post-Newtonian

corrections, here we only focus on the post-Newtonian corrections to the leading order

electric dipole terms. Under electric dipole approximation, we have [161,163]

ĤAL = −d̂ ·E +
1

2M

[
P̂ · (d̂×B) + (d̂×B) · P̂

]
, (3.113)

where d̂ is the electric dipole moment. In Eq. (3.113), the first term is the standard electric

dipole couplings, and the second term is relativistic correction term known as the Röntgen

term, which describes the coupling between a moving dipole and magnetic field generated

by Lorentz transformation of electric field E due to relativistic COM motion. We consider
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monochromatic light field in the following form, E = E(+)e−iωt+H.c., B = B(+)e−iωt+H.c.,

where ω is the laser frequency. First we focus on the post-Newtonian corrections to the

optical lattice beam:

(1) Röntgen term. For simplicity, we assume the lattice AC Stark shifts are dominated by

a single dipole-allowed transition |a⟩ → |b⟩, so the AC Stark shifts for internal state

|a⟩ is given by second-order perturbation theory,

Ĥac ≈ −⟨a|ĤAL|b⟩⟨b|ĤAL|a⟩
Eb − Ea − h̄ωL

, (3.114)

where ωL is the frequency of the lattice beam, Ea, Eb are the energy of states |a⟩

and |b⟩ respectively. Here we assume linear polarization of the lattice beam, with

E(+) = E cos(kLZ)X⃗, B(+) = (iE/c) sin(kLZ)Y⃗ and propagation direction Z⃗. Here

the vector symbol X⃗ means a unit vector along X direction. Plug in Eq. (3.114), we

have

Ĥac ≈ −αE1E2 cos2(kLZ) + αE1E2 h̄ωL

Mc2
sin2(kLZ), (3.115)

where αE1 = ⟨a|d̂ · X⃗|b⟩⟨b|d̂ · X⃗|a⟩/(Eb −Ea − h̄ω) is the electric dipole polarizability.

Here, the first term is the standard optical lattice potential, and the second term is the

corrections due to the Röntgen term. This leads to a correction of the lattice depth at

the order of h̄ωL/Mc2 ∼ 10−11, which is equivalent to a fractional frequency of 10−20

for a MHz trapping potential. However, this term does not lead to frequency shifts of

the clock transition in a magic wavelength lattice, which means the same αE1 for the

ground and excited states of the clock transition.

(2) Metric geometry corrections to electromagnetic plane waves. As pointed out in

Ref. [171], the calculation of the electromagnetic field is based on solving Maxwell

equations under the post-Newtonian metric. For example, the plane wave propagating

along Ẑ direction (electric field polarized along X̂ direction) should be corrected in
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the following way,

E ∝
((

1 − (γ + 1)
ϕ

c2

)
exp

[
− iωT ±

(
1 − γ + 1

2

ϕ

c2

)
ikZ

]
+ c.c., 0, 0

)
, (3.116)

where k = ω/c. As shown in Eq. (3.116), we have ϕ/c2 corrections in the amplitude

and phase of the electric field. Note that this term does not lead to differential AC

Stark shifts, while it leads to spatial dependent lattice depth and lattice spacing.

Such type of correction has negligible effects in optical clocks due to small spatial

separation (fractional frequency 10−27 or smaller for 1 cm separation), while it will

become relevant in the case of larger spatial separations such as atom interferometers.

We then focus on the post-Newtonian corrections to the clock laser beam. We consider the

case of the carrier transition without changing the motional degrees of freedom (motional

wave function ψe ≈ ψg). Similar to the discussion of the lattice beam, the ϕ/c2 corrections

due to metric geometry are suppressed due to the small spatial separation of the optical

clocks. For simplicity, we consider the clock laser beam propagating along X⃗ direction,

with E(+) = EeikLX Z⃗, B(+) = −(E/c)eikLX Y⃗ , the Rabi frequency is given by

Ωclk = −⟨e|d̂ · Z⃗|g⟩E
h̄

[ ∫
d3R ψ∗

ee
ikLXψg −

1

2Mc

∫
d3R ψ∗

e(P̂Xe
ikLX + eikLX P̂X)ψg

]
.

(3.117)

If we assume the motional states of the atoms are approximately harmonic oscillator states,

since P̂Xe
ikLX + eikLX P̂X is off-diagonal in the harmonic oscillator basis, the effects of

Röntgen term are significantly suppressed for the carrier transition. On the other hand,

ĤSDS due to mass-energy equivalence couples the ground band Wannier function to high

bands, which gives perturbative corrections to ψe at the order of 10−11. Therefore, the

relativistic corrections should be at the order of 10−11 for Ωclk, which is equivalent to

10−26 − 10−25 in fractional frequency unit assuming Ωclk in the range of 1 − 10 Hz.
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3.4.6.3 Intuitive discussion of post-Newtonian atomic interactions

Here we would like to briefly discuss our intuition for post-Newtonian corrections on atomic

interactions. As for the cavity-mediated interactions, post-Newtonian corrections lie in the atom-

light couplings and the analysis is similar to the discussion of Ωclk in the previous subsection, thus

we can reasonably assume 10−11 corrections to the cavity-mediated interactions. As we discuss in

the main text, NJ⊥ can be of the order of 1−10 Hz for clock transition [186], so the post-Newtonian

corrections are at the order of fractional frequency 10−26 − 10−25, which is negligible for current

experiments.

As for the contact interaction, we consider the major source of corrections is the mass-energy

equivalence, as we discussed below. Our analysis is based on the s-wave interaction Hamiltonian,

Ĥs =
2πh̄2a−eg

µ

∫
d3R ψ̂†

e(R)ψ̂†
g(R)ψ̂g(R)ψ̂e(R), (3.118)

where µ = MeMg/(Me + Mg) is the reduced mass, and a−eg = 69.1a0 is the s-wave scattering

length [25, 62]. Here we will simply assume the C6 coefficient remains unchanged. The effects of

mass-energy equivalence on the s-wave interaction are as follows:

• Correction of the s-wave scattering length and the reduced mass. Based on Ref. [59], the

s-wave scattering length can be estimated by

a−eg = āeg

(
1 − tan

(
Φ − π

8

))
, āeg =

2π

[Γ(1/4)]2

(
2µC6,eg

h̄2

)1/4

, (3.119)

where Φ =
∫∞
r0
dr
√

2µ[−V (r)]/h̄ is the WKB phase, with r0 the classical turning point and

V (r) the molecular potential. To remove the modπ ambiguity of Φ, here we note that Φ/π

is directly related to the number of bound states Nb in the molecular potential,

Nb =

⌊
Φ

π
− 5

8

⌋
+ 1. (3.120)

In the formula above, C6,eg = 3880Eha
6
0 is the C6 coefficient for eg channel of 87Sr atoms

[62], with Eh the Hartree energy and a0 the Bohr radius, which leads to āeg = 75.4a0. Now
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we apply the mass-energy equivalence, which gives

µ =
M

2

(
1 +

h̄ω0

2Mc2

)
, (3.121)

ã−eg = a−eg

(
1 +

h̄ω0

8Mc2

)(
1 − 1.099Φ

h̄ω0

4Mc2

)
. (3.122)

• Correction of the single-atom wave function. Since ĤSDS couples the ground band Wannier

function to high bands, we have perturbative corrections to the ground band Wannier

function of |e⟩ state. If we approximate the Wannier functions as the harmonic oscillator

states, we get

ψg(X) ≈ ψ0(X), ψe(X) ≈ ψ0(X) −
√

2h̄ω0

8Mc2
ψ2(X), (3.123)

where ψn is the wave function of harmonic oscillator level n. The same formula can apply

to Y and Z direction.

Combining all the corrections in Eq. (3.121-3.123), we can estimate the on-site interaction U

by

U =
2πh̄2ã−eg

µ

∫
dX [ψe(X)]2[ψg(X)]2

∫
dY [ψe(Y )]2[ψg(Y )]2

∫
dZ [ψe(Z)]2[ψg(Z)]2

≈ U0

(
1 − 1.099Φ

h̄ω0

4Mc2

)
,

(3.124)

where U0 =
√

8/π(kLa
−
eg)(ERVXVY VZ)1/4. This calculation shows that the main contribution

comes from the WKB phase. Up to date there are no experimental measurements for the number

of bound states in the eg channel of 87Sr atoms. If we assume Φ/π falls into the range of 101− 102,

this leads to 10−10−10−9 corrections to U , which is equivalent to fractional frequency 10−22−10−21

for U at kHz scale. We note that this correction is much smaller than the modification of bare

scattering length due to the lattice potential itself [109, 191], and therefore can be ignored for

current experiments.
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Figure 3.20: (a) Schematic of the dressing protocol. We apply dressing laser connecting |e,mF ⟩
with |g,mF −1⟩ states, which leads to the dressed basis |+⟩ and |−⟩. We then define the new clock
qubit based on the transition between |g,mF ⟩ and |−⟩ states. (b) Schematic of the cavity-mediated
interactions in the dressed basis. The cavity axis is along Z and the quantization axis is along
magnetic field B labeled in the plot. The additional nuclear spin state in the dressing protocol
allows for coupling to two polarization modes in the cavity and enhancing the tunability of the
cavity-mediated interactions.

3.4.7 Supplemental Materials: Dressing Protocol

3.4.7.1 Derivation

In Fig. 2 of the main text, we discussed state dressing protocol proposed to tune and dis-

tinguish the mass-energy equivalence from other effects. We explain the protocol in more detail.

We consider three internal levels |e,mF ⟩, |g,mF ⟩ and |g,mF − 1⟩. A dressing laser ( with Rabi

frequency Ω, laser frequency ωd) is used to couple |e,mF ⟩ with |g,mF −1⟩ states (see Fig. 3.20(a)).

Due to magnetic Zeeman shifts, the clock transitions between different nuclear spins are frequency

resolved, thus we assume the modification on other states are typically small. In the rotating frame

of the dressing laser, the Hamiltonian of internal levels plus dressing laser becomes

ĤI+D = h̄ω0|e,mF ⟩ + h̄(ω0 + δ)|g,mF − 1⟩ +
h̄Ω

2
(|e,mF ⟩⟨g,mF − 1|+H.c.), (3.125)

where δ = ωd − ω0 − ωZ is the detuning of the dressing laser, and ωZ the Zeeman shift between

|g,mF ⟩ and |g,mF − 1⟩ states. We set the energy of |g,mF ⟩ state to 0. The eigenstates of this

Hamiltonian are given by

|+⟩ = C1|e,mF ⟩ + C2|g,mF − 1⟩, E+/h̄ = ω0 +
δ

2
+

1

2

√
Ω2 + δ2, (3.126)
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|−⟩ = −C2|e,mF ⟩ + C1|g,mF − 1⟩, E−/h̄ = ω0 +
δ

2
− 1

2

√
Ω2 + δ2, (3.127)

where

C1 =
1√
2

(
1 − δ√

Ω2 + δ2

)1/2

, C2 =
1√
2

(
1 +

δ√
Ω2 + δ2

)1/2

. (3.128)

Since ωZ ≪ ω0, we can ignore the mass difference between |g,mF ⟩ and |g,mF − 1⟩ states.

The corrections from the second order Doppler shift ĤSDS and gravitational redshift ĤGRS take

the following form,

ĤSDS = −h̄ω0
P̂2

2M2c2
|e⟩⟨e|, ĤGRS = h̄ω0

gZ

c2
|e⟩⟨e|. (3.129)

Since ĤSDS and ĤGRS are much smaller than the energy gap
√

Ω2 + δ2, we can restrict the dynamics

within the effective two level system formed by |g,mF ⟩ and |−⟩ states if tuning the clock laser

frequency resonant with this transition. In this case we define the projection operator

P̂ = |−⟩⟨−|+|g,mF ⟩⟨g,mF |. (3.130)

Using the projection operator, ĤSDS and ĤGRS become

P̂ĤSDSP̂ = −h̄ω0
P̂2

2M2c2
|C2|2|−⟩⟨−|, P̂ĤGRSP̂ = h̄ω0

gZ

c2
|C2|2|−⟩⟨−|, (3.131)

which is equivalent to a modification of the mass defect,

∆M = |C2|2∆M0, (3.132)

where ∆M0 = h̄ω0/c
2 is the mass defect without the dressing protocol. The GRS leads to a

position-dependent correction of the dressed state energy E− (we do not include the second order

Doppler shift for simplicity),

E−(Z) = E− +
h̄ω0g

c2
|C2|2Z. (3.133)

which can be resolved via clock spectroscopy in the effective two level system formed by |g,mF ⟩

and |−⟩ states.

All the discussion above is in the rotating frame of the dressing laser. When an atom is in

the state |−⟩, the probability to populate the excited clock state is |C2|2 and therefore in the lab

frame it has an average energy ≈ |C2|2h̄ω0. This is another way to understand how the dressing

laser enables the tunability of the mass defect ∆M .
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3.4.7.2 Technical considerations

Due to experimental imperfection, spatial inhomogeneities exist for the atomic frequency and

the parameters δ and Ω in E−. The effects of gravitational redshiftthe GRS will be washed out if

the inhomogeneities are much larger than the redshift value. For 1 cm spatial separation, the GRS

is at the order of mHz, thus one needs to control the inhomogeneities below 10−4 Hz for direct

observation of the GRS.

Relating the single atom energies, the leading order contribution are from position-dependent

Zeeman shifts due to spatial inhomogeneties is the magnetic field. One can suppress first order

Zeeman shifts by probing opposite nuclear spin states and calculating the averaged frequency,

which has been already demonstrated in Ref. [23]. The same idea also works for the dressing

protocol. One can average the transition frequency of |g,mF ⟩ ↔ (−C2|e,mF ⟩+C1|g,mF − 1⟩) and

|g,−mF ⟩ ↔ (−C2|e,−mF ⟩ + C1|g,−mF + 1⟩). Without shot-to-shot fluctuations, this approach

allows for exact cancellation of the effects from magnetic field gradients.

Since the GRS behaves like a magnetic field gradient across the atomic sample in the case

of two-level systems, it is important to distinguish it from any residual magnetic field gradient.

Suppose there is no gravitational redshift in the system, and there is a small magnetic field gradient

term adding on top of a constant magnetic field, then we have ω0(Z) = ω0 + (ηe − ηg)mFZ,

ωZ(Z) = ωZ + ηgZ, where ηe = −G3P0
µB∂ZB, ηg = −G1S0

µB∂ZB, with G3P0
and G1S0

representing

the Landé g-factors, and µB is the Bohr magneton. So the first-order perturbation correction of

the energy of the |−⟩ state is given by

E−(Z) = E− +

[
|C2|2(ηe − ηg)mF − |C1|2ηg

]
Z. (3.134)

Since ηg ̸= 0, we find different dependence by varying δ compared to the gravitational redshift

(see Eq. (3.133)). The reason is that different ground-state nuclear spins have the same mass but

different Zeeman shifts.

As for the dressing laser Rabi frequency Ω, the leading order contributions are from the

spatial profile of the laser beam. If we denote the modification of Ω as ∆Ω, the change of E− is
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given by

∆E−/h̄ = −1

2

√
Ω2 + δ2

(
1 +

(∆Ω)Ω

Ω2 + δ2

)
. (3.135)

For 87Sr atoms, the Zeeman shifts between nuclear spin states are at the order of 102 Hz, in order

to frequency resolve a single transition between nuclear spin states, we have Ω/2π ∼ 10 Hz. So

the requirement ∆Ω/2π < 10−4 Hz is equivalent to ∆Ω/Ω < 10−5. In principle, this requirement

is achievable using an ultrastable cavity, which allows for precise control of the spatial mode of the

dressing laser. An alternative approach is to reduce this requirement is to notice that the change

of E+ due to ∆Ω as the opposite sign,

∆E+/h̄ =
1

2

√
Ω2 + δ2

(
1 +

(∆Ω)Ω

Ω2 + δ2

)
. (3.136)

If we average the transition frequency of |g,mF ⟩ ↔ |−⟩ and |g,mF ⟩ ↔ |+⟩, we get

E−(Z) + E+(Z)

2
= h̄ω0 +

h̄δ

2
+

1

2

h̄ω0g

c2
Z. (3.137)

In this way, the averaged transition frequency becomes independent of Ω. Even though one sacrifices

the full tunability of gravitational redshift, it is still changed to half of its value without dressing.

3.4.7.3 Contact interactions

Here we analyze the effects of the dressing protocol on the interatomic s-wave interactions.

We start from the following second quantized Hamiltonian describing the s-wave interaction of

alkaline earth atoms due to SU(n) symmetry [25],

Ĥs =
2πh̄2agg
M

∑
mm′

(m̸=m′)

∫
d3R ψ̂†

gm(R)ψ̂†
gm′(R)ψ̂gm′(R)ψ̂gm(R)

+
2πh̄2aee
M

∑
mm′

(m̸=m′)

∫
d3R ψ̂†

em(R)ψ̂†
em′(R)ψ̂em′(R)ψ̂em(R)

+
2πh̄2(a−eg + a+eg)

M

∑
mm′

∫
d3R ψ̂†

gm(R)ψ̂†
em′(R)ψ̂em′(R)ψ̂gm(R)

+
2πh̄2(a−eg − a+eg)

M

∑
mm′

∫
d3R ψ̂†

gm(R)ψ̂†
em′(R)ψ̂em(R)ψ̂gm′(R).

(3.138)
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Here m is the label of nuclear spins −F,−F + 1, · · · , F , and agg, aee, a
−
eg and a+eg are the s-wave

scattering lengths.

Assuming the frequency difference between nuclear spins (Zeeman shifts) and energy gap

√
Ω2 + δ2 between two dressed states are typically larger than the interaction strength, one can

restrict the dynamics within two levels, |↓⟩ ≡ |g,mF ⟩ and |↑⟩ ≡ |−⟩. Projecting the interaction

Hamiltonian into these two states (see Eq. (3.130)), we have

P̂ĤsP̂ =
4πh̄2

M

(
|C1|2agg + |C2|2a−eg

)∫
d3R ψ̂†

↑(R)ψ̂†
↓(R)ψ̂↓(R)ψ̂↑(R). (3.139)

In this way, we modify the on-site interaction strength U by

U

U0
=

|C1|2agg + |C2|2a−eg
a−eg

. (3.140)

3.4.7.4 Cavity-mediated interactions

Here we analyze the effects of the dressing protocol on the cavity-mediated interactions.

Refs. [35, 192] provide a detailed discussion of cavity-mediated interactions for multilevel alkaline

earth atoms. Here we focus on the case that the quantization axis for nuclear spins is perpendicular

to the cavity axis (see Fig. 3.20(b)). In this case, the two polarization modes supported by the

cavity can drive the π transition and the linear combination of σ+ and σ− transitions, so we can

define the multilevel raising operators for these two polarization modes,

Π̂+ =
∑
jm

C0
m|em⟩j⟨gm|, Σ̂+ =

∑
jm

i√
2

(C−1
m |em−1⟩j⟨gm|+C+1

m |em+1⟩j⟨gm|), (3.141)

where j is the label of atoms, m is the label of nuclear spins, and Cσ
m ≡ ⟨F,m; 1, σ|F,m + σ⟩ are

the Clebsch-Gordan coefficients. Based on Ref. [192], the multilevel exchange interactions take the

following form,

Ĥc/h̄ = χ(Π̂+Π̂− + Σ̂+Σ̂−), (3.142)

with Π̂− = (Π̂−)† and Σ̂− = (Σ̂−)†.

Assuming the frequency difference between nuclear spins (Zeeman shifts) and energy gap

√
Ω2 + δ2 between two dressed states are typically larger than the interaction strength χN , one
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can restrict the dynamics within two levels, |↓⟩ ≡ |g,mF ⟩ and |↑⟩ ≡ |−⟩. In this two-level system,

one can define collective spin operators, Ŝ+ =
∑

j |↑⟩j⟨↓ |, Ŝ− = (Ŝ+)†, and Ŝz =
∑

j(|↑⟩j⟨↑ |−|↓

⟩j⟨↓|)/2. Projecting Ĥc into this two-level system (see Eq. (3.130)), we get

P̂ĤcP̂ = χ(C0
mF

)2|C2|2Ŝ+Ŝ− + χ
(C+1

mF−1)
2

2
|C1|2|C2|2

(
N

2
+ Ŝz

)2

. (3.143)

In this way, we modify J⊥ and Jz by

J⊥ = χ(C0
mF

)2|C2|2, Jz = χ
(C+1

mF−1)
2

2
|C1|2|C2|2. (3.144)
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
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Figure 3.21: Interplay between contact interactions and redshift. (a) We prepare a product state

with all atoms in |g⟩ state and apply a laser pulse R̂
−π/2
y = exp

(
iπ2 Ŝ

y
)

to start the dynamics.

We focus on a single tube with N = 16 atoms evolving under the Hamiltonian ĤSE (Eq. (3.145)),

and then perform measurements for each atom. (b) Individual atomic frequency shift ωj with

ωsplit/NJ⊥ = 10−2. Synchronization of atomic frequencies can be reach at time tsyn. (c) Individual

atomic frequency shift ωj with ωsplit/NJ⊥ = 10−1. Global synchronization fails to occur in this

regime. (d) Spin squeezing parameter ξ2 and normalized Rényi entropy S̃N/2 in the case of (b).

(e) Normalized Rényi entropy S̃N/2 in the case of (c). The interplay between cavity-meditated

interactions and gravitational redshift can lead to entanglement generation for both cases.
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Figure 3.22: We evolve the system based on the time sequence in Fig. 3 in the main text and

calculate the expectation value Kcol = ⟨Ŝ · Ŝ⟩/[N2 (N2 + 1)] as a function of evolution time. (a,b)

We consider Hamiltonian of cavity-mediated interactions Ĥcav with J⊥ = Jz (Eq. (5) in the main

text). The choice of parameters is the same as Fig. 3.21. (c,d) We consider Hamiltonian of nearest-

neighbor superexchange interaction ĤSE (Eq. (3.145)). The choice of parameters is the same as

Fig. 3 in the main text.

3.4.8 Supplemental Matertials: Additional numerical results

In the main text, we have shown that frequency synchronization and entanglement genera-

tion can be achieved due to the interplay between cavity-mediated interactions and gravitational

redshift. Here we show that similar phenomena can be achieved if we replace cavity-mediated inter-

actions by superexchange interactions. For simplicity, we consider the case VZ ≪ VX = VY for a 3D

lattice with 87Sr atoms in the ground band, so the system behaves as an array of independent tubes

along the gravitational potential (Z axis). We assume the system is in the Mott insulator regime

with one atom per lattice site, where the leading dynamics can be described by superexchange

interactions mediated by motion between nearest neighbor sites [32]. The Hamiltonian within a

tube can be written in terms of spin-1/2 operators ŝx,y,zj = ĉ†jβσ
x,y,z
ββ′ ĉjβ′ in the two-level system

defined by the dressing scheme, where σx,y,z are Pauli matrices, ĉjβ is the fermionic annihilation
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operator for lattice site index j and spin label β = {↑, ↓}. We get

ĤSE/h̄ = J
∑
j

ŝj · ŝj+1 + ωGRS

∑
j

jŝzj , (3.145)

where h̄ωGRS = (∆M)gaL is the gravitational redshift between nearest neighbor sites, and h̄J =

4τ2/Ueff is the superexchange interaction strength. Here Ueff = (U2 − (MgaL)2)/U , with U the

on-site interaction strength. Based on Eq. (3.145), a magnetic field gradient will in principle give

rise to similar single-atom inhomogeneities in the Hamiltonian. The combination of the dressed

states allows us to tune the value of U by coupling to different atomic collision channels (see

previous sections). This assumes all the interaction strengths are smaller than dressed state energy

gap
√

Ω2 + δ2 and Zeeman shifts between nuclear spins, to restrict dynamics within two levels.

Note that mass-energy equivalence might also lead to corrections of U via modifying scattering

lengths (see previous sections), while they are smaller than the current uncertainty of interaction

parameters [109].

In Fig. 3.21, we perform the same analysis as Fig. 3 in the main text, while replacing cavity-

mediated interactions Ĥcav (Eq. (5) in the main text) by the nearest-neighbor superexchange inter-

action ĤSE (see Eq. (3.145)). Since the initial state is an eigenstate of the interaction terms, and

the interplay between interaction and gravitational redshift can lead to quantum dynamics away

from this eigenstate and generate quantum entanglement, similar to the phenomena discussed in

Fig. 3 in the main text. In the interaction dominant regime, we find frequency synchronization

and spin squeezing generation due to many-body gap protection. While in the regime where the

interaction strength is comparable with the gravitational redshift, frequency synchronization fails

to occur, and we find a faster growth of normalized Rényi entropy.

In contrast to the cavity-mediated interactions discussed in the main text, the spin wave

analysis (see the next section) of superexchange interaction shows a scaling of ∆E ∝ J/N2 for the

many-body gap and Jtsyn ∝ N2 for the synchronization time. For the typical OLC setup [32], the

frequency synchronization can be reached within 1 s for a tube with N = 16. Considering the 3D

lattice with an array of independent tubes, the total atom number would be 163 = 4096, which is
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at the same order of magnitude as the atom number in Ref. [32].

In Fig. 3.22, we use the same time sequence as Fig. 3 in the main text, and calculate the

expectation value ⟨Ŝ · Ŝ⟩ as a function of the evolution time. Note that in a given total spin-S

manifold, we have ⟨Ŝ·Ŝ⟩ = S(S+1). So ⟨Ŝ·Ŝ⟩ can serve as a measure of population in the collective

manifold (S = N/2), spin-wave manifold (S = N/2 − 1), as well as the manifolds with lower total

spin. We consider both nearest-neighbor superexchange interaction ĤSE (Eq. (3.145)) and cavity-

mediated interaction Ĥcav with J⊥ = Jz (Eq. (5) in the main text). In the interaction dominant

regime where frequency synchronization can occur, we find undamped oscillations between the

collective manifold (S = N/2) and the spin-wave manifold (S = N/2 − 1). In the other regime

where frequency synchronization fails to occur, the system can evolve to manifolds with lower total

spin.

3.4.9 Supplemental Materials: Analytic results for frequency synchronization

In the main text, we discuss the interplay between atomic interactions (contact interaction or

cavity mediated interactions) and gravitational redshift. Here we would like to provide analytic spin-

wave calculations based on two different approaches, including Holstein–Primakoff approximation

and restriction of dynamics within collective and spin-wave manifold. We focus on the single chain

of N atoms and consider each atom as a spin-1/2 particle with operators ŝx,y,zn , and in this case we

also use N to label the number of lattice sites. Based on our protocol in Fig. 3 and Fig. 4 in the

main text, the frequency of each atom ωn(t) can be estimated by

ωn(t) =
1

t
arctan

(⟨ŝyn(t)⟩
⟨ŝxn(t)⟩

)
. (3.146)

The rigorous definition of the synchronization time tsyn is the time for the first minimum in the

variance of atomic frequencies. In fact, we can approximately reach the zero crossing of ωn(t) for

all the n at tsyn, as demonstrated by the analytic results below and by numerical evidences.
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3.4.9.1 Holstein–Primakoff approximation

We would like to use Holstein–Primakoff approximation to describe the case with an unen-

tangled initial state (see Fig. 3 in the main text). Considering the initial state with all N spins

pointing to +x direction, we can approximate the spin-1/2 operators as

ŝxn =
1

2
− â†nân, ŝyn ≈ ân + â†n

2
, ŝzn ≈ ân − â†n

2i
. (3.147)

In this way, the initial state becomes the vacuum state of all these bosonic operators. In the

following, we will plug these bosonic operators into the Hamiltonian and keep the terms up to

quadratic order of bosonic operators. We then apply Fourier transform to obtain the bosonic

operators for spin waves k = 2πm/N with m = 0, 1, 2, · · · , N − 1,

ân =
1√
N

∑
k

eiknâk, â†n =
1√
N

∑
k

e−iknâ†k, (3.148)

and rewrite the Hamiltonian accordingly. The validity of Holstein–Primakoff approximation re-

quires ⟨ân⟩ ≪ 1 for all n. If we define η as the ratio between the maximum redshift in the array

(ωsplit = (N − 1)ωGRS) and the smallest spin wave excitation gap (discussed below), the typical

condition for validity would be η ≪ 1. In this regime, the frequency of each atom ωn(t) can be

approximated as

ωn(t) ≈ 2⟨ŝyn(t)⟩
t

. (3.149)

Nearest-neighbor Heisenberg interactions

Here we consider the Hamiltonian for nearest-neighbor Heisenberg interactions,

Ĥ1/h̄ = J

N−2∑
n=0

ŝn · ŝn+1 + ωGRS

N−1∑
n=0

(
n− N − 1

2

)
ŝzn, (3.150)

in which we set the average value of gravitational redshift to 0, based on our convention. Applying

the Holstein–Primakoff bosons and keeping the terms up to quadratic order, the Hamiltonian in

terms of the spin-wave operators becomes

Ĥ1/h̄ ≈ −J
∑
k ̸=0

(
1 − cos(k)

)
â†kâk +

ωGRS

2i

√
N
∑
k ̸=0

(
1

eik − 1
âk −

1

e−ik − 1
â†k

)
. (3.151)
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For simplicity, we ignore the boundary effect in the formula above. Solving the Heisenberg equation

of motion for âk with k ̸= 0, one can finally reach

ωn(t) ≈ −ωGRS

2

∑
k ̸=0

sin
(
J(1 − cos(k))t

)
J(1 − cos(k))t

sin
(
kn+ k/2

)
sin(k/2)

. (3.152)

In the limit of t→ 0, we have

ωn(0) = −ωGRS

2

∑
k ̸=0

sin(kn+ k/2)

sin(k/2)
= −ωGRS

2

∑
k ̸=0

(
1 + 2

n∑
j=1

cos(jk)

)
= ωGRS

(
n− N − 1

2

)
,

(3.153)

which agrees with the gravitational redshift value without interactions.

Since the energy gap of spin wave excitation has the smallest value at k = 2π/N and k =

2π(N − 1)/N , so the system dynamics is dominated by these two spin wave modes. Therefore, one

can conclude that the frequency synchronization occurs at J(1 − cos(2π/N))t ≈ Jt/2(2π/N)2 = π

which gives

Jtsyn ≈ N2

2π
. (3.154)

In fact, the Jtsyn we found numerically is larger by nearly a factor of 4 compared to what we

predicted here, since the boundary effect we ignored in the analytic calculation is equivalent to

a reduction of spin wave gap. Nevertheless, we are able to capture the N -scaling of tsyn (see

Fig. 3.23(a) for numerical calculations). To ensure the validity of the Holstein–Primakoff approxi-

mation, we have

η ∼ ωGRS

J
N3 ≪ 1, (3.155)

which in principle sets a limit for the largest possible system size.

Within the Holstein–Primakoff approximation, the deviation of ωn(tsyn) from 0 originates

from the non-vanishing contribution of other spin wave modes. Based on Eq. (3.152), we can

estimate sin (J(1 − cos(k))tsyn)/(J(1 − cos(k))tsyn) ∼ O(N−2), which gives

ωn(tsyn)

ωn(0)
∼ O

(
1

N2

)
. (3.156)

Collective Heisenberg interactions
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Here we consider the Hamiltonian for collective Heisenberg interactions,

Ĥ2/h̄ = J⊥

N−1∑
n=0

N−1∑
m=0

ŝn · ŝm + ωGRS

N−1∑
n=0

(
n− N − 1

2

)
ŝzn. (3.157)

Applying the Holstein–Primakoff bosons and keeping the terms up to quadratic order, the Hamil-

tonian in terms of spin wave operators becomes

Ĥ2/h̄ ≈ −NJ⊥
∑
k ̸=0

â†kâk +
ωGRS

2i

√
N
∑
k ̸=0

(
1

eik − 1
âk −

1

e−ik − 1
â†k

)
. (3.158)

Solving the Heisenberg equation of motion for âk with k ̸= 0, one can finally reach

ωn(t) ≈ −ωGRS

2

sin
(
NJ⊥t

)
NJ⊥t

∑
k ̸=0

sin
(
kn+ k/2

)
sin(k/2)

= ωGRS

sin
(
NJ⊥t

)
NJ⊥t

(
n− N − 1

2

)
. (3.159)

Similarly, ωn(0) agrees with the gravitational redshift value without interactions. As for the

frequency synchronization, it happens at NJ⊥t = π, which gives

J⊥tsyn =
π

N
. (3.160)

This analytic result agrees with the numerical simulations (see Fig. 3.23(b)). To ensure the validity

of the Holstein–Primakoff approximation, we have

η ∼ ωGRS

J⊥
≪ 1, (3.161)

which is independent of the system size. Within the Holstein–Primakoff approximation, there is no

deviation of ωn(tsyn) from 0.

3.4.9.2 Restriction within collective and spin-wave manifold for two large spins

For the case with an entangled initial state, it is not possible to use the Holstein–Primakoff

approximation. Alternatively, we would like to simplify the Hamiltonian into two large spins

(S1 = S2 = N/4) with effective Heisenberg interaction strength Jeff and effective redshift value

ωeff ,

Ĥeff/h̄ = 2Jeff Ŝ1 · Ŝ2 +
ωeff

2
(Ŝz

1 − Ŝz
2). (3.162)
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Figure 3.23: Scaling of synchronization time tsyn as a function of atom number N for (a) contact
interactions and (b) cavity-medited interactions. In (b), we compare the tsyn between collective
Heisenberg interactions (Jz = J⊥) and spin exchange interactions (Jz = 0). All the calculations are
based on an initial unentangled state with all the spins pointing to +x direction. See the protocol
in Fig. 3(a) in the main text.

In the regime ωeff ≪ NJeff , we can restrict the dynamics within the collective manifold with total

spin S = N/2 as well as the spin-wave manifold with total spin S = N/2 − 1. Based on the

Clebsch-Gordan coefficients, the states in the collective manifold (S = N/2) can be expressed as

|N/2,m⟩ =
∑
m1

√√√√( N/2
N/4+m1

)( N/2
N/4+m−m1

)(
N

N/2+m

) |N/4,m1⟩1|N/4,m−m1⟩2, (3.163)

and the states in the spin-wave manifold (S = N/2 − 1) can be expressed as

|N/2 − 1,m⟩ =
∑
m1

(2m1 −m)

√√√√( N/2
N/4+m1

)( N/2
N/4+m−m1

)
N
(

N−2
N/2−1+m

) |N/4,m1⟩1|N/4,m−m1⟩2, (3.164)

where
(
n
k

)
are binomial coefficients. A key observation from Eq. (3.163) and Eq. (3.164) is that

(Ŝz
1 − Ŝz

2)|N/2,m⟩ =

√
(N/2 +m)(N/2 −m)

N − 1
|N/2 − 1,m⟩. (3.165)

If we restrict the dynamics within the collective and spin-wave manifold, Ĥeff can be reduced to

2 × 2 matrices in each m sector in the basis {|N/2,m⟩, |N/2 − 1,m⟩},

Ĥeff,m/h̄ =

 NJeff
ωeff

2

√
(N/2 +m)(N/2 −m)

N − 1
ωeff

2

√
(N/2 +m)(N/2 −m)

N − 1
0

 . (3.166)

Also based on Eq. (3.163) and Eq. (3.164), we have (j = 1, 2)

Ŝ+
j |N/2,m⟩ =

1

2

√
(N/2 +m+ 1)(N/2 −m)|N/2,m+ 1⟩

− (−1)j

2

√
(N/2 −m)(N/2 −m− 1)

N − 1
|N/2 − 1,m+ 1⟩,

(3.167)
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Ŝ−
j |N/2,m⟩ =

1

2

√
(N/2 −m+ 1)(N/2 +m)|N/2,m− 1⟩

+
(−1)j

2

√
(N/2 +m)(N/2 +m− 1)

N − 1
|N/2 − 1,m− 1⟩.

(3.168)

Now we consider a general initial state in the collective manifold,

|ψ0⟩ =
∑
m

cm|N/2,m⟩, (3.169)

with the constraint ⟨ψ0|Ŝy
n|ψ0⟩ = 0, ⟨ψ0|Ŝz

n|ψ0⟩ = 0. With time evolution under Ĥeff , we have

|ψ(t)⟩ = e−iĤeff t/h̄

≈
∑
m

cm

[
e−iNJeff t/2|N/2,m⟩ − i

ωeff

NJeff

√
(N/2)2 −m2

N − 1
sin(NJefft/2)|N/2 − 1,m⟩

]
,

(3.170)

which gives

⟨ψ(t)|Ŝ+
j |ψ(t)⟩

≈
∑
m

cmc
∗
m+1

[
⟨N/2,m+ 1|Ŝ+

j |N/2,m⟩

− i
ωeff

NJeff
eiNJeff t/2

√
(N/2)2 −m2

N − 1
sin(NJefft/2)⟨N/2,m+ 1|Ŝ+

j |N/2 − 1,m⟩

+ i
ωeff

NJeff
e−iNJeff t/2

√
(N/2)2 − (m+ 1)2

N − 1
sin(NJefft/2)⟨N/2 − 1,m+ 1|Ŝ+

j |N/2,m⟩
]

=
∑
m

cmc
∗
m+1⟨N/2,m+ 1|Ŝ+

j |N/2,m⟩

×
[
1 − (−1)j

ωeff

NJeff

(
i
1

2
sin(NJefft) −

2m+ 1

N − 1
sin2(NJefft/2)

)]
= ⟨ψ0|Ŝ+

j |ψ0⟩
[
1 − i(−1)j

ωeff

2

sin(NJefft)

NJeff

]
+

⟨ψ0|(Ŝ+
n Ŝ

z + ŜzŜ+
n )|ψ0⟩

N − 1
(−1)j

ωeff

NJeff
sin2(NJefft/2).

(3.171)

Therefore, we can obtain the frequency for each of the two large spins,

ωj(t) ≈ (−1)j−1ωeff

2

(
sin(NJefft)

NJefft
− 2

⟨ψ0|(ŜyŜz + ŜzŜy)|ψ0⟩
(N − 1)⟨ψ0|Ŝx|ψ0⟩

sin2(NJefft/2)

NJefft

)
, (3.172)

leading to the synchronization time

NJefftsyn = π − 2 arctan

[⟨ψ0|(ŜyŜz + ŜzŜy)|ψ0⟩
(N − 1)⟨ψ0|Ŝx|ψ0⟩

]
. (3.173)

In the following, we consider three different types of initial states:
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• |ψ0⟩ = |+x⟩⊗N

In this case we have ⟨ψ0|(ŜyŜz + ŜzŜy)|ψ0⟩ = 0, which gives

NJefftsyn,0 = π. (3.174)

Here we use tsyn,0 to label the synchronization time with this unentangled initial state.

This result agrees with the prediction using the Holstein–Primakoff approximation in the

previous subsection.

• |ψ0⟩ = e−iQŜzŜz/N |+x⟩⊗N

In this case we have

⟨ψ0|(ŜyŜz + ŜzŜy)|ψ0⟩ =
N(N − 1)

2
sin(Q/N) cosN−2(Q/N), (3.175)

⟨ψ0|Ŝx|ψ0⟩ =
N

2
cosN−1(Q/N), (3.176)

which gives

NJefftsyn = π − 2Q/N. (3.177)

Note that the ŜzŜz term commutes with Ĥeff , this result can also apply to the following

Hamiltonian generated by cavity-mediated interactions,

Ĥcav/h̄ = J⊥Ŝ · Ŝ + (Jz − J⊥)ŜzŜz +
ωeff

2
(Ŝz

1 − Ŝz
2), (3.178)

with initial state |ψ0⟩ = |+x⟩⊗N . Now we can replace Jeff by J⊥, and Q/N by (Jz−J⊥)tsyn,

which gives (
(N − 2)J⊥ + 2Jz

)
tsyn = π. (3.179)

We have shown numerical calculations for collective spin exchange interactions (Jz = 0) and

collective Heisenberg interactions (Jz = J⊥) for a 1D tube with N atoms in Fig. 3.23(b),

which agrees well with the analytic results using two large spins.

• |ψ0⟩ = e−iθŜx
e−iQŜzŜz/N |+x⟩⊗N
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Figure 3.24: Comparison between numerical simulations of superexchange interactions ĤSE with
N = 16 atoms in a single tube and analytic results Eq. (3.181) and Eq. (3.182). We use the same
protocol as Fig. 4 in the main text. (a) The dependence of synchronization time on the rotation

R̂θ
x = exp

(
−iθŜx

)
at Q/2π = 0.6. (b) The dependence of the tunable range of synchronization

time on OAT shearing strength Q.

In this case we have

⟨ψ0|(ŜyŜz + ŜzŜy)|ψ0⟩ = cos(2θ)
N(N − 1)

2
sin(Q/N) cosN−2(Q/N)

+ sin(2θ)
N(N − 1)

8

(
1 − cosN−2(2Q/N)

)
,

(3.180)

and ⟨ψ0|Ŝx|ψ0⟩ is still given by Eq. (3.176). So the tunability of synchronization time is

due to the θ-rotation of ⟨ψ0|(ŜyŜz + ŜzŜy)|ψ0⟩. In Fig. 4 of the main text and Fig. 3.24,

we find that the analytic results for two large spins can also explain the numerical simu-

lations for collective or nearest-neighbor Heisenberg interactions, if we rewrite the formula

of synchronization time tsyn and its tunable range ∆tsyn into dimensionless form,

tsyn
tsyn,0

= 1 − 2

π
arctan

[⟨ψ0|(ŜyŜz + ŜzŜy)|ψ0⟩
(N − 1)⟨ψ0|Ŝx|ψ0⟩

]
, (3.181)

∆tsyn
tsyn,0

=
4

π
arctan

[
(⟨ψ0|(ŜyŜz + ŜzŜy)|ψ0⟩max

(N − 1)⟨ψ0|Ŝx|ψ0⟩

]
. (3.182)

In the main text, we use |ψ(θ)⟩ instead of |ψ0⟩ in this case to emphasize the θ-dependence.



Chapter 4

Emergent collective behaviors and dynamical phases in interacting arrays

4.1 Overview

Understanding the non-equilibrium dynamics of a quantum many-body system is one of the

most challenging problems in modern quantum science. In recent years, we have seen a tremendous

progress in this direction, partly because of advances in quantum simulation which are enabling us

to access fundamentally new regimes of coherent and highly excited dynamics previously inacces-

sible in conventional materials, such as the long-time dynamical behavior after a sudden quench

(dynamical phases) [193–196], the existence and absence of thermalization [197–199], the quantum

information and entanglement dynamics [200, 201], and the non-equilibrium transport [202, 203].

In this chapter, we mainly focus on the development of quantum simulation protocols for emergent

collective behaviors and dynamical phases in different experimental platforms, including trapped

bosonic gases and cavity QED systems. In cavity QED systems, we study a variety of problems,

such as spin exchange interactions among two-level atomic spins, two-polarization couplings of

multilevel atoms, as well as dispersive couplings of motional states.

4.2 Simulation of XXZ spin models using sideband transitions in trapped

bosonic gases

This section is adapted from: Anjun Chu, Johannes Will, Jan Arlt, Carsten Klempt, Ana

Maria Rey, Simulation of XXZ spin models using sideband transitions in trapped bosonic gases,

Physical Review Letters 125, 240504 (2020).

https://doi.org/10.1103/PhysRevLett.125.240504
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4.2.1 Introduction

Quantum simulation of iconic models of quantum magnetism in highly controllable atomic

systems is emerging as a promising way to gain new insights into fundamental many-body phenom-

ena in condensed matter physics [63], and as a pathway to shed light onto exciting new phenomena

in non-equilibrium many-body spin arrays [105, 107, 108, 204–206]. In recent years, rapid progress

in the simulation of quantum spin models has been made by taking advantage of the diversity of

interactions in ultracold quantum systems, including contact interactions in the motional ground

state of ultracold atomic gases [3, 206], dipolar interactions in polar molecules [207], magnetic

atoms [208–210] and Rydberg atoms [211], as well as photon/phonon-mediated long-range interac-

tions in trapped ions [212] and cavity QED systems [107,186,213–215].

One promising avenue in this direction is the fact that non-degenerate thermal gases interact-

ing via purely contact interactions, can emulate spin models by mapping the single-particle energy

eigenstates onto a lattice in mode space [101, 108, 216, 217]. This mapping has been shown to be

a powerful way to emulate long-range interacting spin models featuring large many-body energy

gaps that have enabled significant enhancement of coherence time [188,218,219]. Nevertheless, the

tunability of the spin model parameters has so far been mainly accomplished by the use of Feshbach

resonances, and the atom loss associated with the latter imposes a trade-off between tunability and

coherence time [108,220].

In this work, we theoretically propose and experimentally demonstrate the use of motional

sidebands in a thermal trapped gas of 87Rb atoms to engineer long-range XXZ spin models with

tunable spin couplings. We benchmark our simulator by probing a dynamical phase transition

(DPT) between ferromagnetic and paramagnetic phases in the collective XXZ model plus additional

transverse and longitudinal fields (also known as the Lipkin-Meshkov-Glick (LMG) model [105,107,

221, 222]) via Rabi spectroscopy. We experimentally reconstruct the boundary of the dynamical

phases by varying atom density and longitudinal field strength and show good agreement with mean-

field theoretical predictions. At the end we also discuss the further applications of our scheme in
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entanglement-enhanced metrology [30,31,74], as well as generalizations to a wide range of quantum

systems.

4.2.2 Theoretical model

We consider an ensemble of thermal 87Rb atoms confined in a 3D harmonic trap and prepared

in the magnetically insensitive clock states |↓⟩ ≡ |F = 1,mF = 0⟩ and |↑⟩ ≡ |F = 2,mF = 0⟩.

The contact interaction in this two-component bosonic gas can be written in the following second

quantized form [224,225],

Ĥint =
∑

σσ′=↑,↓

Uσσ′

2

∫
d3R ψ̂†

σ(R)ψ̂†
σ′(R)ψ̂σ′(R)ψ̂σ(R), (4.1)

where Uσσ′ = 4πh̄2aσσ′/m is the interaction strength between atoms of spin σ and σ′, parametrized

by the s-wave scattering lengths, a↑↑ = 94.55a0, a↑↓ = 98.09a0, a↓↓ = 100.76a0 [226]. The bosonic

field operator ψ̂σ(R), is expanded in the eigenmode basis of the 3D harmonic trap, ψ̂σ(R) =∑
n anσϕn(R), where anσ annihilates a boson of spin σ in eigenmode n = {nX , nY , nZ} of the

harmonic trap, with corresponding wave function ϕn(R).

We understand and analyze the many-body dynamics through a mapping of the single-particle

eigenstates of the 3D harmonic trap onto a 3D lattice in mode space, as depicted in Fig. 4.1(a).

Notice that a blue sideband transition along the Z-direction couples the following two states in the

harmonic trap, |⇑i⟩ ≡ |↑;nXi , n
Y
i , n

Z
i + 1⟩ and |⇓i⟩ ≡ |↓;nXi , n

Y
i , n

Z
i ⟩. So we can visualize the states

|⇑i⟩ and |⇓i⟩ as two spin states localized at site i in an effective 3D mode-space lattice. The wave

functions associated with |⇑i⟩ and |⇓i⟩ states are denoted as ϕ⇑i (R) and ϕ⇓i (R) respectively. Similar

treatments can apply to blue sideband transitions along other directions, carrier transitions as well

as red sideband transitions (see SOM).

Since we are interested in the collisionless regime of a trapped atomic ensemble, where the

trapping potential is much larger than the interaction strength, we assume that each atom is

fixed in the mode-space lattice [101, 108, 216, 217], and that the only relevant process between two

colliding atoms is to either remain in the same internal states or to exchange them. Furthermore,
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Figure 4.1: Simulating XXZ spin models using sideband transitions in a thermal bosonic gas
confined in a 3D harmonic trap. (a) Schematic of the effective 3D mode-space lattice for blue
Z-sideband (only the projection along the Z-direction is shown for simplicity). The states |⇑i⟩ ≡
|↑;nXi , n

Y
i , n

Z
i + 1⟩ and |⇓i⟩ ≡ |↓;nXi , n

Y
i , n

Z
i ⟩, which are the ones coupled by the Raman pulse with

Rabi frequency Ωi, can be regarded as the two spin states pinned at the ith site of the effective
3D mode-space lattice. Contact interactions in bosonic gases generate long-range XXZ couplings
Jij , χij between lattice sites i and j in mode space (see text). (b) Rabi spectrum in the resolved
sideband limit for mean atom density n = 2.0 × 1012cm−3. The black (blue, red) line represents
carrier (blue sideband, red sideband) transitions. Our experiment focuses on the strongest sideband
pointed out by the arrow. It is worth mentioning that the suppression of red sideband transitions
is related to the anharmonic corrections in optical dipole traps, also observed in Ref. [223].
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we can restrict our discussions to include either empty or singly-occupied lattice sites since the

87Rb gas temperature is above quantum degeneracy (see SOM). These approximations map the

contact interaction term in the Hamiltonian (see Eq.(4.1)) to a spin-1/2 long-range XXZ model in

the mode-space lattice:

Ĥint =
∑
ij

JijŜi · Ŝj +
∑
ij

χijŜ
z
i Ŝ

z
j +

∑
i

BiŜ
z
i . (4.2)

Here, the spin operators can be written in terms of bosonic operators on each lattice site, Ŝi =∑
αβ=⇑,⇓ â

†
iασαβ âiβ/2, where σαβ are Pauli matrices, and âiβ annihilates a boson of spin β on

lattice site i. The XXZ interaction parameters are given by Jij = V ex
ij U↑↓, χij = V ⇑⇑

ij U↑↑ +

V ⇓⇓
ij U↓↓−V ⇑⇓

ij U↑↓−V ex
ij U↑↓, and Bi =

∑
j ̸=i(V

⇑⇑
ij U↑↑−V ⇓⇓

ij U↓↓), and are set by the overlap integral

of the relevant 3D harmonic oscillator wave functions: V αβ
ij =

∫
d3R[ϕαi (R)]2[ϕβj (R)]2, and V ex

ij =∫
d3Rϕ⇑i (R)ϕ⇓i (R)ϕ⇑j (R)ϕ⇓j (R). The tunability of spin-spin couplings depends on these overlap

integrals. For carrier transitions we have ϕ⇑i (R) = ϕ⇓i (R) = ⟨R|nXi , nYi , nZi ⟩, and therefore V αβ
ij =

V ex
ij , making the XXZ spin model equivalent to the isotropic Heisenberg model (Jij ≫ χij). For

the sideband transitions, the wave functions are not the same for the two spin components (e.g.

for the blue Z-sideband ϕ⇓i (R) = ⟨R|nXi , nYi , nZi ⟩ and ϕ⇑i (R) = ⟨R|nXi , nYi , nZi + 1⟩), and therefore

the overlap integrals are no longer equal. This allows us to have larger Ising couplings χij .

In addition to the interaction term, there are extra transverse and longitudinal fields generated

by the interrogating laser. For blue sideband transitions, the single-particle Hamiltonian can be

written as Ĥsp =
∑

i(ΩiŜ
x
i − (δ− h̄ω)Ŝz

i ), where Ωi is the mode-dependent Rabi frequency, δ is the

laser detuning from the carrier transition, and ω is the relevant trapping frequency. Both Ĥsp and

Ĥint (see Eq.(4.2)) contribute to the dynamics in our XXZ simulator (ĤXXZ = Ĥsp + Ĥint), and

the dynamics can be restricted to the fully symmetric Dicke manifold to the leading order. In this

limit our model simplifies to the Lipkin-Meshkov-Glick (LMG) model [221],

ĤLMG = χŜzŜz + ΩŜx − δ̃Ŝz. (4.3)

Here, δ̃ = δ − h̄ω −B is the effective longitudinal field, χ,Ω and B are the thermal-averaged value

of χij ,Ωi and Bi respectively, and Ŝx,y,z =
∑

i Ŝ
x,y,z
i are the collective spin operators.
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Figure 4.2: (a) Dynamical phase transition (DPT) in LMG model with Nχ/Ω = 5, indicated by
the sharp behavior in long-time average excitation fraction N↑/N . The critical point is marked
by the vertical gray line at δ̃/Ω = −2.02, separating the dynamical paramagnetic phase (left)
and the dynamical ferromagnetic phase (right). (b) Mean-field dynamics of the LMG model with
δ̃/Ω = −3(A), −2.2(B), −1.8(C), 0(D). The left panel shows the mean-field trajectories on the
Bloch sphere, and the right panel presents the mean-field evolution of the excitation fraction for
trajectory B and C. The sharp change in dynamics between trajectory B and C also signals the
DPT.



180

The LMG model features interesting spin dynamics, including a ferromagnetic to paramag-

netic dynamical phase transition (DPT) [105,107,222]. In general terms, a DPT is characterized by

the existence of a critical point separating phases with distinct dynamical properties in many-body

systems. The analog of thermodynamic order parameters is found in long-time average observables,

which have a nonanalytic dependence on system parameters. To observe the DPT we initialize all

the atoms in the |↓⟩ state, which is the ground state of LMG model when δ̃ → −∞, and then

perform a sudden quench of the longitudinal field to its final value δ̃.

In this case, the DPT is signaled by a sharp change in behavior of the long-time average

excitation fraction, N↑/N = limT→∞
1
T

∫ T
0 N↑(t)/N , which serves as an order parameter and dis-

tinguishes two dynamical phases (see Fig. 4.2(a)): A dynamical ferromagnetic phase characterized

by N↑/N ≈ 0, where the vanishing excitation fraction persists even when the final longitudinal field

δ̃ is varied, and a dynamical paramagnetic phase, where N↑/N dynamically adjusts itself following

the change of the final longitudinal field δ̃.

To analyze the DPT we derive mean-field equations of motion for the collective spin operators.

They are given by

d

dt
s = b× s, b =

(
Ω, 0, Nχsz − δ̃

)
, (4.4)

where sx,y,z = 2⟨Ŝx,y,z⟩/N are the normalized expectation values of collective spin operators. As

shown in SOM, Eq.(4.4) can be further reduced to (ṡz)2/2 + V (sz) = 0 by eliminating sx and sy,

and we can relate the DPT with an abrupt change in the number of real roots of the effective

potential V (sz) in this form. The abrupt change in V (sz) gives rise to distinct properties in spin

dynamics shown in Fig. 4.2(b): The ferromagnetic phase features small oscillations near south pole

(trajectory C), while the paramagnetic phase exhibits large excursions that precess around the x

axis (trajectory B). The DPT can also be tuned by varying the interaction strength as shown in

Fig. 4.3(d). In the interaction dominant regime (Nχ/Ω > 8
√

3/9), the DPT generates a second

order critical line (marked by the black solid line in Fig. 4.3(d)) that distinguishes the two dynamical

phases. On the other hand, the transition evolves into a smooth crossover region in the weakly
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interacting regime (Nχ/Ω < 8
√

3/9, below the black dashed line in Fig. 4.3(d)), where instead the

dynamics is dominated by single particle Rabi flopping.

4.2.3 Experimental results

We experimentally realize the XXZ spin model in a cloud of 87Rb atoms, which is prepared

at a temperature of 375(25) nK in a crossed-beam optical dipole trap with trapping frequencies of

143 Hz, 21.5 Hz and 171 Hz. This setting ensures the validity of the key approximations in our

spin model, including the collisionless regime and a negligible number of doubly occupied modes

(below 1.4% for 105 atoms). The atomic ensemble is initialized with a variable mean density n

from 0.46 to 4.8 × 1012cm−3 (atom number N from 0.33 to 3.4 × 105), and the atom densities are

calibrated by the collisional frequency shift of the carrier transition (−0.48 Hz/1012cm−3 [218]). To

ensure an unperturbed cloud temperature for different atom densities, an adjustable spin rotation is

performed, which partially transfers atoms from the |↑⟩ to the |↓⟩ state and a subsequent removal of

the |↑⟩ atoms. The coherent drive between two clock states with resolved motional levels is realized

by two copropagating Raman beams focused into the atomic cloud with a 39µm beam waist. The

beams are offset from the trap center in order to drive the first-order motional sidebands. The

typical Rabi spectrum of our system is depicted in Fig. 4.1(b). Here we focus on the strongest blue

sideband at ω/2π = 171 Hz. Considering the mean Ising couplings (Nχ/h ≈ 4.63 Hz/1012cm−3)

and the mean Rabi frequency (Ω/h ≈ 0.56 Hz) for this sideband, our XXZ simulator lies in the

interaction dominant regime, where the mentioned DPT is predicted to occur. Instead of direct

measurements of the long-time-averaged excitation fraction, which is inevitably limited by technical

challenges (e.g. collisional dephasing and atom loss), the order parameter N↑/N is estimated by

measuring the excitation fraction at a probe time tf = 0.5s for fixed Rabi frequency. The entire

phase diagram is then obtained by scanning the two-photon detuning δ in 0.8 Hz steps and by

varying interactions using different atom densities.

The recorded asymmetric lineshapes for different atom densities are shown in Fig. 4.3(a-c,

e-f), which is in good agreement with the mean-field theoretical predictions by ĤXXZ (see SOM
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Figure 4.3: (a-c, e-f) Dynamical phase transition in the 171 Hz blue sideband with mean atom den-
sity n = {0.46, 0.98, 2.0, 3.2, 4.8}×1012cm−3, indicated by the asymmetric lineshape after evolution
time 0.5s. The shaded areas indicate the critical points, where the uncertainty is set by finite fre-
quency step of detuning as well as fluctuations in atom density and Rabi frequency. The filled circles
denote experimental data, the solid lines denote mean-field theoretical predictions by ĤXXZ, and the
green dot-dashed line in (e) denotes the order parameter N↑/N predicted by ĤLMG (see text). We
do not directly add the experimental error bars to the lineshape data in (a-c, e-f) for visual reasons,
and the typical statistical uncertainty in each figure is ∆N↑/N = {0.038, 0.020, 0.013, 0.010, 0.011}
respectively. (d) Phase diagram for ferromagnetic to paramagnetic dynamical phase transition.
The black solid line denotes the sharp phase boundary of DPT, the black dashed line separates
the smooth crossover regime (below) with DPT regime (above), and the gray arrow illustrates the
probing direction on phase diagram. The phase boundary is reconstructed from the critical points
in (a-c, e-f) using the same choice of color to label data points.
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for comparison in the red sideband). In Fig. 4.3(e), we also compare the experimental observation

with the order parameter N↑/N (green dot-dashed line) predicted by ĤLMG (see Eq.(4.3)). We find

that the recorded lineshape captures the two dynamical phases in the LMG model: if we increase

the two-photon detuning δ, the slow increase of N↑/N below resonance indicates the paramagnetic

phase, while the sharp change back to N↑/N ≈ 0 above resonance indicates the ferromagnetic

phase. Compared to the critical behavior of N↑/N in the LMG model, the recorded lineshapes

are broadened by the inhomogeneous couplings but retain the sharp features associated with the

DPT. The inhomogeneities also lead to modifications of effective interaction strength in experiment

compared to the LMG model, which can be accounted for by scaling χ by a factor of 0.56. By

interpreting the experimentally observed resonant frequencies (obtained from maximal population

transfer) as a signature of the critical point of the DPT, we reconstruct the phase boundary between

these two dynamical phases (see Fig. 4.3(d)), which agrees with the theoretical prediction.

Figure 4.4: Numerical simulation of mean-field evolution under ĤXXZ with mean atom density
n = 3.2× 1012cm−3. The lines with a color gradient from red to blue show the dynamical behavior
from red to blue detuning with 0.5 Hz frequency steps. A sharp change in the excited atom fraction
can be observed as the system approaches the critical point. The inset compares two lineshapes
taken at different evolution times.

To further verify the existence of a DPT with inhomogeneous couplings, we present numerical

simulations of mean-field evolution under ĤXXZ with mean atom density n = 3.2 × 1012cm−3 in

Fig. 4.4. As the detuning is scanned from below to above the critical point (marked by a color
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gradient from red to blue), the excitation fraction N↑(t)/N features a sharp change in dynami-

cal behavior at the critical detuning, validating the existence of a DPT under our experimental

conditions. Compared to the LMG model, we observe damping in the oscillation amplitude of exci-

tation fraction for the inhomogeneous case. To understand the role of the damping, in the inset of

Fig. 4.4 we compare the lineshapes at evolution times of tf = 0.5s (see also Fig. 4.3) and tf = 0.8s.

Although we see variations in the lineshapes computed at these two evolution times (the latter is

sharper than the former), both of them consistently display clear signatures of the DPT up to a

1 Hz shift in resonant frequency, which nevertheless lies within the experimental error bars. This

analysis justifies the use of N↑/N evaluated at tf = 0.5s as a good proxy for the long-time-averaged

order parameter.

4.2.4 Conclusion and outlook

In summary, we have demonstrated the use of motional sidebands in trapped bosonic gases

as a tool to simulate long-range XXZ spin models. A practical application of the demonstrated

sideband protocol is the dynamical generation of spin squeezing, a well known feature of the LMG

model [31] which makes it useful for enhanced sensing. Although further control of inhomogeneties

will be required to observe squeezing in the current setup, we expect spin squeezing can be in reach

in the next generation of experiments (see SOM). Moreover, we expect our protocol can be feasibly

implemented in a wide range of experiments, including atomic systems in optical lattices. In these

systems the SU(2) symmetry of superexchange interactions could be broken into a XXZ spin model

via motional sideband spectroscopy, thanks to the larger tunneling rates of excited bands.

4.2.5 Supplemental Materials: Experimental realization

To initiate our experiments, ultracold 87Rb atoms are captured in a magneto-optical trap

loaded from a background gas. The captured atoms are subsequently transported to a vacuum

region with reduced pressure, where they are cooled by forced evaporative cooling. Initial cooling

is performed in a hybrid trap that combines a magnetic quadrupole trap with an optical dipole
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potential [227]. The final temperatures are achieved by evaporation in a pure optical dipole trap.

This trap is formed by two laser beams at a wavelength of 1064 nm, which intersect at an angle of

18◦ as shown in Fig. 4.5(a). The two beams have waists of 60 and 75µm, which provide a nearly

harmonic trapping potential with trapping frequencies of 143 Hz, 21.5 Hz and 171 Hz at the chosen

laser power.

trapping beams

trapping beams

Raman beamsglass cell

atoms

Raman 
beams

atomic cloud

a) b)

Figure 4.5: (a) Experimental implementation. The optical dipole potential is formed by two laser
beams (black) which intersect with an angle of 18◦ in the experimental chamber. The Raman laser
beams (orange) are directed onto the atomic cloud along one of these beams. (b) To address the
motional sidebands an asymmetric coupling field is required, which is realized by introducing a
small offset between the Raman laser focus and the atomic cloud.

The procedure outlined above results in an ensemble of 4 × 105 atoms in the |F = 2,mF =

2⟩ state at a temperature of 375(25) nK. Subsequently, the atoms are transferred to the |↑⟩ =

|F = 2,mF = 0⟩ state by a radio-frequency rapid adiabatic passage. In a final step, the atomic

ensemble is initialized with a variable mean density n between 0.46 and 4.8 × 1012cm−3 in the

|↓⟩ = |F = 1,mF = 0⟩ state by a microwave Rabi pulse of variable duration. The remaining atoms

in the |↑⟩ state are removed with a resonant light pulse on an optical transition. Importantly,

this method allows for the preparation of a variable density at constant temperature. The density

of these ensembles is calibrated by performing microwave-based Ramsey interferometry on the

clock transition (Fig. 4.6(b)) and by recording the density-dependent frequency shift of the carrier

transition (−0.48 Hz/1012cm−3 [218]). Here we provide a list that connects the mean atom density

n and the corresponding atom number N we used in the DPT experiment:
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Mean atom density n (cm−3) 0.46 × 1012 0.98 × 1012 2.0 × 1012 3.2 × 1012 4.8 × 1012

Atom number N 0.33 × 105 0.69 × 105 1.4 × 105 2.2 × 105 3.4 × 105

The inhomogeneous coupling field between the two clock states |↓⟩ and |↑⟩ is realized by

using two copropagating Raman beams which are derived from two phase-locked diode lasers. The

Raman beams are focused onto the atomic cloud with a beam waist of 39µm. In principle, these

Raman beams can lead to a differential shift of the clock states and thus fluctuations in the Raman

beam power may lead to a significant broadening of the spectroscopic signal. To avoid this effect,

a specific relative intensity of the Raman beams can be chosen, which reduces the light shift [228].

Figure 4.6(a)) shows the experimental determination of the optimal relative intensity based on the

comparison of spectroscopy on the clock transition with the Raman system and with microwave

radiation. In the experiments a relative intensity I1/I2 = 1.98 was chosen to avoid differential

shifts.

The first-order motional sidebands can only be addressed with a coupling field that is asym-

metric with respect to the trapping potential. This asymmetry is realized by shifting the Raman

beams compared to the center position of the atomic cloud as shown in Fig. 4.5(b) and leads to a

spatial inhomogeneity of the coupling.

The spectroscopic signals shown in of Fig. 1 and Fig. 2 (main text) are obtained by applying

Raman pulses with a duration of 500 ms for detunings between ≈ −200 Hz and ≈ +200 Hz of the

two Raman laser beams. In Fig. 1 (main text), the carrier and all six sidebands are well resolved

and, in addition, a higher order sideband is visible at ≈ 192 Hz. Compared to previous work [229],

the small Fourier width of these pulses allow for a full resolution of the sideband transitions.

At the end of each experimental sequence, the trap is switched off to allow for ballistic

expansion and Stern-Gerlach separation of the atoms in the two clock states. The number of atoms

in both states, N↑ and N↓, and their temperature are detected by simultaneous absorption imaging,

calibrated according to Ref. [230].
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Figure 4.6: (a) Frequency shift observed using the Raman transition relative to the frequency
obtained by using the corresponding microwave transition. The shift vanishes for an intensity ratio
of I1/I2 = 1.98. (b) Calibration of the mean density. The measured frequency of the carrier
transition is shown as a function of the recorded number of atoms. Based on the known density-
dependent frequency shift for Rb atoms [218], the mean density of the ensemble is obtained.

4.2.6 Supplemental Materials: Spin model and mean-field dynamics

In the main text we show that long-range XXZ spin models describe trapped bosonic gases

interacting via purely contact interactions. Here we discuss the various parameters of the XXZ spin

models and derive the corresponding mean-field equations of motion. We use them to calculate

associated Rabi lineshapes.

Recall the Hamiltonian HXXZ defined in main text,

ĤXXZ =
∑
ij

JijŜi · Ŝj +
∑
ij

χijŜ
z
i Ŝ

z
j +

∑
i

ΩiŜ
x
i −

∑
i

(δ −Bi)Ŝ
z
i . (4.5)

This Hamiltonian describes the spin dynamics of thermal bosonic gases in the collisionless regime.

By adequately mapping the harmonic trap eigenmodes to lattice sites in mode space, we can

understand the spin dynamics for the carrier transition, the blue sideband transition, as well as the

red sideband transition. The definitions of the two spin states in lattice site i for all these cases are

as follows:

• Carrier transition: |⇑i⟩ = |↑;nXi , n
Y
i , n

Z
i ⟩, |⇓i⟩ = |↓;nXi , n

Y
i , n

Z
i ⟩

• Blue sideband transition (Ẑ direction): |⇑i⟩ = |↑;nXi , n
Y
i , n

Z
i + 1⟩, |⇓i⟩ = |↓;nXi , n

Y
i , n

Z
i ⟩
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• Red sideband transition (Ẑ direction): |⇑i⟩ = |↑;nXi , n
Y
i , n

Z
i − 1⟩, |⇓i⟩ = |↓;nXi , n

Y
i , n

Z
i ⟩

Here we will use the convention of capital letters to denote spatial coordinates to distinguish

them from coordinates in spin space denoted by lowercase letters. We denote the wave functions

associated with |⇑i⟩ and |⇓i⟩ states respectively as ϕ⇑i (R) and ϕ⇓i (R). To avoid confusion, we define

δ as the laser detuning from the carrier transition, and this convention is also used in the main

text. For the blue sideband transition, we replace δ by δ − h̄ω, where ω is the relevant trapping

frequency; while for red sideband transition, we replace δ by δ + h̄ω.

Figure 4.7: (a-e) The Rabi lineshapes for 171 Hz red sideband with mean atom density n =
{0.46, 0.98, 2.0, 3.2, 4.8} × 1012cm−3. The solid points denote experimental data, the solid lines
denote mean-field theoretical predictions by HXXZ (see text). (f) The comparison of theoretical
Rabi lineshapes between blue sideband and red sideband with mean density n = 2.0 × 1012cm−3,
and the difference can be understood as the effect of the anharmonicity of the optical dipole trap
(see text).

As we discuss in the main text, the key approximations in our spin model are the collisionless

regime (trapping frequency is much larger than the interaction strength) as well as a negligible

number of doubly occupied modes. Our experimental system is a thermal cloud of 87Rb atoms

prepared at a temperature T = 375(25) nK in a 3D harmonic trap with trapping frequencies

ωX/2π = 143 Hz, ωY /2π = 21.5 Hz, ωZ/2π = 171 Hz. Based on the numerical calculation

described below, we find Nχ/h ≈ 4.63Hz/1012cm−3 for blue sideband transition in the Ẑ direction,
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which demonstrates the validity of collisionless regime. For the number of doubly occupied modes,

we evaluate the quantity
∑

i⟨n̂i(n̂i−1)⟩/2N , where n̂i = â†i âi, and we are summing over all possible

eigenmodes. This quantity is only non-zero when there is more than one atom per mode. Using

Wick’s theorem, we have

1

2N

∑
i

⟨n̂i(n̂i − 1)⟩ =
1

2N

∑
i

⟨â†i â
†
i âiâi⟩ =

1

N

∑
i

⟨â†i âi⟩⟨â
†
i âi⟩ =

1

N

∑
i

⟨n̂i⟩2 (4.6)

Then we can estimate the average occupation number of each eigenmode by a Boltzmann dis-

tribution, ⟨n̂i⟩/N = exp
[
−(nXωX + nY ωY + nZωZ)h̄/kBT

]
/Z, in which the partition function

Z ≈ (kBT/h̄ω̄)3. Then we get

1

2N

∑
i

⟨n̂i(n̂i − 1)⟩ ≈ N

(
h̄ω̄

2kBT

)3

(4.7)

For N = 1 × 105 atoms, we obtain that the number of occupied eigenmodes with two atoms or

more is N(h̄ω̄/2kBT )3 ∼ 1.4%. This result leads to our conclusion that the number of lattice sites

occupied by more than one atoms is very small in our experiment.

For the bosonic gas of interest, the Heisenberg couplings Jij and the Ising couplings χij are

purely generated by contact interactions, and can be written in terms of the various scattering

lengths and overlap integrals of harmonic trap eigenmodes,

Jij =
4πh̄2a↑↓V

ex
ij

m
, χij =

4πh̄2(V ⇑⇑
ij a↑↑ + V ⇓⇓

ij a↓↓ − V ⇑⇓
ij a↑↓ − V ex

ij a↑↓)

m
, (4.8)

where

V αβ
ij =

∫
d3R[ϕαi (R)]2[ϕβj (R)]2, V ex

ij =

∫
d3Rϕ⇑i (R)ϕ⇓i (R)ϕ⇑j (R)ϕ⇓j (R). (4.9)

Besides spin-spin interaction, the Raman laser couples |⇑i⟩ and |⇓i⟩ states via a intermediate

state, and the effective Rabi frequencies are given by

Ωi = Ω0

∫
d3R exp

[
− 2(R⊥ −R⊥,0)

2

w2

]
ϕ⇑i (R)ϕ⇓i (R). (4.10)

Here, Ω0 is the bare Rabi frequency determined by the Rabi couplings and detunings to the inter-

mediate state of the two Raman beams, R⊥ is perpendicular to the propagating direction of Raman
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beams, R⊥,0 is the offset from trap center, and w is the Gaussian beam radius at the position of

atomic cloud. Due to the copropagating geometry of Raman beams used in the experiment, the

momentum kicks of Raman beams can be ignored.

The different inhomogeneous longitudinal fields Bi = B
(1)
i + B

(2)
i + B

(3)
i come from the

interplay between contact interaction (B
(1)
i ), the differential frequency shift generated by the optical

trap and the magnetic curvature (B
(2)
i ), and the anharmonicity in optical trap (B

(3)
i ). We already

discuss B
(1)
i in the main text. It is given by

B
(1)
i =

4πh̄2

m

∑
j ̸=i

(V ⇑⇑
ij a↑↑ − V ⇓⇓

ij a↓↓). (4.11)

The different trapping frequency experienced by the |↑⟩ and |↓⟩ atoms give an additional

differential frequency shift in mode space. If we defined ∆ωX,Y,Z = ω↑
X,Y,Z −ω↓

X,Y,Z , we can express

B
(2)
i as

B
(2)
i =

(
nXi +

1

2

)
h̄∆ωX +

(
nYi +

1

2

)
h̄∆ωY +

(
nZi +

1

2

)
h̄∆ωZ . (4.12)

Moreover, the actual Gaussian shape of the laser beams that make the dipole trap introduces

corrections beyond the leading order harmonic trapping potential U(R) = 1
2m(ω2

XX
2 + ω2

Y Y
2 +

ω2
ZZ

2). These corrections generate an additional anharmonic potential ∆U(R) = −1
2m(γ2XXX

4 +

γ2Y Y Y
4 + γ2ZZZ

4 + γ2XYX
2Y 2 + γ2XZX

2Z2 + γ2Y ZY
2Z2). In first-order perturbation, this term gives

rise to a shift of harmonic oscillator levels, which leads to a small change of atom density. As the

shift generated by the anharmonicity is mode-dependent, it generates an extra longitudinal field

that should be taken in consideration for sideband transitions. This field has a sign difference for

the blue sideband (B
(3)b
i ) and red sideband (B

(3)r
i ). Here we use the sideband transitions in Ẑ

direction as an example,

B
(3)b
i = − h̄

2ωZ

[
3γ2ZZ(aZho)

2(nZi + 1) + γ2Y Z(aYho)
2(nYi + 1/2) + γ2XZ(aXho)

2(nXi + 1/2)

]
, (4.13)

B
(3)r
i =

h̄

2ωZ

[
3γ2ZZ(aZho)

2nZi + γ2Y Z(aYho)
2(nYi + 1/2) + γ2XZ(aXho)

2(nXi + 1/2)

]
, (4.14)

where aX,Y,Z
ho =

√
h̄/mωX,Y,Z is the harmonic oscillator length. Sideband transitions in other

directions can be treated in a similar way.
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For carrier transition, due to the negligible Ising couplings χij , our XXZ spin model can be

simplified to the Heisenberg model. Given that the transverse field Ωi and longitudinal field Bi

are small compared to the Heisenberg couplings Jij , we can restrict the spin model in the Dicke

manifold, which gives Ĥcarrier ≈ ΩŜx − (δ −B)Ŝz, where Ω is the mean Rabi frequency for carrier

transition, and B is the thermal-averaged value of Bi. We understand B as the frequency shift of

carrier transition, which can be evaluated analytically in the large-N limit,

B =
4πh̄2(a↑↑ − a↓↓)n

m
+ kBT

(
∆ωX

ωX
+

∆ωY

ωY
+

∆ωZ

ωZ

)
, (4.15)

where n = N(mω̄2/4πkBT )3/2 is the mean atom density in harmonic trap with atom number N ,

and ω̄ = (ωXωY ωZ)1/3. The density-dependent part in B agrees with the density-dependent clock

shift −0.48 Hz/1012cm−3 observed in previous experiment [218]. In our experiment, we use this

known value of density-dependent shift of the carrier transition to calibrate the atom density.

For sideband transitions, the Ising couplings χij become larger. We use a mean-field ap-

proximation in the Heisenberg equations of Ŝx,y,z
i in our XXZ spin model (see Eq.(4.5)), which

neglects the quantum correlation between different spins, ⟨Ŝµ
i Ŝ

µ′

j ⟩ ≈ ⟨Ŝµ
i ⟩⟨Ŝ

µ′

j ⟩ (µ, µ′ = x, y, z).

The mean-field equations we get are the following ones:

d

dt
⟨Ŝx

j ⟩ = 2
∑
i

[
Jij⟨Ŝy

i ⟩⟨Ŝz
j ⟩ − (Jij + χij)⟨Ŝz

i ⟩⟨Ŝy
j ⟩
]

+ (δ −Bj)⟨Ŝy
j ⟩,

d

dt
⟨Ŝy

j ⟩ = 2
∑
i

[
(Jij + χij)⟨Ŝz

i ⟩⟨Ŝx
j ⟩ − Jij⟨Ŝx

i ⟩⟨Ŝz
j ⟩
]
− (δ −Bj)⟨Ŝx

j ⟩ − Ωj⟨Ŝz
j ⟩,

d

dt
⟨Ŝz

j ⟩ = 2
∑
i

Jij

[
⟨Ŝx

i ⟩⟨Ŝy
j ⟩ − ⟨Ŝy

i ⟩⟨Ŝx
j ⟩
]

+ Ωj⟨Ŝy
j ⟩.

(4.16)

We solve Eq.(4.16) numerically, with random sampling of motional states drawn from a Boltzmann

distribution. As it is computationally difficult to solve the equations above for ∼ 105 atoms,

instead we use Nth = 1000 and scale the transverse and longitudinal field from the one in the

experiment by a factor Nth/Nexp. We also allow an overall scaling factor η of the atomic density to

take both finite-size effects and the anharmonicities into account. The thermal-averaged sideband

spectrum agrees well with our experimental measurements, when the overall scaling factor is set to

η = 0.72 for both blue sideband and red sideband. The Rabi spectrum of blue sideband transition is
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discussed in the main text (see Fig. 3(a-c,e-f)), and the Rabi spectrum of red sideband transition is

depicted in Fig. 4.7(a-e). We also compare the theoretical Rabi lineshapes for blue and red sideband

for mean atom density n = 2.0 × 1012cm−3 in Fig. 4.7(f), which shows a significant suppression

of red sideband. As the temperature of our system is above quantum degeneracy, the ground

state concentration is not a reasonable explanation. Instead, the difference between the blue and

red sidebands comes from a sign difference between B
(3)b
i and B

(3)r
i , generated by anharmonicity.

Because of this sign difference, B
(3)b
i partially cancels the inhomogeneity in the longitudinal fields,

while B
(3)r
i increases the inhomogeneity. Similar phenomenon was also observed in Ref. [223].

4.2.7 Supplemental Materials: Dynamical phase diagram and critical behavior

In the main text we discuss about the ferromagnetic to paramagentic dynamical phase tran-

sition (DPT) in the Lipkin-Meshkov-Glick (LMG) model (see Eq.(3) main text), a collective XXZ

model plus additional transverse and longitudinal field. Here we elaborate on the calculation of

the dynamical phase diagram and the associated critical points, following the procedure discussed

in Ref. [107]. The mean-field equations of the LMG model can be written in terms of normalized

expectation value of total spin operators sx,y,z = 2⟨Ŝx,y,z⟩/N as follows,

d

dt
sx = −Nχszsy + δ̃sy,

d

dt
sy = Nχszsx − δ̃sx − Ωsz,

d

dt
sz = Ωsy.

(4.17)

Using both energy conservation in HLMG, for an initial state with sz = −1, sx = sy = 0, as

well as the identity (Ŝx)2 +(Ŝy)2 +(Ŝz)2 = (N2 +1)N2 , the mean-field variables satisfy the following

two conservation relations in large-N limit:

Nχ

2
szsz − δ̃sz + Ωsx =

Nχ

2
+ δ̃, (4.18)

(sx)2 + (sy)2 + (sz)2 = 1. (4.19)

Combining these three equations (Eq.(4.17)-(4.19)), we can eliminate sx and sy, and obtain
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the following differential equation for sz,

1

2

(
d

dt
sz
)2

+ V (sz) = 0, (4.20)

where

V (sz) = (sz + 1)

{
(Nχ)2

8
(sz)3 −

[
(Nχ)2

8
+
Nχδ̃

2

]
(sz)2 +

[
δ̃2 + Ω2

2
− (Nχ)2

8

]
sz

+

[
δ̃2 − Ω2

2
+
Nχδ̃

2
+

(Nχ)2

8

]}
.

(4.21)

We interpret Eq.(4.20) as the Hamiltonian of a classical particle with position sz moving in

the effective potential V (sz). The condition V (sz) = 0 determines the turning points of sz. Since

V (−1) = 0, V ′(−1) = −1, V (1) = δ̃2, this effective potential should have at least two real roots

in [−1, 1], and we consider these roots as physical turning points. So the dynamics of sz can be

understood as the oscillations between −1 and the nearest turnover point sz∗. Imagine that we start

from a V (sz) with two real roots, and continuously tune the parameters of V (sz) so that two new

real roots appear in between, a jump of the nearest turning point sz∗ should occur in this process

(see Fig. 4.8(a-b)). This abrupt change in behavior is what sets the dynamical phase transition.

To count the number of roots in V (sz), we can factor out the known root sz = −1, and then

consider the discriminant ∆ = 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2 of cubic equation ax3 + bx2 +

cx+ d = 0. If ∆ > 0, the cubic has three distinct real roots; if ∆ < 0, the cubic has one real root.

So ∆ = 0 captures the critical point of the DPT. We focus on the parameter regime where Nχ > 0

with a fixed positive Ω, and define y = Nχ/Ω, x = δ̃/Ω. In terms of these variables the phase

boundary plotted in the main text (see Fig. 2(d)) is given by

y∗ =
1

12x∗

[
1 − 12x2∗ −

(
5832x4∗ + 540x2∗ − 1 + 24x∗

√
3(27x2∗ − 1)3

)1/3

−
(

5832x4∗ + 540x2∗ − 1 − 24x∗
√

3(27x2∗ − 1)3
)1/3]

.

(4.22)

As this formula includes square root and cube root, we need to specify the argument of complex

number to avoid the branch cut. Here we choose arg[3(27x2∗ − 1)3] = {0, π}, arg[5832x4∗ + 540x2∗ −

1 + 24x∗
√

3(27x2∗ − 1)3] ∈ (−2π, 0], and arg[5832x4∗ + 540x2∗ − 1 − 24x∗
√

3(27x2∗ − 1)3] ∈ [0, 2π).

And we can conclude that this phase boundary exists in the regime x <
√

3/9 and y > 8
√

3/9.
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Figure 4.8: (a) The effective potential V (sz) with Nχ/Ω = 5. In the case of δ̃/Ω = −2.2, V (sz)
has two real roots; In the case of δ̃/Ω = −1.8, V (sz) has four real roots. The nearest turnover
point is labelled by sz∗, and the jump of sz∗ indicates dynamical phase transition (see text). (b)
The mean-field dynamics of LMG model with Nχ/Ω = 5 and δ̃/Ω = −2.2,−1.8, which shows a
sharp change of mean-field dynamical behavior. The choice of color for the lines is the same as (a),
and the dashed lines mark the nearest turnover point sz∗. (c) The long-time average value sz with
Nχ/Ω = 5, and the critical point is labelled by black circle. The shaded area is the region close
to the critical point, which is shown in details in the inset with logarithmic non-analyticity at the
critical point (see text).
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Therefore, only when Nχ/Ω > 8
√

3/9, the DPT occurs. Instead, if Nχ/Ω < 8
√

3/9, there is a

smooth crossover.

As we mentioned in the main text, our experiment always lie in the DPT regime, and we

characterize the ferromagnetic and paramagentic phase using the long-time average of excitation

fraction N↑/N , which is possible to express in terms of sz,

N↑
N

=
1

2
(sz + 1), sz =

1

T

∫ T

0
sz(t)dt, (4.23)

where T is the oscillation period of sz. This integral can be evaluated using Eq.(4.20), as∫ T

0
sz(t)dt =

∫ sz∗

−1

2szdsz√
−2V (sz)

, T =

∫ sz∗

−1

2 dsz√
−2V (sz)

. (4.24)

All these integrals can be calculated analytically in terms of elliptic integrals. Considering the

asymptotic behavior near the critical point, we find that instead of the sudden jump behavior of

sz∗, the long-time average sz is continuous at the critical point, and the first derivative of sz diverge

logarithmically. The following formula describe the asymptotic behavior of sz with fixed Nχ/Ω,

sz → szc +
C

ln|x− x∗|
, szc =

1

2
− 1

2

√
1 − 8x∗

y∗
, (4.25)

where C is a constant set by Nχ/Ω. We can verify the asymptotic behavior predicted above

numerically. This is plotted in Fig. 4.8(c) for the case Nχ/Ω = 5. The continuous behavior of sz∗

at the critical point determines a second-order dynamical phase transition in our case.

Here we also discuss how to determine the critical point in experiment. Based on Fig. 4.8(c),

the first derivative of the long-time average excitation fraction diverges at the critical point. How-

ever, in the analysis of experimental data, we have to use the finite difference as an approximation

of the first derivative, which is limited by the precision of laser frequency and experimental fluc-

tuation. To construct a stable phase boundary, instead we use the maximum transfer point as

a signature of the critical point. Also, as we mentioned in the main text, we measure the Rabi

spectrum at a fixed time instead of taking the long-time average excitation fraction due to technical

challenges. All these systematic errors in determination of the critical point are smaller than the

measurement error bars under current experimental conditions.
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Finally we discuss the scaling factor in χ used in the main text to match the experimental

critical points to the DPT in LMG model. This scaling factor originates from the inhomogeneities

in the Ising coulings χij , which couple the Dicke manifold to the states with different total spins.

In this way, the effective Ising coupling should be modified by an overall factor from its value χ in

Dicke manifold. We use the same scaling factor 0.56 for all the measurements with different atom

densities, and the experimental critical points agrees very well with the phase boundary in LMG

model.

4.2.8 Supplemental Materials: Discussion of spin squeezing

We proceed to study the role of quantum correlations and entanglement in our XXZ simulator

by theoretical calculation of spin squeezing, since it provides a relevant entanglement witness and

an important resource for quantum metrology [31]. We study the proposed Ramsey spectroscopy

sequence depicted in Fig. 4.9(a). Initially all atoms are assumed to be in the |↓⟩ state and a π/2

blue-sideband pulse is applied to transfer the atoms to the |Sx = N/2⟩ state. Then the system

is allowed to evolve for τ/2 under XXZ interaction (see Eq.(2) in the main text), followed by a

blue-sideband spin echo pulse, and a further evolution time τ/2. The additional spin echo pulse

at half of the evolution suppresses the dephasing effect of inhomogeneous longitudinal fields. The

squeezing is quantified by the Ramsey spin squeezing parameter [74], ξ2 = min
θ
N(∆S⊥

θ )2/|⟨Ŝ⟩|2,

which signals entanglement if ξ2 < 1. Here, (∆S⊥
θ )2 is the variance of the spin noise along an

axis perpendicular to the collective spin ⟨Ŝ⟩, parametrized by an angle θ ∈ [0, 2π). This squeezing

parameter can be extracted by an appropriate sequence of spin rotations at the end of the Ramsey

protocol.

To estimate the achievable spin squeezing, we adopt the discrete truncated Wigner approx-

imation (DTWA), which solves the mean-field equations of motion supplemented by Monte Carlo

sampling of the initial conditions to account for quantum fluctuations [231]. We choose Nth = 1000

and scale the longitudinal field from the one in the experiment by a factor Nth/Nexp. The theoret-

ical prediction of spin squeezing is depicted in Fig. 4.9(b). We compare it to the spin squeezing in
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Figure 4.9: (a) Spin echo sequence for generation of squeezing using motional sidebands (see text).
The total spin state |Ψ(t)⟩ is illustrated using the Husimi-Q function [31]. (b) Comparison of the
obtained spin squeezing for a spin echo sequence (DTWA method), the pure XXZ model (DTWA
method) and the Ising limit (analytic solution). The spin squeezing parameter is expressed in terms
of decibels (dB), i.e. 10 log10 ξ

2.

Figure 4.10: (a) Finite-size scaling of optimal spin squeezing in our XXZ simulator with spin
echo sequence (DTWA method), compared to pure XXZ model (DTWA method) and Ising limit
(analytic solution). (b) Finite-size scaling of optimal squeezed time in our XXZ simulator with spin
echo sequence (DTWA method), compared to pure XXZ model (DTWA method) and Ising limit
(analytic solution).
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the pure XXZ model (ignoring longitudinal fields in Eq.(2) in the main text), and the Ising model

(ĤIsing =
∑

ij χijŜ
z
i Ŝ

z
j ) which allows for an exact solution as listed below,

⟨Ŝx⟩ =
1

2

∑
k

(k)∏
j

cos(χkjt), ⟨ŜzŜz⟩ =
N

4
,

⟨ŜyŜy⟩ =
N

4
+

1

4

∑
k<l

[ (k,l)∏
j

cos [(χkj − χlj)t] −
(k,l)∏
j

cos [(χkj + χlj)t]

]
,

⟨ŜzŜy + ŜyŜz⟩ =
1

2

∑
k<l

sin(χklt)

[ (k,l)∏
j

cos(χkjt) +

(k,l)∏
j

cos(χljt)

]
,

(4.26)

where
∏(k)

j means multiplication without the term j = k. Based on all these expectation values, we

can calculate the spin squeezing parameter ξ2 by tuning θ to reach the minimum value of (∆S⊥
θ )2.

We find that the beyond-mean-field dynamics in our simulator is similar to the Ising limit,

with an additional small suppression arising from the inhomogeneties in the longitudinal fields.

For Nth = 1000 atoms, near 6dB optimal squeezing can be achieved at Nχτ/h ≈ 0.5, which

translates under current experimental conditions to optimal squeezing times around 100ms. On

this time scale we do not expect detrimental effects from the technical imperfections. The predicted

squeezing emphasizes the metrological potential of motional sidebands.

In Fig. 4.9, we discuss the achievable spin squeezing in our XXZ simulator, with comparison

to the pure XXZ model and the Ising limit. As it is hard to calculate spin squeezing for ∼ 105 atoms

in theory, we choose Nth = 1000 and scale the longitudinal field from the one in the experiment

by a factor Nth/Nexp. The spin squeezing as a function of Ramsey dark time is depicted in the

main text (see Fig. 4(b)). Here we use finite-size scaling as a way to predict the achievable spin

squeezing under experimental conditions (see Fig. 4.9).

We extract the optimal spin squeezing (see Fig. 4.9(a)) and optimal squeezed time (see

Fig. 4.9(b)) with Nth = 200, 500, 1000, 2000. We find that under current experimental conditions,

the optimal squeezing saturates around 6dB when we increase the atom number in theory, and the

optimal squeezed time stays near Nχτ/h ≈ 0.5. Unfortunately the finite-size scaling curve for the

current experiment condition is not monotonic, which means that our estimation of the optimal
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spin squeezing is not necessarily accurate. The analysis nevertheless shows the detrimental effects

caused by the inhomogeneities in longitudinal fields, which will lead to a non-negligible suppression

of spin squeezing, compared to pure XXZ model and Ising limit. Therefore we predict that if it

were possible to carefully control the longitudinal fields in experiment and reduce their size, one

could get closer to the finite-size scaling curve of pure XXZ model, which increases monotonically

when increasing atom number, although the improvement is not significant due to the thermal

distribution. In this case, we predict an optimal spin squeezing set by ξ2opt ∝ N−0.067, and an

optimal squeezed time by τopt ∝ N−0.752. Ideally speaking, for 5×105 atoms, 8dB optimal squeezing

can be achieved around 100ms.

4.3 Photon-mediated correlated hopping in a synthetic ladder

This section is adapted from: Anjun Chu, Asier Piñeiro Orioli, Diego Barberena, James

K. Thompson, Ana Maria Rey, Photon-mediated correlated hopping in a synthetic ladder, Physical

Review Research 5, L022034 (2023).

4.3.1 Introduction

Correlated hopping, a process whereby the hopping rate of a particle depends on the presence

of other particles in an array, is believed to contribute to the complex behaviors seen in strongly

correlated materials [232–234], and also to be a key requisite for the generation of dynamical

gauge fields [235,236] and topological behaviors [237,238]. Regardless of its importance, correlated

hopping is typically small and hard to manipulate in real materials, and ultracold atoms have

been identified as a unique playground to study these processes under controllable conditions.

However, the implementation so far has been mainly limited to isolated double-well arrays [235,236],

indirect detection via spectroscopic measurements [239–242], or weak corrections due to dipolar

interaction of magnetic atoms [209]. Experimentally accessible protocols to engineer correlated

hopping processes in strongly interacting many-body systems are still lacking.

In this work, we propose the use of multilevel atoms in an optical cavity as a toolbox to

https://doi.org/10.1103/PhysRevResearch.5.L022034
https://doi.org/10.1103/PhysRevResearch.5.L022034
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engineer different types of bosonic models featuring correlated hopping processes in a genuine

unitary many-body system. Cavity QED systems have started to demonstrate their great potential

as quantum simulators [28, 107, 186, 214, 243–251]. Important initial steps for correlated hopping

have been achieved such as the engineering of pair production processes [214, 248] and dissipative

dynamical tunneling [250]. Therefore, the time is ripe to explore the full power of cavity systems

under accessible conditions.

A key idea behind our protocol is to treat the internal levels of the atoms as a synthetic

dimension [252], where a notion of spatial locality can naturally emerge, even in the presence

of infinite-range photon-mediated interactions. The use of internal levels as a synthetic spatial

dimension has already lead to beautiful demonstrations of topological lattice models and chiral

transport in non-interacting systems [102, 253–256], and very recently in interacting many-body

systems [257]. Here, we propose a way to go beyond the single-particle paradigm by engineering

interaction-induced hopping processes in the synthetic dimension spanned by the atomic ground

state manifold. This is accomplished by weakly coupling it to a set of many-body excited states

dressed by photon-mediated interactions.

The implementation uses two laser drives with appropriate detunings to suppress undesirable

single-particle and collective shifts of the internal levels. In this way, we energetically favor only

the desired hopping process where in a correlated manner one atom moves two internal levels up

while another atom in the array moves two levels down. The correlated hopping processes we

introduce split the ground state manifold into two sets of levels, which we visualize as a synthetic

two-leg ladder. By doing that, we open up a variety of many-body phenomena that can be realized

in this system, including dynamical phase transitions in pair production processes, chiral transport

tunable via laser detunings and initial state preparation, and correlation spreading and emergent

light-cone transport in the synthetic ladder. We also discuss a feasible experimental implementation

using long-lived alkaline earth atoms.
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(c) Correlated hopping (F = 9/2)
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-9/2 -5/2 -1/2 3/2 7/2

-7/2 -3/2 1/2 5/2 9/2

LeftRight

�F<latexit sha1_base64="W1ptT+nvGABfYcDzVyEExKFva3I=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tF8GJJRNBjURCPVewHtKFstpt26WYTdidCCf0HXjwo4tV/5M1/47bNQVtfWHh4Z4adeYNECoOu++0UVlbX1jeKm6Wt7Z3dvfL+QdPEqWa8wWIZ63ZADZdC8QYKlLydaE6jQPJWMLqZ1ltPXBsRq0ccJ9yP6ECJUDCK1no4u+2VK27VnYksg5dDBXLVe+Wvbj9macQVMkmN6Xhugn5GNQom+aTUTQ1PKBvRAe9YVDTixs9mm07IiXX6JIy1fQrJzP09kdHImHEU2M6I4tAs1qbmf7VOiuGVnwmVpMgVm38UppJgTKZnk77QnKEcW6BMC7srYUOqKUMbTsmG4C2evAzN86pn+f6iUrvO4yjCERzDKXhwCTW4gzo0gEEIz/AKb87IeXHenY95a8HJZw7hj5zPHwPHjQE=</latexit><latexit sha1_base64="W1ptT+nvGABfYcDzVyEExKFva3I=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tF8GJJRNBjURCPVewHtKFstpt26WYTdidCCf0HXjwo4tV/5M1/47bNQVtfWHh4Z4adeYNECoOu++0UVlbX1jeKm6Wt7Z3dvfL+QdPEqWa8wWIZ63ZADZdC8QYKlLydaE6jQPJWMLqZ1ltPXBsRq0ccJ9yP6ECJUDCK1no4u+2VK27VnYksg5dDBXLVe+Wvbj9macQVMkmN6Xhugn5GNQom+aTUTQ1PKBvRAe9YVDTixs9mm07IiXX6JIy1fQrJzP09kdHImHEU2M6I4tAs1qbmf7VOiuGVnwmVpMgVm38UppJgTKZnk77QnKEcW6BMC7srYUOqKUMbTsmG4C2evAzN86pn+f6iUrvO4yjCERzDKXhwCTW4gzo0gEEIz/AKb87IeXHenY95a8HJZw7hj5zPHwPHjQE=</latexit><latexit sha1_base64="W1ptT+nvGABfYcDzVyEExKFva3I=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tF8GJJRNBjURCPVewHtKFstpt26WYTdidCCf0HXjwo4tV/5M1/47bNQVtfWHh4Z4adeYNECoOu++0UVlbX1jeKm6Wt7Z3dvfL+QdPEqWa8wWIZ63ZADZdC8QYKlLydaE6jQPJWMLqZ1ltPXBsRq0ccJ9yP6ECJUDCK1no4u+2VK27VnYksg5dDBXLVe+Wvbj9macQVMkmN6Xhugn5GNQom+aTUTQ1PKBvRAe9YVDTixs9mm07IiXX6JIy1fQrJzP09kdHImHEU2M6I4tAs1qbmf7VOiuGVnwmVpMgVm38UppJgTKZnk77QnKEcW6BMC7srYUOqKUMbTsmG4C2evAzN86pn+f6iUrvO4yjCERzDKXhwCTW4gzo0gEEIz/AKb87IeXHenY95a8HJZw7hj5zPHwPHjQE=</latexit><latexit sha1_base64="W1ptT+nvGABfYcDzVyEExKFva3I=">AAAB6XicbZBNS8NAEIYn9avWr6pHL4tF8GJJRNBjURCPVewHtKFstpt26WYTdidCCf0HXjwo4tV/5M1/47bNQVtfWHh4Z4adeYNECoOu++0UVlbX1jeKm6Wt7Z3dvfL+QdPEqWa8wWIZ63ZADZdC8QYKlLydaE6jQPJWMLqZ1ltPXBsRq0ccJ9yP6ECJUDCK1no4u+2VK27VnYksg5dDBXLVe+Wvbj9macQVMkmN6Xhugn5GNQom+aTUTQ1PKBvRAe9YVDTixs9mm07IiXX6JIy1fQrJzP09kdHImHEU2M6I4tAs1qbmf7VOiuGVnwmVpMgVm38UppJgTKZnk77QnKEcW6BMC7srYUOqKUMbTsmG4C2evAzN86pn+f6iUrvO4yjCERzDKXhwCTW4gzo0gEEIz/AKb87IeXHenY95a8HJZw7hj5zPHwPHjQE=</latexit> F<latexit sha1_base64="4yvi8gS7bSaqQjUNSml27H5N/t0=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRYFMRjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49tZvf2ESvNYPphJgn5Eh5KHnFFjrcZdv1xxq+5cZBW8HCqQq94vf/UGMUsjlIYJqnXXcxPjZ1QZzgROS71UY0LZmA6xa1HSCLWfzRedkjPrDEgYK/ukIXP390RGI60nUWA7I2pGerk2M/+rdVMTXvsZl0lqULLFR2EqiInJ7Goy4AqZERMLlCludyVsRBVlxmZTsiF4yyevQuui6lluXFZqN3kcRTiBUzgHD66gBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7I+fwBmnOMyg==</latexit><latexit sha1_base64="4yvi8gS7bSaqQjUNSml27H5N/t0=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRYFMRjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49tZvf2ESvNYPphJgn5Eh5KHnFFjrcZdv1xxq+5cZBW8HCqQq94vf/UGMUsjlIYJqnXXcxPjZ1QZzgROS71UY0LZmA6xa1HSCLWfzRedkjPrDEgYK/ukIXP390RGI60nUWA7I2pGerk2M/+rdVMTXvsZl0lqULLFR2EqiInJ7Goy4AqZERMLlCludyVsRBVlxmZTsiF4yyevQuui6lluXFZqN3kcRTiBUzgHD66gBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7I+fwBmnOMyg==</latexit><latexit sha1_base64="4yvi8gS7bSaqQjUNSml27H5N/t0=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRYFMRjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49tZvf2ESvNYPphJgn5Eh5KHnFFjrcZdv1xxq+5cZBW8HCqQq94vf/UGMUsjlIYJqnXXcxPjZ1QZzgROS71UY0LZmA6xa1HSCLWfzRedkjPrDEgYK/ukIXP390RGI60nUWA7I2pGerk2M/+rdVMTXvsZl0lqULLFR2EqiInJ7Goy4AqZERMLlCludyVsRBVlxmZTsiF4yyevQuui6lluXFZqN3kcRTiBUzgHD66gBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7I+fwBmnOMyg==</latexit><latexit sha1_base64="4yvi8gS7bSaqQjUNSml27H5N/t0=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRYFMRjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0vLDy8M8POvEEiuDau++0U1tY3NreK26Wd3b39g/LhUUvHqWLYZLGIVSegGgWX2DTcCOwkCmkUCGwH49tZvf2ESvNYPphJgn5Eh5KHnFFjrcZdv1xxq+5cZBW8HCqQq94vf/UGMUsjlIYJqnXXcxPjZ1QZzgROS71UY0LZmA6xa1HSCLWfzRedkjPrDEgYK/ukIXP390RGI60nUWA7I2pGerk2M/+rdVMTXvsZl0lqULLFR2EqiInJ7Goy4AqZERMLlCludyVsRBVlxmZTsiF4yyevQuui6lluXFZqN3kcRTiBUzgHD66gBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7I+fwBmnOMyg==</latexit>

|emi
<latexit sha1_base64="snSn/8kAEwrh2+kp5GQ6H8JF0B8="></latexit><latexit sha1_base64="snSn/8kAEwrh2+kp5GQ6H8JF0B8="></latexit><latexit sha1_base64="snSn/8kAEwrh2+kp5GQ6H8JF0B8="></latexit><latexit sha1_base64="snSn/8kAEwrh2+kp5GQ6H8JF0B8="></latexit>

�N
<latexit sha1_base64="AkP/IBhCdJjPrQYmnNlK19SKRDw=">AAAB7XicbZBNSwMxEIZn/az1q+rRS7AInsquCHosevEkFewHtEvJptk2NpssyaxQSv+DFw+KePX/ePPfmLZ70NYXAg/vzJCZN0qlsOj7397K6tr6xmZhq7i9s7u3Xzo4bFidGcbrTEttWhG1XArF6yhQ8lZqOE0iyZvR8GZabz5xY4VWDzhKeZjQvhKxYBSd1eiwgSB33VLZr/gzkWUIcihDrlq39NXpaZYlXCGT1Np24KcYjqlBwSSfFDuZ5SllQ9rnbYeKJtyG49m2E3LqnB6JtXFPIZm5vyfGNLF2lESuM6E4sIu1qflfrZ1hfBWOhUoz5IrNP4ozSVCT6emkJwxnKEcOKDPC7UrYgBrK0AVUdCEEiycvQ+O8Eji+vyhXr/M4CnAMJ3AGAVxCFW6hBnVg8AjP8ApvnvZevHfvY9664uUzR/BH3ucP84qOtA==</latexit><latexit sha1_base64="AkP/IBhCdJjPrQYmnNlK19SKRDw=">AAAB7XicbZBNSwMxEIZn/az1q+rRS7AInsquCHosevEkFewHtEvJptk2NpssyaxQSv+DFw+KePX/ePPfmLZ70NYXAg/vzJCZN0qlsOj7397K6tr6xmZhq7i9s7u3Xzo4bFidGcbrTEttWhG1XArF6yhQ8lZqOE0iyZvR8GZabz5xY4VWDzhKeZjQvhKxYBSd1eiwgSB33VLZr/gzkWUIcihDrlq39NXpaZYlXCGT1Np24KcYjqlBwSSfFDuZ5SllQ9rnbYeKJtyG49m2E3LqnB6JtXFPIZm5vyfGNLF2lESuM6E4sIu1qflfrZ1hfBWOhUoz5IrNP4ozSVCT6emkJwxnKEcOKDPC7UrYgBrK0AVUdCEEiycvQ+O8Eji+vyhXr/M4CnAMJ3AGAVxCFW6hBnVg8AjP8ApvnvZevHfvY9664uUzR/BH3ucP84qOtA==</latexit><latexit sha1_base64="AkP/IBhCdJjPrQYmnNlK19SKRDw=">AAAB7XicbZBNSwMxEIZn/az1q+rRS7AInsquCHosevEkFewHtEvJptk2NpssyaxQSv+DFw+KePX/ePPfmLZ70NYXAg/vzJCZN0qlsOj7397K6tr6xmZhq7i9s7u3Xzo4bFidGcbrTEttWhG1XArF6yhQ8lZqOE0iyZvR8GZabz5xY4VWDzhKeZjQvhKxYBSd1eiwgSB33VLZr/gzkWUIcihDrlq39NXpaZYlXCGT1Np24KcYjqlBwSSfFDuZ5SllQ9rnbYeKJtyG49m2E3LqnB6JtXFPIZm5vyfGNLF2lESuM6E4sIu1qflfrZ1hfBWOhUoz5IrNP4ozSVCT6emkJwxnKEcOKDPC7UrYgBrK0AVUdCEEiycvQ+O8Eji+vyhXr/M4CnAMJ3AGAVxCFW6hBnVg8AjP8ApvnvZevHfvY9664uUzR/BH3ucP84qOtA==</latexit><latexit sha1_base64="AkP/IBhCdJjPrQYmnNlK19SKRDw=">AAAB7XicbZBNSwMxEIZn/az1q+rRS7AInsquCHosevEkFewHtEvJptk2NpssyaxQSv+DFw+KePX/ePPfmLZ70NYXAg/vzJCZN0qlsOj7397K6tr6xmZhq7i9s7u3Xzo4bFidGcbrTEttWhG1XArF6yhQ8lZqOE0iyZvR8GZabz5xY4VWDzhKeZjQvhKxYBSd1eiwgSB33VLZr/gzkWUIcihDrlq39NXpaZYlXCGT1Np24KcYjqlBwSSfFDuZ5SllQ9rnbYeKJtyG49m2E3LqnB6JtXFPIZm5vyfGNLF2lESuM6E4sIu1qflfrZ1hfBWOhUoz5IrNP4ozSVCT6emkJwxnKEcOKDPC7UrYgBrK0AVUdCEEiycvQ+O8Eji+vyhXr/M4CnAMJ3AGAVxCFW6hBnVg8AjP8ApvnvZevHfvY9664uUzR/BH3ucP84qOtA==</latexit> }

!a
<latexit sha1_base64="wAGITQ/QEebS9idteGjCibfJbvc="></latexit><latexit sha1_base64="wAGITQ/QEebS9idteGjCibfJbvc="></latexit><latexit sha1_base64="wAGITQ/QEebS9idteGjCibfJbvc="></latexit><latexit sha1_base64="wAGITQ/QEebS9idteGjCibfJbvc="></latexit>

!L,R
c<latexit sha1_base64="gGaVLDIGbZRPc7/k9/7M0Hg8teU="></latexit><latexit sha1_base64="gGaVLDIGbZRPc7/k9/7M0Hg8teU="></latexit><latexit sha1_base64="gGaVLDIGbZRPc7/k9/7M0Hg8teU="></latexit><latexit sha1_base64="gGaVLDIGbZRPc7/k9/7M0Hg8teU="></latexit>

many-body
eigenstates

cavity
drives

<latexit sha1_base64="ooFQSGuPcjRPnKKkcbX8blTKitY=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBA8hV0R9RgfB48RzAOSJcxOepMhs7PrzKwQlvyEFw+KePV3vPk3TpI9aGJBQ1HVTXdXkAiujet+O0vLK6tr64WN4ubW9s5uaW+/oeNUMayzWMSqFVCNgkusG24EthKFNAoENoPhzcRvPqHSPJYPZpSgH9G+5CFn1Fip1blFYWj3qlsquxV3CrJIvJyUIUetW/rq9GKWRigNE1Trtucmxs+oMpwJHBc7qcaEsiHtY9tSSSPUfja9d0yOrdIjYaxsSUOm6u+JjEZaj6LAdkbUDPS8NxH/89qpCS/9jMskNSjZbFGYCmJiMnme9LhCZsTIEsoUt7cSNqCKMmMjKtoQvPmXF0njtOKdV7z7s3L1Oo+jAIdwBCfgwQVU4Q5qUAcGAp7hFd6cR+fFeXc+Zq1LTj5zAH/gfP4Ao9yPtg==</latexit>

�A

<latexit sha1_base64="NmTRrzQ35AsonCEnG30HMDFz59k=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KomIeizVg8cK9gPaUDbbTbt0s4m7E6GE/gkvHhTx6t/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbF6wHHC/YgOlAgFo2ildveWS6S9Wq9UdivuDGSZeDkpQ456r/TV7ccsjbhCJqkxHc9N0M+oRsEknxS7qeEJZSM64B1LFY248bPZvRNyapU+CWNtSyGZqb8nMhoZM44C2xlRHJpFbyr+53VSDK/9TKgkRa7YfFGYSoIxmT5P+kJzhnJsCWVa2FsJG1JNGdqIijYEb/HlZdI8r3iXFe/+olyt5XEU4BhO4Aw8uIIq3EEdGsBAwjO8wpvz6Lw4787HvHXFyWeO4A+czx+lYI+3</latexit>

�B

<latexit sha1_base64="/cR34M63fM8Ibd0d+LvZy7EK1uo=">AAAB8XicdVDLSgMxFM3UV62vqks3wSK4GjLV1nZXdeOygn1gO5ZMJtOGZjJDkhHK0L9w40IRt/6NO//GTFtBRQ9cOJxzL/fe48WcKY3Qh5VbWl5ZXcuvFzY2t7Z3irt7bRUlktAWiXgkux5WlDNBW5ppTruxpDj0OO1448vM79xTqVgkbvQkpm6Ih4IFjGBtpNt+FNIhHvh354NiCdmoWqmjOkR2BTm1GUGoWiufQMeQDCWwQHNQfO/7EUlCKjThWKmeg2LtplhqRjidFvqJojEmYzykPUMFDqly09nFU3hkFB8GkTQlNJyp3ydSHCo1CT3TGWI9Ur+9TPzL6yU6qLkpE3GiqSDzRUHCoY5g9j70maRE84khmEhmboVkhCUm2oRUMCF8fQr/J+2y7VRt5/q01LhYxJEHB+AQHAMHnIEGuAJN0AIECPAAnsCzpaxH68V6nbfmrMXMPvgB6+0TsWyQ8g==</latexit>

!A
d

<latexit sha1_base64="diKtl6DNa/6481pmefoqDxE5ihY=">AAAB8XicdVDLSgMxFM3UV62vqks3wSK4GjLV1nZX6sZlBfvAdiyZTKYNzWSGJCOUoX/hxoUibv0bd/6NmbaCih64cDjnXu69x4s5UxqhDyu3srq2vpHfLGxt7+zuFfcPOipKJKFtEvFI9jysKGeCtjXTnPZiSXHocdr1JpeZ372nUrFI3OhpTN0QjwQLGMHaSLeDKKQjPPTvmsNiCdmoWqmjOkR2BTm1OUGoWiufQceQDCWwRGtYfB/4EUlCKjThWKm+g2LtplhqRjidFQaJojEmEzyifUMFDqly0/nFM3hiFB8GkTQlNJyr3ydSHCo1DT3TGWI9Vr+9TPzL6yc6qLkpE3GiqSCLRUHCoY5g9j70maRE86khmEhmboVkjCUm2oRUMCF8fQr/J52y7VRt5/q81Ggu48iDI3AMToEDLkADXIEWaAMCBHgAT+DZUtaj9WK9Llpz1nLmEPyA9fYJsvCQ8w==</latexit>

!B
d

<latexit sha1_base64="X+y5h9LbNXtyUGz/iF6tOYqfchY=">AAAB73icdVDLSgMxFM3UV62vqks3wSK4GjLV1nZXdePOCvYB7VAyadqGJpkxyQhl6E+4caGIW3/HnX9jpq2gogcuHM65l3vvCSLOtEHow8ksLa+srmXXcxubW9s7+d29pg5jRWiDhDxU7QBrypmkDcMMp+1IUSwCTlvB+DL1W/dUaRbKWzOJqC/wULIBI9hYqd29FnSIe+e9fAG5qFyqoipEbgl5lRlBqFwpnkDPkhQFsEC9l3/v9kMSCyoN4Vjrjoci4ydYGUY4nea6saYRJmM8pB1LJRZU+8ns3ik8skofDkJlSxo4U79PJFhoPRGB7RTYjPRvLxX/8jqxGVT8hMkoNlSS+aJBzKEJYfo87DNFieETSzBRzN4KyQgrTIyNKGdD+PoU/k+aRdcru97NaaF2sYgjCw7AITgGHjgDNXAF6qABCODgATyBZ+fOeXRenNd5a8ZZzOyDH3DePgEJgY/8</latexit>

⌦A

<latexit sha1_base64="Cg0fZIVvPB2lxNArpNXznNTwBmA=">AAAB73icdVDLSgMxFM3UV62vqks3wSK4GjLV1nZX6sadFewD2qFk0kwbmmTGJCOU0p9w40IRt/6OO//GTFtBRQ9cOJxzL/feE8ScaYPQh5NZWV1b38hu5ra2d3b38vsHLR0litAmiXikOgHWlDNJm4YZTjuxolgEnLaD8WXqt++p0iySt2YSU1/goWQhI9hYqdO7FnSI+/V+voBcVC5VURUit4S8ypwgVK4Uz6BnSYoCWKLRz7/3BhFJBJWGcKx110Ox8adYGUY4neV6iaYxJmM8pF1LJRZU+9P5vTN4YpUBDCNlSxo4V79PTLHQeiIC2ymwGenfXir+5XUTE1b8KZNxYqgki0VhwqGJYPo8HDBFieETSzBRzN4KyQgrTIyNKGdD+PoU/k9aRdcru97NeaFWX8aRBUfgGJwCD1yAGrgCDdAEBHDwAJ7As3PnPDovzuuiNeMsZw7BDzhvnwsFj/0=</latexit>

⌦B
<latexit sha1_base64="4jUBkC8yGzjGGiUkfsXslcFHbZk=">AAAB/HicdVDLSgMxFM3UV62v0S7dBIsgiEOm2truim5cVugL2rFk0kwbmnmQZIRhqL/ixoUibv0Qd/6N6QtU9MCFwzn3cu89bsSZVAh9GpmV1bX1jexmbmt7Z3fP3D9oyTAWhDZJyEPRcbGknAW0qZjitBMJin2X07Y7vp767XsqJAuDhkoi6vh4GDCPEay01DfzvRFWaWNydwqX7KxvFpBVQna1bENkFUuoWjrXBNkIFSvQttAMBbBAvW9+9AYhiX0aKMKxlF0bRcpJsVCMcDrJ9WJJI0zGeEi7mgbYp9JJZ8dP4LFWBtALha5AwZn6fSLFvpSJ7+pOH6uR/O1Nxb+8bqy8ipOyIIoVDch8kRdzqEI4TQIOmKBE8UQTTATTt0IywgITpfPK6RCWn8L/Sato2WXLvr0o1K4WcWTBITgCJ8AGl6AGbkAdNAEBCXgEz+DFeDCejFfjbd6aMRYzefADxvsXcLiUpg==</latexit>

T̂+T̂�

<latexit sha1_base64="i3gtm0eHs+SmDfjeIwTVsQnyzWs=">AAAB/HicdVDLSgMxFM3UV62vapdugkUQxCEzTrXdFd24rNAXtLVk0rQNzWSGJCOUof6KGxeKuPVD3Pk3pi9Q0QMXDufcy733+BFnSiP0aaVWVtfWN9Kbma3tnd297P5BXYWxJLRGQh7Kpo8V5UzQmmaa02YkKQ58Thv+6HrqN+6pVCwUVT2OaCfAA8H6jGBtpG421x5inVQnd6dwyc662TyySyXkeUWI7AJyXa9gCDp3i0UHOjaaIQ8WqHSzH+1eSOKACk04VqrloEh3Eiw1I5xOMu1Y0QiTER7QlqECB1R1ktnxE3hslB7sh9KU0HCmfp9IcKDUOPBNZ4D1UP32puJfXivW/WInYSKKNRVkvqgfc6hDOE0C9pikRPOxIZhIZm6FZIglJtrklTEhLD+F/5O6azsXtnPr5ctXizjS4BAcgRPggEtQBjegAmqAgDF4BM/gxXqwnqxX623emrIWMznwA9b7F4lwlLc=</latexit>

T̂+T̂�

<latexit sha1_base64="Rxwk1SOGxDdX5lVbEoNABxcrlJU="></latexit>�

<latexit sha1_base64="MhmXZ/uA4Q0djj1dYtuJeg0Yt+s=">AAACCHicdZDLSgMxFIYzXmu9jbp0YbAUBHHIaK+7oi5cuKjQG7R1yKRpG5q5kGSEMszSja/ixoUibn0Ed76NM72Aiv4Q+PjPOZyc3/Y5kwqhT21hcWl5ZTW1ll7f2Nza1nd2G9ILBKF14nFPtGwsKWcurSumOG35gmLH5rRpjy6SevOOCsk8t6bGPu06eOCyPiNYxZalH2Q7Q6zCWnR7DOd0kp7QZWRdpy09gwxUyKFyHiIjj8zSmTmFcrEITQNNlAEzVS39o9PzSOBQVxGOpWybyFfdEAvFCKdRuhNI6mMywgPajtHFDpXdcHJIBLOx04N9T8TPVXDifp8IsSPl2LHjTgerofxdS8y/au1A9UvdkLl+oKhLpov6AYfKg0kqsMcEJYqPY8BEsPivkAyxwETF2SUhzC+F/0Pj1DALhnmTy1TOZ3GkwD44BEfABEVQAVegCuqAgHvwCJ7Bi/agPWmv2tu0dUGbzeyBH9LevwBLFZjl</latexit>

D̂L

Figure 4.11: Effective ground state dynamics in a multilevel cavity QED system. (a) An ensemble
of multilevel atoms (blue pancakes) with ground (|gm⟩) and excited (|em⟩) manifold are trapped in
an optical cavity with quantization axis (ẑ) along the cavity axis. The cavity photons (red curve)
with left-handed (σ−) and right-handed (σ+) circular polarizations mediate collective interactions
(χ) among the atoms. Two external drives are applied to the σ− polarized mode with atomic Rabi
frequency ΩA,B. (b) Frequencies of cavity resonance, two external drives, and atomic transition

dressed by photon-mediated interactions. (c) Sketch of the correlated hopping (T̂+T̂−) and single-
particle AC Stark shifts (D̂L) in the synthetic two-leg ladder spanned by the ground manifold
(|gm⟩), using F = 9/2 case as an example.

4.3.2 System

Effective Hamiltonian

We consider an ensemble of N multilevel atoms confined in an optical cavity with quantization

axis (ẑ) along the cavity axis, as depicted in Fig. 4.11(a,b). The internal level structure of each

atom consists of a ground and an excited manifold with hyperfine spin Fg and Fe respectively. The

excited state manifold decays with spontaneous emission rate γ. We consider a weak magnetic field

limit such that all atomic transition frequencies can be approximated as a single ωa (see SOM).

Specifically, we label the ground states as |gm⟩i, and the excited states as |em⟩i, where m is the

magnetic quantum number, and i labels the atoms. Two degenerate cavity modes with left-handed

(σ−) and right-handed (σ+) circular polarization at frequency ωc ≡ ωL,R
c couple to the transition

between ground and excited manifolds with coupling strength gc and detuning ∆c = ωc − ωa.

Two external σ− polarized lasers with frequencies ωA,B
d , detuned from the atomic transition by

∆A,B = ωA,B
d − ωa, are used to drive the cavity with intracavity Rabi frequency ΩA,B respectively.
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We focus on the far-detuned regime of the cavity (|∆c| ≫ |∆A,B|), where the frequencies of

laser drives are closer to the atomic transition rather than the cavity resonance. In this regime,

one can first adiabatically eliminate the injected light fields and intracavity fluctuations assuming

|∆c| ≫ gc
√
N,κ, with κ the cavity intensity decay rate. The system is thus well described by an

atom-only Hamiltonian with photon-mediated elastic interactions (see Ref. [192] and SOM),

Ĥ/h̄ = ωaN̂e + χ(L̂+L̂− + R̂+R̂−) +
[(

ΩAe
−iωA

d t + ΩBe
−iωB

d t
)
L̂+ + h.c.

]
, (4.27)

where χ = −g2c/∆c is the photon-mediated interaction strength. Here, N̂e =
∑

im|em⟩⟨em|i is

the atom number operator for the excited manifold, L̂+ =
∑

imC
−1
m |em−1⟩⟨gm|i, L̂− = (L̂+)† are

multilevel dipole operators with σ− polarization, and R̂+ =
∑

imC
+1
m |em+1⟩⟨gm|i, R̂− = (R̂+)†

are multilevel dipole operators with σ+ polarization, where Cp
m ≡ ⟨Fg,m; 1, p|Fe,m + p⟩ are the

Clebsch-Gordan coefficients.

The photon-mediated interactions in Ĥ [Eq. (4.27)] exchange excitations among atoms and

generate a rich many-body spectrum of collective states [see Fig. 4.11(b)], if |χN | ≫ γ. In this

regime and assuming weak driving fields (|∆A,B|, |χN | ≫ |ΩA,B|), as shown in SOM, the many-

body excited states are only virtually populated and can be adiabatically eliminated, giving rise

to net interactions in the atomic ground manifold described by the following effective ground-state

Hamiltonian,

Ĥeff/h̄ =
∑

ν=A,B

|Ων |2∆ν

χ

[
∆ν − χD̂L − χ2T̂+Ĝν

RT̂
−
]−1

, (4.28)

where Ĝν
R = (∆ν − χD̂R)−1. Here, D̂L = P̂gL̂

−L̂+P̂g, D̂R = P̂gR̂
−R̂+P̂g, T̂+ = P̂gL̂

−R̂+P̂g, and

T̂− = (T̂+)† are operators acting only on the ground manifold as ensured by P̂g, which is defined

as the projection operator of the atomic ground states. In the case of Fg = Fe = F as we explore in

this paper, these operators can be expressed as D̂L,R =
∑

i D̂
L,R
i /NF and T̂+ =

∑
i T̂

+
i /NF , where

D̂L
i = Ŝ+

i Ŝ
−
i , D̂R

i = Ŝ−
i Ŝ

+
i , T̂+

i = −Ŝ+
i Ŝ

+
i , (4.29)

NF = 2F (F + 1) is the normalization factor and Ŝ±
i are raising and lowering spin-F operators

acting on atom i. Note that Ĥeff is fully collective and thus couples an atom i with any other atom
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j in the ensemble. If the atoms start in the permutationally symmetric manifold, or on a direct

product state of permutationally symmetric subsystems, they will remain there, and the scaling of

Hilbert space dimension with atom number N is reduced from exponential to polynomial. Thanks

to this simplification, we perform all the numerical calculations using Eq. (4.28). However, the

underlying physics in Ĥeff , which includes a sum over multi-body interactions, is still extremely

complex even in these restricted Hilbert space.

Discussions

To gain physical intuition of the physical processes encapsulated in Eq. (4.28), first we discuss

the simplest case with F = 1/2, which gives T̂± = 0, and D̂L = 2(N/2 + Ŝz)/3. So the effective

ground state Hamiltonian takes the following form,

Heff/h̄ =
∑

ν=A,B

|Ων |2∆ν/χ

∆ν − 2χ(N/2 + Ŝz)/3
. (4.30)

In the off-resonant regime (|∆A,B| ≳ |χN |), one can expand Ĥeff in a power series of the Ŝz

operator. At the leading non-trivial order, this expansion recovers the well-known one-axis twisting

interaction ŜzŜz, a powerful resource for spin squeezing generation [7]. At higher orders it also

generates non-negligible n-body interaction terms such as (Ŝz)n when ∆A,B is comparable with χN .

Such multi-body operators, which emerge naturally in our system, can speed up the entanglement

generation dynamics as recently suggested in trapped ion arrays [258].

In the presence of more levels (F > 1/2), the operators T̂± cannot be ignored and they

start to play a non-trivial role, leading to tunable multi-body interactions. Regardless of their

complexity, one can gain physical insight by focusing on the leading order terms obtained in a

power series in χN/∆A,B. To leading order the effective Hamiltonian simplifies to

Ĥeff/h̄ ≈
∑

ν=A,B

|Ων |2
∆ν

D̂L +
|Ων |2χ

∆2
ν

(D̂LD̂L + T̂+T̂−). (4.31)

The first term in Eq. (4.31) describes single-particle AC Stark shifts generated by each light field

injected into the cavity, and the second term describes the leading order interactions in the ground

manifold generated by exchanging cavity photons. The exchange of σ− polarized cavity photon leads
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to the diagonal D̂LD̂L term, a multilevel generalization of one-axis twisting interaction, generating

population-dependent collective shifts on the ground state levels. In contrast, the exchange of σ+

polarized cavity photon leads to the T̂+T̂− term, a new term emerged in multilevel ground states,

generating the processes where one atom moves two internal levels down (T̂−) while another atom

moves two levels up (T̂+).

Assuming the hyperfine spin F is a half-integer, it is convenient to visualize the atomic ground

manifold as a synthetic two-leg ladder, where the upper and lower legs are sets of internal states

directly connected by the T̂± operators [see Fig. 4.11(c)]. Under this concept, the T̂+T̂− term is

equivalent to correlated hopping in the synthetic ladder which can occur between atoms in the same

leg or in different legs. These processes can generate strong correlations between the legs despite

having no direct hopping processes. In order to better understand the Hamiltonian dynamics, it is

useful to write the operators acting only on the ground manifold in terms of Schwinger bosons,

D̂L =
∑
m

(C−1
m )2â†mâm, D̂R =

∑
m

(C+1
m )2â†mâm,

T̂+ =
∑
m

C+1
m C−1

m+2â
†
m+2âm,

(4.32)

where âm is the bosonic annihilation operator for state |gm⟩. For simplicity, we also set the strength

of the external drives to Ω ≡ ΩA,B = 0.05χN , and analyze the unitary dynamics by varying the

detunings ∆A,B of the laser drives. By appropriate choices of ∆A,B, we can suppress the single-

particle and collective shifts at t = 0, and make the correlated hopping terms as the dominant

process in the synthetic ladder (see SOM).

4.3.3 Examples of correlated hopping

Pair production

One of the simplest cases to understand the correlated hopping process (T̂+T̂−) is a system

with a 4-level F = 3/2 ground state manifold [see Fig. 4.12(a)]. Considering the initial state

|g−3/2⟩⊗(N/2)|g3/2⟩⊗(N/2), the role of the T̂+T̂− term is to generate correlated atom pairs in the

initially unoccupied states |g−1/2⟩ and |g1/2⟩. We show that Ĥeff [Eq. (4.28)] in this system features
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Figure 4.12: Pair production dynamics in a synthetic 4-level ladder. (a) The black dots show the
initial state of the atoms and the orange arrows show the correlated hopping process. (b) Dynamical
phase diagram of pair production process. The black lines are the phase boundary separating phase
I (with pair production) and phase II (without pair production). (c) Short-time dynamics in phase
I (red curves) and phase II (blue curves). The choices of detunings ∆A,B are indicated by cross
marks in (b) with corresponding color. The solid lines are calculated by exact diagnoalization (ED),
while the dashed lines are based on undepleted pump approximation (UPA).

an abrupt change of dynamical behavior as we tune the system parameters, i.e. dynamical phase

transition (DPT). This type of DPT generated by pair production processes can be analyzed at

both short times and long times [206].

The short-time dynamics can be understood via undepleted pump approximation (UPA),

where to the leading order one can replace the bosonic operators for macroscopically occupied

states as c-numbers, â±3/2, â
†
±3/2 ∼

√
N/2. Under UPA, Ĥeff [Eq. (4.28)] becomes quadratic and

therefore can be diagonalized analytically:

Ĥeff/h̄ ≈ K1â
†
−1/2â−1/2 +K2â

†
1/2â1/2 +K3(â−1/2â1/2 + h.c.). (4.33)

Here, K1, K2 and K3 can be expressed as functions of ∆A,B/χN (see SOM). The term proportional

to K3 is responsible for generating correlated atom pairs, while the terms proportional to K1,2

impose an energy penalty for the pair production. Note that Eq. (4.33) is equivalent to the two-

mode squeezing Hamiltonian well known in quantum optics [68] and spinor BEC systems [7, 259],

and very recently achieved in cavity QED systems [214,248]. At short times when UPA is valid [see

Fig. 4.12(c)], one observes exponential growth of atom population N±1/2 in the initially unoccupied
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Figure 4.13: Chiral transport in a synthetic 6-level ladder. (a) The strength of the relevant corre-
lated hopping processes (orange arrows) is indicated by the opacity of the arrows, which depends
on the atom distribution in the upper leg (black dots). (b) Chiral transport behavior in the lower
leg depends on the initial probability of occupying the state |g−3/2⟩ (y axis) and the detuning of the
external drive B (x axis) for fixed drive A detuning which is set to ∆A = −3χN . The dashed line
indicates balanced transport. (c) Short-time dynamics of population imbalance with parameters
indicated by cross marks in (b) using the same color. The solid lines are calculated by ED, while
the dashed lines are based on UPA.

states |g±1/2⟩ (red curves) in phase I (with pair production), which is described by (K1 + K2)
2 <

4K2
3 . Instead in phase II (without pair production), described by (K1 +K2)

2 > 4K2
3 , one observes

small oscillations of atom population (blue curves). The dynamical critical points are located at

(K1 +K2)
2 = 4K2

3 [see black lines in Fig. 4.12(b)].

To analyze the dynamics generated by Ĥeff [Eq. (4.28)] at longer times, we use exact diago-

nalization (ED) with 100 atoms. At long times the DPT is signaled by a sharp change in behavior

of the long-time average fractional population, N±1/2/N = limT→∞
∫ T
0 dtN±1/2(t)/(NT ), which

serves as an order parameter and distinguishes the two dynamical phases [see Fig. 4.12(b)]. Phase

I is characterized by non-zero N±1/2/N , while phase II is characterized by N±1/2/N ≈ 0. We

analyze the critical exponents of this DPT in (see SOM). Our discussions of the 4-level system can

be generalized to larger synthetic ladders directly, and the detunings ∆A,B serve as control knobs

of the correlated hopping process.

