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Chen, Zilong (Ph.D., Physics)

Breaking Quantum Limits with Collective Cavity-QED: Generation of Spin Squeezed States via

Quantum Non-Demolition Measurements

Thesis directed by Prof. James K. Thompson

Large ensembles of uncorrelated atoms are extensively used as precise sensors of time, rota-

tion, and gravity, and for tests of fundamental physics. The quantum nature of the sensors imposes

a limit on their ultimate precision. Larger ensembles of N atoms can be used to average the quan-

tum noise as 1/
√
N , a scaling known as the standard quantum limit. However, the ensemble size

may be limited by technical constraints and/or atom-atom collisions – a fundamental distinction

from photon-based sensors. Learning to prepare entangled states of large ensembles with noise

properties below the standard quantum limit will be key to extending both the precision and/or

bandwidth of atomic sensors. More broadly, the generation and application of entanglement to

solve problems is a core goal of quantum information science being pursued in both atomic and

solid state systems.

In this thesis, we utilize the tools of cavity-QED to prepare entangled spin-squeezed states

with 3.4(6) dB improvement in spectroscopic sensitivity over the standard quantum limit. The

collective atomic spin is composed of the two-level clock states of 87Rb confined in a medium

finesse F = 710 optical cavity. We employ cavity-aided quantum non-demolition measurements

of the vacuum Rabi splitting to measure and subtract out the quantum projection noise of the

collective spin state, preparing states with collective atomic spin projection noise 4.9(6) dB below

the projection noise level. The conditionally reduced spin noise combined with the measured

1.5(3) dB reduction in the mean spin length implies a net 3.4(6) dB spectroscopic enhancement or

conditional squeezing as defined by the Wineland criterion. Our method does not require single

particle addressability and is applied to a spectroscopically large ensemble of N = 7 × 105 atoms

using two collective population measurements, with the whole squeezing operation taking ∼ 150 µs.



iv

The gain in sensitivity is spectroscopically equivalent to the enhancement obtained had we created

> 105 pairs of maximally entangled qubits, demonstrating the power of a top-down approach for

entangling large ensembles. The nondemolition probing of atomic populations via the vacuum Rabi

splitting is also of broad interest for non-destructively reading out a wide variety of both atomic

and solid state qubits.



Contents

Chapter

1 Introduction and Motivation 1

1.1 Precision Metrology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Contributions to Superradiant Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Spin Squeezing: Overview and Context 10

2.1 Collective Spins, Coherent Spin States, and the SQL . . . . . . . . . . . . . . . . . . 10

2.1.1 Collective Spins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Coherent Spin States and the SQL . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Ramsey Spectroscopy with Coherent Spin States . . . . . . . . . . . . . . . . . . . . 14

2.3 Surpass SQL with Spin Squeezed States . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Generation of Spin Squeezed States . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Collisional Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.2 Light-mediated One-Axis Twisting Hamiltonians . . . . . . . . . . . . . . . . 20

2.4.3 Quantum Non-demolition Measurements . . . . . . . . . . . . . . . . . . . . . 23

2.5 Relative advantages and disadvantages to different approaches . . . . . . . . . . . . . 26

2.6 Other work on entanglement-enhanced metrology . . . . . . . . . . . . . . . . . . . . 27

2.7 Outline of our squeezing experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



vi

3 Theory: Probing atoms-cavity system with projection-noise-limited sensitivity 32

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Coupled atoms-cavity modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Linearized response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.2 Driven and damped dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.3 Full complex field response to probing . . . . . . . . . . . . . . . . . . . . . . 41

3.2.4 Probe vacuum noise and measurement imprecision . . . . . . . . . . . . . . . 43

3.3 Quantum-limited signal-to-noise and free space scattering . . . . . . . . . . . . . . . 44

3.3.1 Projection-noise-driven fluctuations of mode frequencies . . . . . . . . . . . . 44

3.3.2 Fundamental measurement imprecision and free space scattering at arbitrary

detuning δc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.3 Minimizing mproj
s at fixed maximum detuning . . . . . . . . . . . . . . . . . . 52

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Theory: Probe-induced back-action 54

4.1 Back-action on Jy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
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Chapter 1

Introduction and Motivation

The idea of using quantum entanglement as a resource to overcome classical and quantum

constraints has become a paradigm in modern physics. Entanglement is a concept that arises nat-

urally when the superposition principle is applied to composite quantum systems. Two quantum

systems are entangled if the total wavefunction for the composite system is in a non-factorizable

superposition of joint-system wavefunctions. This means that the two systems are no longer in-

dependent of each other, and possess correlations stronger than classical correlations could create.

Measuring one system necessarily disturbs the other system instantaneously regardless of their

physical separation. This notion of non-locality — that the two sub-systems still remain a single

quantum system no matter how far apart — presented a conundrum for Einstein, Poldosky and

Rosen [1], who famously called entanglement “spooky action at a distance”.

Whereas Einstein and co-workers viewed entanglement as a problematic feature of quantum

mechanics, others saw entanglement as a fertile land of opportunity on which they sowed the seeds

of quantum-enabled strategies that could surpass classical strategies. With constant nurturing

by generations of scientists, these seeds have grown into large healthy trees today — quantum

communication [2], quantum computation [3], quantum simulation [4] and, last but not least,

quantum metrology [5] — with interconnecting branches and cross fertilization resulting in some

utilitarian fruits already. For instance, quantum key distribution was commercialized in 2004,

providing a provably secure method for sharing information [6]. In quantum computation, the

celebrated Shor’s factoring algorithm [7] provides an exponential speed-up over the best classical
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algorithms — a problem with practical applications to cryptography. Quantum simulators of

strongly correlated entangled many-body systems are within reach of current ultracold atom and

trapped ion technology [8–11]. Quantum metrology aims to achieve measurement precision below

quantum limits using entanglement, and atomic spin squeezing is one way to achieve this. My

contribution in this landscape is a leaf on the spin squeezing branch of the quantum metrology

tree.

Spin Squeezed StateCoherent Spin State

(a) (b)

x
y

z

Figure 1.1: (a) A coherent spin state (CSS) features isotropic pointing fluctuations indicated by
the noise blob perpendicular to the mean spin (red arrow). (b) A spin squeezed state possesses
entanglement that reduce fluctuations in one direction. As a consequence of Heisenberg uncertainty
relations, fluctuations in another direction are increased.

This leaf tells the story of using collective cavity quantum nondemolition measurements to

prepare entangled spin squeezed states of atoms that have spectroscopic sensitivities below the

standard quantum limit [12]. As will be explained in more detail in Chapter 2, coherent spin

states are collective spins of N identical but otherwise independent spins. Coherent spin states are

used, de facto, in quantum phase estimation — a central problem in quantum metrology. Unlike

a classical spin that has no noise in its pointing direction, quantum mechanics imposes pointing

uncertainty in a coherent spin state (CSS), as depicted by the noise blob at the tip of the mean

spin direction in Fig. 1.1(a). The standard quantum limit refers to the CSS angular resolution

∆φSQL = 1/
√
N due to pointing fluctuations inherent to the CSS. Due to the lack of entanglement

in a CSS, the noise distribution is isotropic to the mean spin direction. In an entangled spin

squeezed state, uncertainty in one direction is reduced at the expense of increasing uncertainty in
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another direction (see Fig. 1.1(b)), as required by Heisenberg uncertainty relations. The squeezed

quadrature provides enhanced angular resolution that can be used to sense a quantum phase below

the standard quantum limit (SQL).

Figure 1.2: Essential concepts behind our squeezing experiment. Our setup consists of an optical
cavity filled with rubidium atoms. The atoms behave like little pieces of glass with state-dependent
refractive index. The phase shift imposed by the atoms on the cavity mode causes the cavity
resonance frequency to shift depending on the collective populations N↑ in spin up and N↓ in
spin down. We send a laser through the cavity to determine the frequency shifts, from which we
can determine the population differences or equivalently the collective spin projection Jz. The
information gained is then used to reduce the quantum projection noise below the CSS noise for
one of the two components describing the spatial orientation of the collective spin. Because the
measurement is collective in nature, the probing causes little shortening (single atom wavefunction
collapse) of the collective spin, preserving coherence. The net polar angular uncertainty of the
post-measurement state is reduced below that SQL set by the initial CSS composed of identical,
un-entangled atoms. Image credit: Richard Baxley, JILA.

In the experiment described in this thesis, we generate spin squeezed states by directly

measuring the quantum fluctuations in the spin projection Jz of identically prepared CSS, shown

schematically in Fig. 1.2. Our CSS is composed of ∼ 106 elementary spins formed by the two

clock states of 87Rb. This measurement is implemented by probing the atomic ensemble, prepared

in a CSS, with laser light tuned such that quantum fluctuations of the CSS are imposed on the
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light phase and/or amplitude. Knowledge of Jz is then obtained by measuring the light. When

the measurement imprecision is below that of the CSS quantum noise, we would have reduced the

uncertainty along ẑ below the initial CSS uncertainty. However, the measurement process may cause

the collective spin to shorten due to free space scattering of the probe light. Free space scattering

reveals individual spin states, effectively taking individual spins pointing along x̂ and randomly

putting them into spins pointing up (along ẑ) or down (along −ẑ), shortening the collective spin

length along x̂. The shortening would degrade the phase sensitivity as the angular uncertainty is set

by the ratio of the quantum noise in a spin projection perpendicular to the mean spin to the mean

spin length in the small angle limit. In our cavity-aided quantum nondemolition measurement [12],

collective information is obtained (largely) without revealing individual spin states, thus preserving

the mean spin length. Using the measurement outcome from the pre-measurement, the quantum

noise can be subtracted from subsequent measurements, effectively creating a spin squeezed state

with improved angular resolution or equivalently phase sensitivity over the SQL.

In this introductory chapter, I will present an overview of precision metrology and provide

motivation for why spin squeezing is important. As mentioned earlier, the fundamental measure-

ment precision achievable with un-entangled ensembles is given by the SQL, which improves with

the ensemble size N as ∆φSQL = 1/
√
N . However, there may be situations where scaling up N is

non-trivial or not desirable. These situations provide motivation for going beyond the SQL using

entangled states of atoms, a research field known as quantum-enhanced metrology. An important

class of such states are spin squeezed states, the realization of which forms the core focus of this

thesis. Following a brief description of my contributions to a different research topic, namely su-

perradiant lasers, I will lay out the organization of the thesis. This thesis will focus only on spin

squeezing.

1.1 Precision Metrology

The central goal of quantum metrology is to measure physical quantities very precisely.

Precision is defined by the root mean squared (rms) fluctuation of the output of a quantum standard



5

or sensor that would be observed over many independent experimental trials. We will first describe

how information is encoded in a quantum standard/sensor, and then the precision with which the

information can be extracted.

The basis on which most atomic sensors operate is estimating a quantum phase that evolves

in a dark time using Ramsey spectroscopy1 . This quantum phase φ is encoded as a relative phase in

the superposition
(
|↓〉+ eiφ|↑〉

)
/
√

2 of the two quantum states |↑〉 and |↓〉 employed as the sensor.

The rate at which the quantum phase φ evolves is set by the frequency difference ω↑↓ between

the two states |↑〉 and |↓〉. This frequency can depend on externally applied fields, or conversely,

can be extremely insensitive to the environment in the case of atomic clocks. By measuring this

frequency very precisely, quantum sensors of exquisite sensitivity can be realized [13]. As the phase

cannot be measured directly, it is instead mapped onto populations that can be discriminated via

fluorescence detection or other means. However, even if there is no detection noise, there is still

fundamental quantum noise due to probabilistic collapse of the atoms into spin up or down, much

like N independent coin flips with the probability of heads or tails corresponding to the probability

of collapsing into spin up or down.

Using large ensembles of N atoms allows many identical experiments to be run in parallel

rather than simply one after another. This is the reason that large ensembles of un-entangled

atoms are extensively used as precise sensors of time [14–18], acceleration, rotation, gravity [19–22],

magnetic fields [23], and for tests of fundamental physics [24–28]. The quantum nature of the sensors

imposes a limit known as the standard quantum limit (SQL) on their ultimate precision. The SQL

states that the rms uncertainty on the measurement of the quantum phase is ∆φSQL = 1/
√
N .

Microwave fountain clocks have operated at the SQL since 1999 [29]. More recently, an optical

lattice clock was demonstrated that operated only 3 dB above the SQL for ∼ 103 atoms [18]. By

introducing entanglement, it is possible to surpass the SQL, with the fundamental limit allowed by

quantum mechanics given by the Heisenberg limit ∆φHL = 1/N [5].

1 Ramsey spectroscopy on internal states of atoms is also analogous to Mach-Zehnder interferometry with electrons,
neutrons, atoms, molecules and photons.
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Entanglement-enhanced precision may be a future key technology in atomic quantum sensors.

This is because the atomic ensemble size may be limited by both technical constraints or atom-atom

collisions that introduce systematic inaccuracies and loss of precision. The atom-atom interactions

present in atomic systems is fundamentally distinct from the vast majority of photon-based sensors.

Due to the lack of direct photon-photon interactions, photon-based sensors can achieve a lower

absolute phase sensitivity by simply using more un-entangled photons. While radiation pressure

shot noise from the photons can degrade the measurement precision [30], such effects are not

a limitation unless the optical power is extremely high, and has not been observed until very

recently [31, 32]. This is the reason why squeezed light has only recently found an application in

the field of gravity wave detection such as the Laser Interferometer Gravitational Wave Observatory

(LIGO) and the GEO600 detector [33–35], an optical interferometer that performs near fundamental

measurement limits. In contrast, atom-atom collisions already introduce systematic errors that

must be carefully studied and corrected in optical lattice clocks [36].

Learning to prepare entangled states of large ensembles with noise properties below the SQL

will be key to extending both the precision [37] and/or bandwidth [38] of atomic sensors. Higher

measurement precision in atomic clocks would also allow a clock to average down to its ultimate

accuracy faster. From a fundamental physics perspective, creating large scale quantum entangle-

ment is also very important for answering foundational questions. For instance, the violation of

Bell’s inequalities rules out local hidden variable theories of quantum mechanics [39–41]. Tests of

quantum mechanics at macroscopic scales with Schrödinger Cat states [42–44] probe interactions

between quantum mechanics and gravity [45, 46], and modifications of unitary dynamics [47]

The goal of this thesis is to realize entangled spin squeezed states using collective cavity

quantum nondemolition measurements.

1.2 Contributions to Superradiant Lasers

Besides spin squeezing, I have also contributed to research on superradiant lasers as part of a

collaborative lab effort. Because this thesis will focus on spin squeezing only, I shall briefly describe
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my contributions to the field of superradiant lasers in this section.

The broad research theme in our lab seeks to exploit collective atomic effects to advance

precision measurements in ways that single atom physics cannot. Going below the standard quan-

tum limit via collective cavity-aided QND measurements as demonstrated in this thesis has been

one of the major thrusts in our lab. A parallel thrust in our lab is to explore a relatively unex-

plored regime of the Schawlow-Townes linewidth limit and sensitivity to cavity frequency pulling

by studying steady-state superradiant lasers that operate deep in the bad-cavity regime in which

the cavity linewidth κ is much greater than atomic gain medium linewidth Γ.

In Ref. [48], we realized the first quasi-continuous laser that operates with < 1 intra-cavity

photon on average. The system relies on collectively enhanced emission known as superradiance.

Our system relies on Raman transitions between ground hyperfine states of 87Rb, and serves as

a physical analogue to future ultra-narrow lasers based on highly forbidden optical transitions in

atoms such as Sr, Yb, Ca or Mg [49]. In a superradiant laser, defined by its operation in the bad-

cavity limit (κ � Γ), the phase flywheel resides in the collective atomic coherence instead of the

cavity field, as is the case in a good-cavity optical laser (κ� Γ); the roles of the atoms and photons

are partially swapped compared to a good-cavity laser. The standard Schawlow-Townes linewidth

and the cavity-pulling equations apply only in the good-cavity limit but analogous limits apply to

a bad-cavity laser with the roles of the cavity linewidth κ and atomic gain medium linewidth Γ

interchanged.

While our superradiant Raman laser does not possess an ultra-narrow linewidth, it is an

extremely useful test-bed to explore the physics of superradiant lasers over the parameter space

spanned by the induced spontaneous Raman decay rate Γ from ∼ 2π × (0.3 Hz) to 2π × (100 Hz),

thus operating in the regime relevant to some candidate optical clock transitions [50]. The lasing

transition decay rate is tuned via the Raman dressing laser intensity and detuning in our Raman

model system. In contrast, the decay rate of optical clock transitions is fixed by nature.

Building on the fact that the superradiance can be dynamically controlled with the Raman-

dressing laser, we demonstrated and analyzed a proof-of-concept hybrid active-passive sensor of
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collective atomic coherence [51] in an atomic clock configuration. We have also applied the hybrid

sensor concept in a magnetometer configuration demonstrating both wideband and narrowband

sensing of magnetic fields [52].

In our Raman superradiance system, dispersive tuning of the dressed cavity mode with atomic

populations gives rise to rich dynamics, namely cavity feedback mechanisms, that are not present in

the original proposal paper [49]. We have observed and analyzed the amplitude stability of Raman

superradiant lasers using our 87Rb model system and revealed a cavity feedback mechanism that

can damp or amplify the superradiant laser output amplitude depending on the relative detuning

between the Raman-dressing laser and the dressed-cavity mode [53].

In summary, our 87Rb Raman superradiant laser provides a useful model system for studying

how future superradiant lasers might operate, and for understanding potential limitations to their

stability.

1.3 Organization of Thesis

Having described my contributions to superradiant lasers research, I shall devote the rest of

this thesis to spin squeezing.

In Chapter 2, I present an overview of spin squeezing, provide a summary of other spin

squeezing-related results and methods, and develop a high-level description of how we generate spin

squeezed states via collective cavity quantum non-demolition measurements. This then provides a

natural transition point to delve into the theoretical details of our method in Chapters 3 and 4 [54].

To achieve spin squeezing, sub-projection noise measurement sensitivity is required. Sub-projection

noise limited measurements are useful not only for squeezing, but also for low noise readout of

a Ramsey interferometer experiment. In Chapter 3, we theoretically analyze projection-noise-

limited cavity-aided nondemolition measurements as a function of the cavity detuning from atomic

resonance. The first half of Chapter 4 then discusses the three types of probe-induced back-action

and derives limits on the measurement imprecision of the collective spin projection Jz. Squeezing

requires sufficient preservation of coherence when probing with sub-projection noise measurement
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sensitivity. The second half of Chapter 4 derives limits on the spectroscopic enhancement relative

to the SQL attainable by balancing probe measurement imprecision against probe-induced back-

action.

The core of this thesis is in Chapter 5, where we experimentally demonstrate the generation

of conditionally spin-squeezed states in a large N = 7× 105 ensemble via cavity-aided QND mea-

surements [12]. The theory developed in the previous chapters are important for understanding

the experiment. In Chapter 6, we discuss scalings and advantages of probing the coupled atoms-

cavity system in the resonant limit. Experimental data demonstrating some of these advantages

are presented.

Performing microwave rotations that add little noise relative to the SQL for the large ensemble

size used in our squeezing experiment turns out be be a non-trivial undertaking. In Chapter 7, we

provide experimental details for performing precise microwave rotations that enabled the squeezing

results of Chapter 5. Besides relying on suppression or cancellation of static errors, a low phase noise

microwave local oscillator source that adds little noise to the squeezed quadrature is employed [55].

Chapter 8 presents a linear response theory for quantifying the impact of local oscillator phase

noise, or equivalently detuning noise, on rotations of a Bloch vector [56]. Experimental verification

of special cases of the theory are demonstrated.

Finally, in Chapter 9, I consider our experimental squeezing results in the context of recent

squeezing results and also frame our work more broadly as it pertains to the precision measurement

and quantum metrology community. As an outlook to the next generation of QND measurement

squeezing experiments in our lab, I analyze the amount of optimal squeezing attainable by probing

on an optical cycling transition for 87Rb and show that it could potentially realize much larger

amounts of spectroscopic enhancements that demonstrate Heisenberg-like scaling with ensemble

size [54]. This analysis is relevant to current efforts in the lab that have already yielded quite

promising improvements in squeezing. Finally, I suggest some experimental improvements to the

current setup, and finish with a brief summary.



Chapter 2

Spin Squeezing: Overview and Context

This Chapter reviews concepts related to spin squeezing. To begin, I present a convenient

mathematical representation of collective spins useful for understanding Ramsey spectroscopy with

ensemble spins. The standard quantum limit (SQL) set by the projection noise of un-entangled

atoms in a CSS is derived. A discussion on going beyond the SQL with entangled spin-squeezed

states and the Wineland criterion [57, 58] for quantifying spectroscopic enhancement is given. Dif-

ferent methods of generating spin squeezed states and recent experimental results are discussed,

together with considerations of their relative advantages and disadvantages. Finally I give a ele-

mentary outline of our experiment that generates conditionally spin squeezed states using collective

cavity QND measurements. Though elementary, the basic description captures the essential physics

and also provides a natural transition to Chapter 3, where I present the theory of quantum projec-

tion noise limited measurements via cavity-aided probing of an atoms-cavity system. For a recent

review on the theoretical and experimental aspects of spin squeezing, I point the reader to Ref. [59].

2.1 Collective Spins, Coherent Spin States, and the SQL

This section lays the foundations for describing collective spins and coherent spin states that

will be relied upon throughout the thesis. Notation developed here also carries through to the end

of the thesis.
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2.1.1 Collective Spins

The concept of a collective spin is an elegant visualization and formalism for discussing

Ramsey spectroscopy with an ensemble of N spin-1/2 atoms. A collective spin Ĵ is simply a sum

over its constituent spins ŝ(i) = 1
2(σ̂

(i)
x , σ̂

(i)
y , σ̂

(i)
z )

Ĵ =
N∑
i=1

ŝ(i) . (2.1)

The collective spin Ĵ = Ĵxx̂+ Ĵyŷ + Ĵz ẑ may be described by its collective spin operators Ĵk given

by the sum over the individual spin operators (Pauli matrices) 1
2 σ̂

(i)
k , where k = {x, y, z}

Ĵk =
N∑
i=1

1

2
σ̂

(i)
k . (2.2)

The mean spin components are then given by expectation values of the collective spin operators as

Jk = 〈Ĵk〉. Since the Pauli matrix σ̂
(i)
z is given by |↑i〉〈↑i | − |↓i〉〈↓i |, the collective spin operator Ĵz

can also be expressed as the population difference as

Ĵz =
N̂↑ − N̂↓

2
, (2.3)

where N̂↑ =
∑

i | ↑i〉〈↑i | and N̂↓ =
∑

i | ↓i〉〈↓i | are the collective atomic population operators for

spin up and spin down respectively. Unlike Ĵx and Ĵy, the collective population difference Ĵz is a

directly and easily measurable quantity via fluorescence detection or other methods. Throughout

this thesis, Ĵz will be considered to be the spin projection that can be measured in experiments.

Other spin projections can be accessed by first rotating the collective spin and then measuring the

spin projection Ĵz.

The collective spin operators obey the angular momentum commutation relations [Ĵi, Ĵj ] =

iεijkĴk where εijk is the Levi-Civita symbol. The commutation relations lead to a Heisenberg

uncertainty relationship between ∆Jz and ∆Jy given by

∆Jz∆Jy ≥ |Jx|/2 , (2.4)

where ∆Jz =

√
〈Ĵ2
z 〉 − 〈Ĵz〉2 is the standard deviation of the measurement outcomes of the spin

projection Jz for many identical preparations and measurements of the same collective spin state
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(and similarly for the spin projection Jy). I note here that Eq. 2.4 is completely general. Specifically,

it does not rely on any assumption of the orientation of the collective spin. Identical relationships

can be written down by permuting the coordinate labels {x, y, z}, however, the relationship given

by Eq. 2.4 is the relevant case for this thesis in which the mean spin will be oriented along x̂. I shall

show in the next section that the Heisenberg uncertainty relation is the source of uncertainty in

quantum phase estimation. This source of uncertainty is fully equivalent to the random projection

noise due to measurement-induced collapse.

2.1.2 Coherent Spin States and the SQL

Coherent spin states (CSS) are the most classical-like quantum states of a symmetric ensemble

of N spin-1/2 particles. A CSS is made up of N identical but independent spin-1/2 particles with no

quantum correlations/entanglement between the particles. Mathematically, a CSS is constructed

by placing all the N particles in the same state

|θ, φ〉 =
N∏
i=1

cos
θ

2
| ↑i〉+ eiφ sin

θ

2
| ↓i〉 . (2.5)

The physical significance of θ and φ is that the mean spin vector J = 〈Ĵ〉 = 〈θ, φ|Ĵ|θ, φ〉 points

in the direction given by the spherical coordinates (θ, φ) where θ is the polar angle and φ is the

azimuthal angle (see Fig. 2.1(c)). The tip of the so-called Bloch vector resides on the surface of a

sphere of radius J = N/2. Without considering fluctuations or noise in the spin projections, the

vector will behave classically.

Quantum mechanics introduces uncertainty in the spin projections as introduced by the

Heisenberg uncertainty relationships of the form Eq. 2.4. Our visualization of the CSS can be

extended to include this quantum uncertainty by the addition of an isotropic noise distribution

perpendicular to the mean spin at the tip of the vector as shown in Fig. 2.1(b). The size of the

distribution conveys the magnitude of the rms fluctuations in the spin projections ∆Jy and ∆Jz.

The minimum magnitude and shape of the noise distribution for a CSS can be understood

by realizing that it is a factorizable state. As a result the fluctuation of the total spin vector is
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Figure 2.1: (a) Construction of a coherent spin state (CSS) from N identical but otherwise in-
dependent spins. Each spin-1/2 has length 1/2 and rms uncertainty 1/2 in directions orthogonal
to the spin, visualized as an uncertainty cone. The length adds up coherently as J = N/2 while
the uncorrelated noise averages to

√
N/2. (b) Bloch sphere representation of a CSS. In this illus-

tration and for the rest of the thesis, I will assume the CSS is prepared along x̂ unless otherwise
noted. The quasi-probability distribution for the CSS noise in Jy and Jz or equivalently the mean
spin polar angle φ and θ respectively (coordinate system defined in (c)) is shown as a noise blob
(red-orange disc) at the tip of the collective spin Ĵ (red arrow). The standard quantum limit
∆θSQL = ∆φSQL = 1/

√
N on quantum phase estimation with a CSS, formed by identically pre-

pared but otherwise independent atoms, is set by the quantum noise ∆Jz,CSS = ∆Jy,CSS =
√
N/2,

normalized to the mean spin length |〈Ĵ〉| = N/2 in the limit of small angles. (c) Coordinate system
defining the collective spin polar angle θ and azimuthal angle φ. The cartesian components of the
collective spin Ĵ in the x, y and z directions are Jx, Jy and Jy.

just given by the incoherent sum of the fluctuations of the N individual spins as illustrated in

Fig. 2.1(a). To be quantitative, I will assume for concreteness that the CSS is |π/2, 0〉 because this

is the point of maximum sensitivity in Ramsey spectroscopy, discussed in the next section. The

mean collective spin that represents this CSS is J = N
2 x̂ so that Jx = N/2, see Fig. 2.1(b). Each

individual spin in the CSS is in the state |x〉 = (|↑〉+|↓〉)/
√

2. Using properties of the Pauli matrices,

an individual spin has an uncertainty in the spin projection ∆sz =
√
〈x|σ̂2

z |x〉 − 〈x|σ̂z|x〉2 = 1/2.

Similarly ∆sy = 1/2. As mentioned earlier, the uncertainties ∆Jz is equal to the incoherent sum

of the uncertainties of each individual spin ∆sz, with the result that ∆Jz,CSS =
√
N/2. Similarly,

∆Jy,CSS =
√
N/2. Note that since ∆Jz,CSS∆Jy,CSS = |Jx|/2 saturates the Heisenberg uncertainty

relation given in Eq. 2.4, the CSS corresponds to a minimum uncertainty state.

The noise ∆Jz,CSS along Jz is equivalent to quantum projection noise arising from measurement-

induced probabilistic collapse of each spin in the ensemble into |↑〉 or |↓〉 [58]. Recall that each

spin in the CSS |π/2, 0〉 is in the state |x〉 = (|↑〉+ |↓〉)/
√

2. In performing a projective population
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measurement, each spin would collapse into |↑〉 or |↓〉 with probability 1/2 each, independent of

what the other spins are doing. Therefore, for N spins, the resulting collective spin population

N↑ in |↑〉 would be N/2 on average. Random and independent collapse of each of the N spins

into | ↑〉 or | ↓〉 results in Poissonian fluctuations or equivalently shot noise around the average.

It is no surprise then that the rms collective spin population fluctuation ∆N↑ =
√
N/2 contains

the famous
√
N smoking gun for shot noise fluctuations. The same could be said for the col-

lective spin population N↓. However, the fluctuations ∆N↑ and ∆N↓ are anti-correlated, that is

∆N↑ = −∆N↓, due to conservation of particle number N↑ + N↓ = N . Thus, the rms fluctuations

∆N↑ and ∆N↓ translates into an equivalent rms uncertainty in the collective spin projection Jz via

∆Jz = ∆(N↑ −N↓)/2 =
√
N/2. This uncertainty ∆Jz is exactly the same as the CSS uncertainty

∆Jz,CSS derived earlier, demonstrating the equivalence of ∆Jz,CSS and quantum projection noise.

Information in a quantum sensor is ultimately encoded in a polar angle θ which must be esti-

mated from measurements of Jz or equivalently collective spin populations N↑ and N↓. Heisenberg

uncertainty relations sets a fundamental limit on our ability to measure the collective spin polar

angle θ or azimuthal angle φ. In the small angle limit, the fluctuations in the spin projection Jz

sets a limit on the uncertainty ∆θSQL given by

∆θSQL =
∆Jz,CSS

|〈Ĵ〉|
=

1√
N
, (2.6)

a limit known as the standard quantum limit (SQL) for a coherent spin state1 . In this thesis,

we will experimentally demonstrate that quantum nondemolition measurements can be used to

generate entanglement and realize phase estimation uncertainty below the SQL.

2.2 Ramsey Spectroscopy with Coherent Spin States

In this section, I will review the canonical Ramsey spectroscopy that is used in a broad range

of atomic sensors, and show how the SQL for quantum phase estimation can be surpassed by using

1 The standard quantum limit is not really “standard” in the sense that different communities define an equivalent
SQL for their very specific measurement context, just like we do here in the context of quantum phase estimation
using Ramsey spectroscopy. For example, in the field of opto-mechanics, the SQL for measuring a simple harmonic
oscillator’s position is reached at a measurement strength where the measurement imprecision is equal to the added
noise from measurement back-action [60].
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entangled states in Ramsey spectroscopy.

Ramsey spectroscopy with a CSS proceeds as shown in Fig. 2.2(a). The collective spin is first

prepared in the CSS |θ = π, φ = 0〉 =
∏N
i=1 |↓〉. An initial π/2-pulse about the −ŷ-axis rotates the

collective spin up to the x-axis, producing the state |θ = π
2 , φ = 0〉 =

∏N
i=1

|↑i〉+|↓i〉√
2

. The rotation is

induced with electromagnetic radiation at frequency ωLO nearly resonant with the spin transition

frequency ω↑↓. The collective spin is now allowed to evolve for a duration Tevol such that each

constituent spin acquires a phase φ = (ω↑↓ − ωLO)Tevol in the spin up state relative to the spin

down state in a frame rotating at frequency ωLO. The CSS wavefunction at the end of the evolution

time is given by |θ = π
2 , φ〉 =

∏N
i=1

|↑i〉+eiφ|↓i〉√
2

, corresponding to a precession of the collective spin

through an angle φ.

The goal of Ramsey spectroscopy is to measure φ very precisely. Because one cannot measure

φ directly, φ is mapped onto the the collective spin projection Jz = (N↑−N↓)/2 which is measurable

via fluorescence detection or other methods. This mapping is performed by a final π/2-pulse

about the x̂-axis and leaves the collective spin in the final state |π2 − φ, 0〉 =
∏N
i=1 cos π/2−φ2 | ↑i〉 +

i sin π/2−φ
2 |↓i〉 up to a global phase. At this stage, the phase information φ has been translated into

the polar angle θ. The collective spin projection of the final state that is measured is Jz = N
2 sinφ.

During the measurement process, wavefunction collapse of the individual spins from a superposition

state to one of the eigenstates |↑〉 or |↓〉 results in quantum projection noise, sometimes called atom

shot noise, ∆Jz =
√
N
2 cosφ in the measurement result. See Fig. 2.3(a) for the resulting signal and

projection noise.

The rms uncertainty ∆φ in determining φ is set by ratio of the quantum projection noise

∆Jz to the slope of the Ramsey signal dJz/dφ

∆φ =
∆Jz
|dJz/dφ|

=
1√
N
, (2.7)

which is independent of φ. In the presence of technical noise, it is advantageous to operate at

the point of maximum slope φ = 0, π. Note that this derivation shows that the quantum-limited

signal-to-noise (i.e. no additional sources of noise other than quantum projection noise) in Ramsey
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Figure 2.2: Ramsey spectroscopy with a coherent spin state (a) and a spin squeezed state (b)
illustrated in a frame rotating at the LO frequency. In (a) and (b), a π/2 global rotation rotates
the collective spin (red arrow) from pointing along −ẑ to x̂. The fuzzy disc/ellipse at the tip of the
collective spin represents its intrinsic quantum noise. During the evolution time Tevol, the collective
spin freely precesses about the z-axis and accumulates a phase φ = (ω↑↓ − ωLO)Tevol. The phase is
then mapped onto populations, equivalently Jz with a final π/2 rotation about x̂. The observable
Jz is then read out with fluorescence detection or other techniques. Measurement-induced-collapse
of the wavefunction results in quantum projection noise ∆Jz. In the illustration, ∆Jz is given
by the projection of the quantum noise distribution onto the z-axis. The goal of this thesis is to
generate entangled spin squeezed states for quantum metrology.

spectroscopy with a CSS is exactly the SQL ∆φSQL = 1/
√
N described earlier.

To go beyond the SQL set by un-entangled atoms, quantum entanglement can be used to

either lower the quantum projection noise ∆Jz or increase the slope dJz/dφ. Spin squeezing, the

subject of this thesis, employs the former strategy at the expense of increased noise in ∆Jy which

is not observed, while maximally entangled cat states employ the latter strategy [61–67].

2.3 Surpass SQL with Spin Squeezed States

In Fig. 2.2(b), I show how the spin squeezed states we generate in our experiment can be

used in Ramsey spectroscopy to surpass the SQL. The Ramsey sequence is only sensitive to noise

in one quadrature so that the quiet quadrature can be used, while the noisy quadrature is not
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ΔJz, CSS = �N/2
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(a)

φ2π
Δφ < ΔφSQL

Jz

ΔJz < ΔJz, CSS

N/2

-N/2

Spin-Squeezed State (this thesis)

|Slope| = N/2

(b)

Figure 2.3: Ramsey spectroscopy signals with a CSS input (a) and a spin squeezed state input
(b). The shaded area represents rms fluctuations in the measured observable Jz that would be
observed if the experiment is repeated many times. (a) Using large ensembles of N un-entangled
atoms averages the quantum projection noise as ∆Jz,CSS =

√
N/2, as exemplified by the CSS. The

quantum projection noise ∆Jz,CSS in conjuction with the slope of the Ramsey signal sets the SQL
for the phase uncertainty ∆φSQL = 1/

√
N . (b) The phase sensitivity can be enhanced beyond the

SQL by using a spin squeezed state with reduced projection noise ∆Jz < ∆Jz,CSS.

used. Spin squeezed states reduce the projection noise ∆Jz that appears during the readout, while

maintaining the same signal slope dJz/dφ, therefore enhancing phase sensitivity beyond the SQL,

as illustrated in Fig. 2.3(b).

Having seen how squeezing can improve the spectroscopic sensitivity of Ramsey spectroscopy,

it is important to quantify the amount of spectroscopic enhancement relative to the SQL. Squeezing

has been defined various ways in the literature. The review article [59] provides a comprehensive

list of spin squeezing definitions.

As we are primarily interested in applying squeezing to metrology, we shall take spin squeezing

to be spectroscopic enhancement ξ−1
m ≡ (∆θSQL/∆θ)

2 relative to the SQL ∆θSQL = 1/
√
N set by
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the CSS, where ∆θ is the polar angle uncertainty of the spin squeezed state. Since we generate

squeezed states with reduced uncertainty in the polar angle in this thesis, we use θ here instead

of φ. Spin squeezing with ξ−1
m ≥ 1 represents a spectroscopic enhancement in sensitivity that

must arise from entanglement [68]. Entanglement, while necessary, is not a sufficient condition for

spectroscopic enhancement [68].

The above definition for spectroscopic enhancement, synonymous with squeezing in this the-

sis, is referred to as the Wineland criterion [57, 58] in the literature. The Wineland criterion

accounts for both spin noise reduction and the coherence or Ramsey contrast C = |〈Ĵ〉|/J of the

resulting state, where J = N/2 is the mean spin length corresponding to the fully symmetric

CSS of N spin-1/2 particles. Experimentally, the mean spin length |〈Ĵ〉| is measured via Ramsey

spectroscopy or Rabi flopping. The measured Jz oscillates with an amplitude set by the mean

spin length |〈Ĵ〉| as the angle between the mean spin and the rotation axis is varied in Ramsey

spectroscopy or as the pulse area is varied in Rabi flopping. The spectroscopic enhancement can

be expressed as the signal-to-noise ratio in the following form

ξ−1
m =

(
∆Jz

∆Jz,CSS

)−2

C2 . (2.8)

Accounting for the loss of signal is important because in generating spin squeezed states, the mean

spin length |〈Ĵ〉| may be reduced below its initial value J = N/2. See Fig. 2.7 for an illustration.

A related quantity frequently encountered in the spin squeezing literature is the spin noise

reduction

ξ−1
n ≡

(
∆Jz

∆Jz,CSS

)−2

(2.9)

defined by Kitagawa and Ueda [69]. It is sometimes referred to as number squeezing, especially in

the context of Bose-Einstein Condensates. It is possible to have number squeezing according to the

definition 2.9 and yet have phase estimation sensitivity worse than the SQL.
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2.4 Generation of Spin Squeezed States

Spin squeezed states in large ensembles have been generated using many diverse approaches.

Generally, the approaches may be divided into two experimental categories as: atom-light interaction-

based and atomic collisions-based squeezing. The underlying mechanism that creates squeezing can

be broadly divided into two categories that exploit two different aspects of quantum mechanics:

quantum non-demolition measurements and non-linear Hamiltonians. In the following sections, I

will discuss these approaches, review demonstrated squeezing results, and discuss their relative ad-

vantages and disadvantages from the perspective of applying squeezing to metrology. To facilitate

discussion, I will assume the collective atomic spin is initially prepared in a CSS along x̂.

