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Wright, T. H. (Ph.D., Physics)

Stray Fields and The Electron’s Electric Dipole Moment

Thesis directed by Prof. Eric Cornell

The universe is full of matter, and we cannot explain how it got there. According to our

most accurate theory of particle physics, the Standard Model, the big bang created equal parts

matter and antimatter. In the billions of years since, matter and antimatter should have collided

and annihilated, leaving (almost) nothing behind. This obviously is not what happened; we live

inside of an entire universe made of matter. Despite this serious shortcoming, the Standard Model

is outrageously successful in predicting how particles will behave in experiments here on Earth. To

salvage the Standard Model, new theories tack on as-of-yet undiscovered particles and interactions

that violate the symmetry between matter and antimatter. A side effect of breaking this symmetry

is that electrons should have a non-zero electric dipole moment (EDM). In this thesis, I present

the world’s most precise measurement of the electron EDM to date using electrons confined inside

hafnium fluoride molecular ions (HfF+). We trap HfF+ in corotating electric and magnetic fields

and measure the electron EDM signal by performing Ramsey spectroscopy with coherence times up

to 3 seconds. Our result is consistent with an electron EDM of zero and improves on the previous

best upper limit by a factor of ∼ 2.4, further constraining proposed theories of particle physics.

I also worked towards a future measurement, hopefully 10× more precise, of the electron EDM

using thorium fluoride molecular ions. I discuss the systematic errors we uncovered in our HfF+

measurement that require our future experiment to be magnetically shielded.



Dedication

To everyone who reads my dissertation.

“As far as I’m concerned, if something is so complicated that you can’t explain it in ten seconds,

then it’s probably not worth knowing anyway.”

- Bill Watterson, The Indispensable Calvin and Hobbes
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Chapter 1

Introduction

“The universe is a big place, perhaps the biggest.”

- Kilgore Trout, Venus on the Half-Shell

A survey of recent JILA electric dipole moment (EDM) theses shows that their introductions

focus on a few common subjects. These include the usual story about matter and antimatter [1,2,3],

an overview of how our measurement works [1, 3, 4], a history of past EDM measurements [2, 4]

and a survey of contemporary experiments [1,2,4].1 I will leave the latter three topics to the other

recent theses, and dive into why even null results of the electron EDM (eEDM) are so interesting.

1.1 Crash Course in Quantum Field Theory

Nathaniel Craig, a professor at University of California Santa Barbara, is an expert in quan-

tum field theory (QFT). He gave a virtual department colloquium at Boulder, titled “The Return

of the LHC” in April 2022, which began with the most succinct and understandable overview of

QFT that I have heard [5]. I will draw heavily from his talk to give a non-rigorous explanation of

QFT which will help to explain the motivation for the JILA EDM experiment. This is a notoriously

1I particularly recommend the introduction of Tanya Roussy’s thesis [2] for those who would like to read more

detail about how the JILA eEDM experiment came to be. She’s a comedian.
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difficult subject, but I hope future EDM graduate students will be able to understand this section

even if they have never taken a QFT course.

1.1.1 Feynman Diagrams

Even though QFT is an abstract and mathematically dense subject, physical interactions are

represented pictorially in Feynman diagrams like the ones shown in Figure 1.1. The first Feynman

diagram, Figure 1.1a, depicts electron scattering. We know from classical physics that the electrons

moving towards one another will feel a repulsive force that grows as they get closer. In QFT, the

electromagnetic interaction is mediated by the “exchange of virtual photons.” This interaction is

depicted in Figure 1.1a by a squiggly red line between the two blue lines which represent electrons.

The photon is “virtual” because it is a particle that only exists during the interaction - it does not

exist at the initial or final time depicted in the Feynman diagram. Particles that enter or leave

Feynman diagrams are called “real.” This interaction modifies the electrons’ momenta, indicated

by the electron lines going off in new directions.

(a) Electron scattering (b) Electron-positron annihilation and creation

Figure 1.1: A Feynman diagram (a) depicting electron scattering. Quantum field theories respect
the symmetries of special relativity so we can exchange the time and space axes of our Feynman
diagram, equivalent to rotating the diagram 90 degrees. This rotated diagram (b) shows electron
and positron annihilation followed by pair production.

There are a few more things worth pointing out about Figure 1.1a. The first is that the

electrons, like all fermions, are depicted by solid lines with an arrow. Lines with an arrow pointing
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in the direction the fermion is traveling represent matter particles, while lines with an arrow pointing

in the opposite direction depict antimatter particles. The arrows in Figure 1.1a all point in the

same direction the particles are moving, so they all represent electrons instead of positrons. The

other thing to know is that Feynman diagrams come with a set of mathematical rules to calculate

the depicted event’s probability amplitude [6]. I will not try to explain all of the math behind these

Feynman diagrams, but it is good to know that the usual rules of momentum, energy and charge

conservation apply to these calculations and can help guide our intuition.

Moving on to Figure 1.1b, it is clear that this is the same diagram as Figure 1.1a rotated

90 degrees. This is not a coincidence. QFT is a quantum theory that is consistent with and

respects the symmetries of special relativity, which include Lorentz transformations that convert

space into time and vice versa. This means Feynman diagrams which have been rotated describe

real, physical processes. In the case of electron scattering, the 90 degree rotated Feynman diagram

describes electron-positron annihilation which creates a virtual photon that then turns into a new

electron-positron pair.

It’s worth pausing to let this sink in – we can take a simple Feynman diagram like electron

scattering, rotate it on its side because QFT follows the rules of special relativity, and determine that

pair production and annihilation are really things that happen. This alone predicts the existence

of antimatter and that particle number is not a conserved quantity, both of which are observed

experimentally! Half of why I chose to write about QFT in more than the usual detail is to share

this point, I think this is so cool.

It is interesting to see what happens when we replace one of the electrons in Figure 1.1a with

another charged particle like a muon µ−, the 207 times heavier “cousin” of the electron, as shown in

Figure 1.2a. This diagram still represents particles scattering via the electromagnetic force, where

one particle is much heavier than the other. The interesting part comes when we rotate the diagram

by 90 degrees, as shown in Figures 1.2b and 1.2c. In Figure 1.2b we have a muon and antimuon
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(a) Electron-muon scattering
(b) Muon annihilation to electron
pair production

(c) Electron annihilation to muon
pair production

Figure 1.2: A Feynman diagram of (a) electron-muon scattering which has been rotated (b)
clockwise and (c) counter clockwise by 90 degrees. The second two diagrams depict annihilation
and pair production interactions where the initial and final particles are different species.

annihilating which leads to electron-positron pair production. This means that we can start with

one pair of particles and end up with a completely new pair!

It is important to think about energy conservation in Feynman diagrams like Figure 1.2b.

Here the initial energy is given by the sum of the rest mass Erest =
∑

imic
2 and kinetic energy.

Since muons are 207 times heavier than electrons, most of the muon’s and antimuon’s rest mass

energy will be carried away as kinetic energy of the electron positron pair. Figure 1.2c shows

the same interaction happening in reverse. While this is a valid Feynman diagram, it can only

take place if the incoming electron and positron have enough kinetic energy produce a muon and

antimuon.

There is a final point worth mentioning about Figure 1.1b that concerns momentum and

energy conservation. These conservation laws apply at every vertex. This means that the energy

and momentum of the initial electron/positron, the virtual photon and the final electron/positron

pair must be the same. We can consider the Feynman diagram from the center of mass frame, where

ptot,initial = 0 and Etot,initial ≥ 2mec
2. This means the photon will have momentum pγ =

ℏω
c

= 0

and energy Eγ = ℏω ≥ 2mec
2 – which seems to be a contradiction! The resolution is that virtual

particles can be “off-shell,” meaning they have unusual values of energy and momentum which is
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allowed since they only exist for a short amount of time and do not exit the Feynman diagram. All

particles that enter or exit the diagram must be “on-shell” and behave normally.2 In this case, the

virtual photon is off-shell and then produces two on-shell particles, an electron and a positron.

Annihilation and pair production can occur independently of one another, as shown in Figure

1.3. In order for energy and momentum to be conserved at the end of these processes they each

involve two real photons. Figure 1.3a shows an electron emitting a real photon and becoming an off-

shell particle, which can annihilate with a positron to produce a second real photon. Rotating this

Feynman diagram 180 degrees would depict two photons coming together to produce an electron

and a positron, an allowed but relatively rare two body process. The more common Feynman

diagram depicting pair production is shown in Figure 1.3b, where one energetic photon turns into

the particle and antiparticle pair directly.

(a) Electron-positron annihilation (b) Electron-positron pair production

Figure 1.3: Feynman diagrams of (a) annihilation and (b) pair production. Note that there is no
preference for the electron or positron to be the particle in the middle of each diagram.

1.1.2 The Vacuum

Every particle-antiparticle pair is associated with a multicomponent quantum field, which

has values at every point in spacetime.3 Electrons, for example, have a four component quantum

2Particles that are on-shell have the usual dispersion relation E2 = m2c4 + p2c2. Particles which are off-shell

have energies and momenta which do not follow this relationship.
3This is quite similar to electric fields, which three components Ex, Ey and Ez defined at each point in spacetime.
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field for the spin up/down components of electrons/positrons. When the electron quantum field

is in its ground state, there are no electrons or positrons at all. Excitations of the quantum field

correspond to particles that exist at certain points in spacetime.

That means in QFT there are no truly empty regions of space. Regions of space where all

of the quantum fields are in their ground state are considered the “vacuum,” but those fields can

fluctuate. In quantum mechanics there is an uncertainty relationship between energy and time

which can be written as:

∆E∆t ≥ ℏ
2

(1.1)

We can interpret this equation as saying that for short times ∆t, the energy of the quantum fields

can have fluctuations on the order of
ℏ

2∆t
. If this energy is large compared to 2mc2 there is enough

energy to produce a short lived particle antiparticle pair. For example, an electron positron pair

can be created for ∆t ≤ ℏ
4mec2

= 3 × 10−22 seconds. So what we normally consider to be the

“vacuum” includes these short lived particle pairs as shown in Figure 1.4.

(a) Classical vacuum, ℏ = 0 (b) QFT vacuum, ℏ ̸= 0

Figure 1.4: Vacuum in (a) classical and (b) quantum field theories. In QFT, pair production and
annihilation can occur due to energy fluctuations. Those virtual particles can interact with one
another, as shown in the upper right of (b).

The important point is that we never measure bare particles, we always measure particles
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that are interacting with the vacuum. Take the example of an electron with no orbital angular

momentum in a uniform external magnetic field.4 We know that the magnetic moment of the

electron’s spin µ⃗s = gsµB
S⃗

ℏ
will interact with the magnetic field B⃗ causing an energy shift:

HZeeman = −µ⃗s · B⃗ = −gsµB
S⃗

ℏ
· B⃗ = −gsµBMsB (1.2)

Here gs is the electron’s g-factor, which encodes how strongly the electron’s states split in energy due

to the external magnetic field. If we were able to measure the bare electron, Paul Dirac predicted

that we would measure gs = −2. Dirac’s calculation was equivalent to evaluating the Feynman

diagram in Figure 1.5a, where the electron interacts with an external magnetic field represented by

a real photon5 without any virtual particles popping in.

When we compare Dirac’s prediction of gs = −2 to the current state of the art measurement

gs = −2.00231930436(26), we see that he was only off by about 0.1 % [7]. This gap starts to

close when we calculate how virtual particles modify the size of the electron’s magnetic moment.

The simplest virtual particle we can consider is shown in Figure 1.5b where the electron emits and

reabsorbs a virtual photon. This process changes the prediction of the electron’s g-factor from −2

to −(2+ α

π
) = −2.0023228..., which is just two parts in a million different from the measured value.

We can keep drawing Feynman diagrams with more and more virtual particles, like the one

in Figure 1.5c, which will all contribute to the predicted value of gs. We fortunately do not need

4Since I spend the entirety of Chapter 4 on the sign of the g-factor in HfF+, I will make sure the signs of the

quantities are clear here. The electron’s spin magnetic moment µ⃗s has a positive magnitude µs = gsµB if the magnetic

moment is parallel to the electron’s spin S⃗. The Bohr magneton µB is defined to be a positive quantity, so the sign

of the magnetic moment’s magnitude is determined by the sign of gs. Since we know that the electron’s magnetic

moment is antiparallel to its spin, gs ≈ −2.002 is a negative quantity.
5In QFT, bosons (particles with integer spin) like photons are “force carriers”. Photons are the force carriers of

the electromagnetic force. Whenever a particle is interacting with an external electric or magnetic field, that shows

up in Feynman diagrams as a real photon.
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(a) g = −2 (b) g = −(2 + α

2π
) ≈ -2.002 (c) g = −(2 + α

2π
+O(α2))

Figure 1.5: Feynman diagrams that describe the electron’s g-factor. The dominant term effect
is given by (a), the electron interacting with an external magnetic field represented by a photon.
The next largest term is from (b), where a virtual photon emitted and then later absorbed by the
electron modifies the g-factor from −2 to −2.002. This is a one-loop Feynman diagram as the only
closed path we can draw is between the three electron-photon vertices. Higher order effects which
include more or heavier particles, like (c), contribute smaller perturbations to the g-factor. This is
a two-loop Feynman diagram.

to calculate all of these Feynman diagrams to get a reasonably accurate result. As a general rule,

the more complicated the Feynman diagram the smaller the effect it will have on a prediction.6

In fact, we can sort Feynman diagrams by the number of non-overlapping closed loops that they

contain. For example, Figure 1.5a has no closed loops and therefore is the zeroth order effect.

This makes sense because it is the only Feynman diagram with an incoming and outgoing electron

that interacts with the external electromagnetic field and no virtual particles. Figure 1.5b has one

closed loop – the triangle between the virtual photon and electron – so it provides the first order

perturbation.7 There are many Feynman diagrams we can draw with two loops, one of which is

Figure 1.5c. All Feynman diagrams with an incoming and outgoing electron interacting with a real

photon that have two loops are summed together to make up the second order perturbation to gs.

In order to match today’s experimental precision, theorists need to include all of the more

6This is true for interactions of the electromagnetic and weak forces, but is not true for the strong force. This

makes strong force calculations very difficult.
7There is another Feynman diagram we can draw with just one loop, where we replace the virtual photon with

a virtual Z boson, see Subsection 1.1.3. Z bosons are massive and chargeless carriers of the weak force, and this

Feynman diagram causes a

(
me

mZ

)2

≈ 3× 10−10 times smaller change to gs than Figure 1.5b [8].
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than 10,000 unique Feynman diagrams out to five loops [7]. Amazingly, the predicted value agrees

with the experimental result even with its tiny uncertainty at the 0.1 part per trillion level. While

this level of agreement is a triumph of theoretical and experimental physics, people are working

hard to reduce the error bars on both sides. One motivation for this further work is to try and

discover new particles and/or interactions which slightly modify the electron’s g-factor from the

expected theoretical value.

The important takeaway is this: particles interact with the vacuum which contains particles

popping into and out of existence. That interaction modifies the properties of all particles, such as

the electron’s magnetic dipole moment. If undiscovered particles exist that even indirectly interact

with electrons, the strength of the electron’s magnetic moment will be different than is predicted

by our most accurate quantum field theory, the Standard Model (SM). So increasingly precise

measurements of quantities like the electron’s magnetic moment can signal the existence of new

particles and interactions if those measurements do not agree with what is predicted by the SM.

Alternatively, if more precise measurements continue to agree with the SM, the measurements can

rule out proposed new theories which make different predictions than the SM.

1.1.3 The Standard Model, Particles and Interactions

Before jumping into the story about the electron’s electric dipole moment, it will help to have

some background on the Standard Model. The SM is the current state of the art quantum field

theory that best describes particle physics. It contains the 17 known particles, shown in Figure 1.6,

and how they interact via the electromagnetic, weak and strong forces. Notably, the only force it

does not include is gravity, which is best explained by Einstein’s theory of General Relativity.

The blue and green particles in Figure 1.6 are fermions, paticles with half-integer spins which

make up matter. All of these particles have associated antiparticles which have the same properties

but have the opposite signed charge.8 Fermions interact with one another via the three forces

8Neutrinos have no charge, so their associated antimater particles are chargeless as well.
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Figure 1.6: Particles in the Standard Model. Each particle’s mass relative to the electron’s mass
me = 0.511 MeV/c2, charge and spin are listed. Blue and green particles are fermions which each
have an associated antimatter particle with all the same properties except for the opposite signed
charge. Blue particles are leptons, green particles are quarks and yellow particles are force carrying
bosons. Interactions with the Higgs boson give particles their mass.

included in the Standard Model, which are mediated by the yellow bosons in Figure 1.6. The

electromagnetic force acts on all fermions with nonzero charge, and is mediated by photons as

shown in Figure 1.1a. It attracts oppositely charged fermions together and repels fermions with

the same charge, as we would expect.

The strong force is mediated by gluons and only acts on quarks, which are the fermions

shown in green in Figure 1.6. In addition to their mass, charge and spin, quarks also have a “color”

which can be red, green or blue. The strong force is a powerful attractive force which is mediated

by gluons and binds quarks together to make “color-neutral” composite particles. A composite
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particle is color-neutral if it is made of a red, green and blue quark bound together, or if it is made

of a quark and antiquark of the same color. For example, a red up quark, a blue up quark and a

green down quark can be bound together by the strong force. A composite particle made of two

up quarks and a down quark, regardless which quark is which color, is called a proton. One up

quark can combine with two differently colored down quarks to make a neutron. Both protons and

neutrons are examples of baryons, composite particles made of an odd number of quarks. Baryons

and antibaryons, particles made of an odd number of antiquarks, will play an important role in the

story about the eEDM. The strong force is notoriously difficult to calculate, so it is fortunate that

we do not need to dive into those details.

The weak force requires the longest explanation. It is mediated by the Z and W± bosons,

and is the only force that interacts with all twelve fermions of the Standard Model. When fermions

interact via the Z boson they exchange energy and momentum, which is similar to electromagnetic

interactions like the one shown in Figure 1.1a. As hinted at by its name, the forces mediated by

the Z boson are weak compared to electromagnetic ones. The more interesting weak interactions

are those mediated by the W+ and W− bosons, which cause fermions of one type to change to

another. These “flavor” or identity changing interactions are subject to many restrictions beyond

energy, momentum and charge conservation, which we will explore now.

One restriction comes from the “helicity” or “handedness” of particles. Particles are either

“right-handed” or “left-handed” if their spin angular momentum is in the same or opposite direc-

tion as their motion, as shown in Figure 1.7. Most particles and antiparticles can be either left-

or right-handed, occurring in nature with equal frequency. However, all neutrinos are left-handed

and antineutrinos are right-handed. Additionally, the W± bosons only interact with left-handed

fermions and right-handed antifermions. These facts together mean that the weak force acts differ-

ently on left- and right-handed particles, a peculiarity not shared by the electromagnetic or strong

forces.
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(a) Left-handed particles (b) Right-handed particles

Figure 1.7: Examples of (a) left-handed and (b) right-handed particles. Most particles and their
antiparticles, like electrons and positrons, can be left- or right-handed. However, all neutrinos are
left-handed and antineutrinos are right-handed.

Another important constraint on flavor changing weak interactions are that they cannot turn

quarks into leptons or leptons into quarks. For interactions with leptons, W± bosons conserve a

property called “lepton number”. Lepton number is the total number of leptons minus the number

of antileptons, so this restriction means that the weak interaction cannot change a lepton into an

antilepton or vice versa. The final constraint for leptons is that W± bosons must interact with

leptons of the same “generation”. Looking back at Figure 1.6, we see that each row contains

three fermions which have similar properties but vary in mass.9 For example, electrons are more

or less light versions of muons which in turn are light versions of taus. We call the leftmost and

lightest column of particles the first generation, the middle column the second generation and the

right column the third generation. Exactly why there are three generations of each fermion is

open question [9]. The restriction that the weak force cannot change lepton generation means that

electrons and electron neutrinos can turn into one another, but they cannot turn into a muon.10

With these rules for lepton flavor changing in place, we can finally see an example of the W±

boson changing the identity of a particle. In Figure 1.8a we see an incoming muon turn into a muon

neutrino by emitting a W− boson. We know the muon must be left-handed since it interacts with

9Only upper limits have been measured for the neutrino masses, but they are expected to have different masses

as well.
10Muons cannot directly turn into an electron, but they can indirectly as shown in Figure 1.8a
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a W− boson, and it produces a left-handed muon neutrino. This interaction follows the rules of

charge and lepton number conservation and it preserves lepton generation. However, this explains

only the first half of the Feynman diagram in Figure 1.8a. Muon neutrinos are stable particles that

can leave the Feynman diagram, but the W− boson is not. W± and Z bosons are massive, unstable

particles with multiple decay channels and lifetimes of about 3 × 10−25 seconds [10]. The decay

mode shown in Figure 1.8a is the W− boson turning into an electron and antielectron neutrino.

These particles are both stable and the interaction complies with all of the rules listed above.

(a) Muon Decay (b) Beta Decay

Figure 1.8: Two Feynman diagrams showing decay due to the weak force. (a) A muon transforms
into a muon neutrino, emitting a W− boson. The unstable W− boson then decays into an electron
and antielectron neutrino. (b) A down quark inside of a neutron emits a W− boson and turns
into an up quark. This changes the composite baryon into a proton. The unstable W− boson then
decays into an electron and antielectron neutrino. The entire process is known as beta decay.

We can now turn to the weak interactions mediated by W± bosons between quarks. As

was the case for leptons, weak interactions cannot change quarks to antiquarks or vice versa.

This rule is normally expressed by stating that baryon number, the number of baryons minus

the number of antibaryons, must be conserved. However, this is where the similarities for weak

interactions between leptons and quarks ends. The weak force is allowed to transform quarks from

one generation into another, which it cannot do to leptons. The only additional restriction on

quark flavor transformations is that the weak force always turns “up-type” quarks (the up, charm

and top quarks with charge +
2

3
) into a “down-type” quarks (the down, strange and bottom quarks



14

with charge −1

3
) or vice versa. This can be understood as a consequence of charge conservation,

since the W± bosons which mediate flavor change are themselves charged particles.

In total, there are nine weak interactions that turn one of the three down-type quarks into

one of the three up-type quarks. These nine interaction strengths are characterized by the 3x3

unitary CKM matrix:

VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 (1.3)

The entries in the top row of this matrix characterize the relative probability amplitudes of the

down, strange and bottom quarks transforming into the up quark. The next two rows parameterize

the relative probability amplitudes of down-type quark transitions into the charm and top quarks.

The relative probability amplitude of an up-type quark transforming into a down-type quark is

given by the complex conjugate of the relevant matrix element. This means that the CKM matrix

completely parameterizes all weak interactions that change quark flavor.

In general, all nine complex parameters of a 3x3 unitary matrix like the CKM matrix can

be described by just four real numbers, three rotation angles and one complex phase [11]. The

three rotation angles are the three “mixing angles” which parameterize the likelihood of each of

the nine quark transformations. The complex phase is a parameter which describes how much each

of these interactions violates time-reversal symmetry, which will be explained further in the next

subsection [6].11

A common example of quarks turning into one another is shown in Figure 1.8b, where a

11Weak interactions that change lepton flavor cannot change generation, so these relative probability amplitudes

are described by the 3x3 identity matrix. This matrix obviously does not have any imaginary components, so weak

interactions that change lepton flavor do not violate time-reversal symmetry.
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down quark inside a neutron turns into an up quark making the composite particle a proton. This

interaction is characterized by the Vud term in the CKM matrix.

1.1.4 The Standard Model, Discrete Symmetries

The last prerequisite we need to cover is discrete symmetry in the Standard Model. There

are three particularly important discrete symmetries – charge conjugation (C), parity (P) and

time-reversal (T). These three symmetries are defined by a particular transformation, and we say

that a system respects a given symmetry if the physical laws are the same before and after the

transformation.

It is easiest to see what that means with an example. The charge conjugation transformation

is to swap all of the matter particles in a system for their antiparticles, and vice versa.12 Consider

once again electron scattering, as shown in Figure 1.1a. The negatively charged electrons exchange a

photon resulting in a repulsive force. If we replace the electrons with positrons, the exact same thing

will happen – the two particles will approach one another, exchange a photon and feel a repulsive

force. Because the particles behave the same way whether or not the particles are swapped for

antiparticles, this interaction respects charge conjugation symmetry. In fact, all electromagnetic

and strong interactions are C-symmetric, though it is not the case for weak interactions. The

example of muon decay, shown in Figure 1.8a, involves a left-handed muon turning into a left-

handed muon neutrino while emitting a W− boson. This interaction is impossible if we swap the

particles for antiparticles because there are no left-handed antineutrinos, so it violates C-symmetry.

Note that weak interactions mediated by Z bosons do not necessarily involve neutrinos, so some

weak interactions violate C-symmetry while others do not.

Parity’s transformation inverts spatial coordinates, (x, y, z) → (−x,−y,−z). This is equiv-

alent to a mirror inversion (x, y, z) → (x, y,−z) followed by a 180 degree rotation (x, y,−z) →

(−x,−y,−z) about the same axis. An 180 degree rotation is a standard Lorentz transformation

12The C transformation also involves swapping the charge of W± bosons.
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and is common fare, which is why parity symmetry is sometimes referred to as mirror symmetry.

Just as is the case for charge conjugation, the electromagnetic and strong forces respect parity while

the weak force does not. This is because the parity transformation flips the handedness of particles.

Consider again the left-handed muon decaying into a left-handed muon neutrino and emitting a

W− boson. The parity inverted version of this decay would involve a right-handed muon, which

cannot interact with a W− boson, decaying into a right-handed muon neutrino, which does not

exist. So weak interactions violate P as well as C symmetries.

The third symmetry is time-reversal symmetry, whose associated transformation is to reverse

the direction of time t → −t. While we can test various systems with matter and antimatter (C)

and in different spatial orientations (P), it is a bit harder to set time running backwards in our

experiments. However, if we can infer that an interaction would behave differently if we reversed

time’s arrow, we say that it violates T-symmetry. The way time-reversal symmetry breaking is

described mathematically is by a Hamiltonian with imaginary components, like the CKM matrix

that describes quark flavor changing weak interactions [6]. This means the probability amplitude

of quark a turning into quark b is different than the probability amplitude of quark b turning into

quark a. These two processes are the same except the arrow of time has been reversed, so they

violate T-symmetry [12].

In addition to considering the three discrete symmetries on their own, they combine to

form composite symmetries. The most important combined symmetry for the eEDM story is CP-

symmetry, the symmetry whose operation is to 1) swap matter with anitmatter and 2) invert space.

If a process respects both of the joined symmetries, it is straightforward to see that it will respect the

combined symmetry. Electromagnetic interactions behave the same way under C and P symmetries

separately, so they will still behave the same way when both symmetry operations are applied. A

process will also conserve a combined symmetry if it violates both of the merged symmetries. In

Figure 1.8a we started with a left-handed muon that decays to a left-handed muon neutrino while

emitting a W− boson. Applying the C and P transformations, we get a right-handed antimuon that
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decays to a right-handed antimuon neutrino while emitting a W+ boson. All of these particles exist

and the interaction has the same probability amplitude as the the original interaction, so muon

decay respects CP-symmetry.

In addition to CP, CT and PT symmetries, all three symmetries can be combined to make

CPT-symmetry. If an interaction violates zero or two of the three individual symmetries it respects

the overall CPT symmetry, and if the interaction violates an odd number of the symmetries it

breaks CPT-symmetry. When QFT was first being developed in the early to mid 20th century it

was widely believed that all three of the symmetries are strictly conserved by nature [13]. This was

until the 1950s when it was found that beta decay, as shown in Figure 1.8b, violates parity [14].

Now it is believed that while the individual symmetries can be violated, the joint CPT-symmetry

will always be conserved. This is largely based on the CPT theorem, a mathematical proof that

shows that any QFT which is Lorentz invariant (plays nicely with special relativity) will conserve

CPT-symmetry [15].

If we assume on this basis that CPT-symmetry really is a good symmetry of nature, we

conclude that T-symmetry violation found in quark mixing implies that quark mixing also violates

CP-symmetry. While it is possible that CPT-symmetry is broken in nature, I will assume that it is

preserved and that CP- and T-symmetries are equivalent. Quark mixing is the only interaction in

the Standard Model that has been measured to violate CP-symmetry. Theorists have been puzzled

that the strong force is seemingly allowed to violate CP-symmetry [16], but every measurement of

the strong force so far indicates that it is CP-even [17].13

That covers the preliminaries we need to know about QFT and the Standard Model, so we

can begin the story that motivates our measurement of the eEDM.

13A few recent papers claim that a more nuanced understanding of the Standard Model implies that the strong

force inherently respects CP-symmetry [18,19,20], though I believe that this viewpoint has not been widely accepted.
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1.2 The Baryon Asymmetry of the Universe

14 billion years ago the universe began as we know it with the big bang. A particularly

colorful description of the big bang that I enjoy is that “at an early time in the standard cosmological

model, the Universe began as a fireball, filling all space, with extremely high temperature and energy

density” [21]. The source of this quotation together with [22] provide a detailed and understandable

history of that fireball, which I will summarize parts of here.

Immediately after the fireball initially exploded, there was plenty of energy for all the fermions

and their antiparticles to pop into existence, depicted by Feynman diagrams like Figure 1.3b. The

particles that were produced had so much energy that the quarks, usually bound together by the

strong force, could roam freely. The big bang caused space itself to rapidly expand, spreading the

fireball out and decreasing the energy density and temperature of the universe. After the first 20

microseconds or so of fun the temperature fell below the hadronization temperature Th ≈ 1.7×1012

K = 150 MeV/kB, and the strong force was able to overcome the quarks’ kinetic energy to wrangle

the individual quarks into stable composite particles. At this point there was no longer enough

energy to form new protons and antiprotons or neutrons and antineutrons as 2mpc
2 ≈ 2mnc

2 ≈ 1.8

GeV, so the number of baryons and antibaryons in the universe had hit its maximum.

Shortly after the universe cooled to the hadronization temperature, the baryons and an-

tibaryons found one another and annihilated in similar processes to the one shown in Figure 1.3a.

Since all of the interactions described in the Standard Model in Subsection 1.1.3 conserve baryon

number, we might expect that the mass annihilation event destroyed all of the baryons and an-

tibaryons. But this is not what happened – while all the antibaryons disappeared, there were

baryons left over.14 That means there must be a process that can occur at energies large compared

to the hadronization temperature which can increase the baryon number, so that after annihilation

14There is the possibility that matter and antimatter spread out in different directions, and we find ourselves in a

matter dominated domain of the universe [21,22]. This idea will be addressed later in this section.
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a portion of the baryons can survive.

The asymmetry in the number of baryons and antibaryons just after baryon pair production

froze out is known as the baryon asymmetry of the universe (BAU).15 The BAU is defined as:

BAU =
NB −NB

NB +NB

∣∣∣∣
T≳1GeV/kB

(1.4)

Quantifying this asymmetry is an important step to solving the mystery of how we ended up in a

universe full of matter after the big bang. However, as almost all of the baryons and antibaryons that

existed immediately after the big bang were annihilated, we cannot measure the quantities in this

expression. Fortunately, we can relate the sum of baryons and antibaryons in the early universe to

the number of photons that exist currently. As shown in Figure 1.3a, when two particles annihilate

there will typically be two photons produced. Bravely ignoring the fact that leptons annihilate and

produce photons as well, we can say that the sum of baryons and antibaryons in the early universe

is something like the total number of photons in the universe now, which has a temperature of 3

Kelvin:

BAU =
NB −NB

NB +NB

∣∣∣∣
T≳1GeV/kB

∼
NB −NB

Nγ

∣∣∣∣
T=3K

=
NB

Nγ

∣∣∣∣
T=3K

= η (1.5)

We can use the observation16 that there is no antimatter currently in the universe to simplify the

numerator, and we find that the BAU can be estimated by the baryon to photon ratio η [22].

15There is a similar story about leptons and the LAU [21]. Leptons on the whole are lighter than baryons, so

lepton pair production froze out when the universe was cooler, about a second after the big bang. The BAU gets

more attention because it can be measured quite precisely, especially compared to the LAU since it is challenging to

measure the background neutrino level of the universe.
16Again, the possibility of an inhomogeneous universe of matter and antimatter domains will be addressed later

on
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Astronomers have two methods of of determining the baryon to photon ratio. The first is by

measuring the relative abundance of light nuclei (2H, 3He, 4He and 7Li) created a few minutes after

the big bang, when the baryon to photon ratio was stable but there was still enough latent energy

(≳ 2 MeV) in the universe to trigger thermonuclear reactions [21,22]. This process is known as the

big bang nucleosynthesis (BBN). Contemporary research in plasma physics shows that the relative

abundances depend heavily on η, and astronomers find that η = 6.10× 10−10 [22, 23].

The second method to determine η is by measuring the power fluctuations of the cosmic

microwave background (CMB). It took much longer, around 380,000 years, for most electron-

positron pairs to annihilate [21]. At this point the energy of the universe was approximately 0.3

eV, and the remaining electrons bound with the nuclei to form atoms, primarily hydrogen. For the

first time the universe was no longer a plasma, so the photons emitted when the atoms were formed

could freely propagate. These photons were emitted nearly 14 billion years ago so they have been

substantially red-shifted and now appear as microwaves that approach Earth from every direction

in the universe, hence the name cosmic microwave background. It turns out that the baryon to

photon ratio η, which has not varied since just seconds after the big bang, significantly affects the

power spectrum of the CMB [22]. This method gives η = 6.1× 10−10, in good agreement with the

BBN method.

Both of these results tell us that before the universe hit the hadronization temperature at

150 MeV just tens of microseconds after the big bang, the universe had approximately one billion

plus one baryons for every billion antibaryons. But where did the extra baryons come from? If

matter can only be created in ways that preserve baryon number, as described in Subsection 1.1.3,

this would be impossible.

In 1967 Andrei Sakhorov17 studied this problem and realized that there are three criteria that

17Not only did Sakhorov divine the three necessary conditions for a matter dominated universe, he came up with

the idea of a tokamak, the main experimental apparatus of modern nuclear physics. He did not win the Nobel prize

in physics for either of these achievements, but he did win the Nobel peace prize in 1975 for his activisim against
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a theory of particle physics must meet in order to have a positive baryon to photon ratio η [24]:

(1) Baryon number violation. Since at the big bang the universe began with a baryon number

B = NB − NB = 0 − 0 = 0 and there is a positive baryon number now, there must be a

process that changes baryon number.

(2) C- and CP-symmetry violation. If C is a good symmetry of nature, then baryon number

increasing interactions would be just as likely as baryon number decreasing interactions and

the total baryon number would remain zero. If C-symmetry was violated but CP-symmetry

was conserved, then interaction which produces right (left) handed baryons and left (right)

handed antibaryons would be preferred, but the total baryon number would still remain

zero [22].18

(3) Deviation from thermal equilibrium. If the universe was in thermal equilibrium when the

baryon number violating interactions took place, then by definition the average baryon

number of the universe would not change.

So we live in a universe dominated by matter and Sakhorov has listed requirements of particle

physics for that to be the case. We have a theory of particle physics called the Standard Model,

which was loosely explained in Subsection 1.1.3. Does the Standard Model meet those requirements?

The Standard Model includes the non-perturbative19 sphaleron processes that violate baryon

and lepton number simultaneously, so it checks off the first box [22].20 As we saw before, the weak

force violates C-symmetry because all neutrinos are left-handed while all antineutrinos are right-

nuclear proliferation and advocacy for human rights more broadly. Check out his wikipedia page, it’s a good read.
18Note that there is no analogous requirement for CT or CPT-symmetry violation since the universe only runs

forwards in time and therefore whether or not these interactions are T-odd is irrelevant.
19“Non-perturbative” interactions cannot be explained via Feynman diagrams, and they are far too complicated

for me to explain in Subsection 1.1.3.
20One of the recent papers which claim that the strong force cannot violate CP-symmetry also claims that sphaleron

processes do not occur [19], so it is possible that the Standard Model does not satisfy the first criterion.
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handed. It also violates CP-symmetry when talking specifically about quark mixing (assuming the

CPT theorem holds), so the Standard Model meets the second criterion. The third requirement

is met as the universe was not in thermal equilibrium during its first few microseconds as it was

rapidly cooling and expanding [22].

So can the Standard Model explain the baryon to photon ratio η = 6.1 × 10−10? Despite

including processes that meet Sakhorov’s three requirements, the answer is a resounding no. The

SM can only generate η on the order of 10−20, falling a full 10 orders of magnitude short of what

astronomers observe [22]. There are different ways the SM could be modified in order to bridge

this gap, but doing so requires much more CP-violation than is included in the SM [22].

The fact that the Standard Model cannot explain the BAU is just one of its most glaring

problems. Others include that it cannot explain gravity, it seems to omit most of the matter

holding together galaxies (dark matter) and it cannot account for the accelerating expansion of

the universe (dark energy) [5]. But we should stay on topic. Because the Standard Model does

not contain enough CP-symmetry violation in order to explain the observed baryon asymmetry,

we should be able to find evidence of more CP-violating interactions than the Standard Model

predicts [17]. There are many new theories which predict the existence of more particles and/or

interactions in order to account for the deficiencies of the Standard Model, called Beyond the

Standard Model (BSM) theories [17]. The goal of our experiment at JILA is to search for CP-

violation that is not predicted by the SM in order to test these proposed BSM theories which can

explain why there is matter left over after the universe-scale particle annihilation which shortly

followed the big bang.

As a two paragraph aside, I will now address the possibility that the universe produced an

equal number of baryons and antibaryons in the first tens of microseconds after the big bang. This

hypothetically could have happened if the big bang separated the universe into different spatial



23

domains, some filled with matter and others filled with antimatter.21 If this were the case, the

domain of matter we live in would have to be at least the size of the observable universe. If our

domain was smaller than the observable universe astronomers would be able to see the domain

walls, the two dimensional planes where matter and antimatter meet. These domain walls would

be the location of many annihilation events which produce gamma rays (high energy photons) that

would be easy for astronomers to spot.

So if there are domains of matter and antimatter in the universe, the observable universe

must exist entirely inside a matter dominated domain. The hypothesis that the universe is split

into domains is therefore untestable, we cannot rule it out. In this case Sakhorov’s conditions

would be relaxed – we no longer need baryon number violation (since there is as much matter as

antimatter). But we would still need plenty of CP-violation [19], so additional CP-violation beyond

what is predicted in the Standard Model is well motivated even if this untestable theory is correct.

1.3 The Electron’s Electric Dipole Moment

Our experiment searches for BSM CP-violating interactions by measuring the electron’s elec-

tric dipole moment. We think this is a sensible observable to measure for a few reasons. 1) A

nonzero eEDM would violate T-symmetry (and therefore CP-symmetry by the CPT theorem). 2)

The Standard Model predicts that the eEDM is almost negligibly small, so any nonzero measure-

ment can be attributed to BSM physics. And 3) BSM theories which predict new instances of

CP-violation in order to explain the BAU generally induce an eEDM. In the next three subsections

I will explain each of these points in turn.

21Another possibility, which can be relegated to a footnote, is that matter and antimatter were homogeneously

spread throughout the universe but did not annihilate. This is all but ruled out by galaxy collisions, which would

cause the regions of matter and antimatter in each galaxy to overlap and annihilate producing crazy amounts of high

energy photons that astronomers simply do not observe [22].
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1.3.1 The eEDM Violates CP-Symmetry

Strictly speaking, the electric dipole moment of the electron is a T- and P-symmetry violating

effect.22 If we accept the CPT theorem as true, then T-symmetry violation is just as good as CP-

symmetry violation as far as resolving the BAU goes. For a depiction showing that a nonzero value

of the eEDM would violate P- and T-symmetries, see Figure 1.9.

Figure 1.9: As electrons are spin-half particles, the Wigner-Eckart theorem implies that if electrons
have a nonzero EDM d⃗ it must be parallel or antiparallel to its spin S⃗. Suppose that the eEDM
is nonzero and d⃗ ∥ S⃗, as shown on the left side of the figure. Its spin is indicated by the light
purple arrow indicating the rotation direction, and its electric dipole moment is depicted by the
lump of extra negative charge at the bottom of the electron and the cavity of charge at the top.
Reversing the direction of time (top right) would cause the electron to spin in the opposite direction

(S⃗
T−→ −S⃗) but would not change the orientation of the charge (d⃗

T−→ d⃗). A parity inversion (bottom

right) would cause the cavity and lump of charge to swap places (d⃗
P−→ −d⃗) but would not change

the direction of the electron’s spin (S⃗
P−→ S⃗). In both cases, we start with parallel and end with

antiparallel vectors. Because we assumed that d⃗ ∥ S⃗ and we know that all electrons are identical,
the electrons on the right side of the above image do not exist in nature. Therefore the eEDM
violates T- and P-symmetries.

22This is true of any fundamental fermion with an EDM, not just electrons. Electrons are a convenient choice

since they are stable, readily available and exist as free particles unlike quarks.
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1.3.2 The eEDM is Background Free

A nonzero measurement of the eEDM would be a signal of CP-violating physics, but how do

we know if it comes from the Standard Model or from something more exciting? Fortunately, the

SM predicts a value for the eEDM which can be calculated precisely via Feynman diagrams.

We saw before that the electron’s magnetic dipole moment is represented in Feynman dia-

grams where an electron interacts with a real photon as shown in Figure 1.5. Feynman diagrams

where an electron interacts with a real photon that also contain interactions that violate P- and

T-symmetries instead generate the electron’s electric dipole moment, as the eEDM also violates

these symmetries [25].

The only T- and P-violating interactions in the Standard Model are weak interactions that

change quark flavor. The simplest way to include those interactions in a Feynman diagram that

starts and ends with an electron is to draw the two-loop diagram shown in Figure 1.10a. Here

an electron is first converted into an electron neutrino and W− boson by the weak force. That

W− boson converts into a down-type and an antiup-type quark, which is described by a complex

entry of the CKM matrix that violates T-symmetry. The quarks then recombine into a W− boson,

parameterized by the complex conjugate of the same CKM matrix element, and then the W−

boson and electron neutrino turn back into an electron. While this two-loop diagram contains

interactions that violate T-symmetry, in the math of calculating the probability amplitude of this

Feynman diagram we multiply the CKM matrix element by its complex conjugate, making the

total amplitude real and T-symmetry conserving. So this Feynman diagram does not induce an

eEDM. Note that the external photon in Figure 1.10a is detached because it can interact with any

of the virtual charged particles in the Feynman diagram.

In order to find the Standard Model’s prediction of the eEDM, we must include more interac-

tions. We can go to three-loop Feynman Diagrams, like the one shown in Figure 1.10b. Note that

this one diagram represents many diagrams with every permutation of up- and down-type quarks
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(a) Two-Loop SM Contribution to eEDM (b) Three-Loop SM Contribution to eEDM

Figure 1.10: (a) A two-loop Feynman diagram which connects a real electron to CP violating
physics in the Standard Model. ui and dj are any antiup-type and down-type quarks, and the
external photon can couple to any of the charged virtual particles. While this Feynman diagram
contains CP-violating interactions at the vertices between the W− bosons, down- and antiup-type
quarks, the overall probability amplitude is CP-symmetric as it is proportional to VijV

∗
ij = |Vij |2,

which is completely real. (b) A three-loop Feynman diagram that violates CP-symmetry and can
induce an eEDM. However, the sum of all of the probability amplitudes from three-loop diagrams
of this type is real, meaning that even at three loops the eEDM predicted by the SM is zero.

included at the four quark lines, and the external photon interacting with any of the charged par-

ticles. These diagrams now include four vertices where quarks transform into one another via the

weak force, so the probability amplitude is proportional to the product of four entries of the CKM

matrix. The probability amplitudes are in general complex numbers which violate T-symmetry

and therefore induce an eEDM. However, it turns out when you add together all of the possible

three-loop Feynman diagrams, the SM predicts an eEDM equal to zero [25].23

The Standard Model does predict a finite value of the eEDM at the four loop level. It

turns out that the four-loop diagrams which contain even more weak interactions contribute to the

eEDM (Figure 1.11a), and so do four-loop diagrams that contain a strong interaction mediated by

a gluon (Figure 1.11b). These fourth order diagrams add together in a way that their probability

23A satisfactory explanation that the three-loop diagrams add up to zero eEDM requires a deeper dive into the

math, as explained in [25].



27

amplitudes have an imaginary component, which results in an eEDM of 5.8× 10−40 e cm [26].

(a) SM eEDM, all weak interactions (b) SM eEDM, one strong interaction

Figure 1.11: Four-loop Feynman diagrams that give the electron an EDM. These diagrams are the
same as the one shown in Figure 1.10b with the addition of (a) a weak interaction that changes
quark flavor or (b) a strong interaction between quarks.

The Standard Model predicts a nonzero value of the eEDM, but it is orders of magnitude

smaller than the sensitivity of leading eEDM experiments [27, 28]. This means that if we can

measure the eEDM with a smaller error bar than anyone before and we find that our measurement

does not agree with zero, it can only be explained by CP-violating physics beyond the Standard

Model (or, of course, a measurement error). This helps make the eEDM an appealing place to look

for new CP-violating physics, but why should new CP-violating physics show up as eEDM at all?

1.3.3 The eEDM is Sensitive to BSM Physics

We saw in Subsection 1.1.3 that the strong force couples to quarks (half of the fermions),

the electromagnetic force couples to charged particles (75% of the fermions) and the weak force

couples to all fermions. How do we know which fermions will couple to Beyond the Standard Model

interactions and therefore be the best probes of new physics? The answer is that we cannot know

in advance, we can only make an intelligent guess. Many of the most popular BSM theories have

CP-violating interactions that couple to the electron directly (via one-loop Feynman diagrams),
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so the eEDM is a sensible place to look [17]. Supersymmetric theories are one example of a BSM

theory that has CP-violating interactions which couple to the electron inducing an eEDM, shown

in Figure 1.12.

Figure 1.12: In supersymmetric BSM theories, every particle has a heavier supersymmetric partner.
The electron can turn into its supersymmetric parter, the selectron ẽ−, by emitting a photino γ̃, the
supersymmetric partner of the photon. The selectron interacts with the external electromagnetic
field, giving the electron an EDM. This interaction is CP-symmetry violating.

The magnitude of the eEDM from one-loop BSM theories, like the one shown in Figure 1.12,

is straightforward to calculate [29]:

de ∼
ea0α

2

g2

2π
sinϕCP

m2
e

M2
(1.6)

The first fraction in the above equation gives the proper dimensions for the eEDM as ea0 is the

charge of the electron multiplied by the bohr radius. α is the fine structure constant, which is

approximately
1

137
. This is then multiplied by

g2

2π
, where g is the interaction strength of each

electron-selectron vertex in Figure 1.12. As there are two such vertices, g2 shows up in the magni-

tude of the eEDM. This is then multiplied by sinϕCP, a number whose magnitude is between 0 and

1, which encodes how much this interaction violates CP-symmetry. If the interaction is completely

CP-symmetry violating sinϕCP = 1. Naively, we expect sinϕCP ∼ 1 since the new interactions
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need to be CP-symmetry violating to explain the BAU. Finally, the eEDM is multiplied by
m2

e

M2
,

the ratio of the electron’s mass divided by the characteristic mass of the new particles squared.

The heavier the BSM particles are the smaller the eEDM will be, which makes sense as according

to the Heisenburg uncertainty principle the heavier virtual particles will exist for a shorter time

and have a smaller effect on the electron.

It’s worth pointing out that Equation 1.6 tells us that we are at a particularly exciting time to

make precise measurements of the eEDM. If we assume that sinϕCP = 1 and the BSM interactions

are as strong as electromagnetic interactions, i.e. g2 = α ≈ 1

137
, then we can directly relate limits of

the eEDM magnitude to searches for new particles of a certain mass. The result of the experiment

I describe in my thesis is that, at the 90% confidence interval, |de| < 4.1×10−30 e cm [27]. Plugging

this relation into Equation 1.6 gives M ≳ 40 TeV/c2.

This means that our experiment, which measured the eEDM and found a result consistent

with zero, was able to rule out the existence of particles which 1) have CP-symmetry violating

interactions with the electron that 2) are as strong as the electromagnetic force and 3) have a mass

smaller than 40 TeV/c2. We can compare this to the large hadron collider (LHC), the home of the

world’s leading high energy physics experiments, which can rule out BSM particles with masses less

than about 3 TeV/c2 [30]. This means that our eEDM measurement, which is the combined effort

of orders of magnitude fewer people than work at the LHC with a much smaller budget, was able

to search for a broad class of particles that are too massive to detect at the world’s best particle

collider. That’s pretty cool.

1.4 Thesis Outline

In this introductory chapter I have explained why we expect there to exist CP-symmetry

violation that is not predicted by the Standard Model and why measuring the eEDM is a good

way to search for these interactions. In chapter two, I will give a succinct description of the second

generation HfF+ eEDM measurement, which has already been described in these sources [2,27,31].
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In chapter three I will fill in the gaps of what has not been written about the second generation

measurement, mostly discussing the systematic effects that I worked on. Chapter four discusses

how we determined the sign of the g-factor in the 3∆1 state of HfF+, and chapter five is about

the magnetic shielding we will need for our third generation experiment to keep known systematic

effects small. I conclude my thesis in chapter six.



Chapter 2

Generation 2 Overview

“We all could have been killed - or worse, expelled. Now if you don’t mind, I’m going to bed.”

- J. K. Rowling, Harry Potter and the Sorcerer’s Stone

The main accomplishment of my time in graduate school was my role in the second generation

measurement of the eEDM at JILA [27]. In addition to writing a paper on the result, we published

a lengthy document that gives a complete description of the measurement and its uncertainty [31].

Tanya Roussy, who was the senior graduate student on the project when we took the data, wrote

an excellent thesis going into even more detail about the experiment [2]. As the only other graduate

student who worked full time on the experiment during the years leading up to the measurement,

my thesis will likely be the last document we write about the project.1 I do not see a great value

in rewriting how the experiment works in detail, so the bulk of this chapter will be a reproduction

of the first half of our “Systematics” paper [31]. In Chapter 3 I will give an overview of the

systematic errors in our measurement, focusing on the ones I worked on. But first, I will give my

own description of how we measured the eEDM.

1Eric Cornell and Jun Ye presumably have better things to do at this point.
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2.1 JILA eEDM Experimental Overview

A free electron with no orbital angular momentum in external electric and magnetic fields

will have an energy:

He = −µ⃗s · B⃗ − d⃗e · E⃗ = −gsµB
S⃗

ℏ
· B⃗ − de

S⃗

ℏ
· E⃗ (2.1)

We know the electron has a magnetic dipole moment µ⃗s that is antiparallel to its spin S⃗ (i.e.

gs ≈ −2 < 0) which interacts with the magnetic field B⃗ causing an energy shift. While it has not

been measured, the electron may have a nonzero electric dipole moment d⃗e, which must be parallel

(de > 0) or antiparallel (de < 0) to its spin S⃗ by the Wigner-Eckart theorem [32]. In an electric

field E⃗ this would cause an additional, small energy shift −d⃗e · E⃗ .

A naively appealing way to measure de is to set B⃗ = 0. In this case the only energy shift is

from the eEDM and we find:

He = −de
S⃗

ℏ
· E⃗ = −deMsE (2.2)

Here the only energy shift is caused by the eEDM interacting with E⃗ , so E⃗ defines the quantization

axis. The two states Ms = ±1

2
are split by an energy deE which can be measured via a standard

spin-flip experiment.

While this approach is straightforward, it quickly runs into a few problems. The first is

that de is tiny; our current limit says that it would take an unreasonably large electric field of

1015 V/cm or more to split a free electron’s spin up and down states just 1 Hz [27]. The most

ambitious experiments I know of have electric fields on the order of 106 V/cm made from closely

spaced and highly charged electrodes [33]. Even in these fields the eEDM shift would be at the

nHz scale or smaller, which means the eEDM measurement needs to be quite precise. Additionally,
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the large electric field poses a new problem; the field will quickly accelerate the electron out of the

experimental apparatus.

Another problem is that there is no way of eliminating the magnetic field entirely. Earth’s

magnetic field is typically 0.5 Gauss, which would interact with the electron’s magnetic moment

µs = 2µB/h = 2.8 MHz/G to cause a ∼ 1 MHz shift between the electron’s spin up and down

states. While a few orders of magnitude of magnetic shielding is achievable, the 15 orders of

magnitude of shielding required to make the Zeeman effect as small as the eEDM signal are far

beyond what is possible. In addition to drowning out the eEDM signal, the background field will

define the quantization axis.2 This would cause a host of problems, from reducing the magnitude

of the eEDM shift to making the spin-flip experiment nearly impossible.

We can solve some of these problems by intentionally applying a small magnetic field, as

shown in Figure 2.1. Per Equation 2.1, the magnetic field would define the quantization axis and

cause the spin up and down states to split by 2.8 MHz/G. We could then apply an electric field

parallel to the magnetic field. This would cause the energy splitting to slightly grow or shrink,

depending on the sign of de. After measuring this energy difference in a spin-flip experiment, we

could reverse the direction of the electric field and repeat the measurement. As long as the Zeeman

shift is constant its magnitude will not matter – the difference between the two measurements will

be 2deE .

This new approach solves the problem of defining the quantization axis and allows us to

measure the eEDM even though its shift is small compared to the magnetic effect. However,

it does not solve the problem of the electric field kicking the electron out of our apparatus. It

also introduces the requirement that the noise in the magnetic field δB is small enough such that

gsµBδB < δdeE , where δde is the desired precision of the eEDM measurement.

2When one field causes a much larger energy shift than the other, the quantization axis is defined by the field

which causes the larger energy shift.
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(a) Spin up and down states in a
magnetic field

(b) Parallel magnetic and electric
fields

(c) Antiparallel magnetic and elec-
tric fields

Figure 2.1: A simplified eEDM measurement protocol. In each subfigure the spin up |↑⟩ and down
|↓⟩ states are split in a magnetic field, where the vertical axis represents energy. (a) The states
are split in energy by a magnetic field. To the right there is an inset that shows the frequency
ν = ∆E/h which drives the spin flip. (b) The states are split by parallel electric and magnetic
fields. For this figure we assume that de is positive, meaning the splitting between the spin up and
down states decreases. This is shown by the red frequency trace in the inset while the blue trace
shows the frequency from (a). (c) The states are split by antiparallel electric and magnetic fields
causing the energy difference to increase. The value of deE can be found by taking the difference
of energies measured in (b) and (c). Image adapted from [2].

Our experiment at JILA solves these problems with a method first suggested by Dave DeMille

[34]; we measure the electron’s EDM by experimenting on electrons trapped inside of a heavy polar

molecule in the 3∆1 electronic state. These molecules have two valence electrons, one of which is

subject to a massive effective electric field Eeff on the order of 10 GV/cm [35] that is at least four

orders of magnitude larger than fields we can generate in labs. Our molecule of choice is HfF+

which has an effective electric field of + 23 GV/cm [36]. Even though one of the valence electrons

is subject to a substantial effective electric field it is trapped inside the molecule and does not fly

out of our experiment. Additionally, the magnetic sensitivity of HfF+ in the 3∆1 electronic state

is about three orders of magnitude smaller than a free electron [31]. This is because in a 3∆1

electronic state, the two valence electrons’ spins are oriented in the opposite direction of two units

of orbital angular momentum, largely cancelling out the molecule’s magnetic dipole moment.3

The upshot of using a heavy polar molecule in a 3∆1 electronic state is that the eEDM signal

might be as large as 10 µHz (four orders of magnitude larger than it can be from a lab electric

field) while the magnetic sensitivity is on the order of 1 kHz/G (three orders of magnitude smaller

3See Chapter 4 for a further discussion of this point.
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than that of a free electron). This still implies that we need to control the magnetic field noise to

10 nG, a daunting task but one that is seven orders of magnitude less challenging than if we did

our experiment with a bare electron.

Fortunately, 3∆1 molecules have another trick up their sleeve. Their more complicated struc-

ture, which is explained fully in Chapter 2 of Will Cairncross’s thesis [1], contains two pairs of states

called omega doublets, shown in Figure 2.2. These states have nearly the same g-factors, different

by only a part in 465(1) in HfF+, but the opposite sign shift due to the eEDM [31]. Glossing over

a few important details that will be addressed in Chapter 3, this means we can read out the eEDM

shift by subtracting the energy difference within the upper doublet from the energy difference in

the lower doublet. The crucial benefit this provides is that by measuring the upper and lower

energy differences simultaneously the magnetic field noise applies to both doublets and is naturally

cancelled.

This point about noise cancellation is important, so it is worth explaining how we imple-

mented it in our experiment. We prepared a population of HfF+ molecules, half of which were in

the upper doublet of the 3∆1 electronic state and half in the lower doublet. These molecules were

held in an ion trap and overlapped spatially and temporally. They therefore experienced the same

magnetic field which caused Zeeman shifts in both doublets as shown in Figure 2.2.4 Any noise in

the magnetic field would change the magnitude of the Zeeman shifts in both the upper and lower

doublets simultaneously. Except for the slight difference in g-factors which we account for in [31],

this noise cancels when we find deEeff ∝ ∆Eupper −∆Elower. Simultaneously measuring the energy

differences of both doublets to eliminate magnetic field noise has been incredibly useful.

We have one final scheme to reduce our sensitivity to magnetic fields. In addition to doing our

experiment in a 3∆1 state that has reduced magnetic sensitivity and doublets with similar g-factors

4This is true if we assume the molecules are in the exact same time and place. This is true to a very good

approximation, though we have a systematic error associated with this discussed in [31].
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Figure 2.2: Energy levels in the 3∆1v = 0, J = 1, F =
3

2
state of HfF+ where we perform the eEDM

measurement. The eight states indicated by the black horizontal lines are in the presence of an
electric field ∼ 60 V/cm and magnetic field ∼ 10 mG. The vertical axis denotes energy and is not to
scale. We call the top two states the upper doublet and the lower two states the lower doublet. The
doublets are oriented the opposite direction and are split by a Stark splitting of approximately 100
MHz. Each doublet is split in energy by the Zeeman shift, about 100 Hz, and the eEDM, ≲ 40µHz.
The Zeeman shifts of the upper and lower doublet are not identical, indicated by their different
g-factors gu and gl, though as discussed in [31] and later in this thesis they are only different by a
part in 465(1). The shift due to the eEDM has the opposite sign between the two doublets. If we
ignore for a moment that the Zeeman shifts are different, we can measure the eEDM by taking the
difference of the energy shifts of the upper and lower doublets. Because we measure molecules in
the upper and lower doublets simultaneously, magnetic field noise will affect both doublets and (to
first order) not change our measurement of the eEDM. This is a good general description of our
measurement, though it contains a few loopholes which are addressed in Chapter 3 of this thesis
and [31].

but opposite shifts due to the eEDM, we perform our experiment in a way that is to first-order

immune to uniform magnetic fields. We hold the HfF+ molecules in a Paul trap and polarize them

with a rotating electric field, as shown in Figure 2.3a. The rotating electric field E⃗rot has magnitude

Erot = 58 V/cm and rotates with a frequency frot = 375 kHz. This causes the molecules to quickly

rotate in circles with radius rrot = 0.5 mm while the molecules slowly oscillate around the center

of the trap with a secular frequency fsec ∼ 1 kHz.
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(a) HfF+ rotating due to E⃗rot (b) HfF+ rotating due to E⃗rot inside B⃗axgrad

Figure 2.3: (a) A HfF+ molecule, with a red Hf nucleus and blue F nucleus, rotates in a circle
with rrot = 0.5 mm due to E⃗rot. We alternately take data with the molecules rotating clockwise
and counterclockwise. The molecule and instantaneous direction of E⃗rot is shown at eight distinct
times. The molecule undergoes many such rotations while it slowly oscillates around the origin
of the ion trap. (b) The molecule undergoes the same rotation in the ion trap our usual applied
magnetic field B⃗axgrad = Baxgrad(2z⃗ − x⃗ − y⃗). This figure is drawn with Baxgrad < 0, though note
that we alternately take data with Baxgrad < 0 and Baxgrad > 0.

The quantization axis of our experiment is defined by E⃗rot as it causes the largest energy shift

to our 3∆1 state of ∼ 100 MHz. This rotating quantization axis, as shown in Figure 2.3a, points

in every direction in the xy-plane over a period Trot = 1/frot. Therefore any uniform magnetic

fields in the xy-plane average to zero in the direction of the quantization axis and do not cause

any Zeeman shifts.5 Uniform magnetic fields along the z-axis never point along E⃗rot so they cannot

cause any diagonal shifts, though they can cause off-diagonal couplings. These off-diagonal effects

are considered in Section 3.1, and the systematic effects they cause are manageably small.

In order to intentionally apply the small Zeeman shift necessary for our experiment, we apply

a magnetic field gradient B⃗axgrad = Baxgrad(2z⃗ − x⃗ − y⃗). Figure 2.3b shows a molecule rotating

through this magnetic field. This results in an average magnetic field B⃗rot along the quantization

5Systematic effects due to static magnetic fields will be discussed in Chapter 3 and are examined in [31]. These

effects will be important for our third generation experiment, which will be discussed in Chapter 5.
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axis, as described in Figure 2.4. How this works is, in my opinion, one of the more clever aspects

of the JILA EDM experiment.

Figure 2.4: A molecule rotating due to E⃗rot in a magnetic field B⃗axgrad at four different time steps of
the rotation period Trot = 1/frot. Just as is shown in Figure 2.3b, the magnetic field at the location
of the ion varies in direction and magnitude as the ion rotates. The total magnetic field B⃗axgrad can

always be expressed as a sum of B⃗static, which does not change in magnitude or direction, and B⃗rot,
which is constant in magnitude but always antiparallel to E⃗rot. For the opposite sign of Baxgrad, B⃗rot
is always parallel to E⃗rot. The magnetic fields cause a Zeeman shift if they have a nonzero average
projection along the quantization axis defined by E⃗rot. B⃗static does not cause a Zeeman shift as it
is parallel as often as antiparallel to E⃗rot, but B⃗rot does cause a Zeeman shift.

So far I have discussed why the naturally large Zeeman shift makes it very difficult to measure

a nonzero eEDM. We employ three main strategies at JILA to make our experiment possible: 1) the

use of a 3∆1 molecule with a large Eeff and small g-factor, 2) the simultaneous measurement of the

upper and lower doublets which have very similar g-factors but opposite sensitivities to the eEDM,
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and 3) the use of a rotating quantization axis that averages out uniform magnetic fields. The first

strategy is not unique to our experiment, the ACME collaboration has a comparable limit on the

eEDM and uses the 3∆1 state of the ThO molecule [28]. While ACME does not measure their

doublets simultaneously, they rapidly switch back and forth between the two doublets. However,

we are the only eEDM experiment that currently takes advantage of the rotating quantization

axis. It is not a coincidence that we are the only recently published result without any magnetic

shielding.6 Systematic shifts due to magnetic effects are a leading error for EDM measurements

and are a serious candidate for what could limit progress in the field. All three of these advantages

may be key in advancing the precision of EDM measurements.

Figure 2.5: The x-axis is energy and the y-axis is number of measurements in an EDM experiment.
The orange and blue curves represent data from two datasets where Energy = Zeeman shift ±
EDM shift. The three graphs represent the key ingredients to statistical sensitivity of an EDM
experiment. Left: the splitting between the two datasets increases with a larger Eeff . Center: the
width of each dataset shrinks with the coherence time τ . Right: The center of each dataset can be
found more reliably with more data points and increases with

√
N . An ideal EDM experiment has

large Eeff , τ and
√
N .

In addition to making sure that the Zeeman shift or other systematic effects do not overwhelm

the eEDM shift, we want the measurement to be as precise as possible. As discussed above, we

find the eEDM by measuring the energy difference of the upper and lower doublets and then

taking the difference of those measurements. As we see in Figure 2.5, the central values of those

doublet measurements will be farther apart in the presence of a larger Eeff . The distributions of

our measurements will be narrower for data taken with a longer coherence time τ , and we will be

6We will need shielding for our next generation measurement, see Chapter 5. However, our shielding requirements

will still be quite relaxed compared to competing experiments.
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able to find the center of each distribution as we take more data points
√
N [17]. All together, we

find that the statistical uncertainty of the measurement is given by:

δde ∼
ℏ

|Eeff |τ
√
N

(2.3)

As discussed earlier, we have chosen a 3∆1 molecule with a large Eeff = 23 GV/cm. A key

advantage of our experiment is that we can hold our HfF+ molecules in an ion trap for arbitrarily

long times. Unfortunately the 3∆1 electronic state of HfF+ is metastable with a finite lifetime of

about two seconds, limiting our coherence time τ ≈ 3 seconds at most.7 This is still orders of

magnitude longer coherence time than competing experiments like ACME which can only make

their measurements over a few milliseconds [28]. We perform our experiment on as many HfF+

molecules at a time as we can, which is typically a few hundred ions in each omega doublet. All

together this gave us a good enough statistical sensitivity to make the most precise measurement

of the eEDM to date [27].

2.2 How the JILA Generation Two eEDM Experiment Works

Hopefully the previous section sufficiently introduced how to measure the eEDM in general

and our approach at JILA. Now I will give an explanation of how the experiment works in detail.

Because this was already written up in Tanya Roussy’s thesis and our “Systematics” paper, which

was written by Luke Caldwell, Tanya Roussy and myself, there’s not a great need for a third

independent write up [2, 31]. Below is the explanation of our experiment from the Systematics

paper, edited just a bit to fit smoothly into this thesis.



41

Table 2.1: Spectroscopic constants for 3∆1 state of HfF+ used throughout this document.

Constant Value Description Reference

Be/h 8.983(1)GHz Rotational constant [37]
A∥/h −62.0(2)MHz Hyperfine constant [38]

dmf/h 1.97(1)MHzV−1 cm Molecule-frame electric dipole moment [39,40]
ωef/(2π) 0.74(4)MHz Ω-doubling constant [37]
gN 5.257 74(2) Nuclear magnetic g-factor of 19F [41]
G∥ −0.0122(3) Effective electronic g-factor [39]

gF −0.0031(1) F = 3/2 state g-factor [39]
|Eeff |/h 5.5× 1024Hz e−1 cm−1 Effective electric field [42,43]

The effective electronic g-factor given here is inferred from the measured gF , G∥ ≡ 3gF −gNµN/µB,
and suited to calculations including only states in 3∆1. A slightly smaller G∥ must be used when
considering the effects of interactions with other electronic states [40,44].

Table 2.2: Example experimental parameters and associated derived parameters from our 2022
data.

Parameter Value Description

Erot 58V cm−1 Magnitude of rotating electric field during free evolution

Eπ/2rot 7V cm−1 Magnitude of rotating electric field during π/2 pulses
ωrot 2π × 375 kHz Angular frequency of Erot
Brot 10mG (typ.) Effective rotating magnetic field
Brev2,0 200mGcm−1 (typ.) Applied magnetic quadrupole gradient

rrot 0.5mm Radius of ion circular motion
δgF
gF

−0.002 146(2) Stark doublet-odd magnetic g-factor ratio (see Figure 3.2)

∆0 ∼ 0.6Hz Rotation induced mF coupling
∆D ∼ −0.9Hz Doublet-odd correction to ∆
VRF 23.5V RF radial confinement voltage during free evolution
ERF 0.5V cm−1 RF electric field amplitude at typical ion during free evolution
ωRF 2π × 50 kHz Radial-confinement RF frequency
VDC 3.7V DC axial confinement voltage during free evolution
EDC 10mV cm−1 DC axial confinement electric field at typical ion
ωx 2π × 0.95 kHz x secular frequency during free evolution
ωy 2π × 1.51 kHz y secular frequency during free evolution
ωz 2π × 1.60 kHz z secular frequency during free evolution

In the Systematics paper we report ∆ ∼ 1.0 Hz and ∆D ∼ −0.6 Hz. Recent numerical simulations by
Anzhou Wang indicate that we incorrectly swapped the magnitudes of these two values. Fortunately, as
each term has a magnitude of ∼ 1 Hz, this does not effect the analysis of our experiment.
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Figure 2.6: Schematic of experimental apparatus. On the left is the source chamber, where we
produce neutral molecules. On the right is the main experimental chamber, containing the ion
trap. The two chambers are connected by a differential pumping chamber with two small apertures
at either end. The endcap electrodes of the ion trap have a hole in the center to allow optical access
along the z direction (vertical in the lab). Inset shows fields applied during experimental sequence:

the rotating electric bias field E⃗rot, and the quadrupole magnetic field B⃗0. The molecular axis of
each of the ions is either aligned or anti-aligned with E⃗rot.

2.2.1 Experiment

Our experiment uses HfF+ ions, confined in an ion trap and prepared in the metastable 3∆1

state. Relevant molecular properties are given in Table 2.1. In the 3∆1 state, one of the valence

electrons is subject to a large intramolecular effective electric field Eeff = 23GV cm−1 [45], along

the internuclear axis of the molecule. We orient this molecular axis in the lab frame by applying

an external electric field which rotates to maintain confinement of the ions. We then prepare the

electron spin of the molecule in a coherent superposition of states, corresponding to the spin of

the eEDM-sensitive electron oriented either parallel or antiparallel to Eeff , and measure the energy

difference between them using Ramsey spectroscopy. The eEDM will give a contribution to this

energy proportional to deEeff . To reject other unwanted contributions, we perform this measurement

simultaneously on two spatially overlapping clouds of ions with their molecular axes aligned and

7In our third generation experiment we will switch to ThF+ molecules where 3∆1 is the ground electronic state,

hopefully allowing us to increase the coherence time τ to 20 seconds.
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anti-aligned with the externally applied field. The difference between the measured energies in each

case is our science signal.

This section describes the apparatus and each of the steps used in state preparation and

measurement of the ions. A summary of typical experimental parameters is given in Table 2.2.

2.2.1.1 Lasers

The experiment uses a total of 9 lasers; 5 pulsed lasers used for ablation, ionization, and

photodissociation, and 4 CW lasers—which we denote L961trans, L818vc , L1082op , L814depl—used for state-

preparation and readout. A summary is given in Table 2.3 and Fig. 2.7, and each is described

in detail in the following sections. All lasers are locked to wavemeters using simple, ∼ 1Hz servo

loops. The CW lasers are locked to within ∼ ±30MHz, and the pulsed lasers to ∼ ±500MHz.

2.2.1.2 Molecular beam and ionization

Our experiment begins with a pulsed beam of neutral molecules. We use a pulsed Nd:YAG

laser to ablate a solid Hf rod into a pulsed supersonic expansion of Ar, seeded with 1% SF6. Chem-

ical reactions between the Hf plasma and the SF6 produce neutral HfF which are entrained in the

supersonic expansion and rovibrationally cooled by collisions with the Ar atoms to a temperature

of ∼ 10K. When they arrive in our main chamber, ∼ 50 cm away, a pair of pulsed UV lasers at

309 nm and 368 nm excite a two-photon transition to a Rydberg state 54 cm−1 above the ionization

threshold, from which they autoionize [39, 46]. The molecular ions are created in the first few

rotational levels of 1Σ+(v = 0), the electronic and vibrational ground state of the molecule. The

ions are stopped at the center of our RF ion trap by pulsed voltages on the radial trap electrodes,

after which the confining potentials are immediately turned on. We typically trap ∼ 2× 104 HfF+

ions with a lifetime8 of ∼ 5 s. The trap is described in detail in the next section.

8We note that the trap lifetime is limited by slow heating of the ions and is strongly dependent on the trapping

parameters. The 5 s here is for the very shallow trap used during the Ramsey interrogation time.
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2.2.1.3 Ion trap

Our linear Paul trap has 8 radial electrodes and 2 endcaps. The radial confinement is provided

by driving the radial electrodes in a quadrupole configuration producing a field,

E⃗RF(r⃗, t) =
VRF

R2
0

cos (ωRFt)(x⃗− y⃗), (2.4)

where ωRF = 2π×50 kHz, VRF is the voltage applied on each electrode, R0 ∼ 4.8 cm is the effective

radius the RF trap, and x⃗, y⃗ are the radial position coordinates of the ions in the laboratory frame.

Axial confinement is provided by DC voltages VDC on a pair of endcaps, producing a field

E⃗DC(r⃗, t) =
VDC

Z2
0

(x⃗+ y⃗ − 2z⃗), (2.5)

where Z0 ∼ 17 cm is the effective height of the RF trap. We choose the values of VRF and VDC

immediately after ionization to best match the spatial mode of the initial ion cloud, giving trap

frequencies ∼ 5 kHz in all directions. We then linearly ramp the trapping voltages down over 10ms

to expand and cool the ion cloud. The ramp takes the trap frequencies to ∼ 2.8 kHz and ∼ 2.0 kHz

in the radial and axial directions respectively.

In addition to the confinement fields, we also apply a rotating electric field E⃗rot,

E⃗rot(t) = Erot
[
x̂ cos (ωrott) + R̃ŷ sin (ωrott)

]
, (2.6)

where ωrot = 2π × 375 kHz, R̃ = ±1 indicates the rotation direction and Erot = |E⃗rot| is typically

∼ 58V cm−1. This field serves to orientate the molecular axis, and thus the effective electric field, of

the ions and we do our spectroscopy in this rotating frame. E⃗rot causes an additional micromotion

of the ions,

− e

mω2
rot

E⃗rot = −rrotÊrot, (2.7)

where rrot ∼ 0.5mm. The shape of the radial electrodes is optimized to minimize inhomogeneities

in E⃗rot across the ion cloud [1].
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2.2.1.4 Magnetic fields

Measuring the electron EDM also requires orienting the electron spin of the molecules which

we do with an applied magnetic field B⃗0. In order for the unpaired electrons to experience a

time-averaged interaction with the intramolecular effective electric field, this magnetic field must

corotate with E⃗rot. We achieve this using a pair of coils in anti-helmholtz configuration aligned

along the axial direction, giving

B⃗0 = B̃Brev2,0 (2z⃗ − x⃗− y⃗). (2.8)

Here Brev2,0 is typically ∼ 200mGcm−1 and B̃ = ±1 indicates the direction of the current in the

coils, explained in more detail in Sec. 2.2.1.9. In the rotating and co-moving frame of the ions, this

quadrupole magnetic field appears as a time-averaged magnetic bias,

B̃Brot = ⟨B⃗0 · E⃗rot⟩ = B̃Brev2,0 rrot. (2.9)

The coil pair is driven by a precision current source with 1 pA resolution, corresponding to

200 fG cm−1. We refer to the pair of coils that produces this field as the B⃗0-coils.

The apparatus also includes three pairs of coils setup along the lab frame x̂, ŷ, ẑ axes in

Helmholtz configuration for tuning the magnetic field at the position of the ions. The z coil is

driven by the second channel of the precision current supply used for the B⃗0-coils, the x and y coils

are driven by a lower precision current supply. The magnetic field around the periphery of the

trap is measured by an array of eight, 3-axis fluxgate magnetometers bolted to the outside of the

main experimental chamber. We use these measurements to infer the magnetic field at the center

of the trap. In contrast to other modern eEDM experiments [28, 47, 48], the apparatus includes

no magnetic shielding as we are principally only sensitive to magnetic fields rotating at ωrot, as

discussed in detail in Chapter 3 of this document and Section VI A of the Systematics paper.
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Figure 2.7: Cartoon depicting the transitions used during our state preparation. The 3Π0+ and
3Π0− states decay preferentially to 3∆1, while the 3Σ−

0 state decays preferentially to 1Σ+.

2.2.1.5 State preparation

Immediately after ionization, the HfF+ ions are in the ground electronic and vibrational

state (1Σ+(v = 0)), primarily distributed over the lowest 4 rotational levels J = 0–3. We connect

these rotational levels using microwaves and perform incoherent transfer to the eEDM-sensitive

3∆1(v = 0, J = 1) science state by using light from L961trans to drive the 3Π0+(J = 0) ← 1Σ+

transition, the excited state of which decays preferentially to 3∆1. This light enters the chamber

along the z-axis and is on for 80ms beginning immediately after ionization. The decay from 3Π0+

puts population in several vibrational levels in 3∆1, which can decay into the v = 0 science state

if left untreated. We remove the population in higher vibrational levels by illuminating the cloud

with L818vc light which connects 3Σ−
0+
(v = 1, J = 0)← 3∆1(v = 1, J = 1) at ∼ 818 nm, preferentially

decaying back to 1Σ+. The L818vc laser also enters the chamber along the z axis and remains on for

the duration of the experiment. Potential systematics associated with this light are discussed in

Section VI B 2 of the Systematics paper.

After transferring the ions to the science state, we ramp on E⃗rot in 5ms. Figure 2.8 shows
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the structure of the science state at Erot = 58V cm−1. In this field, the stretched states of 3∆1(J =

1, F = 3/2) correspond to the molecule aligned or anti-aligned with the field. They form two pairs

of levels—which we call the upper and lower doublet, highlighted in orange and blue respectively—

with their molecular dipole, and thus Eeff , either aligned or anti-aligned with Erot. Each doublet

consists of one state with mF = 3/2 and one with mF = −3/2.

We polarize the molecules in the rotating frame by optically pumping them using L1082op light

addressing the 3Π0−(v = 0, J = 0) ← 3∆1(v = 0, J = 1) at 1082 nm. The light is circularly

polarized with its k-vector in the plane of E⃗rot. We use an AOM to strobe L1082op synchronously

with the rotation of E⃗rot on a 50% duty cycle9 such that it drives either σ+ or σ− transitions to

an F ′ = 3/2 manifold in the excited state. This eventually leaves population only in either the

mF = 3/2 or mF = −3/2 states of 3∆1(v = 0, J = 1). We define the preparation phase of the

experiment as the orientation of E⃗rot relative to the k-vector of the light when the light is on; in

when E⃗rot is parallel, and anti when it is anti-parallel. This preparation phase can be changed by

adjusting the timing of the strobing cycle. L1082op is on for a total of 80ms, starting 40ms after

trapping.

The final step of state preparation is applying L814depl light at 814 nm. This laser is tuned to

address the 3Σ−
0+
(v = 0, J = 0) ← 3∆1(v = 0, J = 1), which preferentially decays to 1Σ+ by a

10:1 ratio, having weaker coupling to the 3∆1 state. L814depl is circularly polarized with the same

handedness and k-vector as L1082op . It is again strobed so as to only address and remove any residual

population left over in other mF states after L1082op is turned off. L814depl light is on for 7ms, beginning

3ms after L1082op is turned off.

These steps leave the population in an incoherent mixture of one of the stretched states of

the two doublets. The key difference from our previous measurement [38] is that the experiment

9We note that, although the light is on for 50% of each cycle, the micromotion-induced Doppler shifts mean it is

only resonant with the ions for less than 5%.
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proceeds on both doublets simultaneously. Our detection scheme [49], described in Sec. 2.2.1.7,

allows us to read out each independently, enabling us to take advantage of common-mode noise

cancellation.

2.2.1.6 Ramsey sequence

Immediately prior to the Ramsey sequence, we ramp the radial confinement of the ions down

further, to trap frequencies of ∼ 1 kHz. This reduces the density of the cloud and improves the

coherence time due to mechanisms discussed in Section VI D 1 of the Systematics paper.

We apply a π/2 pulse to the ensemble of ions by temporarily ramping down the magnitude

of E⃗rot from ∼ 58V cm−1 to ∼ 7V cm−1 in 16 µs, holding it there for 1ms and then ramping back

up in a further 16 µs. Reducing Erot increases a rotation-induced coupling between mF = ±3/2

states in a doublet (see Sec. 2.2.3), causing the pure spin states in each doublet to evolve into a

coherent superposition. We allow this superposition to evolve for a variable amount of time tR—up

to 3 s—and then apply a second π/2 pulse to map the relative phase onto a population difference

between the two states in a doublet.

2.2.1.7 Measurement

We project the ions into their final state by applying L814depl again to remove population from

one of the stretched states in each doublet. The readout phase is defined in the same way as the

preparation phase; in for E⃗rot is parallel with the k-vector of the light when it is on and anti for

antiparallel.

Finally, we detect and count the number of ions in the remaining stretched states via

resonance-enhanced multiphoton dissociation [50], driven by two pulsed UV lasers at 368 nm and

266 nm. Immediately prior to the dissociation pulse, we ramp up both radial and axial confinement

to compress the cloud and improve the dissociation efficiency. The dissociation pulse is timed so

that E⃗rot is along Ĩ ŷ, parallel to the plane of a microchannel plate (MCP) and phosphor screen as-
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Figure 2.8: Ramsey spectroscopy in HfF+. Top: level structure of the eEDM-sensitive 3∆1(v =
0, J = 1) manifold in external electric Erot ∼ 58V cm−1. Solid (dashed) lines correspond to states
with Ω = +1(−1). Gray lines correspond to states which asymptote to F = 1/2 at zero field,
all other states asymptote to F = 3/2. The upper (orange) and lower (blue) doublets used for
the measurement, corresponding to Eeff aligned and anti-aligned with the externally applied field
respectively, are separated by ∼ 100MHz. The two states in each doublet are further split by
the Zeeman energy, not resolvable on this scale, and interaction of the eEDM with Eeff . Bottom:
example Ramsey fringes from our dataset. The fringes from the two doublets are collected simul-
taneously.

sembly. Here Ĩ = ±1 and ŷ is defined by Fig. 2.6. Because the dissociation lasers enter at an angle

to ŷ, there is considerable Doppler shift from the micromotion of the ions at 45◦ to the k-vector of
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the light. To account for this we adjust the frequency of the 368 nm light by ∼ ±2GHz depending

on the product R̃Ĩ which gives the sign of the Doppler shift.

Each of the lasers is circularly polarized to drive transitions which preserve the orientation

of the molecules during dissociation [1]. In this way the resultant Hf+ ions from each doublet are

ejected in opposite directions. The handedness of the dissociation lasers P̃ is determined by a λ/2

waveplate which can be moved into or out of the beam path on a motorized mount. Immediately

after dissociation, we turn off the RF confinement and apply pulsed voltage on the radial electrodes

to kick the ions towards the MCP. The Hf+ ions from each doublet are imaged on opposite sides of

the phosphor screen; the side each doublet is imaged on is set by the value of Ĩ. We time-gate the

phosphor screen such that we only image the dissociated Hf+ and not any remaining HfF+ ions.

We detect both Hf+ and HfF+ ions in time of flight. Technical details of our imaging and counting

system are described in [49,51].

Of the ∼ 2× 104 trapped HfF+ ions, we typically detect ∼ 550 Hf+ ions on each side of the

screen at early time (∼ 1100 total), and ∼ 120 (∼ 240 total) after tR ∼ 3 s. The latter is principally

limited by the finite lifetime of the 3∆1 state but with a contribution from ions being heated out

of our shallow trapping potential during tR.

2.2.1.8 Noise

Instability of the intensity of the pulsed lasers used for ablation, ionization and photo-

dissociation means that the fluctuations in the number of Hf+ ions detected at the end of each

shot are ∼ 30%, roughly 3× the quantum projection noise limit for 120 ions. However these

sources of noise, and many others, are common mode; the exact same laser pulses address the ions

which end up in the upper and lower doublets. If we measure the ion number when the Ramsey

oscillations of the two doublets are close to in phase with one another then we can take advantage of

excellent noise cancellation in the number difference [49] which we use to extract our science signal

(see Sec 2.2.2). The two doublets oscillate at slightly different frequencies owing to a part in 230
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difference in their magnetic moments and so we deliberately take our data at a beat ; our early-time

data is taken when the two doublets are in phase10 and our late-time data ∼ 230 oscillations later

when they come back into phase again. The time of the second beat can be controlled by varying

the oscillation frequency via the B⃗0-coils. In our final dataset, the noise in the science signal is

roughly 30% above the shot noise limit.

2.2.1.9 Experimental protocol and switch states

In each shot of the experiment we can choose the preparation phase to be either in or anti.

For a given choice of Ĩ, the direction of E⃗rot at the moment of dissociation, and P̃ , the handedness of

the dissociation laser polarization, the readout phase is constrained by the need to drive stretched-

to-stretched transitions which preserve molecule orientation. We label each shot of the experiment

with each of these phases. For example in-anti labels a shot where the cleanup (and optical

pumping) laser are parallel to E⃗rot during state preparation but anti-parallel during readout.

To record a Ramsey fringe, we repeat our measurement at different free evolution times. For

a given fringe, the phase of readout is kept fixed. At each Ramsey time, we take an even number of

shots with each pair consisting of one shot with each phase of state preparation. This set of shots

is called a point and a Ramsey fringe consists of 8 of these points taken at different tR; we take 4

points at early Ramsey time, and 4 points at late Ramsey time, each consisting of two points on

the sides of fringes and one point each on the top and bottom as shown in Fig. 2.8. The points on

the sides of the fringes consist of 20 shots each, while the points on top and bottom consist of 8

shots each.

We record our data in ‘blocks’. Each block is constructed from a set of 23 = 8 fringes

recorded in each possible combination of 3 experimental switches. Each switch corresponds to an

10Due to the finite length of the π/2 pulses, the doublets are already slightly out of phase at the earliest Ramsey

times accessible to us. Systematic effects associated with this imperfection are discussed in Section VII in the

Systematics paper.
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experimental parameter whose sign can be reversed: B̃ the direction of the current in the B⃗0-coils,

R̃ the direction of rotation of E⃗rot, and Ĩ the direction of E⃗rot relative to the y axis at the time of

dissociation, corresponding to which side of the phosphor screen each of the doublets are imaged

onto. Note that in our implementation of the Ĩ switch, the direction of E⃗rot is reversed at all points

in time so that the opposite switch is prepared and read out. A fourth experimental switch, P̃ the

polarization of the dissociation light, is alternated every block.

We refer to each experimental configuration with {B̃, R̃, Ĩ, P̃} = ±1 as a switch state. In each

block, the first Ramsey time is recorded for all switch states before moving onto the second Ramsey

time for each switch state etc. The order of the switch states at each point is {B̃, R̃, Ĩ} ={1,1,1},

{-1,1,1}, {1,-1,1}, {-1,-1,1}, {1,1,-1}, {-1,1,-1}, {1,-1,-1}, {-1,-1,-1}. Every other block, the order of

switch states is reversed. In each switch state, we simultaneously collect data for molecules in each

doublets, corresponding to orientation of the molecular axis with respect to the applied electric

field which we represent by another switch D̃ = ±1. The Ramsey times for each switch state are

adjusted independently based on the data from the previous block to ensure that the 20-shot points

are as close as possible to both the sides of the fringes, where our sensitivity is highest, and to the

beat, where our noise cancellation is best and where various systematic shifts are minimized.

For the eEDM dataset, we collected 1370 blocks or ∼ 600 hours of data over a ∼ 2 month

period of April–June 2022. During the data run, we took data with 3 different values of the Brev2,0 ,

corresponding to fringe frequencies of ∼ 75, 105 and 151Hz. About halfway through the dataset,

we rotated the waveplates of L1082op , L814depl and the dissociation lasers to reverse the handedness of

the light from each.

2.2.1.10 Images to determine doublet positions

To determine where the dissociated Hf+ ions from each doublet fall on the phosphor screen

in each switch state, we take a series of images with no Ramsey sequence. For these images we

prepare the stretched states as described in Section VII A of the Systematics paper but apply
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Figure 2.9: Example ion-detection data for a single shot of the experiment. Swatch (solid lines),
from which ion counts are discarded, is defined by region ±45 pixels from center line (dashed line).
Ions assigned to the upper and lower doublets are shown in orange and blue respectively.

no π/2 pulses before removing the population in one of the doublets using low-power L814depl light,

tuned to resonance with the doublet to be depleted, and propagating along the z direction to avoid

micromotion-induced Doppler shifts. We take 3 types of image per switch state: one where we

deplete the lower Stark doublet, one where we deplete the upper Stark doublet, and one where the

laser is tuned between the doublets to deplete both symmetrically. We use these three images to

determine the center line between the two blobs for each switch state as described in Sec. 2.2.2.1.

We repeated this imaging routine roughly every 10 blocks during the dataset to protect against

alignment drifts. Potential effects of a systematic error in the determination of the center line are

discussed in Section VII B 2 of the Systematics paper.

2.2.2 Data Analysis

2.2.2.1 Ion counting and asymmetry

Our experimental signal is dissociated Hf+ ions read out via phosphorescence on an imaging

microchannel plate (MCP). The images are processed asynchronously and we save a file which

contains the locations of each bright spot which was determined to be an ion according to our
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smoothing and noise-reducing processing algorithm. The data from a tyical shot is shown in

Fig 2.9. The full eEDM dataset contains ∼ 108 ion detection events.

We use this same algorithm to analyze the test images described in Sec. 2.2.1.10 and find

a center line for each switch state. We use this center line when analyzing the Ramsey data to

define a swatch which is a rectangular area, of fixed width, at the center of the image from which

ion counts are discarded, as shown in Fig. 2.9. We do this because the doublets are not entirely

separated on the screen, so in this area we cannot be sure that we will assign ions to the correct

doublet. The extent to which we are able to isolate the two doublets is given by the imaging

contrast CI. As the swatch width increases, the imaging contrast improves but total ion number N

decreases as we throw out more ions. For the final analysis of the dataset, we used a swatch of 90

pixels—to be compared with the total width covered by the detected ions, about 900 pixels—which

roughly maximizes CI

√
N , proportional to our sensitivity. Potential systematics associated with

the swatch width and imaging contrast are discussed in Section VII B 1 of the Sysetmatics paper.

Once we have our center line for each switch state we can properly count Hf+ ions in our

Ramsey data images and assign them to the correct doublet. For every image (which corresponds

to a single run of the experiment), we end up with a number of ions in the upper doublet Nu, and

number of ions in the lower doublet N l.

For every switch state, we take data in both the in-in and anti-in (or the anti-anti and in-anti)

combinations of preparation and readout phase. If the preparation and readout phase are the same

(i.e. in-in and anti-anti), then the fringe formed as we vary tR will have a π phase shift from the

fringe formed when they are different (anti-in or in-anti). We will refer to in-in and anti-anti as “In”

and in-anti and anti-in as “Anti”. Now for each pair of shots, we can form our spin asymmetry,

Au/l =
N

u/l
In −N

u/l
Anti

N
u/l
In +N

u/l
Anti

, (2.10)

where the subscript refers to the preparation and readout phase combination. For each Ramsey

time and switch state we take n shots and so can form n/2 asymmetries for each of the upper and
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lower doublet. From these n/2 asymmetries we construct a mean Am
u/l, and from their scatter, a

standard error on the mean δAu/l.

We then form two ‘meta’ asymmetries by taking the difference (D) and sum (S) of the upper

and lower asymmetries,

AD = Au −Al,

AS = Au +Al,

(2.11)

with means Am
D ,Am

S and standard errors δAD, δAS. The δAD are reduced compared to δAS (and

δAu/l) due to common-mode cancellation of many sources of noise.

2.2.2.2 Least squares fitting

As mentioned previously, we perform our Ramsey experiment simultaneously on both dou-

blets and use their opposing orientations at the time of dissociation to read them out on opposing

sides on the imaging MCP screen. Because the data are acquired simultaneously, the difference

asymmetry allows us to cancel much of the common-mode noise, leaving us with doublet-odd data

with less scatter than the raw data. Unfortunately, the doublets are not fully separated on the

screen, so we must be careful with how we fit our data.

For an ideal Ramsey fringe, with no leakage from the other doublet, we can define a functional

form for the asymmetry,

hu/l(tR) = Cu/le
−γu/ltR cos(2πfu/ltR + ϕu/l) +Ou/l. (2.12)

Here C is the initial fringe contrast, γ the contrast decay rate, f the fringe frequency, tR the free

evolution time, ϕ the initial phase, O the offset, and the subscripts indicate the upper or lower

Stark doublet. In our fitting routine, we initially fit each fringe separately to this function. From

the fit parameters we define the mean and difference parameters as

αm =
αu + αl

2
,

αd =
αu − αl

2
,

(2.13)
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with α ∈ {C, γ, f, ϕ,O}. Due to imperfect imaging contrast CI, in reality each doublet’s signal has

a contribution from the other doublet. In this case, the measured asymmetries are

Au = (
1 + CI

2
)hu + (

1− CI

2
)hl,

Al = (
1− CI

2
)hu + (

1 + CI

2
)hl.

(2.14)

Now our sum and difference asymmetries are

AS = hu + hl

AD = CI(hu − hl),
(2.15)

which we can express in terms of the mean and difference fitting parameters,

AS = (Cm + Cd)e
−2γmtR cos(2π(fm + fd)tR + (ϕm + ϕd)) + (Om +Od)...

+ (Cm − Cd)e
−2γdtR cos(2π(fm − fd)tR + (ϕm − ϕd)) + (Om −Od),

AD = CI((Cm + Cd)e
−2γmtR cos(2π(fm + fd)tR + (ϕm + ϕd)) + (Om +Od)...

− (Cm − Cd)e
−2γdtR cos(2π(fm − fd)tR + (ϕm − ϕd))− (Om −Od)).

(2.16)

We use these two expressions to perform a simultaneous least-squares fit for the sum and

difference asymmetries in each experimental switch state. The value of CI, the imaging contrast, is

fixed at 0.89 for this fit—determined as described in Section VII B 1 of the Systematics paper. The

parameter uncertainties are extracted based solely on the standard errors of the asymmetries used

in the fits. The resultant uncertainties on the fitted values of fd and ϕd are close to the shot noise

limit and much smaller than those on fm and ϕm thanks to our simultaneous data collection and

fitting routine, which cancels most of the common-mode noise. The outputs of these simultaneous

fits are used for all further analysis.

2.2.2.3 Switch-parity channels

After fitting to each Ramsey fringe in a block to extract the 10 fitting parameters, we use

the resulting 8 values of each parameter to form 8 linear combinations which we call switch-parity
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channels. The switch-parity channels for the mean and difference parameters αm and αd which are

odd under the product of switches [S̃aS̃b...] are given by

αSaSb... =
1

8

∑
B̃,R̃,Ĩ=±1

[S̃aS̃b...]αm(B̃, R̃, Ĩ),

αDSaSb... =
1

8

∑
B̃,R̃,Ĩ=±1

[S̃aS̃b...]αd(B̃, R̃, Ĩ).

(2.17)

So for example, CDBRI is formed from adding together the measured Cd in all switch states for

which the product B̃R̃Ĩ = 1, subtracting all switch states for which the product B̃R̃Ĩ = −1 and

dividing by the number of switch states. fBR is formed by adding together the fm measured in

all switch states for which the product B̃R̃ = 1, subtracting the fm measured in all switch states

for which the product B̃R̃ = −1 and, again, dividing by the total number of switch states. To

avoid ambiguity, we label parity channels for the mean parameters αm which are even under all

switches with superscript 0; e.g. f0 is the mean of the fm measured in all switch states. We note

that, because the measured fu/l are defined as positive quantities (see Sec. 2.2.3), the B̃ switch is

anomalous in that frequency contributions which change sign with B̃ appear in B̃-even channels

while contributions which are independent of the B̃ switch appear in B̃-odd channels. In particular,

the absolute sign of the contribution from the eEDM, which appears in fDB, changes sign only

with D̃. All other parity channels allow us to to diagnose experimental issues and identify sources

of systematic error.

2.2.2.4 Blinding

We blinded the dataset by programming the fitting routine to add an unknown constant offset

to the fDB channel. This offset, drawn from a uniform distribution with a width of 10mHz (∼

9× 10−28 e cm), was stored in an encrypted file and not removed until all statistical and systematic

checks on the dataset had been completed, and the uncertainties finalized.
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2.2.2.5 Data cuts

After completing the dataset, we applied cuts to the blinded data based on non-EDM channels

indicating signal quality. Blocks with any individual fringe with late-time contrast below Clate = 0.2

were cut due to low signal to noise. By inspection of least-squares fits of individual fringes, this

cut served as a good proxy for pathological fitting results. Blocks were also cut if they contained a

fringe with a fitted difference frequency fd in any switch state which was more than 3.5σ different

from the mean fringe frequency for that switch state. The mean fringe frequencies were calculated

over all blocks not removed by the late-time-contrast cut and which had the same value of B⃗0.

They were constructed from the linear combinations, including the blinded offset on fDB. This cut

helped remove blocks where an experiment malfunction, e.g. laser unlocking, affected just one or

two shots in a fringe. If our data were perfectly normally distributed, with no outliers, this would

be expected to remove ∼ 5 blocks, and decrease χ2 by ∼ 0.7%. Figure 2.10 shows the shift in the

center value, and the error bar of the eEDM channel, as a function of each of these two cuts. The

first cut removed 26 blocks and the second a further 15, leaving 1329 blocks in the final dataset,

with χ2 = 1.07(4) for fDB. Our final 1σ statistical error of 22.8 µHz has been relaxed by a factor√
χ2 = 1.035.

2.2.3 Effective Hamiltonian for Doublets

To an excellent approximation, we can model the evolution of either of the Stark doublets,

shown in orange and blue in Fig. 2.8, as a two-level system. The effective Hamiltonian for each

pair can be parameterized

Heff =
h

2

f0 ∆

∆ −f0

 . (2.18)
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Figure 2.10: Change in fDB over whole dataset as a function of cuts explained in text. (a) Late-
time contrast cut. (b) Individual fringe outlier cut. In each plot, only one cut is applied. The error
bars on fDB are corrected by a factor of

√
χ2. Dashed lines indicate cuts used in final analysis.

This effective Hamiltonian acts on states

MF = +3/2

MF = −3/2

.11 The diagonal components f0 contain

all terms which directly shift the energies of the two states relative to one another, while the off-

diagonal components ∆ contain all terms which mix the two states. We can expand both f0 and

∆ in terms of their leading contributions,

f0 = B̃f00 + δF0, (2.19)

∆ = R̃∆0 + R̃D̃∆D + δD. (2.20)

11The order of the vectors in Equation 2.18 was not specified in the Systematics paper. The Systematics paper

implicitly uses the opposite convention and has a few sign errors and missing factors of h that will be highlighted in

footnotes of this document.
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Here the quantities with tildes are equal to ±1 and are determined by the experimental switch

state, discussed in Sec. 2.2.1.9. The remaining parameters are defined in the next two paragraphs.

The principal contribution to f0 is the Zeeman splitting f00 = −3gFµBBrot/h ∼ 100Hz.12 The

off-diagonal component is dominated by two terms with similar magnitude, but different switch state

dependence; ∆0 and ∆D, which both have magnitudes of about 1Hz, represent a slight mixing of

the two MF = ±3/2 states in each doublet and arise at fourth order in perturbation theory in the

full molecular Hamiltonian from the combined perturbations of rotation and Ω-doubling, breaking

the degeneracy of either Stark doublet at Brot = 0 [52,53]. ∆0 and ∆D are given by

h∆0 =
3ℏωef

2

(
ℏωrot

dmfErot

)3
(
18A2

∥ − 19d2mfE2rot
A2

∥ − d
2
mfE2rot

)
,

h∆D =
3ℏωef

2

(
ℏ3ω3

rot

d2mfE2rotA∥

)(
9A2

∥ − 8d2mfE2rot
A2

∥ − d
2
mfE2rot

)
,

(2.21)

where the various constants are defined in Table 2.1. These expressions are valid as long as

dmfErot ≫ ℏωef and dmfErot ≫ ℏωrot or, in other words, if the molecule is fully polarized. The

strong scaling of ∆ with Erot allows us to perform off-resonant π/2 pulses by modulating the mag-

nitude of Erot as described in Sec. 2.2.1.6.

The additional perturbations are given by

δF0(B̃, R̃, Ĩ, D̃) =
∑
S̃∈W

S̃δfs0 , (2.22)

δD(B̃, R̃, Ĩ, D̃) =
∑
S̃∈W

S̃δ∆s, (2.23)

where both summations are over W, the set of all possible products of {B̃, R̃, Ĩ D̃}, and the super-

script s on the δfs0 and δ∆s denote the switch state dependence of the perturbation relative to the

largest term in each matrix element, f00 and ∆0 respectively. For our purposes, the most important

12Note that sign change and factor of h not included in the Systematics paper. See Subsection 4.6.2 for why

this shift has a negative sign. The lack of a negative sign in the Systematics paper is the cause of considerable sign

confusion.
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perturbation is that due to the eEDM which contributes a diagonal term, D̃δfDB
0 = 2D̃deEeff/h13.

Others which are important for our determination of de are discussed in detail in Section VI of the

Systematics paper.

For each experimental switch state (B̃, R̃, Ĩ), and doublet D̃, we measure a frequency

f(B̃, R̃, Ĩ, D̃) corresponding to the energy difference between the two eigenstates, which we define

to be always positive. For typical experimental parameters, f00 is roughly two orders of magnitude

larger than any other term in the Hamiltonian, and so we can expand f about f00 ,

f(B̃, R̃, Ĩ, D̃) =
∣∣∣B̃f00 + δF0 +

(∆0)
2
+ (∆D)

2
+ 2D̃∆0∆D + 2R̃(∆0 + D̃∆D)δD + δD2

2B̃f00

− δF0
(∆0)

2
+ (∆D)

2
+ 2D̃∆0∆D + 2R̃(∆0 + D̃∆D)δD + δD2

2f00
2 + ...

∣∣∣
= |f00 |+ sgn(f00 )

[
B̃δF0 +

(∆0)
2
+ (∆D)

2
+ 2D̃∆0∆D + 2R̃(∆0 + D̃∆D)δD + δD2

2|f00 |

− B̃δF0
(∆0)

2
+ (∆D)

2
+ 2D̃∆0∆D + 2R̃(∆0 + D̃∆D)δD + δD2

2|f00 |2
+ ...

]
(2.24)

Note the factor of sgn(f00 ) = sgn(−3gFµBBrot/h) = −sgn(gF ), multiplying all but the first

term in this expression. As we see in Chapter 4, we have measured sgn(gF ) = −1 so sgn(f00 ) = +1.14

13The factor of 2 in this expression arises because our definition for the frequency of each fringe corresponds to the

full energy difference between de aligned and anti-aligned with Eeff . The systematics paper also reports this shift with

a positive sign, though this is due to 1) the opposite convention for the order of the MF = ±3/2 states in Equation

2.18 and 2) a sign error in the paper. See Subsection 4.6.2 for why the sign of the eEDM shift is positive. Also note

the inclusion of h, absent in the Systematics paper.
14The systematics paper says sgn(f0

0 ) = −1 because it uses the definition f0
0 = +3gFµBBrot/h. I use the definition

with a negative sign the equation for f0
0 , and do so consistently throughout this thesis. Where there are discrepancies,

default to this thesis instead of the Systematics paper.



Chapter 3

Systematics

“I’m not dumb. I just have a command of thoroughly useless information.”

- Bill Watterson, The Indispensable Calvin and Hobbes

As discussed in the previous chapter, the eEDM shift is D̃-odd and shows up in the fDB

frequency channel which we have measured with a 1σ statistical error of 22.8 µHz. One of our

primary goals for the experiment was to understand and reduce the size of the systematic errors

in our experiment so that they are each small compared to our statistical error bar. A complete

description of our systematic error budget is given in the Systematics paper [31]. In this chapter,

I will give an overview of our systematic errors and discuss some of those errors in more depth.

The systematic errors of our measurement can be nicely split into two camps. First are shifts

in the frequency difference within each doublet that we measure during the Ramsey experiment.

These shifts are the largest systematics in our experiment and will be the focus of this chapter.

The other set of systematic errors are due to phase shifts of the Ramsey fringe at either early or

late time. While these phase shifts change the measured frequency, the resulting frequency shifts

are suppressed because we measure the phase at the beginning and end of our long coherence time.

This is a key advantage we have over beam line experiments which cannot vary the coherence time

of their measurements. As the systematics from phase errors are relatively small, I leave their

discussion to Section VII of the Systematics paper [31].
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3.1 Systematics due to Off Diagonal Terms

We know that the eEDM shift contributes to our measured frequency fDB, but it is just part

of the full expression which we can find from Equations 2.22- 2.24:

fDB =
1

16

∑
B̃,R̃,Ĩ,D̃=±1

B̃D̃f(B̃, R̃, Ĩ, D̃)

=
1

16

∑
B̃,R̃,Ĩ,D̃=±1

[
B̃D̃|f00 |+ D̃δF0

+ B̃D̃
(∆0)

2
+ (∆D)

2
+ 2D̃∆0∆D + 2R̃(∆0 + D̃∆D)δD + δD2

2|f00 |

− D̃δF0
(∆0)

2
+ (∆D)

2
+ 2D̃∆0∆D + 2R̃(∆0 + D̃∆D)δD + δD2

2|f00 |2
+ ...

]
(3.1)

The only terms that survive the summation are the ones which are not multiplied by B̃, R̃, Ĩ or D̃:

fDB = δfDB
0 +

∆0δ∆DB +∆Dδ∆B

|f00 |
− δfDB

0

(∆0)
2
+ (∆D)

2

2|f00 |2
− δfB0

∆0∆D

|f00 |2

+
1

16

∑
B̃,R̃,Ĩ,D̃=±1

[
B̃D̃

δD2

2|f00 |
− D̃δF0

2R̃(∆0 + D̃∆D)δD + δD2

2|f00 |2
+ ...

]
(3.2)

The first term, δfDB
0 , contains the doublet-odd frequency shifts which show up directly in

the measured fDB channel.1 This includes the eEDM shift 2D̃deEeff which we want to measure.

1As defined in Subsection 2.2.3, frequency shifts are labeled with a superscript that denotes the switch state

dependence of the frequency shift relative to the largest frequency shift f0
0 . f0

0 is B̃-odd, so δfDB
0 is D̃-odd but

B̃-even. The same convention holds for the ∆ terms where the largest off-diagonal coupling ∆0 is R̃-odd. This

convention is confusing and should be abolished in Generation 3, but as it is deeply entrenched in the Generation 2

documents I use it in my thesis. Note that every term Equation 3.2 has the “net” superscript DB. For example, the

second and third terms ∆0δ∆DB and ∆Dδ∆B each have one D and B in their superscripts, and therefore a “net”

superscript DB. If the same letter appears twice in the superscript it cancels out. This means that the δfDB
0 (∆D)2

term has a “net” superscript DB as well.
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All other terms in the above expression, including any other D̃-odd frequency shifts that are part

of δfDB
0 , are systematic errors in our experiment.

All but the first term of Equation 3.2 are systematic shifts due to the nonzero off-diagonal

couplings ∆. The largest of these terms are the R̃-odd ∆0 ∼ 0.6 Hz and D̃R̃-odd ∆D ∼ −0.9 Hz. In

Subsection 2.2.3 it was explained that these couplings are calculated from fourth order perturbation

theory which gives the expressions in Equations 2.21. The important part of these expressions is

that ∆0 is R̃-odd and is proportional to ℏωef

(
ℏωrot

dmfErot

)3
, which is explained in Figure 3.1.

Figure 3.1: The level structure of 3∆1 v = 0, J = 1, F = 3/2 state in HfF+ in an external electric
field Erot ∼ 58 V/cm and magnetic field Brot ∼ 10 mG. The energies of the eight states are given
by the Stark shift, which splits the upper and lower doublets by ∼ 100 MHz (blue bracket), and
the Zeeman shift, which causes a ∼ 100 Hz shift between the MF = ±3/2 levels (green brackets).
The shifts are not shown to scale. Pairs of states with the same Ω and ∆MF = 1 are mixed by
the rotation matrix element ℏωrot (black lines) because the experiment is performed in a rotating
frame. Pairs of states with the same MF but different Ω values are mixed due to the Omega
doubling matrix element ℏωef (red lines). When we construct the two-level effective Hamiltonian
in Subsection 2.2.3, ∆0 is the average off-diagonal coupling between the MF = ±3/2 states within
each doublet. These states are coupled by three rotation matrix elements and one Omega doubling
matrix element, spanning energies on the scale of the Stark shift dmfErot. That is why fourth order

perturbation theory gives the expression ∆0 ∝ ℏωef

(
ℏωrot

dmfErot

)3
. Note that ∆0 is proportional to

three powers of the rotation coupling which changes sign when the molecules are rotating clockwise
vs counterclockwise. This explains why ∆0 is R̃-odd. This diagram does not include the F = 1/2
states, which as seen in Figure 2.8 are closer in energy to the upper doublet. These states complicate
the calculation and explain why the coupling has a large ∆D term.

The model explained in Figure 3.1 can also guide us towards the off-diagonal coupling terms
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besides ∆0 and ∆D which are significant. While the rotation matrix element mixes pairs of states

with the same value of Ω and ∆MF = 1, the same can be done by a magnetic field that is

perpendicular to the quantization axis defined by E⃗rot.2 As E⃗rot rotates in the xy-plane, magnetic

fields along the z-axis of our experiment fit the bill.

There are two important sorts of uniform magnetic fields along the z-axis, those that reverse

with B̃ and those that do not. Recall that we apply a magnetic field gradient B⃗0 = B̃Brev2,0 (2z⃗−x⃗−y⃗),

where Brev2,0 ∼ 200 mG/cm, via a pair of anti-Helmholtz coils.3 Brev2,0 is the largest part of the total

magnetic field experienced by the molecules, B⃗ = B̃B⃗0 + δ⃗B. Similar to the notation for f and ∆

explained in Subsection 2.2.3, the switch state dependence of the magnetic field will be written as:

δB⃗ =
∑
S̃∈W

S̃δB⃗s (3.3)

The summation is over W, the set of all possible products of {B̃, D̃, R̃, Ĩ}, and the superscript s

denotes the switch state dependence of the field relative to B⃗0, which is B̃-odd. This means Bz

is the B̃-odd magnetic field along the z-axis, which can be generated if the anti-Helmholtz coils

are misaligned, while BBz is the B̃-even background field.4 See Appendix A for how we measured

Bz < 88 mG and BBz < 80 mG in our experiment.

These magnetic fields along the z-axis cause off-diagonal couplings between the same pairs

of states coupled by the rotation matrix element. We can naively estimate the magnitude of ∆

induced by Bz or BBz by replacing one of the three rotation matrix elements ℏωrot with gFµBBz

or gFµBBBz . This would tell us that there are contributions to ∆ that are
gFµBBz
ℏωrot

=
1

982
and

2See Chapter 2 of Willaim Cairncross’s thesis [1] for a detailed explanation of how magnetic and electric fields

cause diagonal and off-diagonal matrix elements.
3See Subsection 2.3.5 of Tanya Roussy’s thesis [2] for a complete description of the coils used in our experiment.
4As I made clear in a previous footnote, I do not like this confusing notation. I strongly encourage everyone still

working on the JILA eEDM experiment to change this notation for the next measurement.
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gFµBBBz
ℏωrot

=
1

1080
times ∼ 1 Hz, assuming that the magnetic fields are as large as our measurements

allow them to be. A more careful calculation by current JILA EDM graduate student Anzhou Wang

tells us that this misses a factor of three because the magnetic field matrix element can replace any

one of the three rotation matrix elements. This results in B̃-even and B̃-odd components of ∆ that

are ∼ 327 and 360 times smaller than 1 Hz. These ∆s are R̃-even because they now include only

two rotation matrix elements, and they can either be D̃-even or D̃-odd since we start with ∆0 and

∆D of roughly the same magnitude. This means we should expect δ∆R, δ∆BR, δ∆DR and δ∆DBR

all to be roughly ∼ 3 mHz, given our limits on Bz and BBz .

The second term of Equation 3.2 contains δ∆DB and δ∆B. These δ∆s must be R̃ and B̃-

odd, which can be done if the fourth order perturbation is composed of one Omega doubling

matrix element, one B̃-even Zeeman matrix element, one B̃-odd Zeeman matrix element and

one rotation matrix element. These couplings, made from two Zeeman matrix elements, will be

1

6

ℏωrot

gFµBBz
ℏωrot

gFµBBBz
∼ 1.8× 105 times smaller than ∆0 and ∆D. The factor of 6 comes from the six

unique ways that gFµBBz and gFµBBBz can replace the three ℏωrot matrix elements, meaning that

δ∆B and δ∆DB are both about 6 µHz.

Knowing the magnitude of the ∆s, together with the fact that |f00 | ∼ 100 Hz, we can evaluate

the terms in Equation 3.2 to see how large the systematic effect is from each term. The first term,

δfDB
0 , contains all of the D̃-odd shifts including the eEDM shift. This term will be discussed in

Section 3.2. The second and third terms in Equation 3.2 can be grouped with the largest terms in

B̃D̃δD2, where δD is the sum of all of the ∆ switch states except ∆0 and ∆D. These shifts together

are:

∆0δ∆DB +∆Dδ∆B + δ∆DRδ∆BR + δ∆Rδ∆DBR

|f00 |
=

30g2Fµ
2
BBzBBz ∆0∆D

h2f2rot|f00 |
(3.4)

On the right side of this equation we have used the approximate values of the six δ∆ terms de-
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termined previously. Note that the four terms on the left hand side of the above equation are not

independent – their errors are correlated so we have taken the sum of their magnitudes instead of

the usual quadrature sum for uncorrelated errors. When we evaluate this term with the largest

allowed values of Bz and BBz we find that it has a magnitude of ∼ 150 nHz, comfortably smaller

than our statistical error bar and smaller than the 400 nHz we report in the Systematics paper.5

The next terms in Equation 3.2 are:

−δfDB
0

(∆0)
2
+ (∆D)

2

2|f00 |2
− δfB0

∆0∆D

|f00 |2
≈ −δf

DB
0

104
+
δfB0
104

(3.5)

The first term simply tells us that our measurement of fDB gives us 99.99% of the D̃-odd frequency

shifts instead of the entire shift, a small correction that we can safely ignore. The second term

tells us that we have a systematic from the frequency shifts that are even in all of our switches,

divided by 10,000. As we will see in Section 3.2.2, the root cause of many systematic errors in our

experiment is that a part in ∼ 460 of δfB0 shifts leak into our measured fDB. The second term in

the above equation tells us that this leakage is about 5% larger than we would otherwise expect.

As we later constrain δfB0 to be ∼ 3.5 mHz,6 we get an additional systematic shift on the order of

∼ 210 nHz. This shift is not included in the Systematics paper, though we do mention that there

are effects at the ≲ 200 nHz level that we ignore.

The last term in Equation 3.2 is a sum over a term that is proportional to δF0. As discussed

in Subsection 3.4.2, the largest frequency shift outside of f00 is δfBR
0 ≈ 210 mHz. This means that

the largest systematic effects from the δF0 term are:

5There are multiple reasons for the discrepancy with the Systematics paper. The first is that we did not include

the factors of 3 and 6 found by Anzhou Wang discussed above. The second is that we did not properly find the limits

on Bz and BB
z as discussed in Appendix A. We also did not include the terms proportional to ∆0δ∆DB or ∆Dδ∆B .

It is fortuitous that the magnitude of the systematic does not vary substantially when correcting these oversights.
6This number was found by adding in quadrature all of the shifts in fB in sections VI A and VI B of the

Systematics paper. Those shifts will be discussed later in this chapter.
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−fBR∆0δ∆DR +∆Dδ∆R

|f00 |2
= − f

BR

|f00 |2
6gFµBBz∆0∆D

hfrot
(3.6)

On the right hand side we have replaced the δ∆ terms with the order of magnitude estimates we

found previously. We can evaluate this expression to find that fBR leaking into the eEDM channel

gives us a ∼ 70 nHz shift, smaller than the 200 nHz shift we report in the Systematics paper.

The updated values of the systematic effects in Equations 3.4 and 3.6 are not significant

enough to change the net systematic or total error bars of our experiment, but these more reliable

calculations may be helpful for when these effects are evaluated in our future measurement.

3.2 Doublet-odd Frequency Shifts

In Section 3.1 we saw that all of the terms in Equation 3.2 except for the first lead to sys-

tematics that are comfortably small compared to our statistical uncertainty. The first term, δfDB
0 ,

contains all of the D̃-odd frequency shifts. This includes the T-symmetry violating eEDM shift

2D̃deEeff that we want to measure. HfF+ is also sensitive to a T-symmetry violating pseudoscalar-

scalar electron-nucleon coupling, CS [54, 55]. This shows up as a D̃-odd frequency shift 2WSCS

where WS/h = −51 kHz in HfF+ [56]. While CS does not get the same attention as de, we are

equally interested in measuring these two T-symmetry violating effects.7

Other than T-symmetry violating effects, the only D̃-odd shifts are magnetic.8 Therefore

now is a good time to explain in detail the Zeeman effect in our experiment. This explanation will

7We actually measure a linear combination of de and CS . Our measurement alone cannot determine the value of

either parameter. It is possible, if unlikely, that de and CS are large enough for us to measure but the effects cancel

in HfF+. This is one reason why it is good that experiments to measure these quantities are done with different

molecules. I will only mention CS again briefly in Chapter 6.
8Berry’s phase effects, which are discussed in Section 3.5, are inherently D̃-even. Berry’s phase, magnetic and

T-symmetry violating effects are the only shifts that can create an energy difference between pairs of MF = ±F

states for which all other quantum numbers are the same.
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follow the introduction to Section VI A of the Systematics paper quite closely.

3.2.1 Zeeman Shifts

The Zeeman Hamiltonian for the 3∆1 v = 1, J = 1, F = 3/2 state of HfF+ is given as:

HZ = −(µ⃗0 + D̃µ⃗D) · B⃗

= −MFµB(gF + D̃δgF )Êrot · B⃗ (3.7)

Here µ⃗0 is the part of the magnetic moment that is common to both doublets and µ⃗D is the

differential part. The magnetic moments of the upper and lower doublets are quite similar for our

typical experimental parameters; their difference is usually only a part in ∼ 460. In the second line

we use the fact that both magnetic moments track the quantization axis defined by Êrot.

As discussed in Section 3.1, we express the magnetic field as a sum of two parts, B⃗ =

B̃B⃗0+δB⃗. The first part is the idealized applied quadrupole magnetic field gradient which switches

perfectly with B̃, and the second part δB⃗ represents any additional magnetic field experienced by

the molecules. We are particularly interested in δB⃗B, the magnetic field which does not switch sign

with B̃, causing shifts in fB and fDB.9 To first order10 these are:

hδfB = −3gFµB Ê · δB⃗B (3.8)

hδfDB = −3δgFµB Ê · δB⃗B (3.9)

9Note that a magnetic field with switch state dependence S will cause shifts in fS and fDS as given by Equations

3.8 and 3.9. With an exception discussed in Subsection 3.2.3, magnetic fields are necessarily D̃-even as the ions in

each doublet are overlapped in space and time.
10There is a ≲ 5% correction to these shifts from the mixing within each doublet described in Section 2.2.3. These

effects are not included in our systematic uncertainty budget.
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In these equations Ê is the unit vector pointing along the total electric field E⃗ .

As will be calculated in Subsection 4.6.7, the differential magnetic moment µ⃗D arises primarily

from the mixing of J = 1 and J = 2 levels induced by the electric and magnetic fields:

δgF ≈ −
dmfG∥|E⃗ |

20B
(3.10)

The values of the molecular constants in this equation are given in Table 2.1. There are ∼ 10 %

corrections due to the mixing of adjacent MF levels in the rotating frame and interactions with

other electronic states, as explained by [57]. We can use this equation together with Equation 3.9

to find expressions for the B̃-even time averaged frequency shifts we measure in the experiment:

h ⟨δfB⟩ = −3gFµB ⟨Ê · δB⃗B⟩ (3.11)

h ⟨δfDB⟩ = −3δgF
|E⃗ |

µB ⟨E⃗ · δB⃗B⟩ (3.12)

Appreciating the subtle differences in these equations is incredibly important for understand-

ing the systematic shifts in our experiment. The Zeeman shift that is common to the two doublets

is proportional to the time average of the magnetic field δB⃗B in the direction of the quantization

axis Ê . On the other hand, the differential Zeeman shift is proportional to the time average of the

magnetic field δB⃗B dotted into the the entire electric field E⃗ . Note that
δgF

|E⃗ |
is independent of the

electric field due to Equation 3.10 and is just a constant. This difference between whether Ê or E⃗

is included in the time average is the source of most of our magnetic systematic errors.

Going forward it will be useful to expand δB⃗B as:
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δB⃗B(x⃗, y⃗, z⃗) =
∑

l=1,2,...

l∑
m=−l

Bl,m∇⃗rlYl,m (3.13)

Here x⃗, y⃗ and z⃗ and the ion’s position relative to the trap center, Bl,m is the coefficient of each

component and Yl,m are the seminormalized real spherical harmonics:

Yl,m =

√
4π

2l + 1
×



i√
2
(Y m

l − (−1)mY −m
l ) if m < 0

Y 0
l if m = 0

1√
2
(Y −m

l + (−1)mY m
l ) if m > 0

. (3.14)

The ∇⃗rlYl,m for l ≤ 3 are given in Table 3.1.

Table 3.1: Magnetic Field Expansion. Estimated sizes of components are given in parentheses.

Coefficient ∇⃗rlYl,m
Uniform fields (≲ 10mG)11

B1,−1 ŷ
B1,0 ẑ
B1,1 x̂

First-order gradients (≲ 10mGcm−1) 12

B2,−2

√
3(yx̂+ xŷ)

B2,−1

√
3(zŷ + yẑ)

B2,0 −xx̂− yŷ + 2zẑ

B2,1
√
3(zx̂+ xẑ)

B2,2
√
3(xx̂− yŷ)

Second-order gradients (≲ 10mGcm−2)

B3,−3
3
2

√
5
2(2xyx̂+ (x− y)(x+ y)ŷ)

B3,−2

√
15(yzx̂+ xzŷ + xyẑ)

B3,−1

√
3
2(−xyx̂+ 1

2(−x
2 − 3y2 + 4z2)ŷ + 4yzẑ

B3,0 −3(xzx̂+ yzŷ + 1
2(x

2 + y2 − 2z2)ẑ)

B3,1
√

3
2(

1
2(−3x

2 − y2 + 4z2)x̂− xyŷ + 4xzẑ)

B3,2
√
15(xzx̂− yzŷ + 1

2(x− y)(x+ y)ẑ)

B3,3 3
2

√
5
2((x− y)(x+ y)x̂− 2xyŷ)
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3.2.2 Zeeman Shift from E⃗rot and B⃗2,0

The largest electric field that the molecules experience is E⃗rot = Erot[cos (ωrott)x̂+sin (ωrott)ŷ].

This field causes the molecules to undergo a circular micromotion with radius rrot =
e

mω2
rot

, where

e > 0 and m are the charge and mass of HfF+ respectively. As discussed in Section 2.1, there is no

induced Zeeman shift if the molecules are rotating in a uniform magnetic field B⃗1,m. We can now

see that this is because ⟨E⃗rot · B⃗1,m⟩ = ⟨Êrot · B⃗1,m⟩ = 0 for all allowed values of m = ±1, 0. In fact,

the only magnetic field with l ≤ 3 which causes a nonzero time-averaged shift in any frequency

channel is the intentionally applied B⃗2,0. This leads to frequency shifts:

h ⟨f0⟩ = −3gFµB ⟨Êrot · B⃗rev2,0 ⟩ = −3gFµBBrev2,0 rrot (3.15)

h ⟨δfD⟩ = −3δgF
Erot

µB ⟨E⃗rot · B⃗rev2,0 ⟩ = −3δgFµBBrev2,0 rrot (3.16)

Note that in this case that ⟨Ê · B⃗⟩ = ⟨E⃗ · B⃗⟩ /|E⃗ |. This gives us the “usual” case where the D̃-odd

shift is
gF
δgF
∼ −460 times smaller than the D̃-even shift.13 We reliably see in our experiment that

when f0 ≈ 100 Hz, we measure fD ≈ −210 mHz.

While this combination of ideal electric and magnetic fields does not give rise to D̃-odd

frequency shifts, it is never that easy in real life. There will inevitably be a magnetic field gradient

B⃗2,0 that does not reverse sign with B̃, B⃗nr2,0. This non-reversing field can arise from either an

11We used an array of magnetometers around our apparatus to shim the magnetic fields to about 10 mG, though

we were unsure if we could trust the measurement of magnetometers outside of our vacuum chamber. We were able

to confirm that B1,1 and B1,−1 were less than about 10 mG at the location of the ions by intentionally applying a

large second harmonic of the electric field and measuring the resulting shifts from the Zeeman effect described in

Subsection 3.3.3. In Appendix A we find that Bz < 80 mG and BB
z < 88 mG.

12See Section VI A 4 of the Systematics paper for how we approximated the first- and second-order magnetic field

gradients.

13See Subsection 4.6.7 if you would like an explanation of why
gF
δgF

is negative.
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imperfection in how we reverse the current in the coils that drives B⃗rev2,0 or from a background

magnetic field gradient. In either case we get the frequency shifts:

h ⟨δfB⟩ = −3gFµB ⟨Êrot · B⃗nr2,0⟩ = −3gFµBBnr2,0rrot (3.17)

h ⟨δfDB⟩ = −3δgF
Erot

µB ⟨E⃗rot · B⃗nr2,0⟩ = −3δgFµBBnr2,0rrot (3.18)

The latter of these two shifts is a systematic error, caused by a non-reversing magnetic field gradient

interacting with the slight difference in g-factors between the two doublets. The magnitude of this

systematic shift in fDB will be ⟨δfD⟩
Bnr2,0
Brev2,0

≈ 210 mHz ×
Bnr2,0
Brev2,0

.

We go to great lengths to suppress this worrying systematic shift. First note that every time

we take a block of data, we measure all 16 frequency channels made from the B̃, D̃, R̃ and Ĩ

switches. This includes fB, which according to Equation 3.17 contains a shift proportional to Bnr2,0.

If we assume that this is the only shift in fB, an assumption that we carefully check,14 we can

use our measurement of fB in order to shim the currents through the B⃗0 coils in the subsequent

block to bring Brev2,0 as close to zero as we can. This shimming procedure was quite successful; the

magnitude of the largest fB measured in any block was 35 mHz while the median magnitude was

2.3 mHz. These correspond to non-reversing magnetic fields that give rise to systematics of 75 and

5 µHz per block.

To remove the systematic effect more completely, we also can correct our measurement of

14This is a two part assumption. The first part is that Equation 3.17 is the only frequency shift in our experiment

that is even with respect to all of our switch states, which will be evaluated in Sections 3.3 and 3.5. The second

assumption is that our measurement of fB does not contain significant shift due to the mixing terms like the ones in

Equation 3.2. Since ∆0 and ∆D are similar in magnitude, the shifts caused by the mixing terms in fB will be similar

in magnitude to the ones discussed in Section 3.1. Those showed up at the ∼ 100s nHz level, and are therefore small

enough to ignore.



75

fDB using our measured value of fB:

fDB
corrected = fDB − δgF

gF
fB (3.19)

Note that the two approaches, shimming the magnetic field and correcting the measurement, are

mathematically equivalent approaches to removing the systematic. We do both. Because we

shimmed the non-reversing magnetic field before we corrected fDB, the average correction over the

whole dataset was just 90 nHz.

There are two more comments to make about this systematic effect. The first is that, in order

for our correction to be successful, we need to know
δgF
gF

quite accurately. This is an experimentally

measured quantity with the data shown in Figure 3.2. The second point is that, while we have

successfully stomped out this systematic, we now have a host of new problems. Any shift δfB which

does not have an associated D̃-odd shift that is
δgF
gF

times smaller will cause a systematic error in

our measurement of the eEDM. These shifts can be magnetic in cases where ⟨Ê · B⃗⟩ ≠ ⟨E⃗ · B⃗⟩ /|E⃗ |,

which will be addressed in Section 3.3. Additionally, Berry’s phase can cause shifts that are even

with respect to all of switch states without any D̃-odd effect, which are discussed in Section 3.5.

3.2.3 Imperfect Doublet Overlap

Before moving onto Zeeman effects that cause shifts in fB and fDB that may not be cancelled

out perfectly, it is worth asking if there are any Zeeman shifts that are inherently D̃-odd. We assume

throughout the rest of this thesis that the cloud of upper doublet molecules is overlapped in space

and time with the cloud of lower doublet molecules. If this is the case the magnetic fields seen by

the ions are inherently D̃-even and the only way to cause D̃-odd Zeeman shifts is via the small

difference in g-factor δg.

But what if the clouds are in slightly different places ⟨ri⟩D? Or what if the doublet clouds

have different sizes ⟨r2i ⟩
D
? In this case B̃-even magnetic fields that cause first- and second-order
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Figure 3.2: Measurement of δgF
gF

. (a) fD vs f0 for various values of the applied quadrupole magnetic

field, B⃗0. Data taken at Erot ∼ 58V cm−1. Fit is to fD = δgF
gF
f0+∆0∆D

f0 , giving δgF
gF

= −0.002 149(3),
∆0∆D = −0.39(4)Hz2. (b) Change in fDB vs fB induced by introducing a large non-reversing

B2,0. Fitted gradient is equal to δgF
gF
− ∆0∆D

f02
and when combined with value of ∆0∆D from (a) gives

δgF
gF

= −0.002 13(2), in excellent agreement. Note that this is the only effect we ever saw cause a

shift in fDB. Under each plot we show the residuals after fits are subtracted.

gradients in fB would lead directly to D̃-odd systematic shifts:

δfDB =
∑

i=x,y,z

⟨ri⟩D
∂fB

∂ri
+ ⟨r2i ⟩

D ∂2fB

∂r2i
(3.20)

We measured these gradients by moving the ions around in the trap and found
∂fB

∂ri
∼ 40

mHz/cm and
∂2fB

∂r2i
∼ 10 mHz/cm2. In order to keep the systematics shifts at least an order of

magnitude smaller than our systematic error bar, we need ⟨ri⟩D ≲ 1×10−4 cm and ⟨r2i ⟩
D ≲ 5×10−4
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Table 3.2: fB Curavatures with and without Permanent Magnets

Effect x y z
∂fB

∂ri
without Magnets (mHz/cm) 18(2) 47(2) 47(2)

∂2fB

∂r2i
without Magnets (mHz/cm2) -2(10) 9(10) -4(4)

∂fB

∂ri
with Magnets (mHz/cm) -1090(10) 450(10) -1500(20)

∂2fB

∂r2i
with Magnets (mHz/cm2) 250(50) -170(30) -1210(20)

cm2.

We took two approaches to measure these D̃-odd moments of the doublet clouds. The first

approach, which I will discuss now, did not work. It was fun though, and I want to record it in my

thesis. Our idea was to place permanent magnets – found in the hallways of JILA holding up posters

– around our ion trap to induce B̃-even gradients in fB. This was after we completed our ∼ 650

hour long dataset, so we really hoped that this would not permanently magnetize our apparatus if

we needed to retake any data.15 With the magnets in place we repeated our measurements of
∂fB

∂ri

and
∂2fB

∂r2i
. An example of the gradients we measured along the z-axis is shown in Figure 3.3. The

gradients created by this particular orientation of magnets is summarized in Table 3.2

After measuring the curvatures we took a few hours of precision data with the magnets still in

15Putting the magnets above the vacuum chamber was easy. Three magnets were stacked together and they sat

in a small cardboard box that rested on the vacuum chamber. The cardboard box was there so the magnets would

not sit directly on our permanent vacuum chamber and possibly permanently magnetize it. Getting the other set of

permanent magnets below the vacuum chamber was trickier, as it was very hard to reach into the space and place

anything precisely. I ended up stacking the cardboard box that contains the permanent magnets on top of a pile of

paper towels. I could adjust the number of paper towels to change the magnets’ height, and attempted to have the

top of the cardboard box rest directly against the bottom of the vacuum chamber. I should clarify that this was done

when I was left alone in lab for a week or so, as I think Tanya Roussy and Luke Caldwell have no desire to claim this

work as their own. I, on the other hand, made sure this brilliant stroke of engineering for a precision measurement

is permanently recorded in my thesis.
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Figure 3.3: Three permanent magnets were placed above and below the ion trap, generating a
curvature in fB via the Zeeman effect. We moved the center of the ion trap to different positions
along the z-axis and measured fB on two different days, the 7th and 9th of September 2022. On

both days we saw
∂2fB

∂z2
∼ 1200 mHz/cm2 and

∂fB

∂z
∼ 1500 mHz/cm, both much larger values

than background values of
∂2fB

∂z2
∼ 5 mHz/cm2 and

∂fB

∂z
∼ 47 mHz/cm. For a full comparison of

the curvatures with and without the magnets in all three directions, see Table 3.2.

place and the ions at the center of the trap. We measured fDB = 90(627) µHz, showing no evidence

of a shift in fDB from our central value -15(23) µHz. In principle, we can use this measurement

to set a limit on a linear combination of the six D̃-odd sizes ⟨ri⟩D and ⟨r2i ⟩
D
. If we took more

precision data with different values of
∂fB

∂ri
and

∂2fB

∂r2i
, and continued not to see shifts in fDB, we

perhaps could set sufficiently small limits on ⟨ri⟩D and ⟨r2i ⟩
D
.

In practice, this was quite difficult. We were limited in terms of where we could physically

place the permanent magnets by our apparatus. As can be seen in Figure 2.6, the vacuum chamber

extends to both sides of the ion trap along the y-axis, meaning it was especially difficult to make

large gradients
∂fB

∂y
and

∂2fB

∂y2
. Additionally, we were nervous about using magnets that were too

large around our trap in case the apparatus became permanently magnetized. This could have

been disastrous if for any reason we needed to take more precision EDM data. In the end we came
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up with a number of arguments for how ⟨ri⟩D and ⟨r2i ⟩
D

could arise in our experiment and why

they must be small. See Section VI D 2 of the Systematics paper for that discussion. Via those

arguments we conservatively constrain the net systematic shift to be 3.5 µHz at most.

3.3 Systematics from Magnetic Shifts in fB and fDB

The correction to fDB discussed in Subsection 3.2.2 relies on the assumption that all shifts

in fB are magnetic and appear
δgF
gF

times smaller in fDB. However, we saw that this assumption

fails for any Zeeman shifts caused by electric and magnetic fields where ⟨Ê · B⃗⟩ ̸= ⟨E⃗ · B⃗⟩ /|E⃗ |. In

this case we would have:

fDB
corrected = fDB − δgF

gF
fB

= 2deEeff − 3δgFµB
⟨E⃗ · B⃗⟩
|E⃗ |

− δgF
gF

(
− 3gFµB ⟨Ê · B⃗⟩

)

= 2deEeff − 3δgFµB
⟨E⃗ · B⃗⟩
|E⃗ |

+ 3δgFµB ⟨Ê · B⃗⟩

= 2deEeff + 3δgFµB

(
⟨Ê · B⃗⟩ − ⟨E⃗ · B⃗⟩

|E⃗ |

)
(3.21)

In order to minimize this systematic shift we need to find all possible combinations of electric

and magnetic fields where ⟨Ê · B⃗⟩ ≠ ⟨E⃗ · B⃗⟩ /|E⃗ |. Luke Caldwell approached this problem analyt-

ically while I simulated the shifts numerically. These methods will be discussed in the next two

subsections.

3.3.1 Analytic Approach to Zeeman Systematics

The ideal electric field in our experiment is E⃗ = E⃗rot+E⃗RF+E⃗DC, where the three electric fields

are given by Equations 2.4 – 2.6 and the largest of which is E⃗rot. As discussed in Subsection 2.2.1.3,

we create E⃗rot ∼ 58 V/cm by applying voltages ∼ 350 V to eight radial electrodes. Those voltages

which oscillate at 375 kHz are generated by DDS (direct digital synthesis) boards and amplified
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by high-powered op-amps. The op-amps inevitably add harmonic distortions when generating the

voltages to apply E⃗rot, which we can write as:

E⃗nh(t) = Enhx cos (nωrott+ ϕnx)x̂+ Enhy cos (nωrott+ ϕny)ŷ + Enhz cos (nωrott+ ϕnz)ẑ (3.22)

The other predominant imperfection in our electric field is the ellipticity of E⃗rot. This can

arise either because the voltages on the eight radial electrodes are unequal or the electrodes are

slightly out of place. We can write the ellipticity as:

E⃗ϵ(t) = Eϵ
(
cos (2θ − ωrott)x̂+ sin (2θ − ωrott)ŷ

)
(3.23)

The strategy now is to analytically calculate the micromotion of the HfF+ molecules in the

electric field E⃗ = E⃗rot+κδ⃗E , where δ⃗E represents all perturbations to the idealized rotating electric

field. This runs into a chicken and egg problem because E⃗RF and E⃗DC both vary spatially, as seen in

Equations 2.4 and 2.5. We want to find the ion trajectories from the electric field, but we need the

ion trajectories to know the magnitude of E⃗RF and E⃗DC. To get around this obstacle we approximate

the effects of the spatial variance with time-varying fields:

E⃗sec = Esecx cos (ωsecxt+ ϕsecx)x̂+ Esecy cos (ωsecyt+ ϕsecy)ŷ + Esecz cos (ωseczt+ ϕsecz)ẑ (3.24)

E⃗RFeff = ERFeffx cos (ωsecxt+ ϕsecx) cos (ωRFt+ ϕRF)x̂

+ ERFeffy cos (ωsecyt+ ϕsecy) cos (ωRFt+ ϕRF)ŷ

+ ERFeffz cos (ωseczt+ ϕsecz) cos (ωRFt+ ϕRF)ẑ (3.25)
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Equation 3.24 is an electric field that causes the secular motion of the trapped ions. Equation 3.25

is meant to capture the RF micromotion – it is large when the RF field is large and the secular

motion is at its maximum. This captures most of the effects of our electric fields, though it does

not include pondermotive forces. We note that those forces are included in the numerical model

described in Subsection 3.3.2.

Once we have the particle trajectories, we consider the molecules’ motion through a magnetic

field B⃗ = B⃗2,0 + κδ⃗B, where δ⃗B are the zero, first and second order magnetic field gradients listed

in Table 3.1 other than B⃗2,0. The calculated trajectory allows us to write down the time-dependent

magnetic field experienced by a HfF+ molecule. We can finally calculate ⟨Ê · B⃗⟩ and ⟨E⃗ · B⃗⟩, where

the time average is over an integer number of periods of all relevant frequencies. We keep terms up

to O(κ2) before setting κ = 1.

As mentioned before, the only frequency shift that is zeroth order in κ is the one from E⃗rot

interacting with B⃗2,0. There are no frequency shifts first order in κ. This means that there are no

frequency shifts from E⃗rot interacting with one field in δ⃗B or from one field in δ⃗E interacting with

B⃗2,0. There are a host of frequency shifts that are second order in κ, listed in Tables 3.3 – 3.5.

Note that these table only include up to the the n = 4th harmonic, a choice which will be justified

in Subsection 3.3.4.

3.3.2 Numerical Approach to Zeeman Systematics

In addition to the analytic approach of finding which combinations of electric and magnetic

fields generate Zeeman shifts, we wanted to approach the problem numerically as well. The idea

was to calculate the trajectory of HfF+ ions in the full electric and magnetic fields at small discrete

time steps. We then found the electric and magnetic fields at the ion locations, which allowed us to

calculate Ê · B⃗ and E⃗ · B⃗ at each time step. The values were then averaged over the entire trajectory,

giving us values for ⟨Ê · B⃗⟩ and ⟨E⃗ · B⃗⟩.
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Table 3.3: Analytically Calculated Zeeman Shifts, Part 1

Number ⟨Ê · B⃗⟩ ⟨E⃗ · B⃗⟩ /Erot
⟨E⃗ · B⃗⟩ /Erot
⟨Ê · B⃗⟩

1 −B1,1E2hx cosϕ2x
4Erot

0 0

2
B1,1E2hy sinϕ2y

4Erot
0 0

3
B1,−1E2hy cosϕ2y

4Erot
0 0

4
B1,−1E2hx sinϕ2x

4Erot
0 0

5

√
3B2,2E3hxrrot cosϕ3x

4Erot
0 0

6 −
√
3B2,2E3hyrrot sinϕ3y

4Erot
0 0

7 −
√
3B2,−2E3hyrrot cosϕ3y

4Erot
0 0

8 −
√
3B2,−2E3hyrrot sinϕ3y

4Erot
0 0

9 −5B2,0E3hxEϵrrot cos (2θ + ϕ3x)

18E2rot
0 0

10
5B2,0E3hyEϵrrot sin (2θ + ϕ3y)

18E2rot
0 0

11 −5B2,0E2hxE4hxrrot cos (ϕ2x − ϕ4x)
128E2rot

0 0

12
5B2,0E2hyE4hyrrot cos (ϕ2y − ϕ4y)

128E2rot
0 0

13 −
5B2,0E2hyE4hxrrot sin (ϕ2y − ϕ4x)

128E2rot
0 0

14 −
5B2,0E2hxE4hyrrot sin (ϕ2x − ϕ4y)

128E2rot
0 0

15 −
3

√
5

2
B3,3E4hxr2rot cosϕ4x

8Erot
0 0

16
3

√
5

2
B3,−3E4hyr2rot cosϕ4y

8Erot
0 0

17
3

√
5

2
B3,−3E4hxr2rot sinϕ4x

8Erot
0 0

18
3

√
5

2
B3,3E4hyr2rot sinϕ4y

8Erot
0 0
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Table 3.4: Analytically Calculated Zeeman Shifts, Part 2

Number ⟨Ê · B⃗⟩ ⟨E⃗ · B⃗⟩ /Erot
⟨E⃗ · B⃗⟩ /Erot
⟨Ê · B⃗⟩

19 −
B2,0E22hzrrot

4E2rot
−
B2,0E22hzrrot

4E2rot
1

20 −
B2,0E23hzrrot

9E2rot
−
B2,0E23hzrrot

9E2rot
1

21 −
B2,0E24hzrrot

16E2rot
−
B2,0E24hzrrot

16E2rot
1

22 −B2,0E
2
seczrrotω

2
rot

E2rotω2
secz

−B2,0E
2
seczrrotω

2
rot

E2rotω2
secz

1

23 −
B2,0E2RFeffzrrotω

2
rot

4Erot(ωRF − ωsecz)2
−
B2,0E2RFeffzrrotω

2
rot

4Erot(ωRF − ωsecz)2
1

24 −
B2,0E2RFeffzrrotω

2
rot

4Erot(ωRF + ωsecz)2
−
B2,0E2RFeffzrrotω

2
rot

4Erot(ωRF + ωsecz)2
1

25
3
√
15B3,2E2hzr2rot cosϕ2z

8Erot
3
√
15B3,2E2hzr2rot cosϕ2z

8Erot
1

26 −3
√
15B3,−2E2hzr2rot sinϕ2z

8Erot
−3
√
15B3,−2E2hzr2rot sinϕ2z

8Erot
1

27 −3
√
3B2,2Eϵrrot cos 2θ

2Erot
−2
√
3B2,2Eϵrrot cos 2θ

Erot
4

3

28 −3
√
3B2,−2Eϵrrot sin 2θ

2Erot
−2
√
3B2,−2Eϵrrot sin 2θ

Erot
4

3

29
3

√
5

2
B3,3E2hxr2rot cosϕ2x

4Erot

9

√
5

2
B3,3E2hxr2rot cosϕ2x

8Erot
3

2

30
3

√
5

2
B3,−3E2hyr2rot cosϕ2y

4Erot

9

√
5

2
B3,−3E2hyr2rot cosϕ2y

8Erot
3

2

31 −
3

√
5

2
B3,−3E2hxr2rot sinϕ2x

4Erot
−
9

√
5

2
B3,−3E2hxr2rot sinϕ2x

8Erot
3

2

32
3

√
5

2
B3,3E2hyr2rot sinϕ2y

4Erot

9

√
5

2
B3,3E2hyr2rot sinϕ2y

8Erot
3

2
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Table 3.5: Analytically Calculated Zeeman Shifts, Part 3

Number ⟨Ê · B⃗⟩ ⟨E⃗ · B⃗⟩ /Erot
⟨E⃗ · B⃗⟩ /Erot
⟨Ê · B⃗⟩

33
B2,0E22hxrrot

16E2rot
B2,0E22hxrrot

8E2rot
2

34
B2,0E22hyrrot

16E2rot

B2,0E22hyrrot
8E2rot

2

35
B2,0E23hxrrot

36E2rot
B2,0E23hxrrot

18E2rot
2

36
B2,0E23hyrrot

36E2rot

B2,0E23hyrrot
18E2rot

2

37
B2,0E24hxrrot

64E2rot
B2,0E24hxrrot

32E2rot
2

38
B2,0E24hyrrot

64E2rot

B2,0E24hyrrot
32E2rot

2

39
B2,0E2ϵ rrot

2E2rot
B2,0E2ϵ rrot
E2rot

2

40
B2,0E2secxrrotω2

rot

4E2rotω2
secx

B2,0E2secxrrotω2
rot

2E2rotω2
secx

2

41
B2,0E2secyrrotω2

rot

4E2rotω2
secy

B2,0E2secyrrotω2
rot

2E2rotω2
secy

2

42
B2,0E2RFeffxrrotω

2
rot

16E2rot(ωRF − ωsecx)2
B2,0E2RFeffxrrotω

2
rot

8E2rot(ωRF − ωsecx)2
2

43
B2,0E2RFeffxrrotω

2
rot

16E2rot(ωRF + ωsecx)2
B2,0E2RFeffxrrotω

2
rot

8E2rot(ωRF + ωsecx)2
2

44
B2,0E2RFeffyrrotω

2
rot

16E2rot(ωRF − ωsecy)2

B2,0E2RFeffyrrotω
2
rot

8E2rot(ωRF − ωsecy)2
2

45
B2,0E2RFeffyrrotω

2
rot

16E2rot(ωRF + ωsecy)2

B2,0E2RFeffyrrotω
2
rot

8E2rot(ωRF + ωsecy)2
2

46 0 −
3

√
3

2
B3,1E2hxr2rot cosϕ2x

8Erot
∞

47 0
3

√
3

2
B3,−1E2hyr2rot cosϕ2y

8Erot
∞

48 0
3

√
3

2
B3,−1E2hxr2rot sinϕ2x

8Erot
∞

49 0
3

√
3

2
B3,1E2hyr2rot sinϕ2y

8Erot
∞
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The numerical simulations added a level of realism not included in the analytic approach.

The simulations always included E⃗rot and the full DC and RF electric fields which give rise to

pondermotive potentials. In many of the simulations the electric fields were written as the perfectly

uniform fields given by Equations 2.4 – 2.6. Some of the more detailed simulations instead calculated

the electric fields from voltages applied to our ten electrodes, with voltage to electric field conversion

factors given in Appendix C.4 of William Cairncross’s thesis [1]. The resulting electric fields were

less homogeneous and more accurately represented the fields experienced by our ions. We did

not see any significant difference between the two methods of simulating electric fields, which is

convenient because the simpler fields are faster to simulate and indicate that the analytic approach

does not miss anything important in this instance.

In addition to the three standard electric fields, a numerical simulation typically included

one additional electric field perturbation such as an ellipticity or harmonic along a particular axis.

The simulation also included typically included B̃Brev2,0 and one more of the magnetic fields in Table

3.1 that would not change sign with B̃. As these are numerical simulations, particular values for

the magnitudes and phases for each field were chosen.

After selecting the fields, a time step ∆t and integration time Tint were chosen. ∆t was

selected so it was small compared to the inverse of the largest frequency in the simulation. Tint was

chosen to include many secular frequencies ∼ 1 kHz, as that was always the slowest characteristic

frequency of the system. As long as Nsteps =
Tint
∆t
≫ 1, it did not matter if Tint was an integer

number of every characteristic period of the simulation.

Next we specified how many individual ion trajectories were being calculated. This was

typically an integer multiple of 16, as the computer I was working on had 16 cores that could

calculate the trajectories in parallel. We split the ions into equal groups of four where (B̃, R̃) =

(+1,+1), (+1,−1), (−1,+1) and (−1,−1). Each individual ion was given a random initial position

in three dimensions drawn from a normal distribution centered around zero with a width set to set
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to give the ion cloud a 1σ radius of about 1 cm. The initial velocity was determined the same way

except that it had a R̃-odd offset so that at t = 0 the molecules were already moving in circles with

E⃗rot.

The trajectories of the 16N ions were then individually calculated. These trajectories include

the force from the magnetic field but did not include ion-ion interactions. Ion-ion interactions were

the largest effect on the trajectories that were not considered by the numerical simulations. A two

dimensional cut of a standard ion trajectory is shown in Figure 3.4. After calculating the ions’

positions at each time step, E⃗ , Ê and B⃗ were found at each of those points in space and time. The

dot products E⃗ · B⃗ and Ê · B⃗ were then found at each time step for every ion. Finally the averages

⟨E⃗ · B⃗⟩ and ⟨Ê · B⃗⟩ were found for each ion by summing the individual dot products and dividing

by Nsteps.

The average frequency f and D̃-odd frequency fD were calculated from each ion trajectory.

By taking appropriate linear combinations of the data taken with different values of B̃ and R̃, the

D̃, B̃ and R̃-odd frequency channels were constructed. This let us identify the magnitude and

switch dependence of the Zeeman shifts present in the simulation.

With this method, we confirmed many of the shifts identified analytically in Tables 3.3 – 3.5.

Take, for example, the first shift listed in the tables. It says that a second harmonic of the electric

field along x will interact with a magnetic field along x to give a Zeeman shift that is entirely

doublet even.16 We confirmed this shift by applying the fields in question and seeing a shift in fB

that varied with the magnitudes B1,1 and E2hx, in addition to the phase of the second harmonic

cosϕ2x.

I checked many of the systematic effects in Table 3.3–3.5 this way and did not find any

surprises. These effects will be discussed in the next two subsections.

16Recall that the shift is entirely doublet even up to the two ≲ 10% effects listed in Subsection 3.2.1. We should

expect the doublet-odd shift to be ∼ 0.1× δgF
gF

times the size of the doublet-even shift.



87

Figure 3.4: A two dimensional cut of a standard ion trajectory. At t=0 the ion’s position is given
by the black dot, and its trajectory follows the green trace. The molecule traces out many circles
with radius ≈ 0.5 mm due to E⃗rot. The molecule also undergoes slower oscillations in the xy-plane
as the ion undergoes secular motion, moving around x = y = 0 due to the ion trapping fields.

3.3.3 Uniform Magnetic Field + Second Harmonic Systematic

Our task now is to show that all of the systematic effects from the entries in Tables 3.3–3.5

are small compared to our statistical error bar 22.8 µHz. This is easy for entries 19 through 26

as they have ⟨Ê · B⃗⟩ = ⟨E⃗ · B⃗⟩ /|E⃗ | and their D̃-odd shift is cancelled by our shimming/correction

procedure. It is worth noting that many of these shifts can be grouped. For example, the Zeeman

shifts numbered 1 through 4 are all caused by a uniform magnetic field in the xy-plane interacting

with a second harmonic of Erot in the xy-plane. This subsection will focus on this group of systematic

shifts in detail, and the next subsection will address the rest of the effects.

Consider the simplified case where the total electric field is equal to E⃗rot plus a second har-
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monic in the xy-plane:

E⃗ = Erot


cos (ωrott)

sin (ωrott)

0

+


E2hx cos (2ωrott+ ϕ2hx)

E2hy cos (2ωrott+ ϕ2hy)

0

 (3.26)

We can now find Ê by expanding to first order in 1/Erot:

Ê ≃


cos (ωrott)

sin (ωrott)

0

+
1

2Erot


E2hx cos (2ωrott+ ϕ2hx)

E2hy cos (2ωrott+ ϕ2hy)

0



+
E2hx
4Erot


− cos (4ωrott+ ϕ2hx)− cos (ϕ2hx)

− sin (4ωrott+ ϕ2hx) + sin (ϕ2hx)

0

+
E2hy
4Erot


− sin (4ωrott+ ϕ2hy) + sin (ϕ2hy)

cos (4ωrott+ ϕ2hy) + cos (ϕ2hx)

0

 (3.27)

Note that E⃗ is made of terms that oscillate at ωrot and 2ωrot. When we take the dot product

of E⃗ and B⃗ =


Bx

By

0

, all of the terms still oscillate at ωrot or 2ωrot. These terms will go to zero

when time averaged, resulting in no D̃-odd Zeeman shift. However, Ê and B⃗ both have constant

terms. This means ⟨Ê · B⃗⟩ ̸= 0 and we will get the D̃-even Zeeman shifts in entries 1-4 of Table 3.3.

We confirmed that this shift exists experimentally by applying a magnetic field Bx ∼ ±0.2

Gauss and a second harmonic of the electric field with E2hy ∼ 100 V/m and ϕ2hy ∼
π

4
.17 As seen

in Figure 3.5, we saw no significant shift in fDB but a ∼ ±8.5 Hz shift in fB.18

17Getting a value for the phase ϕ2hy is a bit complicated because it is defined relative to Erot which has a R̃-odd

phase. See Subsection 4.6.4 for discussion, but ϕ2hy ∼ π

4
is a reasonably good approximation as the R̃-odd part of
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Figure 3.5: We applied a magnetic field Bx ∼ ±0.2 Gauss and a second harmonic of the electric

field with E2hy ∼ 50 V/m and ϕ2hy ∼
π

4
. The plot shows the resulting fB and fDB in Hz, where

fDB includes the 16.1 mHz blind. Error bars of fB are too small to resolve on this scale. Data
with Bx ∼ +0.2 Gauss is on the right with fB ∼ 8 Hz, and data with Bx ∼ −0.2 Gauss is on the
left with fB ∼ −9 Hz. This confirms the predicted D̃-even Zeeman shift.

The remaining challenge is to set a limit on the magnitude of this effect while we took the

eEDM data set. See Appendix B for how we set limits on the harmonics of Erot in our apparatus.

We carefully shimmed the second harmonic voltage on each electrode and found that the residual

magnitude was ≲ 11 mV, about than 30,000 times smaller than the voltages we apply to generate

Erot. Since we do not know if those voltages constructively or destructively interfere to generate a

second harmonic in the xy-plane, we conservatively assume that the magnitdue in x and y is less

than 2.5 mV/cm, 24,000 times smaller than Erot. In this case we would expect shifts of about 80

mHz/G along both the x and y-axes.

After our harmonic shimming procedure we deliberately applied large magnetic fields ∼ 2

Gauss along x and y and observed shifts in fB to be 103(1) mHz/G along x and 46(9) mHz/G

Erot’s phase is small.
18We took this data on January 27th 2022. At the time we thought that all Zeeman shifts effected the upper

and lower doublets differently by the same ratio
δgF
gF

. This was quite a surprise. The magnitude of the shift in fB

is about three times larger than predicted, but the magnitude and phase of the second harmonic were not carefully

calibrated at the time.
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along y, see Figure 3.6. These shifts indicate that the estimate of the second harmonic in Appendix

B is accurate. We were then able to apply a large second harmonic in the xy-plane in order to

measure Bx and By. We used this measurement to shim the current in our x and y Helmholtz coils,

described in Section 2.3.5 of Tanya Roussy’s thesis [2], to keep these background fields below 10

mG.

(a) fB (Hz) vs Bx (G) (b) fB (Hz) vs By (G)

Figure 3.6: We took data with (a) Bx = ±1 G and (b) By = ±1 G. Note the difference in scale of
fB of the two graphs. We saw shifts in fB in both cases that are likely from the residual second
harmonic of Erot after it was shimmed away.

The background magnetic field and second harmonic can drift throughout our dataset, so

we redid these measurements about once a week while we were taking eEDM data. We did not

measure any drifts outside of the aforementioned upper bounds. We therefore set a conservative

upper limit of the uniform magnetic field in the xy-plane + second harmonic in the xy-plane shift

in fB to be 100 mHz/G × 10 mG = 1 mHz. Because there is no corresponding shift in fDB,

this shift in fB will cause a slight error in our shimming/correction procedure. This results in a

systematic shift with magnitude 1 mHz ×δgF
gF

= 2.2 µHz. This is comfortably smaller than our

statistical error bar 22.8 µHz.
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3.3.4 Other Systematics from Zeeman Shifts

The previous subsection addressed entries 1 through 4 of Tables 3.3–3.5. We know entries

19 through 26 will not cause a systematic shift because ⟨Ê · B⃗⟩ = ⟨E⃗ · B⃗⟩ /|E⃗ | in those cases. That

leaves 37 Zeeman shifts to check. If I addressed those shifts in as much detail as I did 1 through

4, this chapter would go on for quite a while. Instead I will group them together in Table 3.6 and

discuss the 15 remaining entries briefly. The effects in this table have all sines and cosines removed

because we assume the phases are optimally bad. Electric fields along the x or y-axes have been

grouped together, as have magnetic fields Bl,±m.

Entries 5-8 are D̃-even Zeeman shifts from a third harmonic in the xy-plane interacting with

a magnetic field gradient in the xy-plane. As discussed in Appendix B, we measured these third

harmonics to be ∼ 1.3 V/m, and as discussed in Section VI A 4 of the Systematics paper we found

B2,±2 ≲ 10 mG/cm. Plugging these values into the expression in Table 3.6, we find a shift in fB

with magnitude 0.7 mHz corresponding to a systematic in fDB of 1.5 µHz.

Entries 9-10 are interesting because they are proportional to B2,0. This must be a B̃-even

magnetic field gradient in order to show up as a systematic, and from Subsection 3.2.2 we know

that this is Bnr2,0. Over the entire dataset the median Bnr2,0 ≈ 0.8 µG/m. These entries are also

proportional to the ellipticity Eϵ, which we measure in Subsection 3.5.3 to be about 1.7 V/m. This

gives an absolutely tiny shift in fB of 1×10−7 µHz and systematic in fDB of about 2×10−10 µHz.

Entries 11-14 are also proportional to Bnr2,0 and are also tiny. They are in fact smaller because

of the larger number in their denominator. We calculate the shift in fB to be 9 × 10−10 µHz and

the associated systematic 2× 10−12 µHz.

Entries 15-18 are larger than 9-14 but still are not particularly worrying. We calculate the

shift in fB to be 22 µHz and the associated systematic 5× 10−2 µHz.

Entries 19-26 do not cause systematics as they have ⟨Ê · B⃗⟩ = ⟨E⃗ · B⃗⟩ /|E⃗ |. Any shift caused
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Table 3.6: Analytically Calculated Zeeman Shifts Grouped Together

Number in
Tables 3.3–3.5

⟨Ê · B⃗⟩ ⟨E⃗ · B⃗⟩ /Erot
⟨E⃗ · B⃗⟩ /Erot
⟨Ê · B⃗⟩

Systematic
(µHz)

1-4
B1,±1E2hxy

4Erot
0 0 2.2

5-8

√
3B2,±2E3hxyrrot

4Erot
0 0 1.5

9-10
5B2,0E3hxyEϵrrot

18E2rot
0 0 2× 10−10

11-14
5B2,0E2hxyE4hxyrrot

128E2rot
0 0 2× 10−12

15-18
3

√
5

2
B3,±3E4hxyr2rot
8Erot

0 0 5× 10−2

19-21 −
B2,0E2nhzrrot

n2E2rot
−
B2,0E2nhzrrot

n2E2rot
1

22 −B2,0E
2
seczrrotω

2
rot

E2rotω2
secz

−B2,0E
2
seczrrotω

2
rot

E2rotω2
secz

1

23-24 −
B2,0E2RFeffzrrotω

2
rot

4Erot(ωRF ± ωsecz)2
−
B2,0E2RFeffzrrotω

2
rot

4Erot(ωRF ± ωsecz)2
1

25-26
3
√
15B3,±2E2hzr2rot

8Erot
3
√
15B3,±2E2hzr2rot

8Erot
1

27-28 −3
√
3B2,±2Eϵrrot
2Erot

−2
√
3B2,±2Eϵrrot
Erot

4

3
1.7

29-32
3

√
5

2
B3,±3E2hxyr2rot
4Erot

9

√
5

2
B3,±3E2hxyr2rot
8Erot

3

2
2× 10−2

33-38
B2,0E2nhxyrrot

4n2E2rot

B2,0E2nhxyrrot
2n2E2rot

2 8× 10−12

39
B2,0E2ϵ rrot

2E2rot
B2,0E2ϵ rrot
E2rot

2 5× 10−10

40-41
B2,0E2secxyrrotω2

rot

4E2rotω2
secxy

B2,0E2secxyrrotω2
rot

2E2rotω2
secxy

2 1× 10−5

42-45
B2,0E2RFeffxyrrotω

2
rot

16E2rot(ωRF ± ωsecxy)2

B2,0E2RFeffxyrrotω
2
rot

8E2rot(ωRF ± ωsecxy)2
2 3× 10−6

46-49 0
3

√
3

2
B3,±1E2hxyr2rot
8Erot

∞ 1× 10−2
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by these effects will be corrected as discussed in Subsection 3.2.2.

Entries 27 and 28 are unique because they are the only second order shifts in κ with

⟨E⃗ · B⃗⟩ /Erot
⟨Ê · B⃗⟩

=
4

3
. This means the correction will account for 75% of the shift these effects cause in

fDB, but the rest of the shift leads to a systematic. By plugging in the limits for the parameters in

this shift, as we have been been doing for the last few paragraphs, we calculate the shift in fB to

be 5 mHz. However as we mention in Section VI A 5 of the Systematics paper, we measured this

shift with a five times larger ellipticity than is usually present in our experiment. We did not see

any shift in fB due to this effect and the 1σ upper limit was 12 mHz, so we set a more stringent

limit on the effect at 2.4 mHz. This corresponds to a systematic uncertainty in fDB of 1.7 µHz.

Entries 29 through 32 are interesting as well for being the only shifts with
⟨E⃗ · B⃗⟩ /Erot
⟨Ê · B⃗⟩

=
3

2
.

These shifts, however, are naturally smaller than 27 and 28 because they are proportional to a

higher order gradient and the second harmonic that we shimmed particularly well. We calculate

the shift in fB to be 17 µHz, corresponding to a systematic error of about 20 nHz.

Entries 33 through 45 are all predictably small because they are proportional to Bnr2,0. Their

associated systematic shifts can be found in Table 3.6.19

Entries 46 through 49 are Zeeman shifts which are entirely D̃-odd. These effects show up

directly as systematics! Fortunately they are only 14 nHz, small enough to sweep under the

rug. If they were much larger this would be a difficult systematic to diagnose as we blinded our

measurements of fDB and they do not show up in any other frequency channel.

Note that our choice to only include up to the fourth harmonic in Erot is sensible. As seen in

Appendix B, higher harmonics generally have smaller amplitudes. In addition, we can see in Table

19Note that the largest systematic shifts from entries 33 through 38 are from n=3 due to the third harmonic being

significantly larger than the shimmed second harmonic, see Appendix B. The shift due to n=3 is the systematic shift

reported in Table 3.6. The magnitude of the RF electric field reported in Table 2.2 was used for ERFeffxy. Esecxy was

found using dimensional analysis assuming a secular frequency of 1.3 kHz.
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3.6 that the third and fourth harmonics generally couple to higher order magnetic field gradients

and larger powers of rrot. Since B1,m > B2,mrrot > B3,mr2rot, we can safely assume that magnetic

systematics caused by the fifth harmonic or higher will be smaller than the largest effects in Table

3.6.

3.4 Other Noteworthy Magnetic Shifts

In Sections 3.2 and 3.3 I addressed the Zeeman shifts which are doublet odd and show up as

systematic effects or appear in the fB frequency channel, leading to systematics via our correction

on fDB. In this section I will discuss a few other magnetic shifts that do not cause systematic

errors in our experiment but are interesting nonetheless.

3.4.1 Axial Magnetic Field and fR

E⃗rot causes the molecules to trace out circles in the xy-plane with radius rrot. A magnetic

field along the z-axis will slightly modify the radius of that rotation due to the v⃗ × B⃗ force:

rrot =
eErot
mω2

rot

+ R̃
evBz
mω2

rot

≃ eErot
mω2

rot

+ R̃
e2ErotBz
m2ω3

rot

(3.28)

Since v⃗ is R̃-odd, the v⃗ × B⃗ force causes a R̃-odd change in the radius. The effect depends on the

velocity of the ions, which in turn depends on the radius because ωrