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Emergence of multi-body interactions in a 
fermionic lattice clock
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Alkaline-earth atoms have metastable ‘clock’ states with minute-
long optical lifetimes, high-spin nuclei and SU(N)-symmetric 
interactions, making them powerful platforms for atomic clocks1, 
quantum information processing2 and quantum simulation3. 
Few-particle systems of such atoms provide opportunities to 
observe the emergence of complex many-body phenomena with 
increasing system size4. Multi-body interactions among particles 
are emergent phenomena, which cannot be broken down into sums 
over underlying pairwise interactions. They could potentially be 
used to create exotic states of quantum matter5,6, but have yet to be 
explored in ultracold fermions. Here we create arrays of isolated few-
body systems in an optical clock based on a three-dimensional lattice 
of fermionic 87Sr atoms. We use high-resolution clock spectroscopy 
to directly observe the onset of elastic and inelastic multi-body 
interactions among atoms. We measure the frequency shifts of the 
clock transition for varying numbers of atoms per lattice site, from 
n = 1 to n = 5, and observe nonlinear interaction shifts characteristic 
of elastic multi-body effects. These measurements, combined with 
theory, elucidate an emergence of SU(N)-symmetric multi-body 
interactions, which are unique to fermionic alkaline-earth atoms. 
To study inelastic multi-body effects, we use these frequency shifts to 
isolate n-occupied sites in the lattice and measure the corresponding 
lifetimes of the clock states. This allows us to access the short-range 
few-body physics without experiencing the systematic effects that 
are encountered in a bulk gas. The lifetimes that we measure in 
the isolated few-body systems agree very well with numerical 
predictions based on a simple model for the interatomic potential, 
suggesting a universality in ultracold collisions. By connecting these 
few-body systems through tunnelling, the favourable energy and 
timescales of the interactions will allow our system to be used for 
studies of high-spin quantum magnetism7,8 and the Kondo effect3,9.

Fermionic alkaline-earth and alkaline-earth-like atoms have 1S0 
ground clock states and metastable 3P0 excited clock states (3P0 has 
a lifetime of roughly 160 s in 87Sr), which provide two (electronic) 
orbital degrees of freedom that are largely decoupled from the nuclear 
spin I. This decoupling gives rise to orbital, SU(N = 2I + 1)-symmet-
ric, two-body interactions in which the s-wave and p-wave scattering 
parameters are independent of the nuclear spin state3,8. This degeneracy  
can be quite large (I = 9/2 for 87Sr), enabling studies of quantum states 
of matter with no direct analogues in nature, such as the SU(N) Mott 
insulator3,10,11. Two-orbital, SU(N)-symmetric interactions were 
first observed directly using clock spectroscopy7,12,13 and have since 
provided new opportunities for studying strongly interacting Fermi 
gases14,15 and the Kondo lattice model9.

Whereas particles microscopically interact in a pairwise manner, multi- 
body interactions can emerge in a low-energy effective field theory in 
which fluctuations beyond some length or momentum scale are inte-
grated out. Examples of such multi-body interactions include three- 
nucleon forces16 and some fractional quantum Hall states5. Multi-body 

interactions have been predicted to arise in various optical lattice exper-
iments6,17 and have been observed in bosonic systems18,19. Although 
a single impurity interacting with a few identical fermions has been 
studied4, multi-body interactions in high-spin fermions have yet to 
be explored.

In ultracold gases, the effects of multi-body interactions have been 
explored extensively in the context of three-body recombination pro-
cesses20, including in studies of exotic Efimov states and of other forms 
of universality associated with long-range interactions21,22. However, 
comparison to theory is often difficult owing to the bulk-gas nature of 
these experiments. Improved control and understanding of the external 
degrees of freedom of atoms is crucial for testing theoretical models of 
ultracold collisions23,24.

