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Thesis directed by Prof. John L. Bohn

Optically trapping bulk gases of atoms and molecules at sub-microKelvin temperatures has

become commonplace in several labs around the world. In particular, realizing low temperature

samples of dipolar atoms and diatomic molecules has garnered great interest from the ultracold

community, due to their long-range and anisotropic nature. At temperatures not yet low enough to

achieve macroscopic quantum degeneracy, the gas constituents move about more or less classically,

but experience collisions that can only be described accurately with quantum mechanics. By aligning

these dipoles with an external field, collisions inherit highly anisotropic cross sections from their

dipole-dipole interactions, leading to a wealth of tunable anisotropic collective dynamics.

I focus on characterizing anisotropic thermalization dynamics, which bears importance in

many experimental applications. In fact, progressing in parallel with my graduate work has been

exciting experiments with ultracold dipolar atoms and molecules. I tell the story of several collabo-

rations in which my work was used to determine the scattering length of erbium atoms, characterize

universal dipolar scattering, and open opportunities for optimal evaporative cooling of molecular

gases1 . This thesis lays out the development of several theoretical tools for investigating the relax-

ation of a nondegenerate dipolar gas, tracking its intricate journey to an eventual heat death.

P.S. If you bore easily, well, this thesis might just do nothing at all to help with that.

"There will be some math but just endure it for a while and very soon, it will all go away."

– Umesh Vazirani (CU Boulder Physics Colloquium), 2023.

1 All accounts here are based on true events.
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Chapter 1

Introduction

Atoms: the very building blocks of observable matter in our universe. Consisting of a posi-

tively charged nucleus encased in a probabilistic cloud of electrons, individual atoms host a treasure

trove of physics we have likely only scratched the surface of. Their complexities are only amplified in

the bulk of many other such partners, whether they are chemically bonded or free to roam around.

These are the ruminations of an atomic physicist, endeavoring a pursuit of understanding and con-

trol. Although lofty in its conception, great strides have already been made with the development

of powerful tools like the laser and its associated technologies. Spectroscopy, optical trapping and

quantum state manipulation, these are just some of the vast capabilities opened by our growing

prowess in light and matter interaction.

Built off the many monumental works of others before, my work in this field has thus far fo-

cused on the collective aspects of atoms and molecules in their gaseous phase. Two crucial properties

have made such systems interesting yet tractable for me to study: 1) their cooling down to ultracold

temperatures, and 2) the dipolar character of the constituent particles. My job for the remainder

of this thesis will be to motivate and communicate my contributions to these topics through the...

captivating... medium of print.

1.1 Why ultracold?

Ever since the earliest inklings of its necessity [5], quantum mechanics has continued to inspire

and yet, oftentimes confuse our scientific sensibilities. It is inevitable that to better understand
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quantum mechanics, we need to be able to see more of it at play.

"As usual, nature’s imagination far surpasses our own..."

—- Richard P. Feynman (The Character of Physical Law), 1965.

Sometimes, nature gives us that almost for free, showcasing quantum properties like semiconductiv-

ity in naturally occurring materials such as silicon–"just" needing us to look. Other times, human

ingenuity is required to piece together specially designed systems, to probe the faint hum of our

universe’s quantum symphony. One such way to "hear the music", is to freeze out all thermal

tumult, until just a few fundamental modes of the quantum wave are left singing.

This serene simplicity is what ultracold temperatures provide, being just about 10-millionths

of a degree above absolute zero (that’s a decimal point with 6 zeros behind it before a 1!). In this

regime, most aspects of an atom come to a standstill, allowing the manipulation and measurement of

each quantum energy level in isolation. Such exact addressability of quantum states is what bolsters

the desire for ultracold atomic and molecular systems, but getting there is no easy feat. 1995 was

the year that saw the first ever creation of a Bose-Einstein condensate [6], an ultracold state of

quantum matter. That Nobel prize winning accomplishment was achieved right here at JILA with

Rubidium atoms [7], then also at MIT with Sodium [8], trailblazing a new era of ultracold quantum

science.

And so, we are now left to stand on the shoulders of these giants, amongst many others. To

continue their legacy and forge a new tomorrow in ultracold physics. From artificial materials made

of light [9], to mind numbingly precise measurement devices [10], the immense quantum control that

ultracold temperatures bring will undoubtedly continue its unprecedented streak in technological

advancement, and push the boundaries of scientific discovery.

1.2 Why dipoles?

More than 2000 years ago, some dude in ancient Greece said something like "The whole is

greater than the sum of its parts". Point is, although single quantum particles might already be
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interesting in and of themselves, what more harmonious melodies might a whole ensemble vocalize

in chorus? Therein lies another key ingredient of desire, interactions. When 2 quantum bodies are

allowed to interact, they can share energy and quantum information, enriching the physics of the

system as a whole. The nature of these interactions plays an important role in this enrichment,

with each kind allowing only specific quantum states to talk to one another, and only within certain

distances.

Dipole-dipole interactions, in particular, support a variety of appealing properties. For one,

they engage at pretty large distances, with the dipole interaction potential falling off only as the

inverse cube of inter-particle spacing. Correlations thus develop without having to get too close,

facilitating the spread of quantum information throughout a large many-body system of dipoles

[11, 12]. For another, the interaction is highly anisotropic, depending on the orientation of each

dipole relative to their inter-particle displacement. With rotational symmetry broken, the angular

momentum of one dipole around the other can now couple to the internal spins of each dipole. How

these dipoles are flung off from one another after a collision might therefore be tunable via their

internal quantum spins [13]. Certainly, the allures are many, but most highlighted in this thesis will

be the interaction anisotropies, segueing nicely into the next section.

1.3 What’s in this thesis?

The remainder of the thesis is partitioned into 3 main parts. The first addresses microscopic

collisional physics (Chap. 2), where I provide a brief primer on 2-body dipolar scattering in the

ultracold regime, leaving in only the relevant details. The second considers the emergent effects of

these collisions on macroscopic gas dynamics, both in the dilute and hydrodynamic regimes (Chaps. 3

to 5). The overarching theme here will be a gas’ return to equilibrium, showcasing the theoretical

tools I employ. The final icing on this thesis cake comes in Chap. 6, which discusses 2 immediate

applications that, in many ways, provide motivation to the physics understood from the preceding

chapters. Namely, the accurate determination of atomic scattering lengths via rethermalization

experiments, and the evaporative cooling of polar molecules to quantum degeneracy.
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For convenience, Tab. 1.1 presents a collated list of all the constants and variables that will

be used consistently throughout this thesis. If a symbol crops up somewhere down the line that

has not been defined within the chapter, don’t set this thesis aside just yet! It will have probably

been defined in this table. It should also be noted that all the equations used will be written

in SI units, as one is inclined to when sitting in an office 2 kilometers away from the National

Institute of Standards and Technology. On the off chance that one simply wants to go straight to

the journal-formatted sources, here are all my publications relevant to the discussions of this thesis:

[2, 3, 14–21]. Although I must say, you will necessarily miss out on the fun (if I don’t say so myself)

narrative this thesis weaves by jumping straight to those.

Symbol Descriptor
ℏ Reduced Planck’s constant
kB Boltzmann’s constant
ϵ0 Electric constant
µ0 Magnetic constant
µB Bohr magneton
a0 Bohr radius
as s-wave scattering length
m Atomic/molecular mass
µ Reduced mass
d Magnetic/electric dipole moment
ad Dipole length
Edd Dipole energy
B Magnetic field
E Electric field
Θ Dipole tilt angle

Symbol Descriptor
t Time coordinate
r Position coordinate vector
p Momentum coordinate vector

f(r,p, t) Classical phase space distribution
n(r, t) Number density
T Temperature

T (t) Pseudotemperature
N (Θ) Number for rethermalization
ε(Θ) Collisional efficiency
Kn Hydrodynamic Knudsen number

ρ(r, t) Local mass density
U(r, t) Local flow velocity
κ(T ) Thermal conductivity tensor
µ(T ) Viscosity tensor
Eevap Evaporation efficiency

Table 1.1: A table of the notation used for constants and variables that will appear in this thesis.
Bolded symbols are used to denote vectors, matrices and tensors.

Without further ado, here comes the music.



Chapter 2

Crash, Bam, Pow! Ultracold Dipolar Collisions

Ever found yourself in a vicious game of car-collision-chicken against your evil clone on a

10-lane superhighway? Eyes locked from a mile away. Pedal to the metal. This chapter speaks of

much the same scenario, except there are no highspeed cars, no drivers and no highways. Just 2

extremely slow-moving identical particles that interact at long range, colliding not that violently

with one another. The makings of a real Hollywood blockbuster. Crash, bam, pow!

This riveting process is exactly what occurs among the constituent particles of a nondegenerate

gas. Free to roam around, gaseous particles are prone to bumping into one another, exchanging

energy and momentum. These collisions can get rather complicated and are behind much of the

interesting physics we will see arise. I provide a rapid overview of ultracold collisional physics in

this chapter, setting the stage for the remainder of this thesis. The focus here will be on collisions

that primarily result from dipole-dipole forces.

2.1 Ultracold collisions of magnetic atoms

2.1.1 Lanthanides: Little atomic magnets

Technological advances in the last 2 decades have permitted the cooling and trapping of

magnetic lanthanide atoms [22–26], a huge triumph for the field of ultracold dipolar physics [27, 28].

With lanthanide atoms cooled to their electronic ground state, their open-shell electronic structure

warrants that the application of a magnetic field results in a splitting of its Zeeman sublevels. For
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instance, bosonic (B) erbium atoms have a ground state Zeeman sublevel spectrum given by

EB
Zeeman(B) = gJµBBmJ , (2.1)

where the Landé g-factor is reported in Ref. [29] as gJ = 1.163801(1), B is the magnetic field

strength and mJ is the projection of the total angular momentum J = 6, onto the field axis.

Fermionic (F) isotopes of erbium, on the other hand, possess a nuclear spin that gives rise to

hyperfine structure. The energetically lowest state would reside in the total angular momentum

quantum number F = 19/2 manifold, which has the Zeeman spectrum

EF
Zeeman(B) = gFµBBmF + 2πℏz2B2(F 2 −m2

F ), (2.2)

where mF is the projection of total angular momentum, while gF = 0.735032 and z2 = −12.76(1)

Hz/G2 are the linear and quadratic Zeeman coefficients respectively [30]. The relevant Zeeman

energy splittings for both isotopes are plotted in Fig. 2.1 in units of milliKelvin.

Figure 2.1: Plot of the Zeeman energy levels as a function of applied magnetic field for bosonic
166Er (a), and fermionic 167Er (b) isotopes of erbium.

Because of the still mostly linear Zeeman splitting at modest magnetic fields, a magnetic

dipole moment dJ ≈ gJmJµB, is induced in the atoms that in their spin-stretched groundstate

(i.e. the lowest mJ sublevel), gives both isotopes approximately the same value of d ≈ −6.9828µB.
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So fermionic magnetic atoms, usually collisionally invisible at ultracold temperatures with no s-

wave scattering, can now experience collisions via their dipole-dipole interactions. You might be

concerned that such collisions could jostle these atoms out of their Zeeman groundstates, but here

in lies the benefit that ultracold temperatures bring. At temperatures on the order of T ∼ 100 nK

and below, the application of order B ∼ 10 G magnetic fields result in a Zeeman energy splitting of

∆E/kB ∼ 0.1 mK as seen from Fig. 2.1. Colliding atoms prepared in their spin-stretched ground

state will therefore remain spin polarized in that state, by virtue of all other states being energetically

forbidden.

2.1.2 Ultracold scattering: A primer

The cool (pun possibly intended) thing about ultracold experiments is that in principle, the

interactions between colliders are completely known1 . Our task as atomic theorists is therefore

to exploit this knowledge for computing scattering observables that, god willing all factors of 2

are tracked correctly, can be used to predict and understand experimental phenomena. This runs

rather contrary to say high energy physics experiments, where observed scattering data from collider

experiments are instead, used to infer the a priori unknown interacting Lagrangian. But that’s a

topic for someone else’s thesis. Ultracold scattering considers 2 particles headed on a collision

course with everything else in the universe being negligible to the relevant physics. In this case, the

Hamiltonian between the 2 bodies is given by

Ĥ = − ℏ2

2µ
∇2

r + ĥ1 + ĥ2 + V̂int(r), (2.3)

where r = r1 − r2 is the relative position between particles, µ = m1m2/(m1 +m2) is the reduced

mass, ĥi (i = 1, 2) is the single-particle Hamiltonian containing all the internal atomic/molecular

structure stuff, and V̂int is the interaction potential between the 2 particles. Wide hats are used to

denote quantum operators, while normal sized hats will denote unit vectors.

As far as degrees of freedom go, there are the spatial ones relevant to r, and the internal state
1 What I mean here is that technically, you could write down all terms in the 2-particle Hamiltonian, although

actually handling it for calculations is usually impossible without some form of approximation.
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ones relevant to ĥ1 + ĥ2. The entire Hilbert space is thus spanned by the basis states:

⟨r, θ, ϕ|E; ℓ,mℓ; ν⟩ = r−1uEℓ,mℓ,ν
(r)Yℓ,mℓ

(θ, ϕ) |ν⟩ , (2.4)

where Yℓ,mℓ
(θ, ϕ) are spherical harmonics and |ν⟩ diagonalizes both 1-body Hamiltonians

(
ĥ1 + ĥ2

)
|ν⟩ = ϵν |ν⟩ , (2.5)

with associated eigenenergies ϵν . When asymptotically far apart, the interaction potential V̂int(r)

vanishes to leave a series of energetic thresholds ϵν . The asymptotically good quantum numbers ν,

are therefore said to label the asymptotic scattering channels. Represented in the basis of Eq. (2.4),

the time-independent Schrödinger equation results in a coupled set of radial equations:

δℓ,ℓ′δmℓ,m
′
ℓ
δν,ν′

(
d2

dr2
− ℓ(ℓ+ 1)

r2
+

2µ(E − ϵν′)

ℏ2

)
uEℓ′,m′

ℓ,ν
′(r)

=
2µ

ℏ2

∫
d2r̂ ⟨ν|Y ∗

ℓ,mℓ
(r̂)V̂int(r)Yℓ′,m′

ℓ
(r̂)
∣∣ν ′〉uEℓ′,m′

ℓ,ν
′(r), (2.6)

that, in general, has interaction matrix elements (right-hand side above) couple the various scatter-

ing channels, and possibly even the |ℓ,mℓ⟩ angular momentum partial waves if V̂int is anisotropic.

These couplings can result in complicated solutions, mostly requiring numerical methods to obtain.

But as with many problems in physics, interpretable quantum scattering solutions are best

constructed along with a suitably chosen ansatz. A natural one emerges from the physical picture of

2 particles approaching from infinitely far away (pre-collision), interact strongly within the effective

range of their interactions, then depart infinitely far apart once more from the interaction aftermath

(post-collision):

|ψν(r)⟩ ∼ eikν ·r |ν⟩︸ ︷︷ ︸
pre-collision

+
∑
ν′

fν,ν′(r̂)
eikν′r

r

∣∣ν ′〉︸ ︷︷ ︸
post-collision

, (2.7)

where kν′ =
√

2µ(E − ϵν′)/ℏ2 is the scattered wavenumber, and fν,ν′(r̂) is the scattering amplitude

associated with scattering from channel ν to ν ′. Fig. 2.2 gives a visual reference for Eq. (2.7). Re-

lating the inbound and outbound particle-pair wavefunctions at infinite relative distance is referred
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to as a completed collision. To connect the ansatz of Eq. (2.7) with the representation of Eq. (2.6),

a planewave expansion of the free particle solution can be performed

eikν ·r |ν⟩ = 4π
∞∑
ℓ=0

ℓ∑
mℓ=−ℓ

iℓY ∗
ℓ,mℓ

(k̂ν)jℓ(kνr)Yℓ,mℓ
(r̂) |ν⟩ , (2.8)

which has the kνr ≫ 1 asymptotic form

eikν ·r |ν⟩ → 2πi

r

∞∑
ℓ=0

ℓ∑
mℓ=−ℓ

iℓ
Y ∗
ℓ,mℓ

(k̂ν)√
kν

(
e−i(kνr−ℓπ/2) − ei(kνr−ℓπ/2)

) Yℓ,mℓ
(r̂)√
kν

|ν⟩ . (2.9)

The expansion above identifies pieces that are incoming towards (e−i(kνr−ℓπ/2)) and outgoing away

from (ei(kνr−ℓπ/2)) the scattering center.

k̂

V̂int(r)

r = 0

eik·r

eikr

r

f(r̂)
eikr

r

Figure 2.2: Cartoon of quantum scattering. The red curve denotes the incident eik·r planewave,
light blue the eikr/r spherical wave and dark blue the f(r̂)eikr/r scattered wave. The red and blue
wave fronts are not to scale.

Because probability must be conserved in quantum mechanics, the outbound flux of parti-

cles in the planewave expansion can only be modified only by a unitary transformation after the

scattering process:

|ψν(r)⟩ ∼
2πi

r

∑
ℓ,mℓ

∑
ℓ′,m′

ℓ

∑
ν′

iℓ
Y ∗
ℓ,mℓ

(k̂ν)√
kν

(
δℓ,ℓ′δmℓ,m

′
ℓ
δν,ν′e

−i(kνr−ℓπ/2)

− Sν,ν′

ℓ,mℓ;ℓ′,m
′
ℓ
(kν)e

i(kν′r−ℓ′π/2)

)
Yℓ′,m′

ℓ
(r̂)

√
kν′

∣∣ν ′〉 , (2.10)
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where Sν,ν′

ℓ,mℓ;ℓ′,m
′
ℓ

is the unitary S-matrix that depends on the incident scattering energy. Upon

comparing Eq. (2.10) and Eq. (2.7), the scattering amplitude is therefore identified as

fν,ν′(r̂) = − 2π√
kνkν′

∑
ℓ,mℓ

∑
ℓ′,m′

ℓ

iℓ−ℓ′Y ∗
ℓ,mℓ

(k̂ν)T
ν,ν′

ℓ,mℓ;ℓ′,m
′
ℓ
(kν)Yℓ′,m′

ℓ
(r̂), (2.11)

where the T -matrix is defined as

T ν,ν′

ℓ,mℓ;ℓ′,m
′
ℓ
(kν) = i

(
Sν,ν′

ℓ,mℓ;ℓ′,m
′
ℓ
(kν)− δℓ,ℓ′δmℓ,m

′
ℓ
δν,ν′

)
. (2.12)

As will be essential to the rest of this thesis, the scattering amplitude then permits us to evaluate

the differential cross section

dσν,ν′

dΩ
(r̂) =

kν′

kν

∣∣fν,ν′(r̂)∣∣2, (2.13)

which represents the ratio of differential area dσ through which particles are incident, over the

differential solid angle dΩ into which these particles scatter.

2.1.3 Dipolar interactions

For 2 particles that interact primarily via dipole-dipole forces, the potential between them is

V̂int(r) ≈ V̂dd(r) =
d̂1 · d̂2 − 3(d̂1 · r̂)(d̂2 · r̂)

4πη0r3
. (2.14)

where η0 = ϵ0 for electric dipoles and η0 = µ−1
0 for magnetic ones. In the case of identical spin-

polarized magnetic atoms described in Sec. 2.1.1, the scattering problem effectively reduces to a

single-channel one, involving only the lowest Zeeman sublevel with the rest being energetically

disallowed. Only considering 1 channel removes all the operator structure of the dipole operators,

so the potential reduces to

Vdd(r) =
µ0d

2

4πr3
[
1− 3(B̂ · r̂)2

]
, (2.15)

where B̂ is the direction of the external magnetic field, along which the dipoles with dipole moment d

are polarized. With Vdd being dominant and involving only a single relevant dipole matrix element,

it is appropriate to define a system of units around d as presented in Tab. 2.1. Even with this
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dimension quantity

mass md = µ

length ad =
µd2

4πϵ0ℏ2

energy Edd =
ℏ2

µa2d

Table 2.1: A system of dipole units based on the space-fixed dipole moment d.

simplification, the potential retains its coordinate space anisotropy, so that angular momentum is

no longer conserved.

Full scattering solutions to Eq. (2.6) between these atoms then require the matrix elements

of Vdd(r) in the partial wave basis, which are evaluated with B̂ = ẑ as

⟨ℓ,mℓ|Vdd(r)
∣∣ℓ′,m′〉 = − d2

4πϵ0r3
⟨ℓ,mℓ| 4

√
π

5
Y2,0(θ, ϕ)

∣∣ℓ′,m′
ℓ

〉
= − d2

4πϵ0r3
2(−1)mℓ

√
(2ℓ+ 1)(2ℓ′ + 1)

ℓ 2 ℓ′

0 0 0


 ℓ 2 ℓ′

−mℓ 0 m′
ℓ

 . (2.16)

The 2-by-3 arrays in parentheses above are Wigner 3-j symbols. But before finding solutions in

such generality, simpler ones can be obtained if collisions are restricted to the regime of ultra

low energies. Although strictly approximate, these simpler solutions show incredible accuracy in

reproducing experimental data under a variety of circumstances, so much so that most of this thesis

leverages this approximation.

2.1.4 Close-to-threshold dipolar scattering

At kinetic energies that are small compared to the characteristic energy of the interaction

E ≪ Edd, the collision is considered close-to-threshold2 [31]. Collisions in the close-to-threshold

regime are usually associated with few partial waves contributing to the scattering process. This

is true for power law interaction potentials r−n with n > 3, where Wigner’s threshold law dictates

that higher partial waves diminish as increasing powers of the wavenumber k [31]. But it turns
2 Threshold here refers to the scattering energetic thresholds when the atoms are asymptotically far apart, as

described in Sec. 2.1.2.
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out that approaching zero energy, all the T -matrix elements (2.12) from dipolar scattering have the

same energy dependence Tℓ,mℓ;ℓ′,m
′
ℓ
∼

√
E [1, 32, 33]. This energy independence translates to the

close-to-threshold integral cross section

σ = ∆s
π

k2

∑
ℓ,mℓ

∑
ℓ′,m′

ℓ

∣∣Tℓ,mℓ;ℓ′,m
′
ℓ
(k)
∣∣2, (2.17)

being completely independent of energy, seen to emerge in Fig. 2.3 with a plot3 of σ vs E. In

the expression above, ∆s is a symmetry factor that accounts for scattering between distinguishable

(∆s = 1) or indistinguishable (∆s = 2) particles [34].

Figure 2.3: Plot of the integral cross section σ, as a function of collision energy E (black curve).
The axes are both on a logarithmic scale in dipole units (2.1). For comparison, the low energy
Born (σ ∼ 1) and high energy Eikonal (σ ∼ E−1/2) approximations are also plotted in blue and red
respectively. The plot is adapted from Ref. [1].

Because the threshold laws between dipolar atoms are the same for all partial waves, a large
3 The plot in Fig. 2.3 was computed for distinguishable dipoles (includes all partial waves), with the s-wave

scattering length carefully tuned to zero (see Sec. 2.1.5).
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number of them may be required to converge the scattering calculations of f(r̂) (2.11). It is,

therefore, more convenient not to expand the wavefunction in terms of partial waves, but to describe

the scattering of dipolar species directly in coordinate space [35]. Such a formulation is most easily

obtained via the Lippmann-Schwinger equation

ψ(r) ∼ eik·r − 2µ

ℏ2
1

4π

∫
d3r′e−ik·r′

Vdd(r
′)ψ(r′)

eikr

r
, (2.18)

that is an asymptotic integral form of the Schrödinger equation [36], from which the scattering

amplitude is read off as

f(r̂) = −2µ

ℏ2
1

4π

∫
d3r′e−ik·r′

Vdd(r
′)ψ(r′). (2.19)

Itself dependent on the scattering solution ψ(r), this complication of evaluating Eq. (2.19) is

sidestepped by employing the Born approximation, commonly used for collisions at high energies.

It turns out, however, that this approximation works just as well for ultracold dipoles by virtue of

the Born approximated f(r̂) having the correct close-to-threshold energy dependence: none. In the

parlance of partial waves, it is the ℓ(ℓ+ 1)/r2 angular momentum barrier that prevents low energy

scatterers from seeing much else other than the long-range tail of the dipolar r−3 potential before

they get reflected. So Vdd is but a perturbance to the incident planewave, which echoes the song

usually sung about the Born approximation.

The scattering amplitude up to first-order in Born approximation is then evaluated as

lim
E/Edd→0

f(r̂) ≈ −2µ

ℏ2
1

4π

∫
d3re−ik′·rVdd(r)e

ik·r (2.20)

= − µd2

4πϵ0ℏ2

∫
d3r

2π

1− 3 cos2 θ

r3
eiq·r, with q = k − k′,

=
µd2

4πϵ0ℏ2

∫
d3r

π

C2,0(θ, ϕ)

r3
eiq·r, where C2,0(θ, ϕ) = 2

√
π

5
Y2,0(θ, ϕ),

=
µd2

4πϵ0ℏ2

∫
d3r

π

C2,0(θ, ϕ)

r3
4π
∑
ℓ,mℓ

iℓY ∗
ℓ,mℓ

(q̂)jℓ(qr
′)Yℓ,mℓ

(r̂′)

=
µd2

4πϵ0ℏ2
∑
ℓ,mℓ

8

√
π

5
iℓY ∗

ℓ,mℓ
(q̂)

∫
d2ΩY2,0(Ω)Yℓ,mℓ

(Ω)

∫
dr
jℓ(qr)

r

=
µd2

4πϵ0ℏ2
∑
ℓ,mℓ

8

√
π

5
iℓY ∗

ℓ,mℓ
(q̂)δℓ,2δmℓ,0

√
πΓ(ℓ/2)

4Γ((3 + ℓ)/2)
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= ad

(
2

3
− (k̂ · B̂ − k̂′ · B̂)2

1− k̂ · k̂′

)
, using cos2 θq =

(k̂ · B̂ − k̂′ · B̂)2

2(1− k̂ · k̂′)
. (2.21)

As written, the scattering amplitude above corresponds to the scattering of distinguishable particles,

which is not the case for the identical groundstate atoms of interest. Accurate functional forms of

f(r̂) therefore requires the appropriate symmetrization (+) for bosons, and antisymmetrization (-)

for fermions [37]:

fF,B(k̂, k̂
′) =

1√
2

[
f(k̂, k̂′)± f(k̂,−k̂′)

]
, (2.22)

finally leaving us with

fF (k̂, k̂
′) =

ad√
2

(
4(k̂ · B̂)(k̂′ · B̂)− 2[(k̂ · B̂)2 + (k̂′ · B̂)2](k̂ · k̂′)

1− (k̂ · k̂′)2

)
, (2.23a)

fB(k̂, k̂
′)

almost
=

ad√
2

(
4

3
− 2[(k̂ · B̂)2 + (k̂′ · B̂)2]− 4(k̂ · B̂)(k̂′ · B̂)(k̂ · k̂′)

1− (k̂ · k̂′)2

)
. (2.23b)

If not already bored stiff by this point, one might notice that the ℓ = 0 partial wave component

of the potential is barrierless, completely unable to defend itself against the imminent atomic flux

during a scattering event. Colliding atoms are therefore defenseless against the full might of their

dipole-dipole interactions, not forgetting all the shorter range physics on top of that. Surely then, the

Born approximation is no longer accurate which warrants the "almost" above equality in Eq. (2.23b).

To rectify this shortcoming, Eq. (2.25) is modified by hand with the famed s-wave scattering length,

another triumph in atomic physics briefly discussed below.