2.4.1 Collisional Interactions

In Bose-Einstein Condensates, atom-atom collisions lead to a nonlinear term in the Hamil-

tonian HOAT = χĴ2
z [68] (~ = 1 here), referred to as the one-axis twisting (OAT) Hamiltonian by

Kitagawa and Ueda [69]. To explain how squeezing is generated, consider the evolution of a CSS

along x̂ under this Hamiltonian. The Dicke states [70] |J,M〉 are eigenstates of the OAT Hamil-

tonian with eigenvalue χM2, and evolves phase in time as e−iχM
2t. This implies the precession

frequency of the state |J,M〉 scales linearly with M as 2χM in a rotating frame whose frequency

is proportional to M . As the CSS is a (weighted) superposition of the Dicke states, the noise

components of the CSS with larger M would precess faster than those with smaller M . Also, noise

components with positive M would precess in the opposite sense compared to noise components

with negative M . This process is depicted pictorially in Fig. 2.4 with the resulting noise distribu-

tion sheared such that noise in one direction is lower than the CSS projection noise2 . The shearing

process can be viewed as arising from twisting the Bloch sphere about the z-axis, hence the name

one-axis twisting. A small rotation can be performed to rotate the squeezed quadrature to lie along

ŷ or along ẑ.

2 Our semi-classical picture of shearing of the noise distribution breaks down when the shearing wraps around
the Bloch sphere, where in fact the system would evolve into a cat state appropriate for Heisenberg-limited spec-
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Figure 2.4: A CSS evolves into a spin squeezed state under a one-axis twisting Hamiltonian that
creates a Jz-dependent precession frequency, causing the noise distribution to shear.

Recent experiments employing this collision-induced OAT has produced ξ−1
m ∼ 4 to 8 dB

of inferred squeezing after background subtraction in the groups of Oberthaler, Treutlein and

Schmiedmayer [72–76] in ensemble sizes of N ∼ 400 to 2000 atoms. It is in fact, not necessary

to utilize Bose-Einstein Condensates, and anti-squeezing has been observed in the non-degenerate

87Sr fermion optical lattice clock at JILA [77].

Direct collisional interactions causing parametric pair generation into two modes can gener-

ate two-mode squeezing, an effect analogous to parametric down conversion in non-linear optics.

The states created are called twin-Fock states and ideally could attain Heisenberg-limited phase

sensitivity ∆θHL = 1/N [78]. Because the mean spin length |〈Ĵ〉| is zero, an observable different

from Jz is required [79]. Parametric two-mode squeezing has been demonstrated in the group of

Klempt [80] with inferred squeezing ξ−1
m = 2.5(1.0) dB at N = 7×103. In related setups, parametric

two-mode spin noise reduction has been observed in the groups of Schmiedmayer and Chapman [81,

82]. Continuous-variable entanglement with parametric pair generation has also been observed [83].

2.4.2 Light-mediated One-Axis Twisting Hamiltonians

Spin squeezed states have been prepared with atom-light interactions that generate effective

long range interactions on demand (inferred squeezing ξ−1
m = 9.6(1.0) dB at 3 × 104 atoms) in

troscopy [61, 71].
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Figure 2.5: Graphical summary of results demonstrating spectroscopic enhancement arising from
inter-particle entanglement to date (May 2013). Inferred values based on background subtraction
are plotted. To emphasize the regimes that are technologically relevant for atomic sensors, the
absolute phase uncertainty is plotted versus the ensemble size. Trapped ion optical clocks operate
with < 10 ions [17]. Atom chip sensors (clocks, atom interferometers, magnetometers) operate with
102 to 104 atoms [84, 85]. Neutral atom optical lattice clocks operate with 103 to 105 atoms [16,
18]. Primary and secondary microwave frequency standards employ 105 to 106 atoms [14, 29]. Free
space atom interferometers and vapor cell magnetometers operate with large ensembles from 105

up to 1012 atoms [19, 20, 23, 24, 86–88]. The ranges provided here are approximate, and certainly
will change as technology evolves.

Nearly maximally entangled states generated in ion traps are depicted in blue, spin-squeezed states
generated by atomic collisions or light-mediated interactions in red, and conditional squeezing via
QND measurements in green.

The absolute phase uncertainty inferred after subtracting out the readout and other technical noise
sources from the observed phase uncertainty is plotted where available. When not available, the
observed phase uncertainty is plotted. The inferred phase uncertainty represents the potential for
spectroscopic enhancement when all other noise sources are made negligible. The readout can be
separately optimized from the generation of entanglement or squeezing in principle.
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in red, and conditional squeezing via QND measurements in green.
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a cavity-QED setup [89]. In brief, the approach demonstrated in Ref. [89] begins by imprinting

quantum fluctuations ∆Jz of the collective spin onto probe light which is then filtered by a cavity

response and finally fed-back onto the collective spin. The cavity feedback is tuned such that it

imposes a Jz -dependent ac-Stark shift, i.e. precession frequency, thus implementing an effective

OAT Hamiltonian. Inherent dissipation in this approach due to free space scattering of probe

light, and noise associated with photon number fluctuations in the probe does not result in a truly

coherent evolution. Theoretical proposals on coherent feedback methods to generate OAT have

been developed for cavities [90, 91] and in free space [92, 93].

Internal state squeezing has been generated in large spin-f atoms using effective OAT Hamil-

tonians engineered by tensor light shifts [94, 95]. The internal state squeezing generates entan-

glement between the nuclear spin and the electronic spin without inter-atom entanglement. In

Ref. [94], ξ−1
m ∼ 4 dB of inferred squeezing within the F = 3 Zeeman manifold of 133Cs was demon-

strated with N ∼ 106 atoms. In Ref. [95], ξ−1
m = 2.7(8) dB of inferred squeezing within the F = 4

Zeeman manifold of 133Cs using a macroscopic ensemble of N ∼ 1012 atoms.

2.4.3 Quantum Non-demolition Measurements

A quantum nondemolition (QND) measurement of Jz that also preserves coherence can be

used to prepare conditionally spin squeezed states with spectroscopic sensitivity below the SQL [96–

98], an approach successfully demonstrated in this thesis. In this thesis, we choose to make a

distinction between nondemolition (ND) measurements and QND measurements, illustrated in

Fig 2.7. In the QND measurement approach, probe light interacts with Jz such that the quantum

fluctuation ∆Jz,CSS is imprinted on the probe. Then a measurement performed on the probe will

project the initial CSS into a post-measurement state consistent with the measurement outcome.

If the measurement imprecision of the probe is sufficient to resolve projection noise fluctuations

∆Jz,CSS, then the post-measurement state would have its spin noise reduced below the CSS spin

noise. Provided the coherence C = |〈Ĵ〉|/J is sufficiently preserved by the measurement, as discussed

earlier in Sect. 2.3, a conditionally spin squeezed state would result. The squeezing is conditional in
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Figure 2.7: Visualization of a nondemolition (ND) (upper right) and a quantum nondemolition
(QND) (lower right) measurement. A CSS for an ensemble of N spin-1/2 atoms prior to measure-
ment is represented as a collective spin (red arrow) of length J = N/2. The quantum noise in
the orientation of the collective spin is visualized as a quasi-probability distribution (red/yellow
region) perpendicular to the mean spin, with rms opening angle at the SQL ∆θSQL = 1/

√
N .

A nondemolition measurement in this thesis refers to a measurement of of the spin projection
Jz = (N↑ −N↓)/2 with an rms imprecision ∆Jz < ∆Jz,CSS =

√
N/2, and with the majority of the

atoms remaining around in the trapping or probing region after the measurement. For example, in
the ND measurement visualized on the right, the measurement imprecision is ∆Jz = 0, but after
the measurement the atoms are described by a product state of atoms in spin up and down due to
single-atom information gained by the environment via free space scattering of light. We define a
quantum nondemolition measurement to satisfy the additional requirement that a sufficiently large
number of atoms remain in a coherent superposition of spin up and down such that the resulting
state, conditioned on the measurement outcome, has a polar angle uncertainty ∆θ < ∆θSQL and
can be used to sense a quantum phase below the SQL of an ensemble of uncorrelated atoms. The
lower right QND example visualizes the conditional state as a product state of a spin-squeezed
state and the atoms that have been collapsed into spin up and down.

the sense that the obtained spin squeezed state is randomly distributed within the range defined by

the initial uncertainty ∆Jz,CSS (see Fig. 2.8). Thus the produced squeezed state is random across

independent experimental trials. If the measurement outcome is not used to predict the value of a

subsequent measurement of Jz (within the same experimental trial), then no squeezing would be

observed.

QND measurements of large atomic ensembles have recently become precision measurement

tools with the demonstration of QND measurement-based spin-squeezing. In this thesis, cavity-
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Coherent
Spin State

Spin Squeezed
State

Figure 2.8: Concept of conditional squeezing via QND measurements. A QND measurement of the
spin projection Jz of a CSS prepared along x̂ would yield a random measurement outcome within
the range set by the initial CSS uncertainty ∆Jz,CSS (orange region). The QND measurement
projects the state into one that is consistent with the measurement outcome and the measurement
uncertainty. When the measurement uncertainty ∆Jz is lower than the CSS uncertainty and co-
herence is sufficiently preserved (not shown), the post-measurement state would be a spin squeezed
state with reduced uncertainty in Jz at the expense of increased uncertainty in Jy (green region),
conditioned on the measurement outcome.

aided QND measurements of a large ensemble of pseudo-spins composed of the 87Rb clock transition

projects the ensemble into a conditionally spin squeezed state. The prepared spin squeezed state

has an inferred spectroscopic improvement ξ−1
m = 3.4(6) dB over the SQL. At N = 7× 105 atoms,

this work represents the largest clock ensemble squeezed to date [12]. QND measurement squeezing

has also been demonstrated for clock transitions with atoms in free space in Polzik’s group (inferred

squeezing ξ−1
m = 3.4 dB at N = 1.2×105 [99]) and in a cavity in Vuletić’s group (inferred squeezing

ξ−1
m = 3.0 dB at N = 3.3×104 [100]). In our work, the cavity mode couples to the atoms resonantly

in the strong collective coupling regime of cavity-QED, generating two new normal modes, called

the vacuum Rabi splitting, that contained equal wavefunction amplitudes in the atom and cavity

components. We then probe both normal modes to project a CSS into a spin squeezed state. In a

similar cavity-QED setup in Vuletić’s group [100], the cavity frequency is tuned such that the cavity

mode couples to the atoms in the far-detuned dispersive regime. In this case, the normal modes

of the system remain mostly atom-like and cavity-like, with some dressing of the cavity by the
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atoms and vice versa. The cavity-like mode is then probeed to generate conditional spin squeezed

states. Very recently, spin squeezing (inferred squeezing ξ−1
m = 2.0 dB at N = 7.4 × 105 atoms)

in a spin-1 system demonstrating inter-particle entanglement in a magnetometer configuration

from Mitchell’s group was reported [101]. Conditional two-mode squeezing of a room temperature

vapor of N = 1012 atoms has enabled magnetometry with ξ−1
m = 1.5 dB of observed spectroscopic

enhancement and an increased measurement bandwidth [102]. Several experiments [103–106] have

reported spin noise reduction without quantifying the loss of signal, so spectroscopic enhancements

are not available for these results. Back-action was observed in Ref. [107]. Spin squeezing of optical

lattice clocks using the trap lattice as a QND probe has been proposed [108]. A graphical summary

of these and other squeezing results can be found in Figs. 2.6 and 2.5.

2.5 Relative advantages and disadvantages to different approaches

Spin squeezing based on atom-light interactions offers the advantage that the probe light can

be completely turned off. As an additional bonus, low noise readout techniques that are required

to read out the squeezed state are automatically present in the QND approach. In squeezing

experiments exploiting direct atom-atom interactions, it is not clear if the collisional interactions

required for generating squeezing can be turned off sufficiently. These interactions would cause

systematic mean field shifts, i.e. inaccuracies, and quantum noise redistribution during Ramsey

spectroscopy, and may destroy the squeezing or even make the phase resolution worse than the

standard quantum limit. Conversely, it has been observed that relative number squeezing in atom

interferometers can reduce fluctuations in the relative phase shift arising from fluctuating mean

field shifts in the two interferometer paths [76, 109]. The collisional interaction strength χ can

be tuned via magnetic Feshbach resonances or with state-dependent potentials, achieving about a

factor of 100 in the on/off ratio in current experiments [73, 74]. Furthermore, inelastic collisions

concomitant with the elastic collisions necessary to generate squeezing would degrade or even limit

the amount of squeezing achievable, as was the case in Ref. [73].

For the particular approach of squeezing on the internal states within an atom, the maximum
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spectroscopic enhancement permissible is set by the Heisenberg limit corresponding to the number

of internal states, and not by the ensemble size. Since the number of internal states is necessarily

limited by atomic structure, this method is clearly not scalable. However, internal state squeezing

may be combined with inter-atomic squeezing to produce larger amounts of squeezing [110].

Finally, in cavity-based approaches to spin squeezing, either using QND measurements or

cavity feedback, the fundamental limit to the amount of squeezing is set by the collective coop-

erativity of cavity-QED physics, equivalent to optical depth in free space samples. The collective

cooperativity is essentially the single pass optical depth of the sample multiplied by the number

of bounces the light makes in the cavity, which is of the order of the cavity finesse F . Therefore

compared to free space approaches, larger amounts of squeezing are attainable in a cavity at the

same atomic densities. Alternatively, a cavity-based approach can achieve the same amount of

squeezing as a free space experiment but at atomic densities lowered by order the cavity finesse F .

The reduced atomic density would mitigate density shifts as a source of inaccuracy in the context

of clock applications.

2.6 Other work on entanglement-enhanced metrology

Nearly maximally entangled states of 2 to 14 trapped ions have been generated in the groups

of Wineland, Blatt and Urabe [62–67], with demonstrated observed spectroscopic sensitivities near

the Heisenberg limit ∆θHL = 1/N as shown in Figs. 2.6 and 2.5. These states are typically generated

via phonon-mediated global entangling gates [61] or phonon-mediated stimulated rapid adiabatic

passage [67]. While trapped ion systems have demonstrated near-Heisenberg limited sensitivity, it

may be nontrivial to scale up the method and the ion number to achieve large absolute spectroscopic

gains. Further, it is an open question as to whether such approaches could be applied to much

larger neutral atom systems that lack long-range Coulomb interactions.
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Figure 2.9: Phase array analogy to collectively enhanced coupling. A single classical dipole radiates
isotropically with power P0 proportional to the the radiated electric field E2 (top panel). An array
of phase synchronized classical dipoles radiate with a factor of N enhancement, a phenomena known
as superradiance, over an array of dipoles with random phases (not shown) into the “end-fire” modes
due to constructive interference in the electric field amplitudes (bottom panel). Consequently, the
phase array radiates at single dipole rates (on average) in directions different from the end-fire
modes due to destructive interference. The collective enhancement can be viewed as arising from
the collective coupling of the dipoles to the end-fire modes. The collective coupling causes the array
to decay into the end-fire modes faster than decaying into all other modes (directions). The same
concept applies to array of quantum atomic dipoles. The phase of a quantum atomic dipole is set
by the relative phase between |↑〉 and |↓〉 in a superposition state of |↑〉 and |↓〉. Strong collective
coupling to an array of atoms to a probe mode may be achieved in free space with optically dense
samples along the probing direction. In the strong collective coupling regime, collective information
about the ensemble can be extracted from a detuned probe mode faster than the rate of decoherence
via free-space-scattering into the all directions. The collective coupling can be enhanced by putting
the sample in an optical cavity, the approach pursued in this thesis, so that the probe light interacts
with the same sample multiple times.

2.7 Outline of our squeezing experiment

In this section, I provide an elementary outline that captures the essential physics of how we

generate spin squeezed states using cavity-aided QND measurements. In brief, we use ∼ 106 87Rb

laser cooled and trapped inside an optical cavity. The pseudo-spin-1/2 system is comprised of the

microwave clock states |↑〉 ≡ |F = 2,mF = 0〉 and |↓〉 ≡ |F = 1,mF = 0〉, see Fig. 2.10(a) for

schematic. The two-level system we utilized is a pseudo-spin-1/2 because the transition frequency

between |↑〉 and |↓〉 does not tune with a magnetic field to first order. We prepare a CSS along x̂ by

optical pumping into |↓〉 followed by a π/2 rotation with resonant microwaves. At this point, each
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Figure 2.10: (a) Basic energy level scheme of the experiment. The pseudo-spin-1/2 system comprises
of the microwave clocks states |↑〉 ≡ |F = 2,mF = 0〉 and |↓〉 ≡ |F = 1,mF = 0〉. The bare (empty)
cavity frequency is degenerate with the atomic |↑〉 to |e〉 ≡ |F ′ = 1,mF = 0〉 optical transition.
The strong collective coupling of the atomic ensemble to the cavity mode creates a normal mode
splitting, known as the collective vacuum Rabi splitting Ω↑, which we probe to measure the collective
spin population N↑. In our setup, only atoms in |↑〉 couple to the cavity mode. (b) The origin of
the collective Rabi splitting [111] is completely classical and can be understood as follows. A cavity
transmission resonance occurs when the round trip phase shift of the light is an integer multiple of
2π due to constructive interference. In an empty cavity, the round trip phase shift is linear with
cavity drive detuning (blue line), resulting in a single transmission resonance at the bare cavity
frequency (and at multiples of the cavity free spectral range). An atomic medium in the cavity
imposes a dispersive phase shift centered on the atomic resonance frequency on top of the free space
propagation phase shift (red curve). In our probing scheme, the bare cavity frequency is degenerate
with the atomic frequency. The two outer zero crossings result in transmission resonances while
the middle zero crossing does not because of atomic absorption of resonant probe light. (c) Cavity
power transmission curves corresponding to (b). The frequency splitting between the transmission
resonances is called the Rabi splitting Ω↑. In our experiment, Ω↑ =

√
N↑2g where 2g is the single

atom Rabi frequency.

atom is in the same superposition state (|↑〉+ |↓〉)/
√

2. The atoms behave like little pieces of glass

with state-dependent refractive index. The phase shift imposed by the atoms on the cavity mode

causes the cavity resonance frequency to shift depending on the collective populations N↑ in spin up

and N↓ in spin down. To simplify the discussion, I assume for now that the cavity frequency shift is
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proportional to the collective spin projection Jz = (N↑−N↓)/2. By measuring the cavity resonance

frequency precisely3 , we can measure Jz precisely, but in a way that does not reveal which atom

is in spin up or down, therefore preserving coherence. The collective coupling of the ensemble to

the cavity mode, which extracts collective information, over the rate of free space scattering into

all other modes, is the mechanism for preservation of coherence. This collective enhancement in an

atoms-cavity system is analogous to the enhancement in emission rate in the “end-fire” directions

of a phased array antenna, illustrated in Fig. 2.9.

We first measure Jz with measurement imprecision below the projection noise limit ∆Jz,CSS,

thus conditionally projecting the initial CSS into a state with reduced spin noise. In order to verify

the spin noise reduction, we show that repeated measurements of the same CSS are correlated below

the projection noise level. In order to claim spectroscopic enhancement, we measure the mean spin

length |〈Ĵ〉| with a Ramsey sequence and show that the coherence (contrast) is sufficiently preserved

after the first pre-measurement such that the net signal-to-noise of the post-measurement state is

improved beyond the SQL for un-entangled atoms.

Most cavity-aided probing experiments have operated in the dispersive regime. In our ex-

periment, we actually operate in the resonant regime of strong collective coupling cavity-QED.

We access this regime by setting the bare cavity frequency to be resonant with the atomic optical

transition frequency as shown in Fig. 2.10(a). The resonant exchange of cavity photons and atomic

excitations leads to a normal mode splitting when the coupling rate Ω↑ exceeds the dissipation rates

due to cavity power decay rate κ and atomic optically excited state decay rate Γ. The origin of the

normal mode splitting, also called the collective vacuum Rabi splitting, arises from dispersive phase

shifts imposed by the atomic medium (see Fig. 2.10(b, c), and is therefore completely classical in

nature [111]. In our probing scheme, the Rabi splitting Ω↑ =
√
N↑2g depends only on the collective

spin population N↑ and the single atom Rabi frequency 2g set by the atomic optical dipole moment

and the electric field of a single cavity photon. In order to measure Jz, which requires knowledge of

N↑ and N↓, we first prepare a CSS along x̂ and measure the size of the Rabi splitting to determine

3 As is well known, a good way to measure any quantity precisely is to convert it into a frequency.
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N↑. We then use a microwave π-pulse to phase coherently swap N↑ with N↓ and perform a second

Rabi splitting measurement to determine N↓.

By operating in the resonant regime instead of the dispersive regime, we hope to reinforce

the idea that the quality of a coherence-preserving QND measurement is not fundamentally linked

to the probe’s large detuning from atomic resonance. Instead, it is the magnitude of the collective

cooperativity parameter N↑C (equivalent to the optical depth for a free space experiment [38])

that sets the fundamental quality of the QND measurement. Here C = (2g)2/κΓ is the single atom

cooperativity, or equivalently the single atom optical depth. Operating in the resonant regime

also offers advantages in terms of maximizing the absolute size of the cavity frequency fluctuations

caused by projection noise, and technical relative probe-cavity frequency noise immunity.



Chapter 3

Theory: Probing atoms-cavity system with projection-noise-limited sensitivity

3.1 Introduction

Probing the collective spin state of an ensemble of atoms provides a means to reduce heating

via the photon recoil associated with the measurement and provides a robust, scalable route for

preparing highly entangled states with spectroscopic sensitivity below the SQL set by the CSS. The

collective probing relies on obtaining a very large optical depth that can be effectively increased by

placing the ensemble within an optical cavity such that the probe light passes many times through

the ensemble. In this Chapter, we analyze projection-noise-limited cavity-aided nondemolition

measurements as a function of cavity detuning δc from atomic resonance as well as cavity finesse,

cavity length, cavity linewidth, mode waist, and atom number.

It is well known that significant improvements in readout sensitivity can be achieved by

optically probing ensembles in free space along directions of large resonant optical depth. This

approach has been extensively analyzed theoretically [38, 93, 96, 97, 112–119], and experimentally

studied [99, 102, 103, 120–126].

More recently, the technique of free space probing of large optical depth samples has been

extended to using optical cavities to effectively increase the optical depth of the atomic ensemble

by passing the probe light through the same sample many times as shown in Fig. 3.1 [12, 98, 100,

107, 127–130]. In most of these experiments and proposals, the cavity is far-detuned from the

optical transition that was probed. Operating in the resonant regime δc = 0, as demonstrated in

our squeezing experiment (Chapter 5), is an exception rather than the norm. In principle, the
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cavity detuning δc can be chosen almost arbitrarily. Therefore, a natural question to ask is: How

does cavity detuning affect both the fundamental and technical atomic population measurement

imprecision or the degree of spin squeezing for a given cavity geometry and cavity finesse?

To answer the question posed above, we provide detailed expressions in this chapter for the

fundamental scalings for probing an atomic ensemble using an optical cavity that smoothly connects

the resonant regime to the far-detuned regime in this Chapter. We apply our results to estimate the

amount of free space scattering, equivalent to photon-recoil heating and potentially wave-function

collapse of the ensemble when the cavity-aided measurement reaches an imprecision at the quantum

projection noise level. The average number of photon recoils per atom sets the degree to which

the measurement can be considered nondemolition. We show that the collective cooperativity

parameter NC plays a crucial role in determining the resolution of cavity-aided nondemolition

measurements. The collective cooperativity parameter NC plays a similar role to the resonant

optical depth of atoms in free space, where N is the number of atoms in the probe volume and C

is the single particle cooperativity parameter [131].

This Chapter is organized as follows. In Section 3.2, we begin with a review of the properties

of the coupled atoms-cavity system including dissipation. This review also provides definitions and

notation used throughout the thesis. In Section 3.3, we derive the quantum-limited signal-to-noise

ratio for nondemolition measurements of atomic populations considered as a function of the cavity

detuning δc from atomic resonance (see Fig. 3.1a). We identify three different operating regimes, a

resonant regime and two detuned regimes separated by a critical detuning δ◦c .

3.2 Coupled atoms-cavity modes

To begin, we briefly review the open coupled atoms-cavity system with the goal of both

providing a framework for understanding the experimental work and explicitly enumerating the

assumptions made to reduce this system to a classical two-mode system [132–134]. The dynamics

of the system under a classical drive and dissipation are then studied with the goal of obtaining

the full complex response of the reflected and transmitted cavity field. Finally, a discussion of the
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Figure 3.1: (a) Relevant energy levels. The pseudo-spin-1/2 system typically comprises two
metastable states |↑〉, |↓〉, which are utilized in atomic sensors and clocks. The number of atoms N↑
in |↑〉 modifies the cavity resonance frequency. Initially, we will assume the optically excited state
|e〉 does not shift |↓〉 because of dipole selection rules or because the coupling is highly non-resonant
δc � ωhf , where ωhf is the hyperfine frequency separation between |↑〉 and |↓〉. (b) Transmitted
and/or reflected probe light is monitored to determine the cavity resonance frequencies and hence
the number of atoms in |↑〉. An applied NMR-like microwave rotation can swap the populations
between ground states so that a subsequent measurement can also determine the |↓〉 population
N↓. The ensemble of atoms are trapped in an intracavity optical lattice (blue-green). The total
cavity power decay rate is κ. Single atom spontaneous decay from |e〉 into non-cavity modes at
rate Γ leads to photon recoil heating and single-atom wavefunction collapse. The goal then is to
extract collective information from the probe mode more rapidly than the undesired single-atom
photon scattering into free space.

probe signal-to-noise sets the stage for addressing measurement imprecision at the projection noise

level in Section 3.3.

3.2.1 Linearized response

We consider an ensemble of N atoms with two ground states |↑〉 and |↓〉 whose populations

we wish to estimate precisely. The ensemble is confined and collectively coupled to a cavity mode

(see Fig. 3.1(b)). Atoms in |↑〉 can interact with the cavity mode by absorbing a cavity photon and

being promoted to an optically excited state |e〉. On the other hand, atoms in |↓〉 are assumed to

not interact with the cavity mode because of dipole selection rules, a large energy splitting between

the ground states, or otherwise. A quantum phase may be encoded in the coherence between |↑〉

and |↓〉 for realizing an atomic sensor, but is otherwise not important in this section.

Ignoring dissipation, the Tavis-Cummings Hamiltonian that describes the coupled atoms-
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cavity system is

H = ~δcĉ†ĉ+ ~g
(
σ̂−ĉ

† + σ̂+ĉ
)
. (3.1)

The Hamiltonian is written in a frame rotating at the atomic transition |↑〉 → |e〉 angular frequency

ω↑e. In this Chapter, we assume every atom couples to the cavity mode with the same coupling

strength parameterized by the coupling angular frequency g. Appropriate renormalization of g and

N in the case of inhomogeneous coupling will be given in Chapter 5. The cavity field is described

by the photon annihilation operator ĉ, with cavity photon number given by M̂c = ĉ†ĉ. The cavity

detuning is δc = ωc − ω↑e, where ωc is the empty cavity frequency. The collective raising and

lowering operators (no superscript (i)) σ̂± =
∑

i σ̂
(i)
± are written in terms of the single atom raising

and lowering operators σ̂
(i)
+ = |ei〉〈↑i | and σ̂

(i)
− = |↑i〉〈ei|. The atomic populations are given by

the collective projection operators N̂↑ =
∑

i |↑i〉〈↑i|, N̂↓ =
∑

i |↓i〉〈↓i|, and N̂e =
∑

i |ei〉〈ei|. For

brevity, we use the following abbreviations: N↑ ≡ 〈N̂↑〉, N↓ ≡ 〈N̂↓〉 and Ne ≡ 〈N̂e〉.

Although the atoms may in general exist in a superposition of |↑〉 and |↓〉, in the following

analysis we will consider the atoms to be in a definite eigenstate N↑ of the N̂↑ operator. We will

then reintroduce the fluctuations in the operator N̂↑ for atoms in a superposition of |↑〉 and |↓〉 in

terms of the rms projection noise about the mean value ∆N↑ =

√〈
(N̂↑ − 〈N̂↑〉)2

〉
.

We assume that the system is driven weakly so that the mean number of atoms in the optically

excited state |e〉 is a small fraction of the total number of atoms in |↑〉, such that Ne/N↑ � 1. In

the weak excitation limit, one can make the Holstein-Primakoff approximation [135] that can be

visualized as replacing the three dimensional vector describing the two-level system composed of

states |e〉 and |↑〉 by its vector projection onto the two dimensional x − y plane (see Fig. 3.2(a)).

When no probe light is applied, the system relaxes into its ground state orientation −ẑ. When

the system is weakly excited by probe light, and a small fraction of the atoms are promoted to the

optically excited state |e〉, the lowest order effect on the vector is a small angular deflection of the

vector away from −ẑ.

In the Holstein-Primakoff approximation, one specifically replaces the atomic raising and
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Figure 3.2: (a) Graphical representation of the linearization achieved via the Holstein-Primakoff
approximation. The atomic sub-system |↑〉 and |e〉 is described by a vector of length (N↑ +Ne)/2.
In the regime in which the probe light only weakly excites the atoms such that Ne � N↑, the two-
level system can be described by its projection onto a 2D plane equivalent to that describing a light
field. (b) With this approximation, the collective atomic mode may be treated as an equivalent
cavity mode (lower purple mode) whose coupling to the actual cavity (upper red mode) is governed
by a partially reflecting mirror (center) described by a field coupling rate constant (

√
N↑g) that

depends on the number of atoms in state |↑〉. The physical mirrors have transmission coefficients
described by the field coupling rates

√
κ1 and

√
κ2, and internal cavity losses are described by√

κL, such that the total power decay rate is κ = κ1 + κ2 + κL. Decay of the atoms by emission

of a photon into free space is described by the field transmission coefficient
√

Γ that is the sum of
the field scattering into free space modes by the atoms in |↑〉. Because the scattered modes are
distinguishable (expanded view of free space scattering port), it is possible to tell which atoms are
in |↑〉 from the free-space-scattered photons, destroying any coherent superposition between |↑〉 and
another state |↓〉 (not shown) that may have been prepared for sensing a quantum phase.

lowering operators with effective creation and annihilation operators as â† ≈ σ̂+/
√
N↑ and â ≈

σ̂−/
√
N↑ that satisfy the usual commutation relation [â, â†] = 1. The number of atoms in |e〉 is

described by the number operator N̂e = â†â. After substitution in Eq. 3.1, the resulting Hamil-

tonian describes the coherent coupling of two cavities through a beam-splitter whose transmission

coefficient increases with the number of atoms in |↑〉

H = ~δcĉ†ĉ+ ~
√
N↑g

(
âĉ† + â†ĉ

)
. (3.2)

A visualization of the coupled cavities model is shown in Fig. 3.2(b). The coupled Heisenberg
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equations of motion for the cavity and atomic operators are

d 〈ĉ〉
dt

= −ıδc 〈ĉ〉 − ı
√
N↑g 〈â〉 ,

d 〈â〉
dt

= −ı
√
N↑g 〈ĉ〉 . (3.3)

The eigenfrequencies of the above coupled equations are

ω± =
δc ±

√
δ2
c + Ω2

↑

2
, (3.4)

where

Ω↑ ≡
√
N↑2g (3.5)

is the collective vacuum Rabi splitting Ω↑ that sets the difference in the normal mode frequencies

ω+−ω− at zero detuning δc = 0. The normal mode frequencies in the laboratory frame are ω↑e+ω±.

A useful relation for simplifying expressions involving the mode frequencies is ω+ω− = −Ω2
↑/4.

Any arbitrary superposition of atomic and cavity amplitudes can be written in terms of com-

plex normal mode amplitudes B± and unit vectors b± as (〈ĉ〉 , 〈â〉) = e−ıω+tB+b+ + e−ıω−tB−b−.

At resonance δc = 0, the normal mode vectors are b± = (1,±1)/
√

2, and the normal modes beat

against one another at relative frequency Ω↑. For example, if at t = 0 there are no atoms in the

excited state, then B± = 1/
√

2. The light in the cavity will Rabi flop (or be converted) into purely

excited-state atoms after a time π/Ω↑, and then Rabi flop back into light in the cavity after 2π/Ω↑.

More generally, the unit vectors can be expressed in terms of a mode-mixing angle θmix =

arctan(Ω↑/2ω+) as b+ = (cos θmix, sin θmix), and b− = (− sin θmix, cos θmix). When δc � Ω↑,

the b+ normal mode is predominantly cavity-like, while the b− normal mode is predominantly

atom-like. The converse is true when δc � −Ω↑. This normal mode structure is demonstrated

in Fig. 3.3 with an experimental measurement, described in Chapter 5, of the transmitted probe

power through the cavity as a function of the probe laser detuning δpe from the atomic transition

frequency ω↑e and the cavity detuning δc.
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Figure 3.3: The normal modes of the coupled atoms-cavity system b± exhibit an avoided crossing
in the transmission spectrum at δc = 0, where the size of the collective vacuum Rabi splitting is
Ω↑ =

√
N↑2g.

3.2.2 Driven and damped dynamics

The Heisenberg equations of motion of Eq. (3.3) can be extended to include cavity damping

and driving, as well as atomic damping via free space scattering of light (i.e., not into the cavity

mode) as follows:

d 〈ĉ〉
dt

= −
(
ıδc +

κ

2

)
〈ĉ〉 − ı

√
N↑g 〈â〉+

√
κ1ci ,

d 〈â〉
dt

= −Γ

2
〈â〉 − ı

√
N↑g 〈ĉ〉 . (3.6)

The complex amplitude ci, with units of
√

photons/sec, describes the incident cavity driving field at

frequency ωp in the lab frame. As the above equation is written in a rotating frame at the atomic

frequency ω↑e, the cavity field ci in Eq. 3.6 is ci = |ci|e−iδpet where δpe = ωp − ω↑e is the drive

detuning from the optically excited state |e〉. These equations include the additional non-unitary

damping and drive terms shown schematically in Fig. 3.2(b). The additional terms are derived

using input-output theory [136] and will now be discussed. But first, we note that at large Ω↑,

the finite damping terms introduce small corrections to ω± of order (Γ− κ)2/Ω↑ [111] that may in
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general be safely neglected in this thesis as we always operate in the well-resolved vacuum Rabi

splitting regime.

3.2.2.1 Cavity damping and input-output fields

As shown in Fig. 3.2(b), the damping of the cavity field at rate κ/2 = (κ1 + κ2 + κL)/2 is

set by the mirror power transmission coefficients T1,2 such that κ1,2 = T1,2 × fFSR. The cavity

free spectral range is fFSR = c/2l, with 2l being the round-trip cavity length, and c the speed of

light. The total round-trip scattering and absorption fractional power losses at the mirrors L can

be modelled by an additional beam splitter with field decay rate κL = L× fFSR.

The cavity field is driven by an external incident probe field described by the complex am-

plitude ci. The reflected and transmitted complex field amplitudes, cr and ct respectively, will be

detected to infer the number of atoms in |↑〉. The external field normalizations are chosen such that

|ci,r,t|2 is the flux of incident, reflected, and transmitted probe photons in units of photons/second.

The average number of incident, reflected, and transmitted photons Mi,r,t in a measurement time

interval from t′ to t′ + Tm is then

Mi,r,t =

∫ t′+Tm

t′

∣∣ci,r,t(t′′)∣∣2 dt′′. (3.7)

In our experiments, it is convenient to express the number of probe photons coupled into the atoms-

cavity system in terms of the directly measured “missing” photons in the reflected mode compared

to the incident beam Mm ≡Mi −Mr.

The steady-state reflected and transmitted fields can be found by first solving the coupled-

driven Eq. (3.6) for 〈ĉ〉 in steady-state (which oscillates at the cavity drive frequency δpe in the

rotating frame) and then using the results in the approximate relationships

cr =
√
κ1 〈ĉ〉 − ci ,

ct =
√
κ2 〈ĉ〉 , (3.8)

that hold in the limit of a high finesse cavity T1,2, L� 1.
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3.2.2.2 Atomic damping via free space decay

The atomic damping via scattering of light into free space (i.e. not into the cavity mode)

is described by an effective amplitude damping rate Γ/2. To good approximation, the probability

decay rate Γ is simply the single-particle excited state |e〉 decay rate in free space 1 . The rate of

scattering into free space is described by the field amplitude as =
√

Γ 〈â〉, normalized such that the

rate of photons scattered into free space is simply Ṁs = |as|2.

The above picture of atomic damping can be further refined as shown in Fig. 3.2(b). While

the decay of excitation from the cavity mirrors is single-mode in nature, the atoms scatter light into

many free space modes. This multimode scattering can be envisioned by replacing the single decay

process via a single mirror with N↑ independent weak beam splitters, i.e. one for each atom in |↑〉. If

the ensemble is optically thin along all directions except the cavity mode, then one can approximate

that each atom decays into its own bath of states with an amplitude as,i =
√

Γ
(
〈â〉 /

√
N↑
)
. The

normalization is necessary to impose the fact that if a single photon is emitted into free space,

the probability that it was the ith atom that scattered the photon is reduced as the number of

atoms N↑ increases. The total scattering rate is the incoherent sum of the decay rates, reproducing

the previous decay rate Ṁs = Γ |〈â〉|2. However, this refinement importantly emphasizes that the

multimode free space scattering leads to in-principle information gain as to which particular atoms

are in |↑〉, causing single particle collapse of the atomic wavefunction from a coherent superposition

into an energy eigenstate, for example (|↑〉+ |↓〉) /
√

2→ |↑〉, thus destroying coherence. In contrast,

the decay of light through the cavity mirrors leads to only collective information as to how many

atoms in total are in spin up and therefore preserves coherence. Thus information gained through

the cavity will be useful for preparing conditionally spin squeezed states, while the free space

scattering is a competing decoherence mechanism that serves to reduce the attainable degree of

spin squeezing.

1 The approximation that the single-particle decay rate Γ into all modes other than the cavity mode is not modified
by the presence of the cavity holds true in the limit that the cavity subtends a small fraction of the total solid angle
as seen by the atom [137].
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3.2.2.3 Dressed mode linewidth

The atomic and cavity damping cause the normal modes to decay, resulting in a mode

broadening or narrowing. The approximate Lorentzian full width at half maximum (FWHM)

resonance linewidth given by a weighted average linewidth as

κ′± =
κ+

(
Ω↑

2ω±

)2
Γ

1 +
(

Ω↑
2ω±

)2 . (3.9)

For measuring N↑ via a cavity drive, probing the normal mode that is farthest from atomic reso-

nance, also known as the dressed cavity mode, is most useful because this mode decays predomi-

nantly via photons leaking out of the cavity which can be collected with high efficiency. In contrast,

probing the normal mode closest to atomic resonance with a cavity drive results in most of the

information being carried away by the free-space-scattered photons rather than leaking out through

the cavity mode. For the sake of brevity, we refer to the further detuned mode’s linewidth and

frequency as simply κ′ and ω such that κ′ = κ′± and ω = ω± when |ω±| ≥ |ω∓|.

3.2.3 Full complex field response to probing

The reflected and transmitted fields relative to the incident field cr,t/ci = Ir,t + ıQr,t can be

described in the complex plane by the real amplitudes Ir,t and Qr,t. We consider a single incident

cavity drive, or equivalently cavity probe, close to resonance such that the probe frequency ωp is

detuned by δp = (ωp − ω↑e − ω) from the mode resonance frequency. We assume the probe is near

resonance |δp| � ω+ − ω− and that the normal modes are well resolved ω+ − ω− � κ′± so that

interference effects between normal modes can be ignored. The normalized transmitted electric

field through the cavity is then, to a good approximation, given by

It =
A

1 + (2δp/κ′)
2 , (3.10)

Qt =
A (2δp/κ

′)

1 + (2δp/κ′)
2 , (3.11)
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Figure 3.4: Transmitted and reflected probe electric fields from driving the atoms-cavity system
through the cavity mode. (a) The electric field phasors trace out circles in the I, Q-quadrature plane
as the probe detuning δp from the dressed cavity resonance varies from below to above resonance.
The normalization is chosen such that the reflected electric field goes to 1 when far away from
resonance. The quantum noise of the probe normalized to the incident electric field is represented
as a fuzzy blob with rms diameter 1/|ci|. In this illustration, a symmetric cavity κ1 = κ2 is assumed,
so that the circles have the same diameter A. (b) Corresponding power transmission and reflection
signals.

where the unitless amplitude A is given by

A =
2
√
κ1κ2

κ+ Γ
(

Ω↑
2ω

)2 . (3.12)

From Eq. (3.8), the reflected field cr is just the sum of the transmitted field (rescaled for relative

transmission coefficients) and the promptly reflected field such that Ir = 1−
√
κ1/κ2It, and Qr =√

κ1/κ2Qt.

As shown in Fig. 3.4(a), the phasor ct traces out a circle of diameter A in the complex plane

as δp varies from� −κ′ to� κ′. The translation I ′t = It−A/2 centers the circle traced out by the

phasor I ′t + ıQt at the origin. One then sees that the angle with respect to the real axis is given

by ψt = arctan(Qt/I
′
t) = arctan(2δp/κ

′). Similarly, the translation I ′r = Ir − (1 −
√
κ1/κ2A/2)
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centers the circle traced out by the phasor I ′r + ıQr at the origin with the angle with respect to the

real axis ψr = arctan(−Qr/I ′r) = ψt. The angles ψr and ψt are the same, but the quantum-limited

estimation of these phases may be different if κ1 6= κ2.

3.2.4 Probe vacuum noise and measurement imprecision

The size of the quantum vacuum noise that contributes uncertainty to measuring the position

of the phasor is not changed by a linear transformation of coordinates in the complex plane. For

our purposes, the noise can be described as a Gaussian probability distribution with equal and

uncorrelated real and imaginary rms fluctuations of magnitude σvac = 1/2. The rms quantum

vacuum uncertainty ∆ψt on the angle ψt is then independent of the average value ψt and is set

only by the average number of detected photons in transmission Md = qdMt as

∆ψt =
1

2
√
Md

. (3.13)

The detection quantum efficiency qd includes any light loss and any excess technical or thermal

noise of the detector relative to vacuum noise. The uncertainty ∆ψt maps onto an uncertainty on

the estimation of δp through ∆δp = |dδp/dψt|∆ψt = κ′∆ψt/2ηd. The detection sensitivity ηd is

given by

ηd =
1

1 + (2δp/κ′)
2 . (3.14)

Probing near resonance δp = 0, one finds ηd = 1. For side-of-fringe probing δp = κ′/2, one finds

ηd = 1/2. If the probe frequency is linearly and adiabatically scanned from δp � −κ′ to δp � κ′

such that the total number of detected photons is fixed to the same Md as in the two previous

scenarios, one finds ηd = 1/2. The optimal readout assumes that as δp is changed, an adaptive

homodyne readout [138] is employed to maximize the measurement sensitivity to small changes in

ψt. For the spin squeezing experiment presented in Chapter 5, heterodyne detection is employed so

that adaptive detection is not required. However, the effective quantum efficiency qd was reduced

by 1/2 as a result of the heterodyne detection.
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It is straightforward to extend the analysis to a probe signal detected in reflection. However,

one must parameterize in terms of the measurable average number of missing photons in the

reflection port Mm and the average number of incident photons Mi such that in Eq. (3.13), one

substitutes Md → (κ2/κ1)Miqd(1∓
√

1−Mm/Mi)
2 when A

√
κ1/κ2 ≶ 1.

3.3 Quantum-limited signal-to-noise and free space scattering

The measurement of the atomic population N↑ in | ↑〉 is achieved by precisely measuring

the dressed mode frequency ω+ or ω− or some combination of the two (as was done in our spin

squeezing experiment described in Chapter 5). In essence, the approach used here converts the

problem of measuring an atomic population into a frequency measurement. For atoms in a coherent

superposition of |↑〉 and |↓〉, quantum projection noise in the atomic population N↑ causes the

dressed mode frequency to fluctuate.

In this section, we derive the fluctuations on the dressed mode frequency due to quantum

projection noise as a function of cavity detuning δc. We then use the results of Section 3.2 to obtain

the average number of detected probe photons Mproj
d and free-space-scattered photons per atom

mproj
s , when the measurement imprecision on the probe field is sufficient to resolve the projection

noise fluctuations of the mode frequency ∆ωproj. The quantity mproj
s is the key figure of merit that

characterizes the degree to which a measurement is nondemolition. Three limits of cavity probing

are identified, and a summary table of various key quantities in different regimes is presented.

3.3.1 Projection-noise-driven fluctuations of mode frequencies

As stated earlier, the atom number N↑ can be determined by precisely measuring one or both

dressed mode frequencies ω+, ω− with a cavity probe. The collective enhancement of the Rabi

splitting by
√
N↑ produces a key enhancement of the measurement sensitivity needed to resolve

projection noise. To concretely analyze the measurement imprecision of the probing, we consider a

measurement procedure most relevant to Ramsey spectroscopy as shown in Fig. 2.2(a): we assume

that for each experimental trial, all of the N � 1 total atoms are initially prepared in spin down
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via optical pumping or otherwise. Each atom is then rotated into an equal superposition of spin up

and down, preparing the ensemble in a CSS along x̂. As discussed in Chapter 1, in a CSS prepared

along x̂, the population in spin up and down fluctuate about the average N↑ = N↓ = N/2 with

equal magnitude but perfectly anti-correlated projection noise fluctuations ∆N↑ = −∆N↓ =
√
N/2

so that ∆Jz,CSS = ∆(N↑ −N↓)/2 =
√
N/2.

The rms fluctuation ∆ωproj of the individual mode frequencies ω± caused by the projection-

noise-driven fluctuations in N↑ is found by linear expansion as ∆ωproj = |dω±/dN↑|∆N↑ evaluated

at N↑ = N/2. Making use of Eq. (3.4), one finds

∆ωproj =
g

2
√

2

Ω↑√
Ω2
↑ + δ2

c

. (3.15)

Note that ∆ωproj depends on N↑ via the Rabi splitting Ω↑. The fluctuations of the two mode

frequencies are equal in magnitude but opposite in sign such that the rms differential fluctuation

is ∆(ω+ − ω−)proj = 2∆ωproj.

The projection noise variance (∆ωproj)2 decreases as a Lorentzian versus the bare cavity

detuning δc with half width at half maximum (HWHM) Ω↑. Figure 3.5(b) shows this scaling with

detuning (black, left curve). The technical requirements on the experiment for resolving ∆ωproj

are increased with detuning. Other experimental imprecision and inaccuracies scale relative to the

mode linewidth κ′ that one must split to the level of ∆ωproj, therefore the ratio ∆ωproj/κ′ is shown

in Fig. 3.5(b, left) for three different bare cavity linewidths κ/Γ = 0.01, 1, 100 (blue, red, green).

Note that in the good cavity limit κ/Γ � 1 (blue), the experimental requirement on splitting the

mode line can be somewhat reduced at larger detuning owing to the rapid fall off of κ′ as 1/δ2
c in

the approximate region δc/Ω↑ ∈ {1, 10}.

3.3.2 Fundamental measurement imprecision and free space scattering at arbitrary

detuning δc

The resonance frequency ω of the dressed-cavity mode is measured relative to the known

frequency of a coherent (and unsqueezed) laser probe. The rms uncertainty on the probe detuning
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Figure 3.5: Theoretical scaling of key quantities with cavity detuning δc expressed in units of the
the collective vacuum Rabi splitting Ω↑. (a) The dressed cavity linewidth κ′ in units of the atomic
excited state linewidth Γ. In (a) and (b), the scaling for different cavity finesses is shown for κ/Γ =
0.01, 1, and 100 (blue, red, and green, respectively). (b, right, black curve) The rms fluctuation
of the dressed cavity mode frequency due to projection noise fluctuations ∆ωproj

+ decreases as 1/δc
above δc/Ω↑ = 1. The normalization is chosen such that one should multiply by g/2

√
2. (b, left,

red, blue, green curves). The ratio of the projection noise fluctuation of the cavity mode to the
dressed cavity linewidth ∆ωproj/κ′ is shown normalized such that the plotted values should be
multiplied by g/(2

√
2Γ). A large ratio is desirable because technical noise may limit the ability to

split the probed resonance by more than a fractional amount.
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∆δp is equal to the projection noise fluctuation level ∆ωproj at an average detected photon number

of

Mproj
d =

1

2ηd

(
κ′

g

)2
(

1 +
δ2
c

Ω2
↑

)
. (3.16)

The passage of light through the cavity also leads to the scattering of Ms = |as|2Tm probe

photons into free space modes by the atoms in spin up. The ratio of free space scattered to detected

photons Rs = Ms/Md is given by a weighted ratio of the atomic to cavity damping rates using

Eq. 3.9 as

Rs =
1

qdηs

Γ

κ

(
Ω↑
2ω

)2

. (3.17)

The factor ηs plays an equivalent role to a quantum efficiency and separately accounts for photons

exiting the cavity via an undetected port. In the symmetric cavity example we consider here, only

the transmission port (port 2) is measured, and ηs = κ2/κ. See Fig. 3.2(b) for an illustration.

The key number of scattered photons into free space normalized to the total number of atoms

N , denoted mproj
s , may then be found from Eqs. (3.17) and (3.16) as

mproj
s =

RsM
proj
d

N
(3.18)

=
1

4qN↑C

(
κ′

κ

)2
(

1 +
δ2
c

Ω2
↑

)
Ω2
↑

ω2
, (3.19)

where C is the single particle cooperativity parameter

C =
(2g)2

κΓ
, (3.20)

and q is the total effective quantum efficiency

q = qdηdηs . (3.21)

Neglecting any other noise mechanisms, arbitrarily low probe measurement imprecision ∆Jz, imp

relative to the projection noise level ∆Jz,CSS may be attained at large ms relative to mproj
s(

∆Jz, imp

∆Jz,CSS

)2

=
mproj
s

ms
. (3.22)
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The above result refers to the probe measurement imprecision only. However, the total measurement

uncertainty is governed by both the probe measurement imprecision treated in this Chapter, and

the noise added by probe-induced spin flip diffusion of Jz, forthcoming in Chapter 4.

A key result is that the average free space scattered photons per atom ms at a given mea-

surement imprecision ∆Jz, imp saturates to a finite value

ms →
1

4qN↑C
(

∆Jz, imp

∆Jz,CSS

)2 as |δc| → ∞. (3.23)

How far must one detune to approach this bound? Below we will show that this bound is nearly

reached for detunings greater than the critical detuning δc > δ◦c . The reason for the saturation of

free space scattering is because in Eq. (3.19), the ratio of free space to detected photons asymptoti-

cally decreases as 1/δ2
c , but the required number of detected photons increases asymptotically as δ2

c .

Thus the net asymptotic dependence of ms on detuning δc cancels. The nondemolition character

of the measurement is ultimately set, not by the detuning δc, but by the product of the collective

cooperativity parameter and the quantum efficiency qN↑C. This quantity physically sets the maxi-

mum rate at which collective information can be extracted from the ensemble compared to the rate

at which single-particle information is gained by the environment via multimode scattering of light

into free space. This result is intimately connected to the picture of superradiance in Fig. 2.9. The

single particle forward scattering rate of photons that provide collective information is collectively

enhanced by a factor of NC.

In the good cavity limit κ� Γ, the frequency dependence δc of Eq. (3.19) can be understood

in three regimes: the far-detuned dispersive regime |δc| > δ◦c , the near-detuned dispersive regime

|δc| < δ◦c , and the resonant regime δc = 0. The critical cavity detuning δ◦c is written in two equivalent

and useful forms as

δ◦c =

√
Γ

κ

Ω↑
2

1
√
q

=
Γ

2

√
N↑C

q
. (3.24)

The critical detuning is the cavity detuning at which the dressed cavity linewidth is κ′ = 2κ,

possible only in the good cavity limit κ � Γ. Expressions for the number of photons scattered
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Figure 3.6: Theoretical scaling of key quantities with cavity detuning δc expressed in units of the
the collective vacuum Rabi splitting Ω↑. In (a) and (b), the scaling for different cavity finesses is
shown giving κ/Γ = 0.01, 1, and 100 (blue, red, and green, respectively). (a, left, blue, red, green )
The average number of detected photons needed to resolve the projection noise fluctuations Mproj

d

normalized such that the plotted values should be multiplied by Γ2/(ηdg
2). (a, right, black) The

ratio of the number of free-space-scattered photons for every detected photon Rs, normalized such
that the plotted values should be multiplied by Γ/(qdκ). (b) The crucial average number of scattered
photons into free space per atom mproj

s when the atomic population measurement imprecision is
equal to the projection noise fluctuations. The normalization is such that the plotted values should
be multiplied by Γ2/(16qN↑g

2). In the bad-cavity limit of κ � Γ (green curves), there is little
fundamental advantage to operating away from resonance δc = 0. The technical requirements are
simply increased as a result of detuning. As the finesse of the cavity F is increased, the amount
of free space scattering falls roughly as 1/F until the good cavity regime is reached when κ � Γ
(blue curves). Here, one must detune by roughly the critical detuning δ◦c in order to realize the full
advantage of having increased the cavity finesse. Importantly, note that mproj

s does not significantly
decrease above δ◦c owing to cancellation in this regime of the scaling of Rs ∼ 1/δ2

c with the scaling
of Mproj

d ∼ δ2
c .
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Figure 3.7: The crucial average number of scattered photons into free space per atom such that
the detected probe light allows resolution of projection noise fluctuations mproj

s versus the ratio
of the cavity power to atomic population decay rates κ/Γ. The normalization is chosen such that
the plotted values should be multiplied by Γ2/(16qN↑g

2). Here, we assume that κ is varied by
changing the cavity finesse while holding the cavity length fixed (such that g is constant). Each
trace represents a fixed ratio of the bare cavity detuning to the collective vacuum Rabi splitting
δc/Ω↑ , with values labeled on the traces and blue denoting δc/Ω↑ > 0, green δc/Ω↑ = 0 and dashed
yellow δc/Ω↑ < 0 . Here we consider probing the dressed mode at frequency ω+. At a fixed detuning
(and therefore fixed projection-noise-driven frequency fluctuation size) a minimum is reached below
which a better cavity is detrimental due to the dressed cavity linewidth κ′ becoming clamped while
the ratio of free space scattering to detected photon number Rs continues to rise. In the units
above, the locus of the minimum is just 4κ/Γ (red line). Including the normalization, the locus
of the minimum reduces to mproj

s = 1/(qN↑C). When including the dependence of g2, κ ∼ 1/l on

cavity length l, the minimum value of mproj
s is not changed by just shortening the cavity at fixed

finesse. Only shortening the cavity length while simultaneously increasing the cavity finesse (such
that κ is constant) leads to a net fundamental reduction of mproj

s . Finally, the vertical black line
indicates the cavity linewidth for a finesse F = 106 cavity, near the highest currently achievable,
for 87Rb and l = 2 cm (approximately the same as our cavity length).
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into free space per atom mproj
s , the absolute size of the projection noise fluctuations of the mode

frequency ∆ωproj, and the dressed cavity linewidth κ′ are summarized in these different regimes

in Table 3.1. Again, the quantity mproj
s is critical for understanding the fundamental limits on

both probe-induced heating of the sample and potential improvements on measurement sensitivity

beyond the SQL. Note that collective information gained from the cavity results from a forward

scattering process that leaves the momentum state of the atom un-modified and therefore does

not cause recoil heating. The probing-induced free space scattering always cause recoil heating on

average, even if the atoms are tightly confined in the Lamb-Dicke regime in all three dimensions.

Table 3.1: Regimes of cavity probing. The regime name and assumptions used to define the regime
are provided in the first and last columns. The quantity mproj

s is the average number of photons
scattered into free space normalized to the total atom number N , required to resolve an rms
fluctuation

√
N/2 in the spin up population N↑ equal to the projection noise level. The quantity

∆ωproj is the rms angular frequency fluctuation of a single coupled atoms-cavity mode ω± due to
projection noise. The quantity κ′ is the dressed cavity power decay linewidth, here taken for the
mode detuned farthest from atomic resonance. The single-particle cooperativity C, the number
of atoms in spin up N↑ = N/2, the single-particle cavity coupling g, the empty cavity power and
atomic population decay rates κ and Γ respectively, and the collective vacuum Rabi splitting Ω↑
are related by the following: Ω↑ =

√
N↑2g, N↑C = N↑(2g)2/κΓ. The detuning of the empty

cavity resonance frequency from the atomic transition frequency is δc, and the critical detuning at
which κ′ = 2κ is (δ◦c )

2 = Ω2
↑Γ/4κ, assuming the good cavity limit κ� Γ. The maximally detuned

regime assumes that the quantity N↑C is chosen to minimize mproj
s in the presence of the constraint

that the cavity detuning cannot be made larger than some maximum value δmax set by technical
constraints on resolving the projection noise fluctuations or fundamental constraints set by the
internal energy level structure of the atoms being probed (for instance the ground state hyperfine
splitting in 87Rb).

Regime Name mproj
s ∆ωproj κ′ Assumptions[
× 1

4q

]
[×κ]

Resonant 1
N↑C

(
1 + Γ

κ

)2 g

2
√

2
1
2

(
1 + Γ

κ

)
δc = 0

Detuned 1
N↑C

(
κ′

κ

)2 √
N↑
2

g2

|δc| 1 +
N↑g

2

δ2c

(
Γ
κ − 1

)
δc � Ω↑

Near Detuned, Good Cavity N↑C
Γ4

(2δc)4

√
N↑
2

g2

|δc|
N↑g

2

δ2c

Γ
κ δ◦c � δc � Ω↑; Γ� κ

Critically Detuned, Good Cavity 4
N↑C

g√
2

√
κ
Γ 2 δc = δ◦c � Ω↑; Γ� κ

Far Detuned 1
N↑C

√
N↑
2

g2

|δc| 1 +
N↑g

2

δ2c

Γ
κ δc � δ◦c ,Ω↑; Γ� κ

Maximally Detuned,
(

Γ
2δmax

)2
g√
2

√
κ
Γ 2 δc = δmax � Ω↑; Γ� κ;

Good Cavity, Optimized N↑C =
(

2δmax

Γ

)2
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3.3.3 Minimizing mproj
s at fixed maximum detuning

In some experimental situations, a maximum useful probe detuning |δc| ≤ δmax is set by the

energy structure of the atom. For instance, the 6.8 GHz ground state hyperfine splitting in 87Rb

imposes δmax ≈ 6.8/2 GHz. One could of course detune farther but the two states being probed

become less distinguishable with respect to the probe light. An optimum value of N↑C can be found

that minimizes mproj
s when |δc| = δmax. The scaling for this case is shown in the last line of Table

3.1. Physically, the optimum value of N↑C is reached (at a fixed detuning) when the dressed cavity

linewidth is related to the bare cavity and atomic linewidths by κ′/κ = 2Γ/(Γ+κ). In the resonant

limit, δc = 0, one finds an optimum κ′/κ = 1, while in the detuned limit one finds κ′/κ ≈ 2, i.e., the

detuned cavity resonance is broadened by a factor of 2 at the optimum. In this same limit, the ratio

of rms fluctuation size to dressed cavity HWHM is given by 2∆ωproj/κ′ =
√
C/8. Larger single

atom cooperativity parameter C reduces the technical requirements on resolving the projection

noise fluctuations of the cavity mode.

3.4 Summary

In this Chapter, we have focussed on the problem of gaining information on the collective

spin projection Jz by probing the coupled atoms-cavity system with an externally applied cavity

drive. We have touched on one aspect of the disturbance imposed by probing the atoms — namely

free-space-scattering, which can cause recoil heating and shortening of the collective spin due to

single particle wavefunction collapse. We emphasize that the theory presented here is very general

and may be adapted to the many collective cavity-QED setups around the world. The theory can

be adapted with minor modifications taking into account the multi-level structure of real atoms

to predict experimentally relevant quantities. In Chapter 9, we predict the optimum amount of
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spectroscopic enhancements in our 87Rb system both as an example of how the theory can be

adapted for real atoms and also as an outlook on prospects for further squeezing experiments.

In Chapter. 4, we will consider the effect of free-space-scattering shortening of the collective

spin in more detail, as well as two other probe-induced back-actions on the collective spin —

fundamental back-action in Jy (anti-squeezing) and probe-induced Raman spin-flip causing Jz

diffusion. We will then derive limits on measurement imprecision limits on Jz and spectroscopic

enhancement in the polar angle sensitivity ξ−1
m ≡ (∆θSQL/∆θ)

2 in the presence of probe-induced

back-action.



Chapter 4

Theory: Probe-induced back-action

The present Chapter discusses the three types of probe-induced back-action, as shown in

Fig. 4.1, and the limits that the back-action sets on measurement imprecision in Jz as well as

on spectroscopic enhancement or squeezing. In Appendix A, we briefly discuss how coherence

preserving nondemolition measurements at or near the projection noise level can be used to reduce

recoil heating in a full Ramsey spectroscopy cycle to allow neutral atom traps to operate in a duty

cycle regime more like ion traps.

As the collective spin is a 3-dimensional vector, there are three types of back-action associated

with each direction. For concreteness, we assume the collective spin is initially prepared in a CSS

along x̂, i.e. J = N
2 x̂ throughout this Chapter. It is important to note that results in this

Chapter are valid only for CSS prepared in this orientation. The first back-action, ∆Jy, arises

from fundamental Heisenberg uncertainty relations and does not impact squeezing to lowest order.

The second back-action, shortening of the mean spin |〈Ĵ〉| length, due to probe-induced free space

scattering impacts squeezing by reducing the signal size or contrast C. Finally, the third back-

action, diffusion of Jz due to probe-induced Raman spin-flips impacts squeezing through increasing

noise in one’s ability to estimate Jz. The linear scaling of this back-action’s noise variance with the

probe photon number is analogous to radiation pressure shot noise in optomechanical systems [31,

32]. The following sections will discuss these back-actions in greater detail.
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3 Types of Probe-Induced Back-Action

(a) Suppress as 1/NC

(b) Make spin �ip
      probability smallSuppress as 1/NC

Collapse due to
free-space-scattering

Fundamental
Heisenberg Uncertainty

Di�usion of Jz 
due to Raman spin �ips

(a) (b) (c)

Figure 4.1: The 3 types of probe-induced back-action associated with measuring Jz. (a) Funda-
mental Heisenberg uncertainty in the conjugate variable Jy that cannot be engineered away. (b)
Shortening of the collective spin due to single atom wavefunction collapse from free space scattering
of probe photons can be suppressed by enhancing the forward scattering rate which scales as the
collective cooperativity N↑C over the free space scattering rate which stays constant at the single
particle particle rate. (c) Free space scattering events that flip the spin state of the atom causes Jz
to change by ±1 per spin flip. Fluctuations in the number of spin flip events cause Jz to undergo
diffusion, equivalent to a random walk. Raman spin flips can be suppressed by making free space
scattering low with large N↑C or by choosing a probing scheme that has a low spin flip probability
when undergoing a free space scattering event.

4.1 Back-action on Jy

For a CSS prepared along along x̂, the Heisenberg uncertainty relation Eq. 2.4 implies

∆Jz∆Jy ≥ N/4. In a given Jz measurement scheme, the best possible measurement impreci-

sion ∆Jz, perfect, assuming perfect quantum efficiency in the probe detection process, would re-

sult in a fundamental, i.e. minimum, back-action ∆Jy = N/(4∆Jz, perfect), schematically shown

in Fig. 4.1(a). The back-action ∆Jy is also called anti-squeezing. In practice, losses and tech-

nical noise limit the effective detection quantum efficiency, resulting in an observed uncertainty
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∆Jz > ∆Jz, perfect. Since the actual measurement uncertainty ∆Jz ≥ ∆Jz, perfect is worse, the

Heisenberg uncertainty relation ∆Jy∆Jz ≥ 1/N is satisfied.

The anti-squeezing ∆Jy does not degrade the polar angle sensitivity ∆θ ≈ ∆Jz/|〈Ĵ〉| of the

post-measurement state to lowest order. Anti-squeezing ∆Jy can be thought of as spreading the

collective spin out in its azimuthal phase. Provided the anti-squeezing is small compared to the

length of the initial collective spin, i.e. ∆Jy/J � 1 where J = N/2, the fractional shortening of

the mean collective spin after the measurement and the impact on the polar angle sensitivity is

second order in ∆Jy/J , and is therefore usually not a problem. In most experimental situations,

the direct shortening of the collective spin due to probe-induced free space scattering discussed in

Section 4.2 or the diffusion noise cause by probe-induced Raman spin flips discussed in Section 4.3

practically limits the polar angle sensitivity of the post-measurement state.

4.2 Back-action on |〈Ĵ〉|

The second type of probe-induced back-action shown in Fig. 4.1(b) is the shortening of the

collective spin Ĵ as a result of probe-induced free space scattering. Free space scattering provides

in-principle information as to which atoms in the ensemble have emitted the photons, leading to

single atom wavefunction collapse, destroying their superposition states, or equivalently a loss of

coherence. The shortened length leads in decrease phase sensitivity because the angular resolution

∆θ ≈ ∆Jz/|〈Ĵ〉| is inversely proportional to the mean spin length |〈Ĵ〉|.

In Section 3.3, we have analyzed the amount of free space scattering due to sending probe

photons into the atoms-cavity system and have shown that the key figure of merit mproj
s scales

inversely as the collective cooperativity N↑C at sufficiently large detuning δc of the cavity resonance

from the atomic transition frequency. To remind the reader, mproj
s is the number of free space

scattered photons per atom when the probe measurement imprecision is equal to projection noise

fluctuations of the mode frequency ∆ωproj. Therefore decoherence can be reduced by engineering

systems with large collective cooperativity N↑C � 1.
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The contrast decays exponentially with the number of scattered photons per atom ms as

C = Cie−ms , (4.1)

provided the free space scattering rate for each spin is unchanged by the scattering process. Here

Ci is the initial contrast before probing. The initial contrast Ci may be reduced below 1 due to

background decoherence processes such as dephasing due to differential trapping potentials for the

|↑〉 and |↓〉 states or free space scattering caused by the trap light.

Note that both Rayleigh and Raman scattering lead to a reduction in the mean spin length.

Whereas Raman scattering always leads to single atom wavefunction collapse, in certain cases, free

space Rayleigh scattering does not cause single atom wavefunction collapse [139]. However, this

immunity to collapse requires indistinguishability in the scattering process with respect to the spin

up and spin down state, which also reduces the information that can be extracted from the probe

mode.

4.3 Back-action on Jz

Raman spin flips caused by free space scattering results in noise added back into the mea-

surement quadrature Jz, causing Jz to diffuse, as shown in Fig. 4.1(c). Measuring with more probe

photons averages down photon shot noise but introduces more Raman spin flips as a result of mea-

suring harder. We will find that this back-action presents limits on the measurement resolution of

Jz. We will employ a simple 3-level model to calculate this limit and use that result in Section 4.5

to calculate spectroscopic enhancements relative to the SQL. This simple model will be extended

to include the effect of Raman transitions to other states than |↓〉 in Chapter 9.

4.3.1 Simple three-level model

In this section, we consider how the free space scattering changes atomic population in the

spin up and spin down two-level manifold through Raman or spin flip events. For arriving at the

results presented in this section, only the atomic populations matter, and coherences are irrelevant.
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A detailed accounting of all possible Raman scattering processes is required to make accurate

predictions for a multi-level atom. To capture the essential physics, we consider the simplest model

here. In this toy model, the only states in the problem are the two-level system |↑〉, |↓〉 and the

optically excited state |e〉, as described in Fig. 3.1(b). We assume that a free space scattering event

causes an atom to spin flip from |↑〉 to |↓〉 via the intermediate state |e〉 with probability p. It is

easy to see that the average change in the spin up population per photon scattered into free space

is dN↑/dMs = −p, and correspondingly dJz/dMs = −p.

4.3.2 Diffusion of Jz

Free space scattering causes Jz to change on average by a certain amount, while the random

nature of the spin flip process leads to a random walk or diffusion of the collective spin projection

Jz. Provided multiple scattering can be neglected, i.e. pms � 1, the diffusion process can be

described by the relation (
∆Jz, ba

∆Jz,CSS

)2

= 4 pms , (4.2)

where ∆Jz, ba denotes the back-action noise from Jz diffusion, with the the diffusion constant 4p

set by the spin flip probability p. To remind the reader, ms is average free space scattered photons

per atom induced by the probe.

4.4 Measurement limits on Jz

Given the diffusion in Jz, and the photon shot noise in the probe, we must ask: How well

can one measure Jz or equivalently the atomic population N↑? The total measurement uncertainty

(∆Jz)
2 in the estimate of Jz can be estimated by adding the noise variances from probe measurement

imprecision (∆Jz, imp)2 (Eq. 3.22) and Raman spin-flip-induced diffusion (∆Jz, ba)2 (Eq. (4.2)):(
∆Jz

∆Jz,CSS

)2

=

(
∆Jz, imp

∆Jz,CSS

)2

+

(
∆Jz, ba

∆Jz,CSS

)2

(4.3)

=
mproj
s

ms
+ 4 pms . (4.4)
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Averaging down photon shot noise determines the Jz more and more precisely. Eventually, however,

probe-induced diffusion of Jz causes the value of Jz measured at earlier times to become less

correlated with the value of Jz measured at later times, adding noise to the estimate of Jz, as

shown in Fig. 4.2. We note lowering spin-flip probability p allows one to average down photon shot

noise further to reach a lower measurement imprecision before spin-flip diffusion noise takes over,

a situation analogous to back-action-evasion in optomechanical contexts.
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Figure 4.2: Normalized spin noise variance versus fractional free space scattering ms/m
proj
s for

NC = 103. The measurement variance decreases as 1/ms from averaging down photon shot noise
(dotted black line) until noise due to Raman spin flips (dashed red and black lines) takes over at large

ms. The minimum noise variance is 4

√
pmproj

s →
√

8p/NC assuming perfect quantum efficiency
and probing in the far-detuned limit. This minimum is reached when two noise contributions are

equal at mopt
s =

√
mproj
s /4p→ 1/

√
8pNC assuming perfect quantum efficiency and probing in the

far-detuned limit. A larger collective cooperativity NC or lower spin flip probability p (analogous
to back-action evasion in optomechanics) allows photon shot noise to be averaged down more before
spin flip noise takes over, as illustrated by the two curves for p/NC = 10−5 (black) and 10−3 (red).
The locus of the minimum variance is 2ms/m

proj
s (green).

The optimal uncertainty ∆Jopt
z occurs at an optimal scattering mopt

s where the noise contri-



60

butions from measurement imprecision and diffusion due to Raman spin flips are equal:

mopt
s =

1√
8pqNCh(δc)

, (4.5)(
∆Jopt

z

∆Jz,CSS

)2

=

√
8p

qNCh(δc)
, (4.6)

where the detuning dependence has been lumped into

h(δc) =

 κ

κ′(δc)

ω(δc)√
δ2
c + Ω2

↑

2

, (4.7)

where κ′(δc) is the dressed cavity mode linewidth introduced in Eq. (3.9), ω(δc) is the dressed cavity

mode frequency introduced in Eq. (3.4), and Ω↑ =
√
N↑2g is the collective vacuum Rabi splitting.

The parameter h(δ◦c ) = 1/4 at the critical detuning, and h(δc)→ 1 as |δc| → ∞. In the far-detuned

limit, Raman spin flip noise limits the achievable imprecision to
(

∆Jopt
z

∆Jz,CSS

)2
=
√

8p/qNC.

4.4.1 Single spin measurement resolution

Single spin resolution ∆Jopt
z ≤ 1/2 is required for conditionally preparing states with spectro-

scopic sensitivity at the Heisenberg limit as well as reading out cat states [140], or Dicke states [78].

Single spin resolution in ensembles of ∼ 100 87Rb atoms has recently been demonstrated using

cavity-aided nondemolition measurements [130]. We find that in the far-detuned limit and with no

prior knowledge, single spin resolution is reached for p ≤ qC
8N , quantifying how ideal a cycling probe

transition needs to be in order to resolve single spins. For qC ∼ 1 and N ∼ 106, one would need

p ≤ 10−7, which is highly unrealistic for real multi-level alkali-atoms due to off-resonant scattering

from other hyperfine states, as will be discussed in Chap. 9 for the case of 87Rb. Alternatively,

with high single atom cooperativity, qC ≥ 8Np, single spin resolution could be attained without

a cycling transition. For example, with qC ∼ 100 and a worst-case open transition with p = 1/2,

single spin resolution would be reached for N ≤ 25 atoms.
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4.5 Spectroscopic enhancement

In this section, we derive the fundamental limits to the spectroscopic sensitivity — a key

result of this chapter in which the effects of both Jz back-action and signal reduction back-action in

|〈Ĵ〉| are combined. Spectroscopic sensitivity refers to the ability to resolve the angle through which

a collective spin is rotated. To a first approximation, the polar angle resolution ∆θ ≈ ∆Jz/|〈Ĵ〉| is

set by the spin noise reduction (∆Jz/∆Jz,CSS)2, discussed in Section 4.4, and the mean spin length

|〈Ĵ〉|, proportional to the contrast C, that remains after probing, discussed in Section. 4.2.

Angular resolution is improved if the spin noise is reduced by a greater amount than the probe-

induced loss of coherence/contrast C. Putting Eq. 4.4 and Eq. 4.1 into Eq. 2.8, the spectroscopic

enhancement for a perfect initial contrast Ci = 1 is given by

ξ−1
m =

(
∆Jz

∆Jz,CSS

)−2

Cf (4.8)

=

(
∆Jz

∆Jz,CSS

)−2

e−2ms . (4.9)

To relate to our experiment where the initial contrast Ci < 1, the above equation needs to

be modified. An partially decohered reference state with Ci < 1 may be represented as a CSS with

a shorter mean spin length |〈Ĵ〉| = CiN/2. The shorter mean spin length leads to a higher SQL

in the polar angle resolution ∆θSQL =
√
Ci∆Jz,CSS/|〈Ĵ〉| = 1/

√
CiN where ∆Jz,CSS =

√
N/2 as

before. As a result, one should normalize the spectroscopic enhancement to the larger SQL set by

the shorter initial collective spin

ξ−1
m =

(
∆Jz√
Ci∆Jz,CSS

)−2( C
Ci

)2

=

(
∆Jz

∆Jz,CSS

)−2 C2

Ci
. (4.10)

For the remainder of this Chapter, we shall take Ci = 1.

The optimal spectroscopic enhancement exhibits different scaling with respect to the effective

collective cooperativity qNC in different regimes. If Raman spin-flips dominate over Rayleigh

scattering events, the optimal spectroscopic enhancement ξ−1
m, opt ∼

√
qNC/p is limited by spin-flip
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diffusion noise as considered in sub-section 4.5.1. If Rayleigh scattering dominates, then the optimal

spectroscopic enhancement ξ−1
m, opt ∼ qNC is limited by the reduction of contrast C, discussed in

Section 4.5.2. The change in the scaling of ξ−1
m, opt from

√
NC in the Raman spin-flip limit to NC in

the cycling transition limit allows far greater amounts of squeezing on a cycling transition. The loss

of quantum efficiency q degrades squeezing as ξ−1
m, opt ∼ q on a cycling transition, compared to the

more forgiving scaling ξ−1
m, opt ∼

√
q in the Raman spin-flip limited regime. However, the Raman

spin-flip limited regime is not really favorable in that the amount of squeezing will typically be

worse in the Raman spin-flip regime even at small quantum efficiency q since we typically operate

with NC � 1.

4.5.1 Spin-Flip Diffusion-Noise-Limited Squeezing/Raman Limit

Here we consider the case where the reduction in the contrast C may be ignored. This is

justified if the optimal scattering mopt
s that optimizes the measurement imprecision of Jz is small,

mopt
s � 1, equivalently pqNC (κ/Γ)2 � 1 for probing in the far-detuned limit. In this regime,

the mean spin length |〈Ĵ〉| remains approximately N/2, so that the spectroscopic enhancement is

primarily set by the reduction in the spin noise, discussed previously in Section 4.3

ξ−1
m, opt ≈

(
∆Jopt

z

∆Jz,CSS

)−2

, (4.11)

where
(

∆Jopt
z

∆Jz,CSS

)2
has been introduced in Eq. 4.6. In in the far-detuned limit, Raman spin flip

noise limits the achievable squeezing to ξ−1
m, opt =

√
qNC/8p. This result is valid provided ξ−1

m, opt .

0.193/p so that the loss of contrast may be neglected (see Fig. 4.3).

4.5.2 Decoherence-Limited Squeezing/Cycling Limit

Here we consider the case where the reduction of contrast C plays an important role in deter-

mining the angular resolution. If the probing is performed on a nominally closed transition where

Raman scattering spin-flips due to probe polarization imperfections and off-resonant scattering are

very improbable, spin-flip diffusion noise is negligible and the only limit to spectroscopic enhance-
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Figure 4.3: Optimal squeezing ξ−1
m, opt versus spin flip probability p for NC = 1000 (black curve)

and NC = 10 (red curve) for probing in the far-detuned limit, assuming perfect quantum efficiency
q = 1. Both curves take into account spin flip noise and decoherence. The decoherence-limited
squeezing ξ−1

m, opt = NC/e (dotted lines) is approached for p � e2/8NC, and the spin-flip-limited

squeezing ξ−1
m, opt =

√
NC/8p (dashed lines) is approached for p � e2/8NC. The locus of optimal

squeezing at the crossover point p = e2/8NC is 0.193/p (green line).

ment is the loss of contrast due to free space (Rayleigh) scattering. The probing is performed in the

decoherence-limited or cycling transition regime when the optimal scattering mopt
s that optimizes

the measurement imprecision of Jz is not small. Formally, this regime is valid when the Raman

spin-flip limited spectroscopic enhancement calculated from Eq. (4.11) is ξ−1
m, opt ≥ 0.193/p.

In the decoherence-limited regime, the spectroscopic enhancement is given by ξ−1
m = ms

mproj
s

e−2ms .

An optimum is reached at mopt
s = 1/2, reducing the contrast C by a factor 1/

√
e ≈ 0.6. The op-

timum squeezing is then ξ−1
m, opt = 1/(2emproj

s ). In the far-detuned limit, the optimal squeezing

ξ−1
m, opt → qNC/e. We caution that the simple model presented here is not valid near the Heisen-

berg limit because while measurement imprecision below a single spin may be achieved, the effective

spin noise variance must be clamped to 1/4 in order to enforce the Heisenberg limit on spectroscopic

sensitivity.
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4.6 Conclusions

In conclusion, we have presented detailed expressions for how cavity-aided nondemolition

measurements of atomic populations and spectroscopic enhancement scale with key experimental

parameters: cavity linewidth, collective cooperativity, and Raman transition probabilities in Chap-

ters 3, 4. This analysis will be important in future experiments for reducing photon-recoil heating

and for producing highly entangled states with enhanced spectroscopic sensitivities relative to the

SQL. With the theoretical foundation laid down, we will describe the experimental generation

of conditional spin-squeezed states in Chapter 5 – the key results in this thesis — and provide

motivations for probing in the resonant regime δc = 0 in Chapter 6.



Chapter 5

Experiment: Spin squeezing via cavity-aided QND measurements

In this centerpiece chapter, we demonstrate the preparation of conditionally spin squeezed

states of a collective atomic pseudo-spin via cavity-aided QND measurements of the vacuum Rabi

splitting, published in [12]. We infer a 3.4(6) dB improvement in quantum phase estimation relative

to the SQL for a CSS composed of un-entangled atoms. The measured collective spin is composed

of the two-level clock states of nearly 106 87Rb atoms confined inside a medium finesse F = 710

optical cavity. This technique may improve atomic sensor precision and/or bandwidth, and may

lead to more precise tests of fundamental physics.

5.1 Energy levels and probing scheme

In this chapter, I will use the abbreviated state notation |F,mF 〉 to denote ground hyperfine

states in the 52S1/2 manifold of 87Rb and |F ′,mF 〉 to denote optically excited hyperfine states

in the 52P1/2 manifold of 87Rb. The two-level system whose populations we wish to measure

are the clock states | ↑〉 = |2, 0〉 and | ↓〉 = |1, 0〉 of 87Rb with microwave transition frequency

ωhf/2π = 6.834 GHz (see Fig. 5.1).

An ensemble of Ntot ≈ 106 87Rb atoms are loaded into the TEM00 mode of an optical cavity

whose frequency is made resonant with the |↑〉 to |e〉 optical transition with wavelength λ = 795 nm.

Here, the electronic excited state is |e〉 = |1′, 0〉. For π-polarized probe light, the states |↑〉 and

|e〉 form a nearly ideal two-level cavity-QED system because the dipole matrix element between

|↑〉 and the only other nearby state |2′, 0〉 is zero. Therefore we would not expect ac-Stark shifts
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Figure 5.1: The clock states |↑〉 and |↓〉 form a pseudo spin-1
2 system. The population N↑ is measured

by probing near the |↑〉 to |e〉 transition, which couples to a degenerate cavity mode, creating a
collective vacuum Rabi splitting Ω↑. A feature of this probing scheme is that the optically excited
state |F ′ = 2′,mF = 0〉 (|F ′ = 1′,mF = 0〉) does not couple to |↑〉 (|↓〉) due to selection rules,
thus eliminating potential sources of ac-Stark shifts that would otherwise have been caused by
off-resonant cross-couplings if these couplings were dipole-allowed.

(or equivalently level repulsion) from off-resonant coupling of |↑〉 to |2′, 0〉. Similarly, the dipole

matrix element between |↓〉 and |e〉 is zero, so we expect no off-resonant shifts of the collective Rabi

splitting from the N↓ atoms in |↓〉.

Resonant coupling of the π-polarized cavity mode to the atoms generates a normal mode

splitting called the vacuum Rabi splitting Ω↑ =
√
N↑2g. The goal is to produce spin squeezed

states with spectroscopic sensitivity below the SQL by measuring the collective spin projection Jz

or equivalently collective populations N↑ and N↓ precisely via the Rabi splitting without causing

(much) decoherence.

5.2 Atom-cavity coupling

The atom-cavity coupling is a key parameter in our experiments. Here, we will provide

details for computing this coupling strength and discuss its significance for our collective cavity-
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Probes (795 nm)

Trap (823 nm)
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κ = 2π × (11.1 MHz)

Γ = 2π × (5.75 MHz)

106  87Rb atoms Filter

6.834 GHz
Microwaves B = 4.8 Gauss
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Figure 5.2: Salient aspects of the experimental setup. An ensemble of 106 atoms are tightly confined
within the TEM00 mode of the cavity using a 1D intra-cavity optical lattice at 823 nm. The cavity
decay and atomic free-space-scattering rates are κ and Γ respectively. A heterodyne interferometer
(expanded out in Fig. 5.4) is used to probe the atoms-cavity resonances in both transmission and
reflection. The collective nature of the Rabi splitting prevents loss of coherence as atoms remain in
a superposition after the measurement. Microwaves, launched into free space via a dipole antenna,
provide coherent manipulations of the collective spin required for state preparation, constructing a
measurement of Jz, and to spin-echo away probe-induced dephasing.

QED experiment. We begin by computing the peak single atom vacuum Rabi frequency [137] for

an atom at the antinode of the cavity mode and at the cavity waist

2g0 =

√
2cd2
↑e

~λε◦Vm
(5.1)

= 2π × (607.1(5) kHz) . (5.2)

The atomic dipole moment is d↑e = 1.465 C·m (Clebsch-Gordon coefficient included) [141], c is the

speed of light, λ is the the wavelength of the |↑〉 to |e〉 transition. ε◦ is the electric permittivity of

vacuum, and ~ is Planck’s constant. Including the effect of divergence of the mode from waist, the

mode volume is Vm = 1
4πw

2
0l for the TEM00 mode of a standing wave cavity with mode waist w0

and length l1 . We will later define an effective single atom vacuum Rabi frequency 2g and effective

atom number N to account for the effects of inhomogeneous coupling of the cavity mode to the

atoms in Section 5.4. For the discussion in the next paragraph, all that is required to know is that

1 For macroscopic cavities l � λ, the effect of the photon field penetration into the mirror multi-layer dielectric
coatings (single layer thickness typically λ/4) may be neglected. The cavity length is simply given by the spacing
between the mirrors. For very short cavities, l ∼ λ, the penetration depth can constitute a major correction to the
mode volume Vm.
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2g = 2π × (506 kHz).

The effective single atom cooperativity is given by C = (2g)2/κΓ where the cavity power

decay rate or FWHM linewidth is κ/2π = 11.1(2) MHz, and the excited state |e〉 population decay

rate is Γ/2π = 5.75 MHz. C is the optical depth presented by a single atom to the cavity mode.

Equivalently, C is the fraction of solid angle subtended by the cavity mode, multiplied by the

number of round trips 2F/π. A single atom in |e〉 will decay into the cavity mode with rate CΓ

and at rate Γ into free space modes. As C = 4.02(6) × 10−3 � 1, a single atom hardly feels the

presence of the cavity mode at all.

By using many atoms, the coupling of the atoms to the cavity mode is collectively enhanced

so that the ratio of cavity emission to free space emission is NC. With NC � 1, the rate at which

collective atomic information is extracted from the cavity mode is enhanced relative to the rate at

which single particle information is revealed via free space scattering. In other words, free space

scattering can be engineered away by using large collective cooperativity NC. Information obtained

through the cavity mode preserves coherence or quantum superpositions as cavity emission does not

provide in-principle information about which atom forward scattered into the cavity mode. Free

space scattering into optically thin modes, however, leads to single atom wavefunction collapse

because the environment has in-principle information to figure out which atom has scattered the

photon. In our experiment, coupling to the cavity mode is enhanced by using up to N = 7× 105 so

that the collective cooperativity parameter during the QND measurements N↑C ≈ 1400 is large.

5.3 Key experimental details for Science Cavity and atomic ensemble

5.3.1 Science Cavity

We determined the Science Cavity parameters at 795 nm by accurately measuring the cavity

FSR and transverse mode spacings by measuring the frequency beat between two lasers that are

simultaneously resonant with the relevant cavity modes. The parameters for the Science Cavity

are summarized in Table. 5.1.
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Parameter @ 795 nm

Cavity length l 1.9149(2) cm

Mirror radius of curvature Rc 5.000(8) cm

Rayleigh length zR 1.968(2) cm

Free spectral range fFSR 7828(1) MHz

Frequency slitting between TEM01 and TEM00 mode 2257(2) MHz

Frequency splitting between TEM02 and TEM00 mode 4515(3) MHz

Linewidth κ/2π 11.1(2) MHz

Linewidth due to mirror transmission only (ATF’s datasheet) κ0/2π 5.29 MHz

Linewidth due to absorption and scattering losses κL/2π 5.8(2) MHz

Finesse F 710(10)

Mode waist w0 70.56(4) µm

Mode volume Vm 7.488(8)× 10−5 cm3

Antinode cooperativity C0 = (2g0)2/κΓ 5.8(1)× 10−3

Effective cooperativity C = (2g)2/κΓ (includes thermal averaging) 4.02(6)× 10−3

Antinode single atom Rabi frequency 2g0/2π 607.1(5) kHz

Effective single atom Rabi frequency 2g/2π (includes thermal averaging) 506(8) kHz

Table 5.1: Science Cavity Parameters

5.3.2 Atomic ensemble properties

Key details for the atomic ensemble and the intracavity optical lattice are summarized in

Tables 5.2 and 5.3, respectively. Here, we describe how these parameters were measured and

inferred. We measured a radial temperature of 25(12) µK for the atomic ensemble using a release

and probe (time of flight) method, where we measure the expansion of the atomic cloud versus

time of flight through the reduction of coupling of the atoms to the cavity mode. To take a

snapshot of the dynamics in the lattice at full power, the lattice was switched off on a time scale

much faster than the radial trap frequency. Together with the calculated average lattice depth

of U0/h = 7.4(5) MHz or 360(30) µK, we infer the rms radial extent of the ensemble in the x

and y directions to be xrms = yrms = 10(2) µm. Assuming the axial temperature is in thermal

equilibrium with the radial temperature, the rms amplitude of atomic motion in the axial direction

is zrms, pancake = 24(6) nm.

The axial extent of the atomic ensemble was measured by spatially selective population

tomography. To do so, we selectively remove atoms in all but a small sliver of region illuminated
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by a light sheet coming from the side of the cavity. The atomic population N↑ is then measured

as a function of the light sheet position via the vacuum Rabi splitting measurement, described in

Section. 5.6.1. The measured axial distribution of the atomic population is well described by a

Gaussian with rms width zrms, ensemble = 0.84(9) mm. With this measurement, the center of the

atomic ensemble is also confirmed to < 1 mm from the center of the cavity. These length scales

are much smaller than the Rayleigh length of the cavity mode zR = 1.968(2) cm, the characteristic

length scale over which the cavity mode waist increases from w(0) = w0 to w(zR) =
√

2w0. The

small axial extent and good centering of the atoms will result in only a small reduction in the

coupling of the ensemble to the cavity mode, as we shall see in the next section.

Atomic Ensemble Property Value

Excited state linewidth Γ/2π 5.7500(56) MHz [141]

Dipole Matrix Element d↑e 1.728(1) ea0

or 1.465(1)× 10−29 C ·m [141]

rms axial extent zrms, ensemble 0.84(9) mm or ∼ 2000 pancakes

rms radial extent xrms 10(2) µm

rms axial oscillation amplitude in each pancake zrms, pancake 24(6) nm

Axial Lamb-Dicke parameter k795zrms,pancake 0.2

Offset from center of cavity < 1 mm

Radial Temperature kBTradial/h 25(15) µK

Peak atom number per pancake (at center of cavity) ∼ 200

Table 5.2: Atomic Ensemble Properties

Lattice Parameter Value

Wavelength λlatt 822.9(6) nm

Circulating power Platt,circ 0.90(7) W

Trap depth or Average ground state ac Stark shift U0/h 7.4(5) MHz or 360(30) µK

Differential ground state ac Stark shift 3.1(2) kHz
or -413 ppm of avg ac Stark shift

Axial frequency faxial 320(10) kHz

Radial frequency fradial 0.82(3) kHz

Cavity mode waist @ 823 nm w0,latt 71.78(4) µm

Cavity mirror transmission @ 823 nm from ATF datasheet 3615 ppm

Probe-Lattice beat length 13 µm or 32 lattice sites

Table 5.3: Intracavity Optical Lattice Parameters
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5.4 Inhomogeneous coupling: effective coupling 2g and effective atom num-

ber N

The atomic ensemble of Ntot atoms experiences inhomogeneous coupling to the standing-

wave probe mode at 795 nm because of the incommensurate 823 nm intra-cavity lattice, with some

atoms essentially uncoupled to the probe mode. Thus the standard quantum limit (SQL) for the

sub-ensemble of probed atoms is larger than that of the total ensemble Ntot. To account for this

inhomogeneous coupling, we define effective atom numbers N↑, N↓ and N = N↑ + N↓, and an

effective coupling g. The definitions of the effective atom number N and effective coupling g are

set by the two requirements that the combination correctly yield both the (1) average and the (2)

rms fluctuations of the cavity frequency shifts. These two requirements can be expressed by the

following two relationships respectively: 〈Ntot∑
i=1

P̂↑,i(2g(~ri))
2
〉

= N↑(2g)2 (5.3)

〈(Ntot∑
i=1

P̂↑,i(2g(~ri))
2)

)2 〉
−
〈Ntot∑
i=1

P̂↑,i(2g(~ri))
2
〉2

= N↑(2g)4/2 (5.4)

Here, g(~ri) is the probe coupling constant for the ith spin at position ~ri, and P̂↑,i = | ↑i〉〈↑i | is the

spin up projection operator for the ith spin. The expectation values are evaluated for a CSS along

x̂, and also include averaging over the thermal distribution of atomic positions ~ri. For the TEM00

mode of the standing wave cavity, 2g (~r) = 2g0
w0
w(z)e

−x
2+y2

w(z)2 sin(kz) where w(z) = w0

√
1 + (z/zR)2.

Refer to Table. 5.1 for a summary of the Science Cavity properties.

Accounting for both the axial and radial averaging of the probe-atom coupling due to the

finite thermal spread and axial extent of the ensemble, the two conditions Eqs. 5.3, 5.4 yield an

effective coupling g related to the peak coupling g0 by

2g = 0.963(15)×
√

3

2
× 2g0 (5.5)

= 2π × (506(8) kHz) (5.6)

where the factor
√

3
2 accounts for the inhomogeneous coupling and the factor 0.963(15) represents a

reduction in coupling due to thermal spread in the radial directions and the increasing mode waist
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size along the axial direction. Similarly, the effective atom number N that goes hand in hand with

the effective single atom vacuum Rabi frequency is

N = 0.996(4)× 2

3
×Ntot (5.7)

= 0.664(3)×Ntot (5.8)

where the factor 2
3 accounts for the inhomogeneous coupling and the factor 0.996(4) arises from

thermal averaging. The uncertainties in 2g and N are dominated by the atom temperature un-

certainty. To restate, these definitions are chosen such that the observed vacuum Rabi splitting is

given by Ω↑ =
√
N↑2g, and the fluctuations due to projection noise fluctuations in N↑ for a CSS

along x̂ is given by
√
N/2, consistent with the results of Chapter 3.

5.5 Sample preparation

In this brief section, I describe how the sample is initialized prior to the QND measurements.

The temperature measurements described earlier were also performed after this initialization step.

87Rb atoms are loaded trapped in a magneto-optical trap (MOT) at the middle of the cavity for

about 1 second. The atoms are then loaded and cooled into the one-dimensional intra-cavity lattice

trap at 823 nm and at zero magnetic field. Atom number is controlled by the lattice loading time.

A quantization magnetic field of 4.8 Gauss along the lab physical coordinate system x̂ (see Fig. 5.2)

is turned on and the atoms are optically pumped into |↓〉 with a π-polarized free space laser beam

on F = 1 to F ′ = 1′ at 780 nm. Repumper beams at F = 2 to F ′ = 2′ at 780 nm recycles atoms

that end up in F = 2 back down to F = 1. As |↓〉 is dark with respect to both the optical pumping

beam and 3D repumping beams, the atoms eventually accumulate in |↓〉. To clear out any atoms in

F = 2, the repumper beams are left on for 100 µs longer after the optical pumping beam is turned

off. At this stage the ensemble ready to be manipulated with microwave rotations and probed with

light through the optical cavity. After the squeezing operation or other experiments are concluded

with the sample, a fresh sample is prepared by repeating the initialization steps.
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5.6 Measuring Jz

In our probing scheme, we do not measure Jz in single Rabi splitting measurement because

the Rabi splitting Ω↑ only depends on the atomic population N↑. However, by performing a π-

pulse to phase coherently swap the population between |↓〉 and |↑〉, and performing a Rabi splitting

measurement again with the results labeled Ω↓ and N↓, we can construct Jz = (N↑ −N↓)/2 from

the measurements. The experimental sequence is illustrated in Fig. 5.3.

Figure 5.3: Experimental Sequence for a single measurement of Jz. The measurement sequence
consists of microwave rotations (dashed line) and QND population measurements (solid line). Each
QND population measurement is implemented by simultaneously probing both modes of the col-
lective vacuum Rabi splitting Ω↑,↓, discussed in Section 5.6.1. The atomic populations are then

obtained from the measured Rabi splittings Ω↑,↓ via N↑,↓ =
(

Ω↑,↓
2g

)2
. Finally Jz is constructed from

N↑,↓ via the relation Jz = (N↑ −N↓)/2.

5.6.1 Single Rabi splitting measurement

In this section, we describe how a single measurement of the vacuum Rabi splitting Ω↑ or Ω↓

is performed. We employed heterodyne detection of the probe sidebands, directly IQ demodulated

so that the full amplitude and phase response during a frequency sweep could be used to extract

the mode resonance frequencies, as described in Section 3.2.3.

The probe beam was phase modulated at 150 MHz using a free space electro-optic-modulator

(EOM) (Thorlabs EO-PM-NR-C1, Vπ = 180 V) and a high power rf amplifier (Minicircuits LZY-
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Figure 5.4: Experimental schematic of the heterodyne IQ detection system used to probe the vac-
uum Rabi splitting. (a) Resonant coupling of the atoms to the cavity mode generates a collective
vacuum Rabi splitting Ω↑ =

√
N↑2g. The trapping optical lattice is not shown here. Both compo-

nents of the vacuum Rabi splitting are simultaneously probed using the first order phase modulation
sidebands spaced ±150 MHz from the carrier. During a single Ω↑ or N↑ measurement, the probe
laser frequency is linearly swept from high to low optical frequency. Phase coherent modulation
and demodulation of the probe signals is accomplished by generating all frequencies with phase-
coherent DDSs. An AOM frequency shifts the transmission signals to avoid frequency degeneracy
with the contaminating reflected probe signals on the recycled heterodyne reference beam. (b, c)
The IQ demodulation frequencies were adjusted appropriately to mix the reflection and transmis-
sion signals down to DC. The demodulation frequencies are given by the probe component optical
frequency minus the heterodyne reference beam frequency. In transmission, the carrier signal is
not present when probing atoms because the transmission resonances have shifted to the dressed
atoms-cavity mode frequencies. It is used as a diagnostic for probing the bare cavity.

1+). The phase modulation generates a high frequency and a low frequency probe sideband,

depicted as blue and red colored beams respectively in Fig. 5.4(a), with a modulation index β ∼ 1.5.

For probe sideband power calibration, we measure the fraction of probe power in each first order

probe sideband to be 0.30(2) of the total probe power. The overall probe power is set by the

55 MHz AOM rf power level, and we typically probe with 1-10 nW total probe power incident at
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Figure 5.5: Simultaneous probing of the vacuum Rabi splitting in transmission and reflection. The
blue and red data points are the individual Rabi splitting signals ω± simultaneously measured by
sweeping the phase-modulated probe laser frequency. The resonance frequencies are extracted from
fits (black curves) to the data plotted parametrically versus the probe frequency in the IQ plane (a).
A rotation has been applied to align the circles along the I-quadrature for presentation purposes.
The corresponding power I2 +Q2 (points – data, curve – from IQ fit results) (b), and phase shift
arctan(Q/I) (points – data, curve – from IQ fit results) for both transmission and reflection (c).
The size of the fitted vacuum Rabi splitting Ω↑ = ω+ − ω− determines the population in |↑〉 from
N↑ = (Ω↑/2g)2. A single scan requires 60 µs. Note: for presentation purposes, only every 5th data
point is plotted.
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the cavity.

Probing both the high and lower frequency dressed modes simultaneously is advantageous

for probe-induced ac-Stark shift cancellation, to be discussed in Chapter 6. Simultaneous probing

is achieved by adjusting the atom number to produce a Rabi splitting Ω↑/2π = 300 MHz splitting

that matches the probe sidebands frequency separation. The probe laser optical frequency is swept

at −1184 MHz/ms by linearly ramping a DDS frequency source used to phase lock the probe laser

to a fixed frequency reference laser.

In a single 60 µs measurement of Ω↑, or equivalently N↑, the probe laser is swept over a span

of 71 MHz, spending ∼ 7 µs on the dressed modes resonances that have FWHM of ∼ 8.5(3) MHz

(see Fig. 5.9). A single measurement of Jz requires two population measurement windows, each

taking 60 µs, and a 14.5 µs microwave π-pulse to phase coherently swap the populations N↓ and

N↑ in between the two measurement windows. The π-pulse plays a crucial role in spin echoing

away inhomogenous probe-induced and lattice-induced ac-Stark shifts that would otherwise lead

to severe loss of coherence if left un-cancelled. Chapter 6 will discuss spin-echo in more detail.

To make full use of the available information, both ports of our symmetric cavity are detected.

Nearly photon shot-noise-limited detection of the weak probe (∼nW) is achieved via heterodyne

detection. The reflected probe light is overlapped with a strong heterodyne reference beam on a

90/10 beamsplitter and then coupled into a single mode fiber for good mode matching before sending

to a low noise photodiode. The transmission setup is very similar. The detection path efficiency

is approximated 0.3 in transmission and 0.5 in reflection. The photodiode (Hammamatsu S5973)

internal quantum efficiency is 84%. The relative contribution of the photodiode electronic noise

to the total photocurrent noise at a detected heterodyne power of 1.2 mW reduces net quantum

efficiency by about 1 dB. Transfer function and noise characteristics of the detection photodiode

are made available in Appendix C.

The probe-sidebands and heterodyne beam produce a distinct rf beatnotes that can be fre-

quency separated using rf filters. The beatnote frequencies for the various probe frequency compo-

nents are given in Fig. 5.4(b, c). Full amplitude and phase information of the probe electric field, or



77

equivalently the full in-phase (I) and quadrature (Q) amplitudes are obtained by phase coherently

demodulating the heterodyne signals down to DC.

Phase stabilization of the heterodyne interferometer may be important for getting a good

phase estimate from the IQ fits. However, the measurements are only sensitive to phase drifts on

time scales comparable to a single population measurement. By sweeping across the resonances

quickly, phase stabilization of the interferometer was not crucial for obtaining high quality fits of

the IQ data.

Figure 5.5(a) shows typical IQ signals recorded in both reflection and transmission. The

high (low) frequency probe component sweeps across the resonance ω+ (ω−), with the resulting

signals shown in blue (red) in Fig. 5.5(b, c, d). The signals are sampled into our data acquisition

program and fitted in real time. See Figure. 5.6 for a screenshot of the data acquisition program.

The resonance frequencies were extracted using least squares fitting in the IQ-quadrature plane,

yielding estimates Ωrefl
↑ (Ωtrans

↑ ) of the Rabi splitting from the IQ reflection (transmission) fit,

respectively. Empirically, we find that the weighted average (0.61Ωrefl
↑ + 0.39Ωtrans

↑ ) ≡ Ω↑ exhibited

the least noise in two repeated measurements of the same Rabi splitting. This ratio reflects the

relative quantum efficiencies in reflection and transmission.

Figure 5.6: Screenshot of data acquisition program showing experimental control sequence table
(left monitor, middle), raw data (left monitor, top), real-time fitting of the IQ signals in the
complex plane (right monitor, left top) and accumulation of measurement statistics from different
experimental trials (right monitor, right panel).
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5.6.2 Measurement uncertainty ∆Jz
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Figure 5.7: Measurement uncertainty estimated from the noise in the difference of two repeated
measurements of the same vacuum Rabi splitting Ω↑. Inset shows sequence for this measurement.
This measurement is used for calibration because it is insensitive to projection noise. The data
(black dots) versus missing photons Mm (definition of Mm is given in Section 3.2.4) displays photon
shot noise scaling as M−1

m (black line, fitted to data below 1.8×105 missing photons) until technical
induced by frequency chirping of the resonances takes over sharply. An empirical fit to the full
range of data indicates that the technical noise variance (red line) scales as M6

m. The projection
noise variance is ∆(Ω↑−Ω↓)

2
CSS/(2π)2 = 0.128 MHz2 (dotted line) and is independent of the atom

number N . Sub-projection noise sensitivity is achieved from Mm ∼ 5×104 to 4×105 photons. This
data was taken at N = 7× 105 atoms.

The probe photon shot noise along with technical noise contribute an uncertainty ∆Jz to the

estimate of the projection Jz. To calibrate this noise, we start with all atoms in |↓〉 (i.e. θ = π),

perform a π/2 rotation to prepare a CSS along x̂. The vacuum Rabi splitting is then measured

twice with the results labeled Ω
(0)
↑ and Ω

(1)
↑ . Each measurement may fluctuate from one trial to the

next due to total atom number fluctuations, microwave power fluctuations, and quantum projection

noise; however, these sources of noise are common to both measurements within a single trial and
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cancel, at least to lowest order. Statistical error bars of the standard deviation ∆(Ω
(1)
↑ − Ω

(0)
↑ )

are estimated via ∆(Ω
(1)
↑ −Ω

(0)
↑ )/

√
2(ntrials − 1), where ntrials is the number of experimental trials,

typically around 1000 for this data, at each missing probe photon number Mm. The measurement

uncertainty data ∆(Ω
(1)
↑ −Ω

(0)
↑ ) versus missing probe photon number Mm displayed in Fig. 5.7 was

taken at our squeezed ensemble size of N = 7× 105 atoms. The measurement uncertainty variance

shows photon shot noise scaling M−1
m until a technical noise variance that scales as ∼M6

m takes off

at around about Mm ∼ 3× 105 photons.

The measurement uncertainty is taken to be ∆Jz = ∆

((
Ω

(1)
↑

2g

)2

−
(

Ω
(0)
↑

2g

)2
)
/2. For our re-

ported squeezing result (to be discussed later), we used an average number of missing probe photons

Mm = 0.96(5)×105 probe photons for a single measurement of Ω↑, we achieve a probe measurement

imprecision 6.5(5) dB below the projection noise level for N = 7.0(3) × 105 atoms obtained from

the relative noise between two repeated Ω↑ measurements on the same atomic ensemble. This is

close to the optimal measurement precision achievable in our system.

5.6.3 Probe-induced Raman scattering

This section is aimed at trying to understand the increase in measurement uncertainty as

Mm is increased in Fig. 5.7. We will also make use of results in this section when discussing loss of

coherence due to free space scattering later in Section 5.9.

Frequency chirping of the dressed modes resonances necessitate sweeping the probe frequency

rather than just parking the probe frequencies on resonance. The chirping occurs because of free

space scattering of the probe photons. The free space scattering causes N↑ to effectively decrease,

thus reducing the size of the Rabi splitting Ω↑ =
√
N↑2g, and hence chirping of the dressed mode

resonance frequency with time.

The chirping leads to added noise as photon number is increased above Mm ∼ 3×105 photons

as clearly shown in Fig. 5.7, and the differential line broadening shown in Fig. 5.9. We hypothesize

that the resonance frequencies fluctuate strongly at high photon number due to a positive feedback

between Raman scattering and the vacuum Rabi splitting. The chirping causes more photons to
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be coupled into the cavity, which causes more chirping, which then causes even more photons to be

coupled in and so on. This positive feedback could amplify initially small probe power fluctuations

into large fluctuations in the Rabi splitting.
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Figure 5.8: We observed a linear decrease in the difference Ω
(1)
↑ −Ω

(0)
↑ with missing photon number

Mm below 3× 105 photons. Above 3× 105 photons, severe chirping of the resonances discussed in
Fig. 5.9 results in large fluctuations in the fitted resonance frequencies. The red line is a linear fit
to to low Mm < 2.5× 105 missing photons to guide the eye.

To quantify the fundamental loss of coherence in Section 5.9 due to probe-induced free space

scattering (technical loss of contrast may result from dephasing, probe-induced or otherwise), we

need to understand the relationship between the directly measured number of missing probe photons

Mm in the reflected port and the number of free space scattered photons Ms which is difficult to

measure directly. By Eq. (3.12), we find that Ms is related to Mm by the following linear relation

Ms

Mm
=

Γ

Γ + κ− κ1
, (5.9)

which evaluates to Ms/Mm = 0.405(6) for our system. This relation is valid provided multiple

scattering can be neglected.
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Figure 5.9: (a) Distortion of signals caused by Raman scattered induced chirping of the resonances.
The distortion arises from a combination of a linear frequency sweep of the probe laser and a
symmetric shrinking of the Rabi splitting about the center of the splitting during the probing.
During probing, the Rabi splitting shrinks symmetrically about bare cavity frequency due to Raman
free space scattering of the probe photons. As the probe laser is swept from higher to lower optical
frequency, the higher frequency probe sideband would be “chasing after” the higher frequency dress
mode of the shrinking Rabi splitting. Conversely, the lower frequency probe sideband would be
“running into” the lower frequency dressed mode. This relative chirp causes the linewidth of the
higher (lower) dressed mode to appear higher (lower) than it actually is. For the data shown here,
the upper dressed mode has a fitted apparent linewidth of 10.3 MHz, and the lower dressed mode
has a fitted apparent linewidth of 7.1 MHz. (b) Theory predicts the dressed mode linewidths,
given by the average linewidths of the cavity and atom linewidths to be κ′± = 2π × (8.4(1) MHz)
with the uncertainty dominated by the cavity linewidth κ. Chirping of the resonances lead to
an apparent linear increase (decrease) in the linewidths (blue and red data points) of the higher
(lower) frequency dressed mode with the number of missing probe photons Mm as shown by the
fits (blue and red lines). We average the apparent dressed mode linewidths to provide an estimate
of the actual dressed mode linewidth (black data points). The slope of the linear fit to the average
apparent linewidth data (black line) shows a factor of about 9 suppression compared to the fitted
slopes for the upper and lower dressed mode apparent linewidths. The average of the black data
points over the measurement range gives (κ′+ + κ′−)/2 = 2π × (8.5(3) MHz) and agrees with the
theory prediction of 8.4(1) MHz to 1%.

To verify this prediction, we measure the decrease in the Rabi splitting Ω↑ versus the missing

photons Mm, obtaining the readily measurable dΩ↑/dMm. The Rabi splitting decreases because

atoms that have undergone a Raman free space scattering event can end up in |2,±1]〉 and |1,±1〉,

with lower coupling strengths to the cavity mode. In fact atoms scattered into |1,±1〉 have negligible

coupling to the cavity mode because of the 6.8 GHz detuning from the ground state hyperfine

splitting.
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Figure 5.10: Change in Rabi splitting (Ω
(1)
↑ − Ω

(0)
↑ )/2π due to free space scattering versus missing

photons Mm follows a linear scaling. The slope is predicted to be − 7
16

g√
N↑

Ms
Mm

. Using the indepen-

dently and accurately known values of 2g = 2π× (506(8) kHz) and N↑ = 3.50(15)×105, we inferred
Ms/Mm = 0.408(4) from the measured data. This result is in excellent agreement (0.7% level)
with an independent theory prediction of 0.405(6). The fit (blue line) is indistinguishable from the

theoretical prediction. The inset shows the experimental sequence used to measure Ω
(1)
↑ − Ω

(0)
↑ . A

CSS is prepared using the π/2 pulse (dashed line), and then the first measurement Ω
(0)
↑ is made.

Next, the system is probed with Mm missing photons by applying a variable number of probe
pulses which induces free space scattering while avoiding nonlinearities at high Mm. Finally, a

second measurement Ω
(1)
↑ is made to determine the change Ω

(1)
↑ − Ω

(0)
↑ .

To connect the experimentally measurable quantity dΩ↑/dMm to Ms/Mm, we need to calcu-

late dΩ↑/dMs. Reproducing the results of Section 4.3.1 for the 3-level toy model here, the change

in the atomic population N↑ per free space scattered photon is

dN↑
dMs

= −p , (5.10)

where p is the spin flip probability from |↑〉 to |↓〉. Accounting for the multi-level structure of

87Rb, we find the the “spin flip” probability per photon scattered into free space for an actual

physical atom is pactual = 7/24. I put spin flip in quotation marks because in our system, spin

flips from |↑〉 to |↓〉 via the intermediate state |e〉 are actually not optical-dipole-allowed. However,

Raman scattering takes the atoms from |↑〉 to |2,±1]〉 and |1,±1〉 which changes the Rabi splitting.

Therefore it is in this sense that the Raman scattering behaves like spin flips. In fact, it is more
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appropriate to treat these events as loss. Because of the inhomogeneous coupling present in our

system, the “spin flip” of an actual physical atom is equivalent to “spin flips” of 0.996× 3/2 ≈ 3/2

effective atoms, therefore the effective “spin flip” probability per photon scattered into free space

is p = 3/2× pactual = 7/16. The change in Rabi splitting per free space scattered photon is then

dΩ↑
dMs

= −p g√
N↑

= − 7

16

g√
N↑

, (5.11)

and the experimentally measurable change in Rabi splitting per missing photon is

dΩ↑
dMm

= − 7

16

g√
N↑

Ms

Mm
. (5.12)

Experimentally, we observed a linear decrease in the Rabi splitting versus the missing photons

Mm as shown in Fig. 5.10. From the slope dΩ↑/dMm, we inferred Ms/Mm = 0.408(4), in excellent

agreement (0.7% level) with the theory prediction of Ms/Mm = 0.405(6).

5.7 Observation of quantum projection noise in Jz

To ensure that we are observing quantum projection noise as opposed to technical noise, we

check that the observed noise variance in Jz scales linearly with N , and that it also agrees with our

a-priori prediction for the absolute noise level. The ratio of the variances of measured to predicted

projection-noise-driven fluctuations in Ω↑ − Ω↓ is 1.02(6). This level of agreement is possible due

to the very well-defined geometry of the cavity-mode, the trapping intra-cavity lattice and the cold

temperature of the atomic ensemble.

In the resonant coupling limit δc = 0 used in our experiments, the predicted projection noise

∆Jz,CSS would produce rms fluctuations in the vacuum Rabi splittings of

∆ (Ω↑ − Ω↓)CSS =
√

2g (5.13)

= 2π × (358(6) kHz) (5.14)

independent of the atom number N . All other QND probing schemes demonstrated to date have
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been performed in the detuned limit δc � Ω↑ [100], where the rms fluctuations of the dressed cavity

mode frequency due to projection noise scales as
√
N .

We measure the variance of Ω↑ − Ω↓, and subtract from it the measured detection noise

variance measured from the variance of Ω
(1)
↑ − Ω

(0)
↑ measured in a separate series of trials (see

Fig. 5.7). The noise background subtracted variance ∆
(

Ω
(1)
↓ − Ω

(0)
↑

)2
is defined as follows

∆ (Ω↑ − Ω↓)
2
bcksub = ∆ (Ω↑ − Ω↓)

2 −∆
(

Ω
(1)
↑ − Ω

(0)
↑

)2
(5.15)

Note that the background subtraction is small at high atom number, but becomes appreciable at

low atom number because the probe photon number must also be reduced to avoid contributions

of Raman-scattering noise to the measurements at small N . Statistical error bars of the standard

deviation ∆X are estimated via ∆X/
√

2(ntrials − 1), where X = Ω↑ − Ω↓ or Ω
(1)
↑ − Ω

(0)
↑ here, and

ntrials is the number of experimental trials, typically between 400 to 600, at each atom number.

The background-free noise data ∆ (Ω↑ − Ω↓)bcksub, shown in Fig. 5.11(a) agrees with the a

priori prediction (line) for the projection noise level ∆ (Ω↑ − Ω↓)CSS =
√

2g/2π = 358(6) kHz to

2(6)%. By converting the measured fluctuations in the Rabi splitting to equivalent atom number

variance, we confirmed the predicted projection noise variance (∆Jz,CSS)2 to 2(6)% (see Fig. 5.11(c)

(fits not shown)). Projection noise results in a linear dependence of the variance with atom number,

whose magnitude is determined using low order polynomial fits. The fitted linear contribution is

1.02(6) times (∆Jz,CSS)2. In this thesis, we conservatively normalize spin noise variances to the

predicted projection noise variance instead of the slightly higher (2% higher) measured projection

noise variance.

Technical noise from the atoms or (homogeneous) microwave rotation noise would exhibit a

noise variance in ∆J2
z scaling as N2, illustrated by the orange dashed lines in Fig. 5.11. The ratio

of the fitted technical noise variance to the projection noise variance is 21(7)% at our squeezed

ensemble size of N = 7 × 105 atoms. In Chapter 7, we will provide details regarding microwave

rotations added noise.
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Figure 5.11: (a) In the resonant limit δc = 0, the rms projection noise fluctuation of the population
N↑ is independent of total atom number N . Shown here are the measured rms fluctuations of
the dressed cavity modes ∆(Ω↑ − Ω↓)bcksub/2π after subtracting out the noise background in
quadrature. The data agrees with the a priori prediction (solid line) for the projection noise level√

2g/2π = 358(6) kHz to 2(6)%. The shaded gray area represents the error range of our theory
prediction. At larger atom numbers N > 7 × 105, additional technical noise was observed. In
contrast, probing in the off-resonant regime results in a cavity mode frequency noise variance that
scales linearly with N , and is always smaller than in the resonant limit [see Eq. (3.15)]. To constrain
potential added noise from the π-pulse rotation that swaps the two atomic populations N↑ and
N↓ between the two splitting measurements, we apply the rotation about an axis perpendicular to
the CSS (black points), and about an axis parallel to the CSS (red diamonds). See Chapter 7 for
constraints on microwave rotations added noise.

(b) Same data in (a) converted into fluctuations of the collective spin polar angle showing the
observed variance of θ versus atom number N confirms the predicted SQL. In this Chapter, we
demonstrate the preparation of conditionally spin squeezed states with an inferred spectroscopic
sensitivity 3.4 dB below the SQL at a large ensemble size of N = 7 × 105 atoms (blue point). At
this ensemble size, the SQL is ∆θSQL = 1.2 mrad and the generated squeezed state has an angular
resolution of 0.8 mrad.

(c) Same data in (a) converted into variance in Jz, showing the linear scaling of quantum projection
noise with atom number.

In all three plots, the scaling of technical noise with atom number N is schematically illustrated
with an orange dashed curve/line.
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5.8 Conditional spin variance

We now demonstrate that repeated measurements of Jz are correlated below the projection

noise level ∆Jz,CSS. A first measurement Jz1 estimates Jz to a precision set primarily by the mea-

surement uncertainty ∆Jz, preparing a sub-projection noise state when ∆Jz < ∆Jz,CSS. As shown

in Fig. 5.12, quantum projection noise plus added classical and detection noise causes fluctuations

in the measured Jz1 from one trial to the next, but the fluctuations are highly correlated with a

second measurement Jz2 (Fig. 5.12(b)). The degree of correlation between the two measurements

Jz1 and Jz2 is characterized by the correlation coefficient ρ:

ρ ≡ cov(Jz1, Jz2)

var(Jz1)
, (5.16)

where the covariance is cov(Jz1Jz2) ≡ 〈Jz1Jz2〉−〈Jz1〉〈Jz2〉, and the variance is var(Jz1) ≡ 〈Jz1〉2−

〈Jz1〉2. The variance var(Jz1) is given by the sum of the measurement uncertainty variance (∆Jz)
2

from probe measurement imprecision and back-action and state preparation noise variance denoted

(∆Jz, prep)2

var(Jz1) = (∆Jz)
2 + (∆Jz, prep)2 . (5.17)

The state preparation noise variance (∆Jz, prep)2 is the sum of the quantum projection noise variance

(∆Jz,CSS)2 as well as any classical rotation noise variance from the first π/2-pulse in the CSS

preparation step.

The first measurement Jz1 can be used to predict a second measurement Jz2 with an optimal

estimator ρJz1, allowing the state preparation noise to be partially canceled in the difference Jz2−

ρJz1 (Fig. 5.12(c)). The estimator ρJz1 is optimal in the sense that it minimizes the variance

(∆(Jz2 − ρJz1))2. While the state preparation noise is common-mode to both measurements Jz1 and

Jz2, the measurement uncertainty ∆Jz is independent for both measurements. If the measurement

uncertainty ∆Jz is zero, then the two measurements Jz1 and Jz2 would be perfectly correlated, i.e.

ρ→ 1. In reality, finite probe measurement uncertainty and uncorrelated microwave rotation noise

degrades the correlation ρ between the two measurements Jz1 and Jz2.
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At N = 7.0(3) × 105 atoms and a missing probe photon number of Mm = 1.9(1) × 105 per

measurement of Jz, the observed conditional spin noise reduction relative to the projection noise

limit was (
∆(Jz2 − ρJz1)

∆Jz,CSS

)2

= −2.6(3) dB , (5.18)

where ρ = 0.72(6) is estimated using Eq. 5.16. Subtracting the measurement uncertainty ∆Jz

of the second measurement in quadrature gives a conservative estimate of the uncertainty in the

inferred conditional spin noise reduction Jz,inferred relative to the projection noise limit(
∆Jz,inferred

∆Jz,CSS

)2

≡
(

∆(Jz2 − ρJz1)

∆Jz,CSS

)2

−
(

∆Jz
∆Jz,CSS

)2

= −4.9(6) dB . (5.19)

The measurement uncertainty was (∆Jz/∆Jz,CSS)2 = −6.5(5) dB as determined from fluctuations

in the difference of two time adjacent Ω↑, or equivalently N↑, measurements in Section. 5.6.2.

A different approach to estimating the measurement uncertainty is to assume each QND

measurement has the same measurement uncertainty, whereas the quantum projection noise (as well

as classical state preparation noise) is common mode to both measurements. Under this assumption,

the difference Jz2 − Jz1 then exhibits twice the amount of measurement uncertainty variance than

a single Jz measurement. Using the measured value of (∆(Jz2 − Jz1)/∆Jz,CSS)2 = −2.1(3) dB and

dividing by 2 (i.e. subtracting 3 dB) yields a slightly better conditional spin noise reduction of

(∆Jz,inferred/∆Jz,CSS)2 = −5.1(6) dB. Note that this estimate also agrees with the earlier estimate

of −4.9(6) dB within error bars. In this thesis, I will use the slightly more conservative inferred

conditional spin noise reduction (∆Jz,inferred/∆Jz,CSS)2 = −4.9(6) dB to quantify squeezing.

5.9 Loss of coherence

Reduction of spin noise alone does not allow improved quantum phase estimation unless the

length of the collective spin |〈Ĵ〉| is sufficiently unchanged. To claim spectroscopic enhancement

or squeezing, we need to measure the coherence remaining after the QND measurement Jz1 and

show that the conditional reduction in spin noise more than makes up for the loss of signal due to

probe-induced decoherence.



88

(c)(b)

(a)

Jz2 - ρJz1

Jz1

Measure Quantum Projection Noise Verify Noise Reduction

Figure 5.12: a) Measurement sequence for observing Correlation between successive QND mea-
surements. (b) The first and second QND measurements of Jz exhibit correlated fluctuations that
arise largely due to projection noise. Number of trials ntrials ≈ 570. (c) The degree of correlation ρ
between Jz1 and Jz2 can be used to conditionally reduce the spin noise of the resulting state after
the first Jz1 measurement to -4.9(6) dB below the CSS noise after subtracting out the measurement
uncertainty.

In this section, we quantify the amount of coherence remaining versus the number of missing

probe photons Mm used in a single QND measurement of Jz. The normalized length of the collective

spin is measured by varying the polar angle θ from 0 to 2π and determining the contrast C = |〈Ĵ〉|/J

from the resulting variation of the population N↑ (see Fig. 5.13).

Having instilled confidence in our theory prediction for the ratio of free space scattered

photons to missing probe photons via experimental verification in Section 5.6.3, we now use that

theory to predict the fundamental probe-induced loss of coherence/contrast. If each free space

scattered photon leads to the collapse of a single spin, we predict from Eqs. (4.1) and (5.9) that the
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Missing Photons Mm [x 103]

(b)

(a)

(c)

Figure 5.13: (a) The degree of coherence remaining after the measurement Jz1 is determined
using the sequence: (π2 )–(measure N↑)–(π)–(measure N↓)–(π2 )–(measure N↑). For the coherence
measurements, a large dynamic range in Jz (compared to measuring projection noise fluctuations
∆Jz,CSS of a CSS) is required. To obtain a large dynamic range, we scan the probe laser (without
sidebands) across the the full Rabi splitting Ω↑, and detect the probe carrier in reflection. (b)
The sequence is repeated and the final measured value of N↑ is plotted versus the phase of the
final π

2 -pulse. With no measurements (empty circles), the background contrast is Ci = 0.97(1).
Probing with 1.8× 105 missing photons (filled circles), causes a small reduction in contrast despite
a measurement sensitivity below the projection noise level. (c) Measured contrast versus missing
probe photon number (solid circles), second order polynomial fit (solid line), and the predicted
contrast loss due to free space scattering alone (dashed line).

fractional reduction in contrast is k1,pred = 6.4(3)× 10−7 per missing probe photon at N = 7× 105

atoms. This prediction is valid provided multiple scattering may be neglected, i.e. the actual loss

of contrast is small.

Fig. 5.13 shows that the measured contrast C versus missing probe photon number Mm is

well described by C = Ci − k1Mm − k2M
2
m. The fitted value, k1,fit = 5.5(7) × 10−7 per missing

probe photon, agrees with the prediction to 15%, and confirms the fundamental role of free space

scattering as the dominant source of decoherence.
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The quadratic variation of C, k2 = 1.0(3)×10−12 per (missing probe photon)2, arises from un-

canceled inhomogeneous probe-induced light shifts that result in dephasing of the ensemble. These

light shifts are largely spin-echoed away with the π-pulse used to measure Jz1. The uncanceled

dephasing arises from radial motion in the trap, which will be discussed in Chapter 6. At fixed

measurement uncertainty relative to the projection noise level, the magnitude of the dephasing

increases linearly with probe detuning, making it easier to reach a scattering-dominated regime in

this work compared to work in a far-detuned dispersive regime [100].

Before the QND measurements of Jz, the measured contrast is Ci = 0.97(1). Using Mm =

1.9(1)×105 missing probe photons in total for the first measurement Jz1 at N = 7.0(3)×105 atoms

reduces the contrast to Cf = 0.82(2). At this probe photon number, free space scattering of probe

photons is the dominant source of decoherence loss. Loss of coherence from un-canceled ac-Stark

shifts accounts for only 25% of the total loss of coherence.

5.10 Net spectroscopic enhancement

The ability to estimate the mean spin polar angle θ is largely set by the noise in Jz and the

signal size |〈Ĵ〉|. For a mean spin lying close to the x−y plane, ∆θ ≈ Jz/|〈Ĵ〉|. Using the Wineland

criterion [58], the directly observed spectroscopic enhancement is given by

ξ−1
m =

(
∆Jz,CSS

∆ (Jz2 − ρJz1)

)2 C2
f

Ci
= 1.1(4) dB

below the SQL. We infer the ability to prepare states with enhanced spectroscopic sensitivities of

ξ−1
m =

(
∆Jz,CSS

∆Jz,inferred

)2 C2
f

Ci
= 3.4(6) dB

relative to the SQL for quantum phase estimation for N = 7× 105 atoms, the largest ensemble size

on which squeezing on a clock transition has been demonstrated to date. The demonstration of

spin squeezing also implies inter-atomic entanglement in this large ensemble [68].
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The small correction from Ci normalizes the spectroscopic enhancement relative to the SQL

set by the partially decohered collective spin with shortened mean spin length as discussed in

Section 4.5, Eq. 4.10). Because our initial coherence Ci = 0.97(1) is high, this results in a very

small correction (increase of 0.1 dB in squeezing) for our reported results2 .

5.11 Back-action
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Figure 5.14: (a) Sequence for measuring back-action. Noise in the back-action quadrature is ob-
served by inserting a rotation through angle ψ between the QND measurements Jz1 and Jz2. (b)
Back-action noise normalized to the projection noise level versus rotation angle ψ. The dashed curve
is the calculated response for a minimum uncertainty squeezed state, while the solid curve with
the gray 68% confidence interval is the predicted back-action from the intra-cavity probe vacuum
noise. (c) The ratio of the predicted anti-squeezed quadrature at ψ = π/2 and that of a minimum
uncertainty squeezed state is about 16.5 dB (left column) due to finite quantum and technical
efficiencies. The right column gives the detailed breakdown from various estimated contributions.
These contributions account for an estimated 16.3 dB of the excess back-action.

2 For comparison, in Ref. [100], the initial contrast was Ci = 0.7, resulting in 1.5 dB correction.
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The un-measured quadrature Jy, or azimuthal angle φB in the limit of slight shortening

of the collective spin, is driven by fluctuating ac-Stark shifts arising from the intra-cavity probe

vacuum noise. Noise in the back-action quadrature is observed by inserting a rotation through

an angle ψ between the QND measurements Jz1 and Jz2, see Fig. 5.14(a). The measured and

predicted quantum back-action noise levels are 22.3(1) dB and 21.4(1.5) dB relative to projection

noise respectively. The ratio of the predicted anti-squeezed quadrature at ψ = π/2 to that of a

minimum uncertainty squeezed state is 16.5 dB due to finite quantum and technical efficiencies

in the probe detection process. We estimate that the compounding effects of finite quantum and

technical efficiencies accounts for 16.3 dB out of the predicted 16.5 dB excess back-action. Detailed

breakdown of these effects are shown in Fig. 5.14(c).

5.12 Conclusions

The key result of my thesis — the experimental demonstration of spectroscopic enhance-

ment and entanglement as a result of collective QND measurements — has been presented in this

Chapter. Specifically we have demonstrated the preparation of spin squeezed states with inferred

spectroscopic enhancement

ξ−1
m =

(
∆Jz,CSS

∆Jz,inferred

)2 C2
f

Ci
= 3.4(6) dB

relative to the SQL in a large ensemble of N = 7 × 105 atoms, demonstrating the power of a

top-down approach to generating entangled states for quantum metrology. This result is enabled

by strong collective coupling N↑C ≈ 1400 � 1. This proof-of-principle experiment may open the

way for QND techniques to enhance the fundamental sensitivity of precision measurements with

large ensembles of neutral atoms.



Chapter 6

Advantages of operating in resonant-coupling regime

The goal of this Chapter is to provide motivations and analyze unique aspects of probing in

the resonant-coupling limit, δc = 0. In Section 6.1, we review theoretical results of Section 3.3 in the

limit of δc = 0. Section 6.2 and 6.3 details technical advantages and sources of common-mode noise

rejection obtained by working in the resonant limit and simultaneously probing both dressed cavity

modes. Section 6.4 discusses the effects of radial motion of the atoms in the trap on the probing.

Section 6.5 considers the effects of spatial mode mismatch of the probe modes in a standing-wave

cavity on the correlation between the dressed mode frequencies.

6.1 Fundamental scalings related to projection noise

In the resonantly coupled regime δc = 0, the absolute size of the projection noise fluctuations

is maximized (see Fig. 3.5), i.e.,

∆ωproj
± =

g

2
√

2
, (6.1)

making it easier to observe projection noise fluctuations in the presence of technical noise in the

detection system. Note that the rms fluctuation is independent of N , as experimentally demon-

strated in Fig. 5.11(a). The same is true for the FWHM linewidth which is simply equal to the

average linewidth [111] due to the equal photonic and atomic contributions to the normal modes:

κ′± = (κ+ Γ)/2 . (6.2)
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To be able to resolve projection noise, one must detect, on average, a number of probe photons in

transmission given by

Mproj
d± =

1

2ηd

(
κ′±
g

)2

. (6.3)

The ratio of free-space-scattered photons to detected probe photons in transmission is

Rs± =
1

qdηs

Γ

κ
. (6.4)

Finally, the number of scattered photons into free space for measurement uncertainty at the pro-

jection noise level normalized to the total number of atoms N is

mproj
s± =

1

2qNC

(
1 +

Γ

κ

)2

. (6.5)

If the cavity length and mode volume are fixed by experimental constraints, then one is, in principle,

free to minimize Eq. (6.5) by varying the finesse of the cavity mirrors, until a minimum value of

mproj
s = 2/qNC is reached when κ = Γ. The minimization with respect to cavity finesse accounts

for the fact that the cooperativity C scales as 1/κ.

6.2 Noise rejection in the resonant limit

Section 6.1 has outlined fundamental quantum limits on detection in the δc = 0 regime. In this

section, we describe how the δc = 0 regime is useful for rejecting several sources of technical noise.

Simultaneous probing of both transmission resonances ω± is advantageous for canceling technical,

but important, laser frequency noise and cavity frequency noise. Importantly, the previous analysis

for the value of mproj
s is not modified if Mproj

d /2 photons are used to measure each mode frequency

ω+ and ω−.

From Eq. (3.4), we find that the measured differential quantity ω+ − ω− ≈ Ω↑

(
1 + δ2c

2Ω2
↑

)
is

only quadratically sensitive to the cavity detuning δc. Note that the absolute sensitivity to δc is

decreasing as 1/
√
N↑, a favorable scaling for working with large atom number. As an example,

a typical Ω↑/2π = 300 MHz and a detuning of δc/2π = 1 MHz causes a change in the measured
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splitting 100 times smaller than projection noise fluctuation in the collective Rabi splitting ∆Ωproj
↑ =

2∆ωproj
± = g/

√
2.

Simultaneous or near-simultaneous measurements of both resonances can strongly suppress

the impact of laser frequency noise. To make these measurements, one can use low phase noise

RF modulation of a single laser with much higher phase noise to generate probe components near

ω+ and ω− as was discussed in Section 5.6. The laser carrier frequency noise is common-mode

to the two probes and cancels in the difference ω+ − ω−. The measured power spectral density

(PSD) of the probe-cavity relative frequency noise Sν(f), shown in Fig. 6.1, was measured for our

system using side-of-fringe transmission. If both the upper and lower transmission resonances are

measured for time Tm with time separation τm between the measurements, the noise variance in

the measured splitting due to laser noise is(
∆Ωlaser

↑
2π

)2

=

∫ ∞
0

Sν(f)T (f)df , (6.6)

where the transfer function T (f) is

T (f) =
4 sin2(πfτm) sin2(πfTm)

(πfTm)2
. (6.7)

If the laser possesses a Lorentzian lineshape with FWHM ∆ν in Hz as measured in heterodyne

versus a perfect reference laser, the PSD is constant with value Sν(f) = ∆ν/π. Integrating Eq. (6.6),

we find (∆Ωlaser
↑ /2π)2 = Sντm/T

2
m for good time overlap τm < Tm, and Sν/Tm for no time overlap

τm > Tm. Completely unoverlapped measurements would yield an absolute measurement uncer-

tainty of ∆Ωlaser
↑ /2π =

√
∆νBm/π, the geometric mean of the measurement bandwidth Bm = 1/Tm

and the laser FWHM linewidth ∆ν. For a typical extended-cavity-diode-laser ∆ν = 100 kHz, and

∆Ωlaser
↑ /2π ≈ 180 kHz

√
µs/Tm. For partial time overlap ∆Ωlaser

↑ /2π ≈ 180 kHz
√
µs
√
τm/T 2

m.

In practice, lasers exhibit low frequency 1/f noise, but so long as 1/τm is much larger than

the noise corner frequency, the above description is adequate. The laser noise can be reduced by

spreading the Md detected probe photons over a longer measurement period, but at the possible

expense of additional decoherence of the atomic quantum state (arising from non-probe related

mechanisms) and the potential additional contributions from 1/f laser and cavity frequency noise.
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Figure 6.1: (a) Measured probe laser frequency noise spectrum Sν(f) (solid black curve) and for
reference the calculated white frequency noise level for a Lorentzian 50 kHz FWHM linewidth laser
(horizontal black line). Also shown are theoretical transfer functions relating laser frequency noise
to Rabi splitting noise for Tm = 20µs and τm/Tm = 0.05, 0.1, 1000 (dotted green, blue, and red
curves, respectively) The inset of (b) defines the measurement timeing. For the case τm/Tm = 1000,
the sin2(πfTm)/(πfTm)2 envelope of the transfer function is shown here. obtained by averaging
over the underlying fast oscillations. (b) RMS noise in the Rabi splitting noise ∆Ωlaser

↑ /2π due to
the measured laser frequency noise versus τm for Tm = 20 µs (solid blue curve) and for Tm = 200 µs
(solid red curve). For a white laser frequency noise spectrum of the level shown in (a), the integrated
Rabi splitting noise spectrum versus τm is shown in dashed blue and red curves. Vertical dashed
lines indicate the two different Tm used for the transfer function integration. Most of the integrated
noise at larger τm can be attributed to the laser frequency noise bump near 17 kHz.

6.3 ac-Stark shift cancellation

The intra-cavity probe light induces an ac-Stark or light-shift of the |↑〉 state. At resonance,

simultaneous probing of both modes ω± leads to a cancellation of the shift as the induced shifts
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have opposite signs. The cancellation arises from symmetrically spaced probe components above

and below the atomic transition frequency ω↑e. In the case of inhomogeneous coupling of the

atoms to the cavity mode, the ac Stark shifts are inhomogeneous and lead to a loss of signal and a

reduction in the effectiveness of composite pulse sequences used for manipulating the ground state

spin manifold. The integrated phase shift caused by passing probe light through the cavity was

measured using a microwave spin echo sequence and observing the phase shift of the spin echo

fringe versus the number of photons coupled into the atoms-cavity system. In Fig. 6.2, we show the

probe-induced phase shift if only the ω+ mode or the ω− mode is probed. We then show the high

degree of cancellation of the phase shift, and therefore the average induced ac-Stark shift, when

both the ω+ and ω− modes are probed simultaneously.

0
|2

π

0
|2

π

90
π| |2

π

0
|2

π

φ time|
b- b+

↓

Figure 6.2: The relative quantum phase between states | ↑〉 and | ↓〉 is light shifted by passing
probe photons through the atoms-cavity system near only the upper normal mode frequency ω+

(blue solid circles) or only near the lower normal mode frequency ω− (red open circles). The shifts
have opposite sign and cancel if probe photons are simultaneously passed through the atoms-cavity
system at both frequencies (purple squares). Black lines are fits to the data.The measurements are
performed using a variable number of photons coupled into the atoms-cavity system Mm during a
microwave spin-echo sequence (inset) employed to remove background dephasing from the trapping
optical lattice.

While simultaneous probing was successful in canceling average ac-Stark shifts, Fig. 6.3 shows
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Figure 6.3: Simultaneous probing effect on contrast. The fractional reduction in contrast (C −
Cprobing)/C, where Cprobing (C) is the contrast with (without) probing. The total missing probe
photons Mm is the sum of the number of missing photons used in both timing windows adjacent to
the π-pulse. For the simultaneous probing data, the probes sweep through the 8.4 MHz FHWM of
the resonances at the same time. For non-simultaneous probing, the probes are offset in time within
a single population measurement window of N↑ or N↓. The red (black) curves are quadratic fits to
the 2(1) time window simultaneous probing data (red solid points (black solid points)) respectively.
This plot shows that probing in both time windows, rather than simultaneous probing, is crucial
for reducing the dephasing. Inhomogeneous ac-Stark shifts from imbalance in upper and lower in
the probe sideband photons coupled into the cavity could explain the observations.

that simultaneous probing was not as effective in canceling out inhomogenous ac-Stark shifts. When

probing only in the second time window in a echo sequence, the fraction loss of contrast is invariably

worse than when probing in both time windows adjacent to the π-pulse. The fractional loss of

contrast is defined as (C − Cprobing)/C where Cprobing is the contrast remaining after probing with

Mm total missing probe photons in the whole echo sequence. The data shows that there is some

benefit from simultaneous probing when probing in one of the two time window only. However, when

both time windows are probed, there is little, if any, benefit to probing simultaneously. Instead,

it is crucial to probe in both time windows. This observation could be a result of inhomogeneous



99

ac-Stark shifts imposed by probing both modes; simultaneous or not, is not important. Imbalance

in the number of upper and lower probe sideband photons coupled into the cavity would result in

un-cancelled inhomogeneous ac-Stark shifts. Probing in both time windows, in conjunction with

the π-pulse, would reverse the inhomogeneous ac-Stark shifts, leading to re-phasing. However, the

π-pulse alone cannot by itself reverse the inhomogeneous ac-Stark shifts when the probing is applied

in one time window only.

6.4 Radial oscillations
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Figure 6.4: Radial motion of atoms in the trap manifests as oscillations in the spin echo fringe
contrast. The raw contrast C (red filled squares, right axis) and the contrast with probing Cprobing

(red hollow circles, right axis) show small hints of oscillations that are amplified in the fractional
change in contrast (Cprobing−C)/C (blue filled circles, left axis). The frequency of the oscillations is
expected to be at twice the trap radial frequency. A exponentially damped sinusoidal fit (blue curve)
to the fractional change in contrast yields a fitted radial trap frequency of fradial,fit = 0.92(2) kHz, in
excellent agreement with the radial frequency fradial,pred = 0.91(3) kHz predicted from the measured
lattice power. In this data set, N = 7 × 105 and Mm = 2.6 × 105 in total for both the N↑, N↓
measurements.

Signatures of radial oscillations of the atomic sample in the trapping lattice can be observed
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on the spin echo fringe contrast curves, but they are relatively weak, see red color data points in

Fig. 6.4. By comparing the contrast with and without probing, the radial motion is made more

apparent via the fractional reduction in contrast (C − Cprobing)/C (blue data points in Fig. 6.4),

which subtracts out the dominant background dephasing from the trapping lattice. The fractional

reduction in contrast is well described by a damped sinusoid that oscillates at twice the trap radial

frequency of about 1 kHz. While this oscillation in contrast might be interesting, it is not useful

for our experiment. The key point to take away is that while we could choose a specific spin echo

evolution Tevol time to coincide with a local peak in the contrast curve (which would correspond

to a Tevol of ∼ 0.6 ms for our system), the loss of contrast would still significant compared to

performing the probing as fast as possible Tevol → 0. Thus our strategy is go probe as quickly as

possible, completing a complete Jz measurement in ∼ 150µs.

6.5 Spatial mode matching of atoms-cavity modes

In a standing-wave cavity, the ω± modes arise due to coupling of the cavity mode to atoms

located away from the nodes of the standing-wave of each mode. By probing at two different

frequencies, it is possible that the two standing-wave probe modes effectively couple to two slightly

different sub-ensembles of atoms. Projection noise fluctuations in the two sub-ensembles are not

perfectly correlated such that the fluctuations of ω+ and ω− are also no longer perfectly correlated.

The contribution of projection noise to the difference of the mode frequencies ω+ − ω− would then

be reduced. In the extreme limit of the nodes of the ω+ mode being aligned with the antinodes

of the ω− mode, the two sub-ensembles are completely independent. The projection noise driven

rms fluctuations in the difference ∆(ω+ − ω−) would then be
√

2 lower than for the case of perfect

overlap. Here we calculate this effect and provide numerical results indicating that this effect is

small in our experiment.

In vacuum, the wave vectors for resonant probe light k± = ω±/c have a differential wave

vector given by k+ − k− = Ω↑/c. However, if the atoms uniformly fill the cavity mode along the

axial or ẑ direction, then the index of refraction of the atoms at the resonant frequencies ω± must be
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such that two wavevectors k′± = n±k± are identical inside the atomic medium. This is guaranteed

by the round trip phase being a multiple integer of 2π at resonance.

If, however, the atoms do not uniformly fill the cavity, then the wavevectors of the probe

modes in vacuum and inside the atomic ensemble can be different, leading to coupling to slightly

different atomic sub-ensembles. Using the original condition, one finds the indices of refraction

of the atomic ensemble at position z along the cavity axis evaluated for probe frequencies at the

nominal resonance frequencies ω± are

n± (z) = 1∓
Ω↑

4fFSR

1

k±
ρ↑(z) . (6.8)

where fFSR = c/2l is the cavity free spectral range, and ρ↑(z) is the coarse-grained linear probability

distribution function that an atom in |↑〉 is located at z and normalized such that integrating over

all of space yields 1. The coarse graining is performed over many lattice sites, and quantum

fluctuations are ignored in this expression as they are a higher order effect.

As a first application, we assume the atoms uniformly fill a region of space of length d centered

in the middle of the cavity of length l. In the atomic medium, the spatial phase deviation φ±(z) of

the standing-wave electric fields cos (ωcz/c+ φ±) from the empty cavity spatial phase is given by

φ±(z) = ±
zΩ↑

4fFSR

(
1

l
− 1

d

)
for |z| ≤ d

2
. (6.9)

In the limit of uniform filling d = l, the two probe modes are spatially matched, otherwise they

acquire a differential spatial phase φ+(z)− φ−(z) that grows linearly as z.

In our experiment, the atoms were roughly Gaussian distributed along the cavity axis with

standard deviation zrms, ensemble ≈ 1 mm much less than the cavity length l ≈ 2 cm (see Table 5.2

for exact numbers). In this case, the spatial phase deviation of the standing-wave probe modes

from the empty cavity spatial phase in the atomic medium is given by

φ±(z) = ±
Ω↑

4fFSR

(
z

l
− 1

2
Erf

(
z√

2 zrms, ensemble

))
, (6.10)

where Erf(·) is the error function.
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(b)

(a) atoms

Figure 6.5: Illustration of the concept of spatial mode-matching of the atoms-cavity modes. (a)
In vacuum, the electric field of the higher frequency mode ω+ (blue) has a shorter wavelength
than the lower frequency mode ω− (red), leading to a phase advance of the ω+ mode relative to
the ω− mode as it advances from the left mirror to the left edge of the atomic medium (green).
In the atomic medium, the refractive index n± at frequency ω± is such that the ω+ mode has a
longer wavelength than the ω− mode so that the two modes phase up in the middle of the cavity.
For reference, the electric field for the bare cavity mode ωc (dashed black) is shown. The phase
mismatch in this illustration is deliberately made large by choosing Ω↑/2π = fFSR. The length of
the uniformly distributed atomic medium is set to d = l/4, again for illustration. (b) The spatial
phase deviation φ± of the ω± modes from the empty cavity spatial phase. The red(blue) curves
corresponding to φ+ and φ− respectively are used to generate the standing-wave modes in (a).

At a typical Ω↑ = 2π × (300 MHz), the differential probe spatial phase φ+(z) − φ−(z) is

expected to be only 31(3) mrad at z = zrms, ensemble. Numerical simulations of the phase mismatch

and projection noise show that this phase mismatch leads to < 1% reduction in the variance of the

difference ω+ − ω− relative to the variance in the same quantity for perfect spatial overlap of the

two modes with one another.

6.6 Summary

The previous chapter and this chapter have focussed on probing aspects of our collective

cavity-QED system. The next two chapters will finally focus on the microwave rotation aspects of

squeezing experiment. In our experiments, a significant portion of our time was spent learning how
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to perform precise rotations (Chapter 7) and developing a linear response theory for quantifying

the impact of phase noise on the rotations (Chapter 8). Precise rotations (at the 1 mrad level in

the polar angle θ) are necessary so that microwave π-pulse required for a Jz measurement does

not an amount of noise into the measurement larger than the SQL or squeezing we were aiming to

observe.



Chapter 7

Experiment: Realization of precise rotations

To first observe quantum projection noise and then demonstrate conditional squeezing in

Chapter 5, the microwave rotations must add little noise into Jz relative to the projection noise

level. For our large ensemble of N = 7 × 105 atoms, the projection noise level sets the SQL of

∆θSQL = 1.2 mrad. In order to measure below the SQL, the microwave rotations need to add less

than ∼ 1 mrad of noise to the polar angle θ of the collective spin vector.

Precise rotations are key for the the squeezing experiment in Chapter 5, that is we can con-

sistently rotate the collective spin vector to the same polar angle within a single experimental trial.

Added noise in the azimuthal angle φ due to microwave rotations much less of a concern because

φ is the anti-squeezing quadrature; adding noise into φ does not affect the squeezed quadrature.

Also, the mean spin length |〈Ĵ〉| ∝ cos ∆φ is only sensitive to second order in ∆φ.

In Section 7.1, we demonstrate a tuning procedure to achieve good alignment of the rotation

axis to the collective spin. In Section 7.2, we present constraints on added-noise from microwave

rotations with the help of auxiliary rotations. Finally, in Section 7.3, we describe a microwave

source with sufficiently low noise to allow spin-squeezing on the 87Rb clock transition. This source

has been published in Ref. [55].

7.1 Aligning rotation axis to collective spin vector

In order to prevent low frequency amplitude and detuning noise from coupling into the

measurement quadrature Jz, we need to know the rotation axis relative to the collective spin vector
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very well so that we can perform an aligned π-pulse or perpendicular π-pulse back through the

south-pole as shown in Fig. 7.1. In our experiment, we find it necessary to tune the phase of the

microwave rotation pulse carefully to achieve quiet rotations due to phase shifts that occur during

the time between the CSS preparation to the π-pulse rotation necessary for a Jz measurement.

A source of phase shift is attributed to ac-Stark shifts from off-resonant microwaves. Due

to metallic structures around the atoms, finite extent of the atomic cloud and imperfections in

the microwave dipole antenna, the polarization of the microwave field at the atoms is not purely

π-polarized. Circularly polarized microwaves couple the |F, 0〉 clock states (F = 1, 2) off-resonantly

to the |F,±1〉 states , giving rise to microwave ac-Stark shifts. At the applied quantization field of

4.8 Gauss, the Zeeman splitting is 3.4 MHz. The Rabi frequency for the clock transition is about

40 kHz. Assuming the amplitude of σ±-polarized microwaves are the same as the π-polarized mi-

crowaves, the ac-Stark shift from a pair of coupled levels is on the order of 120 Hz1 . When we

apply the microwave rotations, the microwave frequency is set to the dressed microwave transition

frequency to avoid detuning errors coupling into the measurements. However, when the microwaves

are turned off, the collective spin precesses at a frequency not dressed by the microwaves, lead-

ing to relative phase accumulation between the collective spin and the microwave source. This

accumulated phase offset may be measured and tuned away in the procedure described in Fig. 7.2.

It is also important to make sure microwaves are completely turned off during the QND mea-

surements. To do so, we have found it necessary to use two microwave TTL switches (Minicircuits

ZASWA-2-50DR+). With only one TTL switch at the input of the high power microwave ampli-

fier, we measured a Rabi frequency of 48 Hz when the switch is in the “off” state, compared to a

Rabi frequency of 34.5 kHz in the “on” state, corresponding to an isolation of 57 dB, consistent

with network analyzer measurements of the switch isolation. This would cause a residual rotation

of the collective spin vector of 300 mrad/ms in the worst case scenario where the rotation axis is

1 While ac-Stark shifts from the σ+ and σ− transitions would cancel due to their opposite signs of detuning from
the clock transition, we do not have control over the microwave polarization and hence the Rabi frequencies and
the relative magnitudes of these ac-Stark shifts. In the worse case scenario, there is power in only one of the two
σ±-transitions, which would result in the full microwave ac-Stark shift.
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(a) Parallel- Rotation Axis

(b) Perpendicular- Rotation Axis

Composite /2-pulse:

Plain /2-pulse:

x y

z

x y

z

Measure Measure

Measure Measure

Figure 7.1: The two rotation sequences used to observe projection noise mapped out on the Bloch
sphere. The collective spin vector (rotation) is shown in red (blue). To observe projection noise
in the difference Ω↑ − Ω↓, classical rotation noise added by the microwave π-pulse required in the
probing sequence needs to be smaller than the quantum noise we are trying to observe. Static
rotation errors would add an offset but not increase the noise. However, nothing is truly static.
Slowly varying rotation errors would show up as a varying offset, increasing the measured variance.
To mitigate slowly varying drifts in the Rabi frequency, we employed sequences that ensure the
z-projection of the mean spin Jz is (a) zero to first order in the fractional Rabi frequency error
or (b) common-mode between the Ω↑ and Ω↓ measurements. Note that the quantum noise ∆Jz
remains anti-correlated between the two measurements, as it should be. While slow amplitude
errors are cancelled by these rotations, fast amplitude errors would introduce uncorrelated classical
noise in Jz. We empirically found that fast amplitude noise is not a limiting factor. To reduce the
impact of phase noise or equivalently detuning added during π-pulse, we used a low phase noise
microwave source, described in Section 7.3, to perform the rotations.

perpendicular to the collective spin vector. For the 150 µs time scale of the squeezing operation,

the collective spin vector would be tipped by 45 mrad, much larger than the SQL of ∼1 mrad

we aimed to observe. While a consistent rotation would not add noise in our measurements, only

a 2% fluctuation in the amount of microwave isolation would add noise equivalent to the SQL.

Therefore we took precautions to install a second microwave TTL switch. We constrain the final

microwave leakage by measuring how much the collective spin vector rotates versus hold time when

both switches are in the “off” state to result in a Rabi frequency of 0.07(4) Hz, or a rotation rate

of 0.5(2) mrad/ms and an angle of 0.07(3) mrad in 150 µs in the worst case. Note this constrain
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Figure 7.2: (a) Tuning phase offset between CSS and rotation axis. The CSS is prepared along
nominally x̂, with potentially a small offset along the z-axis due to microwave amplitude error
(inset, black dot showing the tip of the CSS). A rotation through a variable angle is then applied
using resonant microwaves for a variable amount of time. The phase offset between the rotation
axis (inset, green dot showing tip of rotation axis) and the CSS sets the radius of the circle the tip
of the CSS traces on the Bloch sphere (inset, black arrow). The spin projection Jz therefore varies
sinusoidally with the angle rotated through. By fitting the Jz oscillations (black, blue symbols)
to a sinusoid (black, blue curves), the phase offset between the rotation axis and the CSS can be
determined. Deflections more than ∼ 0.5 rad are not observed due to limited dynamic range of the
measurement. (b) Phase offset can also accumulate from microwave detuning during free evolution
time. Same experiment as (a) except that instead of changing the phase of the microwave pulse
performing the rotation, the phase of the pulse is kept fixed here. Here a phase offset is accumulated
from a microwave frequency detuning during a 80 µs free evolution window before the variable
rotation was applied. The detuning was implemented by a (phase continuous) frequency offset of
the DDS frequency source that sets the microwave LO frequency. This shows the importance of
accounting for the effect of frequency detuning during free evolution time causing phase offsets
between the rotation axis and the CSS.

provided by the atoms is consistent with the expected attenuation of 114 dB with two TTL switches.

7.2 Constraining noise from microwave rotations

A classical spin vector can exhibit fluctuations in the measured polar angle θ that arise due

to classical noise introduced during a rotation. In principle, one might mistake such classical fluctu-

ations for the quantum fluctuations due to projection noise. To constrain the possible added-noise

in θ due to rotations, we perform a set of auxiliary rotation and measurement sequences (sum-

marized in Table 7.1), each with sensitivity to different types of errors in the rotation process.
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Rotation-induced noise in θ is distinguished from projection noise by selecting rotations that nom-

inally return all collective spin vectors to their original orientation before each measurement of a

vacuum Rabi splitting. The chosen rotations constrain the added noise from microwave amplitude

and phase noise, and transition frequency noise (arising from the trapping potential for instance.)

These noise sources are equivalent to fluctuations in the angle of rotation, and the axis of rotation.

For the two rotation sequences used to actually observe projection noise in Section 5.7 (see Table

7.2), we estimate that the rotations contribute at most −14(3) dB of added noise in θ relative to

the predicted projection noise level for N = 7× 105 atoms.

If the rotations are imperfect in length, then noise from the anti-squeezed quadrature can leak

into the measurement quadrature. Estimates of the imperfections in the rotation lengths constrain

this noise leakage to < −8 dB and < −35 dB for the two rotation sequences of Table 7.2.

In order to achieve these low noise rotations, we have built and characterized a custom low

phase noise microwave source, and will be described in Section. 7.3. Long term amplitude stability

was enhanced by installing microwave absorbing material near the atoms.

7.3 Low phase noise microwave source

In this Section, we provide an augmented version of Ref. [55], where we describe and charac-

terize a simple, low cost, low phase noise microwave source that operates near 6.800 GHz for agile,

coherent manipulation of ensembles of 87Rb. Low phase noise is achieved by directly multiplying a

low phase noise 100 MHz crystal to 6.8 GHz using a non-linear transmission line and filtering the

output with custom band-pass filters. The fixed frequency signal is single sideband modulated with

a direct digital synthesis frequency source to provide the desired phase, amplitude, and frequency

control. Before modulation, the source has a single sideband phase noise near -140 dBc/Hz in the

range of 10 kHz to 1 MHz offset from the carrier frequency and -130 dBc/Hz after modulation.

The resulting source is estimated to contribute added spin-noise variance 16 dB below the quantum

projection noise level during QND measurements of the clock transition in an ensemble 7×105 87Rb

atoms.
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Table 7.1: Auxiliary rotation and measurement sequences were used to constrain the magnitude
of the added noise ∆θ in the polar angle of the collective spin vector caused by imperfections in
the rotations. The added noise is expressed in dB relative to the predicted projection noise level
at N = 7 × 105 atoms. The atoms are initially prepared in state |↓〉 (θ = π). The rotations are
parameterized as R [ψ, φ], where ψ specifies the angle of rotation about an axis, while φ specify
the azimuthal of the rotation axis in the x − y plane. The rotation axis is always in the x − y
plane nominally. Each measurement N1,2 corresponds to a measurement of the number of atom
in |↑〉 obtained by measuring the vacuum Rabi splitting. The fluctuations in the difference of the
measurements N2 − N1 provides a measure of the fluctuations ∆θ. The rotation noise sources
constrained by each sequence are given in the second column, expressed to leading order in the
small fluctuating parameters εi. The amplitude fluctuations εi are re-expressed in terms of either
differential ε− or common-mode ε+ amplitude fluctuations. The impact of microwave phase noise
and atomic transition noise (for instance, due to power fluctuations in the trapping optical lattice)
can be constrained on both fast and slow time scales.

Auxiliary ∆θ Measured
Sequence

〈
∆θ2

〉
[dB]

R [π/2, 0] fast transition −16(6)
measure N1 frequency noise,
R [2π, π/2] microwave phase noise
measure N2

R [π/2, 0] slow and fast transition -14(3)
measure N1 frequency noise,
R [π, π/2] microwave phase noise
R [π,−π/2]
measure N2

R [(π/2)(1 + ε1), 0] πε− −16(3)
measure N1 ε− = ε3 − ε2
R [π (1 + ε2) , 0]
R [π (1 + ε3) ,−π]
measure N2

R [(π/2)(1 + ε1), 0] 2πε+ +4(1)
measure N1 ε2, ε3 ≈ ε+
R [π (1 + ε2) , 0]
R [π (1 + ε3) , 0]
measure N2
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Table 7.2: The added noise from rotations for the two pulse sequences used to observe projection
noise. Two independent rotation sequences were used to observe projection noise–each with different
sensitivities to the noise sources measured with the auxiliary rotations and measurements of Table
7.1. The predicted added noise from each source is expressed in dB relative to the calculated
projection noise for N = 7 × 105 atoms. The phases of the microwave pulses were adjusted such
that φ1,2,3 < 35 mrad or 2◦.

Measurement Sequence Amplitude Noise Phase Noise Transition Noise
∆θ [dB] [dB] [dB]

R [(π/2) (1 + ε2) , 0] π2ε2+ + πε+(φ3 − φ2) < −30 -17(3) -20(3)
R [(π/2) (1 + ε1) , π/2 + φ2]

measure N1 ε1, ε2, ε3 ≈ ε+
R [π (1 + ε3) , π/2 + φ3]

measure N2

R [(π/2) (1 + ε1) , 0] π
2φ

2
2ε+ + πε− −14(3) < −28 < −34

measure N1 ε− = ε2 − ε1
R [π (1 + ε2) , π + φ2] ε1 ≈ ε+

measure N2
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7.3.1 Context

Low phase noise microwave sources are crucial for a broad range of applications, including

radar, communications, navigation, and timing-keeping [142]. For quantum sensors [143, 144],

quantum gates [145, 146], and tests of fundamental physics [147, 148], microwaves are often applied

to perform rotations on pseudo-spins formed from two atomic hyperfine energy levels separated by

spin-flip resonant frequencies in the microwave regime.

In many atomic physics applications, the microwave source can be narrowband in its tuning

range, since it is being used to address extremely stable atomic transitions. However, the source

must have nimble phase control in order to implement composite pulse sequences [149–151] that

are used to cancel slowly varying amplitude and detuning errors. When resonant microwaves are

applied at the spin-flip frequency, one can view the pseudo-spin as being rotated about a fixed axis

in the x − y plane, with the rotation axis’s azimuthal angle set by the phase of the microwaves.

Composite pulses reduce the impact of amplitude and/or detuning errors for a single rotation about

an axis by implementing several rotations about several axes with different azimuthal angles. Thus,

it is necessary to be able to quickly change the microwave phase between several values. Conversely,

if the microwave phase randomly fluctuates during the rotation, the orientation of the pseudo-spin

at the end of the rotation may fluctuate from one realization to the next, swamping quantum

sources of orientation noise, such as quantum projection noise, that are of fundamental interest [57,

58].

Here we present the details of a custom, low phase noise microwave source near 6.8 GHz,

with tuning bandwidth of approximately 40 MHz, where rapid changes of phase, frequency, and

amplitude are possible. The 40 MHz tuning range is sufficient to span hyperfine transitions in the

widely used 87Rb atom, and only minor modifications are needed for operation with other commonly

used alkali-atoms such as 133Cs, 85Rb, etc. In the range of 10 to 100 kHz offset frequencies from

the carrier, the single sideband phase noise of the source is nearly 20 dB lower than a commonly

used YIG oscillator phase locked to the same crystal reference.
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The offset frequency range 10 to 100 kHz is particularly relevant for our spin-squeezing experi-

ments. In particular, during a crucial π-rotation one finds that only phase noise spectral components

near the Rabi-frequency fR ≈ 40 kHz contribute significant noise into Jz (see Chapter 8), whose

value must be resolved below the projection noise level.

Compared to other microwave frequency sources with the necessary stability and agility,

the source we present is also a cost-efficient option. The total component cost is below $3, 300,

when the Rb atomic reference is excluded. The source achieves lower phase noise than many

broadband commercial microwave synthesizers, such as the Agilent E8257D, which is also roughly

an order of magnitude more expensive. Other narrow-band microwave oscillators, such as cryogenic

sapphire microwave oscillators [152], achieve much lower phase noise, but again at much higher

cost and limited availability. Related low phase noise microwave sources based on a dielectric

resonator oscillator (DRO) phase locked with a few 100 kHz bandwidth to a non-linear transmission

line (NLTL) frequency comb have been reported at the 133Cs 9.2 GHz [153, 154] and the 87Rb

6.8 GHz [155] hyperfine transition frequencies.

7.3.2 Low noise, fixed frequency source

The microwaves are generated by first multiplying up a low phase noise crystal source to

generate low noise microwaves at 6.800 GHz and then performing single sideband modulation of

the carrier using a direct digital synthesis board as the modulation source (Fig. 7.3).

A low noise 100 MHz crystal oscillator (Wenzel ULN 501-16843) is phase locked to a 10 MHz

Rb clock signal (Stanford Research Systems FS725) for long term frequency stability, see Figs. 7.4

and 7.5. The phase comparison between the 100 MHz crystal and the 10 MHz Rb clock is performed

by first mixing with a 110 MHz derived from the 10 MHz Rb clock with a x11 multiplier (Wenzel

LNOM-10-11-13-10-AA-AA), and then mixing the resulting 10 MHz signal with 10 MHz Rb clock

signal. The error signal from the output of the last 10 MHz mixing stage is sent to a loop filter

that feedback on the 100 MHz crystal with servo unity gain frequency of 100 Hz, with schematic

shown in Fig. 7.5.
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Figure 7.3: Schematic of low phase noise microwave synthesis chain. The source starts with a
100 MHz crystal oscillator phase locked to a 10 MHz atomic lock to provide very low frequency
stability. The 100 MHz signal, after coupling off a monitor output, is amplified and multiplied up
through a NLTL. The 68th harmonic is selected by a custom bandpass filter built from a series
of commercial filters and homemade microwave resonators. The resulting NLTL source is a single
harmonic that provides the LO input for a single sideband modulator. The I and Q inputs of the
modulator are driven by a direct digital synthesis (DDS) board that allows phase coherent control
over the frequency, amplitude, and phase of the microwave signal sent to the high power microwave
amplifier. The microwaves are coupled to the atoms using a printed circuit board dipole antenna.
The signal line on the antenna is in red, and the ground plane, on the opposite side of the board,
is in blue. The labels MA,MB and MC indicates points where phase noise was measured.

The 100 MHz signal is amplified to +27 dBm (Minicircuits HELA-10D) to drive a NLTL

(Picosecond Pulse Labs LPN7110-SMT) generating a comb of harmonics out to 20 GHz. For

noiseless multiplication, the timing jitter is preserved, but the phase noise is increased relative to

the source by 20 log10(n) dB, where n is the harmonic order. We utilize the n=68 harmonic at

6.8 GHz yielding a fundamental phase noise increase of 36.7 dB over the crystal source. Note that

the frequency comb produced by the NLTL source allows for the flexibility to choose a frequency

relevant for other alkali atoms by choosing a different harmonic to filter.

The harmonic at 6.8 GHz is isolated via a combination of standard filters (Minicircuits VHF-

6010, VLF-6700, ZFHP-2100-S) for broadband filtering and two high quality factor (Q) microwave

resonators [156] for narrow-band filtering. At 6.8 GHz, the measured insertion losses of the VHF-

6010, VLF-6700, and ZFHP-2100-S filters are 0.7, 0.8, and 0.3 dB respectively. The insertion losses

are low enough that the thermal noise floor of -174 dBm/Hz at 300 K does not affect the phase

noise of the synthesis chain. The ZFHP-2100-S, nominally a high pass filter with 3 dB point at

2.1 GHz, was used to attenuate high frequency harmonics above 14 GHz. The VHF-6010 high pass
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Figure 7.4: Wenzel crystal lock schematic.
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Figure 7.5: Wenzel crystal loop filter with unity gain BW ∼100 Hz.

3 dB point is at 6.01 GHz, and the VLF-6700 low pass 3 dB point is at 7.6 GHz. At an insertion

loss of IL = 2.8(2) dB, the loaded quality factor is QL ≈ 580, and the loaded half width at half

maximum is ≈ 6 MHz, much smaller than the 100 MHz spacing between the comb harmonics.

The microwave resonators have an unloaded Q0 = QL/
(
1− 10−IL/20

)
≈ 2100. Two microwave

resonators are used to give strong suppression of the harmonics close to the harmonic at 6.8 GHz.
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The resonators, illustrated in Fig. 7.6, are constructed from stock copper pipe (inner diameter

of 1”, outer diameter of 1.5”), with a lid 0.25” thick made from copper barstock and a base from

stock 0.125” copper sheet. The three pieces are held together by screws that allow for a tight fit

and good conductivity, but still provide the ability for the resonator to be disassembled. We found

no major improvements to the unloaded resonator Q by soldering the pieces together.

The coupling of microwaves into and out of the resonator is provided by two panel mount

SMA connector feedthroughs held to the copper sheet with a lock washer and nut. Trimming the

internal signal pin lengths increased the Q at the expense of increasing the insertion loss. For

example, pins that had been trimmed to be 3 mm above the base plate had an insertion loss of 5.2

dB, but trimming down to 2 mm above the base plate resulted in an insertion loss of 18.9 dB. The

filters used for the final NLTL source were trimmed to be 4 mm above the base plate.

Bottom View Sideview4-40 Brass
 Tuning Screw

SMA Panelmount feedthroughs

Trimmed to 4mm

Solder to tune frequency

1.00”

0.89”

0.50”

Figure 7.6: Diagram of the high-Q resonant microwave filters. The resonant cavity is constructed
from a copper pipe, with copper plate used to form the lid and base. The cavity resonance frequency
is tuned with a 4-40 brass screw, secured tightly for good conductivity by a nut on either side of the
center of the lid, and more finely tuned through a small amount of lead solder attached to the tip of
the screw (see text). The signal is injected and extracted through panel mount SMA feedthroughs,
trimmed to provide 2.8 dB of insertion loss while maintaining a loaded Q of about 580.

Coarse tuning of the resonant frequency was performed by changing the depth of a brass

screw inserted in the center of the lid. We found that good conductivity between the screw and

the lid was one of the most important parameters for obtaining the maximum Q. The Q was also

reduced when using a stainless steel tuning screw in place of the brass screw. After coarse tuning

the resonance frequency to within 20 MHz of the desired 6.800 GHz, two brass nuts were placed
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on either side of the screw to firmly secure it in place. The final fine-tuning of the center frequency

was performed by attaching a small amount of Sn0.6Pb0.4 solder to the tip of the tuning screw,

then successively sanding small portions of the solder away until the resonator reached the desired

frequency. Tuning resolution below 2 MHz was possible with this approach.

The center frequency of the two resonators were set to 6.800(2) GHz. An amplifier (Mini-

circuits ZX60-1402) was placed between the resonators to prevent the formation of a coupled-

resonance. After filtering, the largest unwanted comb tooth is at 6.7 GHz, −49.5 dB below the

desired 6.8 GHz comb tooth. The resonance frequencies can drift due to temperature changes

with a coefficient of ∼ 150 kHz/K. Mechanical vibrations can modulate the resonance frequency,

giving rise to a phase modulation of the transmitted microwaves to lowest order. To mitigate both

temperature drifts and vibration-induced phase modulation, we passively isolate the resonators in

a foam box.

The single sideband phase noise power spectrum of the 6.8 GHz NLTL source was measured by

transporting the source to the National Institute of Standards and Technology (NIST) at Boulder,

CO, and using a self-homodyne phase noise detector (OEwaves OE8000). Fig. 7.8a shows the

measured noise of our NLTL source at measurement point MA in Fig. 7.3 (after filtering, but

before modulation), a YIG oscillator (Micro Lambda Wireless MLPE-1290) phase locked to the

same ULN crystal reference, and the measurement noise floor of the OE8000 calibrated using a

Poseidon sapphire oscillator at 10 GHz. Our ability to measure phase noise is limited by the

measurement noise floor below ∼ 500 Hz offset frequencies, thus the displayed data is an upper

bound for the phase noise below ∼ 500 Hz.

The NLTL source is quieter than the YIG source by ∼ 15 to 20 dB in the offset frequency

range from 10 kHz to 400 kHz. The multiplied-up phase noise of the 100 MHz ULN crystal taken

from the manufacturer’s datasheet agrees relatively well with the observed data, indicating that

there is little added technical noise at this level in the multiplication, amplification, and filtering

relative to the observed noise level. The 100 MHz ULN phase noise slope changes from 1/f2 above

1 kHz to 1/f3 below 1 kHz due to 1/f phase noise from the crystal oscillator feedback amplifier
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being converted into oscillator phase noise via the Leeson effect [157]. The roll-off of the phase

noise near 5 MHz is believed to arise from the high-Q microwave filters.

7.3.3 Agile control of Phase, Frequency and Amplitude

To generate amplitude, frequency and phase tunable microwaves at the hyperfine clock tran-

sition frequency 6.834693 GHz, a single sideband (SSB) modulator (Hittite HMC496LP3), with a

manufacturer specified output noise floor of −150 dBm/Hz at 7 GHz, modulates the 6.8 GHz NLTL

source. The SSB modulator is tuned to give −31 dB and −19 dB suppression relative to the +1

sideband for the 0, −1 and −2, +2 sidebands respectively.

The I and Q modulation ports are driven near 34 MHz using 90◦ relative phase signals from

2 of the 4 channels of a direct digital synthesis (DDS) frequency source (Analog Devices AD9959

evaluation board) operating near 34 MHz. The DDS source is phase stabilized to a 500 MHz

reference provided by multiplying the 100 MHz ULN crystal oscillator using a diode pair (Avago

HSMP-3822) and harmonic filtering provided by two bandpass filters (Minicircuits BPF-B503+),

see Fig. 7.7. The DDS SSB phase noise floor specified by the manufacturer is −151 dBc/Hz at

10 kHz offset from the carrier when operated at 40 MHz with a 500 MHz reference signal, but

this specified noise floor rises if the DDS is operated with a lower frequency reference, relying on a

programmable internal PLL to multiply up the reference signal to 500 MHz.

100 MHz
Wenzel Sprinter VLN
501-04517D

Power Splitter
ZFSC-6-110

Power Splitter
ZFSC-6-110

Power Splitter
ZFSC-2-1W-75

x5 Multiplier

Diode-pair
Avago HSMP-3822

500 MHz Bandpass
BPF-B503

Ampli�er
ZKL-1R5

400 MHz High Pass
BHP-400

750 MHz Low Pass
BLP-750

Ampli�er
ZKL-1R5

+13dBm -26dBm

500 MHz
DDS Clocks

6 dB

500 MHz
DDS Clocks

Figure 7.7: DDS 500 MHz clock generation via x5 multiplication of a ULN 100 MHz signal.
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Figure 7.8: Single sideband phase noise of several microwave sources all locked to or derived from
the Wenzel ULN oscillator. The measurement noise floor is in grey. a Comparison of noise at
6.800 GHz for a YIG oscillator (green) and our microwave NLTL source (black) measured at
point MA in Fig. 7.3. The noise in the NLTL source agrees with the prediction (red circles with
dashed line to guide the eye) based on ideal scaling of the noise in the ULN oscillator specified
by the manufacturer. b The modulated signal at 6.834 GHz (orange), measured at point MB

in Fig. 7.3, exhibits higher phase noise than the 6.8 GHz signal from the NLTL source (black).
The manufacturer specified noise of the DDS (blue circles with dashed line) when operated with an
internal PLL of ×5 is plotted to show that the added noise primarily comes from the SSB modulator,
excluding frequencies above 2 MHz where the gain peak from the internal PLL dominates. Spurious
multiples of 60 Hz have been removed for presentation purposes.

We control the DDS source through a custom LabVIEW interface2 that can update the

phase, frequency and amplitude in 24, 32, and 28 µs respectively. The tuning resolutions are

0.022◦, 0.12 Hz, and 0.1% of full scale amplitude respectively. Phase continuous frequency ramps

and amplitude ramps are also possible which enable additional techniques, such as atomic popu-

2 We thank Hsiang-Sheng Ku for programming the DDS LabVIEW control.
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lation manipulation using Landau-Zener avoided crossings. The LabVIEW interface utilizes 4-bit

serial communication at 2 MHz, while the DDS is capable of communication at 125 MHz. The

communication rate is presently limited by the speed of the National Instruments DIO card (Na-

tional Instruments PCIe-6259) used to implement the serial communication. If less flexibility or less

integration with the data acquisition system is required, the DDS can also be programed through a

manufacturer-provided USB interface and software, while still maintaining the ability to modulate

a single parameter between as many as 16 programmable values.

The SSB modulator output is amplified to as much as 8.9 Watts using a high power microwave

amplifier (Microwave Power (now Microsemi-RFIS) L0607-38). Measurements with the OE8000 at

measurement point MC in Fig. 7.3 show that the microwave amplifier adds a negligible amount

of phase noise relative to the measured phase noise of the NLTL source derived from the ULN

crystal shown in Fig. 7.8a. The microwave radiation is coupled to the atoms through a low loss

1.5 m cable (CA400) and stub-tuned dipole antenna [158] fabricated directly on a high frequency

laminate circuit board (Rogers RO3035). The critical dimensions for the frequency tuning of the

antenna are labeled in Fig. 7.3. The antenna is relatively broadband, with a FWHM of 400 MHz.

After careful alignment of the dipole antenna, we achieved a Rabi frequency of fR ≈ 40 kHz with

the antenna approximately 1.5” or 4 cm from the atoms 3 . When the microwaves are launched

into free space using a dipole antenna, it is possible that the phase noise of the microwave field at

the position of the atoms is degraded due to reflections off of nearby surfaces. One expects that

such effects should have negligible impact on Q0 since little mechanical motion is expected near

the microwave Rabi frequency of fR ∼40 kHz.

The SSB modulator adds 5 to 8 dB of phase noise relative to the NLTL source, as seen in

Fig. 7.8b where the measurement is taken at point MB in Fig. 7.3. For frequencies below 2 MHz, we

attribute the added noise to the SSB modulator. This data was taken with the the DDS referenced

3 As a side note, microwave absorbing material (Laird RFLS Single Layer sheets, 0.25 inch thick, measured
attenuation of 10 dB) around the glass cell vacuum chamber was necessary to reduce observed changes in the Rabi
frequency of greater than 10% peak to peak caused by people walking past the optics table. With the shielding, the
fluctuations are reduced to ∼1.3% peak-to-peak with people walking around and ∼0.7% with people staying still.
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to the 100 MHz Wenzel ULN crystal directly, and multiplication to 500 MHz being accomplished

using the internal DDS PLL multiplier set to ×5. In this configuration, the phase noise of the

DDS specified by the manufacturer, and confirmed by our own measurements, only has a small

contribution at offset frequencies less than 2 MHz where an expected noise peak from the DDS

PLL becomes visible. This noise peak was present for the measurements in Fig. 7.8b, but is not

present for the final source that has a DDS reference clock of 500 MHz obtained via external ×5

multiplication as described above.

7.3.4 Impact on QND measurements

To achieve conditional spin squeezing using QND measurements of the atomic spin projection

Jz as described in Chapter 5, it was necessary to apply a π-rotation using a microwave source. Using

the YIG PLL microwave source locked directly to the 10 MHz Rb atomic clock for the π-rotation,

we observed added noise in the spin projection Jz that was 18 dB above the quantum projection

noise level for the 7 × 105 atoms. From manufacturer specifications, the multiplied phase noise of

the 10 MHz crystal is -95 dBc/Hz, for the relevant offset frequencies near fR.

Utilizing the NLTL source locked to a slightly noisier 100 MHz crystal oscillator (Wenzel

Sprinter 501-04517D) with the SSB modulation (phase noise measurements taken but not shown),

the predicted added noise noise in Jz due to phase noise during the π-rotation is predicted to be

16 dB below the projection noise level. The prediction is made by simple scaling from the first

measurement with the much noisier YIG oscillator. By reducing the added noise from microwave

rotations, we lowered the technical noise floor of the measurement and were able to observe a 5 dB

reduction in spin noise, limited by our probe quantum backaction. By changing the 100 MHz

Sprinter oscillator to the ULN model and improving the added phase noise of the SSB modulator,

future experiments could operate with added microwave phase noise to Jz that is 27 dB below the

projection noise limit for this large ensemble size. Lower microwave phase noise can be exploited to

perform composite microwave pulses that would add more noise into Jz than the plain π-rotation

discussed here.
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In conclusion, we have demonstrated a microwave frequency source with low phase noise

that maintains the flexibility to adjust phase, frequency, and amplitude needed in high precision

experiments with large atomic ensembles. The source is very cost-effective, providing a phase

stability that surpasses many commercial frequency sources for a fraction of the cost. Although

the source is narrowband, the center frequency can be chosen for a particular need or atom that

requires a stable microwave frequency, providing an attractive option for many applications.



Chapter 8

Theory: Impact Phase Noise on Bloch Vector Rotations

In Chapter 7, we presented precise rotations in the presence of microwave amplitude, detuning

and phase errors that are static within a single experimental trial but could slowly drift from trial

to trial. We could have used composite π-pulses instead of plain π-pulses to suppress static errors

but we did not. Indeed, composite pulses have been developed to cancel static rotation errors to

any degree one desired [159].

In all treatments of composite pulses, these errors are assumed to be static for the duration

of the pulse sequence. For our system, this is not a good assumption, even for a single rotation.

Fluctuating phase or equivalent detuning errors, i.e. phase/detuning noise, near the Rabi frequency

ΩR during the rotations can add noise to Jz. The phase-noise-induced fluctuations of the collective

spin polar angle prevented us from observing the SQL until we improved the phase noise of our

microwave source, which was presented in Chapter 7. Even with the low phase noise source, added

noise from phase noise can accumulate from many single rotations, potentially offsetting the benefits

of static error cancellation from composite pulses.

In this Chapter, we quantify on the effect of phase noise on a single spin-1/2 or qubit,

conveniently represented by a Bloch vector. Since the phase noise acts identically on each individual

spin making up a CSS, the effect on the polar angle of a single spin in the ensemble is the same as the

effect on the CSS polar angle. We present a general framework for calculating the impact of phase

noise during a rotation on a Bloch vector. The analysis applies to any Bloch vector orientation, and

any rotation axis azimuthal angle. The theory is experimentally verified for several special cases.
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We then extend the analysis include pulse sequences assuming a white phase noise spectrum.

Finally, we calculate the sensitivity of commonly used composite π-pulse sequences: CORPSE,

SCROFULOUS, and BB1, used to suppress static amplitude and detuning errors respectively,

and also to spin echo sequences. We expect the formalism presented in this chapter to guide the

development and evaluation of future quantum manipulation protocols. For example, an optical

spectrum analyzer whose noise floor is limited by atomic quantum projection noise has been realized

recently [160]. The material presented in this Chapter has been published in [56].

8.1 Introduction

Atomic quantum sensors and tests of fundamental physics commonly rely on the ability to

rotate a Bloch vector representing a spin-1
2 system or qubit. Besides quantum state manipulation,

rotations can also be used to undo inhomogeneous errors or to reduce other sources of noise, as

is done with spin echo pulses or dynamical decoupling [124, 161–166]. Precise rotations, required

for manipulating collective spin-squeezed states, might also enable dynamical spin-squeezing to the

two-axis squeezing limit [167] using already realized one-axis twisting in cold atoms systems [73,

74, 82, 89]. Given that actual rotations are imperfect, it is an open question whether such rotation

protocols can be realized without adding large amounts of additional noise, thus destroying the

squeezing.

Most rotation protocols assume that the phase of the field that rotates the qubit is perfectly

stable, and that imperfections arise only due to slowly varying amplitude errors or detuning errors.

Composite rotations sequences [149–151, 159, 168] and generalizations to shaped pulses [169, 170],

including optimal control theory [171–173], can be used to reduce these errors to essentially arbitrary

order.

In reality, the phase of the qubit-field coupling is never perfectly stable, largely due to phase

noise in the local oscillator (LO) used to generate the field. The LO is typically a radio or microwave

oscillator in nuclear spin, superconducting Josephson junction, quantum dot, neutral atom/ion

Zeeman and hyperfine qubit systems [3]. In the case of highly-forbidden optical transitions [174], the
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LO is an ultra-stable laser. Further, qubit transition frequency fluctuations can be straightforwardly

mapped onto an equivalent phase noise of the LO. Such a fluctuation might arise due to noise in

the DC bias current of a superconducting Josephson junction qubit [175], or differential light shifts

for atomic qubits in an optical trap [174]. It is critical for future work beyond proof-of-principle

experiments to develop general tools for analyzing the impact of phase noise on a rotation, both in

terms of overall fidelity for quantum gates, and quadrature specific noise for manipulating states

with anisotropic sensitivity to noise, such as spin-squeezed states, and Dicke states [70].

The effect of phase noise on atomic response has been studied in various contexts, for example

on atomic excitation probability [176–179] under continuous drive. In the atomic sensor community,

the impact of phase noise is evaluated for a single quadrature for specific Ramsey sequences [142,

180, 181]. In contrast, we present a general framework that may be applied to an arbitrary LO phase

noise spectrum for continuous resonant drive without making assumptions about the orientation of

the Bloch vector. The framework can be extended to arbitrary resonant pulse sequences assuming

white LO phase noise. Furthermore, we fully specify all second order noise moments of the Bloch

vector including covariances and variances, important for predicting the fidelity of single qubit

gates and manipulations of spin-squeezed or Dicke states. The methodology and tools presented

in this Chapter can help guide the development and evaluation of future quantum control and

measurement protocols.

This Chapter is organized as follows. In Sec. 8.2, we describe the qubit-field interaction as a

rotation of a Bloch vector. We show that the net effect of a coherently phase modulated rotation

can be reduced to a small rigid rotation of the Bloch sphere. A description of the experimental

system used to demonstrate the theory is provided in Sec. 8.3. Experimental examples of the

response of the Bloch vector driven by phase modulated rotations are then presented. In Sec. 8.4,

we extend the analysis in Sec. 8.2 assuming linear response to relate the single sideband (SSB)

LO phase noise to Bloch vector noise projections through a covariance transfer matrix for a single

rotation. Experimental realizations for a few special cases are also presented. The Bloch vector noise

projection variances and covariances are captured in the covariance noise matrix. In Sec. 8.5, we
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generalize the single-rotation covariance noise matrix to that for multiple rotations/pulse sequences

and apply the tools to commonly used composite π-pulse sequences: CORPSE, SCROFULOUS,

and BB1 [149–151, 159, 168], and also to spin echo pulse sequences. A simple formula for the

average infidelity of any pulse sequence, appropriate in the context of quantum computing, is also

presented. Finally, we give a summary and provide an outlook of future work in Sec. 8.6.

8.2 Deflection of Bloch Vector due to coherently phase modulated rotation

8.2.1 System Hamiltonian

The system considered in this Chapter consists of a spin-1/2, or equivalently a qubit, with

transition frequency fa coupled to a resonant classical electromagnetic field with strength charac-

terized by the Rabi frequency fR proportional to the field amplitude. The system’s Hamiltonian

in the lab frame is

Hlab = hfaσ̂z + hfR cos (2πfat+ φ(t)) σ̂x , (8.1)

where h is the Planck constant, φ(t) is the LO phase as a function of time t, and σ̂x , σ̂y, σ̂z are

the Pauli matrices. The first term corresponds to the Hamiltonian of the qubit in the absence of

the field, and the second term corresponds to the qubit-field interaction that drives Rabi flopping

between the qubit states |↑〉 and |↓〉. By going into a rotating frame at the qubit transition frequency,

and making the rotating wave approximation, the dynamics is described by the Hamiltonian

Hrot =
hfR

2
(cos(φ(t))σ̂x + sin(φ(t)) σ̂y) . (8.2)

8.2.2 LO Phase Noise

The LO phase φ(t) is random as a function of time, and its statistical properties can be cap-

tured by the autocorrelation function 〈φ(t)φ(t+ τ)〉t in the time domain, or equivalently the power

spectral density of phase fluctuations Sφ(fm) in the frequency domain, where fm is the frequency

offset from the LO carrier frequency fLO. The power spectral density of phase fluctuations Sφ(fm)

is related to the autocorrelation function through the Wiener-Khinchin theorem (see Appendix D).
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The SSB phase noise L(fm) = Sφ(fm)/2 of a LO is usually specified in manufacturer datasheets

instead of Sφ(fm). To facilitate application of our results in an experimental context, the SSB

phase noise L(fm) is used throughout this Chapter.

The phase noise spectrum of a LO is typically parametrized as a sum of 1/f type phase noise

as follows

L(fm) =
∞∑

k=−∞

Lk
fkm

, (8.3)

where the coefficient Lk characterizes the strength of the noise spectrum with dependence 1/fkm. An

important example is white phase noise where there is no frequency dependence. In this case, the

only non-zero coefficient is for k = 0 corresponding to L(fm) = L◦, and the autocorrelation function

is given by 〈φ(t)φ(t+ τ)〉t = L◦δ(τ) where δ(τ) is the delta function. Other frequently encountered

phase noise spectra include flicker noise L(fm) = 1/fm and phase diffusion noise L(fm) = 1/f2
m.

8.2.3 Bloch Sphere Picture

Since length of the Bloch vector remains the same to second order in the noise, in this Chapter

we normalize the length of the Bloch vector to 1 by re-defining the components of the Bloch vector

Jk ≡ 〈σ̂k〉 where k = {x, y, z}. The tip of the Bloch vector thus resides on a Bloch sphere with

radius equal to 1 (see Fig. 8.1a). The LO phase φ(t) sets the instantaneous rotation axis around

which the Bloch vector rigidly rotates. For fixed LO phase φ(t) = φR, an initial Bloch vector Ji is

mapped to an ideal final Bloch vector J◦f as

J◦f = R(φR, ψ)Ji , (8.4)

where R(φR, ψ) performs a counterclockwise rotation through an angle ψ ≥ 0 about an axis in the

x− y plane with azimuthal angle φR measured relative to x̂. The rotation angle ψ = 2πfRt is set

by the Rabi frequency fR and the amount of time t the field is applied.
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Figure 8.1: (a) Geometrical representation of the Bloch vector and a coherently phase modulated
rotation on the Bloch sphere. Initial Bloch vector Ji is specified by polar angle θi and azimuthal
angle φi. In the absence of phase modulation, the rotation axis is at a constant angle φR from the
x-axis. With phase modulation, the rotation axis oscillates in the x − y plane with amplitude β
around its average position. (b) Effect of a coherently phase modulated rotation. An unmodulated
rotation R(φR, ψ) rotates Ji to J◦f . With phase modulation of the rotation axis, the final Bloch
vector Jf is deflected slightly by the vector jf that can be regarded as arising from a small rotation
r.

8.2.4 Small Rotation describing Phase Modulated Rotation

Our goal is to generate a general covariance transfer matrix that maps LO phase noise onto

noise projections of the final Bloch vector. To do so, we consider here the response of the Bloch

vector to a coherent phase modulation of the LO phase in the frequency domain, and generalize to a

phase noise process in Sec. 8.4. A sinusoidal modulation of the LO phase φ(t) = φR+β sin(2πfmt+

αm) represents an oscillation of the instantaneous rotation axis in the x− y plane with amplitude

β about its average azimuthal angle φR as illustrated in Fig. 8.1a. The modulation frequency and

phase is fm and αm respectively.

A phase modulated rotation causes a deflection of the final vector Jf from its ideal final

orientation without modulation by

jf (φR, ψ, β, fm, αm) = Jf − J◦f . (8.5)

To first order in the phase modulation amplitude β � 1, the deflection is perpendicular to J◦f . The
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total effect of the modulation can be described by an additional small rotation r(φR, ψ, β, fm, αm)

applied after the ideal rotation such that

Jf = rJ◦f , (8.6)

where labels on r have been suppressed. The relationships between the vectors Ji, J◦f , Jf , jf , and

the rotations R(φR, ψ), r are depicted in Fig. 8.1b.

Because the dynamics with modulation can be described in terms of infinitesimal rigid rota-

tions, the whole Bloch sphere is rigidly rotated by this additional phase modulation contribution,

and r does not depend on Ji. This is confirmed by solving for r analytically. Simple rotations

about ẑ through angle φR relate the small rotation r evaluated at φR = 0 to the small rotation

evaluated at arbitrary φR through

r(φR) = Rz(φR)r(0)Rz(−φR) . (8.7)

Therefore, it is sufficient to determine r for the special case φR = 0 and Ji = x̂. Hereafter, quantities

with a tilde (∼) overhead apply to this special case only. We find

r(0) = Ry(−j̃z)Rz(j̃y) =


1 −j̃y −j̃z

j̃y 1 0

j̃z 0 1

 , (8.8)

where j̃f = (0, j̃y, j̃z), and only first order in the small quantities j̃y and j̃z are retained.

8.2.5 Solution for Deflection Vector

We now solve for the j̃y and j̃z that determine the small rotation matrix r defined by Eq. (8.7)

and (8.8). Writing the Heisenberg equations of motion for the Bloch vector components yields to

first order in the small modulation amplitude

dj̃⊥
dψ

+ ı j̃⊥ = −β sin (νψ + αm) , (8.9)

where j̃⊥ ≡ j̃z + ı j̃y, and ν = fm/fR. The rotating wave approximation fm � fa has been made.

Note that this is the equation of motion for the coupled position and momentum of an undamped
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simple harmonic oscillator with natural resonance frequency fR driven with an externally applied

force at frequency fm. The harmonic oscillator’s displacement and velocity map onto j̃y and −j̃z

respectively. Solving for j̃y and j̃z using the initial condition j̃⊥(ψ = 0) = 0, we obtain

j̃y =
β

1− ν2
×
[
−ν cosαm sinψ − sinαm cosψ + sin (νψ + αm)

]
, (8.10)

j̃z =
β

1− ν2
×
[
ν cosαm cosψ − sinαm sinψ − ν cos (νψ + αm)

]
. (8.11)

The above solutions can be understood as a superposition of the “transient” and steady state

response of a driven harmonic oscillator. The terms proportional to sinψ and cosψ in Eq. (8.10)

and (8.11) correspond to the response of the harmonic oscillator at its natural frequency fR. This

response is called the transient response in damped harmonic oscillator systems. Because there is no

damping in this oscillator, the “transient” response does not decay away. The terms proportional

to sin (νψ + αm) and cos (νψ + αm) correspond to the steady state response of the oscillator at the

drive frequency fm. At ν = 1, corresponding to the case of driving on resonance, the solutions take

on the following limits

lim
ν→1

j̃y = −1

2
(ψ cos (ψ + αm)− cosαm sinψ) , (8.12)

lim
ν→1

j̃z = −1

2
(ψ sin (ψ + αm) + sinαm sinψ) . (8.13)

The amplitude of the response grows roughly linearly with ψ for large ψ � 1 as the drive is phase

coherently adding momentum to the oscillator.

8.3 Experimental Verification

To connect the theory described in Sec. 8.2 to an actual physical system, we experimentally

demonstrate the linear response of the Bloch vector to a coherently phase modulated rotation for

a few special cases in this section.
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Figure 8.2: Experimental Sequence for measuring the effect of a phase modulated rotation on
the Bloch vector polar angle. After preparing the initial Bloch vector Ji on the equator through
optical pumping and a microwave π/2-pulse, a test rotation RT is applied, and the result Jz =
(N↑ −N↓)/(N↑ +N↓) is measured probing technique described in Chapter 5. Unlike in Chapter 5
where Jz = (N↑ −N↓)/2, Jz here has been normalized to the total ensemble size as the length of
the Bloch vector has been normalized to 1 in this Chapter.

8.3.1 Physical Implementation

The experimental system used for these studies has been presented in Chapter 5, and the

experiment schematic can be found in Fig. 5.4. Fig. 8.2 shows the experimental sequence for

demonstrating the impact of rotation phase noise on the Bloch vector polar angle. Instead of

performing the experiment on a single atom many times, we perform the experiment on many

identical but otherwise independent atoms N ∼ 106, achieving high single shot signal-to-noise in

our quantum-limited readout. Because our measurements are collective in nature, we normalize

the raw measurement results to the ensemble size to obtain single atom Bloch vector information.

All atoms are initially optically pumped into |↓〉. Following that, a microwave π/2-pulse rotates

the Bloch vector up to the equator, initializing the system for the experiments. To a very good

approximation, the effects of microwave amplitude and phase inhomogeneity across the atomic

ensemble may be neglected in our experiments. The intrinsic phase noise of the microwave LO

source (Agilent E8257D) is sufficiently low that we could use a small modulation amplitude β in

order to remain in the linear response regime and yet not be affected by phase noise of the LO

source. See Chapter 7 for experimental examples of LO phase noise masking quantum projection

noise.
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An experiment typically consists of a test rotation RT using phase modulated resonant mi-

crowaves coupling the two-level system with Rabi frequency fR = 40.4 kHz. After the rotation is

completed, the Bloch vector projection Jz = (N↑−N↓)/(N↑+N↓) is obtained using the cavity-aided

nondemoliton measurements of the state populations N↑,↓ presented in Chapter 5. The deflection

jz is obtained from the measured Jz and the J◦z for the same rotation without phase modulation

using jz = Jz − J◦z . For future reference, j̃z corresponds to the special case of rotation axis about

x̂, i.e. φR = 0, and initial Bloch vector Ji = x̂.

8.3.2 Response to Coherently Phase Modulated Rotation
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Figure 8.3: Examples of the experimentally measured evolution of the Bloch vector along the
measurement axis ẑ versus rotation angle ψ, or equivalently time, for (a) resonant modulation
fm = fR = 40.4 kHz, with β = 0.0125 rad, and (b) non-resonant modulation fm = 1.125fR, with
β = 0.025 rad. The modulation phase αm is 0 for both (a) and (b). Dashed lines joins the data
points (solid circles) to help guide the eye. The system responds with frequency components at fm
and fR, leading to the observed amplitude modulation of the response in (b). Insets show the ideal
theoretical spiral trajectories of the Bloch vector about x̂.

The harmonic oscillator-like response to a phase modulated rotation is experimentally demon-

strated in Fig. 8.3. The Bloch vector is prepared along x̂, then rotated nominally about x̂ using



132

microwaves whose phase is modulated at a fixed frequency fm. After a variable rotation angle ψ,

the projection j̃z is measured. For phase modulation near resonance fm ≈ fR, the envelope of

the modulation grows roughly linearly with ψ, whereas away from resonance fm 6= fR, frequency

components at fR and fm beat against one another to create amplitude modulation. The insets of

Fig. 8.3 show the ideal theoretical spiral trajectories about x̂ for both cases.

8.4 Noise in Bloch Vector due to Phase Noise in a Single Rotation

8.4.1 Covariance Transfer Matrix

Having obtained and experimentally demonstrated the response of the Bloch vector to a

coherently phase modulated rotation in Sec. 8.2, the goal of this section is to define a covariance

transfer matrix that will allow the computation of the variance of the final Bloch vector projection

along any arbitrary axis n̂ due to a randomly phase modulated rotation caused by phase noise in

the LO.

We begin with modeling phase noise at a single discrete frequency f0 by allowing the modu-

lation phase αm and modulation amplitude β to take on random values between realizations of the

rotation. Statistical results are obtained via ensemble averaging over all possible realizations of the

phase modulated rotation. The modulation phase and amplitude are fixed in a single realization

but random from one realization to the next. By drawing the modulation phase αm from a uni-

form distribution between 0 and 2π, and the modulation amplitude β from a Gaussian distribution

with zero mean and variance 〈β2〉, we model the SSB phase noise L(fm) = 〈β2〉δ(fm − f0)/4 (see

Appendix E for details).

We define the covariance transfer matrix as the outer product T (φR,J
◦
f , ψ, fm) ≡ 4〈jf jᵀf 〉/〈β

2〉,

where 〈·〉 denotes a statistical average over αm and β. The normalization of T (labels suppressed)

is chosen so that integrating n̂ᵀ · T · n̂ over the SSB phase noise L(fm) of the LO yields the noise

variance 〈(jf · n̂)2〉 of the final Bloch vector projected along a measurement axis n̂. Using the

solutions for j̃y, j̃z in Eq. (8.10) and (8.11), we find the covariance transfer matrix T̃ (ψ, fm) for the
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special case φR = 0 and Ji = x̂

T̃ (ψ, fm) =


0 0 0

0 T̃yy T̃yz

0 T̃zy T̃zz

 , (8.14)

T̃yy(ψ, fm) =
2

(1− ν2)2
×
[
(cosψ − cos (νψ))2 + (ν sinψ − sin (νψ))2

]
, (8.15)

T̃zz(ψ, fm) =
2

(1− ν2)2
×
[
ν2 (cosψ − cos (νψ))2 + (sinψ − ν sin (νψ))2

]
, (8.16)

T̃yz(ψ, fm) = T̃zy(ψ, fm) =
2

1− ν2
(cosψ − cos (νψ)) sinψ . (8.17)

The covariance transfer matrix T for arbitrary rotation axis azimuthal angle φR and ideal final

Bloch vector position J◦f = (J◦x , J
◦
y , J

◦
z ) is derived using the small rotation r specified in Eq. (8.7)

and (8.8). The full analytic expression for T is cumbersome but can be conveniently obtained

through the transformation

T = D(φR,J
◦
f )T̃ (ψ, fm)D(φR,J

◦
f )ᵀ , (8.18)

where

D(φR,J
0
f ) =


0 −J◦y −J◦z cosφR

0 J◦x −J◦z sinφR

0 0 J◦x cosφR + J◦y sinφR

 . (8.19)

As an example of this general result, we experimentally measure the projection j̃z after

rotating Ji = x̂ about x̂ through different angles ψ = π, 2π and 4π while phase modulating the

microwave source. Integer multiples of π were chosen to minimize sensitivity to intrinsic phase noise

of the microwave source near DC. The transfer function T̃zz is obtained from averaging over four

discrete values of the modulation phase αm = {0, π2 π,
3π
2 }, while keeping the amplitude β constant,

as T̃zz(ψ, fm) = 1
β2

∑3
n=0 j̃

2
z (0, ψ, β, fm,

nπ
2 ). The measured and theoretical transfer function T̃zz

are shown in Fig. 8.4.
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Figure 8.4: Examples of experimentally measured transfer function T̃zz(ψ, fm) for ψ = π (black filled
circles), 2π (red hollow circles) and 4π (blue filled squares) overlaid on parameter-free theoretical
curves. The amplitude of the phase modulation was β = 0.125, 0.05, 0.0625 rad for the ψ = π, 2π, 4π
transfer functions respectively. The modulation amplitude β � 1 is chosen to keep the response
small to remain in the linear regime, and yet large enough to resolve the nulls at integer multiples
of fR. The transfer function does not depend on β as long as β � 1 because both the response j̃z
and the modulation amplitude are proportional to β.

8.4.2 Covariance Noise Matrix

In the linear response/small signal limit, the noise in the Bloch vector in some bandwidth

is simply the integral of the noise variances due to phase noise at frequency fm over the relevant

frequency bandwidth. Integrating the covariance transfer matrix T̃ over the SSB phase noise L(fm)

of the LO yields the covariance noise matrix, defined for the largest possible bandwidth,

Ṽ (ψ) =

∫ ∞
0

T̃ (ψ, fm)L(fm) dfm . (8.20)
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The covariance noise matrix transforms to arbitrary φR and J◦f in the same manner as the covariance

transfer matrix in Eq. (8.18) via

V = D(φR,J
◦
f )Ṽ (ψ)D(φR,J

◦
f )ᵀ . (8.21)

Using the covariance noise matrix, the variance in the projection along n̂ may be obtained as

〈(jf · n̂)2〉 = n̂ᵀ · V · n̂ . (8.22)

As a useful example of quantifying the noise mapping from the LO onto the Bloch vector,

consider a white noise spectrum L(fm) = L◦. Integrating the white phase noise spectrum over the

covariance transfer matrix T̃ (ψ, fm) yields

Ṽ (ψ) = L◦ÑEB , (8.23)

where the noise equivalent bandwidth matrix is

ÑEB = πfR sgn(ψ)


0 0 0

0 ψ − 1
2 sin 2ψ − sin2 ψ

0 − sin2 ψ ψ + 1
2 sin 2ψ

 . (8.24)

A corollary to Eq. (8.24) is that as |ψ| increases, the covariance transfer matrix T̃ becomes more

and more sharply peaked around the Rabi frequency fR. Therefore for large |ψ| � 1, most of the

Bloch vector noise contribution comes from phase noise near the Rabi frequency. As |ψ| → ∞, the

covariance transfer matrix T̃ approaches a delta function at fR

T̃ (ψ, fm) ∼ πfR|ψ|L◦ δ(fm − fR)


0 0 0

0 1 0

0 0 1

 . (8.25)

The noise mapping for any rotation axis in the x−y plane can be obtained by transforming to

arbitrary φR, but keeping J◦f = x̂. We find the non-zero elements are Vzz = Ṽzz cos2 φR, Vyy = Ṽyy,

and Vyz = Ṽyz cosφR. Note that the variance Vzz can be driven to zero by applying the rotation

perpendicular to the Bloch vector as shown in Fig. 8.5(b). Alternately, keeping φR = 0, but letting
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Figure 8.5: Noise Mapping. (a) Phase modulation of the LO causes modulation of the rotation
axis (green arrow) about its mean orientation, here along x̂ or φR = 0. The final Bloch sphere of
points is deflected by an amount described by a small rigid rotation r(0) = Ry(−j̃z)Rz(j̃y). The
deflection of a Bloch vector depends on the ideal final vector J◦f . If a set of possible deflections for

an ideal final Bloch vector J◦f along x̂ is described by a circle j̃2
y + j̃2

z = const (shown outside sphere
for clarity), the same set of deflections for other J◦f are described by ellipses and lines centered at
J◦f . (b) The noise mapping shown in (a) for φR = 0 and for J◦f on the equator can be equivalently
demonstrated by keeping the final vector oriented along J◦f = x̂ and varying the rotation axis
φR. The observed noise variance Vzz (solid circles) of the vector projection along ẑ varies as the
predicted cos2 φR (solid line). The experiment was performed by applying phase modulation at a
discrete frequency fm = 1.125fR to a rotation about x̂ cosφR + ŷ sinφR that nominally rotates the
Bloch vector Ji = x̂ cos 2φR + ŷ sin 2φR through an angle ψ = π to J◦f = x̂. Averaging j2

z over the

four modulation phases αm = {0, π2 , π,
3π
2 } simulates phase noise at a single discrete frequency fm.

J◦f = x̂ cos θ+ ẑ sin θ, i.e. the ideal final vectors lie in the x−z plane, one finds Vzz,yy = Ṽzz,yy cos2 θ

and Vxx = Ṽzz sin2 θ. This noise mapping is graphically shown in Fig. 8.5(a).

8.5 Noise in Bloch Vector due to White Phase Noise From Multiple Rota-

tions

8.5.1 Noise Propagation

The single-rotation covariance noise matrix V allows us to analyze two crucial building blocks

for coherent manipulation of quantum systems – composite pulses, used to suppress static amplitude
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and detuning errors, and time-separated pulse sequences designed to reduce qubit decoherence, such

as spin echo and dynamical decoupling type sequences. Constituent rotations in composite pulses

are applied in a back-to-back manner, leaving as little time as possible between the rotations. In

contrast, time separation beween rotations in a time-separated pulse sequence may be comparable

or much longer than the time it takes execute a rotation.

Assuming a white phase noise spectrum L(fm) = L◦, noise from different rotations become

statistically independent regardless of time separation between rotations. We also assume that

dephasing of the Bloch vector during the time interval between rotations is small, a condition

that is satisfied by time-separated pulse sequences designed to reduce decoherence. This ensures

the opening angle between the Bloch vector and the rotation axis is well defined. Under these

assumptions, the formalism for treating noise from a composite pulse, and noise from a time-

separated pulse sequence are the same.

We now present the noise propagation that gives the multiple-rotation covariance noise matrix

W . The symbol W for the multiple-rotation covariance noise matrix is chosen to differentiate it

from the single-rotation covariance noise matrix V . A pulse sequence consists of N rotations with

the kth rotation given by

Rk = R(φk, ψk) . (8.26)

In the absence of noise, the ideal Bloch vector after the kth rotation is

J◦k = Rk · · ·R1Ji . (8.27)

The added noise from just the kth rotation is

Vk = D(φk,J
◦
k)Ṽ (ψk)D(φk,J

◦
k)

ᵀ . (8.28)

By accounting for how the noise from the previous rotation Wk−1 is transformed by subsequent

rotations, the total noise after the kth rotation may be computed iteratively using

Wk = RkWk−1R
ᵀ
k + Vk , (8.29)
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with the initial condition W1 = V1. Finally, the noise variance along any arbitrary projection axis

n̂ after the kth rotation is given by

〈(jk · n̂)2〉 = n̂ᵀ ·Wk · n̂ , (8.30)

where jk is the noise deflection after the kth rotation.

8.5.2 Average Infidelity

While matrix elements of the covariance noise matrix W depend on pulse sequence specifics

and the initial Bloch vector, we present here a simple formula that evaluates the average quality of

a pulse sequence using only general properties of the pulse sequence. Within the quantum control

and computing community, the state infidelity [182]

1− F = Tr(W )/4 (8.31)

is an important measure of the rotation quality. While the state infidelity depends on pulse sequence

details, the state infidelity averaged over the Bloch sphere of possible initial states

〈1− F 〉 = ΨπfRL◦/3 (8.32)

depends only on the total rotation angle Ψ =
∑N

k=1 ψk and not the rotation axes φk. Thus, a

pulse sequence with smaller Ψ is preferred over one with larger Ψ if one is mainly concerned with

the average fidelity. In spin echo and dynamical decoupling schemes, suppression of environment-

induced decoherence typically improves with the number of pulses. However, this comes at the

expense of increasing the average phase-noise-induced decoherence. It is, therefore, necessary to

strike a balance between reducing environment-induced decoherence and reducing phase-noise-

induced decoherence.

8.5.3 Composite π-pulse Comparisons

Composite pulses, designed to suppress static amplitude and detuning errors, have been

thoroughly analyzed in the literature with regards to the degree of error cancellation [149–151, 159,
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168]. The influence of phase noise on the Bloch vector through composite pulses, however, has

received little attention in literature.

Applying the noise propagation formalism presented in Sec. 8.5.1 to the commonly used

composite π-pulse sequences: CORPSE, SCROFULOUS, and BB1 [149–151], which effectively

implement a π-pulse about x̂, we summarize in Fig. 8.6 the final variance Wzz and the state

infidelity 1 − F versus the initial Bloch vector Ji specified by its polar angle θi and azimuthal

angle φi. Expressions for the composite pulse rotation sequences, covariance noise matrices, and

state infidelities are provided in Appendix F. For completeness, we also summarize the static error

cancellation order and static infidelity for these pulses evaluated for an rotation axis parallel and

perpendicular to the Bloch vector in Appendix F.

The single quadrature variance Wzz is of interest in metrology applications, particularly

for manipulating spin-squeezed states, as added noise in the squeezed quadrature can potentially

destroy the squeezing. The state infidelity 1−F , which includes variances from the two transverse

spin components perpendicular to the ideal final Bloch vector, is particularly pertinent in quantum

control for quantifying the overall quality of the rotations.

It is generally not possible to minimize phase noise sensitivity and optimize static error

cancellation simultaneously. To understand the tradeoffs between phase noise sensitivity and static

error cancellation, we compare and contrast the two for initial Bloch vectors in the x− y plane, i.e.

θi = 0, leaving φi as the only degree of freedom. We use Wzz and 1− F as the basis for evaluating

sensitivity to phase noise.

A static fractional amplitude error ε results in an error εψ in the rotation angle, and a static

detuning error δ = (fLO − fa)/fR, where fLO is the LO frequency, causes the rotation axis to be

tilted up from the x− y plane by an angle arctan(δ). The degree to which the static errors ε, δ are

suppressed can be characterized by the static error squared Wzz,st = j2
z,st(ε, δ, φi), and the infidelity

due to static error 1−Fst = Tr(Wst(ε, δ, φi))/4. These definitions, in direct analogy to corresponding

quantities for phase noise, allows meaningful comparison of the phase noise sensitivity and static

error cancellation on the same footing in the next section.
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Figure 8.6: Composite π-pulses. Variance Wzz and infidelity 1− F of CORPSE π-pulse (a, d),
SCROFULOUS π-pulse (b, e) and BB1 π-pulse (c, f) versus initial Bloch vector orientation (θi, φi).
θi is measured from the x− y plane and φi is measured from x̂. Contours levels are normalized to
fRL◦. For scale, W̃zz(θi = 0, φi = 0) for a simple π-pulse about x̂ is π2fRL◦. Points of best (solid
circle), worst (hollow circle), and same (hatched circle) order of static amplitude error cancellation,
and points of best (solid square), worst (hollow square), and same (hatched square) order of static
detuning error cancellation (offset vertically for clarity) are shown for Bloch vectors with θi = 0.
All plots have the same axes as (a). A quadrant of the Bloch sphere is shown here. The rest of the
contour plot can be generated using reflection symmetry about the x− y and x− z plane. The rest
of the static error cancellation points can be generated via φi → φi + π.
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8.5.3.1 CORPSE π-pulse

The CORPSE π-pulse, used to suppress static detuning error, has the best static error can-

cellation at φi = 0, π where both Wzz,st, 1−Fst = O(δ6). However, it is also most sensitive to phase

noise at φi = 0, π (see Fig. 8.6(a, d)). At φi = π/2, the impact of phase noise is minimized at the

expense of static error cancellation as both Wzz,st, 1− Fst = O(δ4) +O(ε2).

8.5.3.2 SCROFULOUS π-pulse

In contrast to the CORPSE π-pulse, sensitivity to phase noise does not vary with φi for the

SCROFULOUS π-pulse designed to suppress static amplitude error. As shown in Fig. 8.6(b, e),

one can simply choose φi to optimize the cancellation of static errors depending on the quantity

Wzz,st or infidelity 1−Fst to be optimized, and on the dominant source of static errors (amplitude

or detuning) without altering the impact from phase noise.

8.5.3.3 BB1 π-pulse

Finally, the BB1 π-pulse, which compensates for amplitude error with little to no cost to the

sensitivity to detuning error, has similar impact from phase noise where the order of amplitude

error cancellation is best (worst) at φi ≈ 0.79π (0.29π) as shown in Fig. 8.6(c, f). Therefore one

may choose to operate at φi ≈ 0.79π where Wzz,st = O(δ2) +O(ε10) and 1− Fst = O(δ2) +O(ε8).

In fact, the impact from phase noise is slightly lower at φi ≈ 0.79π compared to at φi ≈ 0.29π. On

the other hand, there is a tradeoff between suppressing detuning errors and sensitivity to phase

noise. Detuning error cancellation is best at φi = π/2 as both Wzz,st, 1−Fst do not scale with δ to

any order if ε = 0. However, the impact of phase noise is also worst at φi = π/2.

In general, careful evaluation of the relative scalings and contributions of phase noise, static

amplitude and detuning errors is required to optimize the overall fidelity or specific noise quadra-

tures.
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8.5.4 Spin Echo Pulse Sequences

Spin echo and dynamical decoupling sequences constitute another class of manipulation pro-

tocols in quantum control and computing, important for suppressing qubit decoherence, or, for

instance, to undo probe-induced dephasing as was done in our squeezing experiment. We analyze

here spin echo sequences of the form [τ − R(φ1, π) − 2τ − R(φ2, π) − 2τ · · · − R(φN , π) − τ ] using

the formalism developed in Sec. 8.5.1 to find the covariance noise matrix W for the sequence.

We consider the following two choices of rotation axes: (a) rotation axis always along x̂, or,

(b) alternating between x̂ and −x̂ with the first π-pulse applied along x̂. Note that the widely

used Carr-Purcell [161], Carr-Purcell-Meiboom-Gill [162], and Uhrig Dynamical Decoupling [164]

sequences are special cases of (a) corresponding to specific orientations of the Bloch vector with

respect to the rotation axis x̂.

Writing the initial Bloch vector as Ji = (J ix, J
i
y, J

i
z), the covariance noise matrix for both

choice (a) and (b) reads

WN = Nπ2fRL◦


1− J i 2x sNJ

i
xJ

i
y sNJ

i
xJ

i
z

sNJ
i
xJ

i
y J i 2x 0

sNJ
i
xJ

i
z 0 J i 2x

 , (8.33)

where sN = (−1)(N+1). While the noise properties for the two choices are the same, their sensitivity

to static errors are different. Choice (b) offers cancellation of static amplitude error as the Bloch

vector nominally retraces its path while choice (a) accumulates static amplitude error as the Bloch

vector keeps rotating about the same axis in the same sense. On the other hand, choice (a) does

not accumulate static detuning error while choice (b) does. In future work, we will explore the

possibility of engineering noise properties of spin echo pulse sequences.

8.6 Summary

In summary, we have developed a general framework for analyzing the mapping of LO phase

noise onto noise projections of a Bloch vector and extend the mapping to pulse sequences for the case
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of white LO phase noise. Detuning or transition frequency noise can be handled via the mapping

β → ∆FM/fm where ∆FM is the frequency modulation amplitude. Results for special but important

and illustrative cases are presented, which experimentalists can readily utilize for estimation or

design. Future directions may include extending the analysis to non-resonant excitation, more

complex spin echo or dynamical decoupling pulse sequences, and account for the effects of 1/f and

higher order phase noise, where time separation between pulses may no longer be ignored, and

noise correlations between pulses play an important role.



Chapter 9

Broader Context, Future Prospects, and Conclusions

In this concluding chapter, we will place the observed squeezing in this work within the con-

text of other experiments and approaches for entanglement-enhanced measurement precision. This

chapter will also explore several future directions to improve the amount of observable squeezing,

including probing on optical cycling transitions and technical upgrades to the experiment. The ap-

proach of using cycling transitions is currently being pursued in the laboratory with very promising

initial results.

9.1 Framing our results in broader context

We have utilized the tools of cavity-QED to prepare an entangled ensemble with a 3.4(6)

dB improvement in spectroscopic sensitivity over the standard quantum limit (SQL) in the largest

clock-like ensemble N = 7×105 to date. Our method does not require single particle addressability

and requires a single fast ∼ 150 µs squeezing operation. The gain in sensitivity is spectroscopically

equivalent to the enhancement obtained had we created > 105 pairs of maximally entangled qubits,

demonstrating the power of a top-down approach for entangling large ensembles. The probing of

atomic populations via the vacuum Rabi splitting is also of broad interest for non-destructively

reading out a wide variety of both atomic and solid state qubits.

From the perspective of technologies that might impact future physics, the large ensemble

size is a crucial component. Entangled states of cold, neutral atoms are unlikely to impact the

future of quantum sensors and tests of fundamental physics unless the techniques for generating
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the states are demonstrated to work for the 104 to 107 neutral atom ensembles typically used in

frequency standards [14, 16, 18], free space atom interferometers [19, 27, 87, 183], trapped atom

interferometers [72, 76, 80, 83] and magnetometers [23, 88, 102].

The approach described in this thesis allows sub-quantum-noise limited readout of a sensor

with dMs
dMm

× Mm
N ≈ 0.1 photon recoils/atom (at Mm = 1.9× 105 photons and N = 7× 105 atoms),

producing little heating of the atomic ensemble. Applied to a state-of-the-art optical lattice clock,

the non-destructive probing can result in higher clock duty cycle which improves measurement

statistics, and helps to suppress the dominant aliasing of the local oscillator noise [15, 184].

The work presented in this thesis is unique in that we probe the atomic ensemble in the

resonant regime of strong collective coupling cavity-QED. By doing so, we hope to counter a com-

monly held view that the quality of a coherence-preserving QND measurement is fundamentally

linked to the probe’s large detuning from atomic resonance. Instead, it is the magnitude of the

collective cooperativity parameter N↑C (equivalent to the optical depth for a free space experi-

ment [38]) that sets the fundamental quality of the QND measurement as shown in Chapter. 3.

In the context of free space measurements, detuning from resonance creates little enhancement in

sensitivity to projection noise fluctuations once the detuned optical depth falls below one. The ab-

solute size of projection noise rms fluctuations in the dispersive regime decreases as 1/δp, fs, where

δp, fs = ωp − ω↑e is the free space probe detuning from the |↑〉 to |e〉 transition frequency. In the

presence of a fixed technical noise background, resolving projection noise fluctuations become more

difficult as the probe detuning δp, fs is increased. Using an optical cavity to enhance the coopera-

tivity parameter has the potential to allow similar results to free space experiments, but at atomic

densities lowered by a factor of order the cavity finesse.

The spectroscopic gain demonstrated in this thesis is far from the fundamental Heisenberg

limit which scales as 1/N , indicating that there is a lot of room for improvement. The Heisenberg

limit has been approached by creating nearly maximally entangled states of 2 to 14 ions [62–64, 66,

67]. However, the spectroscopic gain relative to the SQL demonstrated in this thesis is comparable

to these experiments, highlighting the fact that neutral ensembles have higher potential for spectro-
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scopic gains than ion trap experiments because of the large ensemble size. Ensembles of N ≈ 103

atoms have been spin squeezed by exploiting atom-atom collisions within a Bose-Einstein Conden-

sate [72–76, 80–83], however these systems face the significant challenge of managing systematic

errors introduced by the required strong atomic interactions.

Figure 9.1: Schematic of weak sampled measurements. A small fraction ε of a large ensemble
N of atoms could be extracted and a strong measurement of the extracted sub-ensemble’s Bloch
vector polar angle θ is performed. Using this classical sampling strategy, the estimate of the Bloch
vector polar angle θ of the initial full ensemble is limited to the SQL for the sub-ensemble to
∆θSQL,sample = 1/

√
εN . While the loss of signal in the remaining ensemble can be made small, the

uncertainty attainable from measuring sub-ensemble increases concomitantly. In our experiment,
ε = 0.15(2). The sampling strategy would provide an estimate −10 log(ε) = 8.2(7) dB noisier than
the SQL for the initial full ensemble ∆θSQL and 13.2(9) dB noisier compared to the spin-noise-
reduction demonstrated in Chapter. 5 using a coherence-preserving QND measurement.

The coherence-preserving nature of the QND measurements presented in this thesis should

also be contrasted with weak, sampled measurements in order to compare this work to fluorescence

detection of an optically thin ensemble. Equivalently, the angle θ of the full ensemble could be

estimated by extracting a fraction ε = 1−Cf/Ci = 0.15(2) of the initially un-decohered atoms, and

performing perfect state detection on this sub-ensemble. The loss of signal would be the same as

observed in our experiment, but the sub-ensemble’s estimate of θ would be G = −10 log10(ε)+4.9 =

13.2(9) dB noisier than the 4.9(6) dB sub-projection-noise precision demonstrated in this thesis

using a collective measurement approach. Conceptually, this reduction in noise can be described as

arising from a noiseless amplifier of gain G placed before a 15/85 linear atom beam splitter [185].
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This fundamental gain in precision is enabled by the collective interaction of the atomic ensemble

and the probe mode.

9.2 Spectroscopic gain in the presence of decoherence

Generating spin squeezed states with phase resolution below the SQL takes us one step closer

towards making ever more precise phase and frequency measurements. The natural next step is to

apply the generated squeezed states to an actual measurement. The question of how to harness

the power of entangled states for metrological gain under different decoherence models is currently

a very active field of theoretical research. In this section, I will briefly discuss several situations in

which decoherence during the phase evolution can reduce or even eliminate the spectroscopic gain

afforded by the intrinsic phase resolution enhancement of the generated squeezed states. The final

step in Ramsey spectroscopy is to map the evolved phase onto a change in populations, and then

read out the populations. To realize the full potential accorded by the squeezed states, it is therefore

necessary to read out the state with sufficiently low noise — a topic already treated in Chapters 3

and 4. More precisely, the readout noise needs to be much lower than the projection noise of the

squeezed state. With low noise readout techniques, recent experiments have demonstrated Ramsey

interferometry beyond the SQL with spin squeezed states over evolution times of .20 ms [73, 75,

76, 186, 187].

In systems whose Ramsey evolution time is limited by uncorrelated single particle decoher-

ence, Ref. [188] has showed that maximally entangled cat states provide no spectroscopic enhance-

ment in frequency measurements over coherent spin states. The reason is because cat states are so

sensitive to atomic decoherence such that the optimal Ramsey evolution time is drastically short-

ened by a factor of N , completely negating the quantum advantage provided by the N times faster

rate of phase evolution. However, Refs. [188, 189] showed that improvement of frequency measure-

ments from partially entangled states that have a high degree of permutation symmetry, such as

spin squeezed states, can be obtained. Taken together, the gains achievable from modest amounts

of spin squeezing and the extreme fragility of maximally entangled states suggest that pursing the
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Heisenberg limit in large ensembles could throw off our scent in the pursuit of higher measurement

precision. Generating macroscopic cat states is a very worthy scientific goal for understanding

quantum superpositions at macroscopic scales, but cat states might not be practical for metrology

with large ensembles.

Besides being extremely sensitive to dephasing [66, 190], maximally entangled states are also

extremely sensitive to losses. The loss of a single atom effectively collapses the wavefunction into

a product state wavefunction into all spin up or all spin down. In the density matrix formalism,

tracing over a single particle results in a completely mixed state. The mixed state can be interpreted

as a classical mixture of all the atoms in spin up or all spin down with probability 50% each. Spin

squeezed states, in contrast, have been shown to be robust against loss [191], uncorrelated single

particle dephasing [192], and to a lesser extent, correlated dephasing [37]. The reason for this

robustness arises from the permutation symmetry of squeezed state [191]. Unlike a cat state,

small losses from a spin squeezed state do not destroy entanglement completely. Losses degrade

the amount of squeezing dependent on the relative levels of losses and squeezing. In analogy to

squeezed light, the degradation of spin squeezing in atomic systems due to losses is analogous to

vacuum noise coupling in through a dark port. As an example, for squeezing levels of 3 dB, one

could afford to lose ∼ 50% of the particles before losing the squeezing. Unlike photons, it is easier

to trap and hold onto atoms for long periods of times, and one could imagine atomic spin squeezing

might be able to surpass even photonic squeezing one day.

It is important to make a distinction between phase and frequency measurements. Frequency

measurements rely on the accumulation of an evolved phase over time, during which decoherence

can occur. In contrast, a phase measurement is robust because it can be made, in principle, in an

arbitrarily short amount of time so that decoherence is frozen in its tracks. As a result decoherence is

not expected to degrade spectroscopic gains for a phase measurement. This does rely on performing

the phase measurement immediately after the squeezed state is prepared. Alternatively, squeezing

may be stored in the θ-quadrature which is insensitive to dephasing in φ while waiting for the phase

measurement experiment to be readied. When the phase is ready to be measured, a rotation that
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aligns the squeezing along φ activates the phase measurement.

In optical clocks, where coherence times are limited by the laser local oscillator dephasing1

(an example of correlated dephasing), the precision of the clock can be enhanced by using squeezed

states of large ensembles, with the optimal Allan variance scaling as N−1/3 relative to the SQL [37].

This optimal Allan variance scaling is achieved using moderately squeezed states with ξ−1
m '

√
N ,

far from the Heisenberg limit of ξ−1
m = N for large N . The favorable scaling with N argues

for using large ensembles, as is pursued in this thesis, to obtain more potential improvement.

Using an ensemble size of N = 106 as an example, the optimal amount of squeezing would be

ξ−1
m ' 103 = 30 dB. So for squeezing less than 30 dB, such as our experiment where ξ−1

m = 3.4 dB,

the full amount of squeezing would be reflected in the clock Allan variance improvement.

Instead of making more precise measurements, one can also choose to spend the squeezing

on making more frequent measurements. Increase in measurement bandwidth with squeezed states

can be achieved without loss of sensitivity provided the Ramsey evolution time is shorter than the

single particle decoherence time [38]. Atomic magnetometer bandwidth improvement enabled by

entanglement has been demonstrated in Ref. [102]. Bandwidth improvement with nondemolition

measurements have also been demonstrated in Ref. [125].

9.3 Fundamental Limits on Squeezing via Probing the 87Rb cycling transition

Squeezing via probing an open optical transition, as was the case for the experiment presented

in Chap. 5, is fundamentally limited by Raman spin flips as shown in Chap. 4. As an outlook on

future experiments, we consider a situation in which Raman spin flips are greatly reduced, namely

probing on a cycling transition [130, 193]. Using the framework developed in Chapters 3 and 4,

we show that larger amounts of squeezing are possible in this configuration than with probing on

an open transition. The key results are that as NC is increased, the spectroscopic enhancement

scales as ξ−1
m ∼ NC, as expected in the cycling limit, until it enters a region of saturation of the

1 Nature provides atoms with such long coherence times that the best ultra-narrow linewidth lasers cannot yet
match.
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spectroscopic enhancement set by the ratio ωhf/Γ of the hyperfine splitting to the excited state

decay linewidth as a result of the Raman spin flips caused off-resonant scattering off other states,

i.e. the notion of a cycling transition is an approximate concept.

As a concrete example of how a cycling transition can be used to enhance probing, we consider

the cycling transition in 87Rb, |↑〉 ≡ |F = 2,mF = 2〉 to |e〉 ≡ |F = 3′,mF = 3〉 at wavelength

780 nm. The spin down state is chosen as |↓〉 ≡ |F = 1,mF = 1〉. For the following, the probing

scheme with relevant energy levels, dipole matrix elements, decay branching ratios, dressed mode

frequencies, and probe laser detunings are shown and defined in Fig. 9.2. Here we will extend the

previous models of the precision of the estimation of Jz and the loss of signal due to wavefunction

collapse to capture the essential physics for this system. Key results are that there exists a region

of saturation, or universal spectroscopic enhancement, set only by atomic properties and in which

varying atom number and cavity finesse can have little impact. The asymmetry in the cavity

coupling to |↑〉 and |↓〉 allows this saturation region to be surpassed at large values of NC but the

scaling then proceeds as ξ−1
m ∼

√
NC.

We must first consider what limits the rate of Raman scattering processes that can lead

to diffusion of the spin projection Jz. The probe polarization can be set to pure σ+ to better

than 10−4, so that Raman scattering from |↑〉 is suppressed to at least this level or greater. The

more fundamental Raman scattering limitation arises from the finite hyperfine splitting ωhf =

2π× (6834 MHz). Specifically, atoms in |↓〉 can non-resonantly Raman scatter probe photons from

|e′〉 ≡ |F = 2′,mF = 2〉.

In the following discussion, the quantity ms is importantly defined as the average number

of probe photons (normalized to the total atom number) Rayleigh scattered into free space by

atoms in |↑〉. All other scattering processes will be scaled from this quantity using the quantities

defined in Fig. 9.2. The key parameters for rescaling are the ratio of the dipole matrix elements

r = M↓e′/M↑e = 1
√

2, the decay branching ratio B3e′ = 1/6 from |e′〉 to |3〉 ≡ |F = 2,mF = 1〉, and

the detunings of the probe light δe and δe′ = δe − ωhf − ωehf from resonance with the transitions

|↑〉 → |e〉 and |↓〉 → |e′〉 respectively. Because ωhf � ωehf , we neglect the excited state hyperfine
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F = 2

F = 1

Figure 9.2: Probing scheme using the cycling transition in 87Rb. The ground hyperfine states F = 2
and F = 1 are split by ωhf = 2π × (6834 MHz). The values of mF are labeled across the top. The
relevant F ′ = 3 and F ′ = 2 excited D2 transitions at wavelength 780 nm are also shown with the
excited state splitting ωehf = 2π × (267 MHz). The pseudo spin-1/2 system is here composed of
|↑〉 = |F = 2,mF = 2〉 and |↓〉 = |F = 1,mF = 1〉. Ideally, the σ+-polarized probing laser couples
only |↑〉 to the optically excited state |e〉 with dipole matrix element M↑e at a frequency detuning
δe that is approximately equal to the dressed-cavity mode frequency ω−. In this illustration, δe
is negative. By dipole selection rules, |e〉 can only decay back to |↑〉. However, the same probe
laser also couples |↓〉 to the single excited state |e′〉 with dipole matrix element M↓e′ and larger
detuning from resonance δe′ = δe − ωhf + ωehf . The ratio of matrix elements is M↓e′/M↑e = 1/

√
2.

Finally, the state |e′〉 decays to states |↓〉, |↑〉, and |3〉 with fractional branching ratios B↓e′ = 1/2,
B↑e′ = 1/3, and B3e′ = 1/6 respectively.

splittings so that δe′ ≈ δe − ωhf .

The rms imprecision in the estimate of Jz relative to the projection noise level can be ap-

proximately modeled as (
∆Jz

∆Jz,CSS

)2

= 4p↑ms + p3ms +
m̃proj
s

ms
. (9.1)

Any small gains in the imprecision of the estimate of Jz from state preparation or prior knowledge

has been neglected. Starting in order of physical significance, the first and second terms arise from

diffusion of Jz caused by Raman transitions from |↓〉 → |↑〉 and |3〉 with effective probabilities p↑
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and p3 given approximately by

p↑,3 = B↑,3 e′r
2

(
δe
δe′

)2

. (9.2)

In this simple treatment, Raman decays to |3〉 are treated as loss, as reflected in the smaller

numerical pre-factor in front of the second term of Eq. (9.1).

The third term in Eq. (9.1) is modified to reflect that both states can interact with the

probe at large detunings such that the dressed cavity mode frequency is less sensitive to quantum

projection noise in Jz, and thus more probe photons must be used to resolve Jz at the projection

noise level, i.e.,

m̃proj
s =

mproj
s

Rray
. (9.3)

Here, mproj
s is defined by Eqs. (3.19), (3.9), and (3.4). Indistinguishability is accounted for by

Rray =

(
1− r

∣∣∣∣ δeδe′
∣∣∣∣)2

. (9.4)

Note that Rray ≤ 1 with an asymptotic value of Rray → (1− r)2 at large detunings.

There are two effects that are neglected in Eq. (9.3) by first assuming they are small, and then

verifying this to be the case after the calculations. First, in applying the dressed cavity linewidth

result for κ′ from Eq. (3.9), we assume that the cavity mode is negligibly further broadened by atoms

in state |↓〉. By estimating the additional broadening evaluated at the optimal cavity detuning

and average number of scattered photons, we find that the optimal spectroscopic enhancements

calculated in Fig. 9.3 are reduced by < 0.3 dB due to the neglected mode broadening. Second, we

assume that the dressed mode frequency ω− calculated from Eq. (3.4) is only modified by a small

fraction by atoms in state |↓〉. Again, this assumption is verified to be the case at the optimal

cavity detuning and the average number of scattered photons, with the exception of the case where

N > 108 and cavity finesse F = 100, as shown in Fig. 9.3 where several dB of deviations are possible

due to this effect.
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Next, we consider how collapse due to free space scattering reduces the coherence C, specifi-

cally

C = e−ms(Rray+Rram) , (9.5)

where the partial cancellation of wavefunction collapse due to indistinguishable Rayleigh scattering

off of both |↑〉 and |↓〉 (see [139]) is accounted for by Rray.

The term Rram accounts for Raman scattering from |↓〉 to |3〉.

Rram = B3e′r
2

(
δe
δe′

)2

. (9.6)

As before, we assume that Raman scattering to state |3〉 is equivalent to atom loss. Note also that

Rram ≤ B3e′r
2.

Equations (9.1) - (9.6) are used to numerically estimate the optimal spectroscopic enhance-

ment ξ−1
m, opt shown versus atom number N in Fig. 9.3 for a range of technologically reasonable cavity

finesses assuming our cavity geometry and perfect quantum efficiency q = 1. The optimization is

done with respect to both ms and the dressed cavity mode frequency ω− (tuned by changing the

bare cavity frequency). The mode frequency ω− at the optimum is shown in Fig. 9.4. The loss of

signal due to wavefunction collapse and scattering to |3〉 at the optimum is shown in Fig. 9.5.

At low atom number, the spectroscopic enhancement scales as ξ−1
m, opt ∼ qNC. At high atom

number, the spectroscopic enhancement scales as ξ−1
m, opt ∼

√
qNC. There is an intermediate region

of atom number for which the spectroscopic enhancement is relatively flat versus atom number with

ξ−1
m, opt ∼ ωhf/Γ. The physical origin of this plateau arises from the form of the critical detuning of

Eq. (3.24).

In the good cavity limit, the scattering necessary to reach projection noise level sensitivity

mproj
s falls as 1/δ4

c for δc < δ◦c , making it beneficial to operate with |ω−| ∼ δc ≥ Γ
√
NC/q.

However, the Raman transition probabilities p↑,3 continue to grow quadratically with the detuning,

while detuning farther no longer rapidly reduces mproj
s .

Assuming the critical detuning δ◦c is optimal for the reasons above, and in the limit of |ω−| <

ωhf , the Raman transition probabilities scale as p↑,3 ∼ (NC/q)(Γ/ωhf)
2, while mproj

s ∼ 1/qNC.
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,-1

Figure 9.3: Theoretical optimal spectroscopic enhancement ξ−1
m, opt(solid curves) in dB relative to

the SQL versus total 87Rb atom number N for our current cavity geometry and probing near the
D2 cycling transition as shown in Fig. 9.2. The optimization is performed for a range of technically
realizable cavity finesses F = 102, 103, 104, 105, and 106 (blue, cyan, green, yellow, and red curves
respectively) under the assumption of perfect quantum efficiency q = 1. Note the unphysical
regime below the Heisenberg limit (disallowed grey region). A region of saturation of ξ−1

m, opt versus

N occurs near ξ−1
m, opt ≈ ωhf/Γ shown by the labeled horizontal dashed line. The physical origin

for the saturation region arises from competition between the scaling of the off-resonance Raman
scattering probabilities and the dressed cavity mode broadening, as described in the text. The
points of 3 dB deviation from NC scaling at low atom number (solid circles) and

√
NC scaling

at large atom number (open circles) occur when the solid curves cross ξ−1
m, opt = 27 dB and 33 dB,

respectively. The approximate transition from q to
√
q scaling occurs when the solid curves cross

ξ−1
m, opt = 28 dB, the point at which the scaling is approximately q3/4.

Optimizing the total noise in our estimate of Jz using Eq. (9.1) with respect to ms reproduces the

observed plateau value ξ−1
m, opt ∼ ωhf/Γ ∼ 103. The plateau region is exited at low atom number

when loss of signal, described by Eq. (9.5), dominates the reduction in spectroscopic enhancement,

as illustrated by the loss of signal due to wavefunction collapse shown in Fig. 9.4. At high atom

number, the plateau region is exited when the optimum mode frequency becomes large compared

to the hyperfine splitting |ω−| > ωhf , as shown in Fig. 9.5.

Importantly, this analysis shows that there is a range in which increasing either finesse or
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Figure 9.4: The dressed mode frequency ω− that optimizes the spectroscopic enhancement ξ−1
m for

the conditions described in Fig. 9.3, where again the cavity finesses F = 102, 103, 104, 105, and 106

correspond to blue, cyan, green, yellow, and red curves, respectively. The open and closed circles
indicate the locations of the 3 dB points in Fig. 9.3. The mode frequency is normalized to the
hyperfine splitting ωhf/2π = 6.834 GHz. Note that ω− ≈ Γ at ω−/ωhf ≈ 10−3. Comparing to
Fig. 9.3, one finds that the transition to spectroscopic enhancement scaling as ξ−1

m, opt ∝
√
qNC

occurs near ω− ∼ 1.8× ωhf . Above this point, the spin flip probabilities p↑,3 change little with ω−.

atom number can have little effect on the optimal spectroscopic enhancement achieved. Also, note

that the value of the plateau does not depend on the cavity geometry, and therefore represents

a universal value that depends only on the atomic properties. One can also show that the range

of atom number spanned by the plateau and the position of the first corner scales roughly as

N ∼ w2
0/F , but does not depend on the cavity length l. Finally, for atom numbers below 103, it

appears possible to both prepare and readout states near the Heisenberg limit using this approach

and technologically feasible cavity finesses. Single atom measurement resolution for N . 100 was

recently demonstrated using the approach described here [130].

Looking ahead at how the squeezed state might be of use, we note that the squeezing is

generated on a magnetic field sensitive transition desirable for enhancing magnetometer precision
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Figure 9.5: The scattering ms that optimizes the spectroscopic enhancement ξ−1
m shown in Fig. 9.3.

Again, the cavity finesses F = 102, 103, 104, 105, and 106 correspond to the solid blue, cyan, green,
yellow, and red curves, respectively. The open and closed circles indicate the locations of the
3 dB points in Fig. 9.3. Comparing to Fig. 9.3, one finds that the transition to spectroscopic
enhancement scaling as ξ−1

m, opt ∝ qNC occurs when ms ≈ 0.25, indicating that at larger N , far
off-resonance Raman scattering begins to create significant diffusion of Jz that limits the precision
of the estimation of Jz as discussed in the main text.

and/or bandwidth. Looking from a different perspective, the squeezing could be generated using a

favorable probing scheme such as the one presented here, and then mapped onto the clock states

for precision time keeping via microwave and rf Rabi rotations or rapid adiabatic passage. Ramsey

spectroscopy can then be performed on the squeezed clock states, and for low noise readout, the

output of the Ramsey interferometer could be mapped back onto the same states squeezing was

originally generated on. During the readout, the probe measurement strength can then be increased

to provide very high resolution, performing essentially a non-demolition measurement as described

in Fig. 2.7. Destroying coherence during the readout step does not affect the precision of the

Ramsey interferometer.
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9.4 Future Experimental Upgrades

In this section, I consider several improvements in the experimental setup that could be

implemented in the next generation Science Cavity.

9.4.1 Improving Cavity Finesse

Having spent a lot of time with the current experimental apparatus whose crucial element

— the Science Cavity — has been sealed up in UHV since summer 2008, I can point to many

imperfections that have developed since its assembly in a pristine condition. My chief concern

is with absorption/scattering losses on the mirrors, costing us a ∼50% loss in detection quantum

efficiency. This loss impacts our ability to prepare measurement-induced spin squeezed states with

more than 3 dB below the SQL. The squeezing we have generated is not yet limited by Raman spin

flip diffusion, but by technical noise. Therefore, at fixed probe photon number and sufficiently far

away from the technical noise that behaves almost like a vertical wall, the measurement imprecision

would scale inversely to the detection quantum efficiency, just like in the cycling limit. Thus a loss

of ∼50% would result in a reduction of ∼ 3 dB of spectroscopic enhancement. I will also mention

that the UHV 45◦ folding mirror presents a 8% loss in detection efficiency in the cavity reflection

path. The cause of this loss is unknown, although we hypothesize it could be due to rubidium

coating the folding mirror due to its proximity to the rubidium reservoir source.

When the cavity was first assembled, its measured linewidth κ2008 was in good agreement

with the predicted value κ0/2π = 5.29 MHz from ATF’s mirror transmission measurements. Over

time, we noticed a gradual increase in linewidth of ∼1 MHz that can be recovered using 405 nm

blue laser diodes to remove adsorbed rubidium on the mirrors surfaces via light-induced desorption.

A catastrophic high voltage discharge near the silver epoxy connection between the bottom mirror

PZT and the kapton wires in summer 2009 coated the mirrors with material that the blue laser

light cannot remove, leading to an almost doubling of the linewidth to κ2009/2π = 9.2 MHz. Since

then, the linewidth has gradually crept up to a stable value of κ/2π = 11.1(2) MHz. After the
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discharge, we measured a finite resistance between the PZT wires that is not stable, indicative of

an intermittent connection or flaky short between the wires. We believe this is due to the kapton

coating on the wires soaking up rubidium atoms, leading to a short where the supply and return

voltage wires crossed. The short also limits our ability to scan the Science Cavity to a fraction of

a FSR currently, although that can be mitigated with laser heating of the PZTs.

For the next generation Science Cavity, we could go up a factor of 10x to 100x in finesse

to F ∼ 104 to 105 to increase the single particle cooperativity, a key figure-of-merit in cavity-

QED experiments. While a higher finesse cavity is more sensitive to losses, we are optimistic that

preventive measures can be taken to to avoid degradation of the cavity finesse resulting in reduction

in quantum efficiency. Careful assembly of the kapton wires such that they do not cross each other

or touch the stainless steel vacuum chamber would prevent shorts. Using kapton dipped wires

would also help. We should drive each PZT independently with its own UHV vacuum feedthrough

so that in case one goes bad, we have a fallback. A 2D MOT source can be installed to deliver a

high flux and collimated beam of cold atoms to the cavity instead of enveloping the whole cavity

with rubidium vapor as is currently the case. Heater coils can be installed around the mirrors to

drive off rubidium vapor on the mirror surfaces, an approach successfully used in Ref. [194].

9.4.2 Single-ended Cavity to Improve Detection Efficiency

To simplify the detection, a single-ended cavity with the transmissive end 10x to 100x more

transmissive than the highly reflective end would be highly desirable so that there is nominally only

one detection port (unless we find a good reason to detect the cavity transmission also). We can also

perform homodyne detection of the cavity-probe sideband, winning back the 3 dB of signal-to-noise

lost in heterodyne detection. We can do so by stabilizing the phase of the interferometer in reflection

(described in Chap. 5) with a strong phase-reference sideband (∼ µW) detected in heterodyne with

a very strong reference beam (∼mW to be shot noise limited) that is frequency degenerate with

the weak cavity-probe sideband (∼nW). Using the detected phase-reference sideband phase as the

error signal, feedback can be applied to the phase of the probe laser beam that carriers both the
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phase-reference and cavity-probe sidebands. By choosing the carrier phase value to lock to, we can

perform homodyne detection of the cavity-probe sideband in the phase quadrature.

9.4.3 Uniform Coupling of Cavity Mode to Atoms

To generate spin squeezed states that can be launched into free space for interferometry such

as in a fountain clock or in an atom interferometer requires uniform coupling of the cavity mode to

the atoms. There are two ways to obtain uniform coupling — ring cavity or commensurate lattice.

In a ring cavity, the cavity mode is a running wave, unlike the standing wave in a Fabry-Perot

cavity. By trapping atoms in a small region near the center of the cavity, fairly uniform coupling

can be achieved. In a ring cavity, however, the two polarization modes of the cavity typically

have different finesses and free spectral ranges due to unequal s- and p-reflection coefficients (both

amplitude and phase). At high finesse, orthogonal polarization modes may be split, impacting one’s

ability to address both polarization modes simultaneously. In a commensurate lattice, one utilizes

a lattice at 2x the probe wavelength such that the antinode of the lattice lines up with every other

antinode of the probe mode. Since the atoms are tightly confined in each pancake, good uniform

coupling may be achieved. To be consistent with mirror boundary conditions, the commensurate

lattice and probe mode starts out in phase in the middle of the cavity and acquires a relative phase

slip of λ/2 by the time they reach the mirrors. Provided the axial extent of the atomic ensemble is

much shorter than the cavity length, so the atoms do not see the phase slip, uniform coupling can

be achieved.

9.4.4 Removing 17 Hz Vibration Noise Source

An annoying vibration at 17 Hz of the Science Cavity relative to the optics table causes the

mode-matching to the cavity to change on timescales of 60 ms. Up and down motion of ∼ 2λ795

peak-to-peak imposes phase noise in the reflected light, which we removed using carrier phase

stabilization in Chapter 5. Another effect is the changing of the coupling to the cavity mode due

to sideways motion of the cavity at 17 Hz. The effect is mitigated by optimizing the coupling to
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the cavity mode in the transverse directions so that any offset in the transverse plane affects the

transmitted lattice and probe power only to second order. We find a 1−2% peak-to-peak fluctuation

in the reflected probe power when mode matching is optimized. The source of the 17 Hz is the AC

unit attached to the ceiling of the lab below our lab. Thus our lab floor as well as the non-floating

optics table is vibrating at 17 Hz. The cavity, being vibrationally isolated, stays relatively fixed

with respect to the local inertial frame defined by the earth. We could float our optical table or

modify the vibration isolation. We can replace the viton rubber balls used in the first and lowest

frequency stage of vibration isolation with steel ball bearings to transmit the 17 Hz to the cavity

while still leaving the second and third stage for high frequency vibration isolation, so there is no

differential motion between the optics table and the cavity at low frequencies. While the 17 Hz can

affect the cavity resonance frequency via differential acceleration of the top and bottom mirrors,

the feedback loop has plenty of gain at the low frequency of 17 Hz compared to the unity gain

frequency of ∼2 kHz to squash that noise down.

9.5 Summary and Conclusions

We have demonstrated the preparation of conditionally spin squeezed states with 3.4(6) dB

spectroscopic enhancement beyond the standard quantum limit. The degree of squeezing achieved

in our experiment is currently limited by technical noise associated with the frequency chirping of

the Rabi splitting resonances. This technical noise variance, scaling as ∼ M6
m has an extremely

unfavorable scaling with the probe photon number Mm.

In the future, our method can be extended to achieve greater violations of the SQL or

equivalently obtaining larger amounts of squeezing by reducing the chirping of the resonances via

probing on an optical cycling transition. Squeezing via probing on an optical cycling transition

with the pseudo spin-1/2 system comprised of the stretched hyperfine ground states of 87Rb is a

promising path to achieving more squeezing. By probing on an optical cycling transition, Raman

spin-flips that would fundamentally limit squeezing on the clock transition in the scheme presented

in this thesis would be greatly suppressed. We also expect that technical noise associated with the
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frequency chirping of the dressed cavity mode resonance due to probe-induced Raman scattering

would be greatly reduced, improving our measurement precision.

Furthermore, many experimental aspects, such as cavity finesse and length, can be easily

improved. Running wave cavities or commensurate optical lattices can be employed to create

squeezed states appropriate for launching ensembles into free space for matter wave interferometry.

It will also be interesting to understand and explore how this system might be applied to probe

and manipulate quantum many-body entangled states of large atomic ensembles [195].
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Appendix A

Coherent Reinitialization for Reduced Recoil Heating

In this Appendix, we consider whether coherence-preserving QND measurements can also be

used to reduce the total photon-recoil heating in a Ramsey spectroscopy measurement cycle. A low

number of photon recoils imparted in a complete experimental cycle, not just the readout, would

allow neutral atom traps to operate more like ion traps, with their advantages of high duty cycle

and high repetition rates. We use the canonical example of Ramsey spectroscopy to show how low

photon recoil in a complete experimental cycle can be achieved. Imagine reading out the collective

spin projection Jz at the end of a Ramsey sequence with a QND measurement at or below the

projection noise limit. If one were to repeat the experimental cycle by optically repumping all

the atoms back into | ↓〉, each atom in the ensemble would experience ≈ s/2 photons worth of

recoil heating, where s is the average number of photons scattered by an atom to get from |↑〉

to |↓〉 during the repumping process. In Fig. A.1, we show how recoil heating can be reduced by

coherently reinitializing most of the atoms into |↓〉 using a microwave π/2 pulse before turning on

the repumping.

The loss of contrast ε due to dephasing during the Ramsey evolution time is assumed to

be small for the results presented in this section to be valid. Dephasing causes the off-diagonal

elements of the density matrix representing the state of the ensemble to decay, resulting in a mixed

state. The mixed state can be regarded as a tensor product of a pure state representing a smaller

ensemble of size N(1− ε) atoms in a coherent superposition of |↑〉 and |↓〉 [Fig. A.1(a)], with pure

states representing the decohered atoms with εN/2 atoms collapsed in |↑〉 and |↓〉 on average. The
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(a) Atomic spin state after QND measurement:

(b) After π/2-rotation about y:

(c) After repumping:

x
y

z

atoms atoms atoms

atoms
∆Jz = (∆Jy, QBA)2/N

∆Jy, QBA

Figure A.1: Coherent reinitialization scheme to reduce photon recoil heating in a complete exper-
imental cycle. (a) Dephasing during the Ramsey evolution can be described as a shrinking of the
coherent part of the collective spin from length N/2 to length N(1−ε)/2, where ε� 1 characterizes
the amount of dephasing. The dephased atoms can be represented as if they had collapsed into
|↑〉 and |↓〉 with εN/2 atoms in each state. Performing a QND readout with ms = Ms/N � 1
results in further shrinkage of the coherent collective spin and additional collapse of the atoms. (b)
Performing a microwave π/2-pulse about ŷ rotates the coherent collective spin to the south pole
and the collapsed atoms onto the equator of the Bloch sphere. (c) Applying optical repumping
beams reinitializes the ensemble to the south pole, with the photon recoil heating arising from
repumping the atoms in superposition states into |↓〉. The contribution arising from the quantum
back-action of repumping back into a CSS is negligible provided the spectroscopic enhancement is
small compared to the Heisenberg limit.

QND readout causes an additional (1− p)Ms atoms to collapse into |↑〉 and pMs atoms to collapse

into |↓〉, provided ms = Ms/N � 1. Following a microwave π/2 pulse that rotates most of the

atoms into | ↓〉, we find that approximately s(ms + ε)/2 photon recoils per atom is required to
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reinitialize the entire ensemble into |↓〉. The contribution from quantum back-action into Jy is of

order sms/Nm
proj
s and may be safely ignored for small spectroscopic enhancements.

In summary, we have shown that it is possible to impart only s(ms + ε)/2 optical photon

recoils per atom through the coherent reinitialization scheme, as opposed to the much larger s/2

recoils per atom without coherent reinitialization. Note the reason why the scheme works is because

we have traded optical photon recoils with microwave photon recoils, which impart recoil energy

∼ 8 orders of magnitude smaller than that of optical photons. If an optical transition separated

|↑〉 from |↓〉, such as in optical lattice clocks, the scheme presented would not reduce recoil heating

substantially.



Appendix B

Heterodyne PDH Detection Scheme

This appendix describes a heterodyne Pound-Drever-Hall (PDH) detection method in our

early attempts at squeezing. Initial attempts using this method provided nearly projection-noise-

limited resolution. We chose not to optimize the sensitivity as we realized the IQ detection method,

described in Chap. 5 would give fundamentally 3 dB higher signal-to-noise for a symmetric cavity

because both transmission and reflection are detected for the IQ demodulation method while in-

formation in transmission is not used in the heterodyne PDH method. It is then simple to see that

both methods fundamentally have the same signal-to-noise when applied to a single-ended cavity

(and driving the more transmissive mirror) as all the information comes out from the reflection

port only. However, this technique can be relatively simple to implement and produces a disper-

sive error signal in real time (without computer processing) appropriate for real-time feedback.

A technical advantage of this detection scheme over the heterodyne IQ-demodulation scheme (in

reflection) presented in Chap. 5 is that the heterodyne PDH method is insensitive to optical path

length fluctuations because the phase reference sidebands and the probe sidebands travel along the

same exact optical path.

Here I briefly describe the experiment since the concepts are already laid down in Chapter. 5,

and instead focus on the methodology more. We prepare a CSS along x̂ using optical pumping

all the atoms into |↓〉 followed by a microwave π/2-pulse. A vacuum Rabi splitting Ω↑ =
√
N↑2g

develops from the strong resonant coupling between the atoms and the cavity mode. The goal

then is to measure N↑ very precisely by measuring size of the vacuum Rabi splitting precisely. The
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Figure B.1: (a) Experimental setup of the heterodyne PDH scheme used to probe the vacuum
Rabi splitting. Both components of the vacuum Rabi splitting are simultaneously probed using
the first order phase modulation sidebands generated by the first electro-optic modulator (EOM)
and spaced ±151 MHz from the carrier. Additional ±15.3 MHz PDH phase reference sidebands
are imposed by the second EOM. (b) Relevant energy level structure of 87Rb. The bare cavity is
made resonant with the |↑〉 to |e〉 transition, and π-polarized probe light is used. (c) Simultaneous
probing of the vacuum Rabi splitting. The blue and red points are the individual PDH error
signals simultaneously measured by sweeping the phase-modulated probe laser frequency across
the higher and lower frequency modes of the vacuum Rabi splitting respectively. The blue and red
solid lines are curve fits to the data using an analytic model of the PDH error signal that includes
contributions up to the 5th order sidebands.

vacuum Rabi splitting Ω↑ is measured by sweeping the probe laser frequency and detecting the

light reflected from the cavity input mirror. The resonance signals are extracted using a modified

PDH detection scheme, which I call heterodyne PDH, that employs optical heterodyne detection

to achieve near photon-shot-noise-limited detection at probe powers of < 100 pW to several nW
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(see Fig. B.1). To reduce sensitivity to laser and cavity noise, we measure both resonances ω+ and

ω− simultaneously as discussed in Sec. 6.2. The two probe components are generated by phase

modulating the probe light to create sidebands at ±151 MHz from the carrier, chosen to match

the vacuum Rabi splitting of 302 MHz. The PDH phase reference sidebands at ±15.3 MHz are

then imposed around the probe components by a second phase modulator. To avoid degeneracy

of the two probe components in the rf spectrum generated at the photodiode, the probe carrier is

blue-shifted 52 MHz with respect to the heterodyne reference beam derived from the same laser as

the probe.

In principle, a single 52 MHz AOM on the probe or heterodyne reference beam would suffice.

However, we observed spurious signals when using a single 52 MHz AOM that is due to rf pick-up

on the probe laser, generating undesired sidebands at our signal frequency. To mitigate pickup, we

used doubly shielded BNC cables on all high power rf (∼ 30 dBm) signals in our lab. Because we

use a heterodyne beam power of ∼1 mW and probe powers at the nW level, spurious modulation

of the heterodyne beam at the 10−5 to 10−6 level would produce heterodyne beatnote powers of

the same magnitude as the actual probe signal. From our experience, spurious modulation at this

level can occur if attention is not paid to shielding rf signals carefully. The problem was finally

eliminated by using two AOMs, one that blueshifts by 106 MHz and another that redshifts by 54

MHz, resulting in a net blueshift of the probe beam by 52 MHz. Any spurious sidebands at 52

MHz would now be second order in the pickup. The probe power is controlled via the rf drive

power delivered to the 54 MHz AOM. I note here that these AOMs were tuned from its nominal

operating frequency of 80 MHz to 106 MHz and 54 MHz via tuning the LC-resonant circuit inside

the AOM. No significant loss of diffraction efficiency was observed. The 106 MHz AOM crystal 1

has a chip near the transducer, which we believe is the cause of its long thermal time constant – a

slow relaxation of the beam deflection when the rf power is pulsed fully-on.

The light reflected from the cavity is overlapped with the heterodyne light on a 90/10 beam

1 This AOM is current being used in the 823 nm Lattice Laser setup to provide additional isolation from the
Transfer Cavity, and fiber tip reflections.
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splitter. Both beams are coupled into a single mode polarization-maintaining (PM) fiber to ensure

high spatial mode matching. The heterodyne laser power delivered to the photodiode is typically 0.8

to 1.2 mW. Working at low heterodyne powers provides additional immunity to classical intensity

noise, as well as increased probe detection efficiency. The photodetector consists of a Hamamatsu

S5973 photodiode, ac-coupled to an Analog Devices AD8015 240 MHz transimpedance amplifier

described in Appendix C.

The phase shift of the probe carrier E0 relative to the phase reference sidebands E±1 may be

generated via the PDH method, which relies on a square law detector to generate the cross terms

E0E+1 + E0E−1 resulting in a rf beatnote at the sideband modulation frequency. Demodulating

the beatnote into the quadrature component yields the phase shift of the carrier. For good SNR,

the carrier photon shot noise needs to dominate over the photodiode electronic noise. Normally

this is not a problem when probing an empty cavity; one can simply increase the carrier power.

The situation is different when probing atoms in a cavity because atoms can be saturated at high

intensities, collapsing the Rabi splitting we wish to probe. Furthermore, to minimize decoherence

caused by free space scattering, we could not probe with high powers. The standard methods

to achieve (close to) shot noise limited detection is to use a avalanche photodiode (APD) or ho-

modyne/heterodyne detection. We opted for heterodyne detection. Because the heterodyne rf

beatnote ELO(E−1 + E0 + E+1) does not contain the desired cross terms between the carrier and

the sideband electric fields, we generated the cross terms by electronically squaring the rf beatnote.

The two probe components are separated in the heterodyne rf spectrum using high and

low pass filters, and notch filters at 99 MHz and 203 MHz. Each time-domain signal is squared

using an Analog Devices AD835 250 MHz voltage multiplier. This step essentially mimics the

square law detection of the photodiode that occurs in the usual PDH detection scheme. The

resulting 15.3 MHz signals are then demodulated to dc. Figure B.1(c) shows the resulting nearly

simultaneously measured PDH error signals when the probe laser frequency is swept across a

vacuum Rabi splitting. Linear fits to the central 15 µs of each probe component sweeping through

resonance were used to extract the vacuum Rabi splitting Ω↑.
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of the Rabi splitting showing nearly projection-noise-limited measurement precision. A small
horizontal offset has been applied to center the distribution about zero. The rms fluctuation

∆
(

Ω
(1)
↑ − Ω

(0)
↑

)
is 2.1(1) times the projection noise level in standard deviation for an ensemble of

N = 7.1(3) × 105 effective atoms. Taking the measurement precision of both measurements to be
the same, we infer the precision of a single Rabi splitting is 3.5(4) dB above the quantum projection
noise level.

Using this technique at nano-Watt probe powers, we were able to measure the collective spin

at a precision of 3.5(4) dB above the quantum projection noise level for an ensemble of 7.1(3)×105

effective atoms (see Fig. B.2). At this measurement precision, we calculate ms = 0.16 photons/atom

worth of free space scattering, directly proportional to photon recoil heating and loss of contrast

as described in Sec. 6.1. Simple extrapolation implies that with ≈ 2.2× more probe photons, the

measurement precision would reach the projection noise level while causing ≈ 0.35 photon/atom

worth of free space scattering.



Appendix C

AD8015 Photodiode Characteristics

In this Appendix, I include characterizations of the photodiode used in squeezing experiment

described in Chap. 5. We used a Hamamatsu S5973 photodiode (1 GHz intrinsic bandwidth) whose

uncoated glass cover has been removed to recover about 8% in quantum efficiency. Its sensitivity

without glass is 0.54 A/W at 795 nm corresponding to internal photodiode quantum efficiency of

84%.

The photocurrent generated at the photodiode is converted to electric voltage with a 240 MHz

transimpedance amplifier (Analog Devices AD8015). The transfer function, noise and transimpedance

gain of our AD8015 #2 photodiode used in reflection detection are shown in Figs. C.1, C.2, C.3

respectively. The AD8015 #5 photodiode used in transmission detection has similar characteristics

as the AD8015 #2 photodiode.
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Figure C.1: Transfer Function of AD8015 #2 Photodiode
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Figure C.2: Noise properties of AD8015 #2 photodiode. Shot-noise-limited detection may be
achieved with 0.2 mW and 0.35 mW optical power at detection frequencies of 100 MHz and 200 MHz
respectively.
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Figure C.3: Measured Transimpedance Gain of AD8015 #2 photodiode. While the AD8015 chip is
spec for 10 kOhm transimpedance gain (nominal) in the data sheet, we measured a transimpedance
gain of 9 kOhm near DC (at 100 kHz).



Appendix D

Phase Noise Definitions

The power spectral density of phase fluctuations Sφ(fm) of an oscillator is the mean squared

phase fluctuations (∆φ(fm))2 at frequency offset fm from the carrier in a 1 Hz measurement band-

width

Sφ(fm) ≡ ∆φ(fm)2/Hz . (D.1)

The phase noise Sφ(fm) has units of rad2/Hz, and includes contributions from both upper and

lower noise sidebands at ±fm.

One can measure Sφ(fm) by mixing the oscillator-under-test with a reference oscillator at the

same frequency, and with much lower phase noise. The phase of the reference oscillator is chosen

so that the mixer output v(t) is proportional to the relative phase difference φ(t) between the

oscillator-under-test and the reference oscillator. The power spectral density Sφ(fm) is computed

from the autocorrelation function of φ(t) via the Wiener-Khinchin theorem as

Sφ(fm) = 2

∫ ∞
−∞
〈φ(t)φ(t+ τ)〉t e−i2πfmτ dτ , (D.2)

where fm lies in the range (0,∞).

The definition of the single sideband (SSB) phase noise L(fm) is

L(fm) ≡ 1

2
Sφ(fm) . (D.3)

The units for L(fm) are rad2/Hz. It is also commonly expressed in the form 10 log10 L(fm), which

has units of dB below the carrier in a 1 Hz bandwidth (dBc/Hz). The mean squared phase
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fluctuations observed in a Fourier frequency range from fl to fh is given by

(∆φ)2 = 2

∫ fh

fl

L(fm) dfm . (D.4)

For an oscillator whose amplitude noise is much lower than its phase noise, the SSB phase

noise L(fm) is equivalent to the ratio of the power of a noise sideband PSSB(fm) at frequency

offset fm in a 1 Hz measurement bandwidth to the power in the carrier Pcar as measured on a

radio/microwave/optical frequency spectrum analyzer

L(fm) =
PSSB(fm)

Pcar
. (D.5)



Appendix E

Relation between Mean Squared Modulation Amplitude and Single Sideband

Phase Noise

In this short note, we establish the connection between the mean squared phase modulation

amplitude 〈β2〉, used to normalize the covariance noise matrix T in Sec. 8.4.1, and the SSB phase

noise L(fm). We model the phase modulation φ(t) = β sin(2πf0t + αm), at fixed modulation

frequency f0, as being drawn from a random distribution of αm and β. The modulation phase αm

is uniformly distributed from 0 to 2π, and the modulation amplitude β is Gaussian distributed

with zero mean and variance 〈β2〉. The time-averaged squared phase modulation should be further

averaged over the distribution for αm and β to yield the statistical phase fluctuations as

〈〈φ(t)2〉t〉αm,β = 〈φ(t)2〉αm,β =
〈β2〉

2
, (E.1)

where we made use of the fact that averaging over time t has the same effect as averaging over

phase αm. Using Eq. D.1, D.3 and E.1, we obtain the relation between the SSB phase noise L(fm)

and mean squared modulation amplitude 〈β2〉 as

L(fm) =
〈β2〉

4
δ(fm − f0) . (E.2)



Appendix F

Composite and Plain π-pulse Covariance Noise Matrix and Infidelity

Table F.1: Rotation sequence for commonly used composite π-pulses.

Pulse Name Pulse Sequence

Plain π R0◦ [π]
CORPSE π R0◦

[
π
3

]
R180◦

[
5π
3

]
R0◦

[
7π
3

]
SCROFULOUS π R60◦ [π] R300◦ [π] R60◦ [π]

BB1 π R0◦ [π] R104.5◦ [π] R313.4◦ [2π] R104.5◦ [π]

The covariance noise matrix W and infidelity 1−F for the CORPSE π-pulse, SCROFULOUS

π-pulse, BB1 π-pulse and a single π-pulse, which all effectively implement a π-pulse about x̂, are

given below. The results assume a white LO phase noise spectrum L(fm) = L◦. Here we specify

the initial Bloch vector Ji by its polar angle θi, measured from the x− y plane, and its azimuthal

angle φi measured from x̂ so that Ji = (cos θi cosφi, cos θi sinφi, sin θi).
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F.1 CORPSE π-pulse

For the CORPSE π-pulse sequence R
(
0, π3

)
R
(
π, 5π

3

)
R
(
0, 7π

3

)
(time ordering right to left),

used to suppress static detuning error, we have:

Wxx =
1

3
πfRL◦

((
13π − 3

√
3
)

cos2 θi sin2 φi +
(

13π + 3
√

3
)

sin2 θi

)
(F.1a)

Wyy =
1

3
πfRL◦

(
13π − 3

√
3
)

cos2 θi cos2 φi (F.1b)

Wzz =
1

3
πfRL◦

(
13π + 3

√
3
)

cos2 θi cos2 φi (F.1c)

Wxy = Wyx =
1

6
πfRL◦

(
13π − 3

√
3
)

cos2 θi sin 2φi (F.1d)

Wyz = Wyz = 0 (F.1e)

Wxz = Wzx =
1

6
πfRL◦

(
13π + 3

√
3
)

sin 2θi cosφi (F.1f)

1− F =
1

12
πfRL◦

(
13π − 3

√
3 cos 2θi +

(
13π + 3

√
3
)

cos2 θi cos2 φi

)
(F.1g)

F.2 SCROFULOUS π-pulse

For the SCROFULOUS π-pulse sequence R
(
π
3 , π

)
R
(

5π
3 , π

)
R
(
π
3 , π

)
(time ordering right to

left), used to suppress static amplitude error, we have:

Wxx =
3

2
π2fRL◦

(
2 cos2 θi sin2 φi + sin2 θi

)
(F.2a)

Wyy =
3

2
π2fRL◦

(
2 cos2 θi cos2 φi + sin2 θi

)
(F.2b)

Wzz =
3

2
π2fRL◦ cos2 θi (F.2c)

Wxy = Wyx =
3

2
π2fRL◦ cos2 θi sin 2φi (F.2d)

Wyz = Wzy = −3

4
π2fRL◦ sin 2θi sinφi (F.2e)

Wxz = Wzx =
3

4
π2fRL◦ sin 2θi cosφi (F.2f)

1− F =
3

16
π2fRL◦(5 + cos 2θi) (F.2g)
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F.3 BB1 π-pulse

The BB1 π-pulse sequence R (0, π)R (φR, π)R (3φR, 2π)R (φR, π) (time ordering right to

left), where φR = arccos
(
−1

4

)
≈ 104.5◦, is used to compensate for amplitude error with little to

no cost in the sensitivty to detuning error. The covariance noise matrix W and infidelity 1−F for

the BB1 π-pulse are:

Wxx =
5

4
π2fRL◦

(
4 cos2 θi sin2 φi + sin2 θi

)
(F.3a)

Wyy =
5

4
π2fRL◦

(
4 cos2 θi cos2 φi + 3 sin2 θi

)
(F.3b)

Wzz =
5

4
π2fRL◦ cos2 θi (2− cos 2φi) (F.3c)

Wxy = Wyx =
5

2
π2fRL◦ cos2 θi sin 2φi (F.3d)

Wyz = Wzy = −15

8
π2fRL◦ sin 2θi sinφi (F.3e)

Wxz = Wzx =
5

8
π2fRL◦ sin 2θi cosφi (F.3f)

1− F =
5

16
π2fRL◦

(
4 + 2 cos2 θi − cos2 θi cos 2φi

)
(F.3g)

F.4 Plain π-pulse

Finally, we provide expressions for the covariance noise matrix and infidelity for a plain π-

pulse R (0, π) as a useful benchmark to compare against composite π-pulses. The noise covariance

matrix W and infidelity 1− F for a plain π-pulse are:

Wxx = π2fRL◦
(
1− cos2 θi cos2 φi

)
(F.4a)

Wyy = π2fRL◦ cos2 θi cos2 φi (F.4b)

Wzz = π2fRL◦ cos2 θi cos2 φi (F.4c)

Wxy = Wyx =
1

2
π2fRL◦ cos2 θi sin 2φi (F.4d)

Wyz = Wyz = 0 (F.4e)

Wxz = Wzx =
1

2
π2fRL◦ sin 2θi cosφi (F.4f)

1− F =
1

4
π2fRL◦

(
1 + cos2 θi cos2 φi

)
(F.4g)
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F.5 Composite Pulse Static Error Cancellation

Table. F.2 shows the lowest order static error cancellation for commonly used composite π-

pulses, and also the plain π-pulse as a benchmark for comparison. The following parameters are

used: static fractional amplitude error as ε = ∆fR/fR and the static fractional detuning error of

the local oscillator as δ = (fLO − fa)/fa.
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Appendix G

Fundamental Limits on Squeezing via Differential Measurement of 87Rb clock

transition

Using the framework developed in Chapters 3 and 4, we now analyze the fundamental limits

on squeezing on a clock transition comprised of two hyperfine ground states, taking into account

Raman spin flips and decoherence.

From Sec. 3.3, we have shown that the measurement resolution at fixed free space scattering

improves with cavity detuning δc, but ultimately saturates to a value set by the collective coopera-

tivity parameter NC. For squeezing on a clock transition comprised of two hyperfine ground states,

the maximal detuning is approximately half of the ground state hyperfine splitting δc = ωhf/2. We

find that the squeezing is fundamentally limit by the ratio ωhf/Γ of the hyperfine splitting to the

excited state decay linewidth.

To be specific, we analyze the measurement scheme demonstrated by the MIT group [100]

in which they used the same pseudospin states presented in this thesis, namely the clock states of

87Rb |↑〉 ≡ |52S1/2, F = 2,mF = 0〉 and |↓〉 ≡ |52S1/2, F = 1,mF = 0〉. For differential probing of

the hyperfine clock transition, the bare cavity frequency is tuned to the average of the two ground

states to optically excited state transitions near 780 nm. This tuning ensures that an atom in |↓〉

shifts the dressed cavity resonance frequency by an equal, but opposite amount as an atom in |↑〉.

The excited state hyperfine splitting ∼ 500 MHz is much less than the ground hyperfine splitting

and is taken to be zero for the following analysis.

The problem is analyzed by extending the linearized two-mode model of Eq. (3.6) to a lin-
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earized three-mode model in which the atomic operator â is generalized to operators â↓ and â↑

to yield three coupled differential equations, along with the same input-output relations given by

Eq. (3.8):

d 〈ĉ〉
dt

= −1

2
κ 〈ĉ〉 − ıg

(√
N↑ 〈â↑〉 −

√
N↓ 〈â↓〉

)
+
√
κ1ci ,

d 〈â↑〉
dt

= −1

2
(Γ + ı ωhf) 〈â↑〉 − ı

√
N↑g 〈ĉ〉 ,

d 〈â↓〉
dt

= −1

2
(Γ− ı ωhf) 〈â↓〉 − ı

√
N↓g 〈ĉ〉 . (G.1)

The equations are now written in a rotating frame at the bare cavity resonance frequency that is

chosen such that the two optical atomic transitions are detuned by ±ωhf/2. The rate of scattering

into free space is described by the two field amplitudes as,↑,↓ =
√

Γ 〈â↑,↓〉 and normalized such that

the rate of photons scattered into free space is simply Ṁs = |as,↑|2 + |as,↓|2.

From the coupled set of Eq. (G.1), we find that the rms phase shift of the transmitted light

field caused by the rms projection noise level fluctuation in the population difference is:

∆φproj =
√
NC

(
Γ

ωhf

)(
1

1 +NCΓ2/ω2
hf

)
. (G.2)

This expression assumes the damping rates are small κ,Γ� ωhf ,
√
N/2 2g. The phase shift initially

climbs with increasing atom number as
√
N , but saturates to a maximum value ∆φproj =

√
C/2 at

a critical atom number given by NC = (ωhf/Γ)2, after which the phase shift decreases as 1/
√
N .

The physical interpretation for this decrease is that above the critical atom number, the dressed

cavity mode linewidth κ′ rapidly starts to broaden with increasing atom number. The number of

free-space-scattered photons required to resolve the projection noise level phase shift of the probe

is

mproj
s =

1

4qNC

(
1 +NC

(
Γ

ωhf

)2
)
. (G.3)

The diffusion of the difference between the estimate of Jz and the actual value of Jz is driven

by Raman transitions that move atoms from |↑〉 to |F = 1〉 or |↓〉 to |F = 2〉. Raman transitions

between states of the same F (i.e., ∆F = 0) lead to loss of coherence, but do not change the coupling

of the atom to the cavity mode in the limit where the excited state hyperfine splitting is neglected,
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as we do here. Hyperfine changing transitions ∆F 6= 0 cause the detuning to change sign, but not

magnitude, making such a process equivalent to a spin flip. Accounting for transition branching

ratios, we find that to a good approximation, we can apply Eq. (4.4), with an effective spin flip

probability p = 1/6. Assuming the loss of coherence is small, then the optimal spectroscopic

enhancement with respect to average probe photon number is

ξ−1
m, opt =

√
6qNC

1 + 4NCΓ2/ω2
hf

. (G.4)

At small N , the spectroscopic enhancement scales as
√

6qNC, reaching a peak value of ξ−1
m, opt =√

3q/8ωhf /Γ at a value NC = 1
4(ωhf/Γ)2, slightly before the maximum phase shift is reached. At

larger NC, the spectroscopic enhancement scales as ξ−1
m, opt =

√
3q/8NC(ωhf/Γ)2.

Taking the quantum efficiency to be q = 1, the maximum spectroscopic enhancement for

87Rb is quite large at 28 dB. The exact details of the full measurement sequence (i.e., whether

rotations such as π-pulses are used to cancel sources of technical noise) are needed to construct an

optimal estimator of Jz, but, at best, a 3 dB further improvement may result.

Because C does not depend on the cavity length, the optimum N for peak spectroscopic

enhancement scales as (w2
0/F )(ωhf/Γ)2, where w0 is the cavity mode waist, and F is the cavity

finesse. More fundamentally, no change in the cavity geometry (w0 and l) or finesse F changes the

maximum obtainable enhancement in spectroscopic sensitivity. This enhancement is determined

solely by the atomic properties. Figure. G.1 shows the spectroscopic enhancement versus atom

number for a range of technologically feasible cavity finesses.

Resolving very small phase deviations or small frequency shifts imposes technical challenges

that are modified with cavity geometry or finesse, as shown by the probe frequency (Fig. G.2) and

probe phase shift (Fig. G.3) resolutions required to obtain the spectroscopic sensitivities shown in

Fig. G.1. All three figures assume the same cavity geometry as ours, l = 1.91 cm and w0 = 71 µm.

Finally, we note that Fig. G.2 shows the technical requirement on probe frequency resolution is

more relaxed above the optimum N compared to achieving the same spectroscopic enhancement

at a value below the optimum N .
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,-1

Figure G.1: The fundamental optimum spectroscopic enhancement for differential probing of the
87Rb clock transition, as performed in Ref. [100]. The calculations are performed for our current
cavity geometry and assume a net quantum efficiency of q = 1. The purple, light blue, green,
orange, and red curves correspond to cavity finesses of F = 102, 103, 104, 105, and 106, respectively.
All these finesses are experimentally feasible. The atom number N at which the spectroscopic
enhancement is maximized scales with the cavity mode waist w0 and cavity finesse F as w2

0/F .
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Figure G.2: Frequency resolution with which the relative frequency of the probe and dressed cavity
mode must be measured to obtain the spectroscopic enhancements shown in (and under the same
conditions as) Fig. G.1 . The purple, light blue, green, orange, and red curves correspond to cavity
finesses of F = 102, 103, 104, 105, and 106, respectively.
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Figure G.3: Phase resolution with which the transmitted probe light must be measured to obtain
the spectroscopic enhancements shown in (and under the same conditions as) Fig. G.1. The purple,
light blue, green, orange, and red curves correspond to cavity finesses of F = 102, 103, 104, 105, and
106, respectively.
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