Chiral transport

Including more levels in the dynamics opens up the possibility to engineer interaction-induced
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chiral transport. As shown in Fig. 4.13(a), this can be achieved in a 6-level model (F = 5/2) by

preparing atoms in the |g−1/2⟩ state, which is the center of the lower leg. The chiral transport in the

lower leg can be characterized by the population difference between atoms hopping to the right side

(|g3/2⟩) and the left side (|g−5/2⟩), Ndiff = N3/2 −N−5/2. The chiral transport is not a consequence

of the external drive polarization. Suppose there are no atoms in the upper leg, the only relevant

correlated hopping process will generate atom pairs in the state |g−5/2⟩ and |g3/2⟩, which leads to

Ndiff = 0. Nevertheless, adding atoms in the upper chain gives rise to extra correlated hopping

processes, in which the process I and II shown in Fig. 4.13(a) become the dominant processes and

break left-right symmetry at short time (see SOM). If process I is stronger than process II, we have

chiral transport to the left side of the lower chain (Ndiff < 0), and vice versa.

We analyze the chiral transport behavior via ED of Ĥeff [Eq. (4.28)] with 20 atoms. The initial

state of this calculation is [
√
p−3/2|g−3/2⟩+

√
1 − p−3/2|g5/2⟩]⊗(N/2)|g−1/2⟩⊗(N/2), where p−3/2 is the

initial probability of occupying the state |g−3/2⟩ for the atoms in the upper leg. The normalized

longtime average Ndiff/N sum as a function of p−3/2 and ∆B, where Nsum = N3/2 +N−5/2, is shown

in Fig. 4.13(b) for fixed ∆A. It can be seen that for different choices of ∆B it is possible to turn

on both processes (I and II) if ∆B/χN ∈ (3, 4), or mainly turn on process II if ∆B/χN ∈ (5, 6).

Enforcing balanced transport [see the dashed line in Fig. 4.13(b)] requires equal weight of process

I and II in the former case, or suppression of both processes in the latter case. In Fig. 4.13(c),

we compare the short-time dynamics of chiral transport at ∆B = 4χN with different choices of

p−3/2, indicating that the transport direction is fully tunable via initial state in this case. Unlike

the 4-level system discussed above, UPA is not able to provide a qualitative description of chiral

transport behavior at long times.

Correlation spreading

Regardless of the all-to-all nature of the cavity mediated interactions, in our synthetic ladder

we can engineer light-cone spreading of quantum correlations analogous to the one observed in

real lattices with short-range or power-law interactions [260–262]. In Fig. 4.14(a), we show a 10-

level F = 9/2 ground state manifold visualized as a synthetic ladder. For an initial product state
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Figure 4.14: Correlation spreading in a synthetic 10-level ladder. (a) The correlated hopping
processes (orange arrows) for the initial state (black dots) allow us to assign position indices based
on the direction of hopping. The orange dashed line indicates the spread of correlations between
legs without direct hopping processes. (b) The atom number two-point correlations (see text) are
restricted to nearest-neighbor sites for ∆A = −3χN , ∆B = 3.7χN , (c) but can undergo light-cone
spreading for ∆A = −3χN , ∆B = 4.1χN .

|g−9/2⟩⊗(N/2)|g9/2⟩⊗(N/2), it is possible to visualize the correlation spreading from a concatenated

set of hopping processes [see orange arrows in Fig. 4.14(a)] by assigning position indices for the

synthetic lattice sites: 0 and 0∗ for the initial sites, and site labels increasing to the right and

decreasing to the left. Using this convention, we can analyze the correlation spreading in our

synthetic ladder, in terms of the two-point correlators C(i, j) = ⟨N̂iN̂j⟩ − ⟨N̂i⟩⟨N̂j⟩.

For the case of a system of 10 atoms, ED of Ĥeff [Eq. (4.28)] shows two distinct behaviors

of C(0, r) depending on the choice of ∆B for fixed ∆A: In one parameter regime, differential

energy shifts imposed by ∆B favor localization and the correlation is restricted to nearest-neighbor

sites [see Fig. 4.14(b)]; for another configuration, linear correlation spreading (t ∝ r) to the whole

system is energetically allowed [see Fig. 4.14(c)]. The spreading is signaled by the appearance of

a symmetric light cone [orange points in Fig. 4.14(c)] in the two-point correlators, which is set at

the time when C(0, r) reaches −0.15 (∼ 10% of the maximum value).

Experimental implementation

Our protocol can be directly implemented using fermionic alkaline-earth atoms featuring
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Fg > 0 in a cavity. The main advantage of these atoms is their unique atomic structure which offers

simple ground (1S0) and long-lived excited state manifolds (e.g. 3P1) where we can explicitly isolate

a single Fg → Fe transition, such as 5/2 → 5/2 for 173Yb and 9/2 → 9/2 for 87Sr. Although it might

be possible to engineer similar correlated hopping processes in the ground hyperfine levels of alkali

atoms, the proposed implementation is less direct since in this system the condition |χN |≫ γ

requires to make χN comparable to the excited hyperfine splitting and as a consequence it is

necessary to sum over the set of all excited hyperfine levels. For the particular case of 87Sr as

discussed in SOM, under current experimental conditions it is possible to operate in a regime

where |χN |/γ > 102 using 2 × 105 atoms, so the dissipation during the time scale of interests can

be ignored. Moreover, our protocol can be directly generalized to the case with inhomogeneous

atom-cavity couplings, gi = gcηi. The effective ground state Hamiltonian [Eq. (4.28)] still takes

the same form if we redefine the operators in Eq. (4.29) as D̂L
i = η2i Ŝ

+
i Ŝ

−
i , D̂R

i = η2i Ŝ
−
i Ŝ

+
i ,

T̂+
i = −η2i Ŝ+

i Ŝ
+
i (see SOM).

The most common type of initial state required in our protocol, |g−F ⟩⊗(N/2)|gF ⟩⊗(N/2), has

already been demonstrated in previous experiments using 87Sr atoms [186, 263]. It is achieved by

targeting the |g±F ⟩ states to be dark states of a laser cooling process. The generated state has

roughly equal number of atoms in these two levels with no initial coherence, up to an statistical atom

number imbalance in the order of
√
N . The small imbalance in the prepared state has negligible

effects on the physical phenomena we are investigating, for the large ensemble situations relevant

for current cavity QED experiments.

4.3.4 Conclusion and outlook

We have presented a protocol to explore correlated hopping processes using cavity mediated

interactions and discussed a few examples in regimes tractable by current theoretical methods.

However, even in the permutationally symmetric subspace, more generic initial conditions can lead

to situations only explorable directly in experiments. Moreover, with additional tuning knobs

currently accessible in experiments we open further opportunities for quantum simulation. For
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example, using an additional transverse magnetic field, our protocol opens a path to engineer

dynamical gauge fields, since the hopping phase in correlated hopping processes can be dynamically

adjusted by the presence of other particles. Furthermore, even though here we assume a dilute

gas and ignore contact interactions between atoms, by trapping atoms in 3D optical lattices, it

is possible to make superexchange interactions comparable to the correlated hopping strength,

opening a path for designing complex many-body Hamiltonians that are likely to display fast

scrambling of quantum information and chaotic quantum behaviors [264].

4.3.5 Supplemental Materials: Theory model

Here we describe how to obtain Eq. (4.27) in the main text beginning with the fundamental

interaction between atoms and light in a cavity. We work with ground and excited state manifolds

of N atoms, which are assumed to have hyperfine spin Fg and Fe, respectively and are split by an

energy ωa. The ground and excited states of atom i are defined with respect to a quantization axis

that is parallel to the cavity axis, and we label them as |gm⟩i and |em⟩i, respectively, where m is

the magnetic quantum number. These atoms interact with two circularly polarized cavity modes at

frequency ωc, with strength gi for atom i. These coupling constants are parameterized as gi = gcηi,

where ηi are dimensionless numbers of order 1 that describe the inhomogeneity in the couplings.

The Hamiltonian describing this interaction is then [192]

Ĥatom-light/h̄ = ωaN̂e + ωc(â
†
LâL + â†RâR) + gc(âLL̂

+ + âRR̂
+ + h.c.), (4.34)

where âL(âR) are boson operators that annihilate a σ− (σ+) photon, N̂e =
∑

i,m |em⟩ ⟨em|i is the

number of atoms in the excited state, L̂+ =
∑

i,m ηiC
−1
m |em−1⟩ ⟨gm|i and R̂+ =

∑
i,m ηiC

+1
m

|em+1⟩ ⟨gm|i are multilevel collective dipole operators with σ− and σ+ polarization, and Cp
m =

⟨Fg,m; 1, p|Fe,m+ p⟩ are Clebsch-Gordan coefficients. The interaction describes the absorption of

a σ− (σ+) cavity photon by the atomic ensemble accompanied by an atomic excitation with σ−

(σ+) light, together with the inverse process.

We consider the situation in which the cavity is far detuned from the atomic transition
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|∆c| ≫ gc
√
N,κ, where ∆c = ωc − ωa, and κ is the cavity decay rate. In addition to this, the

cavity will be driven by two tones with frequencies close to ωa, so they are far away from the cavity

resonance frequency. Because of this, the number of intracavity photons is always very small,

hence the light degrees of freedom can be adiabatically eliminated. The atom-light interaction,

albeit weak, induces many-body splittings of the excited states, which the drives are designed

to probe. The cavity-mediated atom-atom interactions are described by the following effective

Hamiltonian [192]

Ĥatom-atom/h̄ = ωaN̂e + χL̂+L̂− + χR̂+R̂−, (4.35)

where L̂− = (L+)†, R̂− = (R+)† and χ = −g2c/∆c is the effective atom-atom interaction. The two

injected driving fields (A,B) are assumed to be σ− polarized, with frequencies ωA,B
d and intensities

outside the cavity of |αA,B|2 photons per second. These injected fields establish a small intracavity

field that induces Rabi flopping on the atoms with Rabi frequencies ΩA,B = −√
καA,Bgc/∆c.

Adding these terms leads to Eq. (1) in the main text,

Ĥaa+d/h̄ = ωaN̂e + χL̂+L̂− + χR̂+R̂− +
[(

ΩAe
−iωA

d t + ΩBe
−iωB

d t
)
L̂† + h.c.

]
. (4.36)

When the intracavity Rabi frequencies are small compare to max(χN, |∆A,B|), with ∆A,B = ωA,B
d −

ωa, the excited state will only be virtually populated and can thus be adiabatically eliminated.

To make the discussion simple, we consider first the case of a single drive ΩA, with associated

Hamiltonian

ĤA/h̄ = ωaN̂e + χL̂+L̂− + χR̂+R̂− +
(

ΩAe
−iωA

d tL̂+ + Ω∗
Ae

iωA
d tL̂−

)
. (4.37)

In the rotating frame of the drive, this becomes

Ĥ ′
A/h̄ = −∆AN̂e + χL̂+L̂− + χR̂+R̂−︸ ︷︷ ︸

Ĥ0

+
(

ΩAL̂
+ + Ω∗

AL̂
−
)

︸ ︷︷ ︸
perturbation

. (4.38)

Given that the Hamiltonian in this rotating frame is time-independent, the ground state effective

description can be calculated using perturbation theory. First, notice that all the ground states are

degenerate, with energy 0, in the absence of the perturbation. Furthermore, since the operator L̂+
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Figure 4.15: Numerical benchmarking of adiabatic elimination of atomic excited states. The Hamil-
tonian dynamics under Eq. (4.36) are shown in solid lines, while the Hamiltonian dynamics under
Eq. (4.28) are shown in dashed lines. We set ∆A = −3χN , ∆B = 4.1χN , ΩA,B = Ω = 0.05χN . We
consider the following two cases: (a) 4-level system with initial state |g−3/2⟩⊗(N/2)|g3/2⟩⊗(N/2), and

atom number N = 10. (b) 10-level system with initial state |g−9/2⟩⊗(N/2)|g9/2⟩⊗(N/2), and atom
number N = 4.

maps the ground state manifold to single excitation states, the first order perturbative correction

due to the drive is 0. The degeneracy of the ground states is lifted at second order using degenerate

perturbation theory,

Ĥeff,A/h̄ ≈ −P̂g

(
ΩAL̂

+ + Ω∗
AL̂

−
) 1

Ĥ0

(
ΩAL̂

+ + Ω∗
AL̂

−
)
P̂g = −|ΩA|2P̂gL̂

− 1

Ĥ0

L̂+P̂g, (4.39)

where P̂g are projectors onto the ground state manifold. The unperturbed Hamiltonian Ĥ0 includes

not only the single particle term ∝ N̂e but also nonlinear contributions ∝ L̂+L̂−, R̂+R̂− and thus

obtaining a simple expression for Ĥ−1
0 is not straightforward. Fortunately, Ĥ0 conserves the number

of excitations, which is a strong enough symmetry to allow for an explicit calculation of Ĥ−1
0 . To

do this, consider the quantity

Ĥ0L̂
+P̂g = −∆AN̂eL̂

+P̂g + χL̂+L̂−L̂+P̂g + χR̂+R̂−L̂+P̂g. (4.40)

Due to the projectors, some parts of this expression can be simplified. First, N̂eL̂
+P̂g = L̂+P̂g

since the image of the operator L̂+P̂g is on the single excitation manifold. Second, the operators

L̂−L̂+P̂g and R̂−L̂+P̂g preserve the ground state manifold and can thus be written as L̂−L̂+P̂g ≡
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D̂LP̂g and R̂−L̂+P̂g ≡ T̂−P̂g where

D̂L ≡ P̂gL̂
−L̂+P̂g =

∑
i

D̂L
i , D̂L

i =
∑
m

η2i (C−1
m )2|gm⟩⟨gm|i,

T̂− ≡ P̂gR̂
−L̂+P̂g =

∑
i

T̂−
i , T̂−

i =
∑
m

η2iC
+1
m−2C

−1
m |gm−2⟩⟨gm|i,

(4.41)

are collective ground state operators only. Therefore

Ĥ0L̂
+P̂g = (L̂+P̂g)( − ∆A + χD̂L) + (R̂+P̂g)(χT̂−) . (4.42)

Note the ordering of the operators, which is important since [L̂±, D̂L] ̸= 0 and [R̂±, T̂−] ̸= 0.

Similarly,

Ĥ0R̂
+P̂g = (R̂+P̂g)( − ∆A + χD̂R) + (L̂+P̂g)(χT̂+) , (4.43)

where

D̂R ≡ P̂gR̂
−R̂+P̂g =

∑
i

D̂R
i , D̂R

i =
∑
m

η2i (C+1
m )2|gm⟩⟨gm|i,

T̂+ ≡ P̂gL̂
−R̂+P̂g =

∑
i

T̂+
i , T̂+

i =
∑
m

η2iC
+1
m C−1

m+2|gm+2⟩⟨gm|i.
(4.44)

Right multiplying Eq. (4.43) by (−∆A + χD̂R)−1χT̂− and subtracting the result from Eq. (4.42)

results in

Ĥ0

[
L̂+P̂g − R̂+P̂g( − ∆A + χD̂R)−1χT̂−

]
= (L̂+P̂g)

[
( − ∆A + χD̂L) − χ2T̂+( − ∆A + χD̂R)−1T̂−

]
.

(4.45)

Left multiplying by P̂gL̂
−Ĥ−1

0 leads to

D̂L − T̂+( − ∆A + χD̂R)−1χT̂−

= (P̂gL̂
−Ĥ−1

0 L̂+P̂g)
[
( − ∆A + χD̂L) − χ2T̂+( − ∆A + χD̂R)−1T̂−

]
.

(4.46)

Therefore

(P̂gL̂
−Ĥ−1

0 L̂+P̂g) =
1

χ
− ∆A

χ

(
∆A − χD̂L − χ2T̂+ĜA

RT̂
−
)−1

, (4.47)

where Ĝν
R = (∆ν − χD̂R)−1 and the effective ground state Hamiltonian due to drive A is

Ĥeff,A/h̄ = −|ΩA|2
χ

+
|ΩA|2∆A

χ

(
∆A − χD̂L − χ2T̂+ĜA

RT̂
−
)−1

. (4.48)
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i
<latexit sha1_base64="6hOVjykujFE1lDWqGm9laeT2Xzk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cWbC20oWy2k3bbzSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCopeNUMWyyWMSqHVCNgktsGm4EthOFNAoEPgbju5n/+IRK81g+mEmCfkQHkoecUWOlxqhXrrhVdw6ySrycVCBHvVf+6vZjlkYoDRNU647nJsbPqDKcCZyWuqnGhLIxHWDHUkkj1H42P3RKzqzSJ2GsbElD5urviYxGWk+iwHZG1Az1sjcT//M6qQlv/IzLJDUo2WJRmApiYjL7mvS5QmbExBLKFLe3EjakijJjsynZELzll1dJ66LqXVW9xmWldpvHUYQTOIVz8OAaanAPdWgCA4RneIU3Z+S8OO/Ox6K14OQzx/AHzucP0vmM9A==</latexit>

j

<latexit sha1_base64="nlCkhhzrBd/ehf0k6yyeTO6J0sc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzU4P1yxa26c5BV4uWkAjnq/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELuWShqh9rP5oVNyZpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbTcmG4C2/vEpaF1Xvquo1Liu12zyOIpzAKZyDB9dQg3uoQxMYIDzDK7w5j86L8+58LFoLTj5zDH/gfP4A0XWM8w==</latexit>

i
<latexit sha1_base64="6hOVjykujFE1lDWqGm9laeT2Xzk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cWbC20oWy2k3bbzSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCopeNUMWyyWMSqHVCNgktsGm4EthOFNAoEPgbju5n/+IRK81g+mEmCfkQHkoecUWOlxqhXrrhVdw6ySrycVCBHvVf+6vZjlkYoDRNU647nJsbPqDKcCZyWuqnGhLIxHWDHUkkj1H42P3RKzqzSJ2GsbElD5urviYxGWk+iwHZG1Az1sjcT//M6qQlv/IzLJDUo2WJRmApiYjL7mvS5QmbExBLKFLe3EjakijJjsynZELzll1dJ66LqXVW9xmWldpvHUYQTOIVz8OAaanAPdWgCA4RneIU3Z+S8OO/Ox6K14OQzx/AHzucP0vmM9A==</latexit>

j

<latexit sha1_base64="pa1I3BLx7IHraN213MUztm/2XVg=">AAACFXicbVBNSwMxEM36WetX1aOXYBE8SNkVUY9VLx4r2Cq0S8mmUxvMJksyWyxL/RFe/CtePCjiVfDmvzFt9+DXg4GX92bIzIsSKSz6/qc3NT0zOzdfWCguLi2vrJbW1htWp4ZDnWupzVXELEihoI4CJVwlBlgcSbiMbk5H/mUfjBVaXeAggTBm10p0BWfopHZpN6jctRBuMTtGHdOhmDwoi6w2kaUdI/pAk55GrYbtUtmv+GPQvyTISZnkqLVLH62O5mkMCrlk1jYDP8EwYwYFlzAstlILCeM37BqajioWgw2z8VVDuu2UDu1q40ohHavfJzIWWzuII9cZM+zZ395I/M9rptg9CjOhkhRB8clH3VRS1HQUEe0IAxzlwBHGjXC7Ut5jhnF0QRZdCMHvk/+Sxl4lOKgE5/vl6kkeR4Fski2yQwJySKrkjNRInXByTx7JM3nxHrwn79V7m7ROefnMBvkB7/0LUbufkA==</latexit>

1. Atom i absorbs drive photon

<latexit sha1_base64="ZOA2CmNsEV3AIMbEKi8LfESyb+Q="></latexit>

2. Atoms i and j exchange cavity photon

<latexit sha1_base64="HCH2iRYsnC7Nq8ZnFmKy041A2oA="></latexit>

3. Atom j emits photon to drive

<latexit sha1_base64="WQNFRE8EFvZAEA+FxDbsEbwqyxQ=">AAACEHicdVDLSgNBEJz1bXxFPXoZDKIgLrMxaryJXjwqGBWyMcxOOmbM7IOZXjEs+QQv/ooXD4p49ejNv3ESI6hoQUNR1U13V5AoaZCxd2doeGR0bHxiMjc1PTM7l59fODVxqgVURKxifR5wA0pGUEGJCs4TDTwMFJwF7YOef3YN2sg4OsFOArWQX0ayKQVHK9Xzq36LY3bSrV9drNMvLi82fOoj3GCW6FiAMd16vsDc3V1WKpUpc7dYsVjasoRtFstlj3ou66NABjiq59/8RizSECIUihtT9ViCtYxrlEJBN+enBhIu2vwSqpZGPARTy/oPdemKVRq0GWtbEdK++n0i46ExnTCwnSHHlvnt9cS/vGqKzXItk1GSIkTic1EzVRRj2kuHNqQGgapjCRda2lupaHHNBdoMczaEr0/p/+S06HrbrndcKuztD+KYIEtkmawRj+yQPXJIjkiFCHJL7skjeXLunAfn2Xn5bB1yBjOL5Aec1w+iFp2k</latexit>

T̂+
j T̂�

i process
<latexit sha1_base64="EcL5lvIW6iAYoLB0INxf9oTsTjo="></latexit>

D̂L
j D̂L

i process

|gmi
<latexit sha1_base64="RKBs+CUFlSEkUuxWJT8qs7tGGLc=">AAAB8nicbZDLSgMxFIYz9VbrrerSTbAIrsqMCLosunFZwV6gHUomPTMNzWVIMkIZ+xhuXCji1qdx59uYtrPQ1h8CH/85h5zzRylnxvr+t1daW9/Y3CpvV3Z29/YPqodHbaMyTaFFFVe6GxEDnEloWWY5dFMNREQcOtH4dlbvPII2TMkHO0khFCSRLGaUWGf1npKB6GsiEw6Das2v+3PhVQgKqKFCzUH1qz9UNBMgLeXEmF7gpzbMibaMcphW+pmBlNAxSaDnUBIBJsznK0/xmXOGOFbaPWnx3P09kRNhzERErlMQOzLLtZn5X62X2fg6zJlMMwuSLj6KM46twrP78ZBpoJZPHBCqmdsV0xHRhFqXUsWFECyfvArti3rg+P6y1rgp4iijE3SKzlGArlAD3aEmaiGKFHpGr+jNs96L9+59LFpLXjFzjP7I+/wBkPmRbA==</latexit><latexit sha1_base64="RKBs+CUFlSEkUuxWJT8qs7tGGLc=">AAAB8nicbZDLSgMxFIYz9VbrrerSTbAIrsqMCLosunFZwV6gHUomPTMNzWVIMkIZ+xhuXCji1qdx59uYtrPQ1h8CH/85h5zzRylnxvr+t1daW9/Y3CpvV3Z29/YPqodHbaMyTaFFFVe6GxEDnEloWWY5dFMNREQcOtH4dlbvPII2TMkHO0khFCSRLGaUWGf1npKB6GsiEw6Das2v+3PhVQgKqKFCzUH1qz9UNBMgLeXEmF7gpzbMibaMcphW+pmBlNAxSaDnUBIBJsznK0/xmXOGOFbaPWnx3P09kRNhzERErlMQOzLLtZn5X62X2fg6zJlMMwuSLj6KM46twrP78ZBpoJZPHBCqmdsV0xHRhFqXUsWFECyfvArti3rg+P6y1rgp4iijE3SKzlGArlAD3aEmaiGKFHpGr+jNs96L9+59LFpLXjFzjP7I+/wBkPmRbA==</latexit><latexit sha1_base64="RKBs+CUFlSEkUuxWJT8qs7tGGLc=">AAAB8nicbZDLSgMxFIYz9VbrrerSTbAIrsqMCLosunFZwV6gHUomPTMNzWVIMkIZ+xhuXCji1qdx59uYtrPQ1h8CH/85h5zzRylnxvr+t1daW9/Y3CpvV3Z29/YPqodHbaMyTaFFFVe6GxEDnEloWWY5dFMNREQcOtH4dlbvPII2TMkHO0khFCSRLGaUWGf1npKB6GsiEw6Das2v+3PhVQgKqKFCzUH1qz9UNBMgLeXEmF7gpzbMibaMcphW+pmBlNAxSaDnUBIBJsznK0/xmXOGOFbaPWnx3P09kRNhzERErlMQOzLLtZn5X62X2fg6zJlMMwuSLj6KM46twrP78ZBpoJZPHBCqmdsV0xHRhFqXUsWFECyfvArti3rg+P6y1rgp4iijE3SKzlGArlAD3aEmaiGKFHpGr+jNs96L9+59LFpLXjFzjP7I+/wBkPmRbA==</latexit><latexit sha1_base64="RKBs+CUFlSEkUuxWJT8qs7tGGLc=">AAAB8nicbZDLSgMxFIYz9VbrrerSTbAIrsqMCLosunFZwV6gHUomPTMNzWVIMkIZ+xhuXCji1qdx59uYtrPQ1h8CH/85h5zzRylnxvr+t1daW9/Y3CpvV3Z29/YPqodHbaMyTaFFFVe6GxEDnEloWWY5dFMNREQcOtH4dlbvPII2TMkHO0khFCSRLGaUWGf1npKB6GsiEw6Das2v+3PhVQgKqKFCzUH1qz9UNBMgLeXEmF7gpzbMibaMcphW+pmBlNAxSaDnUBIBJsznK0/xmXOGOFbaPWnx3P09kRNhzERErlMQOzLLtZn5X62X2fg6zJlMMwuSLj6KM46twrP78ZBpoJZPHBCqmdsV0xHRhFqXUsWFECyfvArti3rg+P6y1rgp4iijE3SKzlGArlAD3aEmaiGKFHpGr+jNs96L9+59LFpLXjFzjP7I+/wBkPmRbA==</latexit>

|emi
<latexit sha1_base64="snSn/8kAEwrh2+kp5GQ6H8JF0B8="></latexit><latexit sha1_base64="snSn/8kAEwrh2+kp5GQ6H8JF0B8="></latexit><latexit sha1_base64="snSn/8kAEwrh2+kp5GQ6H8JF0B8="></latexit><latexit sha1_base64="snSn/8kAEwrh2+kp5GQ6H8JF0B8="></latexit>

|gmi
<latexit sha1_base64="RKBs+CUFlSEkUuxWJT8qs7tGGLc=">AAAB8nicbZDLSgMxFIYz9VbrrerSTbAIrsqMCLosunFZwV6gHUomPTMNzWVIMkIZ+xhuXCji1qdx59uYtrPQ1h8CH/85h5zzRylnxvr+t1daW9/Y3CpvV3Z29/YPqodHbaMyTaFFFVe6GxEDnEloWWY5dFMNREQcOtH4dlbvPII2TMkHO0khFCSRLGaUWGf1npKB6GsiEw6Das2v+3PhVQgKqKFCzUH1qz9UNBMgLeXEmF7gpzbMibaMcphW+pmBlNAxSaDnUBIBJsznK0/xmXOGOFbaPWnx3P09kRNhzERErlMQOzLLtZn5X62X2fg6zJlMMwuSLj6KM46twrP78ZBpoJZPHBCqmdsV0xHRhFqXUsWFECyfvArti3rg+P6y1rgp4iijE3SKzlGArlAD3aEmaiGKFHpGr+jNs96L9+59LFpLXjFzjP7I+/wBkPmRbA==</latexit><latexit sha1_base64="RKBs+CUFlSEkUuxWJT8qs7tGGLc=">AAAB8nicbZDLSgMxFIYz9VbrrerSTbAIrsqMCLosunFZwV6gHUomPTMNzWVIMkIZ+xhuXCji1qdx59uYtrPQ1h8CH/85h5zzRylnxvr+t1daW9/Y3CpvV3Z29/YPqodHbaMyTaFFFVe6GxEDnEloWWY5dFMNREQcOtH4dlbvPII2TMkHO0khFCSRLGaUWGf1npKB6GsiEw6Das2v+3PhVQgKqKFCzUH1qz9UNBMgLeXEmF7gpzbMibaMcphW+pmBlNAxSaDnUBIBJsznK0/xmXOGOFbaPWnx3P09kRNhzERErlMQOzLLtZn5X62X2fg6zJlMMwuSLj6KM46twrP78ZBpoJZPHBCqmdsV0xHRhFqXUsWFECyfvArti3rg+P6y1rgp4iijE3SKzlGArlAD3aEmaiGKFHpGr+jNs96L9+59LFpLXjFzjP7I+/wBkPmRbA==</latexit><latexit sha1_base64="RKBs+CUFlSEkUuxWJT8qs7tGGLc=">AAAB8nicbZDLSgMxFIYz9VbrrerSTbAIrsqMCLosunFZwV6gHUomPTMNzWVIMkIZ+xhuXCji1qdx59uYtrPQ1h8CH/85h5zzRylnxvr+t1daW9/Y3CpvV3Z29/YPqodHbaMyTaFFFVe6GxEDnEloWWY5dFMNREQcOtH4dlbvPII2TMkHO0khFCSRLGaUWGf1npKB6GsiEw6Das2v+3PhVQgKqKFCzUH1qz9UNBMgLeXEmF7gpzbMibaMcphW+pmBlNAxSaDnUBIBJsznK0/xmXOGOFbaPWnx3P09kRNhzERErlMQOzLLtZn5X62X2fg6zJlMMwuSLj6KM46twrP78ZBpoJZPHBCqmdsV0xHRhFqXUsWFECyfvArti3rg+P6y1rgp4iijE3SKzlGArlAD3aEmaiGKFHpGr+jNs96L9+59LFpLXjFzjP7I+/wBkPmRbA==</latexit><latexit sha1_base64="RKBs+CUFlSEkUuxWJT8qs7tGGLc=">AAAB8nicbZDLSgMxFIYz9VbrrerSTbAIrsqMCLosunFZwV6gHUomPTMNzWVIMkIZ+xhuXCji1qdx59uYtrPQ1h8CH/85h5zzRylnxvr+t1daW9/Y3CpvV3Z29/YPqodHbaMyTaFFFVe6GxEDnEloWWY5dFMNREQcOtH4dlbvPII2TMkHO0khFCSRLGaUWGf1npKB6GsiEw6Das2v+3PhVQgKqKFCzUH1qz9UNBMgLeXEmF7gpzbMibaMcphW+pmBlNAxSaDnUBIBJsznK0/xmXOGOFbaPWnx3P09kRNhzERErlMQOzLLtZn5X62X2fg6zJlMMwuSLj6KM46twrP78ZBpoJZPHBCqmdsV0xHRhFqXUsWFECyfvArti3rg+P6y1rgp4iijE3SKzlGArlAD3aEmaiGKFHpGr+jNs96L9+59LFpLXjFzjP7I+/wBkPmRbA==</latexit>

|emi
<latexit sha1_base64="snSn/8kAEwrh2+kp5GQ6H8JF0B8="></latexit><latexit sha1_base64="snSn/8kAEwrh2+kp5GQ6H8JF0B8="></latexit><latexit sha1_base64="snSn/8kAEwrh2+kp5GQ6H8JF0B8="></latexit><latexit sha1_base64="snSn/8kAEwrh2+kp5GQ6H8JF0B8="></latexit>

|gmi
<latexit sha1_base64="RKBs+CUFlSEkUuxWJT8qs7tGGLc=">AAAB8nicbZDLSgMxFIYz9VbrrerSTbAIrsqMCLosunFZwV6gHUomPTMNzWVIMkIZ+xhuXCji1qdx59uYtrPQ1h8CH/85h5zzRylnxvr+t1daW9/Y3CpvV3Z29/YPqodHbaMyTaFFFVe6GxEDnEloWWY5dFMNREQcOtH4dlbvPII2TMkHO0khFCSRLGaUWGf1npKB6GsiEw6Das2v+3PhVQgKqKFCzUH1qz9UNBMgLeXEmF7gpzbMibaMcphW+pmBlNAxSaDnUBIBJsznK0/xmXOGOFbaPWnx3P09kRNhzERErlMQOzLLtZn5X62X2fg6zJlMMwuSLj6KM46twrP78ZBpoJZPHBCqmdsV0xHRhFqXUsWFECyfvArti3rg+P6y1rgp4iijE3SKzlGArlAD3aEmaiGKFHpGr+jNs96L9+59LFpLXjFzjP7I+/wBkPmRbA==</latexit><latexit sha1_base64="RKBs+CUFlSEkUuxWJT8qs7tGGLc=">AAAB8nicbZDLSgMxFIYz9VbrrerSTbAIrsqMCLosunFZwV6gHUomPTMNzWVIMkIZ+xhuXCji1qdx59uYtrPQ1h8CH/85h5zzRylnxvr+t1daW9/Y3CpvV3Z29/YPqodHbaMyTaFFFVe6GxEDnEloWWY5dFMNREQcOtH4dlbvPII2TMkHO0khFCSRLGaUWGf1npKB6GsiEw6Das2v+3PhVQgKqKFCzUH1qz9UNBMgLeXEmF7gpzbMibaMcphW+pmBlNAxSaDnUBIBJsznK0/xmXOGOFbaPWnx3P09kRNhzERErlMQOzLLtZn5X62X2fg6zJlMMwuSLj6KM46twrP78ZBpoJZPHBCqmdsV0xHRhFqXUsWFECyfvArti3rg+P6y1rgp4iijE3SKzlGArlAD3aEmaiGKFHpGr+jNs96L9+59LFpLXjFzjP7I+/wBkPmRbA==</latexit><latexit sha1_base64="RKBs+CUFlSEkUuxWJT8qs7tGGLc=">AAAB8nicbZDLSgMxFIYz9VbrrerSTbAIrsqMCLosunFZwV6gHUomPTMNzWVIMkIZ+xhuXCji1qdx59uYtrPQ1h8CH/85h5zzRylnxvr+t1daW9/Y3CpvV3Z29/YPqodHbaMyTaFFFVe6GxEDnEloWWY5dFMNREQcOtH4dlbvPII2TMkHO0khFCSRLGaUWGf1npKB6GsiEw6Das2v+3PhVQgKqKFCzUH1qz9UNBMgLeXEmF7gpzbMibaMcphW+pmBlNAxSaDnUBIBJsznK0/xmXOGOFbaPWnx3P09kRNhzERErlMQOzLLtZn5X62X2fg6zJlMMwuSLj6KM46twrP78ZBpoJZPHBCqmdsV0xHRhFqXUsWFECyfvArti3rg+P6y1rgp4iijE3SKzlGArlAD3aEmaiGKFHpGr+jNs96L9+59LFpLXjFzjP7I+/wBkPmRbA==</latexit><latexit sha1_base64="RKBs+CUFlSEkUuxWJT8qs7tGGLc=">AAAB8nicbZDLSgMxFIYz9VbrrerSTbAIrsqMCLosunFZwV6gHUomPTMNzWVIMkIZ+xhuXCji1qdx59uYtrPQ1h8CH/85h5zzRylnxvr+t1daW9/Y3CpvV3Z29/YPqodHbaMyTaFFFVe6GxEDnEloWWY5dFMNREQcOtH4dlbvPII2TMkHO0khFCSRLGaUWGf1npKB6GsiEw6Das2v+3PhVQgKqKFCzUH1qz9UNBMgLeXEmF7gpzbMibaMcphW+pmBlNAxSaDnUBIBJsznK0/xmXOGOFbaPWnx3P09kRNhzERErlMQOzLLtZn5X62X2fg6zJlMMwuSLj6KM46twrP78ZBpoJZPHBCqmdsV0xHRhFqXUsWFECyfvArti3rg+P6y1rgp4iijE3SKzlGArlAD3aEmaiGKFHpGr+jNs96L9+59LFpLXjFzjP7I+/wBkPmRbA==</latexit>

|emi
<latexit sha1_base64="snSn/8kAEwrh2+kp5GQ6H8JF0B8="></latexit><latexit sha1_base64="snSn/8kAEwrh2+kp5GQ6H8JF0B8="></latexit><latexit sha1_base64="snSn/8kAEwrh2+kp5GQ6H8JF0B8="></latexit><latexit sha1_base64="snSn/8kAEwrh2+kp5GQ6H8JF0B8="></latexit>

|gmi
<latexit sha1_base64="RKBs+CUFlSEkUuxWJT8qs7tGGLc=">AAAB8nicbZDLSgMxFIYz9VbrrerSTbAIrsqMCLosunFZwV6gHUomPTMNzWVIMkIZ+xhuXCji1qdx59uYtrPQ1h8CH/85h5zzRylnxvr+t1daW9/Y3CpvV3Z29/YPqodHbaMyTaFFFVe6GxEDnEloWWY5dFMNREQcOtH4dlbvPII2TMkHO0khFCSRLGaUWGf1npKB6GsiEw6Das2v+3PhVQgKqKFCzUH1qz9UNBMgLeXEmF7gpzbMibaMcphW+pmBlNAxSaDnUBIBJsznK0/xmXOGOFbaPWnx3P09kRNhzERErlMQOzLLtZn5X62X2fg6zJlMMwuSLj6KM46twrP78ZBpoJZPHBCqmdsV0xHRhFqXUsWFECyfvArti3rg+P6y1rgp4iijE3SKzlGArlAD3aEmaiGKFHpGr+jNs96L9+59LFpLXjFzjP7I+/wBkPmRbA==</latexit><latexit sha1_base64="RKBs+CUFlSEkUuxWJT8qs7tGGLc=">AAAB8nicbZDLSgMxFIYz9VbrrerSTbAIrsqMCLosunFZwV6gHUomPTMNzWVIMkIZ+xhuXCji1qdx59uYtrPQ1h8CH/85h5zzRylnxvr+t1daW9/Y3CpvV3Z29/YPqodHbaMyTaFFFVe6GxEDnEloWWY5dFMNREQcOtH4dlbvPII2TMkHO0khFCSRLGaUWGf1npKB6GsiEw6Das2v+3PhVQgKqKFCzUH1qz9UNBMgLeXEmF7gpzbMibaMcphW+pmBlNAxSaDnUBIBJsznK0/xmXOGOFbaPWnx3P09kRNhzERErlMQOzLLtZn5X62X2fg6zJlMMwuSLj6KM46twrP78ZBpoJZPHBCqmdsV0xHRhFqXUsWFECyfvArti3rg+P6y1rgp4iijE3SKzlGArlAD3aEmaiGKFHpGr+jNs96L9+59LFpLXjFzjP7I+/wBkPmRbA==</latexit><latexit sha1_base64="RKBs+CUFlSEkUuxWJT8qs7tGGLc=">AAAB8nicbZDLSgMxFIYz9VbrrerSTbAIrsqMCLosunFZwV6gHUomPTMNzWVIMkIZ+xhuXCji1qdx59uYtrPQ1h8CH/85h5zzRylnxvr+t1daW9/Y3CpvV3Z29/YPqodHbaMyTaFFFVe6GxEDnEloWWY5dFMNREQcOtH4dlbvPII2TMkHO0khFCSRLGaUWGf1npKB6GsiEw6Das2v+3PhVQgKqKFCzUH1qz9UNBMgLeXEmF7gpzbMibaMcphW+pmBlNAxSaDnUBIBJsznK0/xmXOGOFbaPWnx3P09kRNhzERErlMQOzLLtZn5X62X2fg6zJlMMwuSLj6KM46twrP78ZBpoJZPHBCqmdsV0xHRhFqXUsWFECyfvArti3rg+P6y1rgp4iijE3SKzlGArlAD3aEmaiGKFHpGr+jNs96L9+59LFpLXjFzjP7I+/wBkPmRbA==</latexit><latexit sha1_base64="RKBs+CUFlSEkUuxWJT8qs7tGGLc=">AAAB8nicbZDLSgMxFIYz9VbrrerSTbAIrsqMCLosunFZwV6gHUomPTMNzWVIMkIZ+xhuXCji1qdx59uYtrPQ1h8CH/85h5zzRylnxvr+t1daW9/Y3CpvV3Z29/YPqodHbaMyTaFFFVe6GxEDnEloWWY5dFMNREQcOtH4dlbvPII2TMkHO0khFCSRLGaUWGf1npKB6GsiEw6Das2v+3PhVQgKqKFCzUH1qz9UNBMgLeXEmF7gpzbMibaMcphW+pmBlNAxSaDnUBIBJsznK0/xmXOGOFbaPWnx3P09kRNhzERErlMQOzLLtZn5X62X2fg6zJlMMwuSLj6KM46twrP78ZBpoJZPHBCqmdsV0xHRhFqXUsWFECyfvArti3rg+P6y1rgp4iijE3SKzlGArlAD3aEmaiGKFHpGr+jNs96L9+59LFpLXjFzjP7I+/wBkPmRbA==</latexit>
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Figure 4.16: Perturbative ground-ground processes between atom i and j. (a) The D̂LD̂L process
exchanging left circular polarized photons. (b) The T̂+T̂− process exchanging right circular polar-
ized photons. Here we define χL = χR = χ, with subscript L or R labelling photon polarizations.

Similarly, drive B will generate an analogous contribution to the effective ground state Hamiltonian.

Since there are no possible interference pathways between the two drives (at second order) due to

their different frequencies (we will take ∆A∆B < 0), the full effective Hamiltonian will be the sum

of both contributions

Ĥeff/h̄ = −
∑

ν=A,B

|Ων |2
χ

+
∑

ν=A,B

|Ων |2∆ν

χ

(
∆ν − χD̂L − χ2T̂+Ĝν

RT̂
−
)−1

. (4.49)

Omitting the c-number terms leads to Eq. (2) in the main text. We have numerically benchmarked

the validity of Ĥeff [Eq. (4.49)] to capture the dynamics of the full atomic Hamiltonian Ĥaa+d

[Eq. (4.36)]. Fig. 4.15 shows the excellent agreement between them.

Now we proceed to discuss the reason why we need two external drives. In the off-resonant

regime (|∆A,B| ≳ |χN |), one can expand Ĥeff in a power series of χN/∆A,B, and keep only the

leading order terms as an excellent approximation. It’s worth to mention that we only use this

approximation for a qualitative understanding of the dynamics in our system, while all the quan-

titative calculations are still based on Eq. (4.49). In this approximation, the effective Hamiltonian

simplifies to

Ĥeff/h̄ ≈
∑

ν=A,B

|Ων |2
∆ν

D̂L +
|Ων |2χ

∆2
ν

(D̂LD̂L + T̂+T̂−). (4.50)
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As we discussed in the main text, the first term describes the single-particle AC Stark shift, the

second term describes the population dependent collective shift, and the third term describes corre-

lated hopping. The microscopic mechanism of the second and the third term is shown in Fig. 4.16.

If we have only one external drive, the single-particle AC Stark shift term always play dominant

role. In order to observe correlated hopping, one can use two external drives with detunings in op-

posite sign to suppress the undesirable energy shifts generated by the first two terms. Considering

an initial state |i⟩ and a final state |f⟩ connected by correlated hopping processes, ⟨f |T̂+T̂−|i⟩ ≠ 0,

the condition of suppressing the first two terms can be written as∣∣∣∣⟨i|Ĥeff |i⟩ − ⟨f |Ĥeff |f⟩
∣∣∣∣≪ ∣∣∣∣ ∑

ν=A,B

h̄|Ων |2χ
∆2

ν

⟨f |T̂+T̂−|i⟩
∣∣∣∣. (4.51)

This condition can be satisfied by tuning ∆A,B. Even though it is only computed using the initial

state and thus only guarantee to be satisfied at t = 0, we find that in a large parameter regime it

allows to make the correlated hopping process to be dominant during a time window where they

can give rise to non-trivial spreading through the synthetic ladder.

4.3.6 Supplemental Materials: Schwinger bosons and undepleted pump approxi-

mation

In the main text, we focused on the initial states as a direct product of a permutationally sym-

metric states of N/2 atoms on the upper leg of the synthetic ladder (|ψup⟩) and a permutationally

symmetric state of N/2 atoms on the lower leg (|ψdown⟩),

|ψ⟩ = |ψup⟩ ⊗ |ψdown⟩. (4.52)

Since the effective ground state Hamiltonian [Eq. (4.49)] forbids any direct hopping process be-

tween the legs of the synthetic ladder, the Hamiltonian dynamics with these initial states oc-

curs in a reduced Hilbert space consisted of any SU
(
2Fg+1

2

)
× SU

(
2Fg+1

2

)
rotations on |ψ⟩,

where SU(n) denotes special unitary group of n × n matrices. So we can assign one set of

Schwinger bosons {â−Fg+1, â−Fg+3, · · · , âFg} to the upper leg and another set of Schwinger bosons
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{â−Fg , â−Fg+2, · · · , âFg−1} to the lower leg. In this way, we can rewrite the operators acting only

on the ground manifold as,

D̂L =
∑
m

(C−1
m )2â†mâm, D̂R =

∑
m

(C+1
m )2â†mâm, T̂+ =

∑
m

C+1
m C−1

m+2â
†
m+2âm, (4.53)

where âm is the bosonic annihilation operator for state |gm⟩. In the following, we will apply

undepleted pump approximation (UPA) to the four-level and the six-level system discussed in the

main text. The cascaded correlated hopping process in the ten-level system is beyond the reach of

UPA.

UPA for four-level system

We first consider the initial state |g−3/2⟩⊗(N/2)|g3/2⟩⊗(N/2) for the four-level (Fg = Fe = 3/2)

system discussed in the main text. The short time dynamics in this system can be understood via

UPA, where to the leading order one can replace the bosonic operators of the initial macroscopically

occupied states as c-numbers,

â±3/2 = â†±3/2 ≈
√
N

2
, and â†±3/2â±3/2 =

N

2
− â†∓1/2â∓1/2. (4.54)

So the operators in Eq. (4.53) can be approximated as

D̂L ≈ N

5
+

8

15
â†1/2â1/2, D̂R ≈ N

5
+

8

15
â†−1/2â−1/2, T̂+ ≈ −2

√
6N

15
(â†1/2 + â−1/2). (4.55)

Plugging in this approximation in the effective ground state Hamiltonian [Eq. (4.49)], and

keeping the terms with operators â±1/2, â
†
±1/2 up to second order, we obtain,

Ĥeff/h̄ =
∑

ν=A,B

|Ων |2∆ν

χ

[
∆ν − χD̂L − χ2T̂+(∆ν − χD̂R)−1T̂−

]−1

≈
∑

ν=A,B

|Ων |2∆ν

χ

[
(∆ν − χN/5) − 8χ

15
â†1/2â1/2

− χ2

∆ν − χN/5

8N

75
(â†1/2 + â−1/2)(â1/2 + â†−1/2)

]−1

≈ K1â
†
−1/2â−1/2 +K2â

†
1/2â1/2 +K3(â

†
−1/2â

†
1/2 + â−1/2â1/2).

(4.56)
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where

K1 = K3 =
∑

ν=A,B

8

75

|Ων |2∆νχN

(∆ν − χN/5)3
,

K2 =
∑

ν=A,B

8

15

|Ων |2∆ν

(∆ν − χN/5)2
+

8

75

|Ων |2∆νχN

(∆ν − χN/5)3
.

(4.57)

The effective Hamiltonian under the UPA [Eq. (4.56)] can be exactly diagonalized using a

Bogoliubov transformation. In this case the dynamics of the populations in the |g±1/2⟩ states,

labelled as N±1/2, is found to be given by the following analytic formula in different parameter

regimes:

N±1/2(t) =



4K2
3

(K1 +K2)2 − 4K2
3

sin2

(√
(K1 +K2)2 − 4K2

3

t

2

)
if (K1 +K2)

2 > 4K2
3

K2
3 t

2 if (K1 +K2)
2 = 4K2

3

4K2
3

4K2
3 − (K1 +K2)2

sinh2

(√
4K2

3 − (K1 +K2)2
t

2

)
if (K1 +K2)

2 < 4K2
3

,

(4.58)

which are shown using dashed lines in Fig. 2(c) in the main text. Notice that N±1/2(t) shows small

sinusoidal oscillations in the regime (K1 + K2)
2 > 4K2

3 , while it shows an exponential growth in

the regime (K1 + K2)
2 < 4K2

3 . This indicates a dynamical phase transition (DPT) at the critical

point (K1 +K2)
2 = 4K2

3 , which is equivalent to

∑
ν=A,B

|Ων |2∆ν

(∆ν − χN/5)2
= 0 or

∑
ν=A,B

|Ων |2∆ν

(∆ν − χN/5)2
+

4

5

|Ων |2∆νχN

(∆ν − χN/5)3
= 0. (4.59)

By solving these two equations, one can obtain the phase boundaries shown in Fig. 2(b) in the

main text.

UPA for six-level system

In the main text, we consider the initial state [
√
p−3/2|g−3/2⟩+√

p5/2|g5/2⟩]⊗(N/2)|g−1/2⟩⊗(N/2)

for the six-level (Fg = Fe = 5/2) system, where p5/2 = 1−p−3/2. Similar to the previous subsection,

we use the UPA to analyze the short time dynamics in this system. We have 6 independent
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Schwinger bosons in this problem,

Empty : â−5/2, â3/2, â1/2, â− = −√p5/2â−3/2 +
√
p−3/2â5/2

Occupied : â−1/2, â+ =
√
p−3/2â−3/2 +

√
p5/2â5/2

We would like to replace the occupied modes by c-numbers, and keep the empty modes up to second

order. So we have

D̂L =
16

35
â†−1/2â−1/2 +

16

35
â†3/2â3/2 +

18

35
â†1/2â1/2 +

2

7
â†+â+ +

2

7
â†−â−

≈ 13

35
N − 16

35
â†−5/2â−5/2 +

8

35
â†1/2â1/2,

(4.60)

D̂R =
2

7
â†−5/2â−5/2 +

2

7
â†3/2â3/2 +

18

35
â†−1/2â−1/2 +

16

35
â†1/2â1/2

+
16

35
(
√
p−3/2â

†
+ −√p5/2â†−)(

√
p−3/2â+ −√p5/2â−)

≈
(

9

35
+

8

35
p−3/2

)
N − 8

35
â†−5/2â−5/2 −

8

35
â†3/2â3/2 +

16

35
(1 − p−3/2)â

†
1/2â1/2

+
16

35
(p5/2 − p−3/2)â

†
−â− − 16

35

√
p−3/2p5/2

√
N

2
(â†− + â−),

(4.61)

T̂+ = −
[

4
√

10

35
â†−1/2â−5/2 +

12
√

2

35
â†3/2â−1/2 +

12
√

2

35
â†1/2(

√
p−3/2â+ −√p5/2â−)

+
4
√

10

35
(
√
p5/2â

†
+ +

√
p−3/2â

†
−)â1/2

]
≈ −

[
4
√

10

35

√
N

2
â−5/2 +

12
√

2

35

√
N

2
â†3/2 +

12
√

2

35

√
p−3/2N

2
â†1/2 +

4
√

10

35

√
p5/2N

2
â1/2

]
.

(4.62)

In this way, the effective ground state Hamiltonian [see Eq. (4.49)] can be approximated into

the following form,

Ĥeff/h̄ ≈
∑
ij

[
Lij â

†
i âj +

1

2
Mij â

†
i â

†
j +

1

2
M∗

ij âiâj

]
, (4.63)

where i, j ∈ {−5/2, 1/2, 3/2}, and â−, â
†
− are not included because they only appear in the terms

beyond the second order. Here, L is a Hermitian matrix, and M is a symmetric matrix. They take

the following form:

L =


K1 K4

√
p5/2 0

K4
√
p5/2 K2 K5

√
p−3/2

0 K5
√
p−3/2 K3

 , M =


0 K6

√
p−3/2 K6

K6
√
p−3/2 2K6

√
p−3/2p5/2 K6

√
p5/2

K6 K6
√
p5/2 0

 ,

(4.64)
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comparison with (a) Ndiff/N and (b) N sum/N calculated by exact diagonalization with 20 atoms.
We set ∆A = −3χN , and the same initial state for the six-level system as discussed in the main
text. The black dashed line in (a) indicates balanced transport.

where

K1 = −16

35
C1 +

16

245
C2, K2 =

8

35
C1 +

(
144

1225
p−3/2 +

16

245
p5/2

)
C2,

K3 = K5 =
144

1225
C2, K4 =

16

245
C2, K6 =

48
√

5

1225
C2,

C1 =
∑

ν=A,B

|Ων |2∆ν

(∆ν − 13χN/35)2
, C2 =

∑
ν=A,B

|Ων |2∆νχN

(∆ν − 13χN/35)2[∆ν − (9 + 8p−3/2χN/35)]
.

(4.65)

The dynamics of an operator Ô under Eq. (4.63) can be solved exactly using the Heisenberg

equations of motion ∂tÔ = i[Ĥ, Ô]/h̄, so we have the following set of equations for the bosonic

creation and annilation operators,

∂t

 Â

Â†

 = −i

 L M

−M∗ −L∗


 Â

Â†

 , (4.66)

where Â = (â−5/2, â1/2, â3/2)
T . This allows us to reduce the problem into the calculation of right

eigenvalues and right eigenvectors for a non-Hermitian matrix, L M

−M∗ −L∗


u⃗p
v⃗p

 = ϵp

u⃗p
v⃗p

 , (4.67)
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These are the so-called Bogoliubov-de Gennes (BdG) equations. By defining a matrix T whose col-

umn vectors are the right eigenvectors (u⃗p, v⃗p)
T , and a diagonal matrix H whose diagonal elements

are the right eigenvalues ϵp, we have Â(t)

Â†(t)

 = Ut

 Â(0)

Â†(0)

 , Ut = exp

−i
 L M

−M∗ −L∗

 t

 = T e−iHtT −1. (4.68)

Since we are considering the initial state as the vacuum state, the expectation values of any

quadratic form of bosonic operators are given by〈
vac

∣∣∣∣∣∣∣
 Â(t)

Â†(t)

(Â(t) Â†(t)

)∣∣∣∣∣∣∣ vac

〉
= Ut

0 I

0 0

UT
t , (4.69)

where I is the identity matrix. Using this method, we can calculate the short time dynamics of

Ndiff , which are shown with dashed lines in Fig. 3(c) in the main text.

Based on Eq. (4.68), one can separate between the exponential growth (Phase I) and the

sinusoidal oscillation (Phase II): If all the right eigenvalues ϵp are real numbers, the system is in

Phase II; If at least one of the right eigenvalues ϵp are complex numbers, the system is in Phase

I. According to Eq. (4.67), if (u⃗p, v⃗p)
T is a right eigenvector with right eigenvalue ϵp, (v⃗∗p, u⃗

∗
p)

T

is a right eigenvector with right eigenvalue −ϵ∗p. Since all the element of matrix L and M are

real numbers, if ϵp is a right eigenvalue, ϵ∗p is also a right eigenvalue. Therefore, if ϵp is a real

number, we have a pair of right eigenvalues ϵp,−ϵp; if ϵp is a complex number, we have four

right eigenvalues ϵp,−ϵp, ϵ∗p,−ϵ∗p. So we have two different cases for the six-level system discussed

above: 2 real eigenvalues, 4 complex eigenvalues (Phase I); 6 real eigenvalues (Phase II). The phase

boundary calculated by UPA generally agrees with the long-time averages Ndiff = N3/2 − N−5/2

and N sum = N3/2 +N−5/2 calculated by exact diagonalization with 20 atoms [see Fig. 4.17].

We can now explain the short-time behavior of chiral transport discussed in the main text

based on the 4 pair creation processes described by matrix M:

• Process I: â†−5/2â
†
1/2 with strength K6

√
p−3/2

• Process II: â†3/2â
†
1/2 with strength K6

√
p5/2
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• Process III: â†−5/2â
†
3/2 with strength K6

• Process IV: â†1/2â
†
1/2 with strength K6

√
p−3/2p5/2

Notice that only process I and II change the value of Ndiff , and the relative strength between these

two processes can be tuned by p−3/2, while ∆B is another control knob to determine whether

these processes are on resonance or not. When these two processes are both on resonance, e.g.

∆B/χN ∈ (3, 4), the direction of chiral transport is fully tunable via p−3/2 [see Fig. 4.17(a)]. When

process I is off resonance, e.g. ∆B/χN ∈ (5, 6), we always find chiral transport to the right side in

the exponential growth regime, and balanced transport is only possible to achieved by tuning the

whole system to sinusoidal oscillation regime [see Fig. 4.17(a)].

4.3.7 Supplemental Materials: Numerical results for dynamical phase transition

Here we present additional numerical results using exact diagonalization that complements

the discussion of the dynamical phase transition (DPT) discussed in Fig. 2 of the main text. Since

exact diagonalization is only possible for a small atom number, we explore the properties of this

DPT in the thermodynamic limit using finite size scaling. Given the collective nature of the cavity-

mediated interactions, it is convenient to vary the atom number N while keeping χN fixed. As

we described in the main text, we consider the initial state |g−3/2⟩⊗(N/2)|g3/2⟩⊗(N/2), which is an

eigenstate of this system when ∆A,∆B → ∞. We choose ΩA = ΩB = Ω = 0.05χN , and then

perform a sudden quench to ∆A = −4χN and ∆B between 4χN and 7χN . The order parameter

of this DPT is the long-time average of the fractional atom population of the |g±1/2⟩ states,

n±1/2 = lim
T→∞

1

T

∫ T

0

N±1/2(t)

N
dt, (4.70)

shows a sharp change behavior as we varying ∆B [see Fig. 4.18(a)]. Near the dynamical critical

points (∆B,1 = 4.80χN , ∆B,2 = 6.53χN), it is convenient to assume n±1/2 as a homogeneous

function,

n±1/2 = N−β1,2/νf(τ1,2N
1/ν), (4.71)
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Figure 4.18: Finite size scaling of DPT by varying atom number N while keeping χN fixed. (a)
The long-time average fractional atom population of |g±1/2⟩ states (n±1/2) at ∆A = −4χN . The
dashed lines indicate the dynamical critical points predicted by UPA in the previous section. (b,c)
Data collapse of finite-size calculations of n±1/2 near the critical points ∆B,1 and ∆B,2 (see text).
(d) Short-time dynamics of n±1/2 at ∆A = −4χN and ∆B = 5.3χN . The dashed line marks
n±1/2 = 0.05, which determines the typical time scale t∗ for the obsevation of the DPT. The inset
shows the logarithmic scaling of t∗.

where τ1 = (∆B − ∆B,1)/χN , τ2 = (∆B − ∆B,2)/χN . The data collapse of finite-size calculations

are shown in Fig. 4.18(b,c), which gives β1 = 1.15, β2 = 1.04, ν = 2.38. Based on the data collapse,

one can conclude that

n±1/2 = 0 (τ1 < 0), n±1/2 ∝ τβ1
1 (τ1 > 0),

n±1/2 ∝ (−τ2)β2 (τ2 < 0), n±1/2 = 0 (τ2 > 0),

(4.72)

at thermodynamic limit with τ1,2 → 0.

In experiments, it is easier to explore the DPT using short-time dynamics instead of long-

time averages. In phase I, the exponential growth of n±1/2 is triggered by quantum fluctuations in

the initial state, and therefore there is a delay time for |g±1/2⟩ states to accumulate a macroscopic

population [see Fig. 4.18(d)]. The delay time increases as we increase the atom number N . A

reasonable measure of the delay time would be the time t∗ for n±1/2 reaching 0.05 (∼ 10% of

maximum value). As shown in the inset of Fig. 4.18(d), we find t∗ ∝ ln(N/2).

4.3.8 Supplemental Materials: Experimental considerations

Experimental parameters
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Here we discuss the specific case of the 1S0 → 3P1 transition in 87Sr using the experimental

parameters described in Ref. [107]. We show that current experimental parameters lie in the regime

where our theory predictions are valid and the dynamics is dominated by unitary evolution. The

conditions are summarized in Table 4.1. In this system the typical atom-light coupling strength

is gc ∼ 2π × 10kHz, and the cavity intensity decay rate is κ ∼ 2π × 100kHz. Choosing atom

number N ∼ 2 × 105, and cavity detuning ∆c = 2π × 20MHz, we ensure the adiabatic elimination

of the cavity photons and dominant unitary dynamics compared to cavity decay. As we discussed

in the main text, setting ΩA,B = Ω = 0.05χN , and ∆A,B comparable or larger than χN satisfy the

requirement of adiabatic elimination of atomic excited states. Note that the correlated hopping

processes occur at a rate Ω2χN/∆2
A,B, while the dissipation process in atomic ground manifold

due to spontaneous emission from excited manifold occur at a rate Ω2γ/∆2
A,B. Since for the above

parameters χN ∼ 2π × 1MHz, is more than two orders of magnitude larger than the spontaneous

emission rate γ = 2π × 7.5kHz of 3P1 states, we can ignore dissipation during the time scale of

interests. As shown in Fig. 4 in the main text, the correlation spreading takes place at a time scale

Ω2t/2πχN ∼ 100 for atom number N = 10, and the corresponding delay time is Ω2t∗/2πχN ∼ 10.

For N ∼ 2 × 105, the delay time is expected to be 7 times longer, and the relevant experimental

time scale to observe correlation spreading is Ω2t/2πχN ∼ 200, which corresponds to t ∼ 80ms.

Table 4.1: Summary of approximations in theory model and the required parameter regimes (see
text for details)

Theory approximations Required parameter regimes

Adiabatic elimination of cavity photons |∆c| ≫ gc
√
N

Negligible cavity loss |∆c| ≫ κ

Adiabatic elimination of atomic excited states |∆A,B|, |χN | ≫ |ΩA,B|
Negligible spontaneous emission |χN | ≫ γ

Weak magnetic field limit |χN | ≫ δeFe

Although we have assumed a vanishing magnetic field in our discussions, our protocol is

relatively robust against the magnetic field along the quantization axis (ẑ), because the effective
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Figure 4.19: Effect of a finite magnetic field in the short-time dynamics for the case of 87Sr atoms.
The initial state is |g−9/2⟩⊗(N/2)|g9/2⟩⊗(N/2), and N = 4. We set χN = 2π × 1MHz, ∆A = −3χN ,
∆B = 4.1χN . The solid lines are calculated based on Eq. (4.73), with magnetic field (a) B = 0.12G
(δe = 0.01χN), (b) B = 0.59G (δe = 0.05χN), and (c) B = 1.77G (δe = 0.15χN). The dashed
lines in (a) are the ideal case with zero magnetic field.

ground state Hamiltonian [Eq. (4.49)] commutes with linear Zeeman shifts on the ground manifold.

The only constraint for the maximum tolerable magnetic field is the Zeeman shifts of the excited

manifold. They should be small compared to χN , otherwise the many-body structure of the atomic

excited states will change and the Zeeman splitting must be included in the derivation of the effective

Hamiltonian. We benchmark the effect of magnetic field using the following Hamiltonian,

Ĥ = Ĥaa+d + ĤZ , ĤZ/h̄ = δeF̂
z
e + δgF̂

z
g , (4.73)

where Ĥaa+d is defined in Eq. (4.36), δe = GF=9/2,3P1
µBB, and δg = GF=9/2,1S0

µBB with µB the

Bohr magneton, and B the magnetic field. Here, GF=9/2,3P1
= 2/33, GF=9/2,1S0

= −1.3 × 10−4 are

the Landé g-factors for 87Sr atoms [265]. We have calculated the exact short-time dynamics for 4

atoms using Trotterization, which are shown as solid lines in Fig. 4.19. For the case of 0.1G magnetic

field [see Fig. 4.19(a)], the Hamiltonian dynamics agrees with the case of zero magnetic field at

short time. Even with a 0.6G magnetic field [see Fig. 4.19(b)], it is still possible to observe similar

dynamics generated by correlated hopping processes. A larger magnetic field can be problematic

since it leads to a significant suppression of the correlated hopping processes [see Fig. 4.19(c)].

Initial state preparation

Here we discuss the experimental protocol for initial state preparation. The most common
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type of initial state required in the main text is half of atoms in mF = −F state and half of atoms

in mF = F state. Here we use 87Sr atom (F = 9/2) as an example to explain how to prepare it

via optical pumping during the laser cooling procedure. Such type of initial state preparation has

already been demonstrated in previous experiments [186, 263]. Note that 1S0 → 3P1 transition is

a common choice for narrow-line cooling. If we use π-polarized light to interrogate the transition

1S0(F = 9/2) → 3P1(F
′ = 7/2), one can see that the mF = ±9/2 states in the ground manifold

are the dark states during the cooling process, and atoms will spontaneous decay and accumulate

there at the end of cooling process. So one can prepare roughly N/2 atoms in mF = −9/2 state,

and N/2 atoms in mF = 9/2 state due to the symmetric Clebsch-Gordan coefficients. Note that

this process generates no coherence between mF = ±9/2 states due to dissipation, which allows

us to generate the state |g−9/2⟩⊗(N/2)|g9/2⟩⊗(N/2), up to an statistical atom number imbalance of

the order of
√
N . This small imbalance in the initial state has negligible effects on the physical

phenomena we are investigating.

For the general initial states with half of atoms atoms on the upper leg and half of atoms

atoms on the lower leg, |ψ⟩ = |ψup⟩⊗|ψdown⟩, one can first prepare half of atoms in mF = −F state

and half of atoms in mF = F state as we discussed above, and then use the ultranarrow 1S0 → 3P0

transition to perform coherent transfer. This ultranarrow transition allows us to energetically

resolve each of the hyperfine levels even with a small magnetic field.

