PHYSICAL REVIEW LETTERS 133, 023401 (2024)

Editors' Suggestion Featured in Physics

Clock with 8 x 10~!° Systematic Uncertainty

Alexander Aeppli 2 Kyungtae Kim ,' William Warfield," Marianna S. Safronova®,” and Jun Ye

LT

YJILA, National Institute of Standards and Technology and the University of Colorado, Boulder, Colorado 80309-0440, USA
and Department of Physics, University of Colorado, Boulder, Colorado 80309-0390, USA
2Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA

® (Received 14 March 2024; accepted 29 April 2024; published 10 July 2024)

We report an optical lattice clock with a total systematic uncertainty of 8.1 x 10~!° in fractional
frequency units, representing the lowest uncertainty of any clock to date. The clock relies on interrogating

the ultranarrow 'Sy — 3P transition in a dilute ensemble of fermionic strontium atoms trapped in a
vertically-oriented, shallow, one-dimensional optical lattice. Using imaging spectroscopy, we previously
demonstrated record high atomic coherence time and measurement precision enabled by precise control of
collisional shifts and the lattice light shift. In this work, we revise the black body radiation shift correction

by evaluating the 5s4d D lifetime, necessitating precise characterization and control of many body effects
in the 5s4d 3D, decay. Last, we measure the second order Zeeman coefficient on the least magnetically

sensitive clock transition. All other systematic effects have uncertainties below 1 x 1071,

DOI: 10.1103/PhysRevLett.133.023401

Introduction.—Measuring time is one of the most funda-
mental tasks in physics, with each advancement in time-
keeping enabling new discoveries and technologies [1,2].
Owing to the higher frequency of electronic transitions,
the exceptional stability of optical metrology promises to
revolutionize many disparate fields, from fundamental phys-
ics to navigation and geodesy. Over the past two decades,
optical atomic clocks using neutral atoms or single ions have
surpassed those based upon microwave transitions, setting
records for both stability and accuracy [3-5]. Optical lattice
clocks (OLCs) achieve ultrahigh stability by simultaneously
interrogating many atoms tightly confined within a standing
wave of light [6-8]. Every gain in stability and accuracy
opens new realms of exploration, such as placing bounds on
dark matter [9,10], probing general relativity [11,12], and
will ultimately result in the redefinition of the Systeme
International second [13—15].

Building upon two decades of optical lattice clock
development, the JILA strontium 1D OLC utilizes a
shallow lattice formed within an in-vacuum build up cavity
first described in Ref. [16]. The ¥Sr 'S, — 3P, clock
transition is addressed with a laser stabilized to a cryogenic,
single-crystal silicon, optical resonator [17]. We previously
reported record levels of atomic coherence and self-
synchronous stability [16], cancellation of atomic inter-
action shifts [18], and precise control of the lattice light
shift [19]. In this Letter, we report a complete systematic
evaluation with a total uncertainty of 8.1 x 107 in frac-
tional frequency units. Improved measurements of the
second order Zeeman coefficient and the dynamic shift
for black body radiation allow us to make significant strides
in clock accuracy.
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High accuracy operation.—To properly characterize
and control systematic shifts, high measurement precision
together with repeatable and reliable operation are key.
Critical environmental control begins by stabilizing the air
flow around the vacuum chamber to 20 °C with 100 mK
peak-to-peak stability. Each viewport flange on the vacuum
chamber is temperature stabilized via separate liquid loops
with better than 20 mK stability. We directly measure the
radiation temperature 7 and its stability at the atom’s
location by translating in a pair of calibrated in-vacuum
temperature sensors [Fig. 1(a)].

An effusive oven generates a collimated beam of 'Sr
that is slowed and cooled using the broad 'S, — 'P,
transition at 461 nm. The oven does not have direct line
of sight to the main vacuum chamber, and we measure no
temperature coupling to the oven at the atoms. This beam
loads a magneto-optical trap (MOT) operating on this same
transition. Further cooling on the 'S, — 3P, transition at
689 nm reduces the temperature to a few microkelvins [20].
This cooling light is stabilized to the same silicon resonator
as the clock laser with hertz-level drift per day, making
cooling robust over many months. As shown in Fig. 1(a), a
magic wavelength optical lattice at 813 nm is formed within
an in-vacuum buildup cavity oriented along gravity [16].
Atoms are loaded from the MOT into the lattice at a depth
of 300 lattice photon recoil energies (E,). Doppler cooling
on the 'S, — 3P, F = 11/2 transition reduces the radial
temperature to ~700 nK, and resolved motional sideband
cooling along the tightly confined direction Z reduces the
expected quantum state to (nz) < 0.05. During Doppler
and sideband cooling, we polarize the atomic sample in one
of the my = +9/2 stretched states.