2.1.5 s-wave scattering in bosons

If a significant portion of the wavefunction is allowed to enter within r < ad, that region of

the potential and wavefunction can be really complicated and difficult to obtain accurately from

ab initio calculations. An ingenious observation from Enrico Fermi in the 1930s [38] showed that

despite all its complexity, the low energy elastic scattering in the ℓ = 0 channel just modified the

scattered wavefunction by a single parameter, the s-wave4 scattering length as. Put concisely,
4 The letter s used here denotes the ℓ = 0 partial wave, as inherited from atomic orbital theory in chemistry

where every angular momentum orbital was assigned letters s, p, d, f, . . ., corresponding to the spherical harmonics
in ℓ = 0, 1, 2, 3, . . ..
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scattering concerns itself with colliding partners as they enter from, and exit to asymptotically far

distances from one another (see Sec. 2.1.2). If the collision is elastic (entrance and exit channels

are the same), conservation of probability flux mandates that the outbound post-collision piece of

the wavefunction can only differ from the inbound pre-collision piece by a phase factor e2iδs . The

associated phase δs, which depends on the scattering energy, is referred to as the scattering phase

shift. A schematic picture of this process and the phase shift that follows is given in Fig. 2.4.

r

V (r)

short-range potential
kr ≪ 1

//

asymptotic tail
kr → ∞

ψ(r)

E

ψin(r)
ψout(r)

ℓ = 0

︸︷︷︸
δs ≈ −kas

Figure 2.4: Cartoon of the s-wave scattering phase shift. The atoms are asymptotically free
particles, approaching as planewaves (ψin, blue curve) before seeing the interaction potential between
them. Conservation of probability flux mandates that the asymptotic scattered wavefunction ψout

(red curve), can only differ from ψin in the s-wave partial wave channel by a phase shift δs.

Going back to the planewave expanded solution in Eq. (2.10), one could also construct equiv-

alent solutions in terms of spherical Bessel and Neumann functions instead. By doing so and

comparing solutions partial wave by partial wave, an s-wave scattering length is identified in terms

of the low energy ℓ = 0 phase shift as

as = − lim
k→0

tan δs(k)

k
. (2.24)

Strictly speaking, this result is derived for the case of isotropic interaction potentials, where every

partial wave is independent of one another. Considerations of partial wave couplings from dipoles

will be treated as higher-order corrections and neglected here. Now equipped with the piece handling

barrierless elastic scattering, the scattering amplitude for dipolar Bosons is appropriately amended
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from Eq. (2.23b) to [35]

fB(k̂, k̂
′) = −

√
2as +

ad√
2

(
4

3
− 2[(k̂ · B̂)2 + (k̂′ · B̂)2]− 4(k̂ · B̂)(k̂′ · B̂)(k̂ · k̂′)

1− (k̂ · k̂′)2

)
, (2.25)

for a comprehensive solution.

Oftentimes, it is useful to have an estimate of the scattering length without any prior knowl-

edge of the system. For a potential of the form Vn(r) = −Cn/r
n, some statistical gargalesis can be

used to derive a probability distribution over expected scattering lengths

P (as) =
1

π

as
(as − as)2 + a2s

, (2.26)

in terms of a most-likely scattering length first derived by Gribakin and Flambaum [39]:

as = cos

(
π

n− 2

)( √
2µCn

ℏ(n− 2)

) 2
n−2 Γ

(
n−3
n−2

)
Γ
(
n−1
n−2

) , (2.27)

where Γ(x) is the gamma function. Moreover, the imaginary part of as responsible for inelastic

scattering is expected to have a distribution strongly peaked around zero [20]. I therefore opt to

ignore Im{as} for all subsequent considerations of as.

2.2 Shields up! Turning reactive molecules inert

Strong dipolar scattering is not unique to gases of magnetic atoms, but can also occur in

gases of heteronuclear diatomic molecules with externally applied electric fields [40]. In fact, the

dipole lengths of these polar molecules can be hundreds of times larger than those in magnetic

atoms, accentuating the effects of dipolar physics. A concern of molecular collisions, however, is the

possibility of chemical reaction which often results in molecular loss from their optical confinement

(detailed in App. B). Lucky for us, several smart cookies (one of which is the chair of this very thesis

committee!) have proposed means to mitigate reactive collisions by careful application of external

electric fields. Doing so results in what is known as collisional shielding [41, 42], whereby barriers

are engineered in the potential which prevents molecules from coming too close to one another.

Excitingly, collisional shielding of polar molecules has recently been realized in several exper-

iments, both with static electric [3, 43–45] and microwave fields [4, 46–48], permitting collisionally
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stable bulk molecular gas samples. For context and their use later on, it is worthwhile to briefly dis-

cuss the effective potentials and resulting scattering cross sections in both these shielding situations.

Only the minimal models necessary to capture the essential shielding physics will be discussed here,

to prevent this thesis from unfurling down the length of the JILA tower.

2.2.1 Scattering of static field shielded KRb molecules

In static electric fields, polar molecules can experience an effective shielded potential between

them which is, albeit reminiscent of, different from the familiar dipole-dipole interaction potential

[49]. Although theoretically formulated almost a decade ago [50, 51], the first demonstration of

electric field shielding in 3-dimensions was only recently demonstrated in 2021 with a gas of 40K87Rb

molecules at JILA [3]. All remaining discussions contained in this subsection will refer to this

molecular species.

For all intents and purposes, ultracold KRb molecules can be treated as quantum rigid rotors

with only rotational degrees of freedom. That is to say, each molecule in isolation only has |Ni,Mi⟩

quantum numbers (i = 1, 2) corresponding to the total rotation and its projection onto the space-

fixed z axis respectively. Brought closer together, such molecules interact as dipoles (2.14) with the

interaction potential matrix elements given in the |N1,M1;N2,M2⟩ basis as [13]

⟨N1,M1;N2,M2|V̂dd(r)
∣∣N ′

1,M
′
1;N

′
2,M

′
2

〉
= −

√
30

4πϵ0r3
C2,−q(θ, ϕ)

2 1 1

q −q1 −q2



× d(−1)M1

√
(2N1 + 1)(2N ′

1 + 1)

N ′
1 1 N1

M ′
1 q1 −M1


N ′

1 1 N1

0 0 0



× d(−1)M2

√
(2N2 + 1)(2N ′

2 + 1)

N ′
2 1 N2

M ′
2 q2 −M2


N ′

2 1 N2

0 0 0

 , (2.28)
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where q1 =M ′
1 −M1, q2 =M ′

2 −M2, q = q1 + q2 and

C2,−q (θ, ϕ) =



1
2(3 cos

2 θ − 1), q = 0,

±
√

3
2 sin θ cos θe

∓iϕ, q = ±1,√
3
8 sin

2 θe∓2iϕ, q = ±2.

(2.29)

Collisional shielding then leverages the rotation-coupling interactions above to engineer a barrier in

the adiabatic (ignoring the kinetic energy term) potential energy surface that prevents molecules

from reaching the short-range. Key to achieving this barrier is the application of an external electric

field E. Via the Stark effect, 2 asymptotic energy thresholds are tuned to be almost degenerate,

which if coupled through Eq. (2.28), would drastically repel one another within the range of dipolar

interactions. One adiabat will be pushed downward, while the other upward to form a repulsive

core around r = 0. If prepared and allowed to approach only on the upper adiabat, the 2 molecules

would be stopped from reaching close enough distances to chemically react.

A minimal, but rather accurate model of shielding assumes the colliding molecules remain

polarized along the field axis, here taken to be Ê = ẑ. The Mi quantum numbers are thus always

zero, which stands as a good approximation at large electric fields E . The good quantum numbers

of each molecule, not interacting with any other, are now dressed by the electric field. These states

are obtained by diagonalizing the single-molecule Hamiltonian

Ĥi = BRN̂
2

i − d̂i · E, (2.30)

which gives the field-dressed (denoted by tildes) basis states

Ĥi|Ñi,Mi⟩ = ϵÑi,Mi
|Ñi,Mi⟩, (2.31)

with associated eigenenergies ϵÑi,Mi
. The Mi quantum numbers do not have tildes as they remain

good quantum numbers in the presence of the field.

A shielding resonance as just described is then induced between the field-dressed combined

molecular states
∣∣1̃, 0〉 ∣∣1̃, 0〉 and

∣∣0̃, 0〉 ∣∣2̃, 0〉, which are asymptotically degenerate at E ≈ 12.72
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kV/cm and get dipole-coupled upon approach. The result is a barriered upper adiabat that is well

approximated by [49]:

VE(r, θ) =
1

2
(Va + Vb) +

1

2

√
(Va − Vb)2 + 4W 2, (2.32)

constructed out of the diabatic pieces

Va(r, θ) = − χa

πϵ0r3

√
π

5
Y2,0(θ) + E1̃1̃, (2.33a)

Vb(r, θ) = − χb

πϵ0r3

√
π

5
Y2,0(θ) + E0̃2̃, (2.33b)

W (r, θ) = − χW

πϵ0r3

√
2π

5
Y2,0(θ), (2.33c)

with energy offsets E1̃1̃ and E0̃2̃ corresponding to the energetic thresholds of the |1̃, 0⟩|1̃, 0⟩ and

|0̃, 0⟩|2̃, 0⟩ states respectively. The surface of VE along y = 0, with E1̃1̃ ≈ E0̃2̃, is plotted in Fig. 2.5.

Figure 2.5: A y = 0 slice of the effective adiabatic potential energy surface on which colliding
molecules would be shielded. The axes are scaled by molecular-frame dipole units (2.1).
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Having assumed Mi = 0, effective state-dependent dipole moments can then be defined as

dÑ→Ñ ′
= d

∑
N,N ′

⟨Ñ |N⟩⟨N ′|Ñ ′⟩
√
2N + 1

√
2N ′ + 1

N 1 N ′

0 0 0


2

, (2.34)

with molecular-frame dipole moment d, that enter the diabatic potentials via the interaction terms

χa = d1̃→1̃d1̃→1̃ ≈ 0.023 D2, (2.35a)

χb = d0̃→0̃d2̃→2̃ + d0̃→2̃d2̃→0̃ ≈ −0.037 D2, (2.35b)

χW = d1̃→0̃d1̃→2̃ ≈ 0.066 D2. (2.35c)

Debye units are denoted with D above. At the resonant value of the electric field, E1̃1̃ ≈ E0̃2̃, so

the effective shielding potential simplifies to a channel energy independent form

VE(r, θ) ≈ −
√
π/5

2πϵ0r3

(
[χa + χb]Y2,0(θ)−

[
(χb − χa)

2 + 8χ2
W

]1/2 |Y2,0(θ)|) . (2.36)

Above, I have ignored a constant energy offset of E1̃1̃ + E0̃2̃ as they are irrelevant to the elastic

scattering physics of interest here.

At low enough temperatures, the first-order Born approximation of Eq. (2.20) is once more

appropriate to study differential scattering resultant from the effective potential VE . With the same

planewave expansion technique used to obtain Eq. (2.21), the scattering amplitude between electric

field shielded molecules is computed as

fE,Born(k,k
′) =

2µ(χa + χb)

πϵ0ℏ2

√
π

5

∑
ℓ,m

iℓY ∗
ℓ,m(q̂)

∫
d3r

jℓ(qr)

r3
Y2,0(θ)Yℓ,m(θ, ϕ) (2.37)

−
2µ
(
(χb − χa)

2 + 8χ2
W

)1/2
πϵ0ℏ2

√
π

5

∑
ℓ,m

iℓY ∗
ℓ,m(q̂)

∫
d3r

jℓ(qr)

r3
|Y2,0(θ)|Yℓ,m(θ, ϕ).

For the second term above, the integrals are evaluated as

∫
Ω
|Y2,0(Ω)|Yℓ,m(Ω) = δm,0


∫
Ω |Y2,0(Ω)|Yℓ,m(Ω), ℓ is even,

0, ℓ is odd.

(2.38)

With this, the scattering amplitude is given by

fE,Born = fs + fd + fh.p., (2.39)
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written in terms of isotropic s-wave (ℓ = 0), dipole-dipole d-wave (ℓ = 2) and higher partial-wave

components:

fs = −adβ

√
4π

3

(
1− lim

r0→0
Ci(qr0)

)
Y0,0(q̂) (2.40a)

fd = −adβ

√
π

5

(
1− 4

3
√
3
− d2α
d2β

)
Y2,0(q̂) (2.40b)

fh.p. = −adβ
∞∑

L=2

(
3π

4
√
5

(−1)LΓ(L)

Γ(32 + L)

∫
d2Ω|Y2,0(Ω)|Y2L,0(Ω)

)
Y2L,0(q̂), (2.40c)

respectively, having defined the effective dipole moments

d2α = χa + χb ≈ −0.026 D2, (2.41a)

d2β =
√
(χb − χa)2 + 8χ2

W ≈ 0.17 D2, (2.41b)

and effective dipole length adβ = md2β/(3πϵ0ℏ2). Ci(x) is the cosine integral which when x → 0, is

pathological but vanishes after antisymmetrization of the cross section. In the expression for fh.p.,

the summation index L is used as a proxy for the even quantum numbers ℓ, with the factor of 2

accounted for by each term in the sum explicitly.

At the resonant shielding field strength, subplot (b) of Fig. 2.6 shows that the sum over L is

convergent, and partial-waves of ℓ > 2 contribute but a small amount to the scattering amplitude

of KRb molecules. A comparison of the anisotropic components of the scattering amplitudes with

partial waves truncated at ℓmax = 2 (solid black curve) and ℓmax = 100 (dashed red curve) is

plotted in subplot (a) of Fig. 2.6 against the momentum transfer inclination angle θq. These curves

are maximally separated at θq = 0, π with an absolute relative error of ∼ 9%. Truncating the sum at

ℓ = 2, the scattering amplitude is simply given as fE,Born ≈ fs+ fd. At this level of approximation,

the angular dependence of this scattering amplitude exactly resembles that between 2 regular point

dipoles [35]

fE,Born ≈ fs + adeff

(
(k̂ · Ê − k̂′ · Ê)2

(1− k̂ · k̂′)
− 2

3

)
, (2.42)

with an effective dipole length

adeff =
md2β

8πϵ0ℏ2

(
1− 4

3
√
3
− d2α
d2β

)
. (2.43)
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Antisymmetrizing Eq. (2.42) then results in the scattering amplitude identical to that in Eq. (2.23a),

up to a substitution of the effective dipole length.

Figure 2.6: Subplot (a) plots the anisotropic components of the scattering amplitude fd + fh.p.,
between static field shielded molecules, for partial-waves up to ℓmax = 2 (solid black curve) and
ℓmax = 100 (dashed red curve), as a function of θq. The scattering amplitudes are plotted in
units of adβ . Subplot (b) plots the coefficients (red circles) multiplying each partial-wave spherical
harmonic Yℓ,0 in fh.p., as a function of the angular momentum quantum number ℓ. A horizontal
zero-line is also plotted for reference.

Turns out, static field resonantly shielded 40K87Rb molecules collide at threshold just as point

dipoles would! Experimental evidence of this will be discussed a little down the road in Chap. 4.

2.2.2 Scattering of microwave shielded NaK molecules

Just like with static electric fields, polar molecules can also be shielded using microwave fields

[4, 42, 47, 48, 52–54]. The detailed shielding mechanism with these time-dependent fields is slightly

more involved, but has much the same flavor as with static fields: i.e. apply a microwave field that

dresses rotational states, have these dressed states repel via resonant dipole-dipole interactions, pick

the incident channel that has a repulsive barrier, and tune the microwaves such that the collision

follows this repulsive adiabat. Conveniently, Ref. [55] derives an effective potential relevant to elastic



23

scattering between microwave shielded molecules:

Vµ(r) =
C6

r6
[
1− (r̂ · Ê)4

]
+

d
2

4πϵ0r3
[
3(r̂ · Ê)2 − 1

]
, (2.44)

with circularly polarized microwaves, where d = d0/
√
12(1 + (∆/Ω)2) is the effective molecular

dipole moment and C6 = d40(1 + (∆/Ω)2)−3/2/(128π2ϵ20ℏΩ). Here Ω and ∆ are the Rabi frequency

and detuning of the microwave respectively. A y = 0 plane slice of Vµ(r) is provided in Fig. 2.7,

between 23Na40K molecules with molecular frame dipole moment d0 = 2.72 D, subjected to mi-

crowaves of Rabi frequency Ω = 2π× 15 MHz and detuning ∆ = 2π× 9.5 MHz. Chemical reactions

are suppressed with the shielding core, depicted as a white patch surrounding the coordinate origin

that saturates the color bar at Veff > 200Edd.
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Figure 2.7: A y = 0 plane slice of the effective microwave shielded potential between 23Na40K
molecules, in units of Edd (see Tab. 2.1). Circularly polarized microwaves are applied with Rabi
frequency Ω = 2π × 15 MHz and a detuning of ∆ = 2π × 9.5 MHz.
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With the long-ranged dipolar tail being, apart from an overall minus sign, identical to the

dipole-dipole potential between points dipoles [(2.15) but with µ0 replaced with ϵ−1
0 ], the close-to-

threshold differential cross section in microwave shielded molecules would be exactly that obtained

from Eqs. (2.23a) and (2.25) in Born approximation. In higher energy collisions, however, more

general solutions require close-coupling calculations. This is certainly also true for the case of static

field shielded molecules, but analysis here will focus on the case with microwaves.

2.2.2.1 Close-coupling calculations for non-threshold collisions

Close-coupling calculations are used to obtain scattering solutions of the time-independent

Schrödinger equation (2.6) with all relevant quantum degrees of freedom [56]. I compute these by

utilizing a log-derivative propagation method, which avoids direct evaluation of the radial wave-

function uEℓ,mℓ,ν
(r), but instead computes its logarithmic-derivative:

Y (r) = U−1(r)
∂U(r)

∂r
=
∂ logU(r)

∂r
, (2.45)

where U(r) is the fundamental matrix of uEℓ,mℓ,ν
(r) solutions. Conveniently, the effective potential

of Eq. (2.44) only requires us to consider 1 asymptotic channel for elastic scattering, so matrix

indices only need to be considered for partial waves. Then defining the matrices

D
ℓ′,m′

ℓ
ℓ,mℓ

= δℓ,ℓ′δmℓ,m
′
ℓ

d2

dr2
, (2.46a)

W
ℓ′,m′

ℓ
ℓ,mℓ

= δℓ,ℓ′δmℓ,m
′
ℓ

(
k2 − ℓ(ℓ+ 1)

r2

)
− 2µ

ℏ2
⟨ℓ,mℓ| V̂µ(r)

∣∣ℓ′,m′
ℓ

〉
, (2.46b)

with matrix elements of ⟨ℓ,mℓ| V̂µ(r) |ℓ′,m′
ℓ⟩ provided in App. A, this single-channel version of

Eq. (2.6) can be recast as the compact system of equations [D +W ]U = 0, or in terms of the

log-derivative,

Y ′(r) + Y 2(r) +W (r) = 0. (2.47)

In principle, the equation above can be solved numerically at a given collision energy E, by

propagating the log derivative matrix from r = 0 to r → ∞. In practice however, propagating to
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∞ is not possible so we only do so up to r = rmatch, then match Y (r) to the asymptotic solutions

where the distant colliders no longer interact. Moreover, we sidestep the issue of singularities at

the origin by imposing a short-range boundary condition by starting the propagation at a minimum

radius r = rmin. For our considerations of reactive molecules, we assume that short-range chemical

loss is universal so that the log-derivative matrix at rmin is diagonal and given as [34, 57]

Y ℓ,mℓ
ℓ,mℓ

(rmin) = −i
√
W ℓ,mℓ

ℓ,mℓ
(rmin). (2.48)

This boundary condition prevents dipolar scattering resonances [58, 59] which simplifies things. I’ve

chosen to do numerical propagation of Y (r) with an adaptive radial step size version of Johnson’s

algorithm [60]. For shielded collisions, the engineered short-range barrier typically extends out to

∼ 1000a0, so numerically accurate propagation can safely commence from rmin ∼ 100a0. On the

other hand, matching at long-range is done adaptively depending on the collision energy

rmatch =

√
ℏ2ℓmax(ℓmax + 1)

mE
+ 20ad, (2.49)

where ℓmax is the largest value of ℓ utilized in the calculation. Typically, we utilize ℓmax = 121 or as

many as is required for numerical convergence (i.e. adding more partial waves does not significantly

change the quantities of interest).

The asymptotic solutions to Eq. (2.6) arise by considering the domain where r is much larger

than the range of the potential, so that Eq. (2.6) is well approximated by(
d2

dr2
− ℓ(ℓ+ 1)

r2
+ k2

)
uE,ℓ,mℓ

(r) = 0. (2.50)

This asymptotic radial equation is solved with 2 independent solutions:

fE,ℓ(r) = krjℓ(kr), (2.51a)

gE,ℓ(r) = krnℓ(kr), (2.51b)

where jℓ(kr) and nℓ(kr) are the spherical Bessel and Neumann functions respectively. Then with

matrices

F
ℓ′,m′

ℓ
ℓ,mℓ

(r;E) = δℓ,ℓ′δmℓ,m
′
ℓ
fE,ℓ(r), (2.52a)
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G
ℓ′,m′

ℓ
ℓ,mℓ

(r;E) = δℓ,ℓ′δmℓ,m
′
ℓ
gE,ℓ(r), (2.52b)

arbitrary solutions to Eq. (2.6) can be written as

U(r) =N [F (r)−KG(r)] , (2.53)

where K is the reactance matrix that is responsible for matching the numerical scattering solutions

U to the asymptotic solutions in Eq. (2.52) at r = rmatch. In particular, the off-diagonal elements

of K provide information on the channel couplings that arise due to the interaction potential for a

given incident collision channel. The matrix N is relevant only for normalization. The reactance

matrix can be written in terms of the logarithmic derivative via

K =
F (r)Y (r)− ∂

∂rF (r)

G(r)Y (r)− ∂
∂rG(r)

∣∣∣∣∣
r=rmatch

, (2.54)

from which we can compute other scattering matrices via the relations [1]

S =
I + iK

I − iK
, (2.55a)

T = i(S − I). (2.55b)

Carrying out the algorithm just described gives the integral cross section with Vµ(r), over a

broad range of collision energiesE. The resulting energy dependence is plotted in Fig. 2.8 (solid black

curve), where I compare it with the integral cross section between point dipole scatterers (dotted

blue curve) with Vdd(r). For comparison, I also plot the low energy Born and high energy Eikonal

[1] approximations with dashed red lines. Worth pointing out is that the collision energy in Fig. 2.8

is given in units of dipole energy Edd (see Tab. 2.1), which scales as d−4. Larger dipole moments

would therefore require ever lower energies to reach the threshold regime, a problem faced by gases

of diatomic molecules even at sub-microKelvin temperatures. Access to the differential cross section

from close-coupling calculations is therefore important for studying ultracold molecular gases, as

will become clear in the following chapter.
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Figure 2.8: Energy dependence of the angular averaged total cross section σ between microwave
shielded 23Na40K (dashed black curve). The energy dependence clearly differs from the total cross
section between fermionic point dipoles (dotted blue curve). For comparison, I plot the low energy
Born and high energy Eikonal approximations with dashed red lines. The inset shows a y = 0
slice of the effective microwave shielding interaction potential, with Rabi frequency Ω = 2π × 15
MHz and microwave detuning ∆ = 2π × 9.5 MHz. The shielding core is depicted as a white patch
surrounding the coordinate origin which saturates the colorbar at Veff > 200Edd. Coordinate axes
are plotted in units of 103 Bohr radii a0.



Chapter 3

The Jostle and Bustle of Dipoles

Step back a little. This chapter zooms out from the microscopic collisional physics and

instead, explores the resultant collective behavior of a whole ensemble of dipolar colliders. At

ultracold but not yet quantum degenerate temperatures, the constituent particles of the gas whiz

around on classical trajectories where every once in a while, two of them collide (cue flashbacks from

Chap. 2). Such interplay of classical motion with quantum scattering is most readily treated with

the celebrated Boltzmann transport equation, a cornerstone for dynamical studies of rarefied gases

in non-equilibrium statistical mechanics. What’s to come is a short introduction to the Boltzmann

equation and the approaches I use to solve it.

3.1 The Boltzmann transport equation

The state of a classical point particle of mass m is fully characterized by its position r and

momentum p. A statistical ensemble of such identical particles can then be described by a phase

space distribution f(r,p, t), that gives the differential number of particles dN within a differential

volume d3rd3p at position r and time t, with momentum p. Describing the gas collectively, this

distribution is taken to be normalized over phase space such that the integral
∫
d3rd3pf(r,p, t),

evaluates to the total number of ensemble particles N . In general, dynamical evolution of f involves

a combination of advective transport, response to applied forces and collisions, all of which are
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encapsulated by the Boltzmann equation [61, 62](
∂

∂t
+
p

m
·∇︸ ︷︷ ︸

advection

−∇V (r) ·∇p︸ ︷︷ ︸
response

)
f(r,p, t) = Icoll[f ]︸ ︷︷ ︸

collisions

, (3.1)

where V (r) is any external potential felt by the particles and ∇p is the gradient operator on

momentum coordinates. For most of what follows, the confinement will be taken as a harmonic

trap

V (r) =
1

2
m
∑
i

ω2
i r

2
i , (3.2)

with harmonic trapping frequencies ωi, which is a good approximation to the optical potentials

normally used to confine ultracold gases (see App. B for further details).

A fundamental property of classical gases is that once brought out-of-equilibrium and left

alone, they will return to thermal equilibrium as is mandated by the second law of thermodynamics

[63]. A heat death foretold, although phrased slightly differently, by Boltzmann [64]. When dilute,

the route to thermalization occurs primarily by means of two-body collisions, incorporated in the

Boltzmann equation via the entropy generating collision integral

Icoll[f ] =
∫
d3p1
m

|p− p1|
∫
dΩ′ dσ

dΩ′
[
f ′f ′1

(
1± h3f

) (
1± h3f1

)
− ff1

(
1± h3f ′

) (
1± h3f ′1

)]
.

(3.3)

As is conventional, the expression above uses the shorthand notations f1 = f(r,p1, t) and primes to

indicate the post-collision distributions of collision partners. The collision integral in Eq. (3.3) above

has been modified from its purely classical form by the addition of quantum statistical factors ±h3f

(+ for collisional enhancement in Bose gases and − for Pauli blocking in Fermi gases) [65–67] with

Planck’s constant h. Although relevant to the discussions of evaporative cooling in Chap. 6, much

of this thesis is concerned with temperatures where the thermal de Broglie wavelength is far smaller

than the mean particle spacing. This regime lends to negligibly small phase space occupancies

within h3, so we ignore these factors unless otherwise stated:

Icoll[f ] ≈
∫
d3p1
m

|p− p1|
∫
dΩ′ dσ

dΩ′
(
f ′f ′1 − ff1

)
. (3.4)
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At its final thermalized state, the entropy of a gas is maximized and so requires that the

collision integral vanishes identically. This statement is a tenet of the Boltzmann H-theorem [62],

which leads to the equilibrium Maxwell-Boltzmann solution

f eq(r,p) = neq(r)ceq(p), (3.5a)

where, neq(r) =
N

Zr
exp

(
−V (r)

kBT

)
, (3.5b)

ceq(p) =
1

Zp
exp

(
− p2

2mkBT

)
, (3.5c)

with partition functions Zr =
∫
d3r exp

(
−V (r)

kBT

)
and Zp = (2πmkBT )

3/2.

Nonequilibrium solutions to Eq. (3.1) on the other hand, are less readily available to us [68],

especially so when dealing with dipoles and their anisotropic cross sections. In particular circum-

stances, taking the gas only perturbatively away from equilibrium permits simpler approximate

treatments of the gas dynamics. Aided by a suitable choice of a nonequilibrium ansatz for f(r,p, t),

a closed set of ordinary differential equations that track ensemble averaged observables can then be

derived [62, 69]. Here’s one way to do that.