4.4 Control and amplification of Bloch oscillations via photon-mediated

interactions

This section is adapted from: Haoqing Zhang, Anjun Chu, Chengyi Luo, James K. Thomp-

son, Ana Maria Rey, Control and amplification of Bloch oscillations via photon-mediated interac-

tions, Physical Review Research 5, L032039 (2023).

https://doi.org/10.1103/PhysRevResearch.5.L032039
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4.4.1 Introduction

Bloch oscillations (BO) [266] are center-of-mass oscillations or coherent breathing experienced

by independent particles in a periodic lattice potential in the presence of a constant force (e.g. grav-

ity). Although it has been hard to directly control BO in conventional electron systems, they have

been observed in tailored semiconductor systems [267] as well as ultracold atom systems trapped

in optical lattices [268,269]. Nevertheless, for the latter, the lattice potential is by implementation

rigid and therefore not a good test bed example of the underlying physics in real materials where the

phonons of the crystal dynamically interact with the electron motion. Furthermore, inter-atomic

interactions have always been a competing mechanism which damp the oscillations.

Here we propose a scheme to control and amplify atomic BO via photon-mediated interactions

in a gravity-tilted optical lattice supported by a standing-wave optical cavity with incommensurate

lattice and cavity wavelengths. In our case, photons can actively modify the periodic potential ex-

perienced by the atoms and therefore resemble the role of phonons in a real solid state environment.

Even though experiments that track BO in optical cavities have been implemented before using

a Bose Einstein Condensate (BEC) [270–274], here we propose to use inhomogeneous atom-light

couplings to prepare an array of atoms on specific lattice sites and initialize the dynamics [275].

This can be achieved via position-dependent dispersive atom-light couplings to map the motion

of the atoms under BO into the frequency shift of the cavity resonance. Our protocol not only

avoids the ultracold degenerate initial states required in non-destructive measurements of BO, but

also provides flexible self-tunability of the cavity-mediated long-range interactions by the atomic

motion. Moreover, in contrast to prior experiments where the periodic potential was generated by

the probe laser field itself [270–274] or separate probe field for site-independent atom-light cou-

pling [276], we use an additional lattice potential that traps the atoms and controls the degree of

delocalization of the underlying Wannier-Stark (WS) states [38] in our system. In this setting, dif-

ferent to the well-studied case of contact interactions [277–284], the photon-mediated interactions

can modify BO depending on the position of other atoms in the array. Taking advantage of this



227

feature we show versatile many-body phenomena can be realized in different parameter regimes of

this system: In the deep lattice region, we find dynamical phase transitions (DPT) related to the

Lipkin-Meshkov-Glick (LMG) model [34, 107], which potentially enables rapid generation of spin-

squeezed states [7,31,285] with WS states directly, bypassing the need for Raman transitions [38];

In the shallow lattice, we find the amplification of Bloch oscillation amplification originating from

the pair production [248,286–288] process from the central to adjacent WS states. We also discuss

feasible implementations in state-of-the-art cavity QED experiments [42,289].

4.4.2 Model and single-particle dynamics

We consider an ensemble of N ultracold atoms with mass M trapped in a standing-wave

optical cavity along the vertical direction ẑ as shown in Fig. 4.20(a). The atoms are confined in

the lowest band of the one-dimensional (1D) optical lattice supported by the cavity, with local

gravitational acceleration g⃗ generating an additional Mgz potential between sites separated by a

vertical distance z. Here we consider the pure 1D model for simplicity and discuss the modification

by the radial modes in SOM. A single internal level |g⟩ in the atomic ground manifold, is coupled to

an atomic excited state |e⟩ with a transition energy h̄ω0 via a single cavity mode â with frequency

ωc and wavelength λc. The atom-cavity coupling has spatial dependence G(z) = G0 sin(kcz), where

kc = 2π/λc and G0 is proportional to single atom vacuum Rabi splitting. The cavity mode is

coherently driven by an additional laser with frequency ωp thus detuning ∆c = ωp − ωc from the

bare cavity mode, which generates a net injected field in the cavity with amplitude ηp. The cavity

has a finite linewidth κ.

We work in the dispersive regime of the atom-light interaction, where both the cavity mode

and the external drive are far detuned from the atomic resonance, i.e., ∆0 ≫ G0

√
⟨â†â⟩ with

∆0 = ωp−ω0. In such limit, we can adiabatically eliminate the excited state and only consider the

atomic motion in the ground state, which results in the following second-quantized Hamiltonian,

Ĥ = Ĥ0 +

∫
dzψ̂†

g(z)
h̄ |G(z)|2

∆0
â†âψ̂g(z) + Ĥcav, (4.74)
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Figure 4.20: Model system. (a) An ensemble of N atoms are trapped in the lowest band of an
optical lattice supported by an optical cavity aligned with gravitational acceleration g⃗. Considering
the atoms are initially localized in a Wannier orbital (grey dashed line), hopping to the nearby sites
(grey solid line) can lead to a change of atom-cavity coupling due to incommensurate lattice (λl)
and cavity (λc) wavelengths. The cavity has a finite linewidth κ. (b) The initially localized Wannier
orbitals can also be written as a superposition of partially delocalized Wannier-Stark states which
accumulate different phases due to gravity. (c) Frequencies of atomic transition (ω0), external pump
(ωp) and cavity resonance (ωc). Due to atomic motion, the cavity resonance will be shifted by
G2
0Neff(t)/∆0, with Neff(t) defined in Eq. (4.76). (d) Neff(t) displays oscillatory behavior reflecting

single-particle atomic BO, generated by a sudden quench on lattice depth from 15ER to 8ER.
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where Ĥ0 =
∫
dzψ̂†

g(p̂2/2M + V0 sin2 (klz) +Mgz)ψ̂g includes the kinetic energy, lattice potential,

and gravitational potential experienced by the atoms. Here, V0 is the lattice depth, kl = 2π/λl

is the wavenumber of the lattice beam that sets the atomic recoil energy ER = h̄2k2l /2M , where

λl is the lattice wavelength. The field operator ψ̂g(z) annihilates a ground state atom at position

z. The second term in Eq. (4.74) describes the dispersive atom-light coupling after the adiabatic

elimination of the excited state. The cavity Hamiltonian is given by Ĥcav/h̄ = −∆câ
†â+ηpâ

†+η∗pâ.

The eigenstates of Ĥ0 are the so-called Wannier-Stark (WS) states. In the tight-binding

limit, the wave function for a WS state centered at lattice site n takes the form of ϕn(z) =∑
m Jm−n (2J0/Mgal)w (z −mal) [38,290], which is a superposition of localized ground-band Wan-

nier functions w(z) [See Fig. 4.20(b)]. Here Jn is the Bessel function of the first kind, J0/h̄ is the

nearest-neighbour tunneling rate, and al = λl/2 is the lattice spacing. The eigenenergy of |ϕn⟩

is nh̄ωB, where ωB = Mgal/h̄ is the Bloch frequency and TB = 2π/ωB the corresponding Bloch

period. We expand the field operator in the WS basis, ψ̂g(z) =
∑

n ĉnϕn(z), where the operator ĉn

annihilates an atom in the WS state ϕn. In this basis, Eq. (4.74) can be rewritten as

Ĥ = Ĥcav +
h̄G2

0

∆0
â†âN̂eff + h̄ωB

∑
n

nĉ†nĉn, (4.75)

where

N̂eff =
∑
m,n

Jm,nĉ
†
mĉn. (4.76)

Here, Jm,n =
∫
dzϕm(z)ϕn(z) sin2(kcz) describes the overlap between the WS states ϕm, ϕn

weighted by the cavity field mode function. N̂eff can be understood as the effective number of

atoms coupled to the cavity, which are responsible for generating a frequency shift G2
0Neff/∆0

on the cavity resonance, where Neff = ⟨N̂eff⟩. This dispersive term allows us to either perform

non-destructive probing or many-body control of the atomic motion, depending on the operating

parameter regime.

Assuming the cavity field adiabatically follows the atomic motion, which is valid since the

cavity field dynamics (∆c ∼ MHz) is much faster than the time evolution of the atomic field (ωB ∼

kHz), one can replace the cavity field operator by â ≈ ηp/(∆c − G2
0N̂eff/∆0). This leads to the



230

following effective atom-only Hamiltonian (see SOM),

Ĥeff/h̄ = ωB

∑
n

nĉ†nĉn + V̂cav(N̂eff), (4.77)

where V̂cav(N̂eff) = −(V N/β)/(1+βN̂eff/N) is the cavity-induced potential depending on the atomic

motion. Here, V = G2
0 |ηp|2/(∆2

c∆0) is the maximum AC Stark shift on the atoms introduced by

the bare cavity mode, β = −NG2
0/(∆0∆c) is the ratio between the maximum cavity shift and the

bare cavity detuning. We assume β > 0 (∆0 and ∆c have opposite signs) to avoid hitting a cavity

resonance.

First we consider the simplest case where the cavity is used as a probe and does not affect

the single-particle dynamics set by Ĥ0, valid in the regimes V ≪ ωB. We consider the case where

atoms are initially loaded in an almost localized WS state in a deep lattice at sites n minimally

coupled to the cavity (kcnal/π = r with n, r ∈ Z). Then we suddenly quench the lattice depth to a

shallow depth, and the atoms start hopping to the nearest-neighbour sites [see Fig. 4.20(a)]. Since

the initially localized state corresponds to a superposition of WS states of the shallow lattice [see

Fig. 4.20(b)], after the quench, each WS state acquires a phase that evolves at a rate set by ωB.

The interference of different WS states induces tunneling away from the initially populated site,

resulting in coherent breathing behavior at the BO frequency ωB.

To probe the BO, we use the fact that atoms at different sites coupled differently to the cavity.

Therefore tunneling out and back into the initial site leads to a periodic oscillation in Neff(t) at

frequency ωB as shown in Fig. 4.20(d), which can be measured by tracking the cavity frequency

shift G2
0Neff(t)/∆0. Note that a technique to initially prepare atoms at lattice sites with low initial

coupling to the cavity mode has been demonstrated in [275]. Instead of an initially localized state,

we can also use amplitude modulation of the lattice depth [283] to prepare a superposition of WS

states. In this case a similar behavior can be observed as detailed in SOM.

For the numerical simulations throughout this letter, we consider the case of 87Rb atoms with

cavity wavelength λc = 780 nm and lattice wavelength λl = 532 nm. However, the discussion can

be easily adapted to other type of atoms discussed in SOM.



231

(d)

PM FM

Cavity-mediated coupling

Cavity-mediated shift

Figure 4.21: Dynamical Phase Transition (DPT) in the deep lattice regime (V0 = 20ER). (a) For
the case of V > 0 we define an effective spin-1/2 degrees of freedom: |⇑⟩ (|ϕ−1⟩) and |⇓⟩ (|ϕ0⟩).
The cavity-mediated interactions generate energy shifts to balance the potential energy of these
two sites (red curve), as well as dynamical couplings between them (orange arrow). (b) Phase
diagram of the DPT determined by the long-time average N̄eff/N . The phase boundary separating
the paramagnetic (PM) and ferromagnetic (FM) phase is predicted by the full model (solid line)
and LMG model (black dashed line). The smooth crossover regime is below the gray dashed line.
(c) Mean-field dynamics with V = 1.9ωB, β = 0.5 (green) and V = 2.2ωB, β = 0.5 (red). The
upper panel shows the mean-field trajectories on the Bloch sphere, and the lower panel displays
the normalized signal Neff(t)/N . The solid (dashed) line show predictions of the full (LMG) model
respectively. (d) Horizontal cut of the phase diagram in (b) for β = 0 (solid), β = 0.5 (dashed),
β = 2 (dot dashed).
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4.4.3 Deep lattice regime

The interplay between single-particle atomic motion and cavity-mediated interactions occurs

if V ∼ ωB. Here we focus on the deep lattice regime (V0 = 20ER) where WS states are almost

localized at individual lattice sites. If atoms are prepared at site n = 0, and V > 0, the differential

cavity induced AC Stark shift (first order in β in the limit β ≪ 1) between the n = 0 and

n = −1 sites ∝ V (J0,0 − J−1,−1) can compensate for their energy difference h̄ωB as shown in

Fig. 4.21(a), restoring tunnelling between these two sites. Since the atomic motion is restricted

to take place between these two states, we map them to an effective spin 1/2 degree of freedom:

ĉ−1 as ĉ⇑, ĉ0 as ĉ⇓ as well as the spin operators Ŝz = (ĉ†⇑ĉ⇑ − ĉ†⇓ĉ⇓)/2, Ŝx = (ĉ†⇑ĉ⇓ + ĉ†⇓ĉ⇑)/2.

Thus we have N̂eff = 2(∆−1Ŝz + Ω−1Ŝx) +Nω̄, where ∆−1 = (J−1,−1 − J0,0)/2, Ω−1 = J−1,0, and

ω̄ = (J−1,−1 + J0,0)/2.

In the limit of β ≪ 1, one can expand Ĥeff [Eq. (4.77)] in a power series of β, and keep only

the leading order terms. The Hamiltonian simplifies to,

Ĥeff/h̄ ≈ −ωBŜz + V N̂eff − V β

N
N̂2

eff . (4.78)

This approximated Hamiltonian [Eq. (4.78)] is equivalent to the LMG model (see Refs. [7, 25, 31,

34, 38, 107,285] and SOM), HLMG = χ ˆ̃S2
z + Ω̃ ˆ̃Sx − δ̃ ˆ̃Sz, by a rotation along the y-axis of the Bloch

sphere, ˆ̃Sα = R̂†ŜαR̂, where R̂ = exp
(
iθŜy

)
, and tan θ = ∆−1/Ω−1 (see SOM), which enables fast

entanglement state generation under particular choice of χ, Ω̃, δ̃ [7,31,285]. The LMG model features

a DPT from a dynamical ferromagnetic (FM) to a dynamical paramagnetic phase (PM), signaled

by a sharp change in the behavior of the long-time average of the excitation fraction [34, 107]. In

our model [Eq. (4.77)], the long-time average of the signal N eff/N = limT→∞
∫ T
0 dtNeff(t)/(TN)

plays the role of the dynamical order parameter. We also show that the DPT exists in our model

[Eq. (4.77)] even beyond the β ≪ 1 limit as we discuss below.

To find the DPT, we solve the mean-field equations of motion for sx,y,z = 2⟨Ŝx,y,z⟩/N . Such

non-linear dynamics can be further reduced to (Ṅeff/N)2 +f(Neff/N) = 0 with f(J0,0) = 0, and we

can associate the DPT with an abrupt change in the number of real roots of the effective potential
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f(Neff/N) (see SOM). This leads to the distinct dynamical behaviors of Neff/N tuned by varying

V and β as shown in Fig. 4.21(b,c,d). When the dynamics are dominated by interaction effects,

the system is in the FM phase where the Bloch vector features small oscillations around the south

pole, also shown as small amplitude oscillations in Neff(t)/N . This phase is separated by a DPT to

a PM phase where the Bloch vector exhibits large excursions around the Bloch sphere, also shown

as large amplitude oscillations in Neff(t)/N . For β < 0.32 (see SOM), the DPT transforms into

a smooth crossover and the dynamics becomes dominated by single-particle tunneling processes.

The dynamical phase boundary is plotted in Fig. 4.21(b) with the full model (solid line) and the

LMG model (dashed line). The LMG model is unable to capture the phase boundary beyond the

β ≪ 1 limit.

4.4.4 Shallow lattice regime

In a shallow lattice, the WS states extend over a few adjacent lattice sites. In this case, one can

obtain a significant suppression of differential AC Stark shifts generated by the cavity by operating

near the so-called magic lattice depth (V0 = 6ER for the Rb parameters we use) [38], where Jn,n is

nearly a constant and the energy difference between nearest-neighbour WS states is roughly h̄ωB

[see Fig. 4.22(a)]. Thus the dynamics features BO even in the presence of strong cavity-mediated

interactions. In fact, after preparing the atoms in the WS state |ϕ0⟩ and thus in an eigenstate

of the single particle Hamiltonian, one can observe the generation and amplification of BO due

to cavity-mediated interactions in a window around the magic depth as shown in Fig. 4.22(b,c,d).

Since the short-time dynamics occurs mainly between the WS states centered at n = 0,±1, we can

concentrate only on these states and simplify the dynamics via the undepleted pump approximation

(UPA): To the leading order, one can replace the operators for the initially occupied states as c-

numbers, ĉ0, ĉ
†
0 ∼

√
N , and keep the operators for unoccupied states (ĉ±1, ĉ

†
±1) to the second order

while absorbing the linear term generated by single-particle tunneling via a displacement of a

coherent state, ĉ±1 = α±1 + ĉ′±1. In this way, Ĥeff [Eq. (4.77)] simplifies into a quadratic form (see



234

(d)

Figure 4.22: Cavity-mediated amplification of Bloch oscillations in the shallow lattice regime. (a)
The red lines show the gravity plus optical lattice potential. Around V0 ≈ 6ER, WS states can
extend to the nearest-neighbour lattice sites. The orange vertical lines represent the cavity-induced
onsite shift of the energy levels and the orange arrows illustrate the cavity-mediated tunneling
process shown in Eq. (4.79). (b) Transition between amplification regime and normal regime
indicated by Adip = 1−min{ρ0}. V is fixed to be 2ωB. The black dashed line shows the predicted
boundary from UPA. (c) Mean-field dynamics of ρn with initial state |ϕ0⟩ and V = 2ωB, β = 3.
Nearly no dynamics happen in the left panel (purple square, V0 = 5.8ER) while large population
transfer to |ϕ1⟩ and |ϕ−1⟩ (pink circle, V0 = 6.2ER) is observed in the right panel. (d) Mean-field
simulations for the normalized signal Neff(t)/N for the same parameters described in (c). The
purple line stays almost constant while the pink line signals the cavity enhancement of the BO.
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SOM),

Ĥeff/h̄ ≈ ωB(ĉ′†1 ĉ
′
1 − ĉ′†−1ĉ

′
−1) + V1∆(ĉ′†1 ĉ

′
1 + ĉ′†−1ĉ

′
−1) + V2NΩ2(ĉ′†1 + ĉ′1 − ĉ′†−1 − ĉ′−1)

2, (4.79)

with the expansion coefficient V1, V2 in SOM and ∆ = ∆1 ≈ ∆−1, Ω = Ω1 ≈ −Ω−1.

We analyze the exact dynamics of Eq. (4.79) via the Bogoliubov-de Gennes method, in

which the Heisenberg equation of motion for operators Ĉ = (ĉ′1, ĉ
′
−1, ĉ

′†
1 , ĉ

′†
−1)

T takes the form

i∂tĈ = HBdGĈ. The matrix HBdG can have either real or complex eigenvalues, which leads to

distinct dynamical behaviors as shown in Fig. 4.22(c). When all the eigenvalues are real (normal

regime), the populations ρ0 and ρ±1, with ρn = ⟨ĉ†nĉn⟩, feature stable small amplitude oscillations;

on the other hand when all the eigenvalues are complex, then ρ±1 feature an exponential growth

associated with the correlated pair production of atoms at WS centered at n = ±1, which leads to

the amplification of the BO signal until UPA breaks down. The transition between the real and

complex eigenvalues of HBdG is marked by dashed lines in Fig. 4.22(b).

To quantify the population transfer, we define Adip = 1−min{ρ0} with min{ρ0} as the min-

imum of ρ0 during t ∈ [0, 40TB]. A large Adip signals efficient population transfer. In Fig. 4.22(b),

we show Adip as a function of the lattice depth V0 and the cavity parameter β. The region of

amplified BO lies within the two dashed boundaries. The left boundary is fixed at the magic lattice

depth (V0 = 6ER) and the right boundary pushes to larger β as V0 increases. Inside the amplifica-

tion region Adip ̸= 0, while outside Adip ≈ 0. The evolution of Neff(t)/N is shown in Fig. 4.22(d),

where the enhanced population transfer induced by the cavity-mediated interactions lead to the

growth of the BO amplitude in the amplification regime.

4.4.5 Experimental consideration

The predicted behavior should be achievable in state-of-the-art cavity QED systems with

N ∼ 104 87Rb atoms. We focus on the unitary dynamics in this letter while the main decoherence

sources come from cavity loss and spontaneous emission from the excited states. The cavity loss

generates collective dephasing processes at a rate V βκ/∆c and spontaneous emission generates
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off-resonant photon scattering processes at a rate V γ/∆0, where γ is the spontaneous emission

rate. For an optical cavity with cooperativity C = 4G2
0/γκ ∼ 0.5, κ/∆c ∼ 0.05, γ/∆0 ∼ 0.01,

one obtains negligible dissipation within experimentally relevant time scales (∼ 50 BO periods).

Our scheme does not require BEC while utilizes site-selection to prepare the initial state, which is

robust to the radial thermal noise up to T ∼ 1µK (see SOM). Contact interactions between atoms

can also be ignored for the dilute quantum gas used here (∼ 50 atoms per site). Moreover, our

model can be realized with other species of alkali atoms (D2 transition) and alkaline earth atoms

(1S0 → 3P1 transition) with appropriate choices of lattice wavelength (see SOM). In particular,

contact interactions can be further suppressed using 88Sr atoms featuring negligible scattering

lengths or any type of fermionic atoms interacting only via the p-wave channel.

4.4.6 Conclusion and outlook

In summary, we proposed a scheme to perform many-body control of atomic BO in an optical

cavity. Our work opens new possibilities for Hamiltonian engineering in many-body systems by

taking advantage of the interplay between atomic motion, gravity and cavity-mediated interactions.

For example, although so far we only focused on a single internal level, by including more levels and

more cavity modes, it should be possible to engineer dynamical self-generated couplings between

WS states via cavity-mediated interactions, which could be used to study dynamical gauge field [28,

250,291] in a synthetic ladder without the overhead of Raman beams. Furthermore, although most

of the calculations so far have been limited to regimes where the mean-field dynamics are a good

description of the system, by loading the atoms in 2D or 3D lattice, one should be able to increase

the role of beyond mean-field effects and enter the regimes where quantum correlations dominate

the dynamics.

4.4.7 Supplemental Materials: Cavity QED with Wannier-Stark state

Dispersive coupling between atoms and cavity

In the main text, we considered N ultracold atoms trapped in a standing-wave optical cavity



237

along the vertical direction ẑ. The atoms are assumed to be confined in the ground band of the

one-dimensional lattice with lattice depth V0 and wave vector kl = 2π/λl. A single internal level

|g⟩ in the atomic ground manifold is coupled to an atomic excited state |e⟩ with a transition energy

h̄ω0 = h̄(ωe − ωg), via a single cavity mode â with angular frequency ωc and wavelength λc. The

atom-cavity coupling has spatial dependence G(z) = G0 sin(kcz), with kc = 2π/λc. The cavity mode

is coherently driven by an external light field with detuning ∆c = ωp − ωc from the bare cavity

mode, which generates a net injected field in the cavity with amplitude ηp. The full atom-cavity

Hamiltonian is given as H = Ĥatom + Ĥlight + Ĥint. Each of the terms can be written as:

Ĥlight = h̄
(
ηpâ

†e−iωpt + η∗pâe
iωpt
)

+ h̄ωcâ
†â (4.80)

Ĥatom =
∑
τ=g,e

∫
dz ψ̂†

τ (z)

[
p2

2M
+ V (z) + h̄ωτ

]
ψ̂τ (z) (4.81)

Ĥint = h̄

∫
dz G0 sin kcz

[
âψ̂†

e(z)ψ̂g(z) + â†ψ̂†
g(z)ψ̂e(z)

]
. (4.82)

Here V (z) = Mgz+V0 sin2 klz describes the external potentials experienced by the atoms. ψ̂†
e(g)(z)

is the field operator that creates an atom in the state e(g) at position z, ωe(g). Under the rotating

frame of the pump field (set by the Hamiltonian H0 = h̄ωpâ
†â+ h̄ωp

∫
dz ψ̂†

e(z)ψ̂e(z)), the system’s

Hamiltonian takes the following form:

Ĥ = h̄
(
ηpâ

† + η∗pâ
)
− ∆ch̄â

†â− h̄∆0

∫
dz ψ̂†

e(z)ψ̂e(z) +
∑
τ=g,e

∫
dz ψ̂†

τ (z)

[
p2

2M
+ V (z)

]
ψ̂τ (z)

+ h̄

∫
dzG0 sin kcz

[
âψ̂†

e(z)ψ̂g(z) + â†ψ̂†
g(z)ψ̂e(z)

]
,

(4.83)

where we defined the detuning of the pump from the atomic transition as ∆0 = ωp − ω0.

Furthermore, under the assumption ∆0 ≫ G0

√
⟨â†â⟩ and ∆0 ≫ γ with γ the excited state

spontaneous emission rate, the excited state population remains negligible during the relevant time

scales. In this limit we can adiabatic eliminate the excited state |e⟩ (ψ̂e(z) ≈ G0âψ̂g(z) sin kcz/∆0),

which leads to the following effective Hamiltonian acting on the ground state |g⟩ manifold only,

Ĥ = −h̄∆câ
†â+ h̄

(
ηpâ

† + η∗pâ
)

+

∫
dz ψ̂†

g(z)

[
h̄(G0 sin kcz)2

∆0
â†â+

p2

2M
+ V (z)

]
ψ̂g(z). (4.84)
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Figure 4.23: The coupling coefficient Jm,n for 87Rb atoms (λl = 532 nm, λc = 780 nm). Left: V0 =
20ER and right: V0 = 6ER. Start from |ϕ0⟩, the many-body dynamics mainly happens within the
dashed square for either two-level model (left, deep lattice region for dynamical phase transitions)
and three-level model (right, shallow lattice region for amplification of Bloch oscillations).

In the tight-binding limit, the resulting single-particle eigenstates of the Hamiltonian p2/2m+

V (z) become the so-called Wannier-Stark (WS) states |ϕn⟩ (n ∈ Z):

En = Mgaln, ϕn(z) =
∑
m

Jm−n

(
2J0
Mgal

)
w(z −mal). (4.85)

Here Jn denotes the Bessel function of the first kind, J0 denotes the nearest-neighbor couplings in

the ground band, al = λl/2 is the lattice spacing and w(z) is the ground band Wannier function.

We will also use ER = (h̄kl)
2/2M for the atomic recoil energy.

The field operator, when written in the WS basis takes the form, ψ̂g(z) =
∑

n ĉnϕn(z), where

ĉn annihilates an atom in the state |ϕn⟩. In this basis we can rewrite the Hamiltonian [Eq. (4.84)]

as:

Ĥ/h̄ = −∆câ
†â+ ηpâ

† + η∗pâ+
G2
0

∆0
â†â

∑
m,n

Jm,nĉ
†
mĉn + ωB

∑
n

nĉ†nĉn, (4.86)

where Jm,n =
∫
dzϕm(z)ϕn(z) sin2 kcz describes the overlap between the WS states |ϕm⟩, |ϕn⟩

weighted by the cavity field mode function. In Fig. 4.23 we show the value of these couplings for

the typical lattice depths we work in this paper. We define the effective particle number:

N̂eff =
∑
m,n

Jm,nĉ
†
mĉn, (4.87)

as the effective number of atoms coupled to the cavity, which shifts the cavity resonance frequency

by G2
0

〈
N̂eff

〉
/∆0.
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Adiabatic elimination of cavity field

Here we study the dynamics via Heisenberg equations of motion using a Markovian approx-

imation. We adiabatic eliminate the cavity field using the fact that ∆c sets the largest frequency

scale and derive the effective atom-only Hamiltonian. To do that, we formally integrate the Heisen-

berg equation of motion of the cavity mode operator â and photon number operators â†â, then

plug them back into the Hamiltonian [Eq. (4.86)]. We remove the fast rotating terms which relax

much faster than the time it takes an atom to perform a BO.

The Heisenberg-Langevin equation of the motion for the cavity mode â is given by:

d

dt
â = i[Ĥ/h̄, â] + (

κ

2
â† + f̂ †)[â, â] − [â, â†](

κ

2
â+ f̂) = i(∆c −

G2
0N̂eff

∆0
)â− iηp −

κ

2
â+ f̂ , (4.88)

with κ for the cavity decay rate. The above equation captures the dissipative dynamics generated

by κ along with the quantum Langevin noise operator f̂ , which gives the formal solution for the

cavity field operator:

â = −iηp exp

[
i

∫ t

0
dτ
(

∆̂ + iκ/2
)]∫ t

0
dt′ exp

[
−i
∫ t′

0
dτ
(

∆̂ + iκ/2
)]

+ f̂ ′

≈ ηp

∆̂ + iκ/2
+ f̂ ′

(4.89)

with

∆̂ = ∆c −
G2
0N̂eff

∆0
, (4.90)

Here f̂ ′ is another quantum Langevin noise operator. Below we consider the regime ∆c, κ ≫ ωB

where the cavity-field dynamics evolve much faster than the atomic dynamics, thus it follows the

latter adiabatically. As a result, we can obtain the formal solution for the cavity photon number

operator:

â†â =
|ηp|2

∆̂2 + (κ/2)2
+ ĝ ≈ |ηp|2

∆̂2
. (4.91)

One more time ĝ represents a different quantum Langevin noise operator. For the last approxi-

mation above, we focus of the regime ∆c ≫ κ where the unitary dynamics dominates and we can

ignore the dissipation process to leading order.
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If we insert the above solution of the cavity field into Eq. (4.86), the effective atom-only

Hamiltonian in the Schrodinger picture can be written as:

Ĥeff/h̄ = ωB

∑
n

nĉ†nĉn + ηp
η∗p

∆̂
+ η∗p

ηp

∆̂
+
(
G2
0N̂eff/∆0 − ∆c

) |ηp|2

∆̂2

= ωB

∑
n

nĉ†nĉn + 2
|ηp|2

∆̂
− ∆̂

|ηp|2

∆̂2

= ωB

∑
n

nĉ†nĉn +
|ηp|2

∆c − G2
0N̂eff/∆0

≡ ωB

∑
n

nĉ†nĉn + V̂cav(N̂eff)

(4.92)

where V̂cav(N̂eff) = −(V N/β)/(1+βN̂eff/N) is the dynamical potential induced by the cavity which

depends on the atomic motion. V̂cav is parameterized by the maximum AC Stark shift introduced

by the bare cavity mode, V = G2
0 |ηp|2/(∆2

c∆0), as well as by the ratio between the maximum

cavity shift and the bare cavity detuning, β = −NG2
0/(∆0∆c). We assume β > 0 (∆0 and ∆c have

opposite signs) to avoid hitting a resonance.

As a benchmark for the effective atom-only Hamiltonian derived in Eq. (4.92), we compare

the exact dynamics for 6 particles in 3 WS states under Eq. (4.86) and Eq. (4.92) in Fig. 4.24(a).

In the simulation, we choose ∆c = 400ωB, κ = 20∆c, ηp = ∆c/10 as well as G2
0/∆0 = −100ωB in

the atom-cavity simulation (dashed lines), which corresponds to V = G2
0 |ηp|2/(∆2

c∆0) = ωB and

β = −NG2
0/(∆0∆c) = 1.5 in the atom-only simulation (solid lines). The simulation results match

well with each other for the lattice depth in the normal regime (red curves) and amplification regime

(blue curves), which verify the effectiveness of the atom-only Hamitlonian.

Equations of motion for atoms

To simulate the dynamics under Eq. (4.92), we can calculate the equations of motion for the

field operators ĉm as:

i ˙̂cm = mωB ĉm − V N

β

ĉm, 1(
1 + βN̂eff/N

)


= mωB ĉm − V N

β

[
ĉm, 1 − β

N
N̂eff + (

β

N
)2N̂2

eff − (
β

N
)3N̂3

eff + · · ·
]
,

(4.93)
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Figure 4.24: Benchmarks of the atom-cavity Hamiltonian [Eq. (4.86)] with the effective atom-only
Hamiltonian [Eq. (4.92)]. The red curves for V0 = 5.8ER (normal regime) and the blue curves
for V0 = 6.2ER (amplification regime) are used for all the simulations in the figure. (a) Exact
Diagonalization (ED) simulation of the dynamics for 6 particles in 3 WS states with the initial

state (ĉ†0)
6 |vac⟩. Populations

〈
ĉ†0ĉ0

〉
(start from 6) as well as

〈
ĉ†1ĉ1

〉
(start from 0) for these

two lattice depths are plotted. The solid lines are the exact simulations under the Hamiltonian
Eq. (4.86) (with the photon space ncut = 10) and the dashed lines under the Hamiltonian Eq. (4.92).
(b) Mean-field dynamics of ρn with initial state |ϕ0⟩. The solid lines are simulated with the atom-
cavity mean-field equations of motion [Eq. (4.96)] and the dashed lines are simulated with atom-only
equations of motion [Eq. (4.95)]. Populations ρ0 (start from 1) as well as ρ1 (start from 0) for these
two parameters are plotted. The differences between the atom-cavity and atom-only simulations
can be ignored for both (a) and (b). (c) Mean-field evolution for the cavity photon number with
the same parameters for the red and blue curves as in (b).

Then we can simplify the equations above with
[
ĉm,

∑
p,q Jp,q ĉ

†
pĉq

]
=
∑

n Jm,nĉn:

i ˙̂cm = mωB ĉm − V N

β

{
− β

N

[
ĉm, N̂eff

]
+ (

β

N
)2
[
ĉm, N̂

2
eff

]
− (

β

N
)3
[
ĉm, N̂

3
eff

]
+ · · ·

]}
= mωB ĉm − V N

β

{
− β

N

∑
n

Jmnĉn + (
β

N
)2(
∑
n

JmnĉnN̂eff + N̂eff

∑
n

Jmnĉn) + · · ·
]}

.

(4.94)

Finally, we apply the mean-field approximation to the operators
〈∑

n JmnĉnN̂eff

〉
≈ ⟨∑n Jmnĉn⟩〈

N̂eff

〉
, and obtain the following equations of motion:

i
〈

˙̂cm

〉
= mωB ⟨ĉm⟩ +

V(
1 + β

〈
N̂eff

〉
/N
)2 ∑

m,n

Jm,n ⟨ĉn⟩ , (4.95)

All the results in the main text were obtained by solving the mean-field equations of motion written

above.

Meanwhile, the mean-field equations for the atom-cavity Hamiltonian [Eq. (4.86)] is given
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by,

iα̇ = −

∆c + i
κ

2
−

G2
0

〈
N̂eff

〉
∆0

α+ ηp

i
〈

˙̂cm

〉
= mωB ⟨ĉm⟩ +

G2
0

∆0
|α|2

∑
m,n

Jm,n ⟨ĉn⟩ ,
(4.96)

with α = ⟨â⟩ . We compare the mean-field dynamics Eq. (4.95) and Eq. (4.96) in Fig. 4.24(b). In the

simulation, we choose reasonable experimental parameters N = 2 × 104 atoms, ∆c = 2π × 2 MHz,

κ = ∆c/20, ηp = 3∆c as well as G2
0/∆0 = −2π× 100 Hz in the atom-cavity simulation [Eq. (4.96)],

which corresponds to V = G2
0 |ηp|2/(∆2

c∆0) = 1.57ωB and β = −NG2
0/(∆0∆c) = 1 in the atom-only

simulation [Eq. (4.95)]. Still, the simulations for both normal regime and amplification regime

match with each other pretty well with the difference can be ignored, which again verifies the

validation of the effective atom-only Hamiltonian. In Fig. 4.24(c), we plot the evolution of cavity

photon number |α|2 which follows the atomic motion adiabatically.

4.4.8 Supplemental Materials: Dynamical phase transition with Wannier-Stark

states

In this part, we consider the deep lattice regime and discuss how to map the atom-only

Hamiltonian to a spin model. As discussed in the main text, for a deep lattice V0 = 20ER, the WS

states approach the Wannier orbitals which are localized. The overlap integral Jm,n for V0 = 20ER

is shown in the left panel of Fig. 4.23 with J0,0 ≈ 0 ≪ J1,1 ≈ J−1,−1 and J1,0 ≈ −J0,−1 ≈ 0.

As a result non-trivial dynamics happens only for V (Jn,n − J0,0) + nωB ≈ 0 when starting from

|ϕ0⟩. Here we consider V > 0 and deal with two bosonic modes ĉ0, ĉ−1. For simplicity, we define

Ωn = Jn,n+1 as well as ∆n = (Jn,n − J0,0)/2. The spin operators are defined as follows,

Ŝx =
1

2
(ĉ†−1ĉ0 + ĉ†0ĉ−1)

Ŝy = − i

2
(ĉ†−1ĉ0 − ĉ†0ĉ−1)

Ŝz =
1

2
(ĉ†−1ĉ−1 − ĉ†0ĉ0),

(4.97)
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and the total particle number N̂ = ĉ†−1ĉ−1 + ĉ†0ĉ0. Such pseudospin operators satisfy the SU(2)

algebra and we can rewrite the effective number operator as (ω̄ = (J−1,−1 + J0,0)/2):

N̂eff = 2Ω−1Ŝx + 2∆−1Ŝz + ω̄N, (4.98)

as well as the effective spin model from Eq. (4.86) in terms only of ĉ−1 and ĉ0:

Ĥeff/h̄ = −ωBŜz + V̂cav(N̂eff) (4.99)

Similar in Eq. (4.93), we can derive Heisenberg equations of motion for the collective spin op-

erator Ŝx,y,z. Using the mean-field approximation which neglects the quantum correlation between

different spins we obtain, 〈
˙̂
Sx

〉
= (ωB − 2∆−1Ṽ )

〈
Ŝy

〉
〈

˙̂
Sy

〉
= (2∆−1Ṽ − ωB)

〈
Ŝx

〉
− 2Ω−1Ṽ

〈
Ŝz

〉
〈

˙̂
Sz

〉
= 2Ω−1Ṽ

〈
Ŝy

〉
.

(4.100)

Moreover, if we introduce the mean-field real variable sα = 2
〈
Ŝα

〉
/N, α ∈ {x, y, z}, the

above equations become:

ṡx = (ωB − 2∆−1Ṽ )sy

ṡy = (2∆−1Ṽ − ωB)sx − 2Ω−1Ṽ sz

ṡz = 2Ω−1Ṽ sy,

(4.101)

with

Ṽ =
V

(1 + βNeff(t)/N)2
, (4.102)

here Neff(t) = N(Ω−1sx + ∆−1sz + ω̄). Later we will use the symbol neff ≡ Ω−1sx + ∆−1sz + ω̄ for

convenience. We compare the results from Eq. (4.95) and Eq. (4.101) to numerical simulations of

the full Hamiltonian and they match with each other, which means the two-mode approximation

works in this case. Now, we discuss the dynamical phase transition predicted by Eq. (4.101). Using

both energy conservation as well as the identity (Ŝx)2 + (Ŝy)2 + (Ŝz)2 = (N2 + 1)N2 in the large N

limit, the real variable (sx, sy, sz) with initial condition sz = −1, sx = sy = 0 satisfy the following
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two conservation laws:

s2x + s2y + s2z = 1 (4.103)

−ωBsz −
2V/β

1 + βneff
= ωB − 2V/β

1 + β(ω̄ − ∆−1)
, (4.104)

then we can express sx,y,z all as a function of neff :

sz(neff) =
F (ω̄ − ∆−1) − F (neff)

ωB
− 1

sx(neff) =
neff − ∆−1sz(neff) − ω̄

Ω−1

s2y(neff) = 1 − s2x(neff) − s2z(neff),

(4.105)

also we define a function,

F (x) =
2V/β

1 + βx
. (4.106)

The dynamics correspond to a classical particle moving in the external potential from

Eq. (4.101):

(ṅeff)2 + f(neff) = 0, (4.107)

with the potential f(neff) = −(ωBΩ−1)
2s2y(neff). The condition f(neff) = 0 determines the roots

and we find n0eff = ω̄ − ∆−1 is one of such root. The effective potential can have either two or four

solutions within the region neff ∈ [ω̄−
√

Ω2
−1 − ∆2

−1, ω̄+
√

Ω2
−1 + ∆2

−1] shown in Fig. 4.25, and the

dynamics of nneff can be understood as the oscillations between n0eff and the nearest root n∗eff . Begin

with a function f(neff) with two roots, and continuously tune the parameters of f(neff) so that two

new roots appear in between, then a jump of the nearest root n∗eff should occur during this process.

The dynamical paramagnetic phase corresponds to four roots, while the dynamical ferromagnetic

phase corresponds to two roots. Deep in the dynamical paramagnetic phase, one can access the

whole Bloch sphere (n∗eff ≈ ω̄ +
√

Ω2
−1 + ∆2

−1), while deep in the dynamical ferromagnetic phase,

the Bloch vector only cycles around the south pole (n∗eff ≈ n0eff). By numerically varying β and

V , we compute the number of roots to produce the phase diagram featured in the main text. If

β < 0.32, f(neff) can only possess two roots, resulting in a smooth crossover rather than a phase

transition.
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Figure 4.25: Number of roots for the effective potential f(neff). In the case of V = 1.9ωB, β = 0.5
(green), f(neff) has two roots; In the case of V = 2.1ωB, β = 0.5 (red), f(neff) has four roots. The
nearest root is labelled by n∗eff and the jump of n∗eff indicate DPTs.

The LMG model [34,107] supports a dynamical phase transition with Hamiltonian:

ĤLMG = χŜ2
z + ΩŜx − δŜz. (4.108)

To gain more insights on how our model related to the LMG model, we can expand Eq. (4.86) to

first order and second order in (2Ω−1Ŝx + 2∆−1Ŝz). To the first order:

Ĥeff = −ωBŜz + V (2Ω−1Ŝx + 2∆−1Ŝz) − V β

N
(2Ω−1Ŝx + 2∆−1Ŝz)2, (4.109)

If we perform a rotation along y-axis with angle θ = arctan Ω−1/∆−1, then the Hamiltonian

become:

Ĥeff = −ωB
∆−1Ŝz − Ω−1Ŝx√

Ω2
−1 + ∆2

−1

+ 2V
√

Ω2
−1 + ∆2

−1Ŝz − 4
V β

N
(Ω2

−1 + ∆2
−1)Ŝ

2
z

= −4
V β

N
(Ω2

−1 + ∆2
−1)Ŝ

2
z +

ωBΩ−1√
Ω2
−1 + ∆2

−1

Ŝx −
( ωB∆−1√

Ω2
−1 + ∆2

−1

− 2V1

√
Ω2
−1 + ∆2

−1

)
Ŝz,

(4.110)

which takes the form of the LMG model and gives χ̃, Ω̃, δ̃ defined in the main text.

4.4.9 Supplemental Materials: Schwinger bosons and undepleted pump approxi-

mation

In this part, we start with the effective Hamiltonian [Eq. (4.92)], but consider the shallow

lattice region around 6ER. The associated Jm,n coumplings are plotted in the right panel of Fig.
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4.23. Instead of being localized in a single lattice site, the WS states can extend over a few adjacent

lattice sites in a shallow lattice. This can lead to significant suppression of differential AC Stark

shifts (homogeneous Jn,n) at the so-called magic lattice depth (V0 = 6ER in our case). Note

that the energy difference between nearest-neighbour WS states is rough ωB, which allows us to

study Bloch oscillations under cavity-mediated interaction. We consider the WS states with index

m,n ∈ {−1, 0, 1} and use undepleted pump approximation (UPA) ĉ0 ≈
√
N which is valid at short

times when starting from |ϕ0⟩,

N̂eff ≈ 2∆1ĉ
†
1ĉ1 + 2∆−1ĉ

†
−1ĉ−1 +

√
N [Ω1(ĉ

†
1 + ĉ1) − Ω−1(ĉ

†
−1 + ĉ−1)] +NJ0,0 (4.111)

≡ Ô +NJ0,0. (4.112)

Since Ô is small under UPA that assumes the ĉ±1 modes remain almost unoccupied, we can expand

the effective Hamiltonian [Eq. (4.92)] up to second order in Ô, and ignore the higher-order terms.

The term Ô2 we can be approximated to be:

Ô2 ≈ N [Ω1(ĉ
†
1 + ĉ1) − Ω−1(ĉ

†
−1 + ĉ−1)]

2, (4.113)

and then the effective Hamiltonian becomes:

Ĥeff/h̄ = ωB(ĉ†1ĉ1 − ĉ†−1ĉ−1) −
V N/β

1 + βJ0,0 + βÔ/N
(4.114)

≈ ωB(ĉ†1ĉ1 − ĉ†−1ĉ−1) + V1Ô + V2Ô
2 (4.115)

= ωB(ĉ†1ĉ1 − ĉ†−1ĉ−1) + V1
√
N [Ω1(ĉ

†
1 + ĉ1) − Ω−1(ĉ

†
−1 + ĉ−1)] (4.116)

+ V1(∆1ĉ
†
1ĉ1 + ∆−1ĉ

†
−1ĉ−1) + V2N [Ω1(ĉ

†
1 + ĉ1) − Ω−1(ĉ

†
−1 + ĉ−1)]

2, (4.117)

here

V1 =
2V

(1 + βJ0,0)2
, V2 = − V β/N

(1 + βJ0,0)3
. (4.118)

Moreover, we can absorb the linear term generated by single-particle tunneling via a displacement

of a coherent state, ĉ±1 = α±1 + ĉ′±1 to obtain,

Ĥeff/h̄ ≈ ωB(ĉ′†1 ĉ
′
1 − ĉ′†−1ĉ

′
−1) + V1∆(ĉ′†1 ĉ

′
1 + ĉ′†−1ĉ

′
−1) + V2NΩ2(ĉ′†1 + ĉ′1 − ĉ′†−1 − ĉ′−1)

2. (4.119)
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Here we have made the approximation Ω1 ≡ Ω ≈ −Ω−1 as well as ∆1 ≡ ∆ = ∆−1. The displace-

ments then become,

α1 =
V1

√
NΩ(V1∆ − ωB)

(V1∆)2 − ω2
B − 8Ω2V2NωB

, α−1 =
V1

√
NΩ(V1∆ + ωB)

(V1∆)2 − ω2
B − 8Ω2V2NωB

. (4.120)

The short-time dynamics [Eq. (4.117)] can be calculated analytically for the quadratic Hamil-

tonian in terms of ĉ′±1, ĉ
′†
±1 with ĉ′±1 = i[Ĥeff/h̄, ĉ±1] and ĉ′†±1 = i[Ĥeff/h̄, ĉ

′†
±1]. In this limit the

dynamics is given by the equation:

i
d

dt



ĉ′1

ĉ′−1

ĉ′†1

ĉ′†−1


= HBdG



ĉ′1

ĉ′−1

ĉ′†1

ĉ′†−1


, (4.121)

with the coupling matrix S:

HBdG =

ωB + V1∆ + 2V2Ω
2 2V2Ω

2 −2V2Ω
2 −2V2Ω

2

−2V2Ω
2 −2V2Ω

2 −ωB + V1∆ + 2V2Ω
2 2V2Ω

2

−2V2Ω
2 −ωB − V1∆ − 2V2Ω

2 2V2Ω
2 2V2Ω

2

2V2Ω
2 2V2Ω

2 −2V2Ω
2 ωB − V1∆ − 2V2Ω

2


.

(4.122)

The matrix HBdG can have either real or complex eigenvalues, which leads to distinct dynamical

behaviors as shown in the main text. When all the eigenvalues are real, the populations ρ±1, with

ρn = ⟨ĉ†nĉn⟩, feature stable small amplitude oscillations; on the other hand when all the eigenvalues

are complex, then ρ±1 feature an exponential growth associated with the correlated pair production

of atoms at WS centered at n = ±1, which leads to the amplification of the Bloch oscillation signal

until the UPA breaks down.

4.4.10 Supplemental Materials: Experimental considerations

Single-particle Bloch oscillations
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Figure 4.26: Single particle Bloch oscillation with amplitude modulation scheme (pink curve,
V0 = 8ER and V1 = 0.4ER) and Quench scheme (grey curve, quench from V0 = 15ER to V0 = 8ER

as main text).

In this section, we discuss the protocols to observe single-particle Bloch oscillations in the

experiment. The main idea is to prepare a superposition of different WS states which accumulate

different phases under Ĥ0. In the main text, we discussed the quench scheme where the initial

localized WS state ϕ0 becomes a superposition of delocalized WS states. An alternative way to

probe Bloch oscillations is to amplitude modulate the lattice depth as:

H1(t)/h̄ = V1 sin2 klz cos(ωt+ ϕ)

=
∞∑

m,n=−∞
tm cos(ωt+ ϕ)(ĉ†m+nĉn + ĉ†nĉm+n),

(4.123)

which has been demonstrated in [283]. Here we define the tunnelling rate between ϕm+n and ϕn

as:

tm = V1

∫
dz sin2(klz)ϕm+n(z)ϕn(z). (4.124)

Moreover, we can choose ω ≈ mωB,m ∈ Z to drive the mth sideband (between ϕm+n and

ϕn) and ignore the fast rotating terms:

H1(t)/h̄ =

∞∑
m,n=−∞

tm cos(ωt+ ϕ)(eimωBtĉ†m+nĉn + e−imωBtĉ†nĉm+n)

≈
∞∑

n=−∞

tm
2

(e−iϕĉ†m+nĉn + eiϕĉ†nĉm+n).

(4.125)

As a result, starting from ϕ0 and performing the amplitude modulation for time τ , we obtain

the initial state to be a superposition of WS states {ϕn×m}. In Fig. 4.26 (pink curve), we simulate
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the case with lattice depth V0 = 8ER and modulation strength V1 = 0.4ER, also the first sideband

transition (ω = ωB). Different from the quench scheme (grey curve), after the modulation the

single particle wavefunction can have a non-zero coupling to the cavity field (Neff/N ̸= 0).

In the experiment, there may be higher bands populated in the quench protocol we discussed

in the main text. In other words, the WS basis describing the ground band for the shallow lattice

(after quench) is not necessarily complete to describe the initial localized state. Higher bands

population will inevitably introduce other frequency components to Neff(t) disrupting the BO

signal. However, in the simulations we performed for the main text (quench from V0 = 15ER

to V0 = 8ER), 98% atoms remained in the ground band and the higher band population can be

ignored. Similarly, in the amplitude modulation schemes, we also choose V1 to be much smaller

than the band gap to avoid higher bands population.

Experimental parameters

Here we discuss the parameters for the specific case of 87Rb with incommensurate lattice

wavelength (λl = 532 nm, ωB = 2π × 557 Hz) and cavity wavelength (D2 transition with λc = 780

nm). We are interested in the parameter regime with V ∼ ωB and β ∼ O(1), where the dynamics

is mostly unitary and the dissipative processes can be ignored as we explain below. Another

requirement is that the band gap (27ωB for λl = 532 nm and V0 = 6ER) should be much larger

than V if we want to only work with the ground band WS states. Moreover, the cavity decay rate

κ ∼ 2π × 0.1 MHz, the atom-light coupling strength G0 ∼ 2π × 0.3 MHz, and atomic transition

decay rate γ ∼ 2π × 10 MHz give the cavity cooperativity C = 4G2
0/γκ ∼ 0.36, which can be

tuned even larger for larger G0 and smaller κ, γ. The cavity loss generates collective dephasing

processes at a rate V βκ/∆c, while spontaneous emission generates off-resonant photon scattering

processes at a rate V γ/∆0 as mentioned in the main text. Under κ/∆c ∼ 0.05 and γ/∆0 ∼ 0.01,

one obtains negligible dissipation within the experimentally relevant time scales and β ∼ O(1). For

the maximum AC Stark shift, we first find that G2
0/∆0 ∼ 2π × 100 Hz with the parameters listed

above, then |ηp|2/∆2
c can be tuned between 1 to 10 for V ∼ ωB.

Our proposal works with a single internal level in the ground state manifold for atoms hopping
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between motional states (WS states here). Since interactions are mediated by photons, quantum

statistics are not important in our scheme. As a result, even though above we considered the case of

Rb, our model can be realized with other species of alkali atoms (D2 transition) and alkaline earth

atoms (1S0 → 3P1 transition) i.e. 87Sr (boson), 88Sr (fermion), 171Yb (fermion) with appropriate

choices of lattice wavelength and magic lattice depth summarized in table 4.2. Note that both 88Sr,

171Yb have very small scattering lengths in the ground states.

The single particle Bloch oscillations and dynamical phase transition in the deep lattice

doesn’t set too much limit on the choice of λl and λc. We only want the near-neighbour coupling

coefficient Jm,m+1 to be larger, while the overlaps between ϕm(z), ϕm+1(z) and sin2(kcz) become

tiny when λl ≈ λc, so we want to choose different λl and λc. While for the amplification of BOs in

the shallow lattice region, we need to perform the experiment around magic lattice depth thus too

shallow magic depth (such as 171Yb) isn’t favorable.

Atomic species λl (nm) λc (nm) Magic lattice depth (ER)

87Rb (boson) 532 780 6ER

87Sr (fermion) 532 689 5ER

88Sr (boson) 532 689 5ER

171Yb (fermion) 413 556 3.2ER

Table 4.2: Summarized lattice, cavity wavelength and magic lattice depth for different atomic
species.

Radial mode thermal distribution

In this section, we discuss the effect of the Radial thermal motion following Ref. [38]. The

Gaussian geometry of the laser beams in experiments inevitably couples the vertical and radial

wave functions. The Gaussian profile of the lattice and cavity beams causes atoms in different

radial modes to have different tunneling rate, resulting in a slightly different overlap integral Jm,n

for atoms in different radial modes. This effect can also be understood as fluctuations of the lattice

potential V0 due to radial thermal excitation.
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(a) (b) (c)

Figure 4.27: The standard deviations of (a) the ground band tunneling rates, (b) the coupling
coefficient J0,0 as a function of radial trapping ωr with fixed T = 0.1 µK (blue curve), T = 1 µK
(orange curve) as well as T = 10 µK (green curve). We use the beam width wl = 50µm and lattice
potential V0 = 6ER in the calculation. (c) The standard deviations of J0,0 as a function of loading
error rate ϵ.

First, we focus on the Gaussian beam profile of a 1D lattice, which leads to the following

trapping potential:

V0(r, z) = V0 sin2 (klz) exp
(
−2r2/w2

l

)
, (4.126)

where wl is the beam width. In the presence of additional radial trapping potential Vr(r, z) =

Mω2
rr

2/2 [292] we can expand the total trapping potential V (r, z) = V0(r, z) + Vr(r, z) to second

order of r and obtain:

V (r, z) ≈ V0 sin2(klz) +
1

2
Mω2

rr
2 − ω2

r0

ω2
r

1

2
Mω2

rr
2 sin2(klz), (4.127)

here ωr0 =
√

4V0/Mw2
l .

The first term describes the lattice potential along the axial direction with the characteristic

Bloch functions as eigenstates. The second term describes the radial harmonic trapping with

eigenstate ϕnx,ny(r) = ϕnx(x)ϕny(y) and eigenenergies Enx,ny = h̄ωr(nx + ny + 1/2). The third

term describes the coupling between axial and radial degrees of freedom. The correction of J0 is

given by [38]:

J̃0 (nx, ny) = J0 +
1

8

ω2
r0

ω2
r

Enx,ny [
∂

∂v0
f(q̃ = 0, v0/4) − ∂

∂v0
f(q̃ = ±1, v0/4)]. (4.128)

Here the function f is the characteristic Mathieu value of type A for q ∈ (−h̄kl, h̄kl), and the

characteristic Mathieu value of type B for q = ±kl. We define q̃ = q/h̄kl and v0 = V0/ER. One
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can take such J̃0 into Eq. (4.85) to calculate ϕn(z), which causes inhomogeneity for the coupling

matrix Jm,n. We can estimate the contribution from different radial eigenmode with Boltzmann

distribution pnx,ny = exp[−(nx + ny)ωrh̄/kBT ]/Z, in which the partition function Z ≈ (kBT/h̄ωr)
2.

Then we can calculate the variance of the J̃0 as:

∆J̃2
0 =

∑
nx,ny

pnx,ny [J̃0 (nx, ny) − J0]
2

= { h̄
8

ω2
r0

ωr
[
∂

∂v0
f(q̃ = 0, v0/4) − ∂

∂v0
f(q̃ = ±1, v0/4)]}2 2(eh̄ωr/kBT + 2)

(eh̄ωr/kBT − 1)2
.

(4.129)

In Fig. 4.27(a), we plot the standard deviation of the tunneling rate J0 as a function of ωr and

different temperature T . In Fig. 4.27(b), we plot the standard deviation of the coupling coefficient

J0,0 due to the correction of the tunneling rate. Similar behavior for other coupling coefficients

Jm,n. As a result, one can suppress the effect of the radial modes occupation by increasing the total

radial trapping frequency ωr or lowering the temperature. The standard deviation ∆J0,0 ≈ 0.01J0,0

up to temperature T ∼ 1 µK as well as ωr = 2π × 1 kHz, thus the radial thermal noise only has a

tiny effect on many-body dynamics we predict.

Atoms loading

In this section, we discuss the real process of atoms loading in the experiment. In the main

text, we mention first loading atoms at position kcz/π = r, r ∈ Z which atoms-cavity coupling

becomes perfect zero. However one can only set a threshold for the atom-cavity coupling during the

loading process i.e. load all the atoms with sin2 kcz < ϵ in the real experiment. Such loading error

makes Jm,n deviate from expected values, which brings additional inhomogeneity. In Fig. 4.27(c),

we plot the standard deviation of the coupling coefficient J0,0 as a function of error ϵ. We consider

the total lattice length to be 1 mm and assume atoms load into all the sites n which satisfy

sin2(kcnal) < ϵ uniformly. These imperfect sites cause tiny inhomogeneity in the coupling coefficient

Jm,n up to ϵ ∼ 5%.
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4.5 Observing dynamical phases of BCS superconductors in a cavity QED

simulator

This section is adapted from: Dylan J. Young∗, Anjun Chu∗, Eric Yilun Song, Diego Bar-

berena, David Wellnitz, Zhijing Niu, Vera M. Schäfer, Robert J. Lewis-Swan, Ana Maria Rey, James

K. Thompson, Observing dynamical phases of BCS superconductors in a cavity QED simulator,

Nature 625, 679 (2024).

4.5.1 Introduction

In conventional Bardeen-Cooper-Schrieffer (BCS) superconductors [293], electrons with op-

posite momenta bind into Cooper pairs due to an attractive interaction mediated by phonons in

the material. While superconductivity naturally emerges at thermal equilibrium, it can also emerge

out of equilibrium when the system’s parameters are abruptly changed [294–300]. The resulting

out-of-equilibrium phases are predicted to occur in real materials and ultracold fermionic atoms but

have not yet all been directly observed. Here we realise an alternate way to generate the proposed

dynamical phases using cavity quantum electrodynamics (cavity QED). Our system encodes the

presence or absence of a Cooper pair in a long-lived electronic transition in 88Sr atoms coupled

to an optical cavity and represents interactions between electrons as photon-mediated interactions

through the cavity [301,302]. To fully explore the phase diagram, we manipulate the ratio between

the single-particle dispersion and the interactions after a quench and perform real-time tracking

of subsequent dynamics of the superconducting order parameter using non-destructive measure-

ments. We observe regimes where the order parameter decays to zero (phase I) [295,296], assumes

a non-equilibrium steady-state value (phase II) [294,295], or exhibits persistent oscillations (phase

III) [294,295]. This opens up exciting prospects for quantum simulation, including the potential to

engineer unconventional superconductors and to probe beyond mean-field effects like the spectral

form factor [303,304], and for increasing coherence time for quantum sensing.

Quantum simulation offers a path to understand a broad range of phenomena, from high-

https://doi.org/10.1038/s41586-023-06911-x
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temperature superconductivity and correlated quantum magnetism in condensed matter physics

[305] to quarks and gluons in nuclei and matter under extreme conditions [306], as well as the

black hole information paradox in gravitational physics [307]. A fascinating and promising case

is the prethermal dynamical phases [193] predicted to emerge from quenches of superconductors

and superfluids [294–300, 308–313], systems that feature Cooper pairing of electrons or neutral

fermions. While there has been great progress in pump-probe experiments of superconductors to

induce such fast quenches using THz technology, and signs of phases I and II have been observed,

the intense pulses couple nonlinearly to the Cooper pairs in the superconductor and complicate a

clean observation of the dynamical phases [314–316]. For these reasons, the realisation of fermionic

superfluids in ultracold atomic gases [317] has generated great excitement [294–300]; however, to

date observations have been limited to spectroscopic signatures rather than the full time dynamics

[318]. In neither system has a systematic scan of the dynamical phase diagram been performed,

and in fact phase III has not been observed.

Here, we take a step forward towards this challenge by using internal electronic states to

encode effective Cooper pairs. At the heart of this implementation is the Anderson pseudospin

mapping [319] by which the presence or absence of Cooper pairs in a momentum mode is encoded

in a pseudo spin-1/2 system. We simulate Anderson pseudospins using a long-lived electronic

transition in 88Sr with interactions between the spins mediated by a high finesse optical cavity. As

proposed in Refs. [301,302], the scattering between Cooper pairs in condensed matter systems can

be engineered in our system via the exchange of photons through the cavity (see Fig. 4.28d). In

this way, the dynamics of a collection of interacting spin-1/2 systems maps onto the low-energy

physics of a superconductor or superfluid.

We probe all three dynamical phases (phases I, II, and III) predicted to exist in BCS super-

conductors by utilising the high degree of control and flexibility in state initialisation, interaction

control, and non-destructive measurements available when coupling long-lived atoms to an optical

cavity. Behaviours intrinsic to phase I (normal phase) and phase II (finite steady-state supercon-

ductivity) have previously been observed in spin systems realized in optical cavities [186, 189] and
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Figure 4.28: Engineering BCS dynamical phases. a, The Anderson pseudospin mapping
encodes the presence and absence of a Cooper pair as the up and down states of a spin-1/2 system,

respectively. Under this mapping, the attractive interaction χĉ†kĉ
†
−kĉ−k′ ĉk′ between electrons is

equivalent to an all-to-all exchange interaction χŜ+
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−
k′ between pseudospins. b, Model parameters.

The top plot shows the effective dispersion relation near the Fermi surface engineered in our system
as a function of parameters δs and EW, controlled using AC Stark shifts. The bottom plot visualises
the ground state of a BCS superconductor using Anderson pseudospins. Near the Fermi momentum,
the pseudospins develop a phase-coherent superposition at a scale set by a nonzero BCS pairing gap
∆BCS. This gap is self-consistently defined from the spin coherence as shown on the Bloch sphere.
c, Dynamical phase diagram. The three dynamical phases can be realised by varying parameters
χN , δs, and EW. Representative dynamics of the BCS order parameter |∆BCS| for each phase are
shown as insets. We explore cut H1 (dashed line) in Fig. 4.29 using a single ensemble of atoms and
cuts V and H2 (solid lines) in Figs. 4.30 and 4.31 using two separately controlled sub-ensembles. d,
Cavity QED implementation of the BCS interaction. Coupling many strontium atoms to a detuned
optical cavity generates infinite-range spin-exchange interactions mediated by a virtual exchange of
cavity photons. This interaction also causes a field proportional to ∆BCS to leak out of the cavity,
providing a real-time probe of the dynamics.
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in two-level atoms interacting via collisions [108,187,188,320]. We build on this work by clarifying

the connection between these dynamical phases from the BCS model and the physics of many-body

gap protection in spin systems. Our results also provide the first demonstration of phase III (a self-

generated Floquet phase featuring persistent oscillations of the order parameter), which is predicted

to dynamically emerge in superconductors via quenches from weak to strong interactions [295,300].

In our system, we instead engineer this phase using flexible control of the single-particle disper-

sion [301,313], dynamically resembling the low-energy condition of a BCS superconductor. For all

experiments, we perform real-time tracking of the superconducting order parameter, enabling fast

readout of the dynamics.

4.5.2 Experimental setup and model system

To realise dynamical phases of the BCS model, we laser cool an ensemble of N = 105 − 106

88Sr atoms and trap them inside a λL = 813 nm 1D optical lattice supported by a high-finesse

optical cavity. A spin-1/2 system is encoded in the electronic ground state |↓⟩ = |1S0,mJ = 0⟩

and a long-lived optical excited state |↑⟩ = |3P1,mJ = 0⟩. Along this transition, we define spin

operators Ŝ−
k = |↓⟩⟨↑|k and Ŝz

k = (|↑⟩⟨↑|k − |↓⟩⟨↓|k)/2 for single atoms with labels k ∈ {1, ..., N}, as

well as the collective lowering operator Ŝ− =
∑

k Ŝ
−
k and raising operator Ŝ+ = (Ŝ−)†.

Assuming homogeneous atom-light coupling in the cavity and unitary dynamics, our system

can be described by the Hamiltonian

Ĥ = h̄χŜ+Ŝ− +
∑
k

εkŜ
z
k . (4.130)

The first term represents an infinite-range spin-exchange interaction described by a frequency scale

χ [186], realised using the collective coupling between the atomic ensemble and a detuned optical

cavity mode. Inhomogeneous atom-light coupling and dissipative processes (including, foremost,

single-particle spontaneous decay) are present in the current implementation but do not largely

change the qualitative behaviour of the targeted dynamical phases under our experimental condi-

tions (see Methods). Previously, we have characterised this interaction [186] and studied collective
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dynamics by applying an external drive [107]. In this work, we go beyond the fully collective

manifold by engineering a spread in single-particle energies εk = h̄ωk using applied AC Stark

shifts ωk [321, 322]. These shifts form the second term in the Hamiltonian and compete with the

spin-exchange interaction.

Equation (4.130) is the so-called Richardson-Gaudin spin model [323, 324], which describes

the low-energy physics of Bardeen-Cooper-Schrieffer (BCS) superfluids and superconductors using

the Anderson pseudospin mapping [319]. This mapping relates the presence (or absence) of a

Cooper pair formed by a pair of electrons with momenta ±k to a spin-up (or down) at momentum

k, as shown in Fig. 4.28a. Correspondingly, annihilating a Cooper pair maps to a spin lowering

operator by the relation Ŝ−
k := ĉkĉ−k, where ĉ±k are fermionic annihilation operators. Similarly,

the spin operator 2Ŝz
k + 1 := ĉ†kĉk + ĉ†−kĉ−k counts the number of electrons with momentum k or

−k. Our cavity system therefore manifestly implements a BCS superconductor if one identifies the

label k of an atom in the cavity with the momentum k of the electrons in a Cooper pair. In this

way, the first term in Eq. (4.130) is equivalent to the attractive interaction between electrons in the

superconductor, and the second term can be associated with the kinetic energy or dispersion relation

of the electrons. Note that the BCS model, described by Eq. (4.130), only accounts for the zero

momentum collective excitations present in conventional superfluids and superconductors [319].

The BCS order parameter in the Anderson mapping is defined by ∆BCS = χ⟨∑k ĉkĉ−k⟩ =

χ⟨Ŝ−⟩, as depicted in Fig. 4.28b. In equilibrium, it plays the role of the BCS pairing gap, which

energetically favours many-body states where the electrons arrange in a coherent superposition

between Cooper pairs and holes for states close to the Fermi energy. Away from equilibrium, ∆BCS

is also predicted to characterise the three dynamical phases (I, II, and III) that arise after quenches

in superconductors and superfluids [193]. Such dynamical phases represent distinct regimes of

dynamical behaviour that arise after a sudden perturbation of a control parameter in a closed

many-body system. They are described using a time-averaged or steady-state order parameter

that demonstrates non-analytic behaviour at the boundary between phases. In particular, the BCS

model is predicted to exhibit second-order dynamical phase transitions.
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Figure 4.29: Phase I to phase II transition. a, Tuning the single-particle dispersion. We shine
an off-resonant 461 nm beam onto the atoms from outside the cavity. This generates a distribution
of AC Stark shifts representing a roughly uniform density of states ρ(ω) (bottom plot). b, Probing
phase I and phase II. We perform a rapid π/2 pulse to prepare a highly coherent initial state, wait
for 2 µs, quench to a variable χN/EW with δs = 0, and then let the system evolve. The inset shows
the explored parameter cut and identifies post-quench χN/EW values with coloured dots. The
main plot shows experimental time traces of |∆BCS| (coloured curves) accompanied by numerical
simulations (darker lines). Two curves are extended to demonstrate long-time coherence protection,
with the χN/2π = 0.19 MHz trace smoothed for clarity. For χN/2π = 1.2 MHz, we show an ideal
simulation neglecting dissipation and motional effects (dashed line), which exhibits transient Higgs
oscillations. Hints of these oscillations are present in experimental data with additional damping.
c, Characterising the phase transition. Blue triangles show the fitted coherence time of |∆BCS| from
t = 1 µs to 30 µs. Green circles show the time-averaged |∆BCS| between t = 3 µs and 8 µs, with
the dark green line representing numerical simulations. In all cases, we identify a phase transition
at χN/2π = 0.2 MHz. Error bars in all plots represent the s.e.m. of boostrap resamplings on
experimental shots. d, Varying initial conditions. Before t = 0, we shine a high-intensity 461 nm
beam within 300 ns, engineering an initial phase spread φ(ωk) ∈ [0, φ0] depicted on the Bloch
sphere. The phase φ(ωk) applied to atom k is proportional to the post-quench frequency shift ωk.
Traces represent different φ0 and show enhanced oscillations with increasing φ0.
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Phase I is characterised by a steady state with a vanishing order parameter |∆BCS(t)|→ 0

at long times. Phase II exhibits a steady state with a constant nonzero order parameter ∆∞ :=

limt→∞|∆BCS(t)|> 0. Finally, phase III features oscillations in |∆BCS(t)| that persist to long times,

realising a Floquet superfluid despite not being periodically driven [298–300, 312]. The long-time

behaviour of these dynamical phases admits a simpler description in terms of the Lax-reduced

Hamiltonian, which is an effective Hamiltonian taking the same form of Eq. (4.130) but with

rescaled parameters and a reduced number of spins [193, 300]. Under this formulation, phases I,

II, and III emerge when the Lax-reduced Hamiltonian describes effective zero-spin, one-spin, and

two-spin systems respectively.

Inspired by the Lax-reduced Hamiltonian, and in order to explore all three dynamical phases,

we engineer two sub-ensembles of atoms with separate control over energy shifts within each sub-

ensemble. For practical convenience, we introduce experimental control in the form of an overall

frequency splitting δs between two sub-ensembles and an effective frequency width EW of each

sub-ensemble to engineer a tunable dispersion relation εk as in Fig. 4.28b. Phase I and phase II

can also be observed using a single ensemble of atoms as shown in Fig. 4.29. Both experimental

setups can nonetheless be described by a common phase diagram as shown in Fig. 4.28c.

We initialise all the atoms in the |↓⟩ state and then apply a coherent π/2 pulse through the

cavity in 100 ns such that Ω ≫ χN , where Ω is the pulse Rabi frequency and χN is the characteristic

interaction strength for an ensemble of N atoms. This establishes a large BCS order parameter

∆BCS on a timescale faster than any other relevant dynamics, mimicking the ground state of a

Hamiltonian with an infinite interaction strength χ. We then quench the system by rapidly turning

on εk, which sets a finite ratio χN/EW and a variable δs/EW, allowing us to explore the dynamical

phase diagram shown in Fig. 4.28c.

We measure both the pre- and post-quench dynamics of |∆BCS| by monitoring light emitted

by the atoms into the cavity as a function of time (see Fig. 4.28d). This light arises from a

superradiance process which is suppressed when the cavity resonance is detuned from the atomic

transition frequency by much more than κ, the cavity power decay linewidth [325–327]. In this limit,
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the established cavity field adiabatically follows ⟨Ŝ−⟩, which is proportional to ∆BCS. By measuring

the leakage of light from the cavity in heterodyne with a local oscillator, we therefore obtain a real-

time probe of ∆BCS. Importantly, at the chosen detuning this probe is quasi-nondestructive, since

only a small fraction of the atoms emit light over relevant timescales. In plots of |∆BCS| over time,

we normalise traces to the initial gap size ∆init measured right after the π/2 pulse.

4.5.3 Phase I to phase II

We probe the phase I to phase II transition by varying the ratio χN/EW between the inter-

action strength and the width of the single-particle energy distribution. As shown in Fig. 4.29a, we

shine an off-resonant 461 nm beam onto a single atomic ensemble from the side of the cavity that

generates a distribution of AC Stark shifts with a spread EW. Careful shaping of the 461 nm beam

allows us to realise a roughly flat density of states (see Methods), resulting in a setup consistent

with the δs = 0 line in Fig. 4.28c (see SOM). After the initial π/2 pulse, we wait for 2 µs to let

transient dynamics settle and then turn on the 461 nm beam to quench on EW/2π = 0.83 MHz

from an initial value E
(0)
W /2π ≪ 0.1 MHz. The beam exhibits a rise time of roughly 50 ns, much

faster than the relevant dynamics. To scan across the phase diagram in the inset of Fig. 4.29b, we

vary the interaction strength χN between shots by changing the atom number N .

As shown in Fig. 4.29b and c, we observe two distinct dynamical behaviours corresponding to

phases I and II, signalled by the decay rate of |∆BCS|. For experiments with sufficiently small χN ,

such as χN/2π = 0.19 MHz, |∆BCS| decays with a 1/e coherence time of 0.9±0.1 µs. This coherence

time is consistent with single-particle dephasing of ⟨Ŝ−⟩ set by the energy spread h̄EW and is nearly

constant throughout this regime. We identify the fast decay of |∆BCS| as an experimental signature

of phase I. For larger interaction strengths, we observe a rapid increase in coherence time up to a

maximum of 29 µs when χN/2π = 1.2 MHz; this constitutes an improvement of more than a factor

of 30. We identify this extended coherence time regime as phase II. The residual decay of |∆BCS|

in this regime can be attributed to intrinsic dissipative processes including spontaneous emission,

off-resonant superradiant emission, and scattering of 461 nm light [186,327], which set a maximum
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and darker lines represent numerical simulations. c, Ideal simulations of mean-field trajectories
for the two sub-ensembles (solid and dashed curves) in phase II (magenta) and phase III (blue).
The trajectories are projected onto the surface of the Bloch sphere for visual clarity. d, Fourier
response of |∆BCS|2 for different δs, plotted as power spectra of the dynamics from t = 0.5 µs to
4 µs after subtracting slow-moving behaviour. e, Average oscillation amplitude between t = 3 µs
and 8 µs. For the remaining plots, dashed lines represent ideal simulations (ignoring dissipation or
motional effects), and solid dark lines correspond to full simulations. The additional dotted line
represents numerical simulations rescaled by ×0.2, plotted to show similar trend behaviour between
experimental data and simulations. We identify a phase transition around δs/2π = 0.85 MHz. f,
Oscillation frequency of |∆BCS|, measured using power spectra calculated in (d). We correct for
systematics inferred from our data analysis and assume this correction has an uncertainty of 100%,
shown by the green band. The phase transition point observed in data in panels (e) and (f) agrees
well with simulations.
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predicted coherence time of 29 µs (see Methods). All experimental observations (coloured traces)

are in good agreement with numerical simulations based on experimental conditions (dark lines—see

Methods).

Due to the separation of timescales in the decay of |∆BCS|, we are able to determine the

boundary between phase I and phase II in our experiment by calculating the average |∆BCS| in

a time window from 3 µs to 8 µs as a function of χN (see Fig. 4.29c). In this analysis, phase I

features a vanishing average |∆BCS|, while phase II sees a nonzero |∆BCS| that increases with χN .

The sharp rise of average |∆BCS| around χN/2π = 0.2 MHz indicates a dynamical phase transition,

which agrees with the point predicted by numerical simulations. In a spin-model picture, the BCS

pairing gap corresponds to the energy gap between collective angular momentum states, which

exists due to the spin-exchange interaction χŜ+Ŝ− [328]. Phase II corresponds to the parameter

region where such interactions are sufficiently strong to protect against single-particle dephasing.

As a result, the observed transition directly relates to previous experiments exploring coherence

protection in other systems [108,186–189,320].

In BCS superconductors, the excitation of a Higgs mode is predicted to occur in phase II. This

mode can be characterised by a collective damped oscillation of the order parameter |∆BCS| with

a characteristic frequency of 2∆∞ [300]. We observe hints of Higgs oscillations by comparing the

experimental trace of |∆BCS| at χN/2π = 1.2 MHz (red curve in Fig. 4.29b) with the dissipation-

free simulation (dashed line in Fig. 4.29b) and noticing that the first dip in the experimental trace

coincides with the first cycle of Higgs oscillations (see Methods). The size of this feature can be

increased experimentally by engineering an initial phase spread φ(ωk) ∈ [0, φ0] between atoms

which is correlated with the post-quench frequency shifts ωk of the atoms, as shown in Fig. 4.29d.

The initial state with a nonzero opening angle φ0 shares qualitative features with the BCS ground

state at finite χ up to a π/2 rotation on the Bloch sphere [301], in contrast to the initial state

mimicking the BCS ground state with infinite χ in Fig. 4.29b.
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4.5.4 Phase II to phase III

We probe the phase II to phase III transition using a vertical cut through the dynamical phase

diagram. To realise this, we introduce an energy splitting h̄δs between two individually addressable

clouds of atoms along the cavity axis using AC Stark shifts from our 461 nm beam, as shown in

Fig. 4.30a. In combination with a background energy spread h̄EW associated with lattice shifts

(see Methods), this produces a bimodal density of states and a dispersion relation similar to the

one proposed in Fig. 4.28b. As before, we begin the experiment with a highly coherent state and

with δs = 0. Then, we quench on a nonzero δs and let the system evolve. Between shots, we scan

δs while fixing χN/2π = 0.9 MHz and EW/2π ≈ 0.34 MHz to explore the vertical cut.

The resulting dynamics show a marked change in the dynamical evolution of |∆BCS| over

the scan as shown in Fig. 4.30b, which we attribute to a transition between phase II and phase

III dynamics. For small δs, we either see Higgs-like oscillations which are damped after 3 µs (the

trace where δs/2π = 0.6 MHz) or, for very small splittings, no oscillations resolvable above the

noise floor (δs/2π = 0.3 MHz). We associate this regime with phase II since it overlaps with the

previously observed phase II dynamics in parameter space. For larger δs, curves instead show

large-amplitude oscillations that persist for more than 5 µs (δs/2π = 1.4 MHz). We identify the

long-lived oscillations in this parameter regime as an experimental signature of phase III.

Intuitively, we can understand the difference between the two phases by identifying the two

sub-ensembles of atoms with two Bloch vectors (see Fig. 4.30c). In phase II, a finite δs causes the

Bloch vectors to precess in different directions, but the dominant scale χN locks them together

to form the solid and dashed magenta orbits. In the presence of a finite EW, the orbits decay,

but the Bloch vectors maintain phase coherence. On the other hand, in phase III δs is large

enough that the two Bloch vectors accrue an unbounded relative phase, as in the blue orbits.

The presence of interactions locks each sub-ensemble separately against a finite EW, leading to

persistent oscillations. This effective beating of two large spins in a macroscopic array of spin-1/2

particles is truly an interaction-driven effect since the interactions are strong enough to lock the
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spins within each sub-ensemble but not strong enough to lock both sub-ensembles together. In

our implementation of phase III, the bimodal distribution allows us to dynamically separate the

Bloch vectors of the two sub-ensembles, instead of starting with an already split distribution like

in weakly interacting BCS ground states featuring a sharp Fermi edge. Despite their qualitative

differences, these two situations can be dynamically connected (see Methods).

We can experimentally define a boundary between phase II and phase III using the separation

of timescales observed for oscillations in |∆BCS|. Fig. 4.30e shows the average oscillation amplitude

in a time window from t = 3 µs to 8 µs. In this analysis, we observe a sharp rise in oscillation

amplitude at δs/2π = 0.85 MHz ≈ χN/2π as we increase δs, which we identify as a dynamical phase

transition. Numerical simulations plotted in Fig. 4.30e agree fairly well with data in capturing

trend behaviour and estimating the phase transition point. However, we see a discrepancy in the

absolute size of the observed and predicted oscillation amplitudes. We attribute this to an extra

dephasing mechanism (likely residual motional effects) in our system or other imperfections in the

experimental sequence not captured by the theory model.

We verify the location of the phase II to phase III transition using the short-time oscillation

frequency (from t = 0.5 µs to 4 µs) as an additional experimental signature. As can be seen in the

Fourier responses in Fig. 4.30d and quantified in Fig. 4.30f, the oscillation frequency exhibits a dip

vs. δs at the previously-identified phase boundary. This dip is present in roughly the same location

for experiment and theory and is expected to coincide with the phase II to phase III transition (see

SOM).

4.5.5 Scan across three dynamical phases

Finally, we observe all three dynamical phases in a single cut through parameter space, as

shown in Fig. 4.31a. We run the same experimental sequence described in Fig. 4.30, but instead

scan χN between shots with δs/2π = 1.1 MHz and EW/2π = 0.46 MHz fixed. This allows us to

probe phase I, phase III and then phase II by increasing atom number N . Using order parameters

established in Figs. 4.29 and 4.30, we determine boundaries between the three phases. As shown in
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of |∆BCS| in a bin from t = 3 µs to 8 µs vs. interaction strength. The experimental data shows
signatures of a phase I to phase III transition at χN/2π = 0.25 MHz. c, Oscillation frequency of
|∆BCS| vs. interaction strength in a bin from t = 0.5 µs to 4 µs. Again, we correct for systematics
inferred from our data analysis and assume this correction has an uncertainty of 100%, shown
by the green band. This data identifies a phase III to phase II transition at χN/2π = 1.0 MHz.
Experimental data and transitions in both plots are consistent with numerical simulations.
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Fig. 4.31b, the long-time average of |∆BCS| rises suddenly around χN/2π = 0.25 MHz in both data

and simulations. This transition marks the boundary between phase I and phase III. Additionally,

at χN/2π = 1.0 MHz we observe a dip in the short-time oscillation frequency of |∆BCS| (Fig. 4.31c),

marking a transition between phase III and phase II. For this scan, we do not use the long-time

oscillation amplitude as an order parameter due to poor signal-to-noise for smaller values of χN .

4.5.6 Conclusion

The demonstrated capability to emulate dynamical phases of superconductors in optical

cavities opens exciting prospects for quantum simulation. For example, it will be interesting to

see if our cavity simulator can engineer and probe topological superfluid phases [299,329–334] and

understand competing superconducting orders [335,336] in a single system, or else enable simulation

of superfluidity in phenomena relevant to high energy physics [337,338].

4.5.7 Methods: Experimental setup

Phase I to phase II transition

To explore the phase diagram cut in Fig. 4.29, we first load 105 − 106 88Sr atoms from a

magneto-optical trap into an 813 nm optical lattice supported by a high-finesse optical cavity,

similar to previous experiments [107, 186, 263, 327]. The resulting atomic cloud has a temperature

of roughly 15 µK, resulting in a Gaussian distribution transverse to the cavity axis with standard

deviation σy = σz = 16 µm (coordinates defined in Fig. 4.32a). Further, the cloud is extended over

thousands of lattice sites, forming a distribution along the cavity axis with a standard deviation

σx = 430 µm. We measure an axial trapping frequency of ωx/2π = 165 kHz, giving a Lamb-

Dicke parameter of η = 0.17 for excitation with 689 nm light. At the measured temperature,

η2(2n̄ + 1) = 0.11 ≪ 1, placing the atoms in the Lamb-Dicke regime. We set a quantisation axis

along ŷ with a 2.4 G magnetic field and tune the lattice polarisation to a “magic angle” relative to

this axis, such that the differential lattice shift between ground (|1S0⟩) and excited (|3P1,mJ = 0⟩)

states vanishes [107]. Using piezoelectric actuators, we stabilise the cavity length to set the closest
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TEM00 resonance to be 51 MHz red-detuned from the atomic transition.

After loading into the lattice, we initialise the atoms with a ŷ-polarised drive through the

cavity which is nominally resonant with the atomic transition. Because the drive is far off-resonance

from the cavity (which has linewidth κ/2π = 153 kHz at 689 nm), the induced Rabi frequency is

somewhat suppressed. Nonetheless, we find that roughly 5 mW of power before the cavity is

sufficient to drive the atoms with a π/2 pulse in 100 ns. We allow the atoms to settle for 2 µs in

order to distinguish the desired physics from transient dynamics observed after state initialisation,

which we attribute to undesired excitation of sideband transitions. We then shine a 461 nm beam

from the side of the cavity along the ŷ direction, detuned from the |1S0⟩ − |1P1⟩ transition by

more than 10 GHz, in order to induce AC Stark shifts on the ground state. The beam has waists

(wx, wz) = (1030 µm, 75 µm) along the x̂ and ẑ directions at the plane of the atoms, and its centre

is displaced from the centre of the atomic cloud by x0 = 580 µm along the cavity axis. From

these dimensions, we calculate an atomic density of states ρ(ω) as a function of frequency shift

which is roughly uniform between 0 and a maximum shift h̄EW. We estimate that for the power

and detuning used in this cut, the 461 nm beam scatters off the atoms with an average rate of

Rsc/2π = 1.3 kHz, roughly a factor of six smaller than γ/2π = 7.5 kHz, the spontaneous emission

rate. Combined with collective emission from the atoms as described in the Readout section of

the Methods, these dissipation processes set a maximum predicted coherence time in the system of

29 µs.

Cuts through phase III

For the two cuts through phase III described in Figs. 4.30 and 4.31, we load the atoms in

two clouds separated by 3 mm, as shown in Fig. 4.32b. The left cloud has an extent described by

standard deviations (σx, σz) = (200 µm, 16 µm). The right cloud has a similar extent along σz but

is broader along the cavity axis. We tune the lattice polarisation to point along ẑ, which breaks the

magic angle condition and introduces a differential trap depth between ground and excited states of

0.47 MHz for atoms experiencing peak lattice intensity. Due to their finite temperature, the atoms

experience a spread in lattice intensities which leads to an inhomogeneous trap depth. We estimate
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the induced distribution of energy shifts by assuming the atoms occupy a 2D Gaussian distribution

radially with standard deviation σy = σz = 16 µm, compared to the lattice waist wy = wz = 80 µm.

This produces a peaked distribution equivalent to the narrow peak in Fig. 4.30a.

In these experiments, we perform a π/2 pulse as before and then immediately shine a 461 nm

beam centred on the left (“bright”) atomic cloud. Unlike in the previous cut, we do not wait for

transient dynamics to settle after state initialisation, for the sake of simplicity. We do not see

major differences between observed and expected behaviour when omitting the wait period. The

beam has waists (wx, wz) = (1700 µm, 80 µm). We install a beam block just before the chamber

that clips the beam tail that would otherwise hit the right (“dark”) atomic cloud. The 3 mm

separation between clouds is sufficiently large to ensure the beam does not significantly diffract

around the beam block. The beam shifts the mean energy of the bright cloud away from that of

the dark cloud, introducing a tunable δs. While nominally, we hold EW fixed while scanning δs to

explore the phase II to phase III transition, in reality the finite size of the blue beam introduces

an additional contribution to EW on the bright cloud. As δs increases, therefore, both the size and

shape of the single-particle energy distribution changes. We calculate EW in a consistent manner

by estimating the standard deviation of the bright cloud distribution and matching the result to a

uniform distribution with the same standard deviation (see SOM). In the main text, we report the

value of EW obtained at the phase transition point for the phase II to phase III transition. As we

increase the 461 nm beam power, the atoms also scatter more blue photons. At the largest applied

AC Stark shift, we estimate that the bright cloud experiences a scattering rate of Rsc/2π = 3.4 kHz,

resulting in lower coherence times for traces with large δs. However, this excess decoherence does

not bias our measurements of oscillation amplitude and frequency at times t ≤ 8 µs.

Readout

After initialisation in all experiments, the atomic ensemble establishes a small electric field

inside the cavity which adiabatically follows ⟨Ŝ−⟩ [186]. Assuming homogeneous atom-light coupling

(see next section for modifications due to inhomogeneous coupling), the complex amplitude of the
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electric field leaking out of the cavity is given by

αout(t) = − g

δc

√
κm⟨Ŝ−(t)⟩, (4.131)

where αout has units of
√

photons/s. Here, 2g/2π = 10.6 kHz is the single-photon Rabi frequency for

an atom maximally coupled to the cavity, δc/2π = (ωc−ωa)/2π = −51 MHz is the detuning between

the cavity resonance frequency ωc and the atomic transition frequency ωa, and κm/2π = 41 kHz

is the rate at which photons incident on the cavity mirror are transmitted. αout is a form of

dissipation in the system equivalent to superradiance in a detuned cavity limit. Over the region

of parameter space explored in this work, we estimate that the dissipation rate never exceeds

γSR/2π = 2.3 kHz. We measure the detuned superradiant light as it leaks out of the cavity using

balanced heterodyne detection, providing us with a real-time probe of ⟨Ŝ−⟩ ∝ ∆BCS. In plots of

|∆BCS| in the main text, we calculate the square magnitude of this quantity and average over 400-

1600 shots of the experiment, taken within 2-10 minutes. We then perform background subtraction

to remove vacuum noise power from the heterodyne signal. Finally, we take a signed square root

of the result to return an estimate of |∆BCS| which averages to zero in the absence of a real signal.

This explains why some traces dip below zero despite representing a nonnegative quantity.

Additionally, the cavity experiences a (dispersive) shift in its resonance frequency propor-

tional to the number of atoms. We use this fact to measure atom number by sending a pulsed

probe tone through the cavity and measuring the frequency shift using the transmitted light. Since

this light is spectrally resolved from the light emitted by the atoms, we are able to measure both

signals independently on our heterodyne detector. The different optical frequencies involved in the

heterodyne beat are compared in Fig. 4.32c.

4.5.8 Methods: Dynamical phase diagram

The unitary dynamics of our system is modelled by an effective atom-only Hamiltonian, given

by

Ĥ = h̄χ
∑
jk

ζjζkŜ
+
j Ŝ

−
k +

∑
k

εkŜ
z
k , (4.132)
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Figure 4.32: Experimental configuration. a, Detailed diagram of the cavity and all relevant
beams. A magnetic field along ŷ sets the quantisation axis. The 813 nm optical lattice supported
by the cavity has a tunable linear polarisation. We drive a π/2 pulse with a beam polarised
along ŷ through the cavity, and during the experiment we probe the cavity resonance frequency
using a second ŷ-polarised beam to measure atom number. A 461 nm beam far-detuned from
the |1S0⟩ − |1P1⟩ transition shines on the atoms from the side of the cavity, inducing AC Stark
shifts. We probe signals transmitted through the cavity using a balanced heterodyne detector. b,
Fluorescence image of the two atomic clouds used when scanning through phase III in Figs. 4.30
and 4.31. c, Frequency landscape of 689 nm beams. The atomic drive frequency ωdrive is resonant
with the atomic transition. The cavity probe frequency ωcp is nominally centred with the cavity
resonance frequency, 51 MHz red-detuned from the atomic transition. The local oscillator used in
heterodyne detection has frequency ωLO and is 80 MHz blue-detuned from the atomic transition.
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Figure 4.33: Numerical simulation of the dynamical phase diagram based on Eq. (4.132).
We identify the dynamical phases based on the long-time average (a) and the long-time standard
deviation (b) of |∆BCS(t)|, normalised by its initial value ∆init ≡ |∆BCS(0)|. The white solid lines
mark the corresponding dynamical phase boundaries, analytically derived from Eq. (4.130), which
agree with the numerical results based on Eq. (4.132). The white dashed lines mark an extra
dynamical phase transition that only exists for Eq. (4.130).
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where Ŝ+,−
k , Ŝx,y,z

k are the standard spin-1/2 operators on atom k. We define χ = −g2δc/(δ2c +κ2/4),

where g and δc are as defined in the previous section, and κ is the cavity linewidth. The spatial

dependence of the interaction term is characterised by ζj = cos(jϕ) with ϕ = πλL/λc, which arises

because the lattice wavelength λL = 813 nm is incommensurate with the cavity wavelength λc =

689 nm. In contrast to Eq. (4.130), Eq. (4.132) becomes non-integrable due to the inhomogeneity in

the interaction term. Nevertheless, as shown in Fig. 4.33, Eq. (4.132) leads to a similar dynamical

phase diagram as Eq. (4.130) if we

i) Use a generalised superconducting order parameter ∆BCS = χ
∑

k ζk⟨Ŝ−
k ⟩;

ii) Interpret the π/2-pulse as a pulse along the cavity axis under the Hamiltonian Ĥdrive =

h̄Ω
∑

k ζkS
y
k that generates the maximum possible |∆BCS|, which occurs when Ωt = 0.586π;

iii) Replace the atomic number N by an effective atom number Neff = N/2, such that χNeff

represents the averaged interaction strength of Eq. (4.132).

We can still measure the generalised order parameter ∆BCS using the field leaking out of the

cavity as in the previous section, since with inhomogeneous coupling the transmitted field takes the

form αout(t) = − g

δc

√
κm
∑

k ζk⟨Ŝ−
k (t)⟩ ∝ ∆BCS. The dynamical phase diagram in Fig. 4.33 is nu-

merically calculated based on unitary evolution under Eq. (4.132), with a single-particle dispersion

εk/h̄ sampled from a uniform distribution in the frequency range [−δs/2 − EW/2,−δs/2 + EW/2]

and [δs/2 − EW/2, δs/2 + EW/2]. There χN corresponds to the averaged interaction strength of

Eq. (4.132). We identify the dynamical phases based on the long-time average of |∆BCS|, given by

Avg(|∆BCS|) = lim
T→∞

1

T

∫ T

0
|∆BCS(t)|dt, (4.133)

as well as the long-time oscillation amplitude of |∆BCS|. Since the oscillations in |∆BCS| might

deviate from a sinusoidal form, for theoretical simulations it is easier to use the standard deviation

as a measure of the oscillation amplitude:

Std(|∆BCS|) =

[
lim
T→∞

1

T

∫ T

0

(
|∆BCS(t)|−Avg(|∆BCS|)

)2
dt

]1/2
. (4.134)
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When comparing to experimental data, we measure oscillation amplitude using the Fourier spec-

trum because technical noise in the experiment contributes to the standard deviation of the time

traces (see Fig. 4.30d). The dynamical phases can be characterised in theoretical simulations by

• Phase I: Avg(|∆BCS|) = 0, Std(|∆BCS|) = 0.

• Phase II: Avg(|∆BCS|) > 0, Std(|∆BCS|) = 0.

• Phase III: Avg(|∆BCS|) > 0, Std(|∆BCS|) > 0.

The dynamical phase boundaries (white solid lines) in Fig. 4.33 are analytically calculated

using a Lax analysis applied to Eq. (4.130), similar to the one discussed in [193,301], and take the

following form (see SOM for a detailed derivation):

• Phase I to phase II:
χN

EW
=

1

π
with

δs
EW

∈ [0, 1],

δs
EW

= 1 with
χN

EW
∈
[

1

π
,

2

π

]
.

(4.135)

• Phase I to phase III:

χN

EW
=

2

π
with

δs
EW

> 1. (4.136)

• Phase II to phase III:

δs
EW

= csc

(
EW

χN

)
with

χN

EW
>

2

π
. (4.137)

The analytical results agree with the numerical simulations for Eq. (4.132). The only difference

is that Eq. (4.130) predicts an extra dynamical phase transition marked by the white dashed line.

The dynamical phase boundaries shown in Fig. 4.28c are constructed by the analytical formulas

above.

4.5.9 Methods: Phase III dynamics in the case of a continuous single-particle

dispersion

In this work, we generate phase III using a bimodal single-particle dispersion, represented

with idealized assumptions by Fig. 4.28b and with actual experimental conditions by Fig. 4.30a.
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Figure 4.34: Alternative approach for phase III. a, Simulation of an alternative experimental
sequence. As described by the timing sequence at the top, we simulate an experiment that prepares
the initial state using a π/2 pulse, lets the system evolve under a bimodal distribution of single-
particle energy (see the inset) until |∆BCS| reaches its minimum value, and then quenches the
system back to a continuous distribution of single-particle energies (see the inset). The theoretically
predicted time trace of |∆BCS| with χN/EW = 1.0 and δs,init/EW = 1.6 is shown at the bottom.
The blue (grey dashed) line shows phase III dynamics under a continuous (bimodal) distribution.
b, Long-time standard deviation of |∆BCS(t)| after quenching to the continuous distribution shown
in a. The white lines are dynamical phase boundaries for bimodal distributions (see Fig. 4.33).
Nearly all the choices of parameter for phase III using bimodal distributions can lead to phase III
behaviours after quenching to the continuous distribution.
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Here we show that this experimentally convenient approach generates similar phase III dynamics

to the one obtained in the case of a continuous dispersion but with different initial conditions.

This is done by the protocol shown in Fig. 4.34a, which uses a bimodal distribution (δs,init >

EW) just to generate a state with minimum |∆BCS|. At this point the system’s dispersion is

restored to be continuous by setting δs,final = EW. This approach more closely resembles the phase

III quench discussed in actual BCS superconductors, where phase III is observed by quenching

from a state with weak BCS paring gap |∆BCS| to one with a strong pairing gap [300]. Numerical

simulations based on Eq. (4.132) show that nearly all choices of parameters that lead to phase

III using a bimodal distribution also lead to phase III dynamics when quenching to a continuous

distribution. The only exception is a small parameter regime close to the boundary between phase

III and phase II (see Fig. 4.34b). Note that here we use definitions for ∆BCS, the π/2 pulse, and

χN which correspond to Eq. (4.132), as explained in the previous section.

4.5.10 Methods: Numerical simulations

The black dashed lines in Figs. 4.29, 4.30, and 4.31 are computed from unitary evolution

under Eq. (4.132) using a single-particle dispersion εk, sampled from the experimentally engineered

distribution.

The black solid lines in the same figures are obtained by adding dissipative processes and

axial motion to Eq. (4.132). The system dynamics is described by the following master equation

for the density matrix ρ̂:

dρ̂

dt
= − i

h̄
[Ĥ, ρ̂] + L(L̂c)[ρ̂] +

∑
k

L(L̂s,k)[ρ̂] +
∑
k

L(L̂el,k)[ρ̂]. (4.138)

The Lindblad superoperator takes the form L(L̂)[ρ̂] = L̂ρ̂L̂† − 1
2(L̂†L̂ρ̂ + ρ̂L̂†L̂). Superradiance

through the cavity is described by the jump operator

L̂c =
√

Γ
∑
k

ζkŜ
−
k , (4.139)

where Γ = χκ/δc. Spontaneous emission from the atomic excited state is described by the jump
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operator

L̂s,k =
√
γŜ−

k , (4.140)

where γ/2π = 7.5 kHz is the spontaneous emission rate out of 3P1. Single-particle decoherence is

described by the jump operator

L̂el,k =
√

2γelŜ
z
k , (4.141)

where γel is a fitting parameter taking into account free space scattering from the AC Stark shift

beam, as well as other decoherence processes in the experiment (see Supplemental Online Material).

These are the dominant dissipative processes in our system.

The axial trapping frequency of the lattice is 165 kHz and is therefore smaller than the spin-

exchange interaction rate χN for most of the experiments. As a consequence, in contrast to the

idealised model where atoms are assumed to be frozen, motional processes need to be accounted for,

even though they are suppressed in the Lamb-Dicke regime. As shown in the SOM, axial motion

can lead to a faster damping rate of |∆BCS| oscillations. The predicted dynamical phase boundaries

are nevertheless unaffected by the axial motion.

All the numerical simulations are computed using the mean-field approximation, which re-

places the operators Ŝx,y,z
k by their expectation values ⟨Ŝx,y,z

k ⟩ in the Heisenberg equation of motion.

The mean-field treatment of the BCS model is predicted to be exact in the thermodynamic limit

due to the infinite-range nature of the interactions [300]. The atom number for numerical simula-

tion is set to 5000 for the ideal conditions and 2000 for actual experimental conditions. We rescale

χ to match χN with experimental values.

4.5.11 Methods: Higgs-like behaviour in short-time phase II dynamics

When quenching into phase II, we observe highly damped oscillations in |∆BCS|, reminiscent

of the Higgs oscillations predicted to arise in this regime of the BCS model. Here, we analyse traces

from Fig. 4.29d, in which we engineer a variable phase spread φ(ωk) ∈ [0, φ0] before quenching into

phase II, to study this potential connection.
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a

Figure 4.35: Collective scaling in damped phase II oscillations. a, Time dynamics of |∆BCS|
measured after engineering an initial phase spread over [0, φ0] where φ0 = 0.8π as in Fig. 2d, plotted
in absolute frequency units (pink trace). The solid black curve represents a numerical simulation of
the full system, whereas the dashed curve represents an ideal simulation neglecting dissipation and
motional effects. We obtain a crude estimate of oscillation frequency in the experimental data by
fitting a trough and peak to smoothed data (after subtracting slow-moving behaviour) within the
first couple µs (magenta points), using these points to infer a half period of oscillation, and with
uncertainties determined using a 90% amplitude threshold (pink bands). b, Comparing oscillation
frequency estimates of experimental data (pink squares) with those of ideal simulations (black
dots) for different φ0. Theory oscillation frequencies are calculated using a Fourier transform from
t = 0 µs to t = 5 µs. Error bars for experimental data are set by the minimum and maximum
frequencies implied by uncertainties in the half period shown in a. The two frequency estimates
agree within error bars. c, Collective scaling of oscillation frequency. For each φ0 measured in
the experiment, we plot the oscillation frequency against the long-time BCS gap ∆∞, calculated
at t = 18 µs for ideal simulations and at t = 3 µs for experimental data. The solid black line is
defined by ωosc = 2∆∞, demonstrating the expected scaling for Higgs oscillations. The dashed pink
line represents a linear fit to the experimental data. The pink band shows the uncertainty in the
slope assuming correlated error in ωosc, such that its bounds are defined by linear fits to the data
assuming maximum and minimum values for ωosc as defined by the error bars.
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In the BCS model, Higgs oscillations can be characterised by their frequency, which should

scale with the long-time BCS order parameter ∆∞ as ωosc = 2∆∞ [300]. We confirm this scaling

in theory by measuring the oscillation frequency from t = 0 µs to t = 5 µs in idealised numerical

simulations ignoring dissipation and motional effects (black dashed line in Fig. 4.35a). For different

values of the phase spread extent φ0, the system reaches its steady state at a different long-time

BCS gap ∆∞. By parametrically plotting the oscillation frequency vs. 2∆∞ as a function of φ0 in

panel c, we observe the expected scaling.

As discussed in the main text, oscillations in |∆BCS| are consistently smaller and decay more

quickly in experiment than in theory. Nonetheless, we obtain a crude estimate of the experimental

oscillation frequency by measuring a half period from the first trough and peak of |∆BCS(t)|, as

shown in panel a. In panel b, we compare the frequency in experimental data to that of ideal

simulations for different φ0 and show that the frequencies agree within error bars. This suggests

that the transient dynamics observed in |∆BCS| are related to the Higgs oscillations present in

theory.

Although the experimental oscillation frequency agrees with simulations, the steady-state

order parameter ∆∞ is much smaller, as can be seen in Fig. 4.35a. As a result, the measured

frequencies scale linearly with ∆∞ but with a different prefactor. In panel c, we fit a linear relation

of ωosc = (1.7+0.7
−0.4)× 2∆∞ to the data, where the slope uncertainty bounds are calculated assuming

errors in ωosc are perfectly correlated. Most of the reduction in ∆∞ can be captured in theory by

considering dissipation and motional effects (solid black trace). We see an additional small difference

in |∆BCS| between full numerical simulations and experimental data, which we attribute to drifts

in experimental alignments and calibration factors over time. This difference is not apparent in

Fig. 4.29d because we plot |∆BCS| in normalised units.

4.5.12 Supplemental Materials: Dynamical phase diagram

Here we perform detailed analysis of the dynamical phase diagram shown in Fig. 4.28. We

start from analytic calculation in the case of homogeneous couplings, and then generalize to the
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case of inhomogeneous couplings. Finally we discuss the application of our findings to experimental

conditions.

Homogeneous model

First we discuss the dynamical phases for the BCS Hamiltonian with homogeneous couplings,

Ĥ = h̄χŜ+Ŝ− +
∑
k

εkŜ
z
k . (4.142)

We will set h̄ = 1. As shown in Ref. [300, 301], the dynamical phases can be determined using a

mean-field Lax vector analysis. The Lax vector is defined as L⃗(u) = Lx(u)x̂ + Ly(u)ŷ + Lz(u)ẑ

with components,

Lx(u) =
∑
k

Sx
k (0)

u− εk/2
, Ly(u) =

∑
k

Sy
k(0)

u− εk/2
, Lz(u) = − 1

χ
−
∑
i

Sz
k(0)

u− εk/2
, (4.143)

where Sx,y,z
k (0) are the expectation value of operators Ŝx,y,z

k in the initial state.

Here we consider the initial state as Sx
k (0) = 1/2, Sy

k(0) = Sz
k(0) = 0, and εk is chosen from a

uniform distribution in the frequency range [−δs/2−EW/2,−δs/2+EW/2] and [δs/2−EW/2, δs/2+

EW/2]. In this case, the mean-field Lax vector takes the following form:

χLx(u) ≈ χN

2

[
1

2EW

∫ −δs/2+EW/2

−δs/2−EW/2

dx

u− x/2
+

1

2EW

∫ δs/2+EW/2

δs/2−EW/2

dx

u− x/2

]
=

χN

2EW

[
ln

(
u+

δs
4

+
EW

4

)
− ln

(
u+

δs
4
− EW

4

)
+ ln

(
u− δs

4
+
EW

4

)
− ln

(
u− δs

4
− EW

4

)]
,

χLy(u) = 0,

χLz(u) = −1.

(4.144)

Note that ln z in the complex plane is a multivalued function. Here we take the principal value

ln z = ln|z|+iArg(z), where Arg(z) is the argument of z restricted in the interval (−π, π]. Directly

combining the logarithm functions might lead to moving out of the principal branch.

One can define the dynamical phases based on the number of complex roots of equation

L⃗(u) · L⃗(u) = 0: Phase I has zero complex roots, phase II has a pair of complex roots, phase III

has two pairs of complex roots. Whether the complex roots have non-zero or vanishing real parts
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could be used for further separation of the phases. In our case, the equation L⃗(u) · L⃗(u) = 0 takes

the following form,

χN

2EW

[
ln

(
u+

δs
4

+
EW

4

)
−ln

(
u+

δs
4
−EW

4

)
+ln

(
u− δs

4
+
EW

4

)
−ln

(
u− δs

4
−EW

4

)]
= ±i. (4.145)

We find four dynamical phases based on analyzing the roots of Eq. (4.145):

• Phase I: No complex roots, which exist in the regime

δs
EW

< 1,
χN

EW
<

1

π
or

δs
EW

> 1,
χN

EW
<

2

π
. (4.146)

• Phase II: A pair of complex roots,

u

EW
= ± i

4

[
cot

(
EW

χN

)
+

√
csc2

(
EW

χN

)
− δ2s
E2

W

]
, (4.147)

which exist in the regime

δs
EW

< 1,
χN

EW
>

1

π
. (4.148)

• Phase IIIa: Two pairs of complex roots with vanishing real parts,

u1
EW

= ± i

4

[
cot

(
EW

χN

)
+

√
csc2

(
EW

χN

)
− δ2s
E2

W

]
,

u2
EW

= ± i

4

[
cot

(
EW

χN

)
−
√

csc2
(
EW

χN

)
− δ2s
E2

W

]
,

(4.149)

which exist in the regime

δs
EW

> 1,
χN

EW
>

2

π
,

δs
EW

< csc

(
EW

χN

)
. (4.150)

In phase IIIa, the order parameter, ∆BCS oscillates around a non-zero value (non-ZOPA)

as pointed out in Ref. [301,313].

• Phase IIIb: Two pairs of complex roots with non-zero real parts,

u1
EW

=
1

4

[√
δ2s − csc2

(
1

χN

)
± i cot

(
1

χN

)]
,

u2
EW

=
1

4

[
−
√
δ2s − csc2

(
1

χN

)
± i cot

(
1

χN

)]
,

(4.151)
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which exist in the regime

δs
EW

> 1,
χN

EW
>

2

π
,

δs
EW

> csc

(
EW

χN

)
. (4.152)

In phase IIIb, ∆BCS oscillates with zero order parameter average (ZOPA) as explained in

Ref. [301,313].

The dynamical phases derived from the Lax analysis above are supported by numerical evi-

dences, as shown in Fig. 4.36a and Fig. 4.36b. We numerically solve the dynamics of ∆BCS = χ⟨Ŝ−⟩

under Eq. (4.142) based on mean field approximation, and then identify dynamical phases based

on long-time average of |∆BCS|,

Avg(|∆BCS|) = lim
T→∞

1

T

∫ T

0
|∆BCS(t)|dt, (4.153)

and long-time oscillation amplitude of |∆BCS|. Since the oscillations in |∆BCS| might deviates from

a sinusoidal form, it is easier to use the standard deviation as a measure of the oscillation amplitude,

Std(|∆BCS|) =

[
lim
T→∞

1

T

∫ T

0

(
|∆BCS(t)|−Avg(|∆BCS|)

)2
dt

]1/2
, (4.154)

although experimentally it’s better to use the peak of Fourier spectrum to suppress the noise (see

Fig. 3d in the main text). The dynamical phases can be characterized by

• Phase I: Avg(|∆BCS|) = 0, Std(|∆BCS|) = 0.

• Phase II: Avg(|∆BCS|) > 0, Std(|∆BCS|) = 0.

• Phase III: Avg(|∆BCS|) > 0, Std(|∆BCS|) > 0.

Since εk is chosen from a distribution with particle-hole symmetry (symmetric about 0), ∆BCS

becomes a real number in this case. One can further separate phase IIIa and phase IIIb by the

behavior of ∆BCS shown in Fig. 4.36e and Fig. 4.36f.

Inhomogeneous model

Here we discuss the dynamical phases for the BCS Hamiltonian with inhomogeneous coupling,

Ĥ = h̄χ
∑
jk

ζjζkŜ
+
j Ŝ

−
k +

∑
k

εkŜ
z
k , (4.155)
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Figure 4.36: Dynamical phase diagrams. a and b, Dynamical phase diagram of the homoge-
neous model normalized by ∆init/χN = 1/2, where ∆init is the initial value of |∆BCS|. The white
lines are the dynamical critical points derived from the Lax analysis. c and d, Dynamical phase
diagram of the inhomogeneous model normalized by ∆init/χNeff = J1(Ωτ). The white lines are the
same as the homogeneous model. e, Time evolution of ∆BCS at δs/EW = 1.1, χN/EW = 1.0 under
the homogeneous model (phase IIIa). f, Time evolution of ∆BCS at δs/EW = 1.6, χN/EW = 1.0 un-
der the homogeneous model (phase IIIb). g, Time evolution of ∆BCS at δs/EW = 1.6, χN/EW = 1.0
under the inhomogeneous model (phase III).
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where ζk is generated by random sampling of cos(x), with x chosen from a uniform distribution

in the interval [0, 2π). Similar to the homogeneous model, εk/h̄ is still chosen from a uniform

distribution in the frequency range [−δs/2−EW/2,−δs/2+EW/2] and [δs/2−EW/2, δs/2+EW/2].

In this case, we explore the dynamical phases numerically since the Lax analysis is not applicable.

As shown in Fig. 4.38c and Fig. 4.38d, one can obtain similar dynamical phases as the homogeneous

model: Phase I remains the same, Phase IIIa merges into Phase II, and Phase IIIb becomes the

new Phase III. The phase boundary can be roughly captured by the analytical solution of the

homogeneous model. Note that χNeff is the averaged interaction strength in the inhomogeneous

case, where Neff = N/2. The superconducting order parameter is defined as ∆BCS = χ
∑

k ζk⟨Ŝ−
k ⟩.

The initial condition is chosen as the maximum |∆BCS| one can achieved by an external drive along

the cavity axis, Ĥdrive = Ω
∑

k ζkŜ
y
k . Assuming the initial state can be prepared by applying Ĥdrive

for a time τ , we have

∆init

χNeff
≈ 1

2π

∫ 2π

0
dx cos(x) sin(Ωτ cos(x)) = J1(Ωτ), (4.156)

where Jn is the Bessel function of the first-kind, and the maximum of J1(Ωτ) can be achieved at

Ωτ = 0.586π. It is worth to mention that ∆BCS is a real number initially, but it becomes a complex

number during the time evolution, as shown in Fig. 4.38g.

Experimental control of dynamical phases

Here we elaborate on the experimental implementation of the Hamiltonian Eq. (4.155). As

discussed in the previous section, we would like to approximately engineer single-particle energies

εk/h̄ sampled from a uniform distribution in the frequency range [−δs/2 − EW/2,−δs/2 + EW/2]

and [δs/2−EW/2, δs/2 +EW/2]. The two different experimental schemes used in the main text to

explore the energy distribution are summarized in the following table:

Description Approx. εk/h̄

Scheme I
(Fig. 4.29)

1) Single atomic cloud
2) AC Stark shift

[−ẼW/2, ẼW/2]

Scheme II
(Figs. 4.30, 4.31)

1) Two atomic clouds
2) AC Stark shift to cloud 1

Cloud 1: [−δs/2 − EW/2,−δs/2 + EW/2]
Cloud 2: [+δs/2 − EW/2,+δs/2 + EW/2]
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Figure 4.37: Experimental control of dynamical phases. a and b, Dynamical phase diagram
for the experiment with two atomic ensembles, in terms of averaged spin-exchange interaction
strength χNeff and peak AC Stark shift fAC. The white lines show the predicted dynamical phase
boundaries to guide the eye. The white dashed line marks a small region of phase II’ due to the
imbalance of EW for the two atomic ensembles. c, EW as a function of peak AC Stark shift fAC,
with AC Stark shift applying to atomic cloud 1. d, δs as a function of peak AC Stark shift fAC

(red line). The dashed line marks the place where δs = fAC.

The first scheme is used to probe the phase I to phase II transition. We use a single atomic

ensemble and apply an AC Stark shift beam with a gradient to approximately engineer εk/h̄ from

a uniform distribution [−ẼW/2, ẼW/2], as discussed in the Methods. As shown in Fig. 4.29a,

the distribution of atomic frequencies is not exactly uniform, so we calculate the variance of the

frequency distribution experimentally. Theoretically we assign a spread ẼW such that the uniform

distibution over [−ẼW/2, ẼW/2] matches the measured experimental variance. We use this scheme

to probe the dynamical phase diagram at δs = 0 (see Fig. 1c in the main text).

It is worth mentioning that the uniform distribution [−ẼW/2, ẼW/2] can be interpreted in

two different ways: 1) δs = 0 and EW = ẼW; 2) δs = EW = ẼW/2. Here we prefer the first

interpretation δs = 0 because in this scheme we only have a single control parameter (the strength

of AC Stark shift beam). Additionally, the line δs = EW in the dynamical phase diagram has

an implication that a small perturbation of δs can generate a gap in atomic frequency, which is

prohibited under this mapping between experimental controls and the model parameters.

In the second scheme that probes transitions into phase III, we use two atomic ensembles

and apply an AC Stark shift beam (peak AC Stark shift fAC) to the first ensemble to generate a
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frequency splitting δs between the two ensembles. In contrast to the first scheme, as discussed in

the Methods, here we instead use the differential lattice light shifts to engineer a frequency spread

EW for each ensemble. As shown in Fig. 4.30a, in this case we define δs as the mean frequency

difference between the two ensembles, and EW as the width of a uniform distribution generating

the same variance.

It is worth mentioning that the Gaussian profile of the AC Stark shift beam leads to an

increase in EW for the first atomic ensemble, as well as a reduction of the expected splitting of

the two ensembles δs < fAC, as shown in Fig. 4.37c and d. Using experimental parameters, we

get the dynamical phase diagram as depicted in Fig. 4.37a and b. The imbalance of EW for the

two atomic ensembles can lead to a small region of phase II’ marked by the white dashed line.

This occurs because the spin-exchange interaction is able to lock the ensemble with smaller EW,

while the ensemble with larger EW remains unlocked, which leads to |∆BCS| approaching a small

but nonzero constant value. In the experiment, due to other dissipative processes and reduced

signal-to-noise ratio for small χN , we do not observe a difference between phase I and phase II’.

This is the cause of a small discrepancy between theory and experiment in Fig. 4b in the main text

in identifying the position of the phase transition.

4.5.13 Supplemental Materials: Short-time signatures of dynamical phases

Here we discuss the properties of the dynamical phases using short-time observables, since

dissipative processes and noise in the experiment lead to difficulties in measuring long-time observ-

ables. In the following, we show that phase I can be characterized by the fast decay of |∆BCS|,

phase II can be characterized by Higgs oscillations. We further show that the phase II to phase

III transition can be captured by the dip in the short-time oscillation frequency of |∆BCS|. Finally,

we provide an explanation of the frequency dip using an analytical solution of the two-spin BCS

model.

Phase I: fast decay

In phase I, the single-particle energy term
∑

k εkŜ
z
k dominates over the spin-exchange inter-
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action. To leading order, one can calculate |∆BCS| in the homogeneous model by dropping the

interaction term, which gives

|∆BCS|
χN

≈ 1

2N

∣∣∣∑
k

e−iεkt/h̄
∣∣∣ =

1

2

∣∣∣∣ 1

2EW

∫ −δs/2+EW/2

−δs/2−EW/2
e−ixtdx+

1

2EW

∫ δs/2+EW/2

δs/2−EW/2
e−ixtdx

∣∣∣∣
=

1

2

∣∣∣∣ cos

(
δs
2

)∣∣∣∣ · ∣∣∣∣sin(EWt/2)

EWt/2

∣∣∣∣.
(4.157)

The decay profile of |∆BCS| is set by a sinc function with a 1/e coherence time t satisfying EWt/2π ≈

0.7. For the inhomogeneous model a similar fast decay time scale of the order of EWt/2π ∼ 1 can

be derived. As shown in Fig. 2b in the main text, we observe fast decay of |∆BCS| within 1 µs in

phase I. The decay time scale for the other dynamical phases can be more than 10 times longer.

Phase II: Higgs oscillation
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Figure 4.38: Relation between oscillation frequency and averaged order parameter in
Higgs oscillations. a, Homogeneous model where each point is a choice of (χN, δs) in phase
II (red) and phase IIIa (blue). The dashed line represents ω = 2Avg(|∆BCS|). b, Inhomogeneous
model where each point is a choice of (χNeff , δs) in phase II. The inset shows the points with δs = 0.

Higgs oscillation, generated by collective excitation of the Higgs mode in BCS superconduc-

tor, is characterized by the oscillation of |∆BCS| at frequency ω = 2Avg(|∆BCS|) [300]. For the

homogeneous model (see Fig. 4.38a), we numerically confirmed this relation for all the points in

phase II and phase IIIa. For the inhomogeneous model (see Fig. 4.38b), this relation is approx-

imately satisfied in phase II. In experiment, we observe hints of Higgs oscillation (see Fig. 4.29),

which can be ideally described by the inhomogeneous model with δs = 0 (see the inset in Fig. 4.38b).
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Transition to phase III: frequency dip

In the main text, we discuss a way to understand the phase II to phase III transition by

visualising the two atomic ensembles as two large spins. For the inhomogeneous model, phase

II exists in the small δs regime, where the two spins lock to each other and form a single large

spin through spin-exchange interactions. In this case the many-body gap protection leads to the

damped oscillations observed in phase II. Increasing δs in phase II leads to the reduction of the

many-body gap, and hence to a decrease of the corresponding oscillation frequency. Phase III

exists in the large δs regime, where the spin locking occurs separately in each ensemble, and the

two large spin are instead precessing around each other, with a rate set by the splitting δs and the

spin-exchange interaction. Increasing δs in phase III leads to a speed up of the oscillation frequency.

Therefore one expects the existence of a frequency dip separating between phase II and phase III.

Indeed as shown in Fig. 4.39c and d, we find good agreement between the frequency dip and the

corresponding dynamical critical point. For small δs, the oscillation frequency approaches the Higgs

oscillation frequency discussed in the previous subsection. For large δs, the oscillation frequency

approaches δs. The reduction of oscillation frequency compared to δs indicates many-body effects

in phase III. It’s worth to mention that in contrast to the inhomogeneous model, the frequency dip

indicates the phase IIIa to phase IIIb transition for the homogeneous model.

Frequency dip in the two-spin BCS model

Here we use the analytical mean field solution of the BCS Hamiltonian with two large spins

(S = N/4 for each spin) to understand the frequency dip discussed above. In this case, the

Hamiltonian simplifies to

Ĥ/h̄ = χŜ+Ŝ− +
δs
2
Ŝz
1 − δs

2
Ŝz
2 , (4.158)

where Ŝ± = Ŝ±
1 + Ŝ±

2 . The mean field equations of motion for the Hamiltonian above can then be

written as

d

dt
Sx
1 = 2χSySz

1 − δs
2
Sy
1 ,

d

dt
Sy
1 = −2χSxSz

1 +
δs
2
Sx
1 ,

d

dt
Sz
1 = −2χ(Sy

2S
x
1 − Sx

2S
y
1 ),

d

dt
Sx
2 = 2χSySz

2 +
δs
2
Sy
2 ,

d

dt
Sy
2 = −2χSxSz

2 − δs
2
Sx
2 ,

d

dt
Sz
2 = −2χ(Sy

1S
x
2 − Sx

1S
y
2 ).

(4.159)
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field trajectories of the two large spin model evolving under Eq. (4.158). From left to right, Bloch
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of |∆BCS| in the two-spin BCS model Eq. (4.158) as a function of δs/χN . The frequency dip at
δs/χN = 1 marks the dynamical phase transition point. c, Short-time frequency ω of the dynamics
under inhomogneous atom-light coupling (see Eq. (3) in the Methods). The white line marks the
phase II to phase III transition, the same boundary as shown in Extended Data Fig. 2 from the
Methods. d, Short-time frequency ω of the dynamics using experimental control parameters. The
white line marks the phase II to phase III transition and represents the same boundary as in
Fig. 4.37. The frequency dips match the dynamical critical points for both cases.
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The spin components without the hat represent the expectation value of the corresponding spin

operators.

In the following, we assume an initial state satisfying Sx
1 = Sx

2 = N/4, Sy
1 = Sy

2 = Sz
1 = Sz

2 =

0. The conserved quantities of the two-spin BCS model are the total magnetisation

Sz = Sz
1 + Sz

2 = 0, (4.160)

the total energy

E/h̄ = χS+S− +
δs
2
Sz
1 − δs

2
Sz
2 = χ

(
N

2

)2

, (4.161)

as well as the spin length of each of the large spins, (Sx
1 )2 +(Sy

1 )2 +(Sz
1)2 = (N/4)2, (Sx

2 )2 +(Sy
2 )2 +

(Sz
2)2 = (N/4)2. Using these conserved quantities, one can derive from the mean field equations

in Eq. (4.159) an equation of motion for the BCS order parameter, ∆BCS = χS−. To simplify the

notation, we define ∆ ≡ |∆BCS|/χN , i.e. ∆2 = S+S−/N2. From Eq. (4.160) and Eq. (4.161), we

obtain

d

dt
∆2 = − δs

χN2

d

dt
Sz
1 =

2δs
N2

(Sy
2S

x
1 − Sx

2S
y
1 ), (4.162)

which leads to
d2

dt2
∆2 =

2δs
N2

(
Sx
1

d

dt
Sy
2 + Sy

2

d

dt
Sx
1 − Sy

1

d

dt
Sx
2 − Sx

2

d

dt
Sy
1

)
= 4δsχ∆2Sz

1 − 2δ2s
N2

(Sx
1S

x
2 + Sy

1S
y
2 ).

(4.163)

From the above conserved quantities, we can create the equivalent expressions δsS
z
1 = −χN2(∆2 −

1/4), 2(Sx
1S

x
2 + Sy

1S
y
2 ) = N2∆2 − 2 × (N/4)2 + 2(Sz

1)2. Plugging these into the equation of motion

gives

d2

dt2
∆2 = −6(χN)2(∆2)2 +

(
2(χN)2 − δ2s

)
∆2 +

δ2s − (χN)2

8
. (4.164)

The equation above can be further simplified to

1

2

(
d

dt
∆

)2

+ V (∆) = 0, (4.165)

where

V (∆) =
1

2
(χN)2

(
∆2 − 1

4

)(
∆2 − 1 − (δs/χN)2

4

)
, (4.166)
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with an initial condition ∆ = 1/2. Eq. (4.165) can be understood as a classical particle with position

∆ oscillating in the potential V (∆). For δs < χN , we find ∆ oscillating between ∆max = 1/2

and ∆min =
√

1 − (δs/χN)2/2. This is equivalent to phase II in the cases of many spins with

inhomogeneous atom-light couplings, because all the oscillations damp in the large χN limit. For

δs > χN , we find ∆ oscillating between ∆max = 1/2 and ∆min = 0, since the definition of ∆ requires

∆ ≥ 0. This is equivalent to phase III in the cases of many spins because the phase connects to

single-particle oscillations in the large δs limit. Therefore, a dynamical phase transition occurs at

δs/χN = 1, which is equivalent to the phase II to phase III transition in the many-spin system.

The analytical solution of Eq. (4.165) can be written in terms of Jacobian elliptic funtions

dn and cn:

∆(t) =



1

2
dn

(
1

2
χNt

∣∣∣∣(δs/χN)2
)

if δs < χN

1

2

∣∣∣∣cn

(
1

2
δst

∣∣∣∣(χN/δs)2)∣∣∣∣ if δs > χN

. (4.167)

The frequency of ∆(t) can be written in terms of the complete elliptic integral of the first kind

K(k2):

ω

χN
=



π

2K
(

(δs/χN)2
) if δs < χN

δs
χN

π

2K
(

(χN/δs)2
) if δs > χN

. (4.168)

The mean-field trajectories on the Bloch sphere are shown in Fig. 4.39a, and the oscillation fre-

quency Eq. (4.168) is shown in Fig. 4.39b. The dynamical phase transition can also be understood

from the mean field trajectories. For δs < χN , the two large spins lock to each other and oscillate

near the x axis of the Bloch sphere. For δs > χN , the two large spins are unlocked and precess

around the whole Bloch sphere. Near the dynamical critical point, the mean field trajectories

are close to the north pole or south pole of the Bloch sphere, which leads to a slow down of the

oscillations because they approach stable fixed points of the Hamiltonian.
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4.5.14 Supplemental Materials: Axial motion

In this section, we elaborate on how to take into account axial motion present in the experi-

mental system. Similar discussions can be found in Ref. [107]. We start with the one-dimensional

Hamiltonian of our cavity QED system with two internal atomic levels (|↑⟩ and |↓⟩), given by

Ĥ =
∑

σ={↑,↓}

∫
dx ψ̂†

σ(x)

[
p̂2

2M
+ V0 sin2(kLx)

]
ψ̂σ(x) +

∫
dx ψ̂†

↑(x)

[
h̄ω0 + Uac(x)

]
ψ̂↑(x)

+ h̄gc

∫
dx cos(kcx)

[
ψ̂†
↑(x)ψ̂↓(x)â+ â†ψ̂†

↓(x)ψ̂↑(x)

]
+ h̄ωcâ

†â,

(4.169)

where kL = 2π/λL is the wavenumber of the lattice beams (λL = 813nm), kc is the wavenumber

of the cavity mode (λc = 689nm), ω0 is the atomic transition frequency between |↑⟩ and |↓⟩ states,

Uac(x) is the AC Stark shift applied to the atoms (including the differential light shift from the

lattice beams and the transverse AC Stark shift beam), and ωc is the frequency of cavity resonance.

Since the atoms are trapped in an optical lattice with lattice depth on the order of 103ER,

we can approximate each lattice site as an harmonic trap with axial trapping frequency h̄ωT =

√
4V0ER, where ER = h̄2k2L/2M is the lattice recoil energy. We also ignore tunnelling processes

between lattice sites. In this case, one can expand the atomic field operator in terms of lattice site

index j and harmonic oscillator levels n:

ψ̂σ(x) =
∑
jn

ĉjn,σϕn(x− jaL). (4.170)

Here, aL = λL/2 is the lattice spacing, and ϕn is the harmonic oscillator wave function for mode

n, given by

ϕn(x) =
1√

2nn!

(
MωT

πh̄

)1/4

e−MωT x2/2h̄Hn

(√
MωT

h̄
x

)
(4.171)

where Hn(x) are the Hermite polynomials. Plugging this expansion into the Hamiltonian and

transforming to the rotating frame of the atoms, we obtain

Ĥ/h̄ =
∑
jnσ

nωT ĉ
†
jn,σ ĉjn,σ +

∑
jn

εjnĉ
†
jn,↑ĉjn,↑ + gc

∑
jnm

ζnmj (ĉ†jn,↑ĉjm,↓â+ â†ĉ†jm,↓ĉjn,↑) + δcâ
†â (4.172)

where δc = ωc − ωa. For simplicity, we assume Uac(x) is either small or slowly varying in space

and thus does not change the trap geometry. This term gives rise to an inhomogeneous transition
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frequency εjn =
∫
dxUac(x)[ϕn(x− jaL)]2/h̄. We calculate ζnmj in the following way:

ζnmj =

∫
dx cos(kcx)ϕn(x− jaL)ϕm(x− jaL) =

∫
dx cos(kcx+ kcjaL)ϕn(x)ϕm(x)

= cos(jφ)

∫
dx cos(kcx)ϕn(x)ϕm(x) − sin(jφ)

∫
dx sin(kcx)ϕn(x)ϕm(x)

= cos(jφ) Re

[
(iη)se−η2/2

√
n<!

n>!
Ls
n<

(η2)

]
− sin(jφ) Im

[
(iη)se−η2/2

√
n<!

n>!
Ls
n<

(η2)

]
.