© 2024 American Physical Society
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FIG. 1. Overview of the 1D optical lattice clock. (a) Schematic of the system highlights key aspects. Atoms are trapped in a 1D optical
lattice formed within an in-vacuum buildup cavity oriented along the direction of gravity g. We read out the state of the atoms by imaging
with a 6 pm resolution. Rabi spectroscopy of the clock transition is performed along the tightly confined direction to remain within the
resolved sideband regime. The two circular rings are quadrant electrodes for applying an electric field in any direction. A translatable
temperature probe with two sensors measures the temperature. (b) 2.43 s Rabi spectroscopy of the two operational clock transitions. We
prepare atoms in the 'S, mj = 45/2 states, drive the least magnetically sensitive clock transition to 3P, my = +3/2, and measure the
excitation fraction p¢. Blue points are an average of five line scans with error bars given as the standard error. The black line is a Rabi
line shape fit. (c) Temperature measured at the atom location over three days. The gold points are an average of the two sensors measured
every ten seconds, and the black line is a 20 minute average. (d) Axial blue sideband (BSB) structure. The tilted, shallow lattice creates a
set of site-changing Wannier-Stark (WS) transitions where the 3P, state occupies a different lattice site than the 'S, state. At our
operational depth, only two motional states along the tight confinement direction exist, n, = 0 and 1. In the lower panel, purple points
show the n; = 0 — 1 transition. The structure of this spectrum is well captured by a model that incorporates the WS structure, the axial
structure, and the radial temperature. Each gray line illustrates the BSB for each WS transition, with the sum of these in dashed black
consistent with the data. In our standard clock sequence, the lattice depth is briefly reduced to 3 E, before readout. The pink points near 0

demonstrate that this approach effectively eliminates all but the n; = 0 population.

To reduce both the lattice light shift and the density
shift, it is generally optimal to operate at a shallow lattice
depth. Further, we identified a “magic lattice depth” near
I5E, where on-site interactions are canceled by off-site
interactions, leading to a net-zero density shift [18].
Adiabatically ramping the lattice from the loading depth
to 15E, reduces the radial temperature to ~120 nK. The
standard motional sideband model [21] is no longer reliable
at these depths. The blue sideband, corresponding with
adding one motional quanta along Z, splits due to tran-
sitions to neighboring lattice sites as shown in Fig. 1(d).
Thus it is necessary to use the lattice depth calibration
technique introduced in Ref. [19].

To reduce the Zeeman effect sensitivity, we use the least
magnetically sensitive |'Symp = £5/2) — PPymy =
+3/2) clock transition as illustrated in Fig. 1(b).
Beginning with atoms in one of the stretched states, we
apply two clock transfer pulses to prepare atoms in the
|'Symy = 45/2) spectroscopy states with about 96% spin
purity.

Between sample preparation and readout, the dead time
is 1 s. Based upon a noise model of the clock laser,
Dick noise is minimized with a 2.43 s Rabi interrogation

time [17]. A digital servo with two integrators tracks the
atomic transition by alternating spin states and sides of
the Rabi line shape. We expect a single clock stability of
5 x 107'7//z for averaging time 7 in seconds.

As shown in Fig. 1(d), we briefly reduce the lattice depth
to the single band regime (~3 E,) before readout to ensure
that the only measured atoms are in the n, = 0 state. High
resolution imaging to readout the clock excitation resolves
spatial frequency variation [Fig. 1(a)], allowing for real-time
density shift corrections. We operate with approximately
4 x 10* atoms, leading to a quantum projection noise of
< 3 x 107'8/,/z, which is near the self-synchronous com-
parison performance reported in Ref. [16].

Black body radiation shift.—The largest systematic shift
in room temperature Sr clocks arises from the black body
radiation (BBR) environment. The total differential BBR
shift Avggg is the sum of a static component v, that scales
as T, and a dynamic component Vgyn that scales with
higher powers of 7. Thus, for accurate operation we need to
determine 7 and the atomic response with high precision.

Radiation temperature: To ensure a fully thermal environ-
ment and measure the radiant temperature at the atoms, we
follow a similar technique as in Refs. [4,22]. Two calibrated
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thin film platinum resistance sensors are mounted to an in-
vacuum translation arm, which is inserted into the middle
of the vacuum chamber. During clock spectroscopy the
probe is retracted 30 cm into an auxiliary vacuum chamber.
We observe a submillikelvin temperature flicker floor
at short timescales, ~2 mK peak oscillations on the hour
timescale, and drift of less than a few millikelvin per day, as
shown in Fig. 1(d). These few-hour temperature fluctua-
tions are from coupling to room temperature and building
process chilled water and can likely be improved by further
system isolation. At 12 h the Allan deviation of the
temperature is 1.4 mK, which we treat as the operational
stability. The total temperature uncertainty is 4.1 mK [23].

vgyn evaluation: Accuracy in previous generations of room
temperature Sr OLCs has been limited by the uncertainty in
Vgyn» Which is directly tied to the Ss4d 3D, lifetime [31]. As
in Refs. [22,32], we prepare a sample of Sr atoms in 3P,
before a 2.6 um laser pulse excites a portion of the sample
to the 3D state. Some excited atoms decay to P, and then
to the 'S, ground state, releasing a 689 nm photon in the
process, as shown in Fig. 2(a). We collect this fluorescence
with a cooled hybrid photomultiplier assembly (PMA) and
time tag the incident photons with 5 ns resolution. In the
single particle regime, the photon rate y at time ¢ is well
characterized by a cascaded double exponential process,
(1) = Ax Ot — tg) (¢ T0y — TUTOTy Ly (1)
where A is the flux amplitude, © is a Heaviside function for
instantaneous excitation at time 7y, 73 and 7:p are the D,
and 3P, lifetimes, respectively, and y, is an offset due to
background counts. In Fig. 2(b) we plot all collected
photon counts and fit with Eq. (1). Since Eq. (1) assumes
instantaneous excitation of atoms to *D, we do not fit data
within a 500 ns window about the excitation pulse,
indicated by the gray exclusion area [22].

At high densities in the 3P, state, we notice a modifi-
cation to the exponential decay process. Spontaneous
emission from one atom can affect the behavior of another
atom, leading to effective dipole-dipole interactions and
giving rise to effects like superradiance or radiation trap-
ping. The interplay of these effects in this cascaded, multi-
state decay is hard to simulate theoretically, and we do not
have a complete model for extracting single particle life-
times when such effects are present.

To use the model in Eq. (1) to determine the lifetime, it is
vital to keep the population in 3P, low as it is the primary
state that contributes to collective effects in the *D; decay
process. However, reducing atom number adversely affects
averaging time. Instead, we load a large number of atoms in
1S, and promote a small portion of the atoms to 3P,. We
then excite these atoms to 3D; with a 100 ns laser pulse.
Since most of the atoms decay back to 3P, we repeat this
process 15 times before again exciting a portion of the 'S,
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FIG. 2. 5s4d°>D, lifetime measurement results. (a) Atoms are
prepared in the 'S, ground state, a fraction are pumped to P, and
then excited to one of the 3D, hyperfine levels F. Some of these
atoms decay through 3P, back to 'S, where we collect and time
resolve the photons on a hybrid photomultiplier assembly (PMA).
(b) Fit of Eq. (1) in black to all the collected data in orange. We
exclude 500 ns window around the 2.6 pm excitation pulse, as
shown in gray (c) Residuals of this fit. (d) The measured 3D,
lifetime 735, as a function of total atom number for 3D, F = 11/2.
The lines are density dependent lifetime fits with the shaded area
showing the fit uncertainty. Varying the portion of the atoms in
3Py, shown as a percent of the total population, the density
dependence of 73, changes. (e) Results of the six different data
sets. Each point represents the zero density lifetime for different
hyperfine levels F and 3P, population fractions, labeled above.
The black line is the weighted average, the dashed lines show
the statistical uncertainty, and the solid orange lines show the
combined statistical and systematic uncertainty.

atoms to *Py,. After 10 clock pulses and a total of 150 3D,
decay cycles, we Doppler cool the remaining sample. We
repeat this excitation and cooling sequence 5 times before
reloading a sample into the lattice. In sum, for each MOT
sequence we collect photons from 750 decay cycles. On
average we capture less than one photon from the sample per
decay cycle, so pile-up effects are effectively eliminated.
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Although the population that contributes to nonlinear
collective effects is significantly reduced, weaker collective
effects are still present. To understand how density affects
the measured lifetime, we measure the total atom number at
the beginning and end of the sequence and assign an atom
number to each decay event.