3.2 Variational solutions: Gaussians, Gaussians, Gaussians!

Following the Maxwell Boltzmann distribution of Eq. (3.5) at thermal equilibrium, it is plau-

sible that weak perturbations will leave f(r,p, t) approximately Gaussian [68]. When asserted in

real space, the even property of Gaussians restricts the types of perturbations to ones that do not

change the gas’ center of mass. But even with such a restriction, Gaussians take us a long way for

the experiments of interest to this thesis. Enacting this approximation for nonequilibrium studies

requires the spatial and momentum variances, ⟨r2j ⟩ and ⟨p2j ⟩, to be made time-dependent:

f(r,p, t) = c(p, t)n(r, t); (3.6a)

c(p, t) ≡
∏
j

1√
2π⟨p2j ⟩(t)

exp

(
−

p2j
2⟨p2j ⟩(t)

)
, (3.6b)

n(r, t) ≡ N
∏
j

1√
2π⟨r2j ⟩(t)

exp

(
−

r2j
2⟨r2j ⟩(t)

)
, (3.6c)
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with subscripts j = x, y, z (see Fig. 3.1). Angle brackets are used to denote a phase space average:

⟨. . .⟩ = 1

N

∫∫
d3pd3rf(r,p, t)(. . .). (3.7)

px

c(px, t)

⟨p2x⟩(t)

))((

Figure 3.1: Illustration of the Gaussian time-dependent ansatz for c(p, t) along x.

Utilizing the Gaussian ansatz then admits equations of motion for the ensemble averaged

values of arbitrary dynamical variables χ(r,p, t), an approach known as the method of averages [62].

The evolution equations governing ⟨χ⟩ are then derived by multiplying the Boltzmann equation by

χ and integrating over all of phase-space, detailed in App. C. Picking χ to come from the set of

nine variables {r2j , p2j , rjpj} with j = x, y, z, gives a closed set of equations [70, 71]:

d⟨r2j ⟩
dt

− 2

m
⟨rjpj⟩ = C[∆r2j ], (3.8a)

d⟨p2j ⟩
dt

+ 2mω2
j ⟨rjpj⟩ = C[∆p2j ], (3.8b)

d⟨rjpj⟩
dt

− 1

m

〈
p2j
〉
+mω2

j ⟨r2j ⟩ = C[∆rjpj ]. (3.8c)

In these equations, collisions are incorporated through the integral

C[∆χ] = 1

N

∫
d3r

∫∫
d3pd3p1

m
|p− p1|ff1

∫
dΩ′ dσ

dΩ′∆χ, (3.9)

where ∆χ ≡ χ′+χ′
1−χ−χ1 denotes the amount by which χ changes during a collision event. These

nonlinear, coupled differential equations are known as the Enskog equations of change. Arguably

easier to solve than Boltzmann’s partial differential equation (3.1), the simplicity of Eqs. (3.8)
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provides a ready-for-use theory of nondegenerate trapped gases. Conveniently, the momentum space

variances ⟨p2j ⟩ solved for in Eqs. (3.8) are directly the observables with time-of-flight thermometry,

a measurement protocol common to ultracold gas experiments.

Notice that, in the absence of collisions (C = 0), all three coordinate axes are decoupled in

Eqs. (3.8). In this case, the normal modes of the Enskog equations along each axis coordinate come

in two varieties: a breathing mode of angular frequency 2ωj , in which ⟨r2j ⟩ and ⟨p2j ⟩ are out of phase;

and a stationary mode of frequency ωj = 0, corresponding to the equilibrium configuration [70].

These modes are naturally modified by the presence of collisions which will, of course, depend on

the dipolar properties of the cross section [14]. A beast we now turn to taming.

3.2.1 Taming the collision integral

Eqs. (3.8) are only complete upon evaluation of the collision integrals (3.9). The key to

evaluating these integrals is the assertion of, you guessed it, a Gaussian ansatz for f(r,p, t) once

more. Recast into center of mass coordinates, we get a decomposition of momenta into a center of

mass component P = (p + p1)/2 and a relative component pr = p − p1. These coordinates grant

a reformulation of the collision integral from Eq. (3.9) to

C[∆χ] = 1

N

∫
d3rn2(r)

∫
d3prcr(pr)

pr
2m

∫
dΩ′ dσ

dΩ′∆χ (3.10)

where cr(pr) takes the same form of c(p) but with the replacement p → pr and all factors of 2

converted to 4. C[∆r2j ] vanishes since the collisions are assumed instantaneous and therefore do

not vary the particle positions (∆r2j = 0). Additionally, the collision integral for χ = rjpj is also

observed to vanish since

∆(rjpj) = rj∆pj = rj
(
P ′
j − Pj

)
, (3.11)

in which P ′
j = Pj during elastic collisions, so C[∆rjpj ] = 0.

As such, the only quantities left that provide a non-trivial collision integral term are χ = p2j ,

for which its collisional variation can be written only in terms of relative momenta as

∆p2j = p′2j + p′21,j − p2j − p21,j
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=
1

2

(
p′2r,j + P ′2

j − p2r,j − P 2
j

)
=

1

2

(
p′2r,j − p2r,j

)
. (3.12)

This reduction renders the integrals as separable (i.e. can be evaluated separately) in position and

momentum variables

C[∆p2j ] =
1

N

∫
d3rn2(r)

∫
d3prcr(pr)

pr
2m

∫
dΩ′ dσ

dΩ′∆p
2
j , (3.13)

with the integral over d3r evaluating to

⟨n⟩ = 1

N

∫
d3rn2(r) =

N

8π3/2
√
⟨x2⟩⟨y2⟩⟨z2⟩

. (3.14)

This leaves the integrals over post and pre-collision momenta.

Evaluating the momentum integrals in Eq. (3.13) is a difficult task for dipoles, predominantly

because the differential cross-section is anisotropic. Consistency therefore requires a suitable frame

transformation, for which I adopt one where the lab-frame (LF) is defined such that the dipole

alignment axis points relative to it as Ê = (sinΘ, 0, cosΘ)T , and a collision-frame (CF) defined by

the relative momenta of collision partners with ẑCF = p̂r = (sin θLF cosϕLF, sin θLF sinϕLF, cos θLF).

In principle, the transverse axes could be defined to your liking so long as x̂CF · ẑCF = 0 and

ŷCF = ẑCF × x̂CF, but the ones I chose were

x̂CF =


sinϕLF

− cosϕLF

0

 , ŷCF =


cos θLF cosϕLF

cos θLF sinϕLF

− sin θLF

 . (3.15)

It is necessary to perform integrals over both the lab-frame coordinates {pr, θLF, ϕLF} in

which Θ is defined, and collision-frame coordinates {θCF, ϕCF} that defines the post-collision relative

momentum (the subscript CF is used instead of primes to disambiguate frames). A visualization of

these two frames is provided in Fig. 3.2. As such, a transformation that relates these two sets of
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xCF

yCF

zCF

xLF

zLF
Ê

Θ

OLF

collisioncollision

η

p

p1

pr

Figure 3.2: Visualization of 2 colliding partners (red spheres) relative to the collision-frame (CF)
and lab-frame (LF). The collision frame (black) is defined in the laboratory frame (blue) with the
relative collision momenta. The angle η is that between the vectors pr and Ê.

variables is necessary and constructed using the method of direction cosines

R(CF → LF) =


x̂LF · x̂CF x̂LF · ŷCF x̂LF · ẑCF

ŷLF · x̂CF ŷLF · ŷCF ŷLF · ẑCF

ẑLF · x̂CF ẑLF · ŷCF ẑLF · ẑCF



=


sinϕLF cos θLF cosϕLF sin θLF cosϕLF

− cosϕLF cos θLF sinϕLF sin θLF sinϕLF

0 − sin θLF cos θLF

 . (3.16)

With this, the differential cross-section can be obtained in the CF with Eqs. (2.25) and (2.23a), for

which the relevant unit vectors are given as

k̂CF =


0

0

1

 , k̂′CF =


sin θCF cosϕCF

sin θCF sinϕCF

cos θCF

 , ÊCF =


sinΘ sinϕLF

sinΘ cos θLF cosϕLF − cosΘ sin θLF

sinΘ sin θLF cosϕLF + cosΘ cos θLF

 , (3.17)

denoting k̂ = p̂r. These result in the dot product terms

k̂ · k̂′ = cos θCF, (3.18a)
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k̂ · Ê = sinΘ sin θLF cosϕLF + cosΘ cos θLF, (3.18b)

k̂′ · Ê = sin θCF cosϕCF sin θLF sinϕLF

+ sin θCF sinϕCF (sinΘ cos θLF cosϕLF − cosΘ sin θLF)

+ cos θCF (sinΘ sin θLF cosϕLF + cosΘ cos θLF) . (3.18c)

In these coordinates, the integral over post-collision angles dΩ′ can then be performed in coordinates

defined by the LF and CF:

I(CF)
p (pr, θ, ϕ) ≡

∫
dΩ′

(
dσ(0)

dΩ′ +
dσ(1)

dΩ′ +
dσ(2)

dΩ′

)
∆p2j , (3.19)

where we utilize the threshold dipolar differential cross-section [see Eqs. (2.25) and (2.23a)] and

factorized it into terms of various powers in ad (denoted with superscripts)

dσ

dΩ′ (Θ) =
dσ(0)

dΩ′ (Θ) +
dσ(1)

dΩ′ (Θ) +
dσ(2)

dΩ′ (Θ). (3.20)

to help with algebraic bookkeeping.

Now for the integral over LF coordinates, here comes an explicit perturbative approximation.

A Taylor expansion of cr(pr) is done up to first-order around thermal equilibrium

cr(pr) ≈ ceqr (pr)

[
1 + δpx

(
p2r sin

2 θLF cos2 ϕLF
4⟨p2z⟩0

− 1

2

)
+ δpy

(
p2r sin

2 θLF sin2 ϕLF
4⟨p2z⟩0

− 1

2

)
+ δpz

(
p2r cos

2 θ

4⟨p2z⟩0
− 1

2

)]
, (3.21)

where

δpj ≡
⟨p2j ⟩
⟨p2z⟩0

− 1 (3.22)

ceqr (pr) ≡
1

(4π⟨p2z⟩0)3/2
exp

(
− p2r
4⟨p2z⟩0

)
, (3.23)

with ceqr (pr) being the equilibrium distribution of relative momenta. It is noted that all terms in

cr(pr) with constant coefficients multiplying ceqr (pr) are trivial since the collision integral vanishes

at thermal equilibrium. Putting all these integrals with Eq. (3.14) and Eq. (3.19) together gives

C[∆p2j ] = ⟨n⟩
∫
d3prcr(pr)

pr
2m

I(CF)
p (pr, θLF, ϕLF). (3.24)
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The remaining legwork of integration can be handed off to your favorite symbolic software. The one

I used was Mathematica® [72]. For the reader’s convenience, I tabulate all the analytic collision

integrals below. For bosons (B), they are:

CB[∆p2x] ≈
(
8N

15π

)(
mω3a2eff
kBT0

)[
⟨p2y⟩+ ⟨p2z⟩ − 2⟨p2x⟩

]
+

(
64N

105π

)(
mω3asad
kBT0

)[ (
⟨p2x⟩ − ⟨p2y⟩

)
cos(2Θ)− 5⟨p2x⟩+ 2⟨p2y⟩+ 3⟨p2z⟩

]
+

(
4N

315π

)(
mω3a2d
kBT0

)[ (
⟨p2z⟩ − ⟨p2x⟩

)
cos(4Θ)

− 4
(
⟨p2x⟩ − ⟨p2y⟩

)
cos(2Θ) + 61⟨p2x⟩ − 28⟨p2y⟩ − 33⟨p2z⟩

]
, (3.25a)

CB[∆p2y] ≈
(
8N

15π

)(
mω3a2eff
kBT0

)[
⟨p2x⟩+ ⟨p2z⟩ − 2⟨p2y⟩

]
−
(
64N

105π

)(
mω3asad
kBT0

)[ (
⟨p2x⟩ − ⟨p2z⟩

)
cos(2Θ)− 2⟨p2x⟩+ 4⟨p2y⟩ − 2⟨p2z⟩

]
+

(
16N

315π

)(
mω3a2d
kBT0

)[ (
⟨p2x⟩ − ⟨p2z⟩

)
cos(2Θ)− 7⟨p2x⟩+ 14⟨p2y⟩ − 7⟨p2z⟩

]
, (3.25b)

CB[∆p2z] ≈
(
8N

15π

)(
mω3a2eff
kBT0

)[
⟨p2x⟩+ ⟨p2y⟩ − 2⟨p2z⟩

]
+

(
64N

105π

)(
mω3asad
kBT0

)[ (
⟨p2y⟩ − ⟨p2z⟩

)
cos(2Θ) + 3⟨p2x⟩+ 2⟨p2y⟩ − 5⟨p2z⟩

]
+

(
4N

315π

)(
mω3a2d
kBT0

)[ (
⟨p2x⟩ − ⟨p2z⟩

)
cos(4Θ)

− 4
(
⟨p2y⟩ − ⟨p2z⟩

)
cos(2Θ)− 33⟨p2x⟩ − 28⟨p2y⟩+ 61⟨p2z⟩

]
, (3.25c)

where a2eff = 2
(
a2s − 4asad/3 + 4a2d/9

)
. In the absence of dipoles, the expressions above reduce to

Cs[∆p2⊥] =
(
16N

15π

)(
mω3a2s
kBT0

)[
⟨p2z⟩ − ⟨p2⊥⟩

]
, (3.26a)

Cs[∆p2z] =
(
16N

15π

)(
mω3a2s
kBT0

)[
⟨p2⊥⟩ − ⟨p2z⟩

]
, (3.26b)

with purely s-wave scattering, where p2⊥ = p2x + p2y.

Likewise, for fermions (F), the collision integrals are:

CF[∆p2x] =
(

4N

315π

)(
mω3a2d
kBT0

)[
4
(
⟨p2x⟩ − ⟨p2y⟩

)
cos(2Θ) + 17

(
⟨p2x⟩ − ⟨p2z⟩

)
cos(4Θ)

− 45⟨p2x⟩+ 12⟨p2y⟩+ 33⟨p2z⟩
]
, (3.27a)
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CF[∆p2y] =
(
16N

315π

)(
mω3a2d
kBT0

)[
3⟨p2x⟩ − 6⟨p2y⟩+ 3⟨p2z⟩ −

(
⟨p2x⟩ − ⟨p2z⟩

)
cos(2Θ)

]
, (3.27b)

CF[∆p2z] =
(

4N

315π

)(
mω3a2d
kBT0

)[
4
(
⟨p2y⟩ − ⟨p2z⟩

)
cos(2Θ)− 17

(
⟨p2x⟩ − ⟨p2z⟩

)
cos(4Θ)

+ 33⟨p2x⟩+ 12⟨p2y⟩ − 45⟨p2z⟩
]
. (3.27c)

Refs. [14, 15] also have all these collision integrals listed.

I should emphasize that these analytic forms hold only in the close-to-threshold scattering

regime (see Sec. 2.1.4), otherwise, numerical integrators are required to compute C[∆p2i ]. Moreover,

caution should be taken for temperatures approaching absolute zero, where quantum statistics start

to have a significant effect on the gas ensemble distributions. In particular, the equilibrium particle

distribution deviates from one described by Maxwell-Boltzmann statistics, in turn requiring that the

collision integral also be modified to satisfy the quantum Boltzmann equation (3.3). These quantum

statistical corrections, along with more general forms of out-of-equilibrium dynamics, require more

general methods of solutions. So as not to leave you hanging, let me tell you about a solution

method of the numerical variety I’ve used.

3.3 Direct simulation Monte Carlo solutions

Time evolution of a dynamical system can be performed numerically by advancing the equa-

tions of motion with discrete time steps. Ideally, these time steps are made adaptive to efficiently

cater for the various phenomena of interest that might occur on different time scales [73]. For the

Boltzmann equation, dynamics that arise from it can be separated into two main processes: a) clas-

sical Hamiltonian evolution in phase space [left-hand side of Eq. (3.1)], and b) two-body collisional

interactions [right-hand side of Eq. (3.1)]. This partitioning implies two distinct time scales relevant

to the solver, τV and τcoll, that can be related to a characteristic confinement potential time scale

and the collision rate respectively. For instance, a harmonically trapped dilute gas would have these

time scales set by

τV = 2πω−1, (3.28a)
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τcoll = ⟨nσvr⟩−1, (3.28b)

where ω is the geometric mean of the harmonic trapping frequencies, σ =
∫
dΩ′ dσ

dΩ′ is the total

cross section and vr is the relative velocity of collision partners. My implementation thus takes

Hamiltonian evolution to occur in time steps of size ∆t ≪ τV , and collisions in time steps of size

δt ≪ τcoll. I further allow δt to change during the simulation, setting it as a function of the mean

collision rate at any given time 1 . A visual summary of the numerical time integration scheme is

provided in Fig. 3.3.

t

t0 t0 +∆t t0 + 2∆t

. . .
t0 + n∆t

. . .

t0 + δt

(collisions)

. . .
t0 +mδt

(collisions)

. . .

Figure 3.3: The numerical time integration scheme. Two time steps are utilized: a) ∆t for
Hamiltonian evolution of the particles under V (r), and b) δt for collisional processes (m,n ∈ N).

3.3.1 Evolution in classical phase space

As formulated, the phase space distribution is a continuous function of particle positions and

momenta, and so requires an appropriate discretization scheme for numerical simulation. I do so

by sampling points in phase space which I refer to as “test particles", such that

f(r,p) ≈ ξ

NT∑
k=1

δ3(r − r(k))δ3(p− p(k)), (3.29)

where ξ = N/NT is the ratio of the actual number of particles to test particles. A continuous

distribution is then retrieved in the limit of NT → ∞. Each test particle undergoes a classical

trajectory subject to the potential V (r), progressing in time numerically with the Störmer-Verlet
1 In studies where large variations in local density are expected, δt could be a function of local density and velocity

distributions. This would however be way more involved, so I have kept δt as defined by the mean collision rate.



39

symplectic integrator method:

q(k) = r(k)(t) +
∆t

2m
p(k)(t), (3.30a)

p(k)(t+∆t) = p(k)(t) + F (k)∆t, (3.30b)

r(k)(t+∆t) = q(k) +
∆t

2m
p(k)(t+∆t), (3.30c)

which is constructed to preserve Hamiltonian flow [74]. Superscripts k on the phase space variables

index the various test particles, while ∆t is the numerical time step size as previously prescribed.

3.3.2 The two-body collision integral

To tackle the collision integral of Eq. (3.3), I utilize the direct simulation Monte Carlo (DSMC)

method [75, 76] as a means of numerical integration. At time intervals of δt, the DSMC recipe appor-

tions various chunks of 3-dimensional real space volume for Monte Carlo sampling, by constructing

a discrete spatial grid. Just as is done for time, I adopt a locally adaptive space-discretization

scheme that allows the grid to account for local density variations, performed in two phases. Phase

one is the construction of a master-grid, by first establishing the relevant simulation volume from

the ensemble of test particle positions {r(k)}:

Vsim =
3∏

j=1

(
max
k

{r(k)j } −min
k

{r(k)j }
)
. (3.31)

This volume is then partitioned uniformly into cells of equal volume ∆Vsim, and test particles binned

into them based on their positions (visualized in subplot a of Fig. 3.4). The number of such cells is

preferably set such that the hyperparameter2 (∆Vsim)
1/3 is much larger than the molecular mean-

free path, since phase two proceeds to further refine the grid with an octree algorithm [77]. By

taking each master-grid cell and recursively subdividing it into eight octants, the octree algorithm

terminates only when each octant has at most Nmax
oc test particles, another hyperparameter. In my

implementation, each octree division of a sub-volume is performed such that the central vertex is

located at the barycentric coordinate of simulation particles in that sub-volume. An example of
2 Hyperparameters are numerical parameters tuned by the user for optimality of computational efficiency and

stochastic convergence.
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the octree refinement algorithm (with uniform subdivisions) applied to a system of NT = 100 test

particles and Nmax
oc = 10, is provided in Fig. 3.4.

Figure 3.4: Visualization of the octree algorithm refinement (b), applied to the master-grid (a),
projected in the x, y-plane. There are initially 8 master-grid cells with N = 200, and Nmax

cell = 3,
with Gaussian distributed points in arbitrary units.

When sufficiently discretized, collisions can be assumed to only occur within each grid cell

and not between them. Collisions between particles result in them exiting a phase space volume

element d3rd3p, at a rate given by

d3rd3p
δfout

δt
= d3rd3pIout

coll[f ], (3.32a)

where Iout
coll[f ] = −

∫
d3p1
m

|p− p1|
∫
dΩ′ dσ

dΩ′ ff1
(
1± h3f ′

) (
1± h3f ′1

)
. (3.32b)

In the simulation, products of pre-scattering distributions in a differential phase space volume

d3rd3pff1, are replaced by pairs of test particles in any given grid cell along with their associated

momenta p and p1. In the event of a collision, the post-scattering momenta p′ and p′1, are then

sampled from dσ/dΩ′ to obtain an approximation of d3rd3pf ′f ′1. Application of these steps to all

grid cells effectively results in Monte Carlo integration of the collision integral for a time step δt.
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In practice, collision sampling described above is performed sequentially by determining a) collision

occurrences, and then b) post-collision momenta.

In step (a), a collision occurs between test particles i and j, with probability

Pij = ξΓcoll(pij)δt (3.33)

with a local collision rate between particles i and j of relative momentum pij = pi − pj defined as:

Γcoll =
(1 +Q)2

∆Vcell
σ(pij)

pij
m
, (3.34)

where quantum statistics requires Q = 1 for bosons or Q = 0 for fermions. In general, the total cross

section comprises a sum of elastic and inelastic parts σ = σel + σinel, the latter of which typically

leads to 2-body losses from the trap. If present, an additional step (a′) is added which removes

particle pairs from the simulation with probability Ploss = σinel/σ. Otherwise, a collision progresses

the simulation to step (b), where the elastic portion of Eq. (3.33) carves out an upper bound for its

sampling domain. Particle momenta following an elastic collision are obtained from the anisotropic

dipolar differential cross section of Ref. [35], with an accept-reject scheme [75].

3.3.2.1 Accept-reject collision sampling

An elastic collision causes a rotation of the relative momentum vector between colliders,

directing the particles along a new set of scattering angles (θ′, ϕ′). Numerical instances of these

angles (θ̄′, ϕ̄′) are sampled from a probability distribution

p(p̂r, p̂
′
r) =

1

σel(p̂r)

dσel
dΩ

(p̂r, p̂
′
r) sin θ

′, (3.35)

where I adopt the convention in which the distribution is defined with the Jacobian sin θ′. This has

a concise form for both bosons (B) and fermions (F), written explicitly in the collision-frame (CF)

of Sec. 3.2.1 as [76]:

pB(θ
′, ϕ′; η) =

2
[
2− 3ã− 3 cos2 η − 3 cos2 ϕ′ sin2 η

]2
sin θ′

π [72ã2 + 11− 30 cos2 η + 27 cos4 η − 24ã (1− 3 cos2 η)]
, (3.36a)

pF (θ
′, ϕ′; η) =

6
[
cos θ cos2 η − cos2 ϕ′ sin2 η + cosϕ′ sin θ′ sin(2η)

]2
sin θ′

π [3 + 18 cos2 η − 13 cos4 η]
, (3.36b)
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where ã = as/ad and η = cos−1(p̂r · Ê). However, sampling directly from these distributions is

not straightforward, so an accept-reject algorithm is employed as an alternative. This algorithm

proceeds as follows:

(1) First, sample the variables (θ̄′, ϕ̄′) and ū by

θ̄′ = πrθ′ , (3.37a)

ϕ̄′ = 2πrϕ′ , (3.37b)

ū = ru, (3.37c)

where rθ′ , rϕ′ and ru are all random samples from a uniform distribution U(0, 1);

(2) compute a normalization M = 2π2p
(max)
F,B (θ̄′, ϕ̄′; η), where

p
(max)
F,B (η) = max

θ′,ϕ′

{
pF,B(θ

′, ϕ′; η)
}
; (3.38)

(3) check if the rejection criterion:

ū <
pF,B(θ̄

′, ϕ̄′; η)

Mg(θ̄′, ϕ̄′)
, (3.39)

is met. If met, (θ̄, ϕ̄) is accepted as a realization of effective sampling from pF,B. Otherwise,

start over from step 1 until the condition is met.

Because the scattering angles are sampled within the collision frame, it is necessary to perform a

frame rotation to convert these angles back into the lab frame. The post-collision relative momentum

vector in the lab-frame (LF) is given by

p′r = ê
CF
1 sin θ′ cosϕ′ + êCF

2 sin θ′ sinϕ′ + êCF
3 cos θ′, (3.40)

as written in terms of the collision-frame unit-vectors

êCF
1 =


cos γ cos θLF cosϕLF − sin γ sinϕLF

cos γ cos θLF sinϕLF + sin γ cosϕLF

− cos γ sin θLF

 , (3.41a)
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êCF
2 =


− sin γ cos θLF cosϕLF − cos γ sinϕLF

− sin γ cos θLF sinϕLF + cos γ cosϕLF

sin γ sin θLF

 , (3.41b)

êCF
3 =


sin θLF cosϕLF

sin θLF sinϕLF

cos θLF

 , (3.41c)

where

γ = tan−1

(
sinϕ sinΘ

sin θ cosΘ− cos θ cosϕ sinΘ

)
. (3.42)

These coordinate transformations can be rather confusing, but I refer the reader back to Fig. 3.2 as

a visual aid.

Convergence of the accept-reject algorithm to pF (θ, ϕ, η) with an increasing number of samples

is illustrated in Fig. 3.5. As plotted, I have set η = π/4 and utilized (a) 105, (b) 106 and (c) 107

random samples to approximate the analytic distribution (d). The respective color bar ranges

corresponding to each subplot also show a suppression of statistical fluctuations with more samples.

3.3.2.2 Accounting for quantum statistics

Before calling it a day, quantum mechanics requires of us one additional accept-reject step

[78]. The collisions we simulate here do not simply occur in a vacuum, but are in fact, surrounded

by a sea of many other quantum bodies. And these quantum bodies will have a say on the final

scattering state outcome. Bosons accept more of these final states, while fermions do quite the

opposite. Consequently, the sampled post-collision momenta are only accepted with probability

PQ
ij =

(
1± h3f ′i

) (
1± h3f ′j

)
(1 +Q)2

, (3.43)

otherwise no collision is said to have occurred in the first place. Going back to retroactively throw

away simulated collisions is a little cumbersome, but that is just what quantum mechanics requires.
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Figure 3.5: The probability distribution pF (θ, ϕ, η) with η = π/4 (d), and its approximations as
obtained from the accept-reject algorithm with (a) 105, (b) 106 and (c) 107 random samples.

Computing f ′ in Eq. (3.43) is, however, problematic since the particle distributions f ′i and f ′j

are discretized in the simulation. We resolve this issue by “smearing" the δ-functions in Eq. (3.29)

with a Gaussian convolutional kernel [78–80]:

f(r,p, t) ≈ ξ

NT∑
k=1

δ3(r − r(k))δ3(p− p(k))

→ ξ

NT∑
k=1

 3∏
j=1

e−(r−rk)
2/w2

j√
πw2

j

 3∏
j=1

e
−(p−pk)

2/w2
pj√

πw2
pj

 . (3.44)

These Gaussian kernels are taken to have spatial width wj , and momentum width wpj , such that the

discretization noise is smoothed out while the distribution function remains physically consistent.
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These criteria are encapsulated by the conditions [79]:

wpwr ≫ h

(
N

Nsim

)1/3

, (3.45a)

wi ≪ Ri
T

TF
, (3.45b)

wp ≪ pF
T

TF
, (3.45c)

where pF = ℏ(3π2⟨n⟩)1/3 is the Fermi momentum, Ri = pF /(mωi) are the Thomas-Fermi radii and

bars denote geometric means. We use widths defined by the geometric means of these upper and

lower bounds, multiplied by yet another hyperparameter β. With a large number of test particles,

it is sufficient for smearing to be done with Ns < NT random samples of test particles rather than

all of them. This greatly speeds up simulation time while maintaining physical accuracy, given that

Ns and β are chosen appropriately. Fig. 3.6 shows an example of a Gaussian distributed ensemble

of Ns = NT = 1000 particles (a), smeared by a Gaussian kernel (b) as described above and plotted

in the x, y-plane. All units used for this plot are arbitrary.

Figure 3.6: A discrete ensemble of 1000 Gaussian distributed particles (a), smeared against a
Gaussian kernel to generate a smooth distribution (b). The plot is a projection of the distributions
in the y = 0 plane in arbitrary units.