Here we study the emergence of multi-body interactions by combin-
ing isolated few-body systems in an optical lattice with high-resolution 
clock spectroscopy. In our experiment, the ultracold gas is prepared 
similarly to previous work25,26. In summary, we prepare a ten-spin- 
component Fermi degenerate gas, with atoms distributed equally 
among all nuclear spin states. We typically produce 103–104 atoms per 
nuclear spin state at a temperature T = 10–20 nK = 0.1TF, where TF is 
the Fermi temperature. The gas is loaded into a nearly isotropic, 
three-dimensional optical lattice, in which the geometric mean of the 
trap depths for the three lattice beams U  varies from 30Erec to 80Erec, 
where Erec = h × 3.5 kHz is the recoil energy of a lattice photon and h 
is the Planck constant. At these trap depths, there is negligible tunnel-
ling between neighbouring sites over the timescale of the experiment.

As depicted in Fig. 1a, for atoms in doubly occupied sites, a π-polarized  
clock photon resonantly couples the ground state ∣gg  to the orbitally 
symmetric (or orbitally antisymmetric) excited state ∣ +eg  (or ∣ −eg ) 
upon matching the detuning − /+E E h( )eg gg  (or − /−E E h( )eg gg ) at zero 
magnetic field. Here, ‘g’ and ‘e’ represent the ground clock state 1S0 and 
the excited clock state 3P0, respectively, and EX is the on-site interaction 
energy for X ∈ {gg, eg±}. Similarly, for sites with n ≥ 3, the ground state 
∣ �g  can be driven to the orbitally symmetric state ∣ +�eg  or to the 
state ∣ −�eg , for which the orbital and nuclear spin degrees of freedom 
are not separable. The π-polarized clock light preserves the initial  
distribution of the nuclear spin states.

We spatially resolve the spectroscopic signal using absorption imag-
ing26 and the readout scheme presented in Fig. 1b. We measure the 
differential interaction energies and the spatial distributions of each 
occupation number27,28. In Fig. 2a we show sample spectra of a 
ten-spin-component Fermi gas using 20-ms clock pulses from a 
26-mHz-line width ultrastable laser. For each occupation number n, 
there is a pair of single-excitation resonances, labelled n±, which cor-
respond to the two sets of final states ∣ ±�eg . SU(N) symmetry and 
fermionic antisymmetrization dictate that only two eigenenergies 
appear for each n-atom sample (see Supplementary Information).

In Fig. 2b we show the column density of different occupation num-
bers for a sample of 2 × 105 atoms. The shells of decreasing size with 
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increasing occupation number are a result of balancing the external 
confinement generated by Gaussian lattice beams with the on-site 
interaction energies. As observed for small n, larger clouds of atoms 
extend over areas where the trapping frequencies are relatively lower, 
resulting in smaller on-site interaction energies. To eliminate a possible 
systematic shift from the changing cloud size, we adjust the final evapo-
ration point to maximize the central density of the desired occupation 
number and measure the spectroscopic response in only the central 
4 μm × 4 μm × 2 μm region of the trap. The vertical plane is selected by 
loading the lattice from a trap that is tightly confining against gravity, 
loading only a 2-μm-thick vertical region. Spatial selection in the hori-
zontal plane is performed by spatially filtering the images, measuring 
the response from only the central region of the lattice. The trap depth 
in the central region of the lattice is calibrated via motional sideband 
spectroscopy of an n = 1 sample with the same spatial selection.

To investigate multi-body interactions in multiply occupied sites, 
we consider the case of two interacting fermionic atoms, each with 
two internal degrees of freedom: an electronic orbital, x ∈ {g, e}, 
and a nuclear spin sublevel, m ∈ {−I, −I + 1, …, I} . The interac-
tions depend on only the electronic degree of freedom, so all s-wave 
scattering processes are parameterized by four scattering lengths aX, 
with X ∈ {gg, eg+, eg−, ee}, resulting in SU(N)-symmetric properties 
of the system. Here, ‘+’ (‘−’) denotes a symmetric (antisymmetric) 
super position of the electronic orbitals. In our experiments, atoms 
are trapped in the motional ground states of deep lattice sites with a  

single-particle Wannier function φ0(r), localized to a characteristic 
length scale l0. Because all atoms are in the motional ground states, the 
Pauli exclusion principle requires that atoms with the same orbital state 
x have different nuclear spins m. Here, we consider the case in which 
each atom is in a different spin state.

In the limit of weak interactions ∣ ∣�l a( )X0 , the pairwise interaction 
energy can be expressed as

∣ ∣∫ φ= π r rU ħ
m

a4 ( ) dX X
(2)

2

a
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4 3

where ma is the atomic mass and ħ = h/(2π). In this regime, the on-site 
many-body Hamiltonian is
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tively. For a lattice site occupied by n atoms, the Hamiltonian in equa-
tion (1) has a ground state ∣ �g  with a corresponding eigenenergy �Eg

(2) 
and a manifold of singly excited states with two distinct eigenenergies 

±�
E

eg
(2) , one for the orbitally symmetric states ∣ +�eg  and the other for 

the (n − 1)-fold-degenerate states ∣ −�eg . The states ∣ �g  and ∣ +�eg  
are each symmetric in their orbital degree of freedom and, as such, 
fermionic statistics requires their nuclear spin degree of freedom to 
form an SU(N) singlet. The orbital degree of freedom of ∣ +�eg  is an 
n-body W state, which constitutes an important resource for quantum 
information processing and quantum communications protocols29. For 
n ≥ 3, the ∣ −�eg  states are highly entangled between their orbital and 
nuclear spin degrees of freedom such that each degree of freedom is of 
mixed symmetry (see Supplementary Information).
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Fig. 1 | Two-orbital interactions in a three-dimensional lattice and 
experimental sequence. a, One to three 87Sr atoms (blue and red circles 
for electronic ground- and excited-state atoms, respectively) occupy the 
lowest motional state of a lattice site, with corresponding on-site energies 
EX. We use a state-independent lattice that operates at the ‘magic’ 
wavelength, at which the polarizabilities of the ground and excited states 
are identical. In a deep three-dimensional lattice, each site can be regarded 
as an isolated few-body system with a trap frequency νtrap. A clock photon 
resonantly couples the ground state ∣ �g  to the single-excitation manifold 
∣ ±�eg , leading to a spectroscopic shift from the bare resonance frequency 
ν0 ≈ 429 THz. Multi-body interactions manifest in sites with three or more 
atoms, both in the observed clock shifts and in their decay (black squiggly 
arrows) into a diatomic molecule plus a free atom at a rate γX.  
b, Experimental sequence for imaging triply occupied sites. A ten-nuclear-
spin mixture is loaded into a three-dimensional optical lattice. A clock 
pulse resonantly drives triply occupied sites ∣ggg  to an excited state ∣ ±egg . 
After all atoms in the ground state are removed, the remaining atoms, in 
the excited state, are read out using absorption imaging. Three-body decay 
rates are measured by adding a hold time before (for γggg) or after (for 
γ ±egg ) applying the clock pulse.
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Fig. 2 | Clock spectroscopy of a ten-component Fermi gas in a three-
dimensional lattice. a, Overlayed clock spectra for occupation numbers 
n = 1, …, 5 at a mean trap depth of =U E54 rec (νtrap = 51 kHz). The labels 
n± denote the excitation ∣ ±�eg  for n-occupied sites. For large 
occupations, the line shapes become asymmetric owing to the 
inhomogeneity of the trap depth. The solid lines are fits used to determine 
the resonance frequencies (see Methods). The detunings are given relative 
to the resonance of the clock transition for singly occupied sites (blue) and 
the atom number is normalized such that the peak height for singly 
occupied sites is unity. Each data point is the result of a single experimental 
cycle. b, Column densities of different occupation numbers for a sample of 
2 × 105 atoms. The absorption images for different occupation numbers 
were obtained according to the procedure in Fig. 1b, by first exciting the 
symmetric resonances. Each image is averaged over 20 experimental 
cycles.
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For tighter confinement and stronger on-site interactions—that 
is, if aX/l0 is not negligible—corrections to equation (1) become 
increasingly important. The increased interaction energy facilitates  
off-resonant transitions to higher motional states. Equivalently, the 
spatial wavefunction φ0(r) becomes dependent on the number of 
atoms per site and their configuration. This effect can be captured by 
a lowest-band effective Hamiltonian where the higher motional states 
are integrated out, with two consequences: (i) the two-body interaction 
energies are characterized by an in-trap scattering length, rescaled 
from the free-space one; and (ii) the total interaction energy for n ≥ 3 
atoms cannot be broken down into a sum over pairs of atoms17, leading 
to effective multi-body interactions. Considering at most one atom in 
the excited state, equation (1) must be modified to include multi-body 
corrections:
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where Uggg
(3) , V(3) and Vex

(3) are the effective three-body ground-state, 
direct and exchange interaction energies. Owing to the SU(N) symmetry,  
H′ has the same eigenstates as H, but with modified n-body eigenen-
ergies (see Supplementary Information). These multi-body interactions 
can be probed by spectroscopically addressing lattice sites with differ-
ent occupation numbers.

To extract the multi-body effects from equation (2), we measure the 
frequency shifts − /±E E h( )eg gg  for various mean trap depths. By incor-
porating the corrections due to lattice confinement with a previous 
measurement of the ground-state scattering length agg = 96.2(0.1)a0, 
where a0 is the Bohr radius30, we extract the free-space scattering 
lengths ±aeg , shown in Table 1 (see Supplementary Information).

Multi-body interactions occur only at sites with three or more atoms 
and cause frequency shifts that are nonlinear in the occupation  
number n. The measured clock shifts of the ∣ ±�eg  branches are 
shown as red points in Fig. 3a, b. These clock shifts deviate from the 
values expected from equation (1) (blue triangles), which are propor-
tional to the occupation number n, and are consistent with the three-
body corrections in equation (2) (black squares). These higher-order 
contributions (Fig. 3c, d) can be intuitively interpreted as broadening 
of the wavefunction, lowering the magnitude of the overall interaction 
energy. From a variational calculation, we find that the wavefunction 
for n = 5 atoms is broadened by about 8% relative to a non-interacting 
wavefunction.

Multi-body effects also appear in these few-body systems as three-
body recombination loss. These losses occur when three atoms recom-
bine to form a deeply bound diatomic molecule and a free atom, each 

carrying enough energy to eject it from the trap24. We selectively deter-
mine the lifetime of a given n-atom ∣ �g  state by holding atoms in a 
deep lattice for a variable time, then resonantly driving the transition 
∣ ∣→ ±� �g eg  to spectroscopically address only the n-atom sites, and 
finally measuring the excited-state atom population after removing the 
ground-state atoms, as illustrated in Fig. 1. Similarly, the loss rate of the 
∣ ±�eg  state is determined by first driving the transition 
∣ ∣→ ±� �g eg , and then holding for a variable time before removing 
the ground-state atoms. Because this procedure measures the probability 
for the n-atom system to remain in its initial state, the spectroscopic 
signal decays in a simple and robust form as a single exponential, which 
we fit to extract a 1/e lifetime. This analysis is much simpler than that for 
bulk-gas experiments, for which decay curves must be fitted with multi-
ple rate constants corresponding to one-, two- and three-body losses31,32.

To disentangle these multi-body effects from inelastic two-body col-
lisions, we measure the ground- and excited-state lifetimes of the one- 
and two-atom sites. Whereas we observe a vacuum-limited 1/e lifetime 
of around 100 s for the ∣g  and ∣gg  states, off-resonant Raman scattering 
from the optical lattice light causes a decay of the single-atom excited 
state, ∣ ∣→e g , with a time constant of 9.6(0.4) s at a mean trap depth 
of =U E73 rec (R.B.H. et al., manuscript in preparation). Note that all 
errors for the lifetimes are 1 s.e. from exponential fits. At this same trap 
depth, we find the lifetimes τ ±eg  of the ∣ +eg  and ∣ −eg  states to be 
5.1(0.7) s and 6.1(0.7) s, respectively. Such two-body lifetimes can be 
related to a two-body loss coefficient β ±eg  via the expression

∣ ∣∫τ β φ=−
± ± r r( ) d

eg
1

eg 0
4 3

Table 1 | s-Wave scattering lengths and three-body loss coefficients

Channel, X s-Wave scattering lengths, aX (a0)
Two-body loss coefficients,  
βX (10−16 cm3 s−1)

gg 96.2(0.1)

eg− 69.1(0.2)stat(0.9)sys ≤2.1(0.2)

eg+ 161.3(0.5)stat(2.5)sys ≤2.5(0.3)

Channel, X Three-body loss coefficients, βX (10−30 cm3 s−1)

Measured Calculated

ggg 2.0(0.2) 1.7

egg− 25(1) 26

egg+ 15(1) 8.0

The scattering length of ground states agg = 96.2(0.1)a0 is determined from photoassociation 
spectroscopy30; all the other values are from this work. The measured elastic s-wave scattering 
lengths aX are consistent with previously reported values7, with an improvement by a factor of ten 
in the uncertainty for X = eg−. The subscripts ‘stat’ and ‘sys’ denote the statistical and systematic 
uncertainty, respectively (see Supplementary Information). The two-body loss coefficients βX are 
upper bounds, limited by the excited-state lifetime. The measured three-body loss coefficients are 
in good agreement with the ones calculated using a universal van der Waals model.
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Fig. 3 | Effective multi-body clock shifts. a, Clock shifts of ∣ +�eg  from 
n = 2, …, 5 at a mean trap depth of =U E54 rec (νtrap = 51 kHz). Effective 
multi-body interactions are observed in the experimental data (red circles) 
as a deviation from the two-body prediction (blue triangles). The 
calculated shifts from an effective Hamiltonian including three-body 
interactions (see text and Supplementary Information) are shown as black 
squares. The points at each occupation number n are offset horizontally for 
clarity. The uncertainties of the experimental data are smaller than the size 
of the symbols. b, Clock shifts of ∣ −�eg  under the same conditions as in a. 
The two-body theory shows smaller deviations from the measured shifts at 
n = 3 and n = 4, owing to a near cancellation of the three-body shifts 
between ∣ �g  and ∣ −�eg . c, d, Multi-body interaction shifts, which 
correspond to the data from a and b with two-body contributions 
subtracted. All error bars are 1 s.e., determined from fits of the resonance 
position.
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However, because the two-body lifetimes are only slightly shorter than 
that of a single excited atom, we can determine only upper limits: 
β ≤ . . × − −

+ 2 5(0 3) 10 cm seg
16 3 1 and β ≤ . . × − −

− 2 1(0 2) 10 cm seg
16 3 1. The 

measured lifetimes of the three-atom states, τX for X ∈ {ggg, egg+, egg−}, 
at various mean trap depths are shown in Fig. 4a. These multi-body 
decays all occur on timescales much shorter than those of one- and 
two-body losses. Furthermore, the excited states are observed to decay 
faster than the ground state by approximately an order of magnitude. 
We attribute this to the increased number of molecular decay channels 
after replacing a ground-state atom with a distinguishable excited-state 
atom. Table 1 shows the density-independent three-body loss coeffi-
cient βX extracted from these measurements via the expression

∣ ∣∫τ β φ=− r r( ) dX X
1

0
6 3

Next, we compare the measured three-body lifetimes to a model in 
which atoms interact by pairwise, additive, long-range van der Waals 
potentials joined at shorter range to a pseudopotential that is adjusted 
to yield, in each case, the measured two-body scattering lengths given 
in Table 17,24,33. Numerically solving the three-body Schrödinger equa-
tion yields the frequency shifts and decay lifetimes for three atoms 
confined in a harmonic trap (see Supplementary Information). We 
increase the number of bound states in each pairwise potential until all 
results converge to less than 10%. As shown in Fig. 4a, the calculated 
lifetimes (open circles) are remarkably close to the measured lifetimes 
(filled circles) given the simplicity of our universal van der Waals 
model, which has no fit parameters. Whereas our results for ∣ggg  and 
∣ −egg  agree with the observed lifetimes to within 15% or less, the 
results for ∣ +egg  overestimate the lifetimes by about 50%, most proba-
bly owing to the fact that for this state our model does not allow for 
decay into all possible diatomic molecular states (see Supplementary 
Information). As a sanity check, the frequency shifts produced by this 
model agree with the measurements shown in Fig. 3a, b to within 10%, 
despite assuming a harmonic trap potential.