Over the course of the measurement campaign, we
collect 8 x 107 photons with a total atom number ranging
from 103 to 10°. We collect data with different proportions
of atoms in 3P, and iterate over all three hyperfine levels in
3D,, for a total of six separate data sets [23]. We divide each
data set by atom number into bins with widths of 5 x 10*
atoms and fit Eq. (1) to each bin. As in Ref. [32], we fit the
lifetime density dependence z(n) = 74/(1 + cn), where n
is the camera measured atom number and is proportional to
density, 7 is the single atom lifetime, and c is the density
dependence coefficient. At very high density, we notice that
the data deviates from the linear model, so we choose to
exclude data above 8 x 10° atoms in these fits. This choice
does not change the final reported value. With small
population in the 3P state, the measured lifetime is shorter
at higher density. However, by initially placing 40% of the
population in 3P, the trend is reversed and higher density
results in a longer observed lifetime, as shown for the
F = 11/2 data in Fig. 2(d). The single atom lifetime for
these six data sets is plotted in Fig. 2(e).

A number of other systematics can modify the measured
lifetime. By applying a magnetic field (B) of ~1 G, we
observe Zeeman beats due to interference between the
emitted photons. We limit this effect by operating at zero
field and periodically measure and correct the background
B < 2 mG. A similar effect is caused by lattice light shifts
splitting magnetic sublevels. To reduce this systematic, we
measure the decay in a 10E, lattice with the PMA oriented
within a few degrees of the lattice light polarization. Modeling
these effects we assign an uncertainty of 3 ns due to potential
Zeeman beats. Using a weighted average of the six exper-
imental conditions, we report 7y, = 2.156(5) us. This is
plotted as the solid black line in Fig. 2(e), with the statistical
uncertainty shown as the dashed orange lines and the total
uncertainty as the solid orange lines.

This precisely determined 3D, lifetime allows us to re-
evaluate vy, based on the technique described in Ref. [33].
Using known atomic properties including measured tran-
sition strengths, magic wavelengths, and static polarizability,
we determine vg4y, = —153.06(33) mHz at 300 K [23].
The final BBR-related frequency shift combining both the
static [34] and dynamic effects at the operational temperature
of 20.132(4) °C is (—48417.2 +7.3) x 1071°.

Lattice light shift—In previous work [19], we have
demonstrated the ability to control the lattice light shift to a
few parts in 10719, Because of the differential sensitivity to
the lattice light shift of the motional states along the tightly
confined direction, care must be taken to ensure repeatable

cooling of the sample in the lattice. The last stage of cooling
is robust and stable, and we take a further step to reduce
sample uncertainty by ramping the lattice to 3E, before
readout, ensuring that only the lowest band population is
measured as shown in Fig. 1(d). With identical atomic
coefficients as in Ref. [19], a lattice depth of 15.06(17) E,,
and a 10.5 MHz lattice detuning from the measured
operational magic frequency [35], the total light shift
uncertainty is 3.2 x 1071,

dc Stark shift.—Stray electric fields can shift the clock
transition frequency [36]. To limit the possibility of patch
charges on the mirror surfaces causing these shifts, Faraday
shields surround the mirrors and provide passive field
attenuation. A pair of in-vacuum quadrant electrodes can
apply electric fields in any direction across the atomic
sample, shown as copper rings in Fig. 1(a). Alternating
high and low fields, we precisely measure the residual dc
Stark shift. The shift is below 107! along the cavity
direction. The dominant source of residual field is along the
imaging axis—Ilikely due to patch charges on the large
vacuum window nearby the atoms. The total residual dc
Stark shift is (=9.8 +0.7) x 1072,

Zeeman shifts.—Because of the differential Landé-g
factor [37] between the 'S, and 3P, states, we are sensitive
to Zeeman shifts on the clock transition. Probing opposite
spin states and taking the frequency average, we broadly
reject this systematic. Yet there is still sensitivity to
magnetic field fluctuations at and below the experi-
ment cycle frequency. By using the |'Somp = £5/2) —
|3Pymy = 43/2) transition, we substantially reduce cou-
pling to the magnetic environment, however even small
field drifts may cause frequency shifts.

We use the 26 times more magnetically sensitive
|'Somp = =5/2) = [*Poymp = —7/2) transition to charac-
terize this effect. Measuring this transition with the same
duty cycle as in standard operation, the frequency differ-
ence between alternating cycles gives an upper bound on
the first order Zeeman shift. We find a flicker floor of
0.78 mHz, leading to a total Zeeman shift uncertainty on
the operational transition of 7 x 10720,

Operation on the |'Sy my = 4+5/2) — |’Pymp = £3/2)
transition requires reevaluation of the second order Zeeman
coefficient for our desired accuracy goal. This shift Av,,
goes as

- Avec>2 ’ (2)

where &, s/, is the second order Zeeman coefficient,
Apas 18 the measured frequency difference between the
operational transitions, and A, is the splitting due to the
lattice vector shift.

To determine &, ,,, s/, precisely, we vary the applied bias
field from 0.3 to 1.5 G and measure the resultant frequency
shift in an interleaved manner, as shown in Fig. 3. A is
measured independently by modulating the lattice depth.

AUZZ = 50 mp=>5/2 (Ameas
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FIG. 3. Second order Zeeman shift coefficient measurement.

We vary the applied magnetic field and measure the splitting
(A eas) and the frequency shift [see also Fig. 1(b)]. We fit the data
with Eq. (2) and plot this fit in green. The lower panel shows the
fit residuals with the shaded green region representing the fit
uncertainty.

We find a &,,, _s;» = —0.12263(14) mHz/Hz*. At the
operational field near 380 mG, the second order Zeeman
shift Av,, = (—85.51 +0.10) x 10718,

Tunneling shift—At shallow depths, superposition of
states in neighboring sites can cause frequency shifts. First
identified in Ref. [38], the maximum possible frequency
shift due to this effect goes as €€, /A, where Q, and Q;
are the Rabi frequencies of the carrier and first Wannier-
Stark sideband and A is the frequency difference between
neighboring lattice sites. At the operational depth of 15 E,,
the off-site Rabi frequency is appreciably large, leading to a
maximum shift of ~2 x 107'°. While the coherent super-
position of neighboring states is likely small, it is difficult
to directly measure and control this effect. Instead, we
opt to use a Rabi pulse time that is a half integer multiple
of the tunneling shift oscillation period [38]. We measure
the splitting between neighboring lattice sites to be
867.7461(4) Hz. With a pulse time of 2.4298583 s and
a conservative timing uncertainty of 1 ps, the maximum
tunneling shift is 2 x 1072!.

Density shift—Although strong collisional shifts are
suppressed by the fermionic nature of ®'Sr, p-wave
interactions lead to a systematic density shift [39,40].
Previous Sr OLCs required separate evaluation of colli-
sional shifts, leading to drifting systematics as sample
preparation varied over time [4]. With imaging synchro-
nously measuring different densities and frequency shifts
throughout the sample, we perform real-time density shift
corrections. As reported in Ref. [18], operating at a magic
lattice depth near 15 E,, on-site p-wave and off-site s-wave
interactions cancel each other, substantially reducing
the density shift even with a large atomic sample. For a
single characteristic run ~300 min, the correction is
(=1.14£0.9) x 1071,

TABLE I.  Fractional frequency shifts and uncertainties for the
JILA 1D Sr optical lattice clock.

Shift name Shift (10')  Uncertainty (107!%)
BBR —48417.2 7.3
Lattice light —0.1 32
Second order Zeeman —855.1 1.0
Density -1.1 0.9
First order Zeeman 0.0 0.7
Background gas —4.7 0.5
dc Stark -1.0 0.1
Tunneling 0.0 <0.1
Minor shifts 0.0 <0.1
Total shift —49279.2 8.1

Other systematic shifts.—Collisions between trapped
strontium atoms and background gas result in a systematic
frequency shift [41]. In this system, the background gas is
dominated by hydrogen molecules [23]. As demonstrated
in [42], the shift is inversely proportional to the vacuum
lifetime. Using this coefficient and a measured vacuum
lifetime of 63.6 2.5 s, we calculate a background gas
shift of (—4.7 £0.5) x 1071,

Line pulling occurs if population in other magnetic
sublevels is off-resonantly driven, distorting the carrier
line shape. With a low intensity 2.43 s clock pulse, other
transitions are highly suppressed. With 96% of the sample
in the desired magnetic sublevel, we estimate for the worst
case scenario a line pulling shift of < 10721,

Similarly, a low intensity Rabi drive significantly
reduces the light shift from the clock laser. Using the
coefficient measured in Ref. [43], and accounting for the
increased intensity due to both light polarizations, we
estimate the probe ac stark shift to be —4 x 10722, which
we treat as the uncertainty.

Thermal transients in the acousto-optic modulator
(AOM) due to switching may lead to an uncorrected
Doppler shift. As in [4], we path length stabilize the same
AOM order that drives the atomic transition. The AOM is
ramped onto resonance after these thermal transients have
settled, leading to an estimated probe chirp shift < 102!,

Summary.—Through precise atomic and environmental
control, we have realized a strontium optical lattice clock
with a total systematic accuracy of 8.1 x 107! as reported
in Table I. This represents greater than a factor of 2
improvement in systematic accuracy over the previously
most accurate strontium optical lattice clock [4], and it sets
the accuracy benchmark of all optical clocks reported to
date. Black body radiation stands out as the most signifi-
cant source of uncertainty, and future cryogenic operation
should reduce uncertainty to the low 10717 level [44].
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