Only now, does the algorithm conclude. To summarize, I have laid out an efficient imple-

mentation of the DSMC method to numerically integrate the Boltzmann equation. Combining
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Hamiltonian evolution in discrete phase space (3.3.1) with Monte Carlo sampling of 2-body col-

lisions (3.3.2), this tool allows for accurate and general simulations of dipolar gas dynamics. An

isolated theorist’s proxy for running real ultracold experiments!

3.3.3 Some considerations and comments

I will end this chapter with some final practical tips and remark on issues one might encounter.

For one, when simulating a gas with very large collision rates, computing collisions by iterating over

all grid cells can be extremely computationally expensive. This time cost can, however, be mitigated

with parallel processing in the far from degenerate regime. Without the need to include quantum

statistics, the DSMC algorithm only samples collisions within each cell, making collision sampling

independent between cells and thus, parallelizable. But before you snatch up all the cores you can

get from your nearest Best Buy®, the computational overhead of dispatching collision computations

to multiple cores should be weighed against how much parallelization speed up you get over plain

sequential iteration. These time savings are pretty machine dependent, so the decision to parallelize

is best left to the hands of the programmer.

Upon construction of the DSMC solver, accurate simulations require you to ensure that your

numerics are appropriately converged. A good way to verify this is by convergence in distribution

[81]. Knowing that the Boltzmann equation necessarily brings a nonequilibrium gas of elastic

colliders back to thermal equilibrium, one could check that the DSMC solver satisfies this property

too. That is, the steady state phase space distribution of the gas, without the inclusion of quantum

statistics, should converge closer and closer to that in Eq. (3.5) as N increases. If not, one could

consider increasing the number of simulation test particles NT , or varying the maximum number of

simulation particles per grid cell Nmax
oc until such convergence is achieved. With quantum statistical

effects included, the simulation should instead converge to the equilibrium Bose-Einstein (BE) or

Fermi-Dirac (FD) distributions:

fBE(r,p) =
E2

2(ℏω)3

[
exp

(
E − µc
kBT

)
− 1

]−1

, (3.46a)



47

fFD(r,p) =
E2

2(ℏω)3

[
exp

(
E − µc
kBT

)
+ 1

]−1

, (3.46b)

where µc is the chemical potential defined such that
∫
f(E)dE = N . The Ns and β hyperparameters

must, therefore, also be tuned accordingly to ensure convergence in these distributions.

One final remark. When dealing with a bulk gas of dipoles, one might be concerned about long-

range forces modifying the particle dynamics. Conveniently though, the temperatures and densities

considered in this thesis mostly render these forces negligible. For quantitative reassurance, one

could compare the thermal energy to the average dipolar mean-field energy experienced per particle:

εmf =
N

24
√
π
h

(
σ⊥
σz

)
d2
[
1− 3 cos2(Θ)

]
4πϵ0σ2⊥σz

, (3.47a)

h(x) =
1 + 2x2

1− x2
− 3x2 arctanh

√
1− x2

(1− x2)3/2
, (3.47b)

derived in App. D. For the most part, εmf/(kBT ) remains ≲ 0.01 for the regimes of interest, allowing

εmf to be safely ignored. But if one needed to simulate a gas with εmf ≳ kBT , say for polar molecules

with massive dipole moments, I’d recommend a pseudospectral method like those in Refs. [82, 83],

for efficient handling of dipolar mean-field forces.



Chapter 4

Return to Equilibrium I: Dilute Gases

Macroscopia? No, this is not an illusion1 ! This chapter explores the macroscopic anisotropy

that directly results from the microscopic anisotropies in dipolar scattering. Part one of a two-part

saga. More specifically, this manifestation of anisotropy in collective gas dynamics is studied in the

context of the gas’ route to equilibrium. I start first with the dilute case, where collisions occur

infrequently over the course of a dipole’s journey across the gaseous sample. Think offensive phase

with running backs trying to avoid tackles for a touchdown, as opposed to defensive phase with

defensive guards perpetually colliding into the opposing offense2 . The latter of which is likened to

the hydrodynamic regime of the next chapter.

4.1 Anisotropic thermalization of dilute dipolar gases

Although the Boltzmann equation preaches a certainty of thermalization, the rate at which

this equilibrium is achieved may vary in direction due to the anisotropy dipoles bring. These rates

can be probed in experiments known as cross-dimensional rethermalization, where a gas initially at

equilibrium is preferentially heated along a particular coordinate axis, then left alone to rethermalize.

Rethermalization occurs by means of elastic collisions that redistribute thermal energy throughout

the gas, at a rate proportional to the integral cross section, σ [84–87]. However, not every collision

counts the same toward rethermalization: if the differential cross section favors forward scattering,
1 Unless our universe is a simulation then perhaps it is one.
2 I don’t even watch American football (except for the Super Bowl halftime shows), but you can’t blame a physicist

for trying to draw analogies. Sko buffs!
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it is not useful, since the collision would have done nothing to redistribute energy into the other axes

not coincident with the incident one. A mantra of collisional thermalization that holds exceptionally

true for anisotropic scattering. Fig. 4.1 shows a cartoon of the cross-dimensional rethermalization

process and a schematic of collisions that aid or evade thermalization.

z

x

Êgas

))((
heating

heating

rethermalization

rethermalization

collisions

transverse scattering
(good)

forward scattering
(bad)

Figure 4.1: Cartoon of a cross-dimensional rethermalization experiment. Collisions that scatter
primarily into the transverse directions promote thermalization, whereas forward scattering hinders
it. Red indicates pre-collision colliders, while post-collision ones are blue.

4.1.1 How many collisions before one is thermalizing?

When dilute, a gas that is heated along the i-th coordinate will rethermalization along the j-th

coordinate at a rate γij(Θ), following the decay law of Eq. (3.8). This rate depends on the density

and temperature of the given experiment, whereby it is useful to compare the rethermalization rate

to a standard collision rate

γcoll = ⟨nσvr⟩. (4.1)

At threshold, σ is energy independent and permits the factorization ⟨n⟩σ⟨vr⟩, where σ is the integral

cross section, ⟨n⟩ is the average number density of the gas (3.14) and ⟨vr⟩ =
√
8kBT/(µπ) is the

mean collision velocity. Thus for relaxation considerations, the rethermalization rate is proportional

to the standard collision rate via

γij(Θ) =
γcoll

Nij(Θ)
, (4.2)
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whose proportionality constant Nij , is known as the number of collisions per rethermalization [84].

The number for rethermalization, a truncation of its full name I will adopt for succinctness, quantifies

the average number of collision instances required before a collision useful for thermalization occurs.

In a harmonic trap, the position and momentum widths, quantified by ⟨r2j ⟩ and ⟨p2j ⟩, will

experience more or less out-of-phase oscillations at the trap frequency en route to rethermalization.

Easing the extraction of rethermalization rates in theoretical studies then motivates the definition

of non-equilibrium pseudotemperatures:

Tj =
mω2

j ⟨rj2⟩
2kB

+
⟨pj2⟩
2mkB

, (4.3)

that suppresses trap oscillations in time-evolution. In fact, oscillations are innately suppressed

in time-of-flight thermometry common to ultracold experiments, making the quantity above the

relevant one to model. Then with experimental data, γij is extracted by fitting an exponential

decay curve to the measured time trace of kinetic temperature along each direction. An example of

such a fit is provided by the red dashed curve in Fig. 4.2, that is fitted to data (red diamonds) from

a real cross-dimensional rethermalization experiment with ultracold 166Er atoms done at Innsbruck

[2]. But more on this experiment later in Chap. 6.

Assuming that the rethermalization dynamics is dominated by a single decay rate, this rate can

be determined from short-time behavior of the decay and permits a derivation of analytic expressions

for N . I refer to this scheme as the short-time approximation. To formulate this approximation, I

define the phase space averaged quantity

⟨χj⟩ = kB(Tj − Teq), (4.4)

which quantifies the system’s deviation from its equilibration temperature Teq. From Eqs. (3.8), the

relaxation of ⟨χj⟩ would follow the differential equation d⟨χj⟩ = C[∆χj ]dt, approximated as

C[χj ] ≈ −γ⟨χj⟩, (4.5)

in the short-time approximation with a decay rate γ. The relation above thus identifies

γ = − 1

(Tj(t)− Teq)

dTj(t)
dt

∣∣∣∣
t=0

≈ −
C[∆p2j ]

2m (Tj(0)− Teq)
, (4.6)
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as the rethermalization rate.

Figure 4.2: Experimentally measured momentum space temperatures Tz (blue circles) and Ty (red
diamonds) after a trap frequency quench of the confining potential along y. The measurement was
performed at = 1 G and Θ = 0 for 166Er. The red dashed line is an exponential+sinusoidal fit to
the data. The black solid line denotes the results of the Enskog theory (3.8) for this specific data
set. The error bars denote the standard error for three repetitions. The inset shows a schematic of
the experimental setup. This plot is adapted from Ref. [2].

From γ and the standard collision rate ⟨n⟩σ⟨vr⟩, we can extract the value of Nij via the relation

in Eq. (4.2). As before, we consider an excitation of axis i, following which the rethermalization

rate is measured along axis j. This is modeled by taking axis i to have an initial out-of-equilibrium

pseudotemperature

Ti = T0 +
δi
kB
, (4.7)

where δi is a perturbance to the energy, while the initial temperatures along the 2 other axes are

simply T0. By construction of Eq. (4.6), δi stands as an auxiliary variable that cancels out in the

derivation. For clarity, I present an explicit derivation for Nxx with bosons as follows.
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An excitation along x results in the equilibration temperature

Teq =
2

3
T0 +

1

3

(
T0 +

δx
kB

)
= T0 +

δx
3kB

, (4.8)

which follows from the equipartition theorem. Then measuring the rethermalization along the x-

axis, the initial pseudotemperature deviation is inserted into the collision integral C[∆p2x] of Eq. 3.25,

to give

C[∆p2x] =
(
8Nm2ω3a2eff
15πkBT0

)
[−2δx] +

(
64Nm2ω3asad
105πkBT0

)
[δx cos(2Θ)− 5δx]

+

(
4Nm2ω3a2d
315πkBT0

)
[61δx − 4δx cos(2Θ)− δx cos(4Θ)] , (4.9)

where, to remind the reader, ω is the geometric mean of trapping frequencies. Dividing this by 2m

gives the thermalization rate

γxx = − C[∆p2x]
2m (Tx(0)− Teq)

= −3

2

C[∆p2x]
mδx

=

(
4Nm2ω3a2eff
5πkBT0

)
+

(
16Nm2ω3asad

35πkBT0

)
[5− cos(2Θ)]

+

(
Nm2ω3a2d
105πkBT0

)
[cos(4Θ) + 4 cos(2Θ)− 61] . (4.10)

Finally to get N , the mean collision rate is computed as

⟨n⟩σ⟨v⟩ = N

(
mω2

4πkBT0

)3/2(
8πa2s +

32π

45
a2d

)(
16kBT0
πm

)1/2

=
4Nm2ω3

(
45a2s + 4a2d

)
45πkBT0

, (4.11)

and divided by γ. Utilizing the procedure just described, analytic forms for all Nij are worked out

for bosons as

NB
xx(Θ) =

4
[
a2s + (4/45)a2d

]
a2eff (4/5) + adas (16/35) [5− cos(2Θ)] + a2d(1/105) [cos(4Θ) + 4 cos(2Θ)− 61]

, (4.12a)

NB
xy(Θ) =

4
[
a2s + (4/45)a2d

]
a2eff (4/5) + asad (32/35) [2− cos(2Θ)] + a2d (8/105) [cos(2Θ)− 7]

, (4.12b)

NB
xz(Θ) =

4
[
a2s + (4/45)a2d

]
a2eff (4/5) + asad (96/35) + a2d (2/105) [cos(4Θ)− 33]

, (4.12c)

NB
yy(Θ) =

4
[
a2s + (4/45)a2d

]
a2eff (4/5) + asad (64/35)− a2d (56/105)

, (4.12d)
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NB
yz(Θ) =

4
[
a2s + (4/45)a2d

]
a2eff (4/5) + asad (32/35) [2 + cos(2Θ)]− a2d (8/105) [cos(2Θ) + 7]

, (4.12e)

NB
zz(Θ) =

4
[
a2s + (4/45)a2d

]
a2eff (4/5) + asad (16/35) [5 + cos(2Θ)] + a2d (1/105) [cos(4Θ)− 4 cos(2Θ)− 61]

. (4.12f)

In the absence of dipoles, bosons with purely s-wave scattering require Ns = 2.5 collisions per

rethermalizing collision [88], a result obtained by setting ad = 0 in the expressions above. Fig. 4.3

plots Nxz as an illustrative example of its functional dependence on Θ and as (in units of ad).

Subplot (b) shows that after an initial decrease, Nxz increases for as ≳ 0.4ad – and thus the

thermalization loses efficiency – moving to the regime of contact dominated interaction, eventually

retrieving the pure s-wave scattering result. A similar plot appears in Ref. [2].

Figure 4.3: Subplot (a) shows the dependence of NB
xz on Θ and as, for as/ad = 0, 0.05, 0.1, 0.4 and

0.8. Subplot (b) shows the functional dependence of NB
xz on as at Θ = 0. The black dashed lines

show the values of N for s-wave and p-wave scattering, labeled respectively.

As for fermions, NF
ij are functions of only Θ, taking the much more concise forms:

N F
xx(Θ) =

112

45− 4 cos(2Θ)− 17 cos(4Θ)
, (4.13a)

N F
yx(Θ) =

14

3− cos(2Θ)
, (4.13b)

N F
zx(Θ) =

56

33− 17 cos(4Θ)
, (4.13c)
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NF
yy(Θ) =

14

3
, (4.13d)

NF
zy(Θ) =

14

3 + cos(2Θ)
, (4.13e)

NF
zz(Θ) =

112

45 + 4 cos(2Θ)− 17 cos(4Θ)
. (4.13f)

All the quantities above are plotted in Fig. 4.4, where symmetries imply Nij(Θ) = Nji(Θ). Ev-

idently, thermalization rates can vary drastically depending on how the dipoles are orientated in

space, presenting a tuning knob for thermalizing dynamics.

Figure 4.4: The analytically derived number of collisions per rethermalization for fermions NF
ij , as

a function of Θ for all nine excitation-rethermalization configurations.
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In certain situations like evaporative cooling (discussions to come in Chap. 6), the relevant

thermalization rate is not just that of a single axis, but one that is averaged over all of them:

γi =
1

3
(γix + γiy + γiz) =

γcoll
3

(
N−1

ix +N−1
iy +N−1

iz

)
, (4.14)

where i still remains the axis of excitation. The averaged number for rethermalization is therefore

extracted as

N i(Θ) = 3
(
N−1

ix (Θ) +N−1
iy (Θ) +N−1

iz (Θ)
)−1

= Nii(Θ), (4.15)

the diagonal elements of the non-averaged number of collisions. So the collective thermalization

rate is still tunable via the dipoles for any single-axis excitation.

4.1.2 Universal signatures of dipolar thermalization in KRb

In a recent groundbreaking work by the Ye group at JILA [3], a bulk gas of ultracold 40K87Rb

molecular fermions was made stable in three dimensions, facilitated by an electric field-induced

shielding resonance (see Sec. 2.2.1) that suppressed reactive losses by a factor of ∼ 30. The result-

ing favorable ratio of elastic to inelastic collisions enabled direct dipolar thermalization, with rate

depending on dipole orientation controllable by the external electric field.

Thermalization of these shielded molecules was demonstrated and characterized with exactly

the cross-dimensional thermalization experiments described above, with geometry shown in subplot

(a) of Fig. 4.5. Initially heated along the tightly confined y direction, elastic collisions then aid in

redistributing excess kinetic energy from y into x and z. Temperatures along each axis were extracted

by Gaussian fits to the gas cloud from time-of-flight imaging, resulting in the Tx and Ty data points

shown in Fig. 4.5. Rethermalization rates were then obtained by fitting these temperature data

points, after parametric excitation along y, to a set of coupled differential equations [89]:

dn

dt
= −KL(Ty + 2Tx)n

2 − n

2

1

Ty

dTy
dt

− n

2

1

Tx

dTx
dt

, (4.16a)

dTy
dt

=
n

4
KL(2Tx − Ty)Ty −

2Γth

3
(Ty − Tx) + cy, (4.16b)
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dTx
dt

=
n

4
KLTyTx +

Γth

3
(Ty − Tx) + cx, (4.16c)

where Γth,KL, cx, and cy are fit parameters corresponding to a rethermalization rate, two-body loss-

rate and background heating rates respectively. The latter 3 quantities are required because real

molecular experiments neither have perfect optical traps nor purely elastic scattering, a shocking

revelation for naive young Reuben back in 2021. Conversion of the experimental geometry into one

utilized in my theory is done by swapping the y and z axes labels.

Figure 4.5: Time evolution of the temperature for Θ = 45◦ (a) and Θ = 90◦ (b) after parametric
heating along y. The solid lines are fits to the thermalization model in Eq. (4.16). The thermalization
is faster at Θ = 45◦. The molecular gas is heated parametrically along the y direction to create an
initial condition of Ty(0) ≈ 2.5Tx(0), Tx(0) = Tz(0). Figure adapted from Ref. [3].

With collision energies on the order of 500 nK and an electric dipole moment of d ≈ 0.08 D,

collisions are expected to remain close-to-threshold where the number for rethermalization works

out to be that in Eq. (4.13). But with a large initial temperature anisotropy of Ty(0) ≈ 2.5Tx(0),

an accurate comparison with the experiment must account for γcoll changing during the relaxation

process because of thermal energy redistribution [90]. As such, N z(Θ) is multiplied by the factor

α(ϖ) =
6ϖ

1 + 2ϖ

(
1 +

ϖ tan−1
√
ϖ − 1√

ϖ − 1

)−1

, (4.17)

where ϖ = Tx,y(0)/Tz(0) is the initial temperature anisotropy. So with ϖ = 2.5, N z(Θ) is modified

by a factor of α(2.5) ≈ 0.89. A comparison between the theory and experimentally extracted values
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of α(ϖ)N F
z (Θ) is plotted in Fig. 4.6, showing remarkable agreement. This not only showcases

the accuracy of Eq. (4.13), but the validity of assuming point-dipole threshold scattering for KRb

molecules as argued for in Sec. 2.2.1. Similar agreement has been observed in ultracold gases of

fermionic erbium isotopes [91], lending this dipole-angle dependence of the N to be a smoking gun

signature of universal dipolar scattering at threshold.

Figure 4.6: Comparison of the averaged number of collisions per thermalization NF
z (Θ). The solid

(grey) curve shows the theoretical results from Eqs. (4.13) and (4.17), whereas the (black) circles
with error bars are results from the JILA KRb experiment.

4.2 Turn up the heat: Dipolar thermalization far from threshold

In some ways, we got lucky that KRb has a pretty small dipole moment at its resonant

shielding field, keeping it in the collisional threshold regime at hundreds of nK. Other diatomic

molecules may not be so fortunate (or unfortunate if large dipole moments are wanted). Take for
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instance 23Na40K molecules, collisionally shielded with circularly polarized microwaves [4]. Such

a species could have its dipole moment up to ∼ 10 times larger than those of shielded 40K87Rb,

typically requiring collision energies to be ∼ 104 times lower for the threshold regime (see Sec. 2.2.2.1

for the relevant arguments). Nonegenerate gases of 23Na40K and other strongly polar molecules

should, therefore, have their collisional physics be treated with the energy dependent cross sections

away from threshold (Fig. 2.8). But that means no more Born approximation and unfortunately

for us, no more analytic cross sections also means no more analytic collision integrals for cross-

dimensional rethermalization.

Fret not! We can still compute these integrals numerically, either by direct evaluation of

Eq. (3.24) or via the DSMC algorithm of Sec. 3.3. Though in both these methods, a high resolu-

tion of the differential cross section in angular and energy space is required to accurately evaluate

Nij . Performing close-coupling calculations (Sec. 2.2.2.1) for each sampled point would be highly

impractical given the computational cost of each one. So I present an alternative solution.

4.2.1 Gaussian process interpolation of differential cross sections

At a given collision energy, the elastic differential cross section (here denoted Del for con-

venience of notation), is a function of the dipole alignment axis Ê , and the relative ingoing and

outgoing momentum vectors ℏk and ℏk′, respectively. Collectively, I shall denote this set of param-

eters as β. By first performing close-coupling calculations at several well chosen collision energies

E = ℏ2k2/(2µ), the resultant scattering data is used to infer an M -dimensional continuous hyper-

surface that approximates Del, with a Gaussian process (GP) model [92–95].

GP regression is a machine learning technique used to interpolate discrete data points, stitch-

ing them together to form a continuous global surface. To do so, a GP assumes that Del(β) evaluated

any 2 nearby points in its coordinate space, βi and βj , are Gaussian distributed with a covariance

given in terms of a function K(βi,βj), called the kernel. A parameterized functional form for the

kernel is chosen prior to the surface fitting process, reducing the task of combing through an infinite

space of possible functions that best match the data, to a minimization over the kernel parameters.
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This minimization step is referred to as training the GP model.

Several symmetries in the differential cross section help to reduce the computational load of

training slightly. Rotated into the frame where Ê points along the z axis, which I refer to as the

dipole-frame, the unique hypersurface regions effectively live in an M = 4 dimensional space, with

coordinates β = (E, η, θs, ϕs). As defined, η = cos−1 k̂ · Ê is the angle between the dipole and

incident relative momentum directions, where it is convenient to select k̂ to lie in its x, z plane. The

angles θs and ϕs, denote the inclination and azimuthal scattering angles respectively, in this frame.

Doing so, the differential cross section possesses the symmetry

Del(E, η, θs, ϕs) = Del(E, η, θs,−ϕs). (4.18)

Consequently, we only need to specify the differential cross section for angles within the domain

η, θs, ϕs ∈ [0, π], to fully describe its global structure.

To perform the interpolation with GP regression, I utilize the Matérn-52 kernel [93]:

K(βi,βj) =

(
1 +

√
5
∣∣βi − βj

∣∣
w

+
5(βi − βj)

2

3w2

)
exp

(
−
√
5
∣∣βi − βj

∣∣
w

)
, (4.19)

which is better able to capture the sharp jumps in a non-smooth function, over higher-order differ-

entiable kernels such as the radial basis function. This kernel contains a parameter w that sets a

length scale over which features of the data vary in coordinate space, that is optimized during the

model training process. This kernel is typically not ideal for periodic input data, so we make the

periodicity of the angles (η, θs, ϕs) explicitly known to the GP model by training it with the cosine

of these angles, instead of the angles themselves. Furthermore, log10(E/Edd) is fed into the GP

model in place of E, to reduce the disparity in fitting domains between each coordinate of β. The

GP model is trained over the range log10(E/Edd) = −6 to 2, corresponding to collision energies of

E/kB ≈ 0.36 pK to 36 µK relevant to ultracold experiments. After training on ∼ 10, 000 samples of

Del(E, η, θs, ϕs), the resulting GP fit obtains a mean-squared error of ≈ 0.5% against close-coupling

calculations, which are taken to represent the actual cross section accurately.

For proof of principle and to ensure the accuracy of subsequently computed quantities, I

utilized more points than is usually necessary for the GP fitting. I also optimize the model’s
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hyperparameters [96] on top of just the kernel parameters. Even so, the Gaussian process model

still has issues faithfully reproducing the differential cross section around η, θs = 90◦, known to

have a discontinuity at threshold [35]. Fortunately, this angular segment corresponds to forward

scattering, which does not contribute to the cross-dimensional thermalization process of interest

here. Present Reuben will leave this as a worry for future Reuben.

Fig. 4.7 plots the total cross section σ(E, η) =
∫
Del(E, η,Ωs)dΩs, at various collision energies.

There is a marked variation in the η dependence, indicating a higher tendency for side-to-side

collisions (η = 90◦) over head-to-tail ones (η = 0◦) at higher energies. To highlight the dominant

anisotropic scattering process, Fig. 4.7 also provides plots of the differential cross section at η =

45◦, the approximate angle at which σ is maximal. As energy increases from subplots (a) to (d),

the scattered angle dependence of Del becomes biased toward forward scattering, reducing the

effectiveness of collisions for thermalization as discussed in Sec. 4.1. Alphabetic labels in Fig. 4.7

consistently correspond to the collision energies: (b) E = 0.2Edd, (c) E = 2Edd and (d) E = 20Edd.

The Born approximated cross sections at threshold [35] are labeled with (a).

4.2.2 Energy dependent collisional efficiencies

Earlier, the thermalization rate was related to the standard collision rate through the num-

ber of collisions per rethermalization. The inverse of this quantity, however, has perhaps a more

intuitive interpretation: the ratio εij = γij/γcoll represents the efficiency of each collision toward

thermalization of the gas. This collisional efficiency is formally cast in terms of the integral

εij ≈ αij
π2

64

∫
d3κ

(2π)3
e−κ2/4

√
π

∫
d2Ω′D′

elκ

⟨σκ⟩
∆κ2i∆κ

2
j , (4.20)

where ∆κ2i = κ′2i −κ2i is the collisional change in adimensional relative momenta κ = pr(mkBT0)
−1/2,

αij = 3/2 if i = j, and αij = −3 otherwise. See App. E for further details on deriving εij .
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Figure 4.7: The central plot shows the total cross section as a function of the incident collision
angle, obtained from (a) the Born approximation (red dashed curve), and from GP interpolation
(solid curves) for 3 different collision energies: (b) E = 0.2Edd (black), (c) E = 2Edd (gray) and (d)
E = 20Edd (light gray). In alphabetical correspondence, are angular plots of the differential cross
section (in units of a2d) in subplots with the respective collision energies, assuming dipoles pointing
along Ê = ẑ and incident collision angle η = 45◦ lying in the x, z-plane. Subplot (d) uses a smaller
domain for clarity of presentation.

Evidently from Eq. (4.20), εij is symmetric in its indices which leaves only 6 unique con-

figurations of i and j. Asserting once more that the dipoles lie in the x, z-plane and tilted with

angle Θ = cos−1(Ê · ẑ), I compute Eq. (4.20) with Monte Carlo integration3 and plot the results

in Fig. 4.8. Each subplot (a to f) shows a different (i, j) configuration, within which, εij is plotted

against the dipole tilt angle Θ as solid curves, for the temperatures T = 10 nK (black), T = 100 nK

(dark gray), T = 400 nK (gray) and T = 1 µK (light gray). Interestingly, the εij terms involving

excitation or rethermalization along y essentially lose their dependence on Θ around 400 nK, beyond

which collisions are less efficient than even nondipolar p-wave scattering (dashed-dotted blue line

in Fig. 4.8) [88] for all Θ. This decrease can be intuited by looking at the differential cross section

around η = 45◦, around which the total cross section is maximal. As evidenced from the subplots

of Del in Fig. 4.7, forward scattering is favored at higher collision energies, limiting momentum

transfer between axes and therefore, also the efficiency of collisions toward rethermalization.
3 The Monte Carlo integration gives a ≲ 1% error, which is mostly imperceptible in the log-linear plot.
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Figure 4.8: εij as a function of the dipole tilt angle Θ, for all 6 unique configurations (subplots
a to f) of the excitation axis i, and measured thermalization axis j. The dashed red curves are
the analytic εij results derived with the Born approximated cross section at threshold, whereas the
solid curves are those from Monte Carlo integration using the GP interpolated cross sections, at
temperatures T = 10 nK (black), T = 100 nK (dark gray), T = 400 nK (gray), and T = 1 µK (light
gray). The dashed-dotted blue lines are the efficiency for purely p-wave collisions, εp = 1/4.1.

Without much additional effort, GP interpolated differential cross sections are easily deployed

in the DSMC solver of Sec. 3.3, allowing for a broad range of nonequilibrium molecular gas stud-

ies away from threshold. Moreover, the GP techniques developed here are broadly applicable to

arbitrary collision partners, so long as their elastic scattering matrices are accurately obtainable

from close-coupling calculations. The road forward to exciting nondegenerate physics is evermore

so pristinely paved for anyone who will take it.