(4.173)

where φ = πkL/kc, s = |n − m|, n< = min(n,m), n> = max(n,m), Lα
n(x) are the generalised

Laguerre polynomials, and η = kc
√
h̄/2MωT is the Lamb-Dicke parameter. In our case ωT /2π =

165 kHz, implying that η = 0.17. This places us in the Lamb-Dicke regime where ζnmj is negligible

for |n −m|> 1. It can be convenient to rewrite the Hamiltonian in terms of operators Ŝj
nσ,mσ′ =

ĉ†jn,σ ĉjm,σ′ , resulting in the following form:

Ĥ/h̄ =
∑
jnσ

nωT Ŝ
j
nσ,nσ +

∑
jn

εjnŜ
j
n↑,n↑ + gc

∑
jnm

ζnmj (Ŝj
n↑,m↓â+ â†Ŝj

m↓,n↑) + δcâ
†â. (4.174)

In addition to the Hamiltonian dynamics, we also consider dissipation processes such as cavity

loss with a rate κ/2π = 153 kHz, as well as spontaneous emission with a rate γ/2π = 7.5 kHz. The

full dynamics of this open system can be described by the following Lindblad master equation:

d

dt
ρ̂ = − i

h̄
[Ĥ, ρ̂] +

[
L̂cavρ̂L̂

†
cav −

1

2
{L̂†

cavL̂cav, ρ̂}
]

+
∑
jn

[
L̂j,nρ̂L̂

†
j,n − 1

2
{L̂†

j,nL̂j,n, ρ̂}
]
, (4.175)

where the jump operator for cavity loss is given by L̂cav =
√
κâ, and the single-particle jump op-

erators for spontaneous emission are given by L̂j,n =
√
γŜj

n↓,n↑. Here, we assume that spontaneous

emission is in the Lamb-Dicke regime.

In the experiment, δc is the largest frequency scale (δc ≫ gc
√
N,κ), so we can adiabatically

eliminate the cavity photons [339] and obtain the following effective atom-only master equation:

d

dt
ρ̂ = − i

h̄
[Ĥeff , ρ̂] +

[
L̂colρ̂L̂

†
col −

1

2
{L̂†

colL̂col, ρ̂}
]

+
∑
jn

[
L̂j,nρ̂L̂

†
j,n − 1

2
{L̂†

j,nL̂j,n, ρ̂}
]
. (4.176)

Here, the effective Hamiltonian is given by

Ĥeff/h̄ =
∑
jnσ

nωT Ŝ
j
nσ,nσ +

∑
jn

εjnŜ
j
n↑,n↑ + χ

∑
jnm

∑
kpq

ζnmj ζpqk Ŝ
j
n↑,m↓Ŝ

k
p↓,q↑, (4.177)
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Figure 4.40: Understanding experimental results with axial motion effects. a Example
phase II traces with χN/2π = 1.29MHz, fAC/2π = 1.1MHz. b Example phase III traces with
χN/2π = 0.79MHz, fAC/2π = 1.1MHz. c Example phase I traces with χN/2π = 0.15MHz,
fAC/2π = 1.1MHz. The blue points are experimental data, the orange lines represent numerical
simulations under ideal conditions (see Eq. (3) in the Methods), the green lines include dissipative
processes on top of the ideal simulations, and the red lines consider both dissipative processes and
axial motion effects.

and effective collective jump operator generating superradiant decay takes the form

L̂col =
√

Γ
∑
jnm

ζnmj Ŝj
m↓,n↑, (4.178)

where χ = −g2c δc/(δ2c + κ2/4) and Γ = g2cκ/(δ
2
c + κ2/4). The equivalent superconducting order

parameter takes the following form:

∆BCS = χ
∑
kpq

ζpqk ⟨Ŝk
p↓,q↑⟩. (4.179)

One can recover the inhomogeneous model discussed in the previous section by removing the axial

harmonic oscillator level labels.

Similarly, the Hamiltonian for initial state preparation takes the form

Ĥdrive/h̄ =
∑
jnσ

nωT Ŝ
j
nσ,nσ +

1

2

∑
jnm

ζnmj (ΩŜj
n↑,m↓ + Ω∗Ŝj

m↓,n↑). (4.180)

In numerical simulations, we perform a mean-field approximation, which replaces the opera-

tors Ŝj
pσ,qσ′ by their expectation values ⟨Ŝj

pσ,qσ′⟩ in the Heisenberg equation of motion. We perform a

random sampling of the axial harmonic oscillator mode n for each atom based on a thermal distribu-

tion of 15 µK, and we only include the modes n and n±1 into our calculation due to the Lamb-Dicke

parameter. The atom number in our simulations is set to 2000; to match χN to experimental values,
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we rescale χ accordingly. We also empirically take into account two additional dissipation processes

to quantitatively capture the behavior of |∆BCS| at longer time scales. The first is a single-particle

decoherence between electronic states, described by the jump operators L̂el
j,σ =

√
γel
∑

n Ŝ
j
nσ,nσ with

γel/2π < 1kHz for Fig. 2 starting from t = 0µs, and by γel/2π = 0.0036(fAC/2π) + 4kHz for Fig. 3

and Fig. 4 in the main text. The second is a single-particle decoherence between motional states,

described by the jump operators L̂mo
j,n =

√
γmo

∑
σ Ŝ

j
nσ,nσ with γmo/2π = 15kHz.

Some example traces including axial motion effects are depicted in Fig. 4.40. Generally

speaking, accounting for these effects allows us to more accurately predict features present in the

experimentally measured evolution of |∆BCS|, at the same time leaving the predicted dynamical

phase boundaries unchanged. As shown in Fig. 4.40a, including axial motion effects in phase II

traces allows us to capture the faster damping rate of the Higgs oscillations, as well as a slow

oscillation in |∆BCS| at the axial trapping frequency. Likewise, as shown in Fig. 4.40b, including

axial motion effects in phase III traces allows us to capture the faster damping rate of the oscillations

in |∆BCS|, although the observed damping rate is still faster than the rate predicted by theory.

Finally, as shown in Fig. 4.40c, all the theory simulations of phase I dynamics are similar to the

simulation under ideal conditions, indicating that axial motion does not play an significant role in

this regime.



Chapter 5

Entanglement generation via photon-mediated interactions and measurements

5.1 Overview

Utilizing quantum entanglement in practical sensing problems is a milestone for quantum

science. For example, the use of squeezed light in LIGO and Virgo [10, 11] has helped to boost

the sensitivity of the gravitational waves. In the field of cold atom experiments, proof of principle

experiments in optical clocks and atom interferometers has been engineered [14–16], nevertheless

the goal of surpassing the sensitivity of state-of-the-art atomic sensors via quantum entanglement

still needs to be accomplished. Due to the all-to-all connectivity of photon-mediated interactions,

cavity QED systems are becoming one of the most promising platforms for engineering large-scale

entangled states [7]. In this chapter, we focus on entanglement generation via photon-mediated

interactions and measurements. Our efforts can be divided into two thrusts: 1) Protocols to generate

homogeneous spin squeezed states useful for practical sensing applications in atom interferometers;

2) Optimal schemes for spin squeezing generation in a cavity QED setup.

5.2 Quantum enhanced cavity QED interferometer with partially delocalized

atoms in lattices

This section is adapted from: Anjun Chu, Peiru He, James K. Thompson, Ana Maria Rey,

Quantum enhanced cavity QED interferometer with partially delocalized atoms in lattices, Physical

Review Letters 127, 210401 (2021).

https://doi.org/10.1103/PhysRevLett.127.210401
https://doi.org/10.1103/PhysRevLett.127.210401
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5.2.1 Introduction

Ultracold atomic systems offer tremendous potential for quantum sensing applications in-

cluding time keeping [20] and gravimetry [95], and thus provide opportunities for searching or

constraining new physics in outstandingly precise and compact experiments. Despite the great

advances in quantum sensing accomplished by cold atom experiments, one of the most important

milestones that needs to be accomplished is to introduce quantum entanglement to enhance the

sensitivity of real-world sensors beyond the so-called standard quantum limit (SQL) attainable with

uncorrelated particles [10–13].

Important steps towards this goal have been accomplished such as the generation of up

to 19 dB spin squeezing in cavities [14, 340–342]. Nevertheless, the use of entangled states in

state-of-the-art inertial sensors has yet to be achieved. Limitations include the spatial mismatch

between the lattice potential and the cavity mode which degrades the utility of spin squeezing

after releasing the atomic cloud to free space [343]. Conventional free-falling experiments also lack

spatial resolution and suffer from limited interrogation time [344]. Theoretical and experimental

progresses to overcome these challenges have been reported in recent years although in different

setups. For example, homogeneous atom-cavity couplings have been engineered by the use of

commensurate lattices [340, 345, 346], ring cavities [347–350], or via time averaging as atoms free

fall along the cavity axis [292]. In parallel, lattice-based interferometers enjoying compact spatial

volumes [96, 270, 344, 351, 352] have reported capabilities to trap atoms near surfaces, and have

achieved up to 20 s holding time using uncorrelated atoms [96].

Here we propose a quantum enhanced lattice-based protocol that uses the motional eigen-

states of the combined lattice plus gravity potential, the so-called Wannier-Stark (WS) states, to

overcome relevant limitations faced by current atomic sensors. The key idea is the use of delocalized

WS states over a few lattice sites, which enables averaging out the inhomegeneities of atom-cavity

couplings at specific lattice depths. This allows for the generation of uniform spin squeezed states

via dynamical one-axis twisting (OAT) evolution [30, 74], or via homogeneous quantum nonde-
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molition (QND) measurements [353, 354], even in incommensurate lattice-cavity geometries. The

uniformly generated spin squeezing are not only useful for quantum enhanced measurements of

gravity [346], but also ideal for fundamental tests of short-ranged forces [96, 344] which require

loading small atomic clouds close to a surface or a source mass, such as dark energy [152], Casimir-

Polder forces [355], and non-Newtonian corrections of gravity [356,357]. Furthermore, the ability to

tune the inhomogeneities of couplings to a bosonic mode that mediates interactions or introduces

disorder opens new possibilities in quantum many-body simulators [26].

Our work focuses on the dynamical generation of spin squeezing and the interferometric

sequence to transfer the atoms to WS orbitals separated by several lattice sites to improve phase

accumulation. Moreover, the interferometric phase can be mapped into a magnified rotation of the

atomic internal state by reversing the squeezing protocol, which can be measured without the need

of below-SQL detection resolution [358–360]. After accounting for primary sources of decoherence,

we show that applying our scheme to arrays of 104 atoms, it should be possible to detect short-range

forces acting at µm-scale distances, with an averaging time reduced by a factor of 10 compared to

unentangled lattice-based interferometers [344,351].

5.2.2 Engineering homogeneous couplings

We consider an ensemble of N ultracold atoms, with mass M trapped in a vertical standing-

wave optical cavity, as depicted in Fig. 5.1. The atoms are confined in the lowest band of a one

dimensional (1D) optical lattice oriented along the vertical direction z⃗. The gravitational potential

with local acceleration g generates a differential energy shift Mgz between two atoms separated

by a vertical distance z. Two long-lived internal levels of the atoms, with energy splitting h̄ω0,

are used to encode a spin-1/2 degree of freedom with states labeled as |↑⟩ and |↓⟩. A single cavity

mode with frequency ωc and wavelength λc couples the |↑⟩ and |↓⟩ states to an optically excited

state |e⟩ of the atoms separated by a frequency ωe from the |↓⟩ state. The atom-cavity coupling has

a spatial profile G↑,↓(z) = G0
↑,↓ cos(kcz), where kc = 2π/λc. The cavity mode is coherently pumped

by an external field detuned from the cavity resonance by ∆c = ωp − ωc.
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Figure 5.1: Protocol schematics: An ensemble of ultracold atoms are trapped in the lowest band of a
lattice supported by a standing-wave optical cavity oriented along the direction of the gravitational
acceleration g. The cavity decay rate is κ/2 on each side. The two long-lived internal levels of an
atom with energy splitting h̄ω0 act as a spin-1/2 degree of freedom labeled as |↑⟩ and |↓⟩. These
two states are coupled through a single cavity mode to the excited state |e⟩, with energy h̄ωe and
spontaneous emission rate γ. The cavity mode is coherently pumped by an external light field with
detuning ∆c = ωp − ωc from the cavity resonance which generates a net injected field in the cavity
with amplitude ϵ.

We are focusing on the system operating in the dispersive regime of atom-light interaction,

where both the pump and cavity mode are far-detuned from the atomic resonances, i.e. ∆↑,↓ ≫

G0
↑,↓
√

⟨â†â⟩, with ∆↑ = ωp − ωe + ω0 and ∆↓ = ωp − ωe. In this limit, the atomic excited state |e⟩

can be adiabatically eliminated (see SOM), leading to the following Hamiltonian written in second

quantized form in the rotating frame of the external optical pumping field,

Ĥ =
∑
β=↑,↓

∫
dzψ̂†

β(z)

[
p̂2

2M
+ V0 sin2(klz) +Mgz +

h̄|Gβ(z)|2
∆β

â†â

]
ψ̂β(z) + Ĥcav + Ĥdrive. (5.1)

Here, V0 is the lattice depth, kl = 2π/λl is the wave number of lattice beams that sets the atomic

recoil energy ER = h̄2k2l /2M and the lattice spacing al = λl/2, where λl is the wavelength of

the lattice. The operator â is the annihilation field operator for cavity photons, and the operator

ψ̂β(z) annihilates an atom of spin β at position z. The cavity Hamiltonian is given by Ĥcav/h̄ =

−∆câ
†â+εâ†+ε∗â, where ε is the amplitude of the injected field. The drive Hamiltonian Ĥdrive/h̄ =∫

dz[Ωψ̂†
↑(z)ψ̂↓(z) + h.c.]− δψ̂†

↑(z)ψ̂↑(z) describes a switchable external microwave drive, with Rabi

frequency Ω, drive detuning δ that uniformly couples the spin-1/2 degree of freedom when applied.
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We expand the atom field operators ψ̂β(z) in terms of the Wannier-Stark (WS) orbitals:

ψ̂β(z) =
∑

n ĉnβϕn(z), where ĉnβ annihilates an atom of spin β in the WS state |ϕn⟩ centered

at site n. In the tight-binding limit, the wave function of the WS state |ϕn⟩ takes the form

ϕn(z) =
∑

m Jm−n(2J0/Mgal)w(z−mal) [290], where Jn(x) is the Bessel function of the first kind,

J0/h̄ is the nearest-neighbor tunneling rate, and w(x) is the ground band Wannier function. If we

assume the cavity-induced AC Stark shifts h̄|G0
↑,↓|2⟨â†â⟩/∆↑,↓ are smaller than Mgal (see SOM), so

transitions between WS orbitals are suppressed, the atom-cavity dynamics can be simplified into

the following Hamiltonian,

Ĥ = h̄
∑
n

(
− δ + ηnâ

†â
)
Ŝz
n +Hcav + h̄

∑
n

ΩŜx
n. (5.2)

Here, the spin operators are defined in terms of atomic creation and annihilation operators for

|↑n⟩ ≡ |↑;ϕn⟩ and |↓n⟩ ≡ |↓;ϕn⟩ states, Ŝx,y,z
n =

∑
β,β′ ĉ

†
nβσ

x,y,z
ββ′ ĉnβ′ , where σx,y,zββ′ are the matrix

elements of the corresponding Pauli matrices and β, β′ ∈ {↑, ↓}. It is also convenient to define the

collective spin operators Ŝx,y,z =
∑

n Ŝ
x,y,z
n for later discussions. The dispersive atom-light coupling

ηn = η↑n − η↓n, with η↑,↓n =
∫
dz|G↑,↓(z)ϕn(z)|2/∆↑,↓, can be evaluated analytically,

ηn = η

[
1 + CJ0

(
4J0
Mgal

sin(φ/2)

)
cos(nφ)

]
, (5.3)

where η = 1
2(|G0

↑ |2/∆↑ − |G0
↓ |2/∆↓) is the mean value of ηn over all possible n, φ = 2πλl/λc,

and C is a constant of order one (see SOM). We also replace ∆c by an effective cavity detuning

∆̃c = ∆c −
∑

nNn(η↑n + η↓n)/2 in Ĥcav, where Nn is the total atom number in |↑n⟩ and |↓n⟩ states.

The last step is to adiabatically eliminate the injected light field and intracavity fluctuations,

possible in the limits ∆̃c ≫ ηα
√
N,κ (see SOM), where α = ε/(∆̃c + iκ/2) is the steady-state value

of the cavity field, and κ is the cavity intensity decay rate. With these reasonable approximations,

the system can well described by an effective Hamiltonian involving only the spins,

Ĥeff/h̄ = −
∑
n

(δ − ηn|α|2)Ŝz
n +

∑
nm

χnmŜ
z
nŜ

z
m + Ω

∑
n

Ŝx
n. (5.4)

When the microwave drive is off, the Hamiltonian above is the so-called one-axis twisting (OAT)

model, with χnm = ηnηm|α|2∆̃c/(∆̃
2
c + κ2/4) the OAT interaction strength, which is an iconic
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model for the generation of spin squeezed states [30,74].
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Figure 5.2: (a) Inhomogeneous atom-light couplings arise due to the incommensurate wavelengths
of the lattice beams (red curve) and the cavity mode (yellow curve), when atoms are frozen in
Wannier states (black dashed curve) for deep lattice limit. The inhomogeneities can be cancelled
out in a relatively shallow lattice since Wannier-Stark states (blue curve) can extend over a few
lattice sites. (b) Standard deviation of the OAT coupling strengths ∆χ = (

∑
nm(χnm − χ)2/N)1/2

as a function of lattice depth V0/ER assuming 87Rb atoms trapped in a λl = 532 nm lattice. The
black curve shows the magic lattice depths (∆χ = 0) can be achieved around 6.0ER or 2.9ER

under ideal conditions, indicated by the orange circles. The blue dashed curve shows the imperfect
cancellation of inhomogeneities in χnm with radial temperature T = 1µK and radial trapping
frequency ωr/2π = 1kHz. The two insets show the zoomed ∆χ near the magic lattice depths.

One limitation of spin squeezing generation protocols with frozen atoms in deep lattices

(J0 ≈ 0) is the inhomogeneous couplings arising from incommensurate lattice and cavity mode

wavelengths (φ ̸= πj with j an integer). However, in a relatively shallow lattice (V0 < 10ER)

where J0 ∼Mgal, the wave function of WS states can extend over a few adjacent lattice sites [see

Fig. 5.2(a)] due to non-negligible nearest-neighbor tunnel couplings, instead of being localized in a

single site. The lattice depth can thus be used as a control knob to vary the extension of the WS

and for tuning the inhomogeneitiy of the spin coupling parameters [see Fig. 5.2(b)]. In particular,

at the magic lattice condition,

J0

(
4J0
Mgal

sin(φ/2)

)
= 0, (5.5)

we can completely average out the inhomogeneities and obtain uniform couplings in Eq. (5.4) with

ηn = η and χnm = χ = η2|α|2∆̃c/(∆̃
2
c +κ2/4). This technique is relevant not only for the generation

of homogeneous spin squeezing but also for quantum simulation of long-range spin models with

tunable inhomgeneity [26]. In practice, the thermal distribution of atoms in the radial direction
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and the undesirable couplings between axial and radial confinement of the Gaussian beam profile

can lead to an imperfect cancellation [see the insets in Fig. 5.2(b)], which can be highly suppressed

by operating at low radial temperature or large radial confinement (see SOM). For 87Rb atoms

with λc = 780 nm (D2 transition) and λl = 532 nm, the magic lattice depths are around 6.0ER

and 2.9ER [see Fig. 5.2(b)]. For 171Yb atoms with λc = 556 nm (1S0 → 3P1 transition) and

λl = 413 nm [361], the magic lattice depth is around 3.2ER. The negligible scattering length of

171Yb atoms [362] and their insensitivity to magnetic and electric fields make them ideal for inertial

sensing. For the cases above, at the smallest magic lattice depth the WS state spreads within three

lattice sites.

5.2.3 Quantum enhanced interferometric protocol

Since the energy splitting of WS states is proportional to the gravitational acceleration g,

our system can be directly used for quantum enhanced gravimetry. The protocol consists of the

following steps, as illustrated in Fig. 5.3. After the application of a short π/2 pulse with the

microwave drive in an empty cavity [see Eq. (5.4) with α = 0] that prepares a spin coherent state

along x direction, the system is let to evolve for a time t0 under the OAT interaction mediated

by the optical cavity [see Eq. (5.4) with Ω = 0 using an additional spin echo π pulse at t0/2 to

cancel additional Ŝz rotations], which results in the generation of a uniform spin squeezed state [see

Fig. 5.3(a)]. The reduced noise quadrature of the state makes it highly sensitive to small rotations

about the y axis, R̃ϕ
y = e−iϕŜy

.

To perform precise measurement of a phase ϕ arising from gravitational energy shifts, Raman

sideband transitions to WS states separated by a few lattice sites are used. Explicitly, the rotation

about the y axis is implemented as R̃ϕ
y = R̃

−π/2
x R̄ϕ

z R̃
π/2
x , with R̄ϕ

z = (R†)mRRϕ
zRmR , where mR

is the number of imposed compound pulses, and R = R̃π
yR

π
y is a compound pulse to separate the

atoms in |↑⟩ and |↓⟩ states by 2r lattice sites: |↑n⟩ → |↑n+r⟩ and |↓n⟩ → |↓n−r⟩. It consists of a π

Raman pulse Rπ
y with appropriate momentum kick and frequency ωR to perform the desired r-site

transfer in the lattice (apply from side to ensure homogeneity for all atoms), followed by a π pulse
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<latexit sha1_base64="KHsFpfDs67Cz2eMTcwEA9ZJg35A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8dK7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GdzO//cS1EbF6xCzhfkSHSoSCUbRSo9HP+uWKW3XnIKvEy0kFctT75a/eIGZpxBUySY3pem6C/oRqFEzyaamXGp5QNqZD3rVU0YgbfzI/dUrOrDIgYaxtKSRz9ffEhEbGZFFgOyOKI7PszcT/vG6K4Y0/ESpJkSu2WBSmkmBMZn+TgdCcocwsoUwLeythI6opQ5tOyYbgLb+8SloXVe+q6j5cVmq3eRxFOIFTOAcPrqEG91CHJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AFCGI3I</latexit>

Sy

<latexit sha1_base64="+6WRpMK0l3OHxIAatbBuZ4rixD8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cWTFtoQ9lsJ+3azSbsboRS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCoqZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBrXB0N/NbT6g0T+SDGacYxHQgecQZNVZq+L1yxa26c5BV4uWkAjnqvfJXt5+wLEZpmKBadzw3NcGEKsOZwGmpm2lMKRvRAXYslTRGHUzmh07JmVX6JEqULWnIXP09MaGx1uM4tJ0xNUO97M3E/7xOZqKbYMJlmhmUbLEoygQxCZl9TfpcITNibAllittbCRtSRZmx2ZRsCN7yy6ukeVH1rqpu47JSu83jKMIJnMI5eHANNbiHOvjAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MHstOM3g==</latexit>

U
<latexit sha1_base64="9tWudqVjUVZB33mu+h738rBgnjY=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4KomIeix68VjBtIU2ls1mky7d7IbdiVBCf4YXD4p49dd489+4bXPQ1gcDj/dmmJkXZoIbcN1vZ2V1bX1js7JV3d7Z3duvHRy2jco1ZT5VQuluSAwTXDIfOAjWzTQjaShYJxzdTv3OE9OGK/kA44wFKUkkjzklYKWe/1j0I5IkTE8GtbrbcGfAy8QrSR2VaA1qX/1I0TxlEqggxvQ8N4OgIBo4FWxS7eeGZYSOSMJ6lkqSMhMUs5Mn+NQqEY6VtiUBz9TfEwVJjRmnoe1MCQzNojcV//N6OcTXQcFllgOTdL4ozgUGhaf/44hrRkGMLSFUc3srpkOiCQWbUtWG4C2+vEza5w3vsuHeX9SbN2UcFXSMTtAZ8tAVaqI71EI+okihZ/SK3hxwXpx352PeuuKUM0foD5zPH3RDkV4=</latexit>

U †

<latexit sha1_base64="IHcju18n+2jZeWQ6qMHCfiyuMCk=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRgx4rGFtoQ9lsJ+3SzSbsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dkorq2vrG+XNytb2zu5edf/gUSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+HoZuq3nlBpnsgHM04xiOlA8ogzaqzk33bTIe9Va27dnYEsE68gNSjQ7FW/uv2EZTFKwwTVuuO5qQlyqgxnAieVbqYxpWxEB9ixVNIYdZDPjp2QE6v0SZQoW9KQmfp7Iqex1uM4tJ0xNUO96E3F/7xOZqKrIOcyzQxKNl8UZYKYhEw/J32ukBkxtoQyxe2thA2poszYfCo2BG/x5WXyeFb3Luru/XmtcV3EUYYjOIZT8OASGnAHTfCBAYdneIU3RzovzrvzMW8tOcXMIfyB8/kDptCOlQ==</latexit>

G�

<latexit sha1_base64="UEn64VGWACw6o9gIMvYKdiUrLMg=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KomIeix68VjFfmAby2Y7aZduNmF3I5TQf+HFgyJe/Tfe/Ddu2xy09cHA470ZZuYFieDauO63s7S8srq2Xtgobm5t7+yW9vYbOk4VwzqLRaxaAdUouMS64UZgK1FIo0BgMxheT/zmEyrNY3lvRgn6Ee1LHnJGjZUe7rqjx6yTDPi4Wyq7FXcKski8nJQhR61b+ur0YpZGKA0TVOu25ybGz6gynAkcFzupxoSyIe1j21JJI9R+Nr14TI6t0iNhrGxJQ6bq74mMRlqPosB2RtQM9Lw3Ef/z2qkJL/2MyyQ1KNlsUZgKYmIyeZ/0uEJmxMgSyhS3txI2oIoyY0Mq2hC8+ZcXSeO04p1X3NuzcvUqj6MAh3AEJ+DBBVThBmpQBwYSnuEV3hztvDjvzsesdcnJZw7gD5zPH8xlkQA=</latexit>

R�
y

<latexit sha1_base64="x/uwdZmX/AMNUjztpieR9yXUEI4=">AAAB/HicbVDLSsNAFJ3UV62vaJduBovgqiZF1GXRjcsq9gFNDJPJpB06mYSZiRBC/BU3LhRx64e482+ctllo64ELh3Pu5d57/IRRqSzr26isrK6tb1Q3a1vbO7t75v5BT8apwKSLYxaLgY8kYZSTrqKKkUEiCIp8Rvr+5Hrq9x+JkDTm9ypLiBuhEachxUhpyTPrjqIsIPld4WUPuZPQ01bhmQ2rac0Al4ldkgYo0fHMLyeIcRoRrjBDUg5tK1FujoSimJGi5qSSJAhP0IgMNeUoItLNZ8cX8FgrAQxjoYsrOFN/T+QokjKLfN0ZITWWi95U/M8bpiq8dHPKk1QRjueLwpRBFcNpEjCggmDFMk0QFlTfCvEYCYSVzqumQ7AXX14mvVbTPm9at2eN9lUZRxUcgiNwAmxwAdrgBnRAF2CQgWfwCt6MJ+PFeDc+5q0Vo5ypgz8wPn8A4euU6g==</latexit>

R̃⇡/2
y

<latexit sha1_base64="bydSRoWgE4LCQOeN8ESWDM+GPKU=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBFc1aSIuiy6cVnFPqCJYTKZtEMnkzAzEUOIv+LGhSJu/RB3/o3TNgttPXDhcM693HuPnzAqlWV9G0vLK6tr65WN6ubW9s6uubfflXEqMOngmMWi7yNJGOWko6hipJ8IgiKfkZ4/vpr4vQciJI35ncoS4kZoyGlIMVJa8syaoygLSH5beI/3uZPQk2bhmXWrYU0BF4ldkjoo0fbMLyeIcRoRrjBDUg5sK1FujoSimJGi6qSSJAiP0ZAMNOUoItLNp8cX8EgrAQxjoYsrOFV/T+QokjKLfN0ZITWS895E/M8bpCq8cHPKk1QRjmeLwpRBFcNJEjCggmDFMk0QFlTfCvEICYSVzquqQ7DnX14k3WbDPmtYN6f11mUZRwUcgENwDGxwDlrgGrRBB2CQgWfwCt6MJ+PFeDc+Zq1LRjlTA39gfP4A4F+U6Q==</latexit>

R̃⇡/2
x

<latexit sha1_base64="6ELO8RmuptcaUGjwc6KhLx3L5hg=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCG2tSRF0W3bisYh/QxDCZTNqhk0mYmYg1BH/FjQtF3Pof7vwbp20WWj1w4XDOvdx7j58wKpVlfRmlufmFxaXycmVldW19w9zcass4FZi0cMxi0fWRJIxy0lJUMdJNBEGRz0jHH16M/c4dEZLG/EaNEuJGqM9pSDFSWvLMHUdRFpDsOvfub7NDJ6FH9dwzq1bNmgD+JXZBqqBA0zM/nSDGaUS4wgxJ2bOtRLkZEopiRvKKk0qSIDxEfdLTlKOISDebXJ/Dfa0EMIyFLq7gRP05kaFIylHk684IqYGc9cbif14vVeGZm1GepIpwPF0UpgyqGI6jgAEVBCs20gRhQfWtEA+QQFjpwCo6BHv25b+kXa/ZJzXr6rjaOC/iKINdsAcOgA1OQQNcgiZoAQwewBN4Aa/Go/FsvBnv09aSUcxsg18wPr4BUD+VIA==</latexit>

R̃�⇡/2
x

<latexit sha1_base64="/583KU7gItMbOukeB7u9OrjWsec=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE1GPRi8cq9gOaGDbbbbt0swm7m0IN+SdePCji1X/izX/jts1BWx8MPN6bYWZemHCmtON8W6WV1bX1jfJmZWt7Z3fP3j9oqTiVhDZJzGPZCbGinAna1Exz2kkkxVHIaTsc3Uz99phKxWLxoCcJ9SM8EKzPCNZGCmzbC7HM7vPg6THzkiHLA7vq1JwZ0DJxC1KFAo3A/vJ6MUkjKjThWKmu6yTaz7DUjHCaV7xU0QSTER7QrqECR1T52ezyHJ0YpYf6sTQlNJqpvycyHCk1iULTGWE9VIveVPzP66a6f+VnTCSppoLMF/VTjnSMpjGgHpOUaD4xBBPJzK2IDLHERJuwKiYEd/HlZdI6q7kXNefuvFq/LuIowxEcwym4cAl1uIUGNIHAGJ7hFd6szHqx3q2PeWvJKmYO4Q+szx8aqZP3</latexit>

R̄�
z

<latexit sha1_base64="eV7NzqBIkBAzicyreGJfzd3iKQs=">AAACHXicbVDLSsNAFJ34rPUVdelmsAh1YUmkqBuh6MZlLfYBTRom00k7dPJgZiLUkB9x46+4caGICzfi3zhps7CtBwYO55zL3HvciFEhDeNHW1peWV1bL2wUN7e2d3b1vf2WCGOOSROHLOQdFwnCaECakkpGOhEnyHcZabujm8xvPxAuaBjcy3FEbB8NAupRjKSSHL16ZflIDjFiSSPtJb7TSBvOYy+xoiFNyzPeqZmeTBOOXjIqxgRwkZg5KYEcdUf/svohjn0SSMyQEF3TiKSdIC4pZiQtWrEgEcIjNCBdRQPkE2Enk+tSeKyUPvRCrl4g4UT9O5EgX4ix76pktq6Y9zLxP68bS+/STmgQxZIEePqRFzMoQ5hVBfuUEyzZWBGEOVW7QjxEHGGpCi2qEsz5kxdJ66xinleMu2qpdp3XUQCH4AiUgQkuQA3cgjpoAgyewAt4A+/as/aqfWif0+iSls8cgBlo37/bbKMA</latexit>

= RmRR�
z (R�1)mR

<latexit sha1_base64="/583KU7gItMbOukeB7u9OrjWsec=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE1GPRi8cq9gOaGDbbbbt0swm7m0IN+SdePCji1X/izX/jts1BWx8MPN6bYWZemHCmtON8W6WV1bX1jfJmZWt7Z3fP3j9oqTiVhDZJzGPZCbGinAna1Exz2kkkxVHIaTsc3Uz99phKxWLxoCcJ9SM8EKzPCNZGCmzbC7HM7vPg6THzkiHLA7vq1JwZ0DJxC1KFAo3A/vJ6MUkjKjThWKmu6yTaz7DUjHCaV7xU0QSTER7QrqECR1T52ezyHJ0YpYf6sTQlNJqpvycyHCk1iULTGWE9VIveVPzP66a6f+VnTCSppoLMF/VTjnSMpjGgHpOUaD4xBBPJzK2IDLHERJuwKiYEd/HlZdI6q7kXNefuvFq/LuIowxEcwym4cAl1uIUGNIHAGJ7hFd6szHqx3q2PeWvJKmYO4Q+szx8aqZP3</latexit>

R̄�
z

<latexit sha1_base64="jiSa3toEFaL7eZJ7AzuFPbcas6Q=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyIqBuh6MZlFfuAzlAyaaYNzWRCkhHK0N9w40IRt/6MO//GTDsLbT0QOJxzL/fkhJIzbVz32ymtrK6tb5Q3K1vbO7t71f2Dtk5SRWiLJDxR3RBrypmgLcMMp12pKI5DTjvh+Db3O09UaZaIRzORNIjxULCIEWys5PsxNiOCefYwve5Xa27dnQEtE68gNSjQ7Fe//EFC0pgKQzjWuue50gQZVoYRTqcVP9VUYjLGQ9qzVOCY6iCbZZ6iE6sMUJQo+4RBM/X3RoZjrSdxaCfzjHrRy8X/vF5qoqsgY0KmhgoyPxSlHJkE5QWgAVOUGD6xBBPFbFZERlhhYmxNFVuCt/jlZdI+q3sXdff+vNa4KeoowxEcwyl4cAkNuIMmtICAhGd4hTcndV6cd+djPlpyip1D+APn8wcRxJG0</latexit>R =
<latexit sha1_base64="ui43BJGrgx+yMn6zHJOfEw5sq3Y=">AAAB+nicdVDLSsNAFJ34rPWV6tLNYBFchURLm+6KblxWsQ9oY5hMpu3QySTMTJQS+yluXCji1i9x5984TSuo6IELh3Pu5d57goRRqWz7w1haXlldWy9sFDe3tnd2zdJeW8apwKSFYxaLboAkYZSTlqKKkW4iCIoCRjrB+Hzmd26JkDTm12qSEC9CQ04HFCOlJd8s9RVlIcmupv7kJusndOqbZds6rVdctwJzUq/ac+LWHOhYdo4yWKDpm+/9MMZpRLjCDEnZc+xEeRkSimJGpsV+KkmC8BgNSU9TjiIivSw/fQqPtBLCQSx0cQVz9ftEhiIpJ1GgOyOkRvK3NxP/8nqpGrheRnmSKsLxfNEgZVDFcJYDDKkgWLGJJggLqm+FeIQEwkqnVdQhfH0K/yftE8upWvZlpdw4W8RRAAfgEBwDB9RAA1yAJmgBDO7AA3gCz8a98Wi8GK/z1iVjMbMPfsB4+wSGS5TY</latexit>

R̃⇡
y

<latexit sha1_base64="2vnp8BAtJtpWTpfnJzp+34SMUzc=">AAAB8HicdVDLSgMxFM3UV62vqks3wSK4GjKlHae7ohuXVexD2rFk0kwbmswMSUYoQ7/CjQtF3Po57vwb04egogcuHM65l3vvCRLOlEbow8qtrK6tb+Q3C1vbO7t7xf2DlopTSWiTxDyWnQAryllEm5ppTjuJpFgEnLaD8cXMb99TqVgc3ehJQn2BhxELGcHaSLfX/cld1kvYtF8sIbtWc5DnQmS7TrVS9QxBZc91HejYaI4SWKLRL773BjFJBY004ViproMS7WdYakY4nRZ6qaIJJmM8pF1DIyyo8rP5wVN4YpQBDGNpKtJwrn6fyLBQaiIC0ymwHqnf3kz8y+umOvT8jEVJqmlEFovClEMdw9n3cMAkJZpPDMFEMnMrJCMsMdEmo4IJ4etT+D9plW3HtdFVpVQ/X8aRB0fgGJwCB5yBOrgEDdAEBAjwAJ7AsyWtR+vFel205qzlzCH4AevtE4GIkOM=</latexit>

R⇡
y

<latexit sha1_base64="2vnp8BAtJtpWTpfnJzp+34SMUzc=">AAAB8HicdVDLSgMxFM3UV62vqks3wSK4GjKlHae7ohuXVexD2rFk0kwbmswMSUYoQ7/CjQtF3Po57vwb04egogcuHM65l3vvCRLOlEbow8qtrK6tb+Q3C1vbO7t7xf2DlopTSWiTxDyWnQAryllEm5ppTjuJpFgEnLaD8cXMb99TqVgc3ehJQn2BhxELGcHaSLfX/cld1kvYtF8sIbtWc5DnQmS7TrVS9QxBZc91HejYaI4SWKLRL773BjFJBY004ViproMS7WdYakY4nRZ6qaIJJmM8pF1DIyyo8rP5wVN4YpQBDGNpKtJwrn6fyLBQaiIC0ymwHqnf3kz8y+umOvT8jEVJqmlEFovClEMdw9n3cMAkJZpPDMFEMnMrJCMsMdEmo4IJ4etT+D9plW3HtdFVpVQ/X8aRB0fgGJwCB5yBOrgEDdAEBAjwAJ7AsyWtR+vFel205qzlzCH4AevtE4GIkOM=</latexit>

R⇡
y

<latexit sha1_base64="ui43BJGrgx+yMn6zHJOfEw5sq3Y=">AAAB+nicdVDLSsNAFJ34rPWV6tLNYBFchURLm+6KblxWsQ9oY5hMpu3QySTMTJQS+yluXCji1i9x5984TSuo6IELh3Pu5d57goRRqWz7w1haXlldWy9sFDe3tnd2zdJeW8apwKSFYxaLboAkYZSTlqKKkW4iCIoCRjrB+Hzmd26JkDTm12qSEC9CQ04HFCOlJd8s9RVlIcmupv7kJusndOqbZds6rVdctwJzUq/ac+LWHOhYdo4yWKDpm+/9MMZpRLjCDEnZc+xEeRkSimJGpsV+KkmC8BgNSU9TjiIivSw/fQqPtBLCQSx0cQVz9ftEhiIpJ1GgOyOkRvK3NxP/8nqpGrheRnmSKsLxfNEgZVDFcJYDDKkgWLGJJggLqm+FeIQEwkqnVdQhfH0K/yftE8upWvZlpdw4W8RRAAfgEBwDB9RAA1yAJmgBDO7AA3gCz8a98Wi8GK/z1iVjMbMPfsB4+wSGS5TY</latexit>

R̃⇡
y

<latexit sha1_base64="hQHF/pqPgMB3hBrzrZa3vLGKEWw=">AAAB/HicbVC7TsMwFHXKq5RXoCOLRYXEQpUgBIwVLIylog+pDZHjOq1V24lsBymKwq+wMIAQKx/Cxt/gtB2g5UiWjs65V/f4BDGjSjvOt1VaWV1b3yhvVra2d3b37P2DjooSiUkbRyySvQApwqggbU01I71YEsQDRrrB5Kbwu49EKhqJe53GxONoJGhIMdJG8u3qgCM9xohlrfwh437r1M19u+bUnSngMnHnpAbmaPr212AY4YQToTFDSvVdJ9ZehqSmmJG8MkgUiRGeoBHpGyoQJ8rLpuFzeGyUIQwjaZ7QcKr+3sgQVyrlgZksoqpFrxD/8/qJDq+8jIo40UTg2aEwYVBHsGgCDqkkWLPUEIQlNVkhHiOJsDZ9VUwJ7uKXl0nnrO5e1J2781rjel5HGRyCI3ACXHAJGuAWNEEbYJCCZ/AK3qwn68V6tz5moyVrvlMFf2B9/gChJpTA</latexit>

RmR�1
<latexit sha1_base64="Pu+miNL7cRaMm5iDlDuYtssuO3o=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5KIqMeiF48V7Ac0IUy2m3bpZhN2N2qJ/StePCji1T/izX/jts1BWx8MPN6bYWZemHKmtON8W6WV1bX1jfJmZWt7Z3fP3q+2VZJJQlsk4YnshqAoZ4K2NNOcdlNJIQ457YSj66nfuadSsUTc6XFK/RgGgkWMgDZSYFefvCwFKZOHQHgSxIDTwK45dWcGvEzcgtRQgWZgf3n9hGQxFZpwUKrnOqn2c5CaEU4nFS9TNAUyggHtGSogpsrPZ7dP8LFR+jhKpCmh8Uz9PZFDrNQ4Dk1nDHqoFr2p+J/Xy3R06edMpJmmgswXRRnHOsHTIHCfSUo0HxsCRDJzKyZDkEC0iatiQnAXX14m7dO6e153bs9qjasijjI6REfoBLnoAjXQDWqiFiLoET2jV/RmTawX6936mLeWrGLmAP2B9fkDzUqU7g==</latexit>| "ni

<latexit sha1_base64="Ha5Vyoce0bWLhVJA5fTfsxr14ps=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm2ARXJVERF0W3bisYB/QhjCZTtqhk5kwM7GUtAt/xY0LRdz6G+78G6dtFtp64MLhnHtn7j1hwqjSrvttFVZW19Y3ipulre2d3T17/6ChRCoxqWPBhGyFSBFGOalrqhlpJZKgOGSkGQ5up37zkUhFBX/Qo4T4MepxGlGMtJEC+2jc6YohR1KKYZDxSUci3mMksMtuxZ3BWSZeTsqQoxbYX+YdnMaEa8yQUm3PTbSfIakpZmRS6qSKJAgPUI+0DeUoJsrPZvtPnFOjdJ1ISFNcOzP190SGYqVGcWg6Y6T7atGbiv957VRH135GeZJqwvH8oyhljhbONAynSyXBmo0MQVhSs6uD+0girE1kJROCt3jyMmmcV7zLint/Ua7e5HEU4RhO4Aw8uIIq3EEN6oBhDM/wCm/Wk/VivVsf89aClc8cwh9Ynz87eJbh</latexit>| #ni

<latexit sha1_base64="EJNvU3FXsr4k1eGNVawyJGT/DAM=">AAAB/3icbVBNS8NAEJ3Ur1q/ooIXL8EiCEJJRNRj0YvHCvYDmhA22227dLMbdjdKSXvwr3jxoIhX/4Y3/43bNgdtfTDweG+GmXlRwqjSrvttFZaWV1bXiuuljc2t7R17d6+hRCoxqWPBhGxFSBFGOalrqhlpJZKgOGKkGQ1uJn7zgUhFBb/Xw4QEMepx2qUYaSOF9sHITxMkpXgMM34qx75EvMdIaJfdijuFs0i8nJQhRy20v/yOwGlMuMYMKdX23EQHGZKaYkbGJT9VJEF4gHqkbShHMVFBNr1/7BwbpeN0hTTFtTNVf09kKFZqGEemM0a6r+a9ifif10519yrIKE9STTieLeqmzNHCmYThdKgkWLOhIQhLam51cB9JhLWJrGRC8OZfXiSNs4p3UXHvzsvV6zyOIhzCEZyAB5dQhVuoQR0wjOAZXuHNerJerHfrY9ZasPKZffgD6/MH6BiWqw==</latexit>| "n+ri
<latexit sha1_base64="znV5EZhCe46tmqEoR8y7NgUzVoU=">AAACAnicbVDLSsNAFJ34rPUVdSVuBosgCCURUZdFNy6r2Ac0IUymk3boPMLMRCmxuPFX3LhQxK1f4c6/cfpYaOuBC4dz7uXee+KUUW0879uZm19YXFourBRX19Y3Nt2t7bqWmcKkhiWTqhkjTRgVpGaoYaSZKoJ4zEgj7l0O/cYdUZpKcWv6KQk56giaUIyMlSJ39yHIUqSUvI9yccSjGzUIFBIdRiK35JW9EeAs8SekBCaoRu5X0JY440QYzJDWLd9LTZgjZShmZFAMMk1ShHuoQ1qWCsSJDvPRCwN4YJU2TKSyJQwcqb8ncsS17vPYdnJkunraG4r/ea3MJOdhTkWaGSLweFGSMWgkHOYB21QRbFjfEoQVtbdC3EUKYWNTK9oQ/OmXZ0n9uOyflr3rk1LlYhJHAeyBfXAIfHAGKuAKVEENYPAInsEreHOenBfn3fkYt845k5kd8AfO5w8kopfn</latexit>| "n+mRri
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hŜyi

Figure 5.3: Schematic of the quantum-enhanced gravimetry using Wannier-Stark (WS) states. (a)
After the preparation of a coherent spin state along x direction in the carrier transition, we apply

the twisting Hamiltonian for a time t0 as U = exp
(
−iχŜzŜzt0

)
, and the system becomes a squeezed

state sensitive to small rotations about the y axis (R̃ϕ
y ). By applying the untwisting sequence U †

for the same amount of time t0, the quantum noise returns to the SQL level and the small rotation
angle ϕ is amplified into a larger angle Gϕ around z axis, which can be detected by measuring ⟨Ŝy⟩.
(b) The phase accumulation due to gravitational energy difference is achieved through a compound
pulse sequence that separates the atoms in the corresponding WS states by 2mRr lattice sites. A
single compound pulse R, as shown in the box, is a combination of a microwave pulse in the carrier
transition and a Raman pulse for the r-th WS sidebands, which generates spin-dependent spatial
transfer of the atoms (indicated by red/blue circles) from |↑n⟩/|↓n⟩ to |↑n+r⟩/|↓n−r⟩.
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on the carrier transition to flip back the spin using a microwave drive (R̃π
y ) with frequency ωMW [see

Fig. 5.3(b)]. Such type of compound pulse sequences have been already successfully demonstrated in

87Rb atoms [363]. The Rϕ
z operator describes the free evolution for a time τ of the atoms separated

by 2mRr lattice sites when they accumulate a phase ϕ = (ωR − ωMW −Mgalr/h̄) × 2mRτ . Note

that one can apply an additional microwave pulse R̃π
y at τ/2 to remove the undesirable hyperfine

energy splitting h̄ω0.

Finally, one can perform a time reversal of OAT dynamics by changing the frequency of

pump laser such that ∆̃c → −∆̃c, followed by a measurement of ⟨Ŝy⟩ [358]. Under this untwisting

sequence, the accumulated phase ϕ is amplified by a factor of G = (∂ϕ⟨Ŝy⟩/S)ϕ→0, and the quantum

noise for phase measurement σp = (∆Sy/S)ϕ→0 returns to the SQL level, (σp)SQL = 1/
√
N , which

leads to a phase sensitivity ∆ϕ = σp/G achievable with detection resolution at the atom shot

noise level. So we estimate a sensitivity of gravimetry by ∆g/g = ξ/(ϕg
√
N) ×

√
τ/T , where

ϕg = 2MgalrmRτ/h̄, ξ−2 = 1/[N(∆ϕ)2] is the metrological gain over the SQL, and T is the

averaging time. The optimal sensitivity approaches the Heisenberg limit ∆g/g ∝ 1/N under pure

Hamiltonian dynamics [see the red curve in Fig. 5.4].

Our protocol could be also ideal for sensing weak short-range forces generated by an object

placed close to the atoms [152,355–357], which introduces new possibilities in exploring new physics

beyond the Standard Model. Such forces will generate an additional potential U(z) that will

mainly modify the phase accumulated by an atom in the WS state centered at site n to ϕ̃n =

ϕ+ (Un+mRr − Un−mRr)τ/h̄, where Un =
∫
dz U(z)|ϕn(z)|2. Given the dependence of the phase on

initial WS states, which will dephase the atomic sample if spreading over multiple WS states, the

use of atomic clouds with small spatial extension to reduce the number of occupied WS states can be

crucial. For these situations, since the inhomogeneities in atom-light couplings do not average out in

a single realization, one needs to account for important systematic errors in the amplification factor

G, in contrast to the subdominant suppression of G when the atomic array is fully spread across

the lattice (see SOM). Therefore, the magic lattice condition can lead to significant improvements

if the atoms are restricted to local regions of the lattice.
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5.2.4 Experimental considerations

Experimental imperfections such as cavity loss and spontaneous emission of the excited state

during the spin squeezing generation and other dephasing mechanisms during the interrogation will

degrade the ideal sensitivity in practical implementations as we now discuss. Cavity loss induces

phase fluctuations of the collective spin with collective dephasing rate Γz = χκ/∆̃c, which lead

an increase in the variance of Ŝy. Spontaneous emission from the excited state |e⟩, at a rate γ,

generates off-resonant photon scattering processes with a total rate Γ ∝ γ|G0
↑,↓|2|α|2/∆2

↑,↓, including

single-particle spin flips and dephasing. Here we focus on the case with balanced spin flip rates,

γr = PfΓ with Pf the spin flip probability, which can be achieved by choosing appropriate energy

levels and detunings, so the spontaneous emission generates no biases on the accumulated phase

ϕ. The noise induced by the γr terms is amplified during the untwisting protocol, making them

the dominant single-particle noise source for measuring ⟨Ŝy⟩. The combination of cavity loss and

spontaneous emission limits the metrological gain ξ−2 to (see SOM),

ξ2 ≈ 1 + 2NΓzt0
(Nχt0)2

+
8

3
γrt0, (5.6)

leading to an optimal value ξ−2
opt ∝

√
NC ′, where C ′ = χ2/ΓzΓ is related to the single-atom

cooperativity (see SOM). This result translates into the sensitivity for gravimetry as ∆g/g ∝ N−3/4

[see the blue curve in Fig. 5.4]. Higher sensitivity can be reached by choosing specific schemes (e.g.

cycling transitions) to suppress spin flip processes [see the purple curve in Fig. 5.4].

Technical noise in experiment such as mechanical vibrations and local oscillator dephasing, as

well as single particle decoherence due to interatomic interactions also impose a constraint on the

interrogation time. In particular, single-particle decoherence imposes even more severe restrictions

when operating with entangled states given their fragility to it (see SOM). For 87Rb assuming a

5.32 µm atom separation achieved by r = 5, mR = 2 in a λl = 532 nm lattice, phase accumulation

time τ = 1 s, C ′ = 2, and spin flip probability Pf = 1/2, one can achieve ∆g/g ∼ 6 × 10−9/
√

Hz

with about 5× 104 atoms, which is 20 dB enhancement beyond SQL. If we compare this sensitivity

with SQL for τ = 10 s, still a 10 dB enhancement is possible, meaning that even after accounting
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Figure 5.4: Interferometer sensitivity ∆g/g as a function of atom number N , assuming 5.32 µm
separation for 87Rb atoms via compound pulse sequence, 1 s phase accumulation time, and C ′ = 2.
The red curve indicates the ideal implementation without decoherence, while the blue curve and
purple curve take account the effect of cavity loss and spontaneous emission with spin flip probability
Pf = 1/2 and Pf = 0 respectively.

for the fragility of the spin squeezed states, our protocol can not only reduce the required averaging

time by a factor of 10, but also increase the measurement bandwidth of time-varying signal by a

factor of 10, compared to unentangled lattice-based interferometers [344,351].

5.2.5 Conclusion and outlook

We proposed a quantum enhanced interferometric protocol using Wannier-Stark states in

standing-wave cavity QED system, which allows for homogeneous spin squeezing generation and

micrometric spatial resolution for gravimetry and force sensing. The many-body entanglement in

our scheme leads to an order of magnitude reduction of the required averaging time compared to

unentangled lattice-based interferometers. Our work opens new possibilities for quantum enhanced

interferometry in versatile compact atomic sensors, as well as novel Hamiltonian engineering in

quantum many-body simulators.

5.2.6 Supplemental Materials: Cavity QED on Wannier-Stark states

In the main text, we consider an ensemble of three-level atoms trapped in a standing-wave

cavity along the vertical direction. A 1D optical lattice with lattice depth V0 and wave vector

kl = 2π/λl along the cavity axis is used to confine the atoms. Along this direction gravity imposes

an additional linear potential of the form Mgz. We assume that the spin-1/2 degree of freedom
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(|↑⟩, |↓⟩) is encoded in two long-lived internal states of the atoms with single particle energies

{h̄ω↑, h̄ω↓} ≡ {h̄ω0, 0} respectively. They are coupled to an electronic excited state |e⟩ (frequency

ωe) by a single cavity mode with coupling strength G↑,↓(z) = G0
↑,↓ cos(kcz). This cavity mode

with resonant frequency ωc is coherently pumped by an external field with intracavity intensity ε

and frequency ωp. We also include a homogeneous drive in the spin-1/2 degree of freedom with

frequency ωd and Rabi frequency Ω. The Hamiltonian of the system can be written as the following

second quantized form,

Ĥ =
∑

τ=↑,↓,e

∫
dzψ̂†

τ (z)

[
p̂2

2M
+ V0 sin2(klz) +Mgz + h̄ωτ

]
ψ̂τ (z) +

∫
dz

[
h̄G↑(z)âψ̂†

e(z)ψ̂↑(z)

+ h̄G↓(z)âψ̂†
e(z)ψ̂↓(z) + h.c.

]
+

∫
dz

[
h̄Ω

2
ψ̂†
↑(z)ψ̂↓(z)e−iωdt + h.c.

]
+ h̄ωcâ

†â

+ h̄(εe−iωptâ† + ε∗eiωptâ).

(5.7)

It’s convenient to transform the Hamiltonian into a frame rotating with the pump laser via

the following unitary transformation,

Û = exp

{
−it
[ ∫

dz

(
(ωp+ω↓)ψ̂

†
e(z)ψ̂e(z)+(ω↑+δ)ψ̂†

↑(z)ψ̂↑(z)+ω↓ψ̂
†
↓(z)ψ̂↓(z)

)
+ωpâ

†â

]}
, (5.8)

where δ = ωd − ω0 is the detuning of the drive to the spin-1/2 transition. After carrying out the

unitary transformation described above, the Hamiltonian takes the following form,

Ĥ ≈ −
∫

dz(h̄∆↓)ψ̂
†
e(z)ψ̂e(z) +

∑
σ=↑,↓,e

∫
dzψ̂†

σ(z)

[
p̂2

2M
+ V0 sin2(klz) +Mgz

]
ψ̂σ(z)

+

∫
dz

[
h̄G↑(z)âψ̂†

e(z)ψ̂↑(z)e−i(ω0+δ)t + h̄G↓(z)âψ̂†
e(z)ψ̂↓(z) + h.c.

]
+

∫
dz

[
h̄Ω

2
ψ̂†
↑(z)ψ̂↓(z) + h.c.

]
−
∫
dz(h̄δ)ψ̂†

↑(z)ψ̂↑(z) − h̄∆câ
†â+ h̄(εâ† + ε∗â),

(5.9)

where ∆c = ωp − ωc is the cavity detuning, ∆↑,↓ = ωp − ωe + ω↑,↓ are the detunings of the pump

from the corresponding electronic excited state to ground transitions. We assume h̄∆↑,↓ are much

larger than the motional energy of the atoms. Here we focus on the case that ∆↑,↓ ≫ G0
↑,↓
√
⟨â†â⟩

and ∆↑,↓ ≫ γ, which means the excited state population and the decoherence induced by atomic

spontaneous emission are negligible. In this limit we can adiabatically eliminate the atomic excited
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state |e⟩ by averaging out the largest frequency scale ∆↑,↓ and ω0 in this system (see Ref. [364]).

This leads to the following effective Hamiltonian acting in the ground state manifold [273,365],

Ĥ =
∑
σ=↑,↓

∫
dzψ̂†

σ(z)

[
p̂2

2M
+ V0 sin2(klz) +Mgz +

h̄|Gσ(z)|2
∆σ

â†â

]
ψ̂σ(z)

+

∫
dz

[
h̄Ω

2
ψ̂†
↑(z)ψ̂↓(z) + h.c.

]
−
∫
dz(h̄δ)ψ̂†

↑(z)ψ̂↑(z) − h̄∆câ
†â+ h̄(εâ† + ε∗â).

(5.10)

It’s worth to mention that for simplicity we take only one atomic excited state into account in this

derivation. For practical experimental system, one might need to sum over the contributions from

all relevant excited states.

Assuming all the atoms are located in the ground band of the lattice, in tight-binding limit the

single-particle eigenstates of the system can be described by Wannier-Stark states |ϕn⟩ (n ∈ Z) [290]:

En = Mgaln, ϕn(z) =
∑
m

Jm−n

(
2J0
Mgal

)
w(z −mal). (5.11)

Here, Jn(x) is the Bessel function of the first kind, J0 ≈ (4/
√
π)E

1/4
R V

3/4
0 exp

[
−2
√
V0/ER

]
is the

nearest-neighbor tunneling couplings, al = λl/2 is the lattice spacing, and w(x) is the ground band

Wannier function. Here ER = h̄2k2l /2M is the atomic recoil energy. Then we expand the atomic

field operators ψ̂σ(z) in terms of Wannier-Stark states,

ψ̂σ(z) =
∑
n

ĉnσϕn(z), (5.12)

where ĉnσ annihilates an atom of spin σ in the state |ϕn⟩. We consider the case that Mgal ≫

h̄|G0
↑,↓|2⟨â†â⟩/∆↑,↓, which means cavity-induced AC Stark shifts in atomic ground state are smaller

than Mgal, the energy difference between adjacent Wannier-Stark ladder states. This implies all

the atoms are frozen in their initial Wannier-Stark states (see a later subsection for validity of this

approximation), and we only need to consider the dynamics in the carrier transition |↓;ϕn⟩ ↔ |↑

;ϕn⟩. Turning off the Rabi drive Ω after initial state preparation, the Hamiltonian can be simplified

into the following form,

ˆ̃H = −h̄∆̃câ
†â+ h̄(εâ† + ε∗â) +

∑
n

(
− h̄δ + h̄ηnâ

†â

)
Ŝz
n, (5.13)
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and

∆̃c = ∆c −
∑
n

Nn

2

( |G0
↑ |2

∆↑
+

|G0
↓ |2

∆↓

)∫
dz cos2(kcz)ϕn(z)ϕn(z),

ηn =

( |G0
↑ |2

∆↑
−

|G0
↓ |2

∆↓

)∫
dz cos2(kcz)ϕn(z)ϕn(z).

(5.14)

And the spin operators are defined as follows,

Ŝx
n =

1

2
(ĉ†n↑ĉn↓ + ĉ†n↓ĉn↑), Ŝy

n = − i

2
(ĉ†n↑ĉn↓ − ĉ†n↓ĉn↑),

Ŝz
n =

1

2
(ĉ†n↑ĉn↑ − ĉ†n↓ĉn↓), N̂n = ĉ†n↑ĉn↑ + ĉ†n↓ĉn↓.

(5.15)

Assuming the ground band Wannier function w(x) are localized on a single lattice site, the

integral in ηn can be evaluated analytically,∫
dz cos2(kcz)ϕn(z)ϕm(z) ≈ 1

2

[
δnm + CJn−m

(
4J0
Mgal

sin(φ/2)

)
cos

(
(n+m)φ

2
+

(n−m)π

2

)]
,

(5.16)

where φ = 2kcal, and C =
∫
dz e2ikcz|w(z)|2. Thus the analytic expression for ηn is

ηn =
1

2

[ |G0
↑ |2

∆↑
−

|G0
↓ |2

∆↓

][
1 + CJ0

(
4J0
Mgal

sin(φ/2)

)
cos(nφ)

]
. (5.17)

which leads to the magic lattice condition to achieve uniform ηn,

J0

(
4J0
Mgal

sin(φ/2)

)
= 0. (5.18)

Under this magic lattice condition, we can replace ηn by η, which is given by

η =
1

2

[ |G0
↑ |2

∆↑
−

|G0
↓ |2

∆↓

]
. (5.19)

We consider the cavity mode has decay rate κ, so the dynamics of this system can be described

by the following master equation,

d

dt
ρ̂ = − i

h̄
[ ˆ̃H, ρ̂] + L̂ρ̂L̂† − 1

2
{L̂†L̂, ρ̂},

ˆ̃H/h̄ = −∆̃câ
†â+ εâ† + ε∗â+

∑
n

(
− δ + ηnâ

†â

)
Ŝz
n,

L̂ =
√
κ â.

(5.20)
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If the cavity detuning ∆̃c is now the largest frequency scale, we can proceed to adiabatically

eliminate the cavity mode. For that first we expand the cavity field operator â as a sum of its

steady state value α = ⟨â⟩ and quantum fluctuation b̂,

â = α+ b̂, α =
ε

∆̃c + iκ/2
. (5.21)

Assuming ∆̃c ≫
∑

n ηn⟨Ŝz
n⟩, the Hamiltonian and jump operators become

ˆ̃H/h̄ ≈ −∆̃cb̂
†b̂+

∑
n

(
− δ + ηn|α|2+ηnα∗b̂+ ηnb̂

†α

)
Ŝz
n,

L̂ =
√
κ b̂.

(5.22)

Now we focus on the initial condition where the collective spin is aligned along the equator, and

the fluctuation of Ŝz is given by
√
N/2. In this case if ∆̃c ≫ ηα

√
N then ⟨b̂⟩ ≪ 1, and therefore

we can adiabatically eliminate the photon excitation (see Ref. [339]) and obtain an effective master

equation in zero-photon subspace,

d

dt
ρ̂ = − i

h̄
[Ĥeff , ρ̂] + L̂eff ρ̂L̂

†
eff − 1

2
{L̂†

eff L̂eff , ρ̂},

Ĥeff/h̄ = −
∑
n

(δk − ηn|α|2)Ŝz
n +

∑
nm

ηnηm|α|2∆̃c

∆̃2
c + κ2/4

Ŝz
nŜ

z
m,

L̂eff =
√
κ
∑
n

ηnα

∆̃c + iκ/2
Ŝz
n.

(5.23)

5.2.7 Supplemental Materials: Validity of spin model and homogeneous couplings

Here we would like to discuss the validity of our results discussed in the main text, considering

the effects of experimental imperfections and the validity of the approximations in the theory model.

Effects of thermal distribution on magic lattice condition

In the main text, we discuss the magic lattice condition to achieve uniform one-axis twisting,

J0

(
4J0
Mgal

sin(φ/2)

)
= 0, (5.24)

assuming a separable confinement potential and tunneling only along the gravity direction. For

practical experimental system, the Gaussian geometry of the laser beams inevitably couple the ver-

tical and radial wave-functions. In this case therefore we have to consider the thermal distribution
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of atoms in the transverse direction, which leads to an imperfect cancellation of the inhomogeneity.

The Gaussian profile of the lattice and cavity beams leads to the following imperfections:

(1) Atoms in different radial modes have a slightly different nearest-neighbor tunneling rate.

(2) Atoms in different radial modes feel a differential AC-Stark shifts and thus extra inhomo-

geneities.

First we focus on the Gaussian beam profile of a 1D lattice, which leads to the following

trapping potential,

V0(r, z) =

 V0 − V0 cos2(klz) exp
(
−2r2/w2

l

)
(red-detuned lattice)

V0 sin2(klz) exp
(
−2r2/w2

l

)
(blue-detuned lattice)

, (5.25)

where kl = 2π/λl is the lattice wave number, wl is the beam waist, and V0 > 0 is the lattice depth.

Using a technique similar to the one used in Ref. [292], one can also introduce an additional radial

trapping potential Vr(r, z) = Mω2
r1r

2/2 from the optical cavity. Expanding the total trapping

potential V (r, z) = V0(r, z) + Vr(r, z) to second order of r, we have

V (r, z) ≈ V0 sin2(klz) +
1

2
Mω2

rr
2 − ω2

r0

ω2
r

· 1

2
Mω2

rr
2 sin2(klz). (5.26)

Here, the total radial trapping frequency is given by ωr =
√
ω2
r0 + ω2

r1 for red-detuned lattice, and

ωr = ωr1 for blue-detuned lattice. Here ωr0 =
√

4V0/Mw2
l .

In the expression above, the first term describes the lattice potential along the axial direction.

The corresponding axial eigenfunctions are Bloch functions ϕq(z) in the ground band with a band

structure E(q)/ER = f(q/h̄kl, V0/4ER) + V0/2ER, where q ∈ [−h̄kl, h̄kl] is the quasimomentum,

and the function f is the characteristic Mathieu value of type A for q ∈ (−h̄kl, h̄kl), and the

characteristic Mathieu value of type B for q = ±h̄kl. The second term describes the radial trapping

potential as a harmonic oscillator with eigenfunctions ϕnx,ny(r) = ϕnx(x)ϕny(y) and eigenenergies

Enx,ny = h̄ωr(nx + ny + 1)/2. The third term is the anharmonicity in the Gaussian beam profile,

which couples the axial and radial degrees of freedom. Similar to Ref. [102], we use first-order
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Figure 5.5: The standard deviations of (a) the tunneling rates, (b) the AC-Stark shifts and (c)
the interaction strength as a function of the total radial trapping potential ωr for fixed T = 0.1µK
(blue curves), T = 1.0µK (yellow curves) and T = 10µK (green curves). Here we assume the beam
waists are wc ≈ wl = 50µm and the trapping depth is V0 = 6Er. We find the corrections can be
suppressed by increasing the radial trapping frequency or lowering the temperature.

perturbation theory to calculate the energy corrections from the anharmonicity,

Enx,ny(q) = Enx,ny + E(q) − 1

2

ω2
r0

ω2
r

Enx,ny⟨q|sin2(klz)|q⟩. (5.27)

Based on Feynman–Hellman theorem, we have

⟨q|sin2(klz)|q⟩ =
1

2
+

∂

∂v0
f(q̃, v0/4), (5.28)

in which we define q̃ = q/h̄kl, and v0 = V0/ER. Notice that in the tight-binding limit, we can

calculate the nearest-neighbor tunneling by J0 = [E(q = ±h̄kl) − E(q = 0)]/4, so the correction of

J0 is given by

J̃0(nx, ny) = J0 +
1

8

ω2
r0

ω2
r

Enx,ny

[
∂

∂v0
f(q̃ = 0, v0/4) − ∂

∂v0
f(q̃ = ±1, v0/4)

]
, (5.29)

where J0 ≈ (4/
√
π)E

1/4
R V

3/4
0 exp

[
−2
√
V0/ER

]
. As depicted in Fig. 5.5(a), one can suppress the

correction of J0 by increasing the total radial trapping frequency ωr, or lowering the temperature.

With respect to the cavity mode we used to mediate one-axis twisting interaction, and this

cavity mode has the finite beam waist wc. Notice that since the 1D lattice is also injected into the

cavity, it’s reasonable to assume wc ≈ wl. In this case we can estimate the differential AC-Stark

shifts by

η̃n(nx, ny) = ηn

∫
dxdy exp

(
− 2r2

w2
c

)
[ϕnx(x)ϕny(y)]2, (5.30)
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where

ϕm(x) =
1√

2mm!

(
Mωr

πh̄

)1/4

e−Mωrx2/2h̄Hm

(√
Mωr

h̄
x

)
. (5.31)

Using the following identity of Hermite polynomials,∫
dx e−2α2x2

[Hm(x)]2 = 2m−1/2α−(2m+1)(1 − 2α2)mΓ

(
m+

1

2

)
2F1

(
−m,−m;

1

2
−m;

α2

2α2 − 1

)
,

(5.32)

where 2F1(a, b; c;x) is hypergeometric function, we get

η̃n(nx, ny) = ηnh(nx)h(ny), (5.33)

where

h(m) =
1√
2π

1

m!
α−(2m+1)(1 − 2α2)mΓ

(
m+

1

2

)
2F1

(
−m,−m;

1

2
−m;

α2

2α2 − 1

)
, (5.34)

α =

√
1

2
+

h̄

Mωrw2
c

. (5.35)

As depicted in Fig. 5.5(b), one can suppress the the differential AC-Stark shifts by increasing

the total radial trapping frequency ωr, or lowering the temperature. Finally, we calculate the

inhomogeneties in the OAT interaction strength [Fig. 5.5(c)] combining the corrections in tunneling

rates and differential AC Stark shifts.

Tight-binding approximation

Our protocol in the main text works in relatively shallow lattices. However, all the discussions

above were based on the tight-binding approximation which neglects the next nearest neighbor and

higher order tunneling processes. It’s therefore important to check the validity of the tight-binding

approximation for typical lattice depths in our protocol. We denote the tunneling rate between site

n and site n+m in the ground band as J0,m/h̄, which can be calculated by

J0,m
ER

= −1

2

∫ 1

−1
dq̃ e−imπq̃f(q̃, v0/4). (5.36)

in which the function f related to characteristic Mathieu value is defined in the previous section.

For 87Rb atoms and 532nm lattice, we have |J0,2|/|J0,1|= 0.038 at V0 = 6.0ER, and |J0,2|/|J0,1|=
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Figure 5.6: (a,b) Beyond tight-binding model effects on the dispersive atom-light coupling ηn
for lattice depth (a) V0 = 6.0ER and (b) V0 = 2.9ER. (c) Modifications on the achievable spin
squeezing by cavity induced WS couplings for 4 particles in a 4-site lattice. The orange curve shows
the spin squeezing generated by pure one-axis twisting (OAT) model, the blue curve includes the

effect of correction terms ˆ̃Hcorr with η|α|2= 0.2Mgal/h̄, while the yellow curve includes the effect
of cavity loss with Γz/χ = 0.1.

0.105 at V0 = 2.9ER. This result shows that the nearest neighbor tunneling rate is dominant

for the typical lattice depths in our discussion, which agrees with the key idea of tight-binding

approximation. And we can also numerically check that the cancellation of inhomogeneities under

magic lattice condition is still approximately valid even if we include all the possible tunneling

processes [see Fig. 5.6(a,b)].

Hopping between Wannier-Stark states

In the main text, we consider an approximation that all the atoms are frozen in the Wannier-

Stark (WS) states from Eq. (1) to Eq. (2), assuming the cavity-induced AC Stark shifts are smaller

than the energy gap Mgal between WS states. Here we provide the justifications of this approxi-

mation in detail. We denote the corrections to Eq. (2) in the main text by Ĥcorr, which takes the

following form,

Ĥcorr =
∑
nσ

(Mgaln)ĉ†nσ ĉnσ +
∑

m̸=n,σ

Knm
σ â†âĉ†nσ ĉmσ, (5.37)

where Knm
σ with m ̸= n is given by

Knm
σ =

1

2

h̄|G0|2
∆σ

CJn−m

(
4J0
Mgal

sin(φ/2)

)
cos

(
(n+m)φ

2
+

(n−m)π

2

)
. (5.38)
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If we replace the cavity field operator â by its steady state value α, Ĥcorr takes the similar

form as the single-particle Hamiltonian in lattice oriented in vertical direction, but here we are

considering hopping between WS states instead of Wannier states. And our approximation is

mainly based on the fact that hopping between WS states is highly suppressed by the large energy

gap Mgal. To estimate the suppression, we would like to neglect the terms beyond nearest neighbor

hopping, as these terms will eventually be suppressed by the Bessel function Jn−m, and then we

also replace the inhomogeneous Knm
σ by its peak value K. If we initialize an atom at the WS state

|ϕn=0⟩, the probability in find this atom at WS state |ϕn⟩ is given by

Pn(t) = Jn

[
4K|α|2
Mgal

∣∣∣∣ sin(Mgalt

2h̄

)∣∣∣∣]2. (5.39)

Average over the fast frequency scale Mgal/h̄, we can estimate the probability in WS state |ϕn=1⟩

by P 1 ≈ 2K2|α|4/(Mgal)
2. For 87Rb atoms and 532nm lattice, if we choose the magic lattice

condition V0 = 6.0ER, and set the cavity-induced AC Stark shift η|α|2= 0.2Mgal/h̄ (assuming

G0
↑ = G0

↓ and ∆↑ = −∆↓ to estimate K), we have P 1 ≈ 0.5%. And this is why we can assume all

the atoms are frozen in the initial WS states.

One can also step further to analyze the quantum fluctuations of cavity field a in Hcorr. If we

add Hcorr back to Eq. (2) in the main text, and then adiabatically eliminate the cavity field based

on section S2, the corrections to Eq. (3) in the main text would be

ˆ̃Hcorr =
∑
nσ

(Mgaln)ĉ†nσ ĉnσ +
∑

m̸=n,σ

Knm
σ |α|2ĉ†nσ ĉmσ +

′∑
nmpq

∑
σσ′

Knm
σ Kpq

σ′ |α|2
∆̃c

(ĉ†nσ ĉmσ)(ĉ†pσ′ ĉqσ′),

(5.40)

where
∑′

nmpq means neglecting the terms with n = m and p = q. Similar to the discussions above,

the terms violate the energy conservation are highly suppressed by the large energy gap Mgal.

And one may only need to consider the effect of some resonant terms like (ĉ†n+1,σ ĉnσ)(ĉ†p−1,σ′ ĉpσ′),

which play a role similar to dephasing because there are no spin flip processes in these correction

terms. As depicted in Fig. 5.6(c), we compare the spin squeezing achieved in the ideal one-axis

twisting model (see Eq. (3) in the main text) with exact diagonalization of the full Hamiltonian

(add back ˆ̃Hcorr) for 4 particles in a 4-site lattice with magic lattice condition. The effect of all
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these corrections turns out to be negligible for the spin squeezing generation, as it is much smaller

than the effect of collective dephasing with Γz/χ = 0.1 due to cavity loss.

5.2.8 Supplemental Materials: Analytic results of OAT model with time reversal

Here we would like to discuss the analytic results of OAT model with time reversal under dif-

ferent sources of dissipation and experimental imperfection in state preparation and interrogation.

Cavity loss

We already include cavity loss in the derivation of Eq. (5.23). Now we discuss the effect of

cavity loss in our scheme for quantum-enhanced gravimetry. For simplicity, we focus on pure OAT

interaction with homogeneous couplings, which can be achieved with the magic lattice condition

and spin echo pulses. In this case the effective master equation takes the following form,

d

dt
ρ̂ = −i[χŜzŜz, ρ̂] + Γz

[
Ŝzρ̂Ŝz − 1

2
{ŜzŜz, ρ̂}

]
, (5.41)

where

χ =
η2|α|2∆̃c

∆̃2
c + κ2/4

, Γz =
κ

∆̃c

χ =
η2|α|2κ

∆̃2
c + κ2/4

. (5.42)

Similar to Ref. [366], it is convenient to expand the density matrix in the collective spin basis

|S,m⟩⟨S, n|,

ρ̂ =
∑
mn

ρmn|S,m⟩⟨S, n|, (5.43)

and Eq. (5.41) becomes

d

dt
ρmn =

[
− iχ(m2 − n2) − Γz

2
(m− n)2

]
ρmn. (5.44)

First, we calculate the quantum noise for phase measurement σp = (∆Sy/S)ϕ→0. Starting

from the initial state |Sx = N/2⟩, we let the system evolve on OAT interaction for time t0, then

accumulate a phase in the rotation about y axis, ˆ̃Rϕ
y = e−iϕŜy

, and finally perform time reversal on

the OAT interaction part. The twisting echo above leads to the following density matrix,

ρmn(2t0)|ϕ→0= ρmn(0) exp
[
− (m− n)2Γzt0

]
, (5.45)
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where ρmn(0) = cmc
∗
n with

cm =
1

2S

√
(2S)!

(S +m)! (S −m)!
. (5.46)

So we have

(∆Sy)2ϕ→0 = Tr[ŜyŜyρ̂ϕ→0] =
1

2

[
S

(
S +

1

2

)
− S

(
S − 1

2

)
e−4Γzt0

]
≈ S

2

(
1 + 4SΓzt0

)
,

(5.47)

in which the approximation is valid if Γzt0 ≪ 1 and S ≫ 1. Here we also used the fact that

⟨Ŝy⟩ϕ→0 = 0.

Then, we calculate the amplification factor G = (∂ϕ⟨Ŝy⟩/S)ϕ→0. It’s convenient to rewrite

Eq. (5.41) using the Lindblad superoperator Lχ, ∂tρ̂ = Lχ(ρ̂). Notice that ⟨Ŝy⟩ϕ→0 = 0, for small

ϕ we have

⟨Ŝy⟩ = Tr

[
ŜyeL−χt0

(
e−iϕŜy

eLχt0(ρ̂)eiϕŜ
y
)]

≈ iϕ

{
Tr

[
ŜyeL−χt0

(
eLχt0(ρ̂)Ŝy

)]
− Tr

[
ŜyeL−χt0

(
ŜyeLχt0(ρ̂)

)]}
,

(5.48)

This yields

(∂ϕ⟨Ŝy⟩)ϕ→0 = S(2S − 1) sin(χt0) cos2S−2(χt0) cosh(Γzt0)e
−3Γzt0/2. (5.49)

The metrological gain ξ−2 = 1/[N(∆ϕ)2] can be calculated based on Eq. (5.47) and Eq. (5.49) as:

ξ2 ≈ 1 + 2NΓzt0
(Nχt0)2

+
1

N
+

1

2
(χt0)

2. (5.50)

Spontaneous emission

Here we discuss the effect of spontaneous emission on our gravimetry protocol focusing again

on the pure OAT model with homogeneous couplings, which leads single-particle decoherence in

contrast to the collective dephasing described in the previous subsection. Single-particle decoher-

ence mechanisms for atoms off-resonantly coupled to excited states include spin flip or dephasing

processes emerging from Raman or Rayleigh scattering into free space respectively, which effec-

tively transfer the atomic spin states outside the collective Dicke manifold. These processes can be
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described by the following master equation acting on the spin degrees of freedom,

d

dt
ρ̂ = −i

[χ
2

∑
j<k

σ̂zj σ̂
z
k, ρ̂
]

+ γ+
∑
j

[
σ̂+j ρ̂σ̂

−
j − 1

2
{σ̂−j σ̂+j , ρ̂}

]

+ γ−
∑
j

[
σ̂−j ρ̂σ̂

+
j − 1

2
{σ̂+j σ̂−j , ρ̂}

]
+
γz
4

∑
j

[
σ̂zj ρ̂σ̂

z
j − ρ̂

]
.

(5.51)

The analytic solution of Eq. (5.51) has been reported in Ref. [367] by summing over all possible

quantum trajectories. Here we present an alternative way by solving Heisenberg equations of motion

to all order. Let’s first focus on the terms that commute with the Hamiltonian, we have

d

dt
⟨σ̂z1⟩ = −(γ+ + γ−)⟨σ̂z1⟩ + (γ+ − γ−) ⇒ ⟨σ̂z1⟩ =

γ+ − γ−
γ+ + γ−

[
1 − e−(γ++γ−)t

]
, (5.52)

d

dt
⟨σ̂z1σ̂z2⟩ = −2(γ+ + γ−)⟨σ̂z1σ̂z2⟩ + 2(γ+ − γ−)⟨σ̂z1⟩ ⇒ ⟨σ̂z1σ̂z2⟩ = ⟨σ̂z1⟩2, (5.53)

d

dt
⟨σ̂+1 σ̂−2 ⟩ = −2Γ⟨σ̂+1 σ̂−2 ⟩ ⇒ ⟨σ̂+1 σ̂−2 ⟩ =

1

4
e−2Γt, (5.54)

where Γ = (γ+ + γ− + γz)/2, and we consider the initial state as |Sx = N/2⟩. Then we consider

⟨σ̂+1 ⟩ and the higher order correlators generated in the Heisenberg equations of motion,

d

dt



⟨σ̂+
1 ⟩

⟨σ̂+
1 σ̂z

2⟩

⟨σ̂+
1 σ̂z

2 σ̂
z
3⟩

...

⟨σ̂+
1 σ̂z

2 · · · σ̂z
N ⟩


=



−Γ iχ(N − 1) 0 0 · · · 0 0

J −Γ− Γr iχ(N − 2) 0 · · · 0 0

0 2J −Γ− 2Γr iχ(N − 3) · · · 0 0

...
...

...
...

...
...

0 0 0 0 · · · (N − 1)J −Γ− (N − 1)Γr





⟨σ̂+
1 ⟩

⟨σ̂+
1 σ̂z

2⟩

⟨σ̂+
1 σ̂z

2 σ̂
z
3⟩

...

⟨σ̂+
1 σ̂z

2 · · · σ̂z
N ⟩


,

(5.55)

where we define J = γ+−γ− + iχ, and Γr = γ+ +γ−. We can solve the differential equations above

via a trial solution of the form,

⟨σ̂+1 ⟩ =
1

2
[f(t)]N−1e−Γt, ⟨σ̂+1 σ̂z2⟩ =

1

2
[f(t)]N−2 f

′(t)

iχ
e−Γt,

⟨σ̂+1 σ̂z2σ̂z3⟩ =
1

2
[f(t)]N−3

(
f ′(t)

iχ

)2

e−Γt, · · · , ⟨σ̂+1 σ̂z2 · · · σ̂zN ⟩ =
1

2

(
f ′(t)

iχ

)N−1

e−Γt.

(5.56)

This trial solution simplifies the coupled differential equations above into a single equation of the

form,

f ′′(t) + Γrf
′(t) − iχJf(t) = 0. (5.57)
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For an initial state as |Sx = N/2⟩, the initial condition for the differential equation is f(0) = 1,

f ′(0) = 0. A similar analysis can also be applied to ⟨σ̂+1 σ̂+2 ⟩ as follows,

d

dt



⟨σ̂+
1 σ̂+

2 ⟩

⟨σ̂+
1 σ̂+

2 σ̂z
3⟩

...

⟨σ̂+
1 σ̂+

2 σ̂z
3 · · · σ̂z

N ⟩


=



−2Γ 2iχ(N − 2) 0 0 · · · 0 0

J ′ −Γ− Γr 2iχ(N − 3) 0 · · · 0 0

...
...

...
...

...
...

0 0 0 0 · · · (N − 2)J ′ −Γ− (N − 2)Γr





⟨σ̂+
1 σ̂+

2 ⟩

⟨σ̂+
1 σ̂+

2 σ̂z
3⟩

...

⟨σ̂+
1 σ̂+

2 σ̂z
3 · · · σ̂z

N ⟩


,

(5.58)

where we define J ′ = γ+ − γ− + 2iχ. Using the following trial solution,

⟨σ̂+1 σ̂+2 ⟩ =
1

4
[g(t)]N−2e−2Γt, ⟨σ̂+1 σ̂+2 σ̂z3⟩ =

1

4
[g(t)]N−3 g

′(t)

2iχ
e−2Γt

⟨σ̂+1 σ̂+2 σ̂z3σ̂z4⟩ =
1

4
[g(t)]N−4

(
g′(t)

2iχ

)2

e−2Γt, · · · , ⟨σ̂+1 σ̂+2 σ̂z3 · · · σ̂zN ⟩ =
1

4

(
g′(t)

2iχ

)N−2

e−2Γt,

(5.59)

we simplify the coupled differential equations above to a single one in the following form,

g′′(t) + Γrg
′(t) − 2iχJ ′g(t) = 0. (5.60)

For the initial state |Sx = N/2⟩, the initial condition for the differential equation is g(0) = 1,

g′(0) = 0.

After introducing the analytic solutions for the master equation Eq. (5.51), now we apply

them to the twisting echo protocol. First, we calculate the quantum noise for phase measurement

σp = (∆Sy/S)ϕ→0. Notice that ⟨Ŝy⟩ϕ→0 = 0, we have

(∆Sy)2ϕ→0 = ⟨ŜyŜy⟩ϕ→0 =
N

4
+
N(N − 1)

2
Re
[
⟨σ̂+1 σ̂−2 ⟩ − ⟨σ̂+1 σ̂+2 ⟩

]
, (5.61)

so we need to calculate ⟨σ̂+1 σ̂−2 ⟩ and ⟨σ̂+1 σ̂+2 ⟩ in the case of ϕ = 0. It’s easy to observe Eq. (5.54)

that the dynamics of ⟨σ̂+1 σ̂−2 ⟩ does not depend on χ. The solution is given by

⟨σ̂+1 σ̂−2 ⟩t=2t0 =
1

4
e−4Γt0 . (5.62)

As for ⟨σ̂+1 σ̂+2 ⟩, since we focus on the case with balanced spin flip rates, γ+ = γ− ≡ γr, we can

rewrite Eq. (5.60) into the following form,

g′′(t) + 2γrg
′(t) + 4χ2g(t) = 0, (5.63)
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and applying the initial condition g(0) = 1, g′(0) = 0 leads to

g(t0) =

[
cosh(νt0) +

γr
ν

sinh(νt0)

]
e−γrt0 , g′(t0) =

ν2 − γ2r
ν

sinh(νt0)e
−γrt0 , (5.64)

where ν = γr
√

1 − 4χ2/γ2r . For the time reversal of OAT interaction (χ → −χ), we can apply a

modified version of trial solution as follows,

⟨σ̂+1 σ̂+2 ⟩ =
1

4
e−2Γt0 [g̃(t)]N−2e−2Γt, ⟨σ̂+1 σ̂+2 σ̂z3⟩ =

1

4
e−2Γt0 [g̃(t)]N−3 g̃′(t)

2i(−χ)
e−2Γt, · · · , (5.65)

in which g̃(t) still satisfying the differential equation Eq. (5.63), with initial condition g̃(0) = g(t0)

and g̃′(0) = −g′(t0). So we get

g̃(t0) =

[
1 − γ2r

ν2
+
γ2r
ν2

cosh(2νt0) +
γr
ν

sinh(2νt0)

]
e−2γrt0 , (5.66)

which leads to

⟨σ̂+1 σ̂+2 ⟩t=2t0 =
1

4
e−4Γt0 [g̃(t0)]

N−2 ≈ 1

4
e−4Γt0

[
1 − 16

3
(N − 2)γrχ

2t30

]
, (5.67)

in which the approximation is valid if γrt0 ≪ 1. So we have

(∆Sy)2ϕ→0 ≈
N

4

[
1 +

8

3
(Nχ)2γrt

3
0

]
. (5.68)

Then, we calculate the amplification factor G = (∂ϕ⟨Ŝy⟩/S)ϕ→0. Similarly we can rewrite

Eq. (5.57) into the following form,

f ′′(t) + 2γrf
′(t) + χ2f(t) = 0. (5.69)

and then apply the initial condition f(0) = 1, f ′(0) = 0 to calculate f(t0) and f ′(t0). The next

step is to apply the rotation about y axis, ˆ̃Rϕ
y = e−iϕŜy

, which leads to

⟨( ˆ̃Rϕ
y )†σ̂+1

ˆ̃Rϕ
y ⟩ = ⟨σ̂+1 ⟩t=t0 cosϕ,

⟨( ˆ̃Rϕ
y )†σ̂+1 σ̂

z
2

ˆ̃Rϕ
y ⟩ = ⟨σ̂+1 σ̂z2⟩t=t0 cosϕ− 2

(
⟨σ̂+1 σ̂−2 ⟩t=t0 + ⟨σ̂+1 σ̂+2 ⟩t=t0

)
cosϕ sinϕ,

(5.70)

where we use the fact that ⟨σ̂y1⟩t=t0 = ⟨σ̂z1⟩t=t0 = ⟨σ̂x1 σ̂z2⟩t=t0 = ⟨σ̂x1 σ̂y2⟩t=t0 = 0. Then we apply a

modified version of trial solution, similar to Eq. (5.65), to take account of the time reversal of OAT
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interaction. And we can similarly define f̃(t) still satisfying Eq. (5.69), with the following initial

condition for small ϕ limit,

f̃(0) ≈ f(t0), f̃ ′(0) ≈ −
[
f ′(t0) − iχϕ

(
1 − (N − 2)χ2t20

)
e−Γt0

]
, (5.71)

which leads to

Re[f̃(t0)] ≈ 1 − 4

3
γrχ

2t30, Im[f̃(t0)] ≈ ϕ
(

1 − (N − 2)χ2t20

)
(χt0)e

−Γt0e−γrt0 . (5.72)

So we have

(∂ϕ⟨Ŝy⟩)ϕ→0 ≈
N(N − 1)

2
Re[f̃(t0)]

N−2Im[f̃(t0)]e
−2Γt0 ≈ N(N − 1)

2
(χt0)e

−4γrt0e−3γzt0/2. (5.73)

And the metrological gain ξ−2 = 1/[N(∆ϕ)2] can be calculated based on Eq. (5.68) and Eq. (5.73),

ξ2 ≈ 1 + (8γr + 3γz)t0
(Nχt0)2

+
8

3
γrt0. (5.74)

Joint effects of cavity loss and spontaneous emission

Now we discuss the joint effects of cavity loss and spontaneous emission, and we can show that

optimal sensitivity of gravimetry only depends on the atom number N and single atom cooperativity

C = 4|G0|2/κγ. Here, G0 relates to G0
↑,↓ defined in the main text up to Clebsch-Gordan coefficients,

κ is the cavity decay rate, and γ is the spontaneous emission rate of the relevant electronic state

coupled to the cavity. The dipole matrix element in |G0|2 and γ will eventually cancel in such

a way that C only depends on the details of the cavity. In our case, it is convenient to rewrite

C in terms of the parameters in the effective master equation in previous subsections. Notice

that we can express Γ = γr + γz/2 defined in the previous subsection by Γ ∝ γ|G0
↑,↓|2|α|2/∆2

↑,↓,

and the photon-mediated interaction strength χ,Γz [see Eq. (5.42)] by χ ∝ |G0
↑,↓|4|α|2/∆2

↑,↓∆̃c and

Γz ∝ |G0
↑,↓|4|α|2κ/∆2

↑,↓∆̃
2
c , when ∆̃c ≫ κ as the case considered here. In this limit we can express

the single atom cooperativity C as

C = AC ′, C ′ =
χ2

ΓzΓ
. (5.75)

Here, A is a multiplicative constant set by appropriate Clebsch-Gordan coefficients. Based on

the discussions above, if we increase ∆̃c, the effect of cavity loss decreases, while the effect of
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spontaneous emission increases. So we can consider ∆̃c as the tuning parameter for the relative

strength of cavity loss and spontaneous emission. For convenience, we also define d ≡ Γz/χ in the

calculations below.

In the following, we discuss different cases that depend whether spin flip processes are allowed

or not. Here it’s convenient to define the spin flip probability Pf by γr = PfΓ. Consider NΓz ≫ γz,

based on Eq. (5.50) and Eq. (5.74), the metrological gain ξ−2 = 1/[N(∆ϕ)2] can be calculated as

follows,

ξ2 ≈ 1 + 2NΓzt0
(Nχt0)2

+
8

3
γrt0. (5.76)

Furthermore if we assume NΓzt0 > 1 to reach optimal metrological gain, we can minimize the last

two terms in Eq. (5.76), which leads to ξ2opt =
√

64Pf/3NC ′ at (χt0)opt =
√

3C ′d2/4NPf . This

assumption is valid if (4Pf/3C
′N)1/4 ≪ d ≪ 1, and the optimal metrological gain is independent

of the choice of d in this regime. This result agrees with the calculation in Ref. [358]. Therefore, if

the spin flip processes are allowed, the optimal sensitivity of gravimetry would be ∆g/g ∝ N−3/4.

In the case of Pf = 0, the metrological gain ξ−2 now becomes

ξ2 ≈ 1 + (2NΓz + 3γz)t0
(Nχt0)2

+
1

N
+

1

2
(χt0)

2. (5.77)

Based on Eq. (5.75), we can first minimize the sum 2NΓz + 3γz by (2NΓz + 3γz)min = 4χ
√

3N/C ′.

This minimum can be reached by choosing d =
√

3/NC ′. Similarly we assume 2NΓzt0+3γzt0 > 1 to

reach optimal metrological gain, so the minimization of Eq. (5.77) leads to ξ2opt = [1+3(6/C ′)1/3]/N ,

which can be achieved at (χt0)opt = (48/C ′)1/6/
√
N . This assumption is valid if C ′ ≪ 48. For large

C ′, the effect of decoherence would be negligible, and one will get the optimal metrological gain for

ideal implementation ξ2ideal = e/N [358], where e is the base of natural logarithm. Therefore, if the

spin flip processes are forbidden, the optimal sensitivity of gravimetry would be ∆g/g ∝ 1/N .

Inhomogeneous atom-light couplings

Now we discuss the inhomogeneous OAT interactions, which are described by the following

Hamiltonian,

Ĥ =
∑
nm

χnmŜ
z
nŜ

z
m, (5.78)
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where χnm = χmn. Obviously we find (∆Sy)2ϕ→0 = N/4, which is not affected by the inhomo-

geneities. So we only need to focus on the calculation of (∂ϕ⟨Ŝy⟩)ϕ→0. Notice that

(∂ϕ⟨Ŝy⟩)ϕ→0 = −i⟨x̃|[Ŝy, Û †ŜyÛ ]|x̃⟩

=
i

4

∑
jk

[
⟨x̃|[σ̂+j , Û †σ̂+k Û ]|x̃⟩ − ⟨x̃|[σ̂−j , Û †σ̂+k Û ]|x̃⟩

− ⟨x̃|[σ̂+j , Û †σ̂−k Û ]|x̃⟩ + ⟨x̃|[σ̂−j , Û †σ̂−k Û ]|x̃⟩
]
,

(5.79)

where |x̃⟩ is a shorthand notation for the state |Sx = N/2⟩, and Û = exp
[
−it∑nm χnmŜ

z
nŜ

z
m

]
is

the time evolution operator of inhomogeneous OAT interactions. Here we elaborate the calculation

of the first term ⟨x̃|[σ̂+j , U †σ̂+k U ]|x̃⟩. Using the fact that the |x̃⟩ state can be expressed in the

following form,

|x̃⟩ =
1√
2N

∑
σ1,···,σN=±1

|σ1, · · · , σN ⟩, (5.80)

where σj = 1/−1 means the j-th atom in |↑⟩/|↓⟩ state, we have

σ̂+k Û |x̃⟩ =
1√
2N

×

∑
σ1,···,σk−1,

σk+1,···,σN=±1

exp

[
− i

t

4

(k)∑
mn

χmnσmσn − i
t

4
χkk + i

t

2

(k)∑
m

χmkσm

]
|σ1, · · · , σk = +1, · · · , σN ⟩,

Û σ̂−j |x̃⟩ =
1√
2N

×

∑
σ1,···,σj−1,

σj+1,···,σN=±1

exp

[
− i

t

4

(j)∑
mn

χmnσmσn − i
t

4
χjj + i

t

2

(j)∑
m

χmjσm

]
|σ1, · · · , σj = −1, · · · , σN ⟩,

Û σ̂+j |x̃⟩ =
1√
2N

×

∑
σ1,···,σj−1,

σj+1,···,σN=±1

exp

[
− i

t

4

(j)∑
mn

χmnσmσn − i
t

4
χjj − i

t

2

(j)∑
m

χmjσm

]
|σ1, · · · , σj = +1, · · · , σN ⟩,

σ̂−k Û |x̃⟩ =
1√
2N

×

∑
σ1,···,σk−1,

σk+1,···,σN=±1

exp

[
− i

t

4

(k)∑
mn

χmnσmσn − i
t

4
χkk − i

t

2

(k)∑
m

χmkσm

]
|σ1, · · · , σk = −1, · · · , σN ⟩,

(5.81)
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where
∑(k)

m means summation without the term m = k. Based on Eq. (5.81), we get (assuming

j ̸= k)

⟨x̃|[σ̂+j , Û †σ̂+k Û ]|x̃⟩ = ⟨x̃|σ̂+j Û †σ̂+k Û |x̃⟩ − ⟨x̃|Û †σ̂+k Û σ̂
+
j |x̃⟩

=
1

4
e−itχjk

(j,k)∏
l

cos(χklt) −
1

4
eitχjk

(j,k)∏
l

cos(χklt)

= − i

2
sin(χjkt)

(j,k)∏
l

cos(χklt).

(5.82)

It is easy to check that ⟨x̃|[σ̂+j , Û †σ̂+k Û ]|x̃⟩ = 0 for j = k. Similar analysis can also apply to the

other three terms based on Eq. (5.81) and finally arrive to the following expression:

(∂ϕ⟨Ŝy⟩)ϕ→0 =
1

2

∑
j<k

sin(χjkt)

[ (j,k)∏
l

cos(χjlt) +

(j,k)∏
l

cos(χklt)

]
. (5.83)

For the times at which squeezing takes place, to an excellent approximation χjkt0 ≪ 1 and there-

fore (∂ϕ⟨Ŝy⟩)ϕ→0 ∼ ∑
j<k χjkt0. If the average is carried out over the full lattice array, we have

(∂ϕ⟨Ŝy⟩)ϕ→0 ∼ 1
2N(N − 1)χt0, and therefore inhomogeneities only give small higher order correc-

tions. However, for applications such as measurements of short-range forces, that require the atoms

to be placed at local region of the lattice, then in this situation inhomogeneities does not average

out in a single realization and can give rise to important systematic errors that will need to be

accounted for. In this situation, operating with homogeneous couplings by satisfying the magic

lattice condition (5.24) can provide an important measurement advantage.

Single-particle dephasing during interrogation time

As pointed out by Ref. [17], single-particle dephasing imposes severe restrictions when operat-

ing with entangled states given their fragility to it. Here we estimate the longest interrogation time

at which our protocol can still give a quantum advantage over uncorrelated states when the system

is subjected to single-particle dephasing at a rate γ̃z. To simplify the analysis, instead of direct

calculation of the twisting echo, we consider a spin squeezed state generated by OAT Hamiltonian.

The master equation for interrogation takes the following form,

d

dt
ρ̂ = i

[
δ̃

2

∑
j

σ̂zj , ρ̂

]
+
γ̃z
4

∑
j

[
σ̂zj ρ̂σ̂

z
j − ρ̂

]
(5.84)
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where δ̃ = (ωR−ωMW −Mgalr/h̄)× 2mR in our case, and the system evolves under the Eq. (5.84)

to accumulate a phase ϕ = δ̃τ , where τ is the interrogation time. The measurement uncertainty on

the accumulated phase ϕ is given by

∆ϕ =
∆Sy

|∂ϕ⟨Ŝy⟩|

∣∣∣∣
ϕ→0

. (5.85)

Therefore, the corresponding sensitivity for gravity measurements, ∆g/g, is given by

∆g

g
=

∆ϕ

g|∂gϕ|

√
τ

T
=

∆ϕ

ωg

√
τT

, (5.86)

where ωg = 2MgalrmR/h̄, and T is the total averaging time.

The Heisenberg equation of motion that follow from Eq. (5.84) are the following

d

dt
⟨σ̂+1 ⟩ = (−iδ̃ − γ̃z/2)⟨σ̂+1 ⟩,
d

dt
⟨σ̂+1 σ̂−2 ⟩ = −γ̃z⟨σ̂+1 σ̂−2 ⟩,

d

dt
⟨σ̂+1 σ̂+2 ⟩ = (−2iδ̃ − γ̃z)⟨σ̂+1 σ̂+2 ⟩.

(5.87)

For the spin coherent state along x direction, the initial condition for interrogation would be

⟨σ̂+1 ⟩t=0 = 1/2, ⟨σ̂+1 σ̂−2 ⟩t=0 = 1/4, and ⟨σ̂+1 σ̂+2 ⟩t=0 = 1/4, which gives

⟨Ŝy⟩ = N Im⟨σ̂+1 ⟩ = −N
2

e−γ̃zτ/2 sinϕ, (5.88)

⟨ŜyŜy⟩ =
N

4
+
N(N − 1)

2
Re

[
⟨σ̂+1 σ̂−2 ⟩ − ⟨σ̂+1 σ̂+2 ⟩

]
=
N

4
+
N(N − 1)

8
e−γ̃zτ [1 − cos(2ϕ)].

(5.89)

These results lead to the following sensitivity for gravity measurements

∆g

g
=

1

ωg

√
NT

√
eγ̃zτ

τ
. (5.90)

If instead a spin squeezed state generated by one-axis twisting Hamiltonian ĤOAT = χŜzŜz, fol-

lowed by an additional rotation about x direction by an angle φ, is injected, the initial conditions
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for phase interrogation are

⟨σ̂+1 ⟩t=0 =
1

2
cosN−1(χt0),

⟨σ̂+1 σ̂−2 ⟩t=0 =
1

8

(
1 + cosN−2(2χt0)

)
+

1

8
cos2 φ

(
1 − cosN−2(2χt0)

)
− 1

2
cosφ sinφ cosN−2(χt0) sin(χt0),

⟨σ̂+1 σ̂+2 ⟩t=0 =
1

8

(
1 + cosN−2(2χt0)

)
− 1

8
cos2 φ

(
1 − cosN−2(2χt0)

)
+

1

2
cosφ sinφ cosN−2(χt0) sin(χt0).

(5.91)

So we get

∂ϕ⟨Ŝy⟩ϕ→0 = −N
2

e−γ̃zτ/2 cosN−1(χt0), (5.92)

⟨ŜyŜy⟩ϕ→0 =
N

4
+N(N−1)e−γ̃zτ

[
1

8
cos2 φ

(
1−cosN−2(2χt0)

)
− 1

2
cosφ sinφ cosN−2(χt0) sin(χt0)

]
.

(5.93)

Using a Ramsey spin squeezing parameter defined as ξ2 = minφN(∆S⊥
φ )2/|⟨S⟩|2, after minimizing

with respect to rotation angle φ one can calculate the following sensitivity of this state for gravity

measurements,

∆g

g
≈ 1

ωg

√
NT

√
eγ̃zτ − 1 + ξ2

τ
. (5.94)

We will assume that 1/γ̃z can be set to be 100 s in state-of-the-art experiments. In this case

for unentangled initial states [see Eq. (5.90)], an interrogation time τ of the order of 10 s is possible,

if other technical noises do not impose further constraints at this time scale. For the spin squeezed

states [see Eq. (5.94)] with 20 dB metrological gain discussed in the main text, one would need

to reduce the interrogation time τ ∼ 1 s in order to retain the quantum advantage of the initial

state. In this case, our protocol not only reduces the required averaging time by a factor of 10, but

also increases the measurement bandwidth of time-varying signals by a factor of 10, compared to

unentangled lattice-based interferometers.
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5.3 Trade-offs between unitary and measurement induced spin squeezing in

cavity QED

This section is adapted from: Diego Barberena, Anjun Chu, James K. Thompson, Ana

Maria Rey, Trade-offs between unitary and measurement induced spin squeezing in cavity QED,

Physical Review Research, in press (2024) [arXiv:2309.15353]

5.3.1 Introduction

Within the field of quantum metrology [6,7], spin squeezed states [30,31] constitute a concrete

example of a quantum-enhanced resource with near-term practical applications. Their ability to

measure spin rotations with a sensitivity that surpasses the standard quantum limit (SQL), i.e.

the fundamental limit on phase estimation achievable with N uncorrelated particles, provides the

opportunity for practical metrological gain in e.g. atomic clocks [14,16], magnetometers [368–370]

and matter-wave interferometers [15, 371, 372]. Consequently, schemes for efficient spin squeezing

preparation [30,354,373], and experimental demonstrations in a variety of quantum platforms [14,

190,340–342,374–376] have attracted considerable attention.

Particularly promising strategies for the scalable generation of squeezing are provided by

QED cavities, where a shared light field mediates all-to-all interactions among atoms inside of a

cavity. When driven by an external laser, the resulting dispersive atomic response is nonlinear and

can be interpreted as an infinite range unitary Ising interaction called one-axis-twising (OAT) [30].

This is known to create spin squeezing [30] and this specific drive-induced mechanism is known

as cavity-feedback squeezing [14, 190, 376, 377]. On the other hand, after atoms and light interact,

photons leaking out of the cavity carry information about the atomic ensemble [340–342] that

can be accessed by continuously monitoring the output light via quantum non-demolition (QND)

measurements [353, 354, 378]. Adequate use of this information allows for the estimation of the

number of non-excited atoms, which decreases the noise of the state along the magnetization axis,

leading to spin squeezing.

https://doi.org/10.48550/arXiv.2309.15353
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Figure 5.7: (a) Schematic of the model: a three level system interacting with a QED cavity, which
is in turn driven by a laser. Output light is measured via homodyne detection with efficiency η.
Dashed gray lines represent effective processes (χ, γsc). (b) Effective single particle processes in
ground manifold. (c) OAT dynamics shears the noise distribution, causing it to get squeezed. (d)
Schematic of QND, showing pre (blue) and post (red) measurement distribution in the basis of Ŝz.

In this work we examine the possible advantages of combining both methods of preparation.

We employ a general analytical framework, analogous but distinct to the one presented in Ref. [379],

that considers the effects of finite detection efficiency, and include from the outset fundamental

sources of noise and dissipation. Our main result can be stated succinctly: when the detection

efficiency of the QND measurement is above 0.19, QND outperforms OAT. Otherwise, the choice

between QND or OAT depends on other experimentally relevant parameters such as spin flip

probability, cavity cooperativity, and atom number [see Fig. 5.10(c) for details]. We also perform

a systematic study of the area of the generated measurement noise, which negatively impacts the

dynamical range and utility of the state for quantum-enhanced phase measurements [380].

5.3.2 Model

We begin with a simple model that exemplifies the physics that we are trying to describe [358]

[see Fig. 5.7(a)]. We consider an ensemble of N atoms with three-levels: |↑⟩, |↓⟩ and |e⟩ in the

level configuration shown in Fig. 5.7(a). The excited state has a finite lifetime, and decays to |↑⟩

and |↓⟩ with rates γ1 and γ2, respectively. The atoms interact with a single mode of a single port
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QED cavity, with resonance frequency ωc, which is detuned from resonance with the |↑⟩ , |↓⟩ → |e⟩

transitions by ±∆, as illustrated in Fig. 5.7(a). The cavity is in turn driven close to resonance by

a laser tone at frequency ωd [detuning δ = ωd − ωc, see Fig. 5.7(a)] and input flux of |β|2 photons

per second, and.the transitions |↑⟩ , |↓⟩ ↔ |e⟩ are coupled to the cavity with single photon Rabi

frequencies 2g1 and 2g2, respectively. The light that comes out of the system can then be measured

in a homodyne configuration with detection efficiency η.

Under conditions (to be stated later) that permit adiabatic elimination of the excited state

|e⟩ and the cavity degree of freedom, the system evolves under an effective Ito stochastic differential

equation (see Ref. [69] and SOM),

dρ̂ =

{
− iχ

[
Ŝ2
z , ρ̂
]

+ ΓLŜz
(ρ̂) +

γsc
2

N∑
k=1

(1 − p)

2
Lσ̂k

z
(ρ̂) + p

[
Lσ̂k

+
(ρ̂) + Lσ̂k

−
(ρ̂)
]}

dt

+
√

Γη
(
Ŝzρ̂+ ρ̂Ŝz − 2 ⟨Ŝz⟩ ρ̂

)
dW,

(5.95)

where Ŝx,y,z =
∑N

k=1 σ̂
k
x,y,z/2 are collective spin operators acting on the ground manifold |↑⟩ , |↓⟩,

σ̂kx,y,z are Pauli matrices acting on atom k, and χ,Γ, γsc, p are effective parameters related to

experimental quantities (we will state their precise definition further on). Unitary dynamics

is described by the parameter χ. Incoherent evolution is expressed in terms of Lindbladians

LL̂(ρ̂) ≡ L̂†ρ̂L̂ − {L̂†L̂, ρ̂}/2, and includes collective dephasing (Γ) and single particle spin con-

serving [γsc(1 − p)] and spin changing (γscp) incoherent processes. The final line of Eq. (5.95)

incorporates continuous measurement of Ŝz via homodyne detection (in an appropriately chosen

quadrature) [69, 381] with efficiency η and includes a stochastic Wiener increment dW to model

the probabilistic nature of quantum measurements. The output of the measurements is a time-

dependent current i(t) ≡ dq/dt = 2
√

Γη ⟨Ŝz⟩ + dW/dt.

To unpack the content of Eq. (5.95) in detail, we consider an initial condition where all

atoms begin in the superposition |↑⟩ + |↓⟩, which is relevant to experimental implementations

and corresponds to a Bloch vector entirely polarized along the x direction, i.e. ⟨Ŝx⟩ = N/2.

Furthermore, to obtain a manageable set of equations we use a large N approximation, in which

the state remains gaussian, but relax these assumptions later. In this limit the Bloch vector
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remains polarized along x but relaxes due to γsc according to ⟨Ŝx⟩ = Ne−γsct/2/2. Fluctuations

perpendicular to the Bloch vector satisfy (see Ref. [36, 382] and SOM)

v̇zz = −ΓηNv2zz − 2γscp(vzz − 1)

v̇yy = 2χNvzye
−γsct/2 + ΓNe−γsct − ΓNηv2zy − γsc(vyy − 1)

v̇zy = χNe−γsct/2vzz − ΓηNvzzvzy −
γsc
2

(2p+ 1)vzy,

(5.96)

where vab = (2 ⟨{Ŝa, Ŝb}⟩− 4 ⟨Ŝa⟩ ⟨Ŝb⟩ )/N (for a, b = z, y) are (co)variances normalized to the spin

projection noise. The equation for vzz (∝ Ŝz variance) evolves under two competing effects: mea-

surements (ΓNη) reveal information about the magnetization and thus reduce vzz [see Fig. 5.7(d)].

On the other hand, spin flips (γscp) restore the variance to its initial uncorrelated value vzz = 1.

For vyy (Ŝy variance), single particle processes (γsc) also restore the variance to its uncorrelated

value, but measurement backaction (ΓN) instead increases the variance. Furthermore, coherent

interactions (χN) mix vyy with vzy and leave vzz untouched, reflecting the shearing dynamics char-

acteristic of OAT [see Fig. 5.7(c)] that leads to a noise distribution squeezed along an intermediate

direction in the Ŝz/Ŝy plane. Note that dW does not appear in these equations, indicating that

the dynamics they describe does not depend on the specific measurement outcomes.

Measurements do introduce small stochastic corrections to the orientation of the Bloch vector

that manifest as deflections in the yz plane. In a small time interval dt, these deflections satisfy

(see SOM)

dz = −γscp z dt+
√

ΓηNvzz dW

dy = (χNe−γsct/2z − γscy/2) dt+
√

ΓηNvzy dW,

(5.97)

where z = ⟨Ŝz⟩ /
√
N/4 and y = ⟨Ŝy⟩ /

√
N/4. The measured current evolves according to dq =

√
ΓNη z dt+dW and is connected to y and z through the common increment dW . To take advantage

of the measurement process these deflections need to be calculated accurately using i(t), since they

are different for each measurement realization. Neglecting this information leads to an average

state that is not squeezed in any directions.
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The absolute scale for time is set by γsc, which is the total scattering rate from the excited

state induced by the probe [see Fig. 5.7(b)]:

γsc =
γ1g

2
1|α|2

∆2
+
γ1g

2
2|α|2

∆2
+
γ2g

2
1|α|2

∆2
+
γ2g

2
2|α|2

∆2
, (5.98)

where |α|2= κ|β|2/(δ2∗ + κ2/4) is the number of circulating photons in the cavity, found by multi-

plying the incident photon number, |β|2 [See Fig. 1(a)], by the cavity buildup factor κ/(δ2∗ +κ2/4),

and δ∗ = δ − (g21 − g22)N/2∆ is the detuning of the drive with respect to the dressed cavity

mode (see SOM). The rest of effective parameters can be expressed in terms of γsc, d = 2δ∗/κ

and C = 4g21/(κγ1) = 4g22/(κγ2), the single particle cooperativity, which is a property of cavity

geometry:

χ =
Cγscd/2

1 + d2
, Γ =

Cγsc
1 + d2

, p =
2γ1γ2

(γ1 + γ2)2
≤ 1

2
. (5.99)

The spin flip probability p measures the relative importance of single particle spin changing pro-

cesses relative to spin conserving processes, both of which arise through virtual excitation of the

excited state and subsequent decay into the ground manifold [see Fig. 5.7(b)].

Cavity feedback squeezing arises when δ∗ ≫ κ. Then χ≫ Γ and OAT dominates until single

particle processes disrupt the generation of spin squeezing. QND measurements operate in the

opposite regime, with δ∗ = χ = 0 and Γ maximal. In the absence of γsc, the resulting evolution

continuously projects the system onto an Ŝz eigenstate, reducing the variance of Ŝz even beyond the

gaussian limit [see Fig. 5.7(d)]. However, the precise eigenstate onto which the system is projected is

stochastic and must be estimated accurately using the measurement record. Adiabatic elimination

gives rise to Eq. (5.95) when ∆ ≫ γ1,2, 2g1,2|α|, 2g1,2
√
N . These conditions guarantee that the

excited state is never appreciably populated and that the atom-cavity interaction is dispersive.

5.3.3 Analysis of spin squeezing

Equations (5.96) must be solved with initial conditions vzz(0) = vyy(0) = 1 and vzy(0) = 0.

Within the gaussian regime, the evolution generates a noise distribution on the yz plane in the form

of a ellipse whose axes have minimum (maximum) length vmin (vmax) (see SOM), and in terms of
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which we define

ξ2 = eγsctvmin, A = eγsct
√
vminvmax. (5.100)

The Wineland squeezing parameter ξ2 [74] quantifies the metrological enhancement of phase mea-

surements compared to uncorrelated atoms (SQL) and includes the effects of reduced contrast. The

state area A measures the size of the noise distribution, normalized to the length of the Bloch vector

squared. Under ideal evolution, (γsc = 0 and η = 1), A remains of order 1, but loss of information

leads to an area that can be substantially larger. An increase in A reduces the metrological utility

of the generated squeezing since it limits the range of phases that can be measured with some

degree of quantum enhancement [380].

Measurement limit: Here δ∗ = χ = 0 and Γ = Cγsc. Assuming that NCη ≫ 1, simple

analytic solutions can be written for the fluctuations and the estimator of ⟨Ŝz⟩ (see SOM). The

minimum-variance axis lies along z, giving rise to a Wineland parameter of

ξ2t = vzz =

√
2p

NCη
, (5.101)

within the timescale τ = (NCηp)−1/2/(2γsc), while vyy grows as 1 + NCγsct and vzy = 0. The

subscript t in ξ2t indicates that ξ2 has been optimized over time. ξ2 is depicted as a function of

s = γsct
√
NC/2 for different values of NC in Fig. 5.8(a). Waiting for a few τ times gets ξ2 closer

to ξ2t , but waiting for too long leads to uncontrolled growth of vyy and hence of state area. We

show this in Fig. 5.8(b), where we plot A vs. ξ2 parametrically as a function of time. The sharp

upward turn in the curve indicates that A is growing without any improvement in ξ2. Notice also

that there are plateaus of constant A = η−1/2, more visible at larger NC. In these plateaus spin

flips are not yet active, so the decrease in Ŝz variance is exactly compensated by the increase in Ŝy

variance.

Unitary limit: Here η = 0 and δ∗ ≫ κ. All the relevant equations are now linear and can be

solved exactly, but we consider the effects of γscp on ξ2 perturbatively. Assuming χNt ≫ 1, this

leads to (see Ref. [38] and SOM)

ξ2 ≈ 1

χ2N2t2
+

Γ/χ

χNt
+

2

3
γscpt. (5.102)
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Figure 5.8: (a) Squeezing (ξ2) as a function of time for various NC in the QND configuration. (b)
QND squeezing vs. state area (A) plotted parametrically with time as a parameter. Circles are
equally spaced in s intervals of size 0.2.

The first and second terms include the effects of interactions (χ) and collective dephasing (Γ),

respectively. The third term is due to spin flips and is the main obstruction for unitary spin

squeezing.

The behaviour of ξ2t (time optimized squeezing) with d depends on whether collective dephas-

ing (Γ) is active at the optimal squeezing time or not. If Γ is active, relevant for smaller values of

d, then ξ2t arises from the competition between the second and third terms in Eq. (5.102), leading

to ξ2t = ξ2t,δ
√

1 + 1/d2, where

ξ2t,δ =

√
32p

3NC
, (5.103)

is the best possible squeezing attainable in this region, obtained roughly at d ≥ 1. This leads

to a very broad minimum in ξ2t , depicted in Fig. 5.9(a) for various NC. This trend lasts until

d ≈ 1.7(CN/p)1/4, after which Γ is no longer active, and ξ2t now arises from the competition

between the first and third terms in Eq. (5.102). Further increase in d worsens ξ2t ∼ [pd/(NC)]2/3

(independent of κ) because interactions get smaller than the spin flip rate. The optimal squeezing

is thus given by Eq. (5.103).

While the region of minimum ξ2t is very broad in Fig. 5.9(a), the state area at each of these

points is distinct. We show this in Fig. 5.9(b), where ξ2t vs. A is plotted parametrically using

d = 2δ∗/κ as a parameter for various NC. The leftmost vertical sections of the curves indicate the

optimal ξ2t,δ, but the variation in A is quite dramatic. It is preferable to work at larger values of

d, potentially sacrificing a few dB of ξ2t in exchange for a substantially smaller area, as has been
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Figure 5.9: (a) Time optimized squeezing (ξ2t ) as a function of detuning in the OAT configuration
for various NC. (b) OAT squeezing vs. state area plotted parametrically with d as a parameter.
Each filled circle occurs at a value of d 10 times bigger than the previous one. (c) Squeezing
optimized over time as a function of d at fixed p = 0.4 and NC = 105 for different η. Solid red is
OAT (η = 0) and dashed black is pure QND (Ŝz variance).

pointed out before [376,377].

Measurement and unitary evolution: A natural question to ask is whether a combination of

measurements and unitary evolution, operating at some finite value of d for a given η ̸= 0, can

improve upon the two limiting situations described in the previous sections.

In Fig. 5.9(c) we show the results of simulating numerically Eqs. (5.96), where at any given

detuning d and η, squeezing has been optimized over time within a time window of s ∈ [0, 50] (this

accounts for the fact that at δ∗ = 0 the optimal is only reached asymptotically). From the curves

shown for different η, it can be observed that ξ2t is obtained either purely through measurement

at δ∗ = 0 or in the unitary limit, where the value of η is irrelevant. Thus, the decision to use

measurements vs. OAT is determined by the comparison between Eq. (5.101) and Eq. (5.103).

They are equal when the efficiency η has the value

ηc ≡
3

16
= 0.1875. (5.104)

When η > ηc, measurements are efficient enough that operating at δ∗ = 0 is preferable. When

η < ηc, unitary evolution will lead to a better ξ2t .
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Absence of spin flips: In cycling transitions p is very close to 0 and the analysis based on

Eqs. (5.96) is no longer applicable because the state evolves beyond the gaussian regime and gets

distorted, thus introducing corrections (typically called “finite-size” or “curvature” effects) that

limit the attainable spin squeezing. In the OAT setting (η = 0), this is remedied by solving

Eqs. (5.96) with p = 0 and adding an extra curvature term to the minimum variance [30,38,383],

ξ2 ≈ eγsct
(
eγsct + ΓNt

χ2N2t2
+
χ4N4t4

6N2

)
. (5.105)

A comparison with the analytical solution of Eq. (5.95) for p = 0 indicates that Eq. (5.105) captures

accurately the time optimized ξ2 (see SOM). Variations of N or C now have different effects on ξ2,

whereas previously they only appeared in the combination NC.

When p = 0, the time optimized ξ2t shows three distinct behaviours as a function of detun-

ing, depicted in Fig. 5.10(a). For d < 2.3N1/3, collective dephasing is active, competes with the

curvature term and leads to ξ2t ≈ 2N−2/5d−4/5 [383] and A = 1.76N1/5/d3/5. When 2.3N1/3 <

d < 0.4CN2/3, the optimal squeezing arises from unitary dynamics, leading to the well-known

OAT result ξ2t = 1.04N−2/3 [30] and A =
√

1.5, independent of d. For d > 0.4CN2/3, the ex-

ponential prefactors are the main obstruction to squeezing, and lead to ξ2t ≈ 6.8d2/(N2C2) and

A ≈ √
e. Furthermore, the existence of the OAT minimum imposes a restriction on the coopera-

tivity: C > 6N−1/3. Otherwise, the center region in Fig. 5.10(a) disappears.

As p is increased, the dependence of ξ2t on d will switch from the one shown in Fig. 5.10(a)

to the one depicted in Fig. 5.9(a). We can estimate this value of spin flip probability, which we

denote as pc1 , by equating the exact OAT result and Eq. (5.103):

pc1 =
0.1C

N1/3
. (5.106)

In the QND setup (d = 0) at p = 0, the system will approach a state with no Ŝz variance in a

timescale ∼ (Γη)−1, but squeezing will be limited by loss of contrast. This is shown in Fig. 5.10(b),

which is obtained by solving semi-analytically Eq. (5.95) (see SOM) for p = d = 0, N = 100 and

averaging ξ2 over different measurement trajectories. At the optimal time, the average squeezing
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is

ξ2t ≈ e

Nη

(
1 +

1

C

)
, (5.107)

calculated using the model depicted in Fig. 5.10(b) [dashed black, see SOM for derivation], which

captures reasonably well the time development of the average ξ2, though individual measurement

trajectories may reach better values of ξ2t when C ≳ 1 and η ≈ 1 [see Fig 5.10(b), shaded area].

Equating Eq. (5.107) and Eq. (5.101) indicates that this minimum can be reached when p < pc2 =

e2(C + 1)2/(2NCη).

5.3.4 Summary and conclusions

These results form a coherent picture, summarized in terms of a few key statements, and

shown schematically in Fig. 5.10(c) and (d).

• η > 0.1875: QND is better than OAT for any value of spin flip probability p.

• η < 0.1875: OAT dominates over QND for p close to 1/2. As p is reduced OAT sat-

urates to the curvature-limited ideal minimum, but QND continues to improve accord-

ing to Eq. (5.101). QND will outperform OAT when p < pc3 = 0.54Cη/N1/3 (ob-

tained by equating Eq. (5.101) and the squeezing at the ideal OAT minimum) as long

as η > 2.6(1+C−1)/N1/3 (obtained by equating Eq. (5.107) and the ideal OAT minimum).

Otherwise OAT ourperforms QND for all p (not depicted in Fig. 5.10).

In SOM we discuss how our results can indeed be used to set bounds on the amount of

squeezing achievable in experiments where our analysis applies [190,340–342,376,384]. Our results

should also apply to two tone QND schemes [385], which are more favourable for technical reasons

but don’t change fundamental scalings. Future research will involve the consequences of parking

the cavity closer to atomic resonance [36, 376], comparisons with time-reversal based unitary pro-

tocols [358, 359, 386, 387] and including more complicated unitary dynamics (e.g. twist-and-turn,

two-axis-twisting) [285,388,389] using the stochastic Schrödinger equation formalism. During com-
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Figure 5.10: (a) Time optimized spin squeezing ξ2t as a function of d when p = 0, η = 0, C = 102

and N = 106. (b) Time profile of ξ2 for two values of (η, C) averaged over measurement realizations.
Shaded areas indicate the dispersion of ξ2 values over different individual measurements. Dashed
black is an analytical model, with Γ = Cγsc. (c) Optimal spin squeezing for OAT and QND as a
function of p for different η. (d) Summary of results.
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pletion of this work we became aware of a related theory work examining the combination of OAT

and QND in the context of Bose-Einstein condensates [390].

5.3.5 Supplemental Materials: Effective evolution equation

Here we show how to obtain Eq. (5.95) starting from the fundamental atom-light interaction

inside a cavity. We consider N three-level atoms (levels |e⟩, |↓⟩, |↑⟩ with energies ωe, ω↓ and ω↑)

in the configuration shown in Fig. 5.7(a). The atoms interact with one cavity mode at frequency

ωc, with single photon Rabi frequencies 2g1 and 2g2 for the transitions |e⟩ ↔ |↑⟩ and |e⟩ ↔ |↓⟩,

respectively. The cavity has power decay linewidth κ, and the atoms spontaneously emit from

|e⟩ → |↑⟩ and from |e⟩ → |↓⟩ with rates γ1 and γ2, respectively. Furthermore, the cavity is

externally driven by a laser at frequency ωd (close to ωc) and with a flux of |β|2 photons per

second. The light escaping the cavity is then collected and subjected to homodyne detection with

overall efficiency η. The evolution of the combined atom-light system in the presence of all these

processes is described by the following stochastic differential equation

dρ̂ = −i
[
ωeN̂e + ω↑N̂↑ + ω↓N̂↓ + ωcâ

†â︸ ︷︷ ︸
Ĥfree

+ g1(âŜe↑ + h.c.) + g2(âŜe↓ + h.c.)︸ ︷︷ ︸
Ĥint

+ β
√
κ(âeiωdt + h.c.)︸ ︷︷ ︸

Ĥdrive

, ρ̂
]
dt+ κ

(
âρ̂â† − {â†â, ρ̂}

2

)
︸ ︷︷ ︸

photon leakage

dt

+ γ1

N∑
i=1

(
σ̂i↑e ρ̂ σ̂

i
e↑ −

{σ̂iee, ρ̂}
2

)
dt+ γ2

N∑
i=1

(
σ̂i↓e ρ̂ σ̂

i
e↓ −

{σ̂iee, ρ̂}
2

)
dt︸ ︷︷ ︸

spontaneous emission

+
√
κη
(
âe−iϕρ̂+ ρ̂â†eiϕ − ⟨âe−iϕ + â†eiϕ⟩ ρ̂

)
︸ ︷︷ ︸

homodyne detection

dW,

(5.108)

where ρ̂ is the density matrix of the atom-light system, σ̂iab = |a⟩⟨b|i (a, b = e, ↑, ↓) is a single particle

transition operator for atom i, Ŝab =
∑N

i=1 σ̂
i
ab is a collective transition operator, N̂a = Ŝaa is the

“number of atoms in level a” operator, â† (â) are bosonic creation (annihilation) operators for the

cavity mode and ϕ is the homodyne detection angle, which is an experimentally adjustable param-

eter. The first line describes coherent evolution under a Hamiltonian that consists of three parts:
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the free uncoupled evolution of atoms and cavity, the atom-light interaction (of Jaynes-Cummings

type), and the external laser drive. The second line describes the dissipative processes: photon

leakage and spontaneous emission from the excited state. The third line implements homodyne

detection [69,381], which is intimately tied to photon leakage since these photons are the ones that

are being measured.

Since the cavity is detuned from the |↓⟩ , |↑⟩ ↔ |e⟩ by an amount ±∆, the atom-light inter-

action becomes dispersive when |∆|≫ g1,2
√
N, g1,2

√
nphot, where nphot is the number of photons

inside the cavity. We implement this mathematically by means of a Schrieffer-Wolff transformation.

To be more precise, we define a dressed density matrix ρ̂d = eŴ ρ̂ e−Ŵ , where

Ŵ =
g1
∆

(â†Ŝ↑e − âŜe↑) +
g2
∆

(âŜe↓ − â†Ŝ↓e) (5.109)

is the Schrieffer-Wolff generator (note eŴ is unitary). The conditions |∆|≫ g1,2
√
N, g1,2

√
nphot

then mean that Ŵ acts perturbatively in the states of interest. The evolution equation for ρ̂d can

then be written down by considering the following relations:

eŴ (Ĥfree + Ĥint)e
−Ŵ = Ĥfree +

g21
∆

[â†â(Ŝ↑↑ − Ŝee) − Ŝe↑Ŝ↑e]

− g22
∆

[â†â(Ŝ↓↓ − Ŝee) − Ŝe↓Ŝ↓e] +O(g31,2/∆
2)

eŴ â e−Ŵ = â+
1

∆
(g2Ŝ↓e − g1Ŝ↑e) +O(g21,2/∆

2)

eŴ σ̂i↑e e
−Ŵ = σ̂i↑e +

g1â

∆
(σ̂i↑↑ − σ̂iee) −

g2â

∆
σ̂i↑↓ +O(g21,2/∆

2)

eŴ σ̂i↓e e
−Ŵ = σ̂i↑e +

g2â

∆
(σ̂i↓↓ − σ̂iee) +

g1â

∆
σ̂i↓↑ +O(g21,2/∆

2)

eŴ σ̂iee e
−Ŵ = σ̂iee +

1

∆

[
â(g1σ̂

i
e↑ − g2σ̂

i
e↓) + â†(g1σ̂

i
↑e − g2σ̂

i
↓e)
]

+
â†â

∆

[
g21(σ̂i↑↑ − σ̂iee) + g22(σ̂i↓↓ − σ̂iee) − g1g2(σ̂

i
↑↓ + σ̂i↓↑)

]
+

1

2∆

[
g1g2(σ̂

i
e↓Ŝ↑e + σ̂ie↑Ŝ↓e) − g21σ̂

i
e↑Ŝ↑e − g22σ̂

i
e↓Ŝ↓e + h.c.

]
+O(g31,2/∆

3)

(5.110)

We have expanded the transformed operators only to the order that will be relevant for the evolution

equation of ρ̂d. However, before writing this equation down we will point out a few features that will
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allow us to simplify the result. First, single particle decoherence will now include terms of the form

γ1,2g1σ̂
i
e↑âρ̂d/∆, γ1,2g2σ̂

i
e↓âρ̂d/∆ (and complex conjugates), which transfer atoms from the ground

manifold to the excited state. However, they oscillate at frequency ±∆ (due to Ĥfree) and can

thus be neglected since they will effectively contribute corrections of size γ21,2g
2/∆3 to the evolution

equation. These terms become relevant when ∆ ≤ γ in which case a more refined treatment is

required where both spontaneous emission and Ĥfree are included as the zeroth order term of a

dissipative Schrieffer-Wolff transformation. We do not attempt this since it is considerably more

challenging to implement from a technical standpoint and is outside our regime of interest anyway,

but this means that ∆ ≳ γ is another assumption of our treatment. After neglecting these terms,

the resulting equation will preserve the |↑⟩ , |↓⟩ manifold. In the dressed basis, all atoms are in the

ground states, and any admixture with |e⟩ is taken care of by the dressing, which allows us to get rid

of any term of the form σ̂i↑eρ̂, σ̂
i
↓eρ̂, σ̂

i
eeρ̂ (and their complex conjugates). All these simplifications

are generic after adiabatic elimination of |e⟩. However, in the specific case we are considering, there

is also a large energy difference between |↑⟩ and |↓⟩ of ±2∆. This means that terms of the form

σ̂i↑↓ρ̂dσ̂
i
↑↑, σ̂

i
↑↓ρ̂d (and similar), which arise due to interfering decay pathways, oscillate very fast and

can be neglected too. Taking all of this into consideration, the resulting equation for ρ̂d is

dρ̂d = −i
[
ωcâ

†â+ ω↓N̂↓ + ω↑N̂↑ +
(g21 − g22)

2∆
â†â N +

g21 + g22
2∆

â†â (Ŝ↑↑ − Ŝ↓↓)

+ β
√
κ(âeiωdt + h.c.), ρ̂d

]
dt

+
γ1g

2
1

∆2

N∑
i=1

(
σ̂i↑↑â ρ̂d â

†σ̂i↑↑ −
{â†â σ̂i↑↑, ρ̂d}

2

)
dt+

γ2g
2
2

∆2

N∑
i=1

(
σ̂i↓↓â ρ̂d â

†σ̂i↓↓ −
{â†â σ̂i↓↓, ρ̂d}

2

)
dt

+
γ1g

2
2

∆2

N∑
i=1

(
σ̂i↑↓â ρ̂d â

†σ̂i↓↑ −
{â†â σ̂i↓↓, ρ̂d}

2

)
dt+

γ2g
2
1

∆2

N∑
i=1

(
σ̂i↓↑â ρ̂d â

†σ̂i↑↓ −
{â†â σ̂i↑↑, ρ̂d}

2

)
dt

+ κ
(
âρ̂dâ

† − {â†â, ρ̂}
2

)
dt+

√
κη
(
âe−iϕρ̂d + ρ̂dâ

†eiϕ − ⟨âe−iϕ + â†eiϕ⟩ ρ̂d
)
dW.

(5.111)

Note that in the photon leakage, laser drive and homodyne detection terms, the leading order

contribution is zeroth order in g/∆. The single particle decoherence terms, which are O(g2/∆2),

describe off-resonant scattering of cavity light (hence the presence of the operators â and â†) and
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involve both spin flip and spin conserving processes. We also now define Ŝz = (Ŝ↑↑ − Ŝ↓↓)/2 and

N̂g = Ŝ↑↑ + Ŝ↓↓ for notational simplicity. Furthermore, since we are considering only the ground

manifold, we will now write σ̂i↑↑ + σ̂i↓↓ = 1.

The drive will establish a field inside the cavity that will depend on the drive-cavity detuning.

However, the frequency of the cavity now depends on the state of the atoms, through the â†â Ŝz

term, and will create an effective nonlinear atom-atom interaction. We take this into account

perturbatively by analyzing fluctuations about the cavity field that would be established at the

mean field level, taking into account that the average inversion is ⟨Ŝz⟩ = 0 for the initial conditions

we want to consider [and it will remain so, as per Eq. (5.111)]. We thus define the fluctuation

b̂ = â− αe−iωdt, where

α = − i
√
κβ

−iδ∗ + κ/2
, (5.112)

and δ∗ = ωd−ωc− (g21 − g22)N/(2∆). At this point it is convenient to move into the rotating frame

of the drive. In this frame, and in terms of the fluctuation field b̂, we approximately get

dρ̂d = −i
[
− δ∗b̂

†b̂+
(ω↓ + ω↑)

2
N̂g +

(
2∆ +

(g21 + g22)|α|2
∆

)
Ŝz +

(g21 + g22)(αb̂† + α∗b̂)Ŝz
∆

, ρ̂d

]
dt

+ κ
(
b̂ρ̂db̂

† − {b̂†b̂, ρ̂}
2

)
dt+

(γ1g
2
1 + γ2g

2
2)|α|2

2∆2

N∑
i=1

(
σ̂i↑↑ ρ̂d σ̂

i
↑↑ + σ̂i↓↓ ρ̂d σ̂

i
↓↓ − ρ̂d

)
dt

+
γ1g

2
2|α|2

∆2

N∑
i=1

(
σ̂i↑↓ ρ̂d σ̂

i
↓↑ −

{σ̂i↓↓, ρ̂d}
2

)
dt+

γ2g
2
1|α|2

∆2

N∑
i=1

(
σ̂i↓↑ ρ̂d σ̂

i
↑↓ −

{σ̂i↑↑, ρ̂d}
2

)
dt

+
√
κη
(
b̂e−iϕρ̂d + ρ̂db̂

†eiϕ − ⟨b̂e−iϕ + b̂†eiϕ⟩ ρ̂d
)
dW.

(5.113)

In the previous equation we have symmetrized the spin conserving single particle processes by

using the relation σ̂i↑↑ + σ̂i↓↓ = 1, kept only the leading order terms (in |α|) in the single particle

decoherence contributions, and we have neglected (g21 +g22)b̂†b̂ Ŝz/∆ in the Hamiltonian part, which

is a nonlinear fluctuation term. It amounts to assuming that the quantum fluctuations in b̂ that

arise because of Ŝz are smaller than |α|. We now adiabatically eliminate the cavity degree of

freedom. This can be done by means of a dissipative Schrieffer-Wolff transformation (since κ and



340

δ may be comparable now), but the fastest way to obtain the result is by doing the replacement

b̂→ − i(g
2
1 + g22)αŜz/∆

−iδ∗ + κ/2
, (5.114)

which is what a mean field treatment suggests will be the steady state intracavity field, on average.

This leads to

dρ̂d = −i
[(ω↓ + ω↑)

2
N̂g +

(
2∆ +

(g21 + g22)|β|2
∆

)
Ŝz +

((g21 + g22)|α|
∆

)2 δ∗ Ŝ
2
z

δ2∗ + (κ/2)2
, ρ̂d

]
dt

+
((g21 + g22)|α|

∆

)2 κ

δ2∗ + (κ/2)2

(
Ŝzρ̂dŜz −

{Ŝ2
z , ρ̂}
2

)
dt

+
γ1g

2
2|α|2

∆2

N∑
i=1

(
σ̂i↑↓ ρ̂d σ̂

i
↓↑ −

{σ̂i↓↓, ρ̂d}
2

)
dt+

γ2g
2
1|α|2

∆2

N∑
i=1

(
σ̂i↓↑ ρ̂d σ̂

i
↑↓ −

{σ̂i↑↑, ρ̂d}
2

)
dt

+
(γ1g

2
1 + γ2g

2
2)|α|2

2∆2

N∑
i=1

(
σ̂i↑↑ ρ̂d σ̂

i
↑↑ + σ̂i↓↓ ρ̂d σ̂

i
↓↓ − ρ̂d

)
dt

+

√((g21 + g22)|α|
∆

)2 κη

δ2∗ + (κ/2)2

(
Ŝzρ̂d + ρ̂dŜz − 2 ⟨Ŝz⟩ ρ̂d

)
dW.

(5.115)

At this point it is convenient to introduce the parameters

C =
4g21
κγ1

=
4g22
κγ2

γsc =
γ1g

2
1|α|2

∆2
+
γ1g

2
2|α|2

∆2
+
γ2g

2
1|α|2

∆2
+
γ2g

2
2|α|2

∆2
=

(γ1 + γ2)(g
2
1 + g22)|α|2

∆

p =
γ1g

2
2 + γ2g

2
1

(γ1 + γ2)(g21 + g22)
=

2γ1γ2
(γ1 + γ2)2

.

(5.116)

The cooperativity C is a property of cavity geometry. Its existence implies that g22/γ2 = g21/γ1 and

hence that the rates of the σ̂i↑↓ and σ̂i↓↑ processes are equal. The parameter γsc is the total scattering

rate of photons off the drive and is the sum of the rates of all single particle processes, and p is the

spin flip probability, which is defined as the ratio between the sum of the rates of the σ̂i↑↓ and σ̂i↓↑

processes and γsc. We have also made a specific choice of homodyne angle, ϕ = 2 arctan(2δ/κ)−π,

to guarantee maximum measurement strength. To simplify notation, we define

χ =
((g21 + g22)|α|

∆

)2 δ∗
δ2∗ + (κ/2)2

=
Cγscd/2

d2 + 1
, Γ =

((g21 + g22)|α|
∆

)2 κ

δ2∗ + (κ/2)2
=

Cγsc
1 + d2

,

(5.117)
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and we have decided to express the effective parameters χ and Γ in terms of C, γsc and d = 2δ∗/κ.

Omitting single particle rotation terms, we can thus express the evolution of the system in terms

of the effective equation

dρ̂d = −i
[
χŜ2

z , ρ̂d

]
dt+ Γ

(
Ŝzρ̂dŜz −

{Ŝ2
z , ρ̂}
2

)
dt+

γscp

2

N∑
i=1

(
σ̂i↑↓ ρ̂d σ̂

i
↓↑ + σ̂i↓↑ ρ̂d σ̂

i
↑↓ − ρ̂d

)
dt

+
γsc(1 − p)

2

N∑
i=1

(
σ̂i↑↑ ρ̂d σ̂

i
↑↑ + σ̂i↓↓ ρ̂d σ̂

i
↓↓ − ρ̂d

)
dt+

√
Γη
(
Ŝzρ̂d + ρ̂dŜz − 2 ⟨Ŝz⟩ ρ̂d

)
dW.

(5.118)

Equations (5.118) and (5.117) are the same as Eq. (5.95) and Eq. (5.99) in the main text once we

replace σ̂↑↓ = σ̂+, σ̂↓↑ = σ̂−, σ̂↑↑ = (1 + σ̂z)/2 and σ̂↓↓ = (1 − σ̂z)/2.

We also summarize here the assumptions that went into this derivation. First ∆ ≫ γ, g1,2
√
N,

g1,2|α| (|α|2 is the number of photons in the cavity) for the elimination of the the excited state. Then

|α|2≫ ⟨b̂†b̂⟩ to treat the resulting dispersive atom-light interaction perturbatively during adiabatic

elimination of the cavity. This translates into

(g21 + g22)

√
⟨Ŝ2

z ⟩
∆
√
δ2∗ + (κ/2)2

<
2(g21 + g22)

√
⟨Ŝ2

z ⟩
∆κ

≪ 1 → C

√
⟨Ŝ2

z ⟩ ≪
∆

(γ1 + γ2)/2
. (5.119)

We have considered the worst case scenario with δ∗ = 0 since this is relevant for QND measurements.

For the initial conditions we are considering, ⟨Ŝ2
z ⟩ ∼ N , so this assumption becomes NC ≪

∆
√
N/(γ1 + γ2). A violation of this condition indicates that quantum fluctuations are strong

enough that the relation between the adiabatically eliminated b̂ and Ŝz can no longer be captured

by the simple linear relation Eq. (5.114) and a nonlinear approximation is required [358].

5.3.6 Supplemental Materials: Large N equations for first and second order cor-

relators

Here we compute the evolution equations for relevant observables. We calculate things exactly

as much as possible, and apply approximations only in the end. The equations for linear observables

are obtained by multiplying Eq. (5.95) with the appropriate operator and tracing the result. First
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we do averages of Ŝx,y,z,

d ⟨Ŝx⟩ =
[
− χ ⟨{Ŝz, Ŝy}⟩ −

Γ

2
⟨Ŝx⟩ −

γsc
2

⟨Ŝx⟩
]
dt+

√
Γη
[
⟨{Ŝx, Ŝz}⟩ − 2 ⟨Ŝx⟩ ⟨Ŝz⟩

]
dW

d ⟨Ŝy⟩ =
[
χ ⟨{Ŝz, Ŝx}⟩ −

Γ

2
⟨Ŝy⟩ −

γsc
2

⟨Ŝy⟩
]
dt+

√
Γη
[
⟨{Ŝy, Ŝz}⟩ − 2 ⟨Ŝy⟩ ⟨Ŝz⟩

]
dW

d ⟨Ŝz⟩ = −γscp ⟨Ŝz⟩ dt+ 2
√

Γη
[
⟨Ŝ2

z ⟩ − ⟨Ŝz⟩ ⟨Ŝz⟩
]
dW,

(5.120)

where {} is the anticommutator. Relevant two-point correlators are

d ⟨Ŝ2
z ⟩ = −2γscp

[
⟨Ŝz⟩

2 − N

4

]
dt+ 2

√
Γη
[
⟨Ŝ3

z ⟩ − ⟨Ŝ2
z ⟩ ⟨Ŝz⟩

]
dW,

d ⟨{Ŝz, Ŝy}⟩ =
[
2χ ⟨{Ŝz, {Ŝz, Ŝx}}⟩ −

Γ

2
⟨{Ŝz, Ŝy}⟩ − γsc(p+ 1/2) ⟨{Ŝz, Ŝy}⟩

]
dt

+
√

Γη
[
⟨{Ŝz, {Ŝz, Ŝy}}⟩ − 2 ⟨{Ŝz, Ŝy}⟩ ⟨Ŝz⟩

]
dW

d ⟨Ŝ2
y⟩ =

[
χ ⟨{Ŝy, {Ŝz, Ŝx}}⟩ + Γ ⟨Ŝ2

x⟩ − Γ ⟨Ŝ2
y⟩ − γsc

(
⟨Ŝ2

y⟩ −N/4
)]
dt

+
√

Γη
[
⟨{Ŝz, Ŝ2

y}⟩ − 2 ⟨Ŝz⟩ ⟨Ŝ2
y⟩
]
dW

(5.121)

We can obtain exact equations for variances and covariances, keeping in mind the product rule

d(ab) = adb+ bda+ da db and the Ito rules dW 2 = dt, dtdW = dt2 = 0 to get the right stochastic

equations. Thus

dVar(Ŝz) =
[
− 4ΓηVar(Ŝz)2 − 2γscp

(
Var(Ŝz) − N

4

)]
dt

+ 2
√

Γη
[
⟨Ŝ3

z ⟩ − 3 ⟨Ŝ2
z ⟩ ⟨Ŝz⟩ + 2 ⟨Ŝz⟩3

]
dW

dCov =

(
χ

2

[
⟨{{Ŝx, Ŝz}, Ŝz}⟩ − 2 ⟨Ŝz⟩ ⟨{Ŝx, Ŝz}⟩

]
− 4ΓηVar(Ŝz) Cov

−
[Γ

2
+ γsc(p+ 1/2)

]
Cov

)
dt+

√
Γη

2

[
⟨{Ŝz, {Ŝy, Ŝz}}⟩ − 4 ⟨{Ŝz, Ŝy}⟩ ⟨Ŝz⟩

− 4 ⟨Ŝy⟩ ⟨Ŝ2
z ⟩ + 8 ⟨Ŝy⟩ ⟨Ŝz⟩2

]
dW

dVar(Ŝy) =

(
χ
[
⟨{Ŝy, {Ŝz, Ŝx}}⟩ − 2 ⟨Ŝy⟩ ⟨{Ŝz, Ŝx}⟩

]
+ Γ

[
⟨Ŝ2

x⟩ − Var(Ŝy)
]
− γsc

[
Var(Ŝy) −N/4

]
− 4ΓηCov2

)
dt+

√
Γη
[
⟨{Ŝ2

y , Ŝz}⟩ − 2 ⟨Ŝz⟩ ⟨Ŝ2
y⟩ − 2 ⟨Ŝy⟩ ⟨{Ŝy, Ŝz}⟩

+ 4 ⟨Ŝy⟩
2 ⟨Ŝz⟩

]
dW,

(5.122)
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where Var and Cov = ⟨{Ŝz, Ŝy}⟩ /2 − ⟨Ŝy⟩ ⟨Ŝz⟩ are short-hands for variance and the Y Z covari-

ance, respectively. We now begin with the large N approximation. To apply it, we define the

mean field equations of motion, obtained by replacing (⟨Ŝx⟩ , ⟨Ŝy⟩ , ⟨Ŝz⟩) → N(X,Y, Z)/2 and

(⟨Ŝ2
z ⟩ , ⟨{Ŝz, Ŝy}⟩ , ⟨{Ŝz, Ŝx}⟩) → N2(Z2, 2Y Z, 2XZ)/4 (factorization), where X,Y, Z are functions

of time. This results in

Ẋ = −χNY Z − γsc
2
X, Ẏ = χNXZ − γsc

2
Y, Ż = −γscpZ, (5.123)

where we have further neglected Γ ≪ ΓN , since it is of higher order in the 1/N expansion. By

keeping γsc we are implicitly assuming that γsc > Γ. This is not necessarily always the case, espe-

cially when the single particle cooperativity C ∼ 1. However, in all cases γsc is the obstruction to

squeezing, and so we will always keep it. The mean field equations, together with initial conditions

X(0) = 1, Y (0) = Z(0) = 0 result in X = e−γsct/2, Y = Z = 0. We define the deviations from mean

field (δŜx, δŜy, δŜz) = (Ŝx −Ne−γsct/2, Ŝy, Ŝz). In the large N limit, fluctuations and standard de-

viations are typically of size
√
N , so we further define [vzz, vzy, vyy] = 4[Var(Ŝz),Cov,Var(Ŝy)]/N

and (x̂, ŷ, ẑ) = 2(δŜx, δŜy, δŜz)/
√
N . Initially, all of these quantities are ∼ 1, so we expect that

this will remain so for some time. In terms of these definitions (but still working exactly),

d ⟨x̂⟩ =
[
− χ

√
N

2
⟨{ẑ, ŷ}⟩ − Γ

√
Ne−γsct/2

2
− Γ

2
⟨x̂⟩ − γsc

2
⟨x̂⟩
]
dt+

√
ΓNη

2

[
⟨{x̂, ẑ}⟩ − 2 ⟨x̂⟩ ⟨ẑ⟩

]
d ⟨ŷ⟩ =

[
χNe−γsct/2 ⟨ẑ⟩ − γsc

2
⟨ŷ⟩ +

χ
√
N

2
⟨{ẑ, x̂}⟩ − Γ

2
⟨ŷ⟩
]
dt+

√
ΓNη vzy dW

d ⟨ẑ⟩ = −γscp ⟨ẑ⟩ dt+
√

ΓNη vzz dW

(5.124)
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and

dvzz =
[
− ΓNηv2zz − 2γscp(vzz − 1)

]
dt+

√
ΓNη

[
⟨ẑ3⟩ − 3 ⟨ẑ2⟩ ⟨ẑ⟩ + 2 ⟨ẑ⟩3

]
dW

dvzy =

(
χNe−γsct/2vzz − ΓNvzzvzy − γsc(p+ 1/2)vzy +

χ
√
N

4

[
⟨{{x̂, ẑ}, ẑ}⟩ − 2 ⟨ẑ⟩ ⟨{x̂, ẑ}⟩

]
− Γ

2
vzy

)
dt+

√
ΓηN

4

[
⟨{ẑ, {ŷ, ẑ}}⟩ − 4 ⟨{ẑ, ŷ}⟩ ⟨ẑ⟩ − 4 ⟨ŷ⟩ ⟨ẑ2⟩ + 8 ⟨ŷ⟩ ⟨ẑ⟩2

]
dW

dvyy =

(
2χNe−γsct/2vzy + ΓNe−γsct − γsc(vyy − 1) − ΓNηv2zy

+
χ
√
N

2

[
⟨{ŷ, {ẑ, x̂}}⟩ − 2 ⟨ŷ⟩ ⟨{ẑ, x̂}⟩

]
+ 2Γ

√
Ne−γsct/2 ⟨x̂⟩ + Γ ⟨x̂⟩2 − Γ ⟨ŷ2⟩ + Γ ⟨ŷ⟩2

)
dt

+

√
ΓηN

2

[
⟨{ŷ2, ẑ}⟩ − 2 ⟨ẑ⟩ ⟨ŷ2⟩ − 2 ⟨ŷ⟩ ⟨{ŷ, ẑ}⟩ + 4 ⟨ŷ⟩2 ⟨ẑ⟩

]
dW

(5.125)

Note that ⟨ẑ⟩ and ⟨ŷ⟩ are not zero since they are fluctuations with respect to the mean field

values, not with respect to the true mean values of ẑ, ŷ. The reason for this choice is that it

makes the relative N -dependent size of various quantities more transparent. So far Eq. (5.124)

and Eq. (5.125) are exact given that they are just rewritings. In the large N limit we omit terms

∝ χ
√
N,Γ

√
N,Γ ≪ χN,ΓN . The resulting evolution equations preserve gaussianity. Since the

initial state is gaussian, the stochastic terms in the equations for vzz, vzy, vyy drop out. We are thus

led to

v̇zz = −ΓNηv2zz − 2γscp(vzz − 1), dz = −γscpzdt+
√

ΓNηvzz dW

v̇yz = χNe−γsct/2 − ΓNvzzvzy − γsc(p+ 1/2)vzy, dy =
(
χNe−γsct/2z − γsc

2
y
)
dt+

√
ΓNηvzy dW

v̇yy = 2χNe−γsct/2vzy + ΓNe−γsct − ΓNηv2zy − γsc(vyy − 1),

(5.126)

which are Eq. (5.96) and Eq. (5.97) in the main text, with z = ⟨ẑ⟩, y = ⟨ŷ⟩ and ⟨Ŝx⟩ = N
2 e

−γsct/2.

At the same time, the measurement record becomes

dq = 2
√

Γη ⟨Ŝz⟩ dt+ dW =
√

ΓNη z dt+ dW. (5.127)

5.3.7 Supplemental Materials: Spin squeezing from second order correlators

To leading order in N , the Bloch vector is pointing along +x with length Ne−γsct/2/2. We

thus need to consider fluctuations along the y and z directions. To be more specific, we define the
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matrix vzz vzy

vzy vyy

 . (5.128)

The minimal and maximal variances are, respectively, the smallest and largest eigenvalues of this

matrix:

vmin =
vzz + vyy

2
−
√

(vzz − vyy)2

4
+ v2zy, vmax =

vzz + vyy
2

+

√
(vzz − vyy)2

4
+ v2zy, (5.129)

and the normalization we have chosen for vzz, vyy, vzy ensures that a spin coherent state has vmin =

vmax = 1. The naive state area is defined as the square root of the product of minimum and

maximum variances. Thus

A∗ =
√
vmin × vmax =

√
vzzvyy − v2zy. (5.130)

The Wineland squeezing parameter and normalized state area are defined by dividing by the Bloch

vector length (normalized by N/2) squared. Thus

ξ2 =
vmin

e−γsct
= eγsct

[
vzz + vyy

2
−
√

(vzz − vyy)2

4
+ v2zy

]
, A =

√
vmin × vmax

e−γsct
= eγsct

√
vzzvyy − v2zy,

(5.131)

which is Eq. (5.100).

QND with spin flips

The equations for vzz and z are decoupled from the rest and can be solved exactly. We write

the solution in the limit that ΓNη ≫ γscp. Then

v̇zz = −ΓNη

(
vzz +

γscp

ΓNη
+ 2

√
γscp

2ΓNη

√
1 − γscp

2ΓNη

)(
vzz +

γscp

ΓNη
− 2

√
γscp

2ΓNη

√
1 − γscp

2ΓNη

)

≈ −ΓNη

(
vzz +

√
2
γscp

ΓNη

)(
vzz −

√
2γscp

ΓNη

)
.

(5.132)

We want to solve z in terms of the measurement record, which is the accessible information, not in

terms of dW so we rewrite its equation as dz = −(ΓηNvzz +γscp)z dt+
√

ΓNη vzz dq. The solutions

for vzz and z (with vzz(0) = 1 and z(0) = 0) are then

vzz(t) ≈ ϵ coth

(
ΓNηt+ 1

ΓNητ

)
, z(t) ≈

√
2γscp

sinh
[
ΓNηt+1
ΓNητ

] ∫ t

0
cosh

[
ΓNηs+ 1

ΓNητ

]
dq(s), (5.133)
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where ϵ =
√

2γscp/(ΓNη) and τ−1 = 2
√
γscΓNηγscp. Note that ΓNητ = 1/ϵ ≫ 1. When t ≪ τ

spin flips are not active, and the solutions reduce to vzz(t) = (1 + ΓNηt)−1 and z(t) ≈ √
ΓNη(1 +

ΓNηt)−1
∫ t
0 dq(s), which is the time-averaged measurement record, in accordance with well-known

results. In the opposite limit, when t ≳ τ and spin flips are active, we get vzz(t) ≈ √
ϵ(1 + 2e−2t/τ )

and z(t) ≈ √
2γscp

∫ t
0 e

−(t−s)/τ dq(s). Thus, the z deflection of the Bloch vector is determined by

the measurement record only within a time-window of size τ . Spin flips have effectively introduced

a memory time.

QND without spin flips

In this case (p = 0), Eq. (5.95) can be solved exactly (they can also be solved exactly for

nonzero χ, but this is not relevant for the QND analysis). The first thing to notice is that when

p = 0 the single particle dephasing terms commute (in the superoperator sense) with the rest of

the evolution equation. We thus define υ̂ = e−Ldephtρ̂, where Ldeph =
∑

i(Lσ̂i
↑↑

+ Lσ̂i
↓↓

) so that

Tr(Ŝzρ̂) = Tr(Ŝzυ̂), Tr(Ŝ2
z ρ̂) = Tr(Ŝ2

z υ̂), Tr(Ŝxρ̂) = e−γsct/2Tr(Ŝxυ̂), (5.134)

and υ̂ satisfies

dυ̂ = Γ
(
Ŝzυ̂Ŝz −

{Ŝ2
z , υ̂}
2

)
dt+

√
Γη
(
Ŝzυ̂ + υ̂Ŝz − 2 ⟨Ŝz⟩

)
dW, (5.135)

and the expectation value is now taken with respect to υ̂. The matrix element ⟨m|υ̂|n⟩ satisfies the

equation

d ⟨m|υ̂|n⟩ = −Γ(m− n)2

2
⟨m|υ̂|n⟩ dt+

√
Γη(m+n) ⟨m|υ̂|n⟩ dW −2

√
Γη ⟨Ŝz⟩ ⟨m|υ̂|n⟩ dW, (5.136)

which can be integrated taking into account the Ito rule. Up to m and n independent prefactors,

this yields

⟨m|υ̂|n⟩ (t) ∝ e−Γt(m−n)2/2 e−Γηt(n+m)2/2 e
√
Γη(m+n)(Wt+2

√
Γη

∫ t
0 ⟨Ŝz⟩ dt′)

× e−2
√
Γη

∫ t
0 ⟨Ŝz⟩ dWt′ e−(m2+n2)/N︸ ︷︷ ︸

⟨m|υ̂|n⟩(0)

,
(5.137)

where we have approximated ⟨m|υ̂|n⟩ (0) and Wt =
∫ t
0 dW is a Brownian process. With this explicit
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form for the matrix elements, we can calculate the relevant expectation values

C =

∞∑
n=−∞

e−2( 1
N
+Γηt)(n−n∗)2 , Tr(ρ̂Ŝx) =

Ne−
Γt
2
−γsct/2

2C
∞∑

n=−∞
e−2( 1

N
+Γηt)(n−n∗+ 1

2
)2

Tr(ρ̂Ŝz) =
1

C
∞∑

n=−∞
e−2( 1

N
+Γηt)(n−n∗)2n, Tr(ρ̂Ŝ2

z ) =
1

C
∞∑

n=−∞
e−2( 1

N
+Γηt)(n−n∗)2n2

(5.138)

where we have extended the sums to ±∞ and

n∗ ≡
√

Γη/2

Γηt+ 1/N

(
Wt + 2

√
Γη

∫ t

0
⟨Ŝz⟩ dt′

)
(5.139)

sets the average ⟨Ŝz⟩ and thus satisfies the consistency requirement

dn∗ =
Γη

Γηt+ 1
N

[∑∞
n=−∞ e−2( 1

N
+Γηt)(n−n∗)2(n− n∗)∑∞

n=−∞ e−2( 1
N
+Γηt)(n−n∗)2

]
dt+

√
Γη

2
(
Γηt+ 1

N

)dWt. (5.140)

Average quantities are then computed by first calculating them at fixed n∗ and then sampling n∗

from the previous stochastic equation. When Γη t ≲ 1, the arguments of the sums vary slowly and

can be approximated by integrals, leading to

ξ2 =
e(Γ+γsc)t

1 + ΓNηt
−→ Γtopt =

1

1 + γsc
Γ

=
C

C + 1
, ξ2opt =

e

ηN

(
1 +

1

C

)
. (5.141)

Note that Γtopt < 1 always so that Γηtopt satisfies Γηtopt ≲ 1 quite generically, except when η = 1

and C ≫ 1. Note also that squeezing is independent of n∗ within this approximation. Beyond this

regime, which is a situation relevant only when C ≳ 1 and η ≈ 1, the result does depend on n∗.

In this scenario, squeezing can reach ξ2 = 2/N on specific trajectories (when n∗ is even) but the

average over trajectories is still captured relatively well by Eq. (5.141).

OAT with spin flips

When η = 0, Eqs. (5.126) become linear. The solutions are y = z = 0 (no stochastic terms),
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vzz = 1, and

vzy =
χN

γscp
e−γsct(1 − e−γscpt)

vyy = 1 + ΓNte−γsct +
2(χN)2

(γscp)2
e−γsct(γscpt− 1 + e−γscpt)

A2 = e2γsct(vyyvzz − v2zy) = e2γsct
[
1 + ΓNte−γsct +

2(χN)2

(γscp)2

(
γscpt−

3

2
+ 2e−γscpt − e−2γscpt

2

)]
,

ξ2 =
eγsct(vzzvyy − v2zy)

1+vyy
2 +

√(
1−vyy

2

)2
+ v2zy

(5.142)

where A is the state area and ξ2 is the squeezing parameter.

We expect the optimal squeezing to occur for γsct≪ 1, so we calculate things perturbatively

in γsc. This leads to vzy ≈ χNt, vyy ≈ 1 + ΓNt+ χ2N2t2 ≈ χ2N2t2 (χNt≫ 1 since we would not

have any squeezing otherwise). Then

A2 ≈ vzzvyy − v2zy ≈ 1 + ΓNt+
2(χN)2γsct

3

3

ξ2 ≈ A2

vyy
=

1 + ΓNt

(χNt)2
+

2

3
γscpt,

(5.143)

in agreement with the exact treatment presented in Ref. [38]. For smaller detunings d = 2δ∗/κ, the

collective dephasing term is active and the minimum squeezing is the result of the minimization of

ξ2 ≈ Γ/χ

χNt
+

2

3
γscpt −→ ξ2t =

√
32p

3NC

√
1 +

1

d2
, γscp topt =

3ξ2t
4
, A2 = 2

√
6

√
NC

pd2(d2 + 1)

(5.144)

where we have used Eq. (5.99). This expression for squeezing leads to Eq. (5.103) for d ≳ 1. Note

also that, assuming p is not too small, the optimal time topt satisfies γsctopt ≪ 1, as promised. Even

if ξ2t is relatively insensitive to d at large values of d, the area A gets smaller at larger detunings,

which is desirable. As d is further increased, Γ gets small very quickly, and the optimal squeezing

is then the result of minimizing (assuming d≫ 1)

ξ2 =
1

(χNt)2
+

2

3
γscpt −→ ξ2t = 31/3

(
2pd

NC

)2/3

, γscptopt = ξ2t , A2 ≈ 3 (5.145)

Squeezing gets worse as d increases, but the area is reasonably small, so it’s a good idea to operate

at the crossover between these two regimes. We estimate the detuning value at which this happens
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by equating the expressions for squeezing on both sides. This leads to

dcrossover ≈
8

35/4

[
NC

2p

]1/4
≈ 2

[
NC

2p

]1/4
. (5.146)

OAT without spin flips

We set p = 0 here, but do not assume γsct ≪ 1 necessarily. Then vyy ≈ (χNt)2e−γsct,

(A∗)2 ≈ vyy × vmin and

vmin ≈ eγsct + ΓNt

(χNt)2
+

(χNt)4

6N2︸ ︷︷ ︸
curvature

, (5.147)

where the extra curvature term is a correction that is not captured by Eq. (5.126) since it is of

next to leading order in 1/N . Furthermore, loss of contrast due to γsc may be relevant. With

⟨Ŝx⟩ ≈ Ne−γsct/2, the squeezing parameter is

ξ2 = eγsct
[
eγsct + ΓNt

(χNt)2
+

(χNt)4

6N2

]
. (5.148)

In fact, for p = 0 and η = 0, Eq. (5.95) can be solved exactly since all the terms in the master

equation commute (in the superoperator sense). The exact values for relevant observables are

⟨Ŝ2
z ⟩ =

N

4

⟨{Ŝz, Ŝy}⟩ =
N(N − 1)

2
e−(γsc+Γ)t/2 cos(χt)N−2 sin(χt)

⟨Ŝ2
y⟩ =

N

4
(1 − e−γsct) +

N(N + 1)e−γsct

8
+
N(1 −N)e−γsct−2Γt

8
cos(2χt)N−2

⟨Ŝx⟩ = e−(γsc+Γ)t/2 cos(χt)N−1.

(5.149)

A comparison of squeezing (optimized over time) obtained with the exact equations and with

Eq. (5.148) is shown in Fig. 5.11(a) for N = 106 and C = 102. Since the agreement is almost

perfect, we keep working with Eq. (5.148) for analytical insight.

As Fig. 5.11(a) demonstrates, there can be three regimes. At smaller detunings (but still

d ≳ 1), collective dephasing is active but single particle dephasing is not. The optimal squeezing is

then limited by curvature and is obtained by minimizing

ξ2 ≈ Γ/χ

χNt
+

(χNt)4

6N
−→ ξ2t ≈ 5/2

31/5d4/5N2/5
, χNtopt =

(
3N2

d

)1/5

, A ≈

√
1 +

3.1N4/5

d6/5
. (5.150)
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Figure 5.11: (a) Comparison of time optimized ξ2t using the exact Eqs. (5.149) (solid red) and
approximate Eq. (5.148) (blue dots) as a function of detuning d = 2δ∗/κ for N = 106 and C = 102.
Boundary between different shaded regions are given by dc1 = 2.3N1/3 and dc2 = 0.4CN2/3. (b)
Area at the optimal squeezing time as a function of detuning. Red dots are calculated using
Eqs. (5.149), while black lines are the approximations for each of the regions described in section.

As the detuning is increased, both the optimal squeezing and the area improve. Eventually neither

collective nor single particle dephasing will be active but the optimal squeezing will still be limited

by curvature and is obtained by minimizing

ξ2 ≈ 1

(χNt)2
+

(χNt)4

6N2
−→ ξ2t ≈ 32/3/2

N2/3
, χNtopt = (3N2)1/6, A ≈

√
1.5. (5.151)

This is the well-known OAT result. Finally, at much larger detunings χ is small enough that

curvature is irrelevant, and the main limitations are now single particle dephasing and contrast

decay. Hence, the optimal squeezing is obtained by minimizing

ξ2 =
e2γsct

(χNt)2
−→ ξ2t ≈

(
ed

NC

)2

, γsctopt = 1, A ≈ √
e. (5.152)

We can estimate the detunings at which the behaviour of ξ2t changes by equating the values of the

time optimized squeezing on both sides of a crossover. We find these detuning values to be

dc1 =
55/4

313/12
N1/3 ≈ 2.3N1/3, dc2 =

31/3N2/3C

e
√

2
≈ 0.4CN2/3. (5.153)

For the unitary region in the middle to exist, we need dc1 < dc2, which requires that C ≳ 6N−1/3.

Otherwise, the two outer regions in Fig. merge, and the detuning optimized squeezing will be worse

than the OAT result. We show the results for the area A in Fig. 5.11(b).

5.3.8 Supplemental Materials: Examples of experimental system

We illustrate our results using examples that are related to the experimental system we

analyzed in the main text. We will consider various QND and OAT implementations, including



351

systems that are not directly described by Eq. (5.95).

• We first analyze Ref. [190], which implemented OAT using the same level scheme as the

one in Fig. 5.7. Using p = 1/2, C = 0.14 and N = 3 × 104 (see second column of page 2 of

Ref. [190], where single atom cooperativity is denoted η instead of C) leads to 14.5 dB of

noise reduction according to Eq. (5.103). The experiment reports 10(1) dB of inferred noise

reduction (after subtraction of detection noise, see first column of page 4) and is further

affected by fluctuations in intracavity probe power and dephasing effects that reduce the

effective radius of the Bloch vector. Importantly, a theoretical analysis of this experiment

was presented in Refs. [383] and Eq. (5.103) is the same as the equation reported in Ref. [383]

in the presence of free space scattering.

• Next, we analyze Ref. [342], which implemented QND measurements in the same level

structure as Ref. [190]. Using p = 1/2, η = 0.4 (quantum efficiency, see second column

of page 2 of Ref. [342]), and NC = 3100 × 3/2 (see second column of page 3, the factor

3/2 comes from discrepancies in the definition of our C and the effective cooperativity

in Ref. [342]) leads to a noise reduction of 16 dB, according to Eq. (5.101) and 18 dB if

η = 1, in agreement with the fundamental limit provided in Eq. (20) of the Supplementary

Material of Ref. [342]. Technical noise modifies this value to 9 dB of noise reduction and

3 dB of metrological enhancement when including contrast decay. As discussed in the

Supplementary Material of Ref. [342], in the ideal scenario the fundamental limit of 18 dB

is not modified by the presence of contrast decay.

• Now we analyze Ref. [341], which implemented QND measurements in the same level struc-

ture as Ref. [342], but in a configuration where the cavity is closer to resonance with |↑⟩

than |↓⟩ and with different hyperfine levels. The different choice of levels means that p→ 0.

In this QND setup, application of Eq. (5.107) with η = 0.37, N = 4 × 105 and C = 0.044

leads to 34 dB of squeezing (without taking into account inhomogeneous couplings of the

atoms to the cavity mode), compared to the 19 dB of noise reduction and 17 dB of metro-
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logical enhancement reported in Ref. [341]. As discussed in the cited reference, detection

noise (25 dB below quantum projection noise) and optomechanical effects were the main

technical limitations.

• Then we analyze Ref. [340], which does QND measurements in the same level structure and

also the same levels as Ref. [342]. Using p = 1/2, η = 0.16 and NC = (5× 105)(0.78)× 3/2

(the factor of 3/2 arises because of discrepancies with our definition of cooperativity) leads,

via Eq. (5.101), to 25 dB of squeezing. The cited reference reports 20 dB of metrological

enhancement and predicts 24 dB. The difference of this prediction with our calculation

originates from the broadening of the cavity linewidth due to free space scattering, a effect

that we neglect and that arises as a higher order term in the adiabatic elimination of the

excited state.

• Let us now study the QND implementation of Ref. [384]. The setup involves N ≈ 1011

atoms in a vapour cell but has no cavity. To establish a comparison to our results, we thus

need to find the quantity in Ref. [384] analogous to the collective cooperativity C in terms

of which we express all of our findings. In this case, it will be the optical depth of the

atomic sample. We relate both by using the definition of C

NC =
4g21N

κγ1
, (5.154)

and expressing γ1, g1 and κ in terms of atomic and cavity properties. We use the Wigner-

Weisskopf expression for γ1, Eq. (2) of Ref. [391] for g1 and express κ in terms of the cavity’s

free spectral range and finesse F :

γ1 =
ω3
1µ

2

3πh̄ϵ0c3
g1 =

(
µ2ω1

2h̄ϵ0Vm

)1/2

κ =
πc

LF , (5.155)

where ω1 is the transition frequency from |↑⟩ to |e⟩, µ is the transition dipole moment, L

is the cavity length and Vm is the mode volume. Putting all these together we have that

NC =
6c2

ω2
1

× N

Vm
× L×F . (5.156)
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The resonant scattering cross section is σ1 = 4πc2/ω2
1, and we can take N/Vm as a repre-

sentative of the average atom density n. Then

NC =
3

2π
nσ1LF =

3

2π
(OD)F , (5.157)

where OD = nσ1L is the optical depth of the sample. The experiment in Ref. [384] works at

an optical depth of 70 and uses no cavity, so we set F = 1. Using these numbers to obtain a

representative NC and using Eq. (5.101) with η = 1 (perfect detection efficiency) and p =

1/2 we obtain 7.5 dB as the limit to squeezing caused by scattering from the excited state.

The experiment predicts 5.3 dB and reports 3.4 dB of noise reduction (see last paragraph

of Supplementary Information of Ref. [384] for a detailed discussion), which are close to

our bound, and at the level where the differences in implementation (which may introduce

factors of order 1) matter. Furthermore, at these smaller values of “NC” contrast decay

modifies the attainable metrological enhancement by amounts that are sizeable relative to

the noise reduction, and Ref. [384] reports 2.3 dB of actual squeezing. Finally, Ref. [384]

uses an experimental scheme put forward in Ref. [392]. The Supplementary Material of

Ref. [392] also includes the limitations to squeezing coming from probe-induced scattering

and arrive at Eq. (S40). Up to factors of order 1 this is the same as Eq. (5.101) in our

paper, once the equivalence between NC, optical depth and finesse is made.

• The last experiment we analyze is the OAT implementation of Ref. [376]. In this experi-

ment, the cavity is parked close to resonance with one of the atomic transition frequencies

and p = 0, similar to Ref. [341], albeit using a different atom. For technical reasons,

the experiment employs a two-tone scheme for the generation of squeezing. The first,

blue-detuned, tone operates with an atom-drive detuning that falls in the center region of

Fig. 5.10(a) while the second, red-detuned, tone is in the left region of Fig. 5.10(a) (nu-

merical values for κ and the atom-drive detunings are given in sections I and V of the

Supplementary Material of Ref. [376]). For simplicity, we use the bound in the center re-

gion, which is the Kitagawa-Ueda limit. With N = 1000 this leads to 20 dB of squeezing,
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but inhomogeneous couplings of the atoms to the cavity mode lead to 16 dB, as discussed

in section VIII of the Supplementary Material of Ref. [376]. The experiment reports 16

dB of noise reduction, very much in agreement with the theoretical bound, and 12 dB of

inferred metrological enhancement.

These considerations are summarized in Table 5.1.

Table 5.1: Squeezing in experiments

Experiment Inferred noise reduction Estimation by Ref. Our prediction

Ref. [190] (OAT) 10 dB - 14.5 dB

Ref. [342] (QND) 9 dB 18 dB 18 dB

Ref. [341] (QND) 19 dB - 34 dB

Ref. [340] (QND) 20 dB 24 dB 25 dB

Ref. [384] (QND) 3.4 dB 5.3 dB 7.5 dB

Ref. [376] (OAT) 16 dB 16 dB 20 dB



Chapter 6

Conclusion and outlook

In this thesis I presented a summary of the theoretical research that I carried out during

my PhD that aims to advance the frontier of quantum simulation and metrology via contact and

photon-mediated interactions. In Chapter 3, I illustrated how Hamiltonian engineering can help

improve state-of-the-art optical lattice clocks and how the new records of sensitivity in clocks

are openning new possibilities for the exploration of general relativistic effects. In Chapter 4, I

presented studies which explored different types of emergent collective behaviors and dynamical

phases in interacting arrays. In Chapter 5, I studied entanglement generation via photon-mediated

interactions and measurements. Here I would like to conclude by providing an outlook of new

directions that we are currently working on or research avenues I would like to pursue in the future.

In Wannier-Stark optical lattice clocks, we have shown that the partially delocalized Wannier-

Stark wave functions allows Rabi drive in carrier transitions and Wannier-Stark sidebands. So far

we have mainly focused on the tunability of the carrier transition (see Chapter 3.2, 3.3). However,

more possibilities can emerge by interrogating the Wannier-Stark sidebands. For example, in an

ongoing research we are considering the simultaneous application of both a carrier and a sideband

drive, which we have shown can allow us to engineer the Su–Schrieffer–Heeger (SSH) model and the

Rice-Mele (RM) model. These models feature unique topological properties and the implementa-

tion of these models in an optical lattice clock setup can be very helpful for exploring topologically

protected quantum sensing. Another direction is the exploration of GR effects in optical lattice

clocks. Our research of the interplay between mass-energy equivalence and photon-mediated inter-
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actions is a just first step (see Chapter 3.4). Possible future research includes exploring the use of

interactions to magnify GR effects, the use of itinerant particles to understand the role of GR on

motional degrees of freedom, as well as GR corrections on many-body interactions.

With respect to the exploration of emergent collective behaviors and dynamical phases, we

have shown that all-to-all spin exchange interactions in cavity QED systems can lead to simulations

of the Bardeen–Cooper–Schrieffer (BCS) model, an iconic model for s-wave superconductors and

superfluids (see Chapter 4.5). An ongoing project in this direction is to extend this idea to simulate

topological superconductors with p-wave or d-wave pairings, and the competition of these super-

conducting orders in cavity QED systems. Another possibility is to engineer protocols to capable

to explore other missing ingredients in the current s-wave BCS simulation. So far we have only

focused on the dynamical phases and superconducting order parameters. Possible future research

includes the simulation of the BCS-BEC crossover and exploration of the different dynamical re-

laxation rates in the BCS and the BEC regimes, as well as the simulation of the Meissner effect

and flux quantization via additional spin-orbit coupling. Moreover, one can also consider the use of

multilevel atoms to explore new possibilities in cavity QED simulators. For example, in an ongoing

collaboration with Professor James Thompson’s group, we want to include a third level as an al-

ternative resource for the implementation of the analog of radio frequency spectroscopy intensively

studied in fermionic superfluids. The use of multilevel atoms can also enable the possibility to

simulate pair breaking terms and neutrino oscillations.

So far for entanglement generation, we have mainly focused on one-axis twisting (OAT)

interactions and quantum nondemolition measurement (QND). In cavity QED systems, there could

be many other possibilities for engineering an entangled state. One approach we are actively working

on is developing protocols for two-axis counter twisting (TACT) as well as n-body interactions. We

have already shown the capabilities for observing mean-field effects (see Ref. [41]), while there

is still plenty of room to explore optimal protocols for quantum enhancement. Another relevant

approach is to consider the use of dissipation for entanglement generation in steady states. In

principle this is a relatively robust way of entanglement generation against environmental noise.
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It would be very intriguing to explore feasible protocols for engineering the desire Lindblad jump

operators. Apart from entanglement generation, it is equally important to discuss the utility of

entanglement when applying to practical sensors such as optical clocks and atom interferometers.

We have shown the tunability of spatial inhomogeneities of an OAT-induced spin squeezed state

and its potential application in gravimetry and short-range force sensing (see Chapter 5.2). It

would be really fascinating to explore quantum enhanced protocol tailored for a practical sensing

task.

I hope that the theory I have developed in this thesis is continuously shedding light on all

these exciting directions in quantum simulation and metrology.
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Appendix A

Second order perturbation theory

We consider second order perturbation theory for Lindblad master equation as follows,

d

dt
ρ̂ = −i[Ĥ, ρ̂] +

∑
k

(
L̂kρ̂L̂

†
k −

1

2
(L̂†

kL̂kρ̂+ ρ̂L̂†
kL̂k)

)
, (A.1)

where Ĥ is the Hamiltonian of the system, and L̂k are jump operators representing decay processes

from excited to ground subspace. If we define the projection operator for ground and excited

subspace as P̂g and P̂e respectively, we can divide the Hamiltonian into four parts,

Ĥ = Ĥg + Ĥe + V̂+ + V̂−, (A.2)

where Ĥg = P̂gĤP̂g, Ĥe = P̂eĤP̂e, V̂+ = P̂eĤP̂g, and V̂− = P̂gĤP̂e. We assume V̂+ and V̂− are

perturbative couplings between the ground and excited subspace. Based on Ref. [339], the effective

master equation in ground subspace (ˆ̃ρ = P̂gρ̂P̂g) takes the following form,

d

dt
ˆ̃ρ = −i[Ĥeff , ˆ̃ρ] +

∑
k

(
L̂k,eff

ˆ̃ρL̂†
k,eff − 1

2
(L̂†

k,eff L̂k,eff
ˆ̃ρ+ ˆ̃ρL̂†

k,eff L̂k,eff)

)
, (A.3)

where the effective Hamiltonian and jump operators are given by

Ĥeff = −1

2
V̂−

(
Ĥ−1

NH + (Ĥ−1
NH)†

)
V̂+ + Ĥg, (A.4)

L̂k,eff = L̂kĤ
−1
NHV̂+, (A.5)

with ĤNH the non-Hermitian Hamiltonian,

ĤNH = Ĥe −
i

2

∑
k

L̂†
kL̂k. (A.6)
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In the formalism above, we typically assume the energy scale of Ĥg are negligible compared

to ĤNH, and we stay in an appropriate rotating frame such that the Hamiltonian Ĥ and jump

operators L̂k are time independent. This formalism can be generalized to the case when ground

state energy is comparable with ĤNH, and V̂+ and V̂− can have multiple frequency components.

We assume

Ĥg =
∑
l

ElP̂l, (A.7)

where P̂l = |l⟩⟨l| is the projection operator in the eigenbasis, and

V̂+(t) =
∑
f

v̂f+e
−iωf t =

∑
f,l

V̂
(f,l)
+ (t), (A.8)

where V̂
(f,l)
+ (t) = v̂f+P̂le

−iωf t. The effective Hamiltonian and jump operators now become [339]

Ĥeff = −1

2

[
V̂−(t)

∑
f,l

(
Ĥ

(f,l)
NH

)−1
V̂

(f,l)
+ (t) + H.c.

]
+ Ĥg, (A.9)

L̂k,eff = L̂k

∑
f,l

(
Ĥ

(f,l)
NH

)−1
V̂

(f,l)
+ (t), (A.10)

where

Ĥ
(f,l)
NH = ĤNH − El − h̄ωf . (A.11)

Derivation

Here we provide a simplified version of derivation for Eq. (A.4) and Eq. (A.5). Based on

Eq. (A.1), we have

d

dt
(P̂gρ̂P̂g) = −i[Ĥg, (P̂gρ̂P̂g)] − iV̂−(P̂eρ̂P̂g) + i(P̂gρ̂P̂e)V̂+ +

∑
k

L̂k(P̂eρ̂P̂e)L̂
†
k, (A.12)

d

dt
(P̂eρ̂P̂g) = −iĤNH(P̂eρ̂P̂g) − iV̂+(P̂gρ̂P̂g) + i(P̂eρ̂P̂g)Ĥg + i(P̂eρ̂P̂e)V̂+, (A.13)

d

dt
(P̂eρ̂P̂e) = −iĤNH(P̂eρ̂P̂e) + i(P̂eρ̂P̂e)Ĥ

†
NH − iV̂+(P̂gρ̂P̂e) + i(P̂eρ̂P̂g)V̂−. (A.14)

Now we assume P̂gρ̂P̂g, ĤNH ∼ O(1), V̂+, V̂− ∼ O(ϵ), we get P̂eρ̂P̂g ∼ O(ϵ), and P̂eρ̂P̂e ∼ O(ϵ2).

In Eq. (A.13), we only keep the terms up to O(ϵ), and we also assume the energy scale of Ĥg are
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negligible compared to ĤNH, which gives

d

dt
(P̂eρ̂P̂g) ≈ −iĤNH(P̂eρ̂P̂g) − iV̂+(P̂gρ̂P̂g). (A.15)

Assuming the time scale of excited state dynamics are much faster than ground state dynamics,

P̂eρ̂P̂g and P̂eρ̂P̂e should reach their steady states,

P̂eρ̂P̂g → −Ĥ−1
NHV̂+(P̂gρ̂P̂g), (A.16)

P̂eρ̂P̂e → Ĥ−1
NHV̂+(P̂gρ̂P̂g)V̂−(Ĥ−1

NH)†. (A.17)

Plug in Eq. (A.12), we get Eq. (A.4) and Eq. (A.5).



Appendix B

Spherical tensor operators

Spherical tensor operators are discussed in quantum mechanics textbooks such as Ref. [393].

Since the definition of spherical tensor operators and reduced matrix elements varies in different

textbooks, here we would like to provide a consistent definition for all the formula within this

thesis. Spherical tensor operators of rank k are defined as a set of 2k + 1 operators T̂
(k)
q with q =

−k,−k+1, · · · , k, which transform among themselves like angular momentum states |j = k,m = q⟩,

which gives

eiθĴ·nT̂ (k)
q e−iθĴ·n =

∑
q′

⟨k, q′|e−iθĴ·n|k, q⟩T̂ (k)
q′ . (B.1)

Taking infinitesimal rotation of θ, Eq. (B.1) is equivalent to the following commutation relations,

[Ĵz, T̂
(k)
q ] = qT̂ (k)

q , [Ĵ±, T̂
(k)
q ] =

√
(k ∓ q)(k ± q + 1)T̂

(k)
q±1. (B.2)

Based on the definition of spherical tensor operators, one can obtain the following properties:

• Wigner-Eckart theorem

⟨jm|T̂ (k)
q |j′m′⟩ = ⟨j′m′; kq|jm⟩⟨j||T̂

(k)||j′⟩√
2j + 1

, (B.3)

where ⟨j′m′; kq|jm⟩ is the Clebsch-Gordan coefficient, and ⟨j||T̂ (k)||j′⟩ is the reduced matrix

element following the normalization convention

|⟨j||T̂ (k)||j′⟩|2= (2j + 1)
∑
m′q

|⟨jm|T̂ (k)
q |j′m′⟩|2=

∑
mm′q

|⟨jm|T̂ (k)
q |j′m′⟩|2. (B.4)
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• Combination of spherical tensors

T̂ (k)
q =

∑
q1q2

⟨k1q1; k2q2|kq⟩Û (k1)
q1 V̂ (k2)

q2 , (B.5)

Û (k1)
q1 V̂ (k2)

q2 =
∑
kq

⟨k1q1; k2q2|kq⟩T̂ (k)
q , (B.6)

which take the same form as the rules of addition of angular momentum.

Here we list two properties of the reduced matrix elements relevant in chapter 2,

• Conjugates of reduced matrix elements

⟨j′||T̂ (k)||j⟩ = (−1)j
′−j⟨j||T̂ (k)||j′⟩∗. (B.7)

• Relation for combination of spherical tensors

⟨j||T̂ (k)||j′⟩ = (−1)k+j+j′
√

2k + 1
∑
j′′

k1 k2 k

j′ j j′′

 ⟨j||Û (k1)||j′′⟩⟨j′′||V̂ (k2)||j′⟩, (B.8)

where the curly bracket marks the Wigner-6j symbol.

Conversion to Cartesian tensor operators

First we focus on rank-1 Cartesian tensor operators (vector operators). A vector operator V̂

is rotated like a classical vector,

eiθĴ·nV̂e−iθĴ·n =
∑
j

Rij V̂j , (B.9)

where Rij is the classical rotation matrix. Similarly, Eq. (B.9) is equivalent to the following com-

mutation relation,

[V̂i, Ĵj ] = iϵijkV̂k. (B.10)

Compared to Eq. (B.2), we can construct vector operators based on rank-1 spherical tensor opera-

tors,

V̂x =
−V̂ (1)

1 + V̂
(1)
−1√

2
, V̂y = i

V̂
(1)
1 + V̂

(1)
−1√

2
, V̂z = V̂

(1)
0 , (B.11)
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and the inverse formula,

V̂
(1)
1 = − V̂x + iV̂y√

2
, V̂

(1)
0 = V̂z, V̂

(1)
−1 =

V̂x − iV̂y√
2

. (B.12)

Then we focus on rank-2 Cartesian tensor operators constructed by T̂ij = ÛiV̂j , where Û and

V̂ are vector operators. Based on Eq. (B.6), T̂ij can be decomposed into scalar (rank-0 spherical

tensor), vector (rank-1 spherical tensor) and tensor (rank-2 spherical tensor) parts. Here we only

list the formula for relevant calculation in chapter 2,

T̂xx =
1

2

(
Û

(1)
1 V̂

(1)
1 +Û

(1)
−1 V̂

(1)
−1 −Û (1)

1 V̂
(1)
−1 −Û (1)

−1 V̂
(1)
1

)
= − 1√

3
T̂
(0)
0 − 1√

6
T̂
(2)
0 +

1

2
(T̂

(2)
2 +T̂

(2)
−2 ), (B.13)

T̂yy = −1

2

(
Û

(1)
1 V̂

(1)
1 +Û

(1)
−1 V̂

(1)
−1 +Û

(1)
1 V̂

(1)
−1 +Û

(1)
−1 V̂

(1)
1

)
= − 1√

3
T̂
(0)
0 − 1√

6
T̂
(2)
0 −1

2
(T̂

(2)
2 +T̂

(2)
−2 ), (B.14)

T̂zz = Û
(1)
0 V̂

(1)
0 = − 1√

3
T̂
(0)
0 +

√
2

3
T̂
(2)
0 , (B.15)

T̂xy =
i

2

(
− Û

(1)
1 V̂

(1)
1 + Û

(1)
−1 V̂

(1)
−1 − Û

(1)
1 V̂

(1)
−1 + Û

(1)
−1 V̂

(1)
1

)
= − i√

2
T̂
(1)
0 +

i

2
(−T̂ (2)

2 + T̂
(2)
−2 ), (B.16)

T̂yx =
i

2

(
− Û

(1)
1 V̂

(1)
1 + Û

(1)
−1 V̂

(1)
−1 + Û

(1)
1 V̂

(1)
−1 − Û

(1)
−1 V̂

(1)
1

)
=

i√
2
T̂
(1)
0 +

i

2
(−T̂ (2)

2 + T̂
(2)
−2 ). (B.17)

as well as their inverse formula,

T̂
(0)
0 = − 1√

3

(
Û

(1)
1 V̂

(1)
−1 + Û

(1)
0 V̂

(1)
0 + Û

(1)
−1 V̂

(1)
1

)
= − 1√

3
(T̂xx + T̂yy + T̂zz), (B.18)

T̂
(1)
0 =

1√
2

(
Û

(1)
1 V̂

(1)
−1 − Û

(1)
−1 V̂

(1)
1

)
=

i√
2

(T̂xy − T̂yx), (B.19)

T̂
(2)
0 =

1√
6

(
Û

(1)
1 V̂

(1)
−1 + 2Û

(1)
0 V̂

(1)
0 + Û

(1)
−1 V̂

(1)
1

)
=

1√
6

(2T̂zz − T̂xx − T̂yy). (B.20)

The other sets of formula can be obtained in a similar way.



Appendix C

Mathieu function

The discussion of Mathieu function can be found in most of the handbooks for mathematical

functions, e.g. Ref. [45]. Since it is closely related to the theory of optical lattice in this thesis, we

would like to provide a short review of Mathieu function. We consider the Mathieu’s differential

equation as follow,

d2ϕ

dξ2
+
(
λ− 2q cos(2ξ)

)
ϕ = 0. (C.1)

The eigenfunctions of this equation is denoted by Mathieu function meν(ξ, q) with eigenvalues

λ = λν(q), where ν can be any real numbers (the case with integer ν is treated separately). Here

we list the relevant properties of Mathieu function below:

meν(ξ + π, q) = eiπνmeν(ξ, q), (C.2)

me−ν(ξ, q) = meν(−ξ, q) =
(

meν(ξ, q)
)∗
, λν(q) = λ−ν(q), (C.3)∫ π

0
dξ |meν(ξ, q)|2= π. (C.4)

The real-valued Mathieu functions are the real and imaginary part of meν(ξ, q),

ceν(ξ, q) = Re
(

meν(ξ, q)
)
, seν(ξ, q) = Im

(
meν(ξ, q)

)
, (C.5)

where ceν(ξ, q) has even parity, and seν(ξ, q) has odd parity. For the special case that ν is an

integer, we have

mem(ξ, q) =
√

2 cem(ξ, q), λm(q) = am(q), m = 0, 1, 2, · · · , (C.6)
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me−m(ξ, q) = −
√

2i sem(ξ, q), λ−m(q) = bm(q), m = 1, 2, · · · . (C.7)

Here am(q) and bm(q) are the Mathieu characteristic values. The asymptotic expansion of the

Mathieu characteristic values at large q is given by

am(q), bm+1(q) ∼ −2q + 2(2m+ 1)
√
q − 1 + (2m+ 1)2

8
+O

(
1√
q

)
, (C.8)

bm+1(q) − am(q) =
24m+5

m!

(
2

π

)1/2

(
√
q)m+3/2e−4

√
q

[
1 +O

(
1√
q

)]
. (C.9)

We then consider the Fourier series of the Mathieu function. If we define meν(ξ, q) =

fν(ξ, q)eiνξ, we get fν(ξ, q) is a periodic function for ξ with period π. Therefore, the Fourier

series of meν(ξ, q) can be written as

meν(ξ, q) =
∞∑

m=−∞
cν2m(q)ei(ν+2m)ξ, (C.10)

with real coefficients cν2m(q). Plug in Eq. (C.1), we get the following recurrence relation,

q cν2m+2(q) −
(
λν(q) − (ν + 2m)2

)
cν2m(q) + q cν2m−2(q). (C.11)



Appendix D

Phase space representation of bosons

Here we would like to have a short review of the phase space representation of bosons, which

provides useful intuitions for defining the phase space representation of spins. The bosonic coherent

state is defined as the eigenstate of the bosonic annihilation operator â with an eigenvalue α,

â|α⟩ = α|α⟩, (D.1)

where

|α⟩ = D̂(α)|0⟩ = e−|α|2/2
∞∑
n=0

αn

√
n!
|n⟩, (D.2)

with D̂(α) = exp
(
αâ† − α∗â

)
the displacement operator and |n⟩ the Fock states. Note that different

bosonic coherent states are not orthogonal,

⟨α|α′⟩ = exp

(
− 1

2
|α|2+α′α∗ − 1

2
|α′|2

)
, (D.3)

and thus form an overcomplete basis,

1

π

∫
|α⟩⟨α|d2α = Î . (D.4)

Here
∫
d2α means integration over the complex plane. In the coherent state basis, the trace of an

operator Ô can be expressed as

Tr[Ô] =
1

π

∫
⟨α|Ô|α⟩d2α. (D.5)

Since any operator acting on the Fock space can be written in polynomials of â and â†, so

we typically express an operator Ô by the corresponding polynomial function, Ô ≡ O(â, â†). As
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discussed in Ref. [394], one can define the kernel operator

∆̂(Ω)(α, α∗) =
1

π2

∫
Ω(β, β∗)D̂(β) exp

(
− (βα∗ − β∗α)

)
d2β, (D.6)

as well as the inverse kernel operator

∆̂(Ω̃)(α, α∗) =
1

π2

∫
Ω̃(β, β∗)D̂(β) exp

(
− (βα∗ − β∗α)

)
d2β, (D.7)

where Ω̃(β, β∗) = [Ω(−β,−β∗)]−1 and Ω(0, 0) = 1. Different choice of filter function Ω(β, β∗) leads

to different types of phase space representation as we discussed later. Based on Tr[D̂(β)D̂(β′)] =

πδ(2)(β + β′), where δ(2) represents 2D Dirac δ-function, one can prove that

Tr[∆̂(Ω)(α1, α
∗
1)∆̂

(Ω̃)(α2, α
∗
2)] =

1

π
δ(2)(α1 − α2). (D.8)

Based on Eq. (D.8), one can establish a mapping between the operator function O(â, â†) and the

c-number function F (Ω)(α, α∗) using the kernel operators,

O(â, â†) = π

∫
F (Ω)(α, α∗)∆̂(Ω)(α, α∗)d2α, (D.9)

F (Ω)(α, α∗) = Tr[O(â, â†)∆̂(Ω̃)(α, α∗)]. (D.10)

We call the c-number function F (Ω)(α, α∗) as phase space representation of operator Ô. A spe-

cial case is that the operator Ô is the density matrix ρ̂, and in this case the c-number function

F
(Ω)
ρ (α, α∗) is called phase space representation of a quantum state. Since Tr[ρ̂] = 1, we have∫

F (Ω)
ρ (α, α∗)d2α = 1. (D.11)

So one can interpret F
(Ω)
ρ (α, α∗) as a quasi-probability distribution in phase space. Also based on

Eq. (D.8), it is clear that

Tr[Ô1Ô2] = π

∫
F

(Ω)
1 (α, α∗)F

(Ω̃)
2 (α, α∗)d2α. (D.12)

Here we introduce some examples of the filter function Ω(β, β∗):
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• Ω(β, β∗) = Ω̃(β, β∗) = 1 (Wigner representation)

Here we use W (α, α∗) to represent the c-number function F
(W )
ρ (α, α∗) for density matrix

ρ̂. In this case we have

∆̂(W )(α, α∗) =
1

π2

∫
D̂(β) exp

(
− (βα∗ − β∗α)

)
d2β, (D.13)

W (α, α∗) =
1

π2

∫
Tr[ρ̂D̂(β)] exp

(
− (βα∗ − β∗α)

)
d2β

=
2

π2
exp
(
2|α|2

) ∫
⟨−β|ρ̂|β⟩ exp

(
− 2(βα∗ − β∗α)

)
d2β.

(D.14)

One can refer to Ref. [68] for the proof of Eq. (D.14).

• Ω(β, β∗) = exp
(
−|β|2/2

)
(Glauber P-representation), Ω̃(β, β∗) = exp

(
|β|2/2

)
(Husimi Q-

representation)

Here we use P (α, α∗) to represent the c-number function F
(P )
ρ (α, α∗), and Q(α, α∗) to

represent the c-number function F
(Q)
ρ (α, α∗). In this case we have

∆̂(P )(α, α∗) =
1

π2

∫
exp

(
β∗(α− â)

)
exp

(
− β(α∗ − â†)

)
d2β =

1

π
|α⟩⟨α|, (D.15)

which gives

ρ̂ =

∫
P (α, α∗)|α⟩⟨α|d2α. (D.16)

On the other hand,

∆̂(Q)(α, α∗) =
1

π2

∫
exp

(
− β(α∗ − â†)

)
exp

(
β∗(α− â)

)
d2β

⇒ ⟨α′|∆̂(Q)(α, α∗)|α′⟩ = δ(2)(α− α′),

(D.17)

which gives

Q(α, α∗) =
1

π
⟨α|ρ̂|α⟩. (D.18)
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