We extract three-body loss coefficients βX from the calculated 
lifetimes using the same procedure as for the experimental results 
shown in Table 1. The good agreement between the universal van der 
Waals model and our 87Sr lattice experiment is in sharp contrast to 
the disagreement, by a factor of 2–4, for bulk-gas 87Rb experiments. 
The universal van der Waals model of 87Rb gives a three-body loss 
rate coefficient of24 1.0 × 10−29 cm6 s−1, in contrast to the measured 
value of31 4.3(1.8) × 10−29 cm6 s−1. This scenario suggests that a lattice 
experiment with 87Rb could greatly decrease the uncertainty in the 87Rb 
three-body recombination loss coefficient and provide a better test of 
the theory for that system.

Finally, we study the dependence of the lifetimes on the occupation 
number. In Fig. 4b we show a

τ τ=− −
� ( )n

3g
1

ggg
1

scaling of the lifetime of the n-body ground state for n ≥ 3, which 
suggests that three-body loss remains the dominant mechanism. The 
lifetimes of the n-atom excited states, along with their expected scalings 
from counting the number of three-body loss channels, are shown in 
Fig. 4c (see Supplementary Information). These relatively long lifetimes 
are promising for future experiments involving coupled wells with large 
occupation numbers.

In conclusion, we have demonstrated two manifestations of multi- 
body interactions arising from pairwise interactions in few-body  
systems of fermions. Our spectroscopic technique, along with spatially 
resolved readout, enables efficient isolation of few-body systems, which 
prove to be ideal for observing multi-body effects. It also provides a 
simple way to create the highly entangled and long-lived states ∣ ±�eg , 
a useful resource for quantum information processing29. The few-body 
systems enable precise measurements of the ±aeg  scattering lengths and 
the three-body loss rates which agree with the universal van der Waals 

model. The collisional parameters, in the case of 87Sr, are found to be 
particularly suitable for studies of two-orbital SU(N) magnetism, which 
should arise in the presence of weak tunnelling. These interactions have 
been predicted to create long-sought states of matter, including valence-
bond solids and chiral spin liquids3.
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MeThodS
State preparation. At the end of a 10-s evaporation, a ten-spin-component Fermi gas 
is loaded into a cubic state-independent optical lattice in a two-stage ramp. The first, 
300-ms ramp to about 5Erec is used consistently for all the measurements shown. To 
prepare for n = 4 and n = 5 occupied sites, the second ramp to the final lattice depth 
is sped up from 200 ms to 50 ms to minimize three-body loss during the loading 
process. n-occupied sites are randomly filled with n different nuclear-spin components 
from the ( )n

10  nuclear-spin configurations. The initial entropy per particle in the 
lattice is estimated to be s/kB = 1.8 (kB, Boltzmann constant) from the T/TF measured 
in the dipole trap before and after lattice loading. In the atomic limit, in which tun-
nelling is negligible, the maximum spin entropy for n = 1 sites is sspin/kB = ln(10) = 2.3 
for ten spin states. This leads to a lowered temperature in the lattice when entropy is 
transferred from the motional to the spin degree of freedom10,11.

To minimize a systematic shift due to the inhomogenity of the trap depth 
across the cloud, we prepare a 10 μm × 10 μm × 2 μm sample of sites with the 
desired occupation by optimizing the final evaporation point. For each image, we 
measure the spectroscopic response in only the 4 μm × 4 μm region at the centre 
of the lattice. As the on-site frequency shifts for large occupations increase, the 
line shapes become asymmetric owing to the residual inhomogeneity of the trap 
depth. To determine the peak frequencies, we fit each spectrum with an asym-
metric Lorentzian, as shown in Fig. 2a. The trap depth in the central region of the 
lattice is calibrated by motional sideband spectroscopy of an n = 1 sample, using 
the same procedure.
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