Chapter 5

Return to Equilibrium II: Hydrodynamic Gases

The epic saga continues. But now, the gas is dense, collisionally thick, and a bold-cold

weltering machine. A description most appropriate to fluids.

"... the White Whale darted through the weltering ocean."

– Herman Melville (Moby Dick, Chap. 135), 1851.

With much larger dipole moments, the significant collisional cross sections of molecules cause col-

lision rates to skyrocket, sending the ultracold gas straight into its hydrodynamic regime. There,

relaxation dynamics can be drastically different from its dilute counterpart and has its own tale to

tell. I unpack some of that story here, keeping in mind that many hydrodynamic stones are still

left unturned.

5.1 How do fluids flow?

A gas is said to be hydrodynamic when collisions result in fast local thermalization, so much

so that the nonequilibrium thermodynamics is overshadowed by long wavelength scale fluid mo-

tion. Subplot (a) of Fig. 5.1 illustrates the number density one might expect from a (very) dilute

gas, sparse and granular. Whereas subplot (b) shows one that is hydrodynamic, jam-packed with

particles and smooth.
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Figure 5.1: Single body number density function projected in x, y-plane, comparing the N = 104

dilute (a) and N = 107 hydrodynamic (b) regimes. The spatial distributions are both the same and
assumed to be a sinusoid along x, but uniform along y (chosen arbitrarily for illustrative purposes).

Hydrodynamic gases are best described in terms of the continuous field variables of mass

density ρ, flow velocity U and kinetic temperature T [97], each of which are dependent on space

and time. Defined as the molecular-velocity-averaged quantities

ρ(r, t) = mn(r, t) =

∫
d3vf(r,v, t)m, (5.1a)

U(r, t) =
1

n(r, t)

∫
d3vf(r,v, t)v, (5.1b)

T (r, t) =
2

3n(r, t)kB

∫
d3vf(r,v, t)

1

2
m [v −U(r, t)]2 , (5.1c)

these variables undergo dynamics governed by the continuity [98], Navier-Stokes [99, 100] and tem-

perature balance equations [101]:

∂ρ

∂t
+ ∂j (ρUj) = 0, (5.2a)

∂ (ρUi)

∂t
+ ∂j (ρUjUi) = ∂jτij − ∂iP − ρ

m
∂iV (r, t), (5.2b)

∂(ρT )

∂t
+ ∂j (ρTUj) =

2m

3kB
(ςij∂jUi − κij∂i∂jT ) , (5.2c)

where ςij is the fluid stress tensor. Repeated indices are assumed summed over, and will be for the

remainder of this chapter. The external potential in consideration here is that from any external
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confinement Vtrap, and the dipolar mean-field VDMF(r, t) = n(r, t) ∗ Vdd(r) 1 , where ∗ denotes

a convolution and Vdd(r) is the dipole-dipole interaction potential from Eq. (2.15). It is worth

pointing out that the local fluid kinetic temperature is related to the flow velocity via

3

2
n(r, t)kBT (r, t) =

∫
d3vf(r,v, t)

1

2
mv2 − 1

2
ρU(r, t)2, (5.3)

where the integral term is the local kinetic energy density. This relation will come in handy down

the road.

Studying fluid dynamics with Eqs. (5.2) requires knowledge of the rank-2 thermal conductivity

tensor κij and the rank-4 viscosity tensor µijkℓ (discussed below). These transport tensors are

dissipative coefficients that relax fluid motion, arising from finite local thermalization times. They

are, therefore, a direct consequence of dipolar collisions, a process we are rather familiar with by

now. So with ultracold molecular gas platforms now available to us and hydrodynamic physics ripe

for exploration, I turn to deriving these collision-emergent coefficients.

5.2 Surfaces this way, fluxes that way

The switch from solving Boltzmann’s equation (3.1) to solving the hydrodynamic ones, is

better motivated by establishing a separation of scales between the phenomena of interest. Of

concern here is the regime in which macroscopic fluid dynamics is governed by length scales λ (e.g.

wavelengths), much larger than the mean-free path L = ⟨nσ⟩−1 of its constituent molecules. The

corresponding dimensionless ratio Kn = Lλ−1, referred to as the Knudsen number, quantifies the

onset of hydrodynamics when Kn ≪ 1. Furthermore, the period over which such dynamics occur

is much longer than the timescales associated with collisions. Appropriately, I will refer to fluid

dynamics as occurring on macro-scales, whereas collisions are said to occur on micro-scales.

1 One might be concerned that the DMF is already treated microscopically when deriving the transport tensors,
and so will be double counted if also included in Eq. (5.2). However, I show in App. F that this is not the case since
the DMF vanishes in the first-order Chapman-Enskog expansion.
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5.2.1 Microscopic collisions to macroscopic transport

If only weakly perturbed, the local response of a fluid system is completely described by

linear constitutive relations and the associated, medium-specific, transport coefficients of viscosity

and thermal conductivity [102]. These coefficients are derivable from the microscopic physics with

methods established by Chapman and Enskog [69, 103], which I closely follow [16–18]. Starting

from the Boltzmann equation (3.1), the out-of, but close to, equilibrium atomic distribution can be

taken to have the form

f(r,u, β) ≈ f0(u, β) [1 + Φ(r,u, β)] , (5.4)

where u = v −U is the comoving molecular velocity, β = (kBT )
−1 is the standard inverse temper-

ature and

f0(u, β) = n0(β)c0(u, β) = n0(β)

(
mβ

2π

)3/2

exp

(
−mβ

2
u2

)
, (5.5)

is the steady flow local equilibrium phase space distribution. Following mass, momentum and energy

conservation, the perturbation function Φ, must respectively satisfy the relations∫
d3uf0(u)Φ(r,u, β)m = 0, (5.6a)∫

d3uf0(u)Φ(r,u, β)mu = 0, (5.6b)∫
d3uf0(u)Φ(r,u, β)

1

2
mu2 = 0. (5.6c)

Enskog’s prescription of successive approximations then simplifies the Boltzmann equation, such

that to leading non-trivial order, it simply becomes(
∂

∂t
+ vk∂k −

∂kV (r)

m

∂

∂uk

)
f0 ≈ C[f0Φ]. (5.7)

With the phase space distribution at equilibrium on the left but perturbed on the right, the equation

above is interpreted as making an adiabatic approximation that separates the macro and micro-scale

phenomena. In other words, the macro-scale fluid flow still looks more or less steady amid all the

micro-scale collisional events.
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What usually follows is a rather lengthy derivation of the transport tensors, starting from

Eq. (5.7). Although, the main text of a physics thesis is probably already dry enough as is to

warrant skipping that. So, if you are willing to trust my math, here is the resulting thermal

conductivity tensor for dipolar fermions:

κ =
175µdkB
512m


5 + cos(2Θ) 0 − sin(2Θ)

0 6 0

− sin(2Θ) 0 5− cos(2Θ)

 , (5.8)

where

µd =
5

16a2d

√
m

πβ
(5.9)

is the Chapman-Enskog viscosity assuming a hard sphere diameter of ad [69].

The 13 unique viscosity tensor elements, for fermions, are tabulated below as a function of

scattering length as, dipole length ad and dipole orientation angle Θ:

µ1111 =
µd
512

(117 cos(4Θ) + 84 cos(2Θ) + 415), (5.10a)

µ1113 = −3µd
512

(39 sin(4Θ) + 14 sin(2Θ)), (5.10b)

µ1122 = −7µd
128

(3 cos(2Θ) + 11), (5.10c)

µ1133 = − µd
512

(117 cos(4Θ) + 107), (5.10d)

µ1212 =
9µd
128

(5 cos(2Θ) + 9), (5.10e)

µ1223 = −45µd
128

sin(2Θ), (5.10f)

µ1313 = −9µd
512

(13 cos(4Θ)− 29), (5.10g)

µ1322 =
21µd
128

sin(2Θ), (5.10h)

µ1333 =
3µd
512

(39 sin(4Θ)− 14 sin(2Θ)), (5.10i)

µ2222 = 77µd, (5.10j)

µ2233 =
7µd
128

(3 cos(2Θ)− 11), (5.10k)

µ2323 = −9µd
128

(5 cos(2Θ)− 9), (5.10l)
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µ3333 =
µd
512

(117 cos(4Θ)− 84 cos(2Θ) + 415). (5.10m)

All other non-trivial viscosity terms are specified by the tensor symmetry identities

µijmn = µjimn, (5.11a)

µijmn = µjinm, (5.11b)

µijmn = µmnij , (5.11c)

µijmnδij = µijmnδmn = µijmnδijmn = 0, (5.11d)

where δijmn is 1 if i = j = k = ℓ and 0 otherwise. All other unspecified tensor elements are zero.

As for the less trusting (perhaps rightfully so), the integrals and indices of derivation in all their

tedious glory are found in App. G. Knock yourself out!

By the way, κ and µ have also been derived for dipolar bosons which also includes the

scattering length as. For brevity of this thesis, however, I refer the reader to Refs. [16, 17] where

these have already been tabulated, instead of including them here.

5.3 And whispered in the sound... of dipoles

If you played Simon and Garfunkel’s hit song, "The Sound of Silence", from a point source

speaker in an ultracold dipolar gas, it would sound pretty different depending on where you stand.

A little softer, a little louder, maybe even out of sync between both ears. What’s causing this is

our old familiar friend: dipolar anisotropy, both in the speed of sound and its attenuation.

In more technical terms, I’ve already shown that anisotropy emerges in transport tensors from

dipolar collisions, but a dense ensemble of dipoles could also generate a long-ranged anisotropic

mean-field from their cumulative dipolar potential. If strong enough, the anisotropic push and pull

of the dipolar mean-field can distort wave fronts that propagate through the fluid. Best used to

study such physics is a uniform density gas of ultracold polar molecules, possibly realized in optical

box traps [104]. And let’s consider them fermionic because why not2 . If only weakly perturbed,
2 Three-body losses [105], that’s why not.
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the dynamical fields can be written in terms of small deviations from equilibrium:

ρ(r, t) = ρ0 [1 + χ(r, t)] , (5.12a)

Ui(r, t) = cξi(r, t), (5.12b)

T (r, t) = T0 [1 + ϵ(r, t)] , (5.12c)

having defined the unit-free fluctuation fields χ, ξi, ϵ ≪ 1, with c =
√
5kBT0/(3m) being the ideal

gas thermal speed of sound. Quantities at equilibrium are denoted with a naught subscript. To

linear order in the fluctuation field variables, the fluid equations (5.2) become

∂χ

∂t
+ c∂jξj ≈ 0, (5.13a)

∂ξi
∂t

+
3

5
c∂i(ϵ+ χ) ≈

µijkℓ
ρ0

∂j∂ℓξk −
ρ0
m2c

∂i [χ(r, t) ∗ Φdd(r)] , (5.13b)

∂ϵ

∂t
+

2

3
c∂jξj ≈

2

3n0kB
κij∂i∂jϵ, (5.13c)

supporting acoustic wave solutions [97]. Such solutions can be found by employing a plane wave

ansatz χ, ξi, ϵ ∼ exp
[
i(KTr − ωt)

]
, where conveniently, the dipolar mean-field potential just be-

comes a Fourier transform of Φdd(r):

χ(r, t) ∗ Φdd(r) =

∫
d3r′χ(r − r′)Φdd(r

′)

= χei(K
T r−ωt)φdd(K̂, Ê), (5.14)

with φdd =
∫
d3r′e−iKT r′

Φdd(r
′) already computed in Ref. [106].

Rendering the derivatives of fluctuation variables ∂j → iKj and ∂
∂t → −iω, plane waves

reduce the partial differential equations of (5.13) into an eigenvalue problem:

ω


χ

ξ

ϵ

 =


0 cKT 0(

3
5c+

ρ0φdd

m2c

)
K iΛ 3

5cK

0 2
3cK

T iΓ




χ

ξ

ϵ

 , (5.15)

having defined the thermal conductivity and viscosity associated rates

Γ = − 2

3n0kB
κijKiKj , (5.16a)
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Λik = − 1

ρ0
µijkℓKjKℓ, (5.16b)

respectively. With no other processes to break the symmetry of the system, the anisotropy that

arises in the mode solutions only depends on the relative angle Θ, between the dipole orientation Ê

and plane wave propagation direction K̂. Thus, all essential physics is captured by setting K̂ = ẑ

but allowing Θ to vary. In these coordinates, which I assert for the remainder of this section, the

transport associated rate functions have the forms

Γ(Θ) =
875K2

12288a2dn0
√
πmβ0

(cos(2Θ)− 5) , (5.17a)

Λ(Θ) =
5K2

2048a2dn0
√
πmβ0

(5.17b)

×


9
4(13 cos(4Θ)− 29) 0 3

4(14 sin(2Θ)− 39 sin(4Θ))

0 9(5 cos(2Θ)− 9) 0

3
4(14 sin(2Θ)− 39 sin(4Θ)) 0 1

4(84 cos(2Θ)− 117 cos(4Θ)− 415)

 ,

and φdd becomes

φdd(Θ) =
d2

3ϵ0
(3 cos2Θ− 1). (5.18)

The Θ angle dependence of Γ and Λ is showcased in unit-free versions (multiplied by a2dn0
√
mβ0/K

2)

of them plotted in Fig. 5.2.

Any fluid dynamics resultant from Eq. (5.15) can be described by normal mode solutions,

comprising of mode frequencies ωa, and their corresponding mode amplitudes ψa = (χa, ξa, ϵa)
T

with a = 1 to 5. These normal modes can be obtained analytically by considering only long wave-

length excitations such that δ = KL ≪ 1. Since the transport coefficients scale as µijkℓ, κij ∼ δ,

long wavelengths permit a series expansion of the mode solutions in increasing powers of the trans-

port tensors via Taylor expansions in δ. Diagonalizing Eq. (5.15) then gives the mode frequencies

ω± = ±K
√
c2 + Edd(Θ) +

i

2

(
Λ33 +

2Γc2

5(c2 + Edd)

)
, (5.19a)

ωµ,1 = iΛ11, (5.19b)
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ωµ,2 = iΛ22, (5.19c)

ωκ = iΓ

(
3c2 + 5Edd

)
5 (c2 + Edd)

, (5.19d)

to first order in δ, where Edd(Θ) = n0φdd(Θ)/m is the specific dipolar mean-field energy. Now for

the reason we’re all here, interpreting the physics of these modes.

Figure 5.2: Unit-free versions of the non-trivial Γ and Λ rate coefficients with identical dipolar
fermions, as a function of Θ.

5.3.1 The speed of dipolar sound

The first two modes, with frequencies ω±, represent propagating sound waves and identify the

anisotropic speed of sound cdd(Θ) = limK→0 ω+(K)/K =
√
c2 + Edd(Θ). This is usefully written

in terms of the dimensionless parameter

η =
2πρ0
5

(
d2

ϵ0

)(
λth
h

)2

, (5.20)
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presented as a function of the thermal de Broglie wavelength λth = h/
√
2πmkBT0 with h as Planck’s

constant. The speed of sound is then written in terms of η as

cdd(Θ) = c
√
1 + η (3 cos2Θ− 1). (5.21)

Look, Θ appears in the formula. That’s the dipolar mean-field at play, changing the speed of sound

at different Θ! In fact, with a modest value of η = 0.8, you can see in Fig. 5.3 that wave fronts of a

spherical wave get distorted exactly because sound travels faster in certain directions over others.

Figure 5.3: A schematic diagram over anisotropic radial sound wave propagation from a point
source, following the evolution χ(t) = χ0 cos[K(r − cddt)]/r with η = 0.8. There are 3 time slices
that showcase the growing anisotropy of wavefronts due to the speed of sound dependence on Θ.

In a classical gas, quantum statistics enters only in the collision cross sections. Hence, the mean-field
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result in (5.21) applies equally to both bosons and fermions. As written, the speed of sound in a

normal dipolar gas has an anisotropy similar to that for a dipolar Bose-Einstein condensate (DBEC)

[107–109], but with temperature replacing the role of quantum fluctuations. The quantity η com-

pares the magnitude of the dipolar mean-field with thermal energies, which at a fixed temperature

T0, varies by means of the background density ρ0 and dipole moment d [3, 4, 46, 49].

For propagation of sound waves along the direction of dipole polarization, Θ ∼ 0, this prop-

agation is stable. That is, the value of cdd remains real-valued. However, for sufficiently large η,

there is a critical value of ηc(Θ) ≡ −(3 cos2Θ− 1)−1, past which the dipolar mean-field interactions

overcomes the thermal kinetic energy, causing cdd(Θ) to become imaginary 3 . An imaginary speed

of sound indicates a dipolar instability, also predicted and observed in DBEC [107, 110–114]. No-

tably, ηc is only well defined within the interval bounded by the dipolar magic angles Θmagic ≈ 54.7◦

and 125.3◦, at which φdd(Θmagic) = 0 4 . Within the range of dipolar magic angles, ηc has a minima

of 1 at Θ = 90◦.

5.3.2 Undulating sound waves

The physics of sound gets more interesting at finite K, where transport tensors now enter

the dynamical arena. To ground discussions, I’ll envision an experiment with a box-trapped [104]

uniform density sample of microwave shielded 23Na40K molecules cooled to T0 = 250 nK [4]. When

η ≪ 1, say at n0 = 1012 cm−3 and d = 0.75 D (η ≈ 0.04), the dipolar mean-field, and therefore

Edd, becomes negligible compared to kinetic processes. In this regime, the speed of sound reverts

to that of an ideal gas cdd ≈ c, while the imaginary part of ω± is strictly negative, leading to sound

attenuation. Resulting directly from dipolar collisions, the observed attenuation for an excitation

with δ = 0.1 is anisotropic, varying by a factor of ∼ 2 with Θ as shown in Fig. 5.4.

3 Even at this higher density of n0 = 2× 1012 cm−3, the transport coefficients presented in Eqs. (5.8) and (5.10)
are accurate to 10% in higher density corrections [69].

4 The critical value ηc appears to be a pole of certain solutions in Eqs. (5.19). This divergence is, however, only
a feature of the series expansion in δ. Exact solutions to Eq. (5.15) remain finite valued across η = ηc.
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Figure 5.4: Imaginary part of the propagating mode frequency solutions Im[ω±(Θ)] in Hertz (Hz),
as a function of the dipole tilt angle Θ in degrees (deg) at η ≈ 0.04. The figure inset plots the
absolute relative angle between K̂ and ξ̂, | cos−1(K̂ · ξ̂)|, also as a function of Θ.

The ω± modes have associated eigenvectors of the form

ψ± =



1

0

0

± cdd
c

2
3


+



∓i Γ
cddK

iΛ13
cK

0

−i
(

Γ
5cK

(
4 + Edd

c2dd

)
+ Λ33

2cK

)
0


, (5.22)

defined up to an overall scale factor. The first term of the sum in the expression above has nonzero

and comparable amplitudes in the fractional density shift χ, fractional z-velocity ξz, and fractional

temperature shift ϵ, as expected for a longitudinal wave propagating in the z direction. The second

term in ψ± shows the additional effects introduced by viscous and thermal damping. Specifically,

terms in the density and z-velocity are explicitly damped, while the temperature is not yet damped

at this level of approximation. Along with these effects, a new one appears, namely, a damped
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motion in the x-velocity ξx.

Therefore, despite initiating sound along K̂ = ẑ, the fluctuations in flow velocity could

occur in a slightly different direction depending on the dipole orientation. That is, along with

regular sound propagation along z that alternately compresses and rarefies the gas, the fluid velocity

simultaneously alternates between flow along the ±x directions. The general fluid motion is therefore

of a slightly undulatory nature. This effect, albeit small, is one unique to anisotropic transport

which I illustrate with a plot of the absolute relative angle between K̂ and ξ̂, | cos−1(K̂ · ξ̂)|, against

Θ in the inset of Fig. 5.4. These weak transverse motions are potentially observable in Doppler

spectroscopy of the undulating molecules.

5.3.3 Shear silence

Even in the absence of sound, a silent hydrodynamic gas of dipoles still has a story to tell.

This narrative is populated by the latter 3 modes of Eq. (5.19), all of which have purely imaginary

frequencies for any value of η and Θ. Once again with η ≈ 0.04 and δ = 0.1, suppressing the dipolar

mean-field, anisotropic damping is accentuated in these silent modes with plots of the imaginary

parts of their mode frequencies in Fig. 5.5.

One of these modes, with frequency ωµ,2, has a particularly simple form:

ψµ,2 =

(
0 0 1 0 0

)T

. (5.23)

This mode consists exclusively of flow velocity in the ±y directions, the velocity being sinusoidally

modulated along z with wavelength 2π/K. If one were to “grab” the z = 0 layer of the fluid

and shake it with frequency |ωµ,2|, a shear wave would thus develop. This is an overdamped mode,

hence its amplitude reaches only to approximately a certain penetration depth, defined as the inverse

absolute imaginary part of the wave-number [17, 97]:

rµ,2 =

√
µ2323
2ωρ0

≈ 3

64

√
5(9− 5 cos(4Θ))

ωa2dn0
√
πmβ0

. (5.24)

The expression above is obtained from Eq. (5.19), by instead solving for K in terms of a fixed

driving frequency ω. Such waves are, of course, already familiar in ordinary, isotropic fluids.
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Figure 5.5: The imaginary parts of the mode frequency solutions, Im[ωκ] (solid black curve),
Im[ωµ,1] (dashed blue curve) and Im[ωµ,2] (dotted red curve), as a function of Θ in a gas of 23Na40K
molecules with n0 = 1012 cm−3 and d = 0.75 D (η ≈ 0.04).

A shear mode with fluid flow in the ±x direction is, however, affected by the anisotropy of

dipolar collisions, given by

ψµ,1 =



0(
1− Γ

Λ11

)
5c2dd
2c2

+ Γ
Λ11

0

0

0


+



i Γ
cK

c2Λ13

c2ddΛ11

0

0

0

−i5Λ13
3cK


. (5.25)

Here, once more, the first term accounts for the dominant motion, namely, oscillations in the ±x

directions induced by shear. The penetration depth for this x-shear mode under an oscillatory shear

drive is, not surprisingly, also dipole angle dependent, and given by the relation

rµ,1 =

√
µ1313
2ωρ0

≈ 3

128

√
5(29− 13 cos(4Θ))

ωa2dn0
√
πmβ0

. (5.26)
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The second term in ψµ.1 denotes additional accompanying effects associated with this shear

mode, which in this case are damped modulations in the density and temperature fields. In this

circumstance, where the dipoles are oriented somewhere in the x, z plane, and the shear flow in the

x direction, the anisotropy of the collision cross section is capable of shoveling both matter and

kinetic energy preferentially into the ±z directions, the same as it ordinarily does for momentum.

Because shear modes are a direct consequence of viscosity in the gas, they present themselves as an

experimental means to measure the viscosity coefficients 5 [18].

Figure 5.6: Relative fluid variable fluctuation amplitudes ξx(t) (dashed-dotted black curve), χ(t)
(solid blue curve), ξz(t) (dashed green curve), ϵ(t) (dotted red curve) as a function of time t at
z/L = 10, after an impulse shear flow perturbation along x̂. The dipoles are oriented with Θ = π/4.
The relative amplitudes for χ(t), ϵ(t) and ξz(t) are rescaled by a factor of 103 for clarity.

5 The shear viscosity has also been measured in harmonically confined unitary Fermi gases with breathing mode
damping experiments [115]. These measurements were, however, performed for non-dipolar gases with a single shear
viscosity coefficient.
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The time evolution of relative mode amplitudes ψ(t) in Fig. 5.6 demonstrate this anomalous

shear excitation, following an impulse shear flow perturbation along x̂ with Θ = π/4. Along with χ

and ϵ, ξz is also subsequently excited. In the plot, the relative amplitudes for χ(t), ϵ(t) and ξz(t) are

rescaled by a factor of 103 for ease of visualization, but indicate that this effect is indeed a small one.

Temperature field variations via the introduction of heat into a fluid are commonly referred to as

entropy waves [116, 117], which if initiated by laminar shear flow, motivates the title shear-entropy

waves. As far as I know, this phenomenon is not present in existing shear flow literature, making

for a brand new scientific discovery!

Not forgetting the fifth and final mode ψκ, within the range of Θ where Edd < 0, ωκ can

vanish identically at suitably large values of n0 and ad such that Edd = −3c2/5 (i.e. η = 3ηc/5).

Satisfying this condition would lead to a mode where ϵ = ξx = ξy = ξz = 0 but χ ̸= 0, as made

evident from its functional form

ψκ =



0

3
5

(
1− Γ

Λ11

3c2+5Edd

5c2dd

)(
1 + 5Edd

3c2

)
0

0

0


+



iΛ13
cK

0

0

0

−iΛ13
cK

(
1 + 5Edd

3c2

)


. (5.27)

Such a mode implies the existence of long-lived density modulations due to a balance between

thermal and dipolar mean-field energies. This could be rather cool to observe in an experiment, but

I cater further analysis to some other future publication.

5.4 Viscous welter of a trapped dipolar fluid

What happens when a dipolar gas gets really collisionally dense (i.e. more collisions per

unit volume per second), while confined in a harmonic trap? Maybe the central region of the gas is

hydrodynamic, but surely its Gaussian density profile makes the peripheries dilute (see Figs. 3.1 and

5.7). Would hydrodynamics fail and cause relaxation to revert to that seen in Sec. 4.1? How do we

best describe the dynamics then? Well, previous works have reported cross-dimensional relaxation
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rates being close to the trapping frequency in the hydrodynamic regime [4, 118, 119], unlike the

dilute regime being closely related to the collision rate. So surely the faster collision rates result in

dynamics different from the dilute limit. The gist of my investigations into these questions thus far,

is that harmonically trapped gases can be hydrodynamic, well described by equations derived from

(5.2). These equations do work pretty well, but only up to ad hoc corrections which beckon further

study. The following will get you up to speed on the status of things.

z

x

Ê

gas

fluid

Figure 5.7: Cartoon of a Gaussian distributed gas with a hydrodynamic center and dilute corona.

Right from the get go, the disparity between dilute and hydrodynamic trapped gases is clearly

revealed in cross-dimensional rethermalization experiments (Sec. 4.1), illustrated with time trace

plots of the pseudotemperatures (4.3) in Fig. 5.8 (obtained from the Monte Carlo solver of Sec. 3.3).

In both panels, a collection of 23Na40K molecules is subjected to the same harmonic trapping

potential (3.2), excited along z, then subsequently left to relax. The only systemic difference is the

molecule number: for fewer molecules in the upper panel (a), the gas is dilute, while for a greater

number of molecules in the lower panel (b), it is hydrodynamic. As opposed to the gradual melting

of pseudotemperatures back to equilibrium seen in (a), the behavior in (b) is distinctly fluid-like,

resembling the wobble of a water balloon after squishing it along some direction. This latter type

of motion has been christened weltering dynamics [19], and done so quite proudly I might add.

"Welter, my boy – welter like the wind!"

– John L. Bohn (random email thread), 2023.
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Figure 5.8: Pseudotemperatures (4.3) obtained from Monte Carlo simulations in the dilute (upper
panel, a) and hydrodynamic (lower panel, b) regimes. The gas consists of microwave shielded
23Na40K molecules with dipole moment d = 0.75 D, oriented along x̂, at temperature T = 700 nK.
The gas is initially excited along z by an instantaneous trap frequency ramp to ωz = 2π × 147 Hz,
while ωx = ωy = 2π × 82.5 Hz remain constant. The regimes are differentiated by the number of
molecules N , which are N = 104 in panel (a), and N = 2× 105 in panel (b).

For a more quantitative delineation, the change in N between subplots (a) and (b) results in a

significant difference in the Knudsen number. For these trapped gases, Kn is appropriately defined
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by the ratio of the mean-free path L = ⟨nσ⟩−1, to the thermal width of the gas Rth =
√
kBT/mω2:

Kn =
L

Rth
=

8π3/2kBT

Nmω2σ
. (5.28)

In this definition, subplot (a) has the gas with Kn ≈ 2.2, while in subplot (b), Kn ≈ 0.1 6 .

5.4.1 An effective model for damped welter

Affecting its response and route toward equilibrium, the quest for new hydrodynamic physics

motivates constructing a model for the welter in these gases. Yes I know, Eq. (5.2) is already such

a model, but look at how hard it is to solve, even numerically. Instead, I adopt a variational ansatz

approach to solving these partial differential equations much like that done in Sec. 3.27 . External

confinement from a harmonic potential (3.2) results in the equilibrium (denoted by subscript 0)

density distribution following

ρ0(r) =
mN

Z
exp

(
−V (r)

kBT0

)
, (5.29)

where Z =
∫
d3re

− V (r)
kBT0 gives the appropriate normalization. Considering collective oscillations and

damping from long wavelength excitations that do not induce center-of-mass sloshing, Eq. (5.29)

motivates a Gaussian variational ansatz for the local density:

ρ(r, t) = mN

3∏
i=1

1√
2πσ2i (t)

exp

(
− r2i
2σ2i (t)

)
, (5.30)

where σi(t) is the distribution width along each axis i, that varies in time (depicted in Fig. 3.1).

Plugging the ansatz of Eq. (5.30) into the continuity equation (5.2a) gives
3∑

i=1

[
∂iUi(r)− Ui(r)

(
ri

σ2i (t)

)
+

(
r2i
σ2i (t)

− 1

)
σ̇i(t)

σi(t)

]
= 0, (5.31)

which admits the velocity field solution

Ui(r) =

(
σ̇i(t)

σi(t)

)
ri. (5.32)

6 The relations above provide an approximate mean Knudsen number. In practice, the thermal width can differ in
directions with different trap frequencies, while the cross section, for dipolar scattering, can depend on the direction
of the collision axis. Thus the boundary between hydrodynamic and dilute flow can be anisotropic, a topic to be
dealt with below.

7 Our method has similarities to the scaling ansatz employed in Ref. [120–122], but formulated slightly differently
and with the inclusion of transport tensors.
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For clarity, I’ll revert to treating repeated indices as unsummed in this section, unless following an

explicit summation symbol Σ. The ρ and U above then render the Navier-Stokes equation (5.2b)

σ̈i(t) + ω2
i σi(t) =

kB
m

(
1

σi(t)
− σi(t)

ri
∂i

)
T (r, t) + σi

∑
j,k,ℓ

∂jµijkℓ(T )

riρ(r)
δk,ℓ

σ̇k
σℓ
, (5.33)

which bears no dependence on thermal conductivity. Since σi(t) does not depend on spatial coordi-

nates, consistency requires taking a spatial average to suppress local fluctuations of the temperature

field in Eq. (5.33). This average is taken by multiplying Eq. (5.33) and the temperature balance

equation (5.2c), by n(r, t), then integrating over d3r. App. H gives further details of the spatial

averaging procedure, which results in

σ̈i(t) + ω2
i σi(t) +

1

3σi(t)

∑
j

[
ω2
jσ

2
j (t) + σ̇2j (t)

]
− 2kBT0
mσi(t)

≈ −2

5

Vhy

Nm

∑
j

µiijj(T (t))

σi(t)

σ̇j(t)

σj(t)
. (5.34)

The relevant viscosity matrix elements can be recast in terms of a unit-free matrix

Mij(Θ) ≡ µiijj(T ; Θ)

µd(T )
(5.35)

=
1

512


117 cos(4Θ) + 84 cos(2Θ) + 415 −28(3 cos(2Θ) + 11) −(117 cos(4Θ) + 107)

−28(3 cos(2Θ) + 11) 616 28(3 cos(2Θ)− 11)

−(117 cos(4Θ) + 107) 28(3 cos(2Θ)− 11) 117 cos(4Θ)− 84 cos(2Θ) + 415

 ,

as is read off from Eq. (5.10), where µd was that defined in Eq. (5.9). For a gas of 23Na40K molecules

microwave shielded to have an effective dipole moment d = 0.75 D, its isotropic viscosity at T0 = 700

nK takes a value of µ0 ≈ 2.5 × 10−15 Pa·s, around 1010 times less than air at room temperature

and pressure [123]. These parameters are assumed for the rest of what follows. The Mij(Θ) matrix

elements are plotted in Fig. 5.9, with components coupled to the x and z axes showcasing a significant

variation with Θ. The magnitude of off-diagonal matrix elements M13 = Mxz and M23 = Myz

become maximally separated around Θ ≈ 45◦, explaining the slight separation of Tx(t) and Ty(t) in

Fig. 5.10, otherwise negligible when Θ = 0◦, 90◦.
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Figure 5.9: Mij matrix elements as a function of Θ. The diagonal elements are plotted on the left
in subplot (a), whereas the negated (multiplied by a minus sign) off-diagonal elements are plotted
on the right in subplot (b).

Figure 5.10: Times traces of Tx(t) (solid green curves), Ty(t) (dashed blue curves) and Tz(t) (dotted
red curves) for 3 values of Θ = 0◦, 45◦, 90◦, in subplots (a, d), (b, e) and (c, f) respectively. The
2 rows are differentiated by the number of molecules, with the upper row (subplots a, b, c) having
N = 2 × 103 (Kn ≈ 11.10), while the lower row (subplots d, e, f) has N = 3 × 105 (Kn ≈ 0.07).
Note that the simulation times are different between the upper (t = 0 to 0.1s) and lower (t = 0 to
0.04s) rows.
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For the relevance of time-of-flight imaging, the momentum space temperature, which differs

from the local temperature of Eq. (5.1c), can also be obtained from solutions to Eq. (5.34) via the

relation

kBTp(t) =
1

3N

∫
d3rd3vf(r,v, t)mv2

= 2kBT0 −
1

3

∑
i

mω2
i σ

2
i (t), (5.36)

as follows from Eqs. (5.3) and (5.32), along with the total energy relation Etotal = 3kBT0 from the

equipartition theorem.

Eq. (5.34) above treats the temperature field appearing in µijkℓ(T ) to be spatially uniform

over the region where the gas is hydrodynamic. Such an approximation follows from the form of

collective oscillations implied by the density (5.30) and flow velocity fields (5.32) in an initially

isothermal gas, disallowing a spatial temperature variation on the order of the gas spatial widths

[124, 125]. Hence, temperature as appears in the viscosity is simply treated as T ≈ T (t). Doing so,

requires defining an effective hydrodynamic volume Vhy =
∫
d3r8 , over which viscosity is relevant.

Proper identification of this volume, including its dependence on aspect ratio, density, and dipole

tilt, is essential to the performance of the model (5.34). This is going to be a real undertaking, but

I’ll leave most of the details to App. I. Here are the just highlights.

First, I define this volume to be the spheroidal volume bounded by the outer classical turning

radius of the trap, multiplied by an empirical factor η. The outer turning radius is obtained by

equating Etotal = V (RHD, θ, ϕ), to give (see App. H)

R2
HD(θ) =

6kBT (t)

mω2
⊥

[
sin2 θ + λ cos2 θ

]−1
, (5.37)

where λ = (ωz/ω⊥)
2 quantifies the trapping anisotropy. The effective hydrodynamic volume is then

computed as

Vhy(λ,Kn) =
η(λ,Kn)

3

∫
R3

HD(Ω)dΩ =
4π

3

(
6kBT (t)

mω2
⊥

)3/2 η(λ,Kn)√
λ

. (5.38)

8 Refs. [124, 126] provides another estimate for the effective hydrodynamic volume which, however, we find
systematically underestimates the results from our numerical Monte Carlo simulations.
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As written, I have assumed that η could depend on the trapping geometry through λ and on the

Knudsen number, which in turn, also implicitly depends on N and the dipole angle Θ. Such gener-

ality allows η to act as a coarse-graining parameter which accounts for all non-hydrodynamic effects

excluded from the current theoretical treatment. Additionally, Eq. (5.9) implies the temperature

dependence of viscosity goes as µiijj(T ) ∝
√
T , for which I will simply approximate as T ≈ T0 for

all times 9 .

Then by careful comparison of Eq. (5.34) to a large batch of numerical simulations (detailed

in App. I), I find that the effective volume in a prolate (i.e. cigar shaped) trap is best described by

the functional form

Vhy(λ,N,Θ) ≈ 4π

3

(
6kBT0
mω2

⊥

)3/2 1√
λ

[
2.21 + 0.67

(
1 + 0.26

σ(Θ)

σ

)
N

105

]
, (5.39)

where

σ(Θ) =
πa2d
3

[
3 + 18 cos2Θ− 13 cos4Θ

]
, (5.40)

is the total cross section. With the parametrization above, Eq. (5.34) can now be used to reliably

determine the cross-dimensional relaxation dynamics of a hydrodynamic dipolar Fermi gas, subject

to excitation along the long axis of the prolate trap. As presented, Eq. (5.39) shows that the

hydrodynamic volume, at a fixed temperature and harmonic confinement, grows linearly with the

number of molecules N . This trend is inferred from the numerical simulation reflected in subplot

(a) of Fig. 5.11. Notably, subplot (b) of Fig. 5.11 also endows Eq. (5.39) with a dipolar angle

dependence, which can be intuited as follows. In a prolate trap, the gas has a larger thermal width

along the weak trapping axis z. As a result, the mean-free path along that axis is relatively smaller

compared to the sample size, and consequently more hydrodynamic. Collisions that occur with

relative momentum directed along the long axis, are then most able to keep molecules behaving

collectively as hydrodynamic. So by attributing collisions incident along ẑ as most effective toward

viscous damping, the hydrodynamic volume can be taken as dependent on dipolar scattering via

the total cross section with k̂ = ẑ.
9 Incorporating time-dependence in the temperature T (t), requires more sophisticated treatments such as second-

order hydrodynamics [127], that I cater to a future study.
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(a) (b)

Figure 5.11: The points with errorbars (standard errors) give η as obtained from DSMC simulations,
performed over different values of N,λ and Θ. The linear trend of η vs N is provided in subplot
(a), being largely consistent over various values of λ = 0.13, 0.20, 0.32, 0.50, all of which are prolate
(cigar) geometries. Subplot (b) shows how η varies with Θ, closely following the angle dependence
in Eq. (5.40). The data for this latter trend is obtained with λ = 0.2, for N = 4× 105 (black data,
Kn ≈ 0.06), N = 3× 105 (gray data, Kn ≈ 0.07) and N = 2× 105 (light gray data, Kn ≈ 0.11)

Evidently from Eq. (5.39), Vhy remains a stagnant parameter through the gas’ dynamical

evolution. There is, however, no physical reason why such a volume has to be so. A new avenue

of research thus presents itself. Can Vhy be formulated self-consistently from first principles? Or

perhaps a machine might better be able to help with this task [128, 129]. All terribly captivating,

these prospects must surely be pursued with haste. Though it is not this thesis that I will answer

to the cry of these scientific curiosities. Perchance a work to come soon just might.

The physics of Eq. (5.34) is made more accessible in the language of normal modes, motivating

a linear analysis. If only taken perturbatively out-of-equilibrium, the time variation of the ensemble

widths can be written in terms of small deviations away from its equilibrium values σi(t) = σ0,i +

δσi(t). Then expanding to first-order in δσi(t), Eq. (5.34) becomes

δ̈σi(t) + 2
∑
j

Γij
˙δσj(t) +

∑
j

Oijδσj(t) ≈ 0, (5.41)
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with squared-frequency and damping matrices

Oij = 2ω2
i δi,j +

2

3
ωiωj , (5.42a)

Γij =
µ0Vhy

5NkBT0
ωiMij(Θ)ωj . (5.42b)

The matrices above encode the anisotropies from both the trap and anisotropic collisions. Well what

do you know, Eq. (5.41) tells us that weltering perturbations are simply the motion of damped

coupled harmonic oscillators! With Γ multiplying the first-order time derivative terms ˙δσi, it is

made clear that damping of weltering oscillations results from the trap frequency weighted viscosities

within the hydrodynamic volume. A factor 2 multiplies Γ in Eq. (5.41) as is convention in damped

harmonic oscillators.

Diagonalizing the squared-frequency matrix O gives the eigenfrequencies

ω2
0 = 2ω2

⊥, (5.43a)

ω2
± =

1

3

(
4λ+ 5±

√
16λ2 − 32λ+ 25

)
ω2
⊥, (5.43b)

which are exactly those obtained for inviscid Euler flow in Refs. [124, 130], and correspond to the

respective eigenmodes (up to arbitrary normalization)

o0 =


1

−1

0

 , (5.44a)

o± =


5− 4λ±

√
25 + 16λ(λ− 2)

5− 4λ±
√

25 + 16λ(λ− 2)

4
√
λ

 . (5.44b)

The eigenmode o0 is a strictly radial quadrupole mode, while o− and o+ are 3-dimensional quadrupole

and breathing modes respectively. See Fig. 5.12 for a visual reference of these modes.
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Figure 5.12: Visualization of the dominant dynamics in oscillatory modes. Arrows that point in
opposing directions relative to the gas cloud (ellipsoid) indicate dynamics that are out-of-phase.
These figures are for illustrative purposes.

Similarly, Γ results in two nontrivial eigenvalues γ±, that constitute the eigen rates of Γ. Al-

though it is tempting to assign one of these eigenrates as the overall relaxation rate, the eigenmodes

associated with each γ±, are in general, not the eigenmodes of O. Consequently, coupling between

the eigenmodes of Γ is inevitable during dynamical evolution, enforcing that accurate relaxation

trajectories are best obtained from full solutions to Eq. (5.41), if not Eq. (5.34).

The physics predicted by our weltering theory has yet to be validated by experiments. If

you, the reader, are an experimentalist looking for fun hydrodynamics to do with your ultracold

molecular setup, my digital door remains open for the welter wonderland we could pursue.



Chapter 6

Theory and Experiment Collide

An allure to working in atomic and molecular physics is the bevy of incredible experiments

happening around the globe. At the very cutting edge of scientific discovery, these experiments are

often pushing the boundaries of what theorists have to propose and can predict. Like any healthy

competition, I’ve found that this exhilarating scientific back-and-forth drives much ingenuity and

progress. Still, world leading experimentalists will every so often look to theorists for modeling,

understanding and interpreting the physics observed in their experiments. Such collaboration also

provides opportunities to actually validate the otherwise purely intellectual musings of how the

universe truly behaves. Here are two experiments that utilized some of my musings.

“Theory will take you only so far."

— J. Robert Oppenheimer (Oppenheimer), 2023.

6.1 Innsbruck: Cold mountains, ultracold atoms, hot science!

By this point, Sec. 2.1.5 has already explained all the details one needs to know about scat-

tering lengths to follow along here. Although, knowing its numerical value, outside the context

of thermalization, has thus far gone rather unmotivated. It turns out, the scattering length lends

itself to parameterizing interactions in multiple models of quantum many-body physics. Like the

Gross-Pitaevskii equation for studying Bose-Einstein condensates [131, 132], and the Bose-Hubbard

model for describing the superfluid to Mott insulator transition [133], amongst others [9].
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More recently, interest has grown in ultracold atom platforms for studying many-body physics

with dipole-dipole interactions [27, 28, 134]. Such systems utilizing bosonic isotopes still require

knowledge of the scattering length, which is really difficult to obtain from ab initio calculations.

An alternative is to extract it from experimental measurements, which is what I’ve done with the

Ferlaino group at Innsbruck. Together, we accurately determined as in much the same scheme as

that for Dysprosium atoms by the Lev group [87], but now supercharged with analytic expressions

for thermalization. Here’s the inside scoop of how we did it.

6.1.1 Extracting scattering lengths from thermalization

At Innsbruck, spin-polarized thermal clouds of erbium (Er) atoms were produced in their

lowest Zeeman sublevel [2], primed for rethermalization experiments. To achieve this, Er atomic

ensembles are first cooled and trapped in a narrow-line magneto-optical trap [135], then transferred

into a crossed optical dipole trap (see App. B). The gas temperature is further lowered via evapo-

rative cooling, following which the optical confinement is re-tightened to prevent further atom loss

from residual evaporation at final trap frequencies (ωx, ωy, ωz) ≈ 2π × (65, 19, 300) Hz. Simultane-

ously, B is ramped to its desired value, which for all those considered (up to B = 5 G), the Zeeman

splitting is linear and gives ad = 98.2a0 (see Sec. 2.1.1). At this stage, the gas is typically at a

temperature between T = 250 to 300 nK with a population of N ≈ 105 atoms. The calculated

critical temperature for the onset of Bose-Einstein condensation Tc [136] lies between 150 nK and

200 nK, around 1.5 times less than T , ensuring a nondegenerate sample. The orientation of the

magnetic dipoles is controlled by the direction of the polarizing magnetic field and is parameterized

by the angle Θ between B and the vertical direction z (see inset Fig. 4.2). Careful now, notice that

the Θ is defined in the y, z-plane for the experiment, but in the x, z-plane in Chap. 4. That’s going

to be important when characterizing anisotropy.

With the thermal sample prepared, cross-dimensional thermalization can commence [91]. The

cloud is heated almost instantaneously along y, after which thermalization dynamics is probed along

z. This excitation scheme relies on a rapid increase in power of one trapping beam, leading to a
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60% increase of the y trapping frequency. Thermometry of the effective temperatures Tz (Ty) over

a time interval t is obtained from widths of the momentum distribution σz(t) (σy(t)) after time of

flight expansion for tToF = 25 ms (20 ms). This scheme leads to an out-of-equilibrium cloud with an

effective temperature increase along y from about 300 nK to 600 nK. Fig. 4.2 plots the subsequent

relaxation time traces of Tz and Ty to the same equilibrium temperature, at B = 1 G. Despite some

oscillations attributed to a breathing mode induced by the finite-time excitation, the observed Tz

displays a dominant exponential behavior of the form:

Tz(t) =
(
Teq +∆Tze

−γErt
)
, (6.1)

where Teq is the equilibration temperature and ∆Tz denotes the change in temperature due to the

added energy. However, applying this simple fit does not immediately give as unless we know the

explicit functional dependence of γEr(as,Θ) on as. Well, aren’t we fortunate, for this dependence

is exactly what Eqs. (4.2) and (4.12) give us with

NEr(as,Θ) =
14
(
45a2s + 4a2d

)
252a2s + 96asad + (3 cos(4Θ) + 13)a2d

. (6.2)

As presented, NEr corresponds to Nxz in theory-land axes, and Nyz in the real-world experimental

setup.

A competition between the anisotropic character of NEr(as,Θ) is clearly seen in Fig. 4.3,

with plots of it as a function of Θ (a) and as (b). Although a pronounced dipole angle dependence

with maxima at 45◦ is observed at small as (≲ 10a0), such behavior progressively washes out for

increasing as. Around as ≈ 70a0, the thermalization behavior becomes basically independent of Θ

but NEr(as,Θ) is still smaller than the case of purely s-wave collisions. Much faster thermalization

is thus expected, arising from a more efficient distribution of momenta from dipolar scattering

scattering. The experiment only measures rethermalization for relatively large values of as ≳ 30a0

with little Θ-dependence in NEr(as,Θ). So Θ is simply fixed at 0◦ which simplifies Eq. (6.2) to

NEr(as, 0
◦) =

14
(
45a2s + 4a2d

)
252a2s + 96asad + 16a2d

. (6.3)
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Notably at Θ = 0◦, the number for rethermalization is minimized at ad/as ≈ 2.7 with

value NEr ≈ 1.65, indicating highly efficient collisional thermalization. This efficiency is directly

attributed to the innate anisotropic differential cross section in dipolar bosons [35].

6.1.2 Scattering lengths galore!

Before taking cross-dimensional thermalization measurements for 166Er, a high resolution

scan of the atom number as a function of the magnetic field is performed in order to record the

dense spectrum of Fano-Feshbach resonances [137, 138]. The Fano-Feshbach spectra is tabulated in

Tabs. 6.1 and 6.2, with B oriented along z, and taking values from B = 0 G to 5 G (see Fig. 6.1).

Table 6.1: Fano-Feshbach resonance positions and widths included into the fit of Eq. (6.5) to as
for 164Er (left) and 166Er (right). The error denotes the fit error of one standard deviation. Values
without error are fixed in the fitting procedure.

Position Bi (G) Width ∆Bi (G)
1.52 0.22(3)
2.67 0.005
2.83 0.005
3.26 0.10(3)

Position Bi (G) Width ∆Bi (G)
0.02(5) 0.05(2)
3.04(5) 0.15(2)
4.208 0.01
4.96 0.005

Table 6.2: Fano-Feshbach resonance positions and widths included into the fit of Eq. (6.5) to as
for 168Er (left) and 170Er (right). The error denotes the fit error of one standard deviation. Values
without error are fixed in the fitting procedure.

Position Bi (G) Width ∆Bi (G)
0.49 0.005

0.911(6) 0.032(2)
1.51 0.01

2.174(4) 0.038(2)
2.471(9) 0.19(1)

2.86 0.005
3.79 0.006(5)
4.23 0.005
4.5 0.005

Position Bi (G) Width ∆Bi (G)
0.35 0.005
0.86 0.028(12)
1.12 0.005
1.62 0.01
2.17 0.067(7)
2.74 0.134(9)
3.3 0.01(1)
3.57 0.01
4.38 0.005
4.49 0.01
6.91 0.8(7)
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Figure 6.1: Atom-loss spectroscopy (orange circles) as a function of B for a fixed hold time of
250 ms. For each value of B, each data point is an average of 3 repetitions and normalized to
the maximum averaged atom number recorded. The values of as are those extracted from cross-
dimensional thermalization measurements using both, the Enskog equations (red squares) and the
analytic formula of Eq. (6.2) (blue diamonds), for 164Er (a), 166Er (b), 168Er (c) and 170Er (d).
The black triangles are as values obtained from lattice modulation spectroscopy measurements (see
Ref. [2]). The solid black lines represent a fit of Eq. (6.5) to as. Error bars and the shaded area of
the fitting results denote the standard error. The figure is adapted from Ref. [2].
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Thermalization measurements are then performed at values of B where the system is not

dominated by resonant atom loss. For each thermalization curve, we extract as using two different

approaches, one numerical and one semi-analytical. The first, constitutes a direct fit of the full

Enskog solutions to the experimental data, leaving as as a float parameter of the theory. That is,

we numerically evolve Eq. 3.8 for various values of as until the one that minimizes

min
ω,as

tend∑
t=t0

(
T (t)− TE [T (0); as] (t)

δT (t)

)2

, (6.4)

is obtained, where the sum runs over measurement time instances t, T (t) is the temperature data

from the experiment, δT (t) is the temperature measurement uncertainty, and TE [T (0); as] is the

solution to the Enskog equations with initial condition T (0).

The second method is based on the exponential decay rate γ from Eq. (4.2), using the analytic

expression for NEr(as, 0
◦) in Eq. (6.3). Since as is a priori unknown, we use an iterative approach

to determine NEr(as, 0
◦) starting from the Gribakin-Flambaum mean scattering length value of

Eq. (2.27), as ≈ 100a0. We use the calculated as and the analytic formula (6.3) to obtain a new

value for NEr(as, 0
◦). We stop the iteration once the relative change of NEr(as, 0

◦) is ≤ 10−7.

Fig. 6.1 summarizes as for 164Er (subplot a), 166Er (subplot b), 168Er (subplot c) and 170Er (subplot

d) in the region from 0 G to 5 G. The values of as extracted from both the Enskog model and

the analytic formulas are in very good agreement with one another, reflecting the strength of the

analytic formula of Eq. (6.3). A triumph for theory!

As an added assurance, lattice modulation spectroscopy was also performed to extract as for

the 166Er and 168Er isotopes [139–141] (see the black triangles in subplots b and c of Fig. 6.1). This

technique is rather involved but gives highly accurate measurements, serving as a useful benchmark

for the thermalization methods of focus here.
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6.1.3 Mass scaling of the background scattering length

More broadly, the global behavior of as with B can be described by generalizing the well-known

formula in Ref. [142], to

as(B) =
(
abgs + sB

)Nres∏
i=1

(
1− ∆Bi

B − Bi

)
, (6.5)

allowing for Nres overlapping resonances at positions Bi with widths ∆Bi. Fitting Eq. (6.5) to the

thermalization measured values of as (see the solid lines in Fig. 6.1) then allows us to map out

its complete functional dependence on B, for all 4 bosonic isotopes 164Er, 166Er, 168Er, and 170Er.

Knowledge of as as a function of the magnetic field then allows us to extract an effective background

scattering length abgs for each isotope. Various mechanisms could lead to an off-resonant variation

of as, such as broad Fano-Feshbach resonances not within the measurement range [143] or dipole

couplings to higher Zeeman sublevels [144]. We thus allow for a smooth off-resonant variation of as

with B, by including a linear slope parameter s in Eq. (6.5) that already reproduces the data well.

The zero field value of as(0) is then identified as the effective background scattering length.

Fig. 6.2 shows the value of abgs from the fit as a function of the isotope mass. We observe

a monotonic rise of abgs with increasing m, compatible with a variety of functional forms. For

convenience, we pick the one consistent with ytterbium and cesium [39, 145, 146], which assumes

only a Van der Waals potential V6(r) = −C6/r
6, with C6 being the Van der Waals coefficient. This

might not be a great approximation for magnetic erbium, but in the absence of alternative models,

this will have to do for the time being.

Starting from Eq. (2.27), we write as as

as = ā
[
1− tan

(
ϕs −

π

8

)]
, (6.6a)

ϕs =

√
m

ℏ

∫ ∞

R0

dr
√

−Vint(r), (6.6b)

with the classical turning points of Vint(r) denoted as R0. Although the exact shape of Vint(r) is

unknown, Eq. (6.6a) can be employed to extract a mass-scaling due to the dependence of ϕs ∝
√
m

[145]. Such a scaling is valid, as long as the mass-dependent modification of Vint(r) is negligible.
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Furthermore, ϕs allows for the calculation of the number of bound states NB, via Levinson’s theorem

NB = ⌊ϕs/π − 5/8⌋ [147], where ⌊. . .⌋ denotes the integer floor function. Applied to our case of

erbium, we fit Eq. (6.6a) to the experimental data and obtain Fig. 6.2. The optimal fit gives

ϕs/π = 144(1), implying NB = 143(1) boundstates for 168Er, a factor of 2 larger than ytterbium

despite their similar C6 coefficients [145].

163 164 165 166 167 168 169 170 171
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Figure 6.2: Background scattering length abgs for four bosonic isotopes (red circles). The solid line
represents the best fit with ϕs/π = 144(1); see text. The shaded area, enclosed by the dotted lines,
represents the fitting function for ϕs = 143 and ϕs = 145. The errorbars denote the standard error
of the fit of Eq. (6.5) to the experimental data.

6.2 MPQ: The road to deeper Fermi degeneracy with molecules

If you’ve ever left the lid off your morning cup of coffee, you would have likely found it

already cooled off by the time you’re done checking your emails. This disappointment is driven by

a process known as evaporative cooling, where the hot water molecules are free to evaporate away,

transporting thermal energy to the surrounding room temperature air. The remaining coffee then

quickly thermalizes its now less energetic distribution, leaving behind a sad lukewarm beverage but

a spanking new thermoflask in your Amazon cart.
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In very much the same way, this continuous cycle of evaporation and rethermalization is what

enabled the 2001 Nobel laureates to achieve Bose-Einstein condensates of atoms [7, 8]. More re-

cently, the advent of collision shielding (see Sec. 2.2) has also allowed diatomic molecules to see the

likes of Bose-Einstein condensation [54] and Fermi degeneracy [4, 44], ushering us into a new age of

molecular quantum gases. Toward explorations of many-body quantum physics with deeply degen-

erate molecular fermions, I have been collaborating with the group at the Max-Planck-Institut für

Quantenoptik (MPQ), in the hopes of reaching T/TF < 0.1. However, evaporating these molecular

fermions to such low temperatures is problematic for several reasons: 1) Fermi statistics become

significant at low temperatures, Pauli-blocking elastic collisions from thermalizing the sample during

evaporation, while 2) 2-body losses continue to occur even with microwave shielding applied, which

are not Pauli-blocked. Nevertheless, we would still like to optimize the evaporative cooling proce-

dure as much as possible, which would minimally provide us with an extremely low temperature

sample to then commence further cooling protocols down to T/TF < 0.1.

6.2.1 Let it flow, let it flow!

The harmonic approximation of Eq. (3.2) is only valid in deep optical dipole traps, where

laser powers are large enough to keep most of the molecules close to the trap’s energetic minimum.

In actuality, optical dipole traps have a Gaussian shape due to the profile of the laser beams, just

like what you see in Fig. 6.3. In the figure, I’ve plotted a realistic model of the optical dipole trap

(see App. B) along the y = 0 plane, utilizing the laser parameters in Tab. 6.3. These parameters

are adopted as the starting point for all evaporation experiments in our current investigations.

This finite energetic height of the trap, controllable by varying the laser beam power, is

exactly how hot molecules are forced to evaporate out of the trap. In the process of doing so

however, a significant fraction of molecules will now see a large region of this potential energy

landscape, rendering the anharmonicities of this potential, especially the sag along z due to gravity,

highly relevant to the evaporation experiments of interest here. A faithful representation of the trap

should therefore be adopted for accurate evaporation simulations, which is exactly what we employ.
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Figure 6.3: The optical trap potential energy surface V (r), plotted as a function of coordinates x
and z, along y = 0.

Table 6.3: Table of parameter values for the potential confining a gas of fermionic 23Na40K
molecules. h denotes Planck’s constant.

Parameter Symbol Value Unit
Beam 1 vertical width W1,z 57.5 µm
Beam 1 horizontal width W1,⊥ 113 µm
Beam 1 wavelength λ1 1064 nm
Beam 1 power P1 0.242 W
Polarizability in beam 1 α1 2.79× 10−3h m2Hz/W
Beam 2 vertical width W1,z 45 µm
Beam 2 horizontal width W1,⊥ 156 µm
Beam 2 wavelength λ2 1064 nm
Beam 2 power P2 0.253 W
Polarizability in beam 2 α2 2.79× 10−3h m2J/W

To effectively simulate the evaporation of molecules out of the trap, I have opted to use a

position space cutoff scheme. That is, a molecule is taken as evaporated if it falls past the outer
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turning point along z, or goes past a position that is 6 times the thermal width of the initial cloud

from the trap minimum:

|ri − ri,min| > 6

√
kBT0
mω2

i (0)
, (6.7a)

and z < zmax, (6.7b)

where T0 is the initial equilibrium temperature, ri,min is the position of the trap minimum along

axis i and zmax < 0 is the trap local maxima along z. The criteria above allow us to account for

the anisotropic molecular loss in space, resulting from the gravitational trap sag. Furthermore, the

Gaussian trap profiles in the transverse directions imply that if molecules are too far away from the

trap minima, they will no longer experience a large enough restorative potential, nor collisions, to

return toward the trap center and are thus effectively evaporated.

Following the experiment, evaporation is forced by gradually reducing the trapping laser

power, in turn lowering the trap depth and promoting the loss of hot molecules. During this

process, the trap powers follow an exponential time-dependence

Pi(t) = Pi(0)−∆Pi

(
1− e−2t/τ

1− e−2

)
, (6.8)

where ∆Pi is the change in laser power along axis i, and τ is the forced evaporation time. During

this ramp, the efficiency of evaporation Eevap, is measured by the slope of log phase space density

(PSD) vs the log number decrease [148]:

Eevap = −∂ log10 ρPSD
∂ log10N

, (6.9)

where PSD is defined as

ρPSD = ⟨n⟩λ3th, (6.10)

comparing the ensemble averaged number density ⟨n⟩ against the cubed thermal de Broglie wave-

length λth = h/
√
2πmkBT . In practice, Eevap is extracted from a linear fit to the evaporation

trajectory data. The PSD is extracted from temperature measurements of the simulation ensemble
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through the relation

Li3

(
ρPSD

ρPSD − 1

)
= −1

6

(
T

TF

)−3

, (6.11)

where TF = ℏω(6N)1/3/kB is the Fermi temperature confined with geometric mean trapping fre-

quencies ω [149] and Li3(z) is the trilogarithmic function.

I’ll point out that although Eevap provides a useful guide for experiments, it does not guarantee

to achieve the highest phase space density amongst other schemes with possibly lower predicted

efficiencies. For instance, a rapid decrease in the trap depth would still allow favorable evacuation

of hot molecules and a seemingly efficient decrease in total energy. Unfortunately, the subsequent

sample would have had no time to thermalize during the fast quench, disallowing the thermal

tails of the distribution from being re-populated for further evaporative cooling beyond the initial

evacuation. It is therefore useful to also track the final T/TF and ρPSD achieved, toward the goal

of deeply degenerate Fermi gases.

6.2.2 In-simulation thermometry

As the gas enters into deeper quantum degeneracy from evaporation, Fermi statistics be-

come significant. Consequently, Pauli blocking −h3f factors in the collision integral (3.3) become

significant at PSD of order ρPSD ≳ 0.1, requiring its inclusion in the simulation which shifts the

equilibrium distribution from Maxwell-Boltzmann to Fermi-Dirac, illustrated in Fig. 6.4 (description

in caption). So to accurately extract the values of T , we utilize a Fermi-Dirac fit to the y-integrated

simulation ensemble, likened to the optical density (OD) from absorption imaging of the molecular

cloud [4, 150, 151]:

OD(x, z) =
ODmax

Li2 (−ζ)
Li2

(
−ζe−

x2

2σ2
x
− z2

2σ2
z

)
. (6.12)

Above, ODmax is the peak optical depth, σi are the distribution widths, ζ is the fugacity and Li2(z)

is the dilogarithmic function. In time-of-flight imaging, the distribution widths will evolve in time
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for every time-of-flight instance as

σi =
√

1 + ω2
i t

2
TOF

√
kBTi
mω2

i

, (6.13)

over the time interval tTOF. In the long time limit, this time-dependence changes the density

images from position to momentum space distributions, since ri → vitTOF and σi → tTOF

√
kBT/m,

rendering

OD(x, z)|tTOF→∞ = OD(vx, vz) (6.14)

=
ODmax

Li2 (−ζ)
Li2

(
−ζe−

m(v2x+v2z)

2kBT

)
,

where vi is the molecular velocity along axis i.

Figure 6.4: Simulation ensemble energy distribution with N = 10, 000 molecules (gray histogram),
after collisional thermalization for t = 0.5 s from an initial Maxwell-Boltzmann distribution at 50
nK (dotted red curve). The simulation achieves a Fermi-Dirac distribution (solid black curve) at
T ≈ 42 nK with a chemical potential of µ/kB ≈ 87 nK.
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Leaving T and ζ as float parameters, OD(vx, vz) is then fitted to the simulation distribution,

obtained by constructing an appropriately normalized 2D histogram from the simulated particle

ensemble, projected into the x, z plane. In practice, obtaining the fugacity by fitting to the shape

of the distribution results in large errors with noisy data. So we opt to utilize the relation

Li3(−ζ) = −1

6

(
T

TF

)−3

, (6.15)

to infer the fugacity, floating only T . If T > TF , we simply revert to assuming a Boltzmann

distributed gas, with temperature related to the mean-squared momenta T = ⟨p2⟩/(3mkB).

6.2.3 Numerical results and prospects

Implementing the components for forced evaporation above into my DSMC solver (see Sec. 3.3),

I was able to reproduce the trends in evaporative cooling observed in the experiment at MPQ [4].

In that study, the final trap depth was varied over several experimental instances with forced evapo-

ration occurring over 150 ms, resulting in various molecule numbers and gas temperatures attained

at the end of each evaporation trajectory 1 . Fig. 6.5 showcases the favorable agreement of our

numerically simulated data points (red crosses) with the experimental measurements (black circles

with error bars), except for disagreement at low molecule numbers attributed to experimental trap

jitter at low laser powers.

With the DSMC solver benchmarked against experimental data, we are now assured that

further explorations with it will be informative of actual experimental observation. Moreover, the

versatility of our solver makes incorporating other relevant aspects such as accurate 2-body loss

rates or energy dependent elastic cross sections a simple modification. However, since utilizing this

tool for attaining T/TF < 0.1 is still an ongoing pursuit, I will leave all further details to upcoming

works that will soon be published.
1 Reported to commence in an excited sloshing mode of the molecular distribution, our simulated evaporation

accounts for resultant heating by simply using a constant 2-body loss rate of βL = 10−12 cm3/s, and adds an
estimated h = 100 nK/s background heating rate. Background heating was included with momentum kicks during
our simulated time evolution, taking the momentum of particle k, and increasing it by pk → pk

(
1 + 2p−2

k mkBh∆t
)
,

after the second Verlet integration step of Eq. (3.30) in Sec. 3.3.1.
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Figure 6.5: Plot of T/TF values after evaporating down to N molecules in the experiment at the
Max-Planck-Institut für Quantenoptik [4] (black circles with error bars) with different final trap
depths, compared to those obtained from our numerical simulations (red crosses).

6.3 Curtain call

Before I let the credits roll (i.e. the bibliography section), I want to quickly recount several

key highlights of this thesis to cap it all off.

Setting the foundation for most of my work here was an understanding of ultracold dipolar

collisions, provided in Chap. 2 for both magnetic atoms and field-shielded polar molecules. The

anisotropy of dipole-dipole interactions gives rise not only to anisotropic 2-body differential scat-

tering, but also manifests in the collective dynamics of a nondegenerate gas. When dilute, these

gases thermalize at rates that are highly dependent on the direction of excitation, measurement,

and dipole orientation (Chap. 3). This sensitivity to direction allowed experimentalists to observe
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universal signatures of threshold dipolar scattering in potassium-rubidium molecules (Sec. 4.1.2),

and accurately extract the s-wave scattering length in dipolar erbium atoms (Sec. 6.1). My first

encounters with experimental collaboration.

As with the mentioned examples, a deeper understanding of dipolar collisional thermalization

can better inform experimental applications such as evaporative cooling (Sec. 6.2), and unexplored

phenomena like hydrodynamic excitations. So came my works in Chap. 5, exploring exactly these

hydrodynamic gases that support a rich tapestry of fluid dynamics such as acoustics (Sec. 5.3),

and weltering excitations (Sec. 5.4). The latter arises in harmonically trapped gases, where dipolar

collisions serve, once more, to return the gas to equilibrium. The manner in which equilibration

occurs, however, does not immediately follow from our intuition on dilute gases, so much so that I

had to derive an entirely new set of equations to capture it. Although initiated here, more work is still

required to fully grasp and characterize nonegenerate dipolar fluids in all their weltering intricacies

(Sec. 5.4.1): the inklings of evermore pertinent questions, awaiting exciting new discoveries.

And with that, I’ll declare this the end of my thesis and PhD journey.

“Those were the days of our lives."

— Freddie Mercury (Innuendo), 1991.
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Appendix A

Matrix elements of the effective microwave shielded potential

To perform the scattering calculations on the effective single-channel microwave shielded po-

tential energy surface in Sec. 2.2.2, we are required to compute the matrix elements of the effective

microwave shielded potential ⟨ℓ,m|Vµ(r) |ℓ′,m′
ℓ⟩. We list these elements explicitly in this section.

In all generality for those who might want to use this in future, I will consider the case of arbitrary

microwave ellipticity, parameterized by the angle ξ, but with the dipoles aligned along z such that:

Vµ(r; ξ) = V6(r; ξ) + Vdd(r; ξ), (A.1)

having defined

V6(r; ξ) =

[
(1−Fξ(ϕ))

2 cos2 θ + 1−Fξ(ϕ)
2

]
sin2 θ, (A.2a)

Vdd(r; ξ) =
d
2

4πϵ0r3
[
3 cos2 θ − 1 + 3Fξ(ϕ) sin

2 θ
]
, (A.2b)

and the function Fξ(ϕ) = cos(2ϕ) sin(2ξ) [55].

The associated matrix elements of these potentials are then listed as follows. For the dipole-

dipole potential Vµ,dd, we have:

⟨ℓ,m|Vµ,dd(r; ξ)
∣∣ℓ′,m′

ℓ

〉
=

d
2

4πϵ0r3
⟨ℓ,m|

[
4

√
π

5
Y2,0(θ, ϕ) + 12

√
2π

15
Re[Y2,2(θ, ϕ)] sin(2ξ)

] ∣∣ℓ′,m′
ℓ

〉
=

d
2

4πϵ0r3

[
4

√
π

5

∫
dΩY ∗

ℓ,m(Ω)Y2,0(Ω)Yℓ′,m′
ℓ
(Ω)

+ 6

√
2π

15
sin(2ξ)

∫
dΩY ∗

ℓ,m(Ω) [Y2,2(Ω) + Y2,−2(Ω)]Yℓ′,m′
ℓ
(Ω)

]
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=
d
2

4πϵ0r3
2(−1)m

√
(2ℓ+ 1)(2ℓ′ + 1)

ℓ 2 ℓ′

0 0 0



×


 ℓ 2 ℓ′

−mℓ 0 m′
ℓ

 +

√
3

2
sin(2ξ)


 ℓ 2 ℓ′

−mℓ 2 m′
ℓ

+

 ℓ 2 ℓ′

−mℓ −2 m′
ℓ



 , (A.3)

while the matrix elements for Vµ,6(r) are given as

⟨ℓ,mℓ|Vµ,6(r; ξ)
∣∣ℓ′,m′

ℓ

〉
=
C6

r6
⟨ℓ,mℓ|

[
1− cos2(2ϕ) sin2(2ξ)

+ (1− cos(2ϕ) sin(2ξ))2 cos2 θ
]
sin2 θ

∣∣ℓ′,m′
ℓ

〉
= 4

√
π
C6

r6
⟨ℓ,mℓ|

[
1

15
(cos(4ξ) + 5)Y0,0(θ, ϕ)

− 1

7

√
2

15
sin(2ξ)Y2,−2(θ, ϕ)

− 2

21

√
1

5
(cos(4ξ) + 2)Y2,0(θ, ϕ)

− 1

7

√
2

15
sin(2ξ)Y2,2(θ, ϕ)

− 1

3

√
2

35
sin2(2ξ)Y4,−4(θ, ϕ)

− 2

21

√
2

5
sin(2ξ)Y4,−2(θ, ϕ)

+
1

105
(cos(4ξ)− 5)Y4,0(θ, ϕ)

− 2

21

√
2

5
sin(2ξ)Y4,2(θ, ϕ)

− 1

3

√
2

35
sin2(2ξ)Y4,4(θ, ϕ)

] ∣∣ℓ′,m′
ℓ

〉
=
C6

r6
2(−1)mℓ

√
(2ℓ+ 1)(2ℓ′ + 1)

×

 1

15
(cos(4ξ) + 5)

ℓ 0 ℓ′

0 0 0


 ℓ 0 ℓ′

−mℓ 0 m′
ℓ



− 1

7

√
2

3
sin(2ξ)

ℓ 2 ℓ′

0 0 0


 ℓ 2 ℓ′

−mℓ −2 m′
ℓ



− 2

21
(cos(4ξ) + 2)

ℓ 2 ℓ′

0 0 0


 ℓ 2 ℓ′

−mℓ 0 m′
ℓ


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− 1

7

√
2

3
sin(2ξ)

ℓ 2 ℓ′

0 0 0


 ℓ 2 ℓ′

−m 2 m′



−
√

2

35
sin2(2ξ)

ℓ 4 ℓ′

0 0 0


 ℓ 4 ℓ′

−mℓ −4 m′
ℓ



− 2

7

√
2

5
sin(2ξ)

ℓ 4 ℓ′

0 0 0


 ℓ 4 ℓ′

−mℓ −2 m′
ℓ



+
1

35
(cos(4ξ)− 5)

ℓ 4 ℓ′

0 0 0


 ℓ 4 ℓ′

−mℓ 0 m′
ℓ



− 2

7

√
2

5
sin(2ξ)

ℓ 4 ℓ′

0 0 0


 ℓ 4 ℓ′

−mℓ 2 m′
ℓ



−
√

2

35
sin2(2ξ)

ℓ 4 ℓ′

0 0 0


 ℓ 4 ℓ′

−mℓ 4 m′
ℓ


 . (A.4)

Even more conveniently for the reader, I will also list the simplified matrix elements for

circularly polarized microwaves (ξ = 0) explicitly below:

⟨ℓ,mℓ|Vµ,dd(r; 0)
∣∣ℓ′,m′〉 = d2eff

4πϵ0r3
⟨ℓ,mℓ|

[
4

√
π

5
Y2,0(θ, ϕ)

] ∣∣ℓ′,m′
ℓ

〉
=

d2eff
4πϵ0r3

[
4

√
π

5

∫
dΩY ∗

ℓ,mℓ
(Ω)Y2,0(Ω)Yℓ′,m′

ℓ
(Ω)

]

=
d2eff

4πϵ0r3
2(−1)mℓ

√
(2ℓ+ 1)(2ℓ′ + 1)

ℓ 2 ℓ′

0 0 0


 ℓ 2 ℓ′

−mℓ 0 m′
ℓ

 ,

(A.5a)

⟨ℓ,mℓ|Vµ,6(r; 0)
∣∣ℓ′,m′

ℓ

〉
=
C6

r6
⟨ℓ,mℓ|

(
1 + cos2 θ

)
sin2 θ

∣∣ℓ′,m′
ℓ

〉
= 4

√
π
C6

r6
⟨ℓ,mℓ|

[
2

5
Y0,0(θ, ϕ)−

2

7

√
1

5
Y2,0(θ, ϕ)−

4

105
Y4,0(θ, ϕ)

] ∣∣ℓ′,m′
ℓ

〉
=
C6

r6
2(−1)m

√
(2ℓ+ 1)(2ℓ′ + 1)

×

2
5

ℓ 0 ℓ′

0 0 0


 ℓ 0 ℓ′

−mℓ 0 m′
ℓ

− 2

7

ℓ 2 ℓ′

0 0 0


 ℓ 2 ℓ′

−mℓ 0 m′
ℓ





122

− 4

35

ℓ 4 ℓ′

0 0 0


 ℓ 4 ℓ′

−mℓ 0 m′
ℓ


 . (A.5b)

There you go, matrix elements on a silver platter.



Appendix B

Optical dipole traps for atoms and molecules

In the parlance of classical physics, an oscillating electric field results in the separation of

positive and negative charges within a neutral atom, inducing an electric dipole moment. This

dipole can in turn interact with its very maker, the oscillating field, either resonantly or not. Be-

low resonance (red detuned), the dipole-field interaction energy is negative, pulling the atom into

the region of highest electric field intensity. The converse process occurs above resonance (blue

detuned). In real quantum mechanical atoms, a Gaussian laser beam could act as the oscillating

field, which dresses the atom’s internal electronic states to induce a dipole transition. With the

intensity maximal at the Gaussian peak, a red detuned laser is best used to trap the atoms close to

the energetic minima of the beam center. And that folks, is how you get optical confinement [152].

More rigorously, the external laser field can be modeled by the electric field E(r)eiωt, oscil-

lating at a frequency ω. A proportional dipole moment

dind(r) = α̃E(r), (B.1)

is then induced in the atom, with an atomic species, laser frequency and polarization dependent

proportional constant α̃, known as the complex atomic polarizability. The interaction of d(r) with

E(r) then results in the potential energy felt by the atom as

Vtrap(r) = −1

2
⟨dind(r, t) · E(r, t)⟩t = −Re{α̃}|E(r)|2, (B.2)

where ⟨. . .⟩t is a time average over the rapid oscillating terms. For an elliptic Gaussian beam
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propagating along z, its intensity profile is given as

|E(r)|2 = P

πcϵ0wx(z)wy(z)
exp

[
−2

(
x2

w2
x(z)

+
y2

w2
y(z)

)]
, (B.3)

with laser power P , beam width along axis i:

wi(z) =Wi

√
1 +

z2

R2
i

, (B.4)

Rayleigh length Ri = πW 2
i /λ, minimum beam width Wi and laser wavelength λ.

For optical trapping in 3-dimensions, 2 of such Gaussian beams are generally utilized in a

crossed configuration, so that the electric fields are orthogonal to each other and add linearly in

intensity. As a result, the crossed optical dipole trap resultant from lasers propagating along x and

y is described by the potential:

VODT(r) = − 2α1P1

πw1,y(x)w1,z(x)
exp

(
− 2y2

w2
1,y(x)

− 2z2

w2
1,z(x)

)

− 2α2P2

πw2,x(y)w2,z(y)
exp

(
− 2x2

w2
2,x(y)

− 2z2

w2
2,z(y)

)
, (B.5a)

where αi = Re{α̃i}/(2cϵ0) is the polarizability constant. Close to the minima of this potential,

VODT can be expanded up to second order in spatial coordinates as

Vharm(r) =
∑
i

Air
2
i , (B.6)

dropping all constants as they simply amount to an energy offset, with harmonic coefficients

Ax =
α1P1λ

2
1

(
W 4

1,y +W 4
1,z

)
π3W 5

1,yW
5
1,z

+
4α2P2

πW 3
2,xW2,z

, (B.7a)

Ay =
4α1P1

πW 3
1,yW1,z

+
α2P2λ

2
2

(
W 4

2,x +W 4
2,z

)
π3W 5

2,xW
5
2,z

, (B.7b)

Ay =
4α1P1

πW 3
1,yW1,z

+
4α2P2

πW 3
2,xW2,z

. (B.7c)

Comparing Eq. (B.6) to Eq. (3.2) finally identifies the harmonic trap frequencies as

ω2
i =

2

m
Ai. (B.8)



Appendix C

The method of averages

I utilize the method of averages to derive Enskog equations in this appendix chapter. For some

observable quantity of interest χ(r,p, t), the method of averages multiplies it with the Boltzmann

equation (3.1) and takes an integral over phase space to give

1

N

∫
d3pd3r χ(r,p, t)

(
∂

∂t
+
∑
i

pi
m

∂

∂ri
−
∑
i

∂V (r)

∂ri

∂

∂pi

)
f(r,p, t)

=
1

N

∫
d3pd3r χ(r,p, t)Icoll[f ]. (C.1)

Each term on the left hand side of Eq. (C.1) is evaluated as∫
d3p

∫
d3r

(
χ
∂f

∂t

)
=

∫
d3p

∫
d3r

(
d

dt
(χf)− f

∂χ

∂t

)
= N

d⟨χ⟩
dt

−N

〈
∂χ

∂t

〉
, (C.2a)∫

d3p

∫
d3r

∑
j

pj
m

∂f

∂rj
χ =

∫
d3p

∫
d3r

∑
j

(
∂

∂rj

(pj
m
χf
)
− pj
m

∂χ

∂rj
f

)

=

∫
d3p

∮
∂S
χf
∑
j

pj
m
n̂j −

∫
d3r

∑
j

pj
m

∂χ

∂rj
f


= −

∫
d3p

∫
d3r

∑
j

pj
m

∂χ

∂rj
f

= −N
〈 p
m

·∇rχ
〉
, (C.2b)∫

d3p

∫
d3rχ

∑
j

∂V (r)

∂rj

∂f

∂pj
=

∫
d3p

∫
d3r

∑
j

(
∂

∂pj

(
χf

∂V (r)

∂rj

)
− ∂V (r)

∂rj

∂χ

∂pj
f

)

=

∫
d3r

∮
∂Sp

χf
∑
j

∂V (r)

∂rj
n̂j −

∫
d3pf

∑
j

∂V (r)

∂rj

∂χ

∂pj





126

= −
∫
d3r

∫
d3p

∑
j

∂V (r)

∂rj

∂χ

∂pj
f

= −N⟨∇V (r) ·∇pχ⟩, (C.2c)

where n̂j is the j-th unit vector component normal to the surface ∂S.

Putting these terms together, the phase-space averaged substantial derivative evaluates to

1

N

∫
d3p

∫
d3r χ(r,p, t)

(
∂

∂t
+
∑
i

pi
m

∂

∂ri
−
∑
i

∂V (r)

∂ri

∂

∂pi

)
f(r,p, t)

=
d⟨χ⟩
dt

−
〈
∂χ

∂t

〉
−
〈 p
m

·∇rχ
〉
− ⟨F ·∇pχ⟩. (C.3)

Then having χ by χ = r2i , p
2
i , ripi, performing the averaging procedure described above results in

the system of equations in (3.8).



Appendix D

Equilibrium dipolar mean-field per particle

The dipolar mean-field energy per particle εmf , used in Sec. 3.3.3 is derived here. First, εmf

is written in terms of the integral

εmf =
1

2N

∫
d3rn(r)

∫
d3r′n(r′)Φdd(r − r′). (D.1)

I assume a cylindrically symmetric trap, which simplifies the derivation and asserts a number density

distribution n(r) given by

n(r) =
N

(2π)3/2σ2ρσz
exp

(
− ρ2

2σ2ρ
− z2

2σ2z

)
, (D.2)

where ρ2 = x2 + y2 and σj is the standard standard deviation of particles along axis j. To evaluate

this, I will utilize the convolution theorem:∫
d3r′n(r′)Φdd(r − r′) = n(r) ∗ Φdd(r)

= F−1 [F [n(r)] · F [Φdd(r)]]

= F−1
[
ñ(k) · Φ̃dd(k)

]
=

1√
(2π)3

∫
d3k ñ(k)Φ̃dd(k)e

ik·r. (D.3)

where F [. . .] = 1√
(2π)3

∫
d3r(. . .)e−ik·r is a Fourier transform and tildes denote Fourier transformed

functions. Putting this back into the full integral gives

εmf =
1

2N
√

(2π)3

∫
d3r n(r)

∫
d3k ñ(k)Φ̃dd(k)e

ik·r
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=
1

2N

∫
d3k ñ(k)Φ̃dd(k)

(
1√
(2π)3

∫
d3r n(r)eik·r

)

=
1

2N

∫
d3k ñ2(k)Φ̃dd(k). (D.4)

The Fourier transforms of the integrand functions are given by

ñ(k) =
N

(2π)3/2
exp

[
−1

2

(
⟨ρ2⟩k2ρ + ⟨z2⟩k2z

)]
, (D.5a)

Φ̃dd(k) =
d2

4ϵ0

[
2 sin2 α sin2 θk cos(2ϕk) + 2 sin(2α) sin(2θk) cosϕk

+
1

6
(3 cos(2α) + 1)(3 cos(2θk) + 1)

]
, (D.5b)

with the result for Φ̃dd(k) taken from R. Wilson’s thesis in Ref. [153]. Plugging these in and

evaluating the integral gives εmf as written in Eq. (3.47).



Appendix E

Deriving the collisional efficiency toward thermalization

Obtaining the form of εij in Eq. (4.20) follows a very similar procedure to that in Sec. 4.1,

since after all, εij is just the reciprocal of Nij . So once more with ⟨χi⟩ = kB(Ti − Teq), the Enskog

equations that govern the relaxation of ⟨χj⟩ is derived to be:

d⟨χi⟩
dt

= C[χi], (E.1a)

C[χi] =
⟨n⟩
2

∫
d3pr
m

prcr(pr, t)

∫
d2Ω′Del∆χi. (E.1b)

Then Taylor expanding the relative momentum distribution with respect to the temperature per-

turbation δi/kBT0, gives

cr(pr, 0) =
∏
i

(
1

4πmkBTi

)1/2

exp

(
−

p2r,i
4mkBTi

)

≈ c(0)r (pr)

[
1 +

(
p2r,i

4mkBT0
− 1

2

)
δi

kBT0

]
, (E.2a)

c(0)r (pr) =
1

(4πmkBT0)3/2
exp

(
− p2r
4mkBT0

)
. (E.2b)

The expressions above render the collision integral

C[χj ] ≈
⟨n⟩
2

∫
d3pr
m

prc
(0)
r (pr)

[
1 +

(
p2r,i

4mkBT0
− 1

2

)
δi

kBT0

]∫
d2Ω′Del

(
p′2r,j − p2r,j

4m

)

=
δi

16(mkBT0)2
⟨n⟩
2

∫
d3pr
m

c(0)r (pr)pr

∫
d2Ω′D′

elp
2
r,i

(
p′2r,j − p2r,j

)
, (E.3)

which upon utilizing the time-reversal symmetry of elastic collisions

C[χj ] ≈
δi

16(mkBT0)2
⟨n⟩
2

∫
p2rdprc

(0)
r (pr)

pr
m

∫
d2Ωd2Ω′D′

elp
2
r,i

(
p′2r,j − p2r,j

)
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=
δi

16(mkBT0)2
⟨n⟩
2

∫
p2rdprc

(0)
r (pr)

pr
m

∫
d2Ω′d2ΩD′

elp
′2
r,i

(
p2r,j − p′2r,j

)
, (E.4)

the expression above can also be written in a form that is explicit in the symmetry under exchange

of indices i and j:

C[χj ] = − δi
32(mkBT0)2

⟨n⟩
2

∫
d3pr
m

c(0)r (pr)pr

∫
d2Ω′D′

el

(
p′2r,i − p2r,i

) (
p′2r,j − p2r,j

)
. (E.5)

I have used the suggestive notation D′
el = Del(pr,Ω

′). Plugging C[χj ] as written into Eq. (E.1a) and

taking Tj(t)− Teq = ϵj/kB, we obtain

γij = − C[Tj ]
(Tj(t)− Teq)

= −kB
ϵj

C[Tj ] (E.6)

=
δi
ϵj

⟨n⟩
512

∫
p2rdpr

(πmkBT0)3/2
exp

(
− p2r
4mkBT0

)
pr
m

∫
d2Ωd2Ω′D′

el

(
p′2r,i − p2r,i
mkBT0

)(
p′2r,j − p2r,j
mkBT0

)
.

Finally, taking the limit of δi/(kBT0) → 0, we obtain εij in Sec. 4.2.2, having defined αij = δi/ϵj

and using the equipartition theorem (Teq = T0 + δi/3kB) to get

δi
ϵj

=


3/2, i = j,

−3, i ̸= j.

(E.7)



Appendix F

The equilibrium Boltzmann equation

This appendix evaluates the Boltzmann equation at thermal, but not necessarily hydrody-

namic equilibrium. The treatment here extends the derivation of the equilibrium Boltzmann Equa-

tion found in [103], to include arbitrary external potentials.

At thermal equilibrium, the left-hand side of the Boltzmann equation is given as

D
Dt
f0 =

(
∂

∂t
+ vi∂i −

∂iV (r)

m

∂

∂ui

)
f0 (F.1)

= f0

(
∂

∂t
+ vi∂i −

∂iV (r)

m

∂

∂ui

)
ln f0, (F.2)

where f0 is of the form in Eq. (3.5) but with v replaced with u, and n0 is determined by the form

of V (r), so that

ln f0 =
3

2
ln
(m
2π

)
+ ln

(
n0β

3/2
)
− 1

2
βmu2. (F.3)

The material derivative is defined as

D

Dt
=

∂

∂t
+ Ui∂i, (F.4)

so that the D/Dt operator can be rewritten as

D
Dt

=
D

Dt
+ ui∂i −

∂iV (r)

m

∂

∂ui
. (F.5)

We now treat the derivatives term by term.

First considering ui∂i ln f0, we have

ui∂i ln f0 = ui∂i

[
ln(n0) +

3

2
ln(β)− β

mu2

2

]
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= ui∂i ln(n0) +

(
β
mu2

2
− 3

2

)
ui∂i lnT + βmuiuj∂iUj . (F.6)

As for D ln f0/Dt, we first consider the equations of conservation at thermal equilibrium which read

D

Dt
lnn0 = −∂jUj , (F.7a)

D

Dt
lnT = −2

3
∂jUj , (F.7b)

D

Dt
Ui = −kBT

m
∂i ln(n0T )−

1

m
∂iV (r). (F.7c)

The material derivative of ln f0 then becomes

D

Dt
ln f0 =

D

Dt

[
ln(n0) +

3

2
ln(β)− β

mu2

2

]
= −β

3
mu2∂jUj − βui∂iV (r)− ui∂i ln(n0)− ui∂i lnT. (F.8)

Finally, the term explicit in the potential is

−∂iV (r)

m

∂ ln f0
∂ui

=
β∂iV (r)

2

∂u2

∂ui
= βui∂iV (r). (F.9)

Putting all these terms together, we get

D
Dt

ln f0 =
D

Dt
ln f0 + ui∂i ln f0 −

∂iV (r)

m

∂

∂ui
ln f0

=

[
−β
3
mu2∂jUj − ui∂i lnT − βui∂iV (r)− ui∂i ln(n0)

]
+

[
βmuiuj∂iUj + ui∂i ln(n0) +

(
β
mu2

2
− 3

2

)
ui∂i lnT

]
+

[
βui∂iV (r)

]
, (F.10)

which gives the final result

D
Dt

ln f0 =

(
β
mu2

2
− 5

2

)
ui∂i lnT + βm

(
uiuj −

1

3
δiju

2

)
∂iUj . (F.11)

This result is exactly that derived by Chapman and Enskog in the absence of an external potential,

showing that V (r) does not affect the derivation of the transport tensors.
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Transport tensors from microscopic collisions

Deriving the transport tensors in the Chapman-Enskog fashion can be pretty gnarly [69],

especially when anisotropic cross sections are involved. I’ll do my best to make all the steps clear

in this appendix chapter, for anyone who wants to utilize this method.

As detailed in App. F, the left-hand side of Eq. (5.7) evaluates to(
∂

∂t
+ vk∂k −

∂kV (r)

m

∂

∂uk

)
f0 = f0

[
Vk∂k(lnT ) +mβWkℓDkℓ

]
. (G.1)

where

Vi(u) ≡
(
mβu2

2
− 5

2

)
ui, (G.2a)

Wij(u) ≡ uiuj −
1

3
δiju

2, (G.2b)

Dij(U) ≡ 1

2
(∂jUi + ∂iUj)−

1

3
δij∂kUk. (G.2c)

The collision integral (ignoring quantum statistical effects) on the right-hand side of Eq. (5.7) is

then

C[f ] ≈
∫
d3u1|u− u1|f0(u)f0(u1)

∫
dΩ′ dσ

dΩ′∆Φ, (G.3)

where ∆Φ = Φ′ +Φ′
1 −Φ−Φ1 as in Sec. 3.2. Since Eq. (G.3) is linear in Φ, and Eq. (G.1) is linear

in the quantities ∂i lnT and ∂jUi, one can infer an ansatz for the scalar function Φ, of the form

Φ(u, β) = Bk∂k(lnT ) +mβAkℓDkℓ, (G.4)
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where B (vector) and A (rank-2 tensor) are functions of u and β. The ansatz above allows separation

of Eq. (5.7) into an equation in velocity gradients, and those in temperature gradients:

f0 WkℓDkℓ ≈ C[f0Akℓ]Dkℓ, (G.5a)

f0 Vk∂k(lnT ) ≈ C[f0Bk]∂k(lnT ). (G.5b)

Upon further comparison of terms, it is only suitable to write B and A as

Aij(u, n0, β) =Wkℓ(u)akℓij(u, n0, β), (G.6a)

Bi(u, n0, β) = Vj(u)bji(u, n0, β), (G.6b)

where u = |u|, while akℓmn(u, n0, β) and bkℓ(u, n0, β) are introduced as variational coefficients

that can, in general, be expanded into a basis of Sonine polynomials (a.k.a. associated Laguerre

polynomials). The assumption of a low temperature gas however, allows us to approximate a and

b with only the first basis term, which is independent of u. This truncation leaves us with

Φ(u, β) = Vℓ(u)bℓk(n0, β)∂k(lnT ) +mβWij(u)aijkℓ(n0, β)Dkℓ, (G.7)

which has shown to give good accuracy (relative errors of ∼ 1%) in computing transport coefficients

for gases of isotropic scatterers [62, 154, 155] Determining a and b will eventually allow us to

evaluate κ and µ, but requires consideration of the micro-scale collisional physics. So, I’ll do just

that.

G.1 Anisotropic thermal conductivity

Thermal conduction in a collisional gas arises through a transfer of kinetic energy by kinetic

transport of the gaseous atoms, out of a region of fluid, resulting in a heat flux [101]

Ji(r, t) =

∫
d3uf(r,u, t)

1

2
mu2ui. (G.8)

In the first-order approximation with Eq. (G.4), the A associated term does not contribute to the

heat flux integral, leaving

Ji =
m

2

∫
d3uf0(u) [1 + Φ(u)]u2ui
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=

(
kBmβ

2

∫
d3u f0(u)u

2uiVkbkj

)
∂jT , (G.9)

where the local temperature T (r, t) is written in terms of its kinetic definition,

3

2
kBT =

1

n(r, t)

∫
d3u f(r,u, t)

1

2
mu2. (G.10)

Across a temperature gradient ∂jT , Fourier’s law of heat conduction dictates that the flow of

heat across it follows the relation

Ji = −κij∂jT. (G.11)

A comparison of Eq. (G.9) and Eq. (G.11), then relates the thermal conductivity to the integral

κij = −
(
kBmβ

2

∫
d3u f0(u)u

2uiVk

)
bkj

= −5n0kB
2mβ

bij , (G.12)

with the coefficients bkj introduced in Eq. (G.7). Referring back to Eq. (G.5b), multiplying

Eq. (G.5b) by Vi(u) and integrating over u gives(∫
d3u f0(u)Vi(u)Vj(u)

)
∂j(lnT ) ≈

(∫
d3u Vi(u)C[f0Vk]

)
bkj∂j(lnT ), (G.13)

imposing that the coefficients of ∂j(lnT ) satisfy

Kikbkj = δij , (G.14a)

where Kik ≡ 2mβ

5n0

∫
d3u ViC[f0Vk]. (G.14b)

The integrals above are made complicated by the highly anisotropic differential cross section

for dipoles, but that’s not going to stop me from computing them! In fact, its evaluation is pretty

identical to that already described in Sec. 3.2.1. So with much the same Mathematica® finagling

as in Sec. 3.2.1, I arrived at the thermal conductivities in Eq. (5.8) of the main text.

G.2 Anisotropic viscosity

Now comes the other transport tensor, viscosity. With twice as many indices, it’s a real treat.

On each differential parcel of fluid, the stress tensor ς describes the forces in direction r̂j , acting
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on its surface defined by normal vectors r̂i. These forces are illustrated schematically in Figure

G.1, where all vectors appear to have the same length, although this is not always true in the fluid.

Quite generally, the stress tensor can be written as

ςij = −Pδij + τij , (G.15)

where P is the thermodynamic pressure which, in a sufficiently dilute collisional gas, is related to

the density and temperature by the ideal gas law. The remaining part, τ , is the viscous stress

tensor, i.e., the part arising from viscosity. In a Newtonian fluid, the viscous shear is assumed to

be a linear function of the velocity gradients:

τij = µijkℓ ∂ℓUk, (G.16)

where µ is the rank-4 viscosity tensor and the flow velocity gradients ∂ℓUk, characterize the rate of

strain on differential fluid volumes. It turns out, however, that ultracold elastic collisions leave only

a symmetrized portion of ∂ℓUk relevant, as will be shown soon enough.

z

x

y

ςzz

ςxx

ςyy

ςxy

ςxz

ςyx

ςyz

ςzx

ςzy

Figure G.1: Cartoon of the stresses (black arrows) on a differential fluid volume element (light red
cube) due to thermodynamic pressure and velocity field gradients.

Microscopically, the fluid stress tensor arises from the decrease in flux of molecular momentum

directed along j, across the plane oriented along axis i:

ςij = −
∫
d3uf(u)uipj
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= −m
∫
d3uf0(u) [1 + Φ(u)]uiuj

= −n0
β
δij − 2

(
m2β

∫
d3uf0(u)uiujWmnamnkℓ

)
Dkℓ. (G.17)

This expression identifies the thermodynamic pressure as P = n0/β, and the quantity in parentheses

as related to the shear viscosity. Notice, the viscosity tensor in Eq. (G.16) gives the stresses in terms

of the unsymmetrized rank-2 tensor ∂lUk, while the microscopic evaluation of stresses (G.17) relates

these stresses only to the symmetrized tensor D. The difference is telling: generally, this tensor

can be reduced in the usual way into the traceless D tensor, along with an antisymmetric tensor

R, and a scalar:

∂ℓUk = Dkℓ +Rkℓ +
1

3
δkℓ∇ ·U , (G.18)

where

Rkℓ =
1

2
(∂ℓUk − ∂kUℓ) . (G.19)

The absence of the antisymmetric tensor and the scalar from the expression connotes that there are

no rotational viscosities, nor bulk viscosities in a dilute gas of particles with no internal degrees of

freedom [69, 156, 157]. Without loss of generality, the viscous stress tensor can now be written as

τij = 2µijkℓDkℓ. (G.20)

Note that this conclusion is independent of the form of the collision cross section of the molecules.

The relation between the two forms of the symmetrized tensors is conveniently handled via a

contraction,

Wij(u) = Iijkℓukuℓ = ukuℓIkℓij , (G.21a)

Dij(U) = Iijkℓ∂ℓUk = ∂ℓUkIkℓij , (G.21b)

with the traceless symmetric tensor

Iijmn =
δimδjn + δinδjm

2
− 1

3
δijδmn. (G.22)
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Written in these terms, the expression for the shear stress tensor in Eq. (G.17) is

τij = −2m2β

∫
d3uf0uiujumunImnopaopkℓDkℓ. (G.23)

The integrand now consists of products of components of the peculiar velocity u, multiplied by the

known equilibrium velocity distribution. All such integrals are readily evaluated (many leading to

Kronecker delta functions), whereby the viscosity tensor ultimately becomes

µijkℓ = −2n0
β

Iijmnamnkℓ. (G.24)

To obtain explicit forms for the variational coefficients aijkℓ and hence the viscosities by Eq. (G.24),

we rewrite the right-hand side of Eq. (G.5a) as

2C[f0Wmn]amnkℓDkℓ = 2C[f0Wmn] (Imnrsarskℓ)Dkℓ

= − β

n0
C[f0Wmn]µmnkℓDkℓ. (G.25)

Multiplying both sides of Eq. (G.5a) by Wij and integrating over u then gives

Tijkℓ =Mijmnµmnkℓ. (G.26)

where

Tijkℓ =

∫
d3uf0(u)WijWkℓ =

2n0
(mβ)2

Iijkℓ, (G.27a)

Mijmn = − β

n0

∫
d3uWijC[f0Wmn]. (G.27b)

The collision integrals of Eq. (G.27b) are evaluated with the collision-varied quantity

∆Wij = ∆(uiuj) =
1

2

(
u′r,iu

′
r,j − ur,iur,j

)
, (G.28)

and differential cross sections of Ref. [35], aided once more by Mathematica® [16]. Even after doing

so, obtaining µ requires M to be inverted (in the matrix sense), which is most easily performed by

converting M into its matrix representation denoted by an overhead circle, M̊ . This representation

is constructed by mapping index pairs to single indices (i, j) → (i′), using the map

i′ = 3(j − 1) + i, (G.29)



139

rendering Mijkℓ → M̊i′k′ . In its 9× 9 matrix representation, the inherent symmetries of M reduces

its matrix rank from 9 to 5. This prevents us from inverting the matrix in its current representation,

so we are now required to perform a change of basis transformation which decomposes the 9 × 9

matrix into a block-diagonal matrix with a 5 × 5 irreducible block. The desired change of basis

matrix C̊, is obtained by diagonalizing the isotropic tensor I in its matrix representation,

I̊ = C̊ (I5×5 ⊕ 04×4) C̊
−1, (G.30)

where I and 0 are the identity and zero matrices respectively, with dimensions specified by their

subscripts, and ⊕ denotes a direct sum. Applying the transformation C̊ to Eq. (G.26) gives

C̊−1T̊ C̊ = C̊−1
(
M̊µ̊

)
C̊

=
(
C̊−1M̊C̊−1

)(
C̊µ̊C̊

)
, (G.31)

which leaves both sides of the equation above to only have a 5 × 5 non-trivial matrix block. The

structure of these matrices is shown more explicitly by writing

[
C̊−1T̊ C̊

]
5×5

⊕ 04×4 =
[(
C̊−1M̊C̊

)(
C̊−1µ̊C̊

)]
5×5

⊕ 04×4. (G.32)

The direct sum with 04×4 is trivial, leaving only the 5× 5 irreducible subspace to handle. This now

allows M̊ to be effectively inverted by

[
C̊−1µ̊C̊

]
5×5

=
[(
C̊−1M̊C̊

)]−1

5×5

[(
C̊−1T̊ C̊

)]
5×5

, (G.33)

and taking the direct sum of the expression above with 04×4, to give

µ̊ = C̊
(
C̊−1M̊+C̊

)(
C̊−1T̊ C̊

)
C̊−1 = M̊+T̊ , (G.34)

where M̊+ is a pseudo-inverse of M̊ defined by the procedure above, satisfying M̊+M̊µ̊ = µ̊.

Finally, I apply the inverse mapping of Eq. (G.29) to attain the rank-4 tensor form of µ, presented

in Eq. (5.10) of the main text.
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Spatial averaging for an effective welter model

To obtain the spatially averaged equations of motion in Sec. 5.4, I start by defining a notation

for spatially averaged quantities:

⟨. . .⟩r =
1

N

∫
n(r, t) (. . .) d3r. (H.1)

This renders the density averaged equation for σi(t) as

⟨r2i T ⟩r
σ2i (t)

− ⟨ri∂iT ⟩r =
m

kB

(
σ̈i(t)

σi(t)
+ ω2

i

)
⟨r2i ⟩r −

∑
j,k,ℓ

σ̇k
σℓ
δk,ℓ

∫
d3r

NkB
ri∂jµijkℓ(T )

=
m

kB

(
σ̈i(t)

σi(t)
+ ω2

i

)
σ2i (t)−

∑
j,k,ℓ

σ̇k
σℓ

∫
d3r

NkB
ri∂jµijkℓ(T )δk,ℓ.

As for the temperature balance equation:

∂T (r, t)

∂t
+
∑
i

Ui∂iT (r, t) +
2

3

∑
i

∂iUiT (r, t)

=
2

3n(r, t)kB

∑
i,j,k,ℓ

(∂jUi)(∂ℓUk)µijkℓ(T ) +
2

3n(r, t)kB

∑
i,j

∂i [κij∂jT (r, t)] , (H.2)

the product rule gives

d⟨T ⟩r
dt

=

∫
d3r

N

[
n(r, t)

∂T (r, t)

∂t
+ T (r, t)

∂n(r, t)

∂t

]
=

〈
∂T

∂t

〉
r

+
∑
i

σ̇i(t)

σi(t)

(
⟨r2i T ⟩r
σ2i (t)

− ⟨T ⟩r
)
, (H.3)

where I’ve utilized the continuity equation. Then multiplying the temperature balance equation by

n(r, t)/N and integrating over d3r gives

d⟨T ⟩r
dt

+
5

3

∑
i

σ̇i(t)

σi(t)
⟨T ⟩r −

∑
i

σ̇i(t)

σi(t)

(
⟨r2i T ⟩r
σ2i (t)

− ⟨ri∂iT ⟩r
)
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=
2

3NkB

∑
i,j,k,ℓ

σ̇i(t)

σi(t)
δi,j

(∫
d3rµijkℓ

)
δk,ℓ

σ̇ℓ(t)

σℓ(t)
+

2

3NkB

∑
i,j

∫
d3r [∂i(κij∂jT )] . (H.4)

Combining equations (H.2) and (H.4), we get

d⟨T ⟩r
dt

+
5

3

∑
i

σ̇i(t)

σi(t)
⟨T ⟩r −

m

kB

∑
i

σ̇i(t)
[
σ̈i(t) + ω2

i σi(t)
]

≈ 2

3NkB

∑
i,j,k,ℓ

σ̇i(t)

σi(t)
δi,j

(∫
d3rµijkℓ

)
δk,ℓ

σ̇ℓ(t)

σℓ(t)
− 1

NkB

∑
i,j,k,ℓ

σ̇i(t)

σi(t)

(∫
d3rri∂jµijkℓ

)
δk,ℓ

σ̇k
σℓ

+
2

3NkB

∑
i,j

∫
d3r [∂i(κij∂jT )] . (H.5)

At this point, conservation of energy has that

Etotal =
m

2

∑
i

(
ω2
i ⟨r2i ⟩r +

∫
d3rd3v

N
f(r,v, t)v2i

)
=
m

2

∑
i

(
ω2
i σ

2
i +

∫
d3rd3v

N
f(r,v, t)v2i

)
, (H.6)

where Etotal is the total energy of the hydrodynamic system. Therefore, the relation above along

with Eqs. (5.3) and (5.32) motivates the form for ⟨T ⟩r as

⟨T ⟩r =
2Etotal

3kB
− m

3kB

∑
i

[
ω2
i σ

2
i (t) + σ̇2i (t)

]
, (H.7)

and its time-derivative

d⟨T ⟩r
dt

= − 2m

3kB

∑
i

[
ω2
i σ̇i(t)σi(t) + σ̈i(t)σ̇i(t)

]
. (H.8)

Plugging these relations into Eq. (H.5) and assuming each axis can be solved independently, we

obtain

σ̇i(t)
[
σ̈i(t) + ω2

i σi(t)
]
+
σ̇i(t)

σi(t)

1
3

∑
j

(
ω2
jσ

2
j (t) + σ̇2j (t)

)
− 2Etotal

3m


≈ 3

5Nm

∑
j,k,ℓ

σ̇i(t)

σi(t)

(∫
d3rri∂jµijkℓ

)
δk,ℓ

σ̇k
σℓ

− 2

5Nm

∑
j,k,ℓ

σ̇i(t)

σi(t)
δi,j

(∫
d3rµijkℓ

)
δk,ℓ

σ̇ℓ(t)

σℓ(t)

− 2

5Nm

∑
j

∫
d3r [∂i(κij∂jT )] . (H.9)
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Finally, the conserved total energy Etotal, is made up of the potential energy and thermal

equilibrium temperature T0:

Etotal =
3

2
kBT0 +

m

2

∑
i

ω2
i σ

2
0,i = 3kBT0, (H.10)

where we utilized that σ0,i =
√
kBT0/mω2

i .



Appendix I

Quasi-empirical determination of the hydrodynamic volume

The quasi-empirical rigmarole I used to infer a functional form for the effective hydrodynamic

volume parameter η, is a little involved. That’s why I tucked it away here in the appendix, where

sleepful nights go to die. But if you’ve stuck around till this point, I’ll give you the details you

asked for. Otherwise, Ref. [19] has them too.

Returning to the regularly scheduled program of Chap. 5, Eq. (5.34) is expected to be a

reasonable representation of dynamics, provided the shape of the gas remains nearly Gaussian. To

employ these equations, a value of the effective hydrodynamic volume must first be established. A

first guess at this volume is given in Eq. (5.38), which left available a free parameter η, that may

depend on λ and Kn. As noted in Sec. 5.4, Kn is implicitly dependent on N and Θ, which are taken

as the relevant independent variables for this study.

To extract η, I perform a bunch of DSMC (see Sec. 3.3) runs while varying λ, N and Θ,

providing me time traces of Tp(t) (5.36) for each combination of parameter values. I then fit Tp(t)

as computed from Eq. (5.34) to those from the DSMC simulations while floating η, such that it

minimizes the relative root-mean-squared error

ε(η) =

√√√√∑
t

(
TDMSC
p (t)− T theory

p (t; η)

TDMSC
p (t)

)2

. (I.1)

In these numerical experiments, we tune the trap anisotropy in a manner that does not affect Kn,

by setting ω⊥ = ω/λ1/6 and ωz = ωλ1/3. This construction ensures that ω, and therefore Kn, both

remain independent of λ. The dipoles are taken to point along x̂ (Θ = 90◦) for the data shown.
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Dependence on dipole orientation will be included below.

Results of several such fits are shown in Fig. I.1, which compares the Tp time traces for a

series of cross-dimensional rethermalization experiments with N = 5×105 (Kn ≈ 0.04) over a range

of λ = 0.13 to 8.0, as obtained from DSMC simulations (solid black curves) and my fitted theory

(dashed red curves). Noticeably, there is a clear beating of various modes with different frequencies

which our theory is able to describe, showing favorable agreement in both the amplitude and phase

of oscillations. A representative comparison plot of Tr(t) as obtained from DSMC and Eq. (5.34) is

also provided in Fig. I.2, with N = 5 × 105 (Kn ≈ 0.04) and λ = 0.32. Good agreement is seen in

all Tri(t) time traces as well. We note that temperature time traces tend to show better agreement

with the DSMC ones for excitation along the long axis of a prolate trap, even for larger Knudsen

numbers (Kn ≈ 0.1). So, I’ll stick to this excitation geometry for a more focused study.

Figure I.1: Comparison of the momentum space temperature Tp (5.36) vs time t, obtained from
DSMC simulations (black solid curves) and our theory (red dashed curves) with N = 5 × 105

(Kn ≈ 0.04), Θ = 90◦. The subplots (a) to (h) correspond to various values of trapping anisotropy
with λ = 0.13 to 8.0 as labeled in the subplot headers. The fitted values of η are also provided in
the subplot headers with their fitting standard uncertainties.
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Figure I.2: Comparison of the position space pseudotemperatures Tr vs time t, obtained from
DSMC simulations (upper subplot a) and our theory (lower subplot b) with Θ = 90◦, N = 5× 105

(Kn ≈ 0.04) and λ = 0.32.

For a given orientation of the dipoles, it may be expected that η depends on both the trap

aspect ratio λ and the number of molecules N . Increasing N , ceteris paribus, evidently increases the

density and hence likely the hydrodynamic volume. As for aspect ratio, a tentative λ dependence

of Vhy is already taken into account by (5.38), whereby the scaling parameter η may depend only
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weakly on λ. This hypothesis is supported by the numerics shown in subplot (a) of Fig. 5.11,

where η is linearly dependent on N , but mostly independent of λ for the range of these parameters

explored.

Finally, for a given λ andN , it remains to resolve the dependence of η on the dipole orientation

Ê . In this context, recall that the dilute and hydrodynamic regimes are distinguished by the Knudsen

number, which is inversely proportional to the collision cross section, Eq. (5.28). Sec. 5.4 detailed

how this cross section results in anisotropic viscosities, that work to bring local thermodynamic

fluctuations back to equilibrium. Having accounted for this aspect of differential scattering, I

posit that η should only depend on the cross section that’s averaged over post-collision angles

σ =
∫
dΩ′ dσ

dΩ′ , which still preserves an incoming-collision angle dependence [35]. As to how so, I

present the following argument. Prolate traps have a weak trapping axis z, along which the gas

has a larger thermal width. As a result, the mean-free path along that axis is relatively smaller

compared to the sample size, and consequently more hydrodynamic. Collisions that occur with

relative momentum directed along the long axis, are then most able to keep molecules behaving

collectively as hydrodynamic. The bulk total cross section is, therefore, most simply taken to be

σ = a2d
π

3

[
3 + 18 cos2(Ê · êhy)− 13 cos4(Ê · êhy)

]
, (I.2)

where êhy = ẑ denotes the most hydrodynamic axis (weakest trap frequency) so that Ê · êhy = Θ.

Sure enough, I find that η follows a Θ dependence very similar to that of Eq. (5.40), when

comparing η as obtained from DSMC experiments, to a fitting function of the form (σ/σ)α+ β in

subplot (b) of Fig. 5.11, where σ = (4π)−1
∫
σ(êhy)dêhy = 32πa2d/15 is the angular averaged total

cross section. The observations above motivate the functional form

η ≈ a+ b

(
N

105

)[
1 + c

(
σ(Θ)

σ

)]
, (I.3)

for some constants a, b and c, which I determine from fits to be a ≈ 2.21± 0.017, b ≈ 0.67± 0.020

and c ≈ 0.26±0.015. The empirically determined hydrodynamic volume is therefore that presented

in Eq. (5.39) of the main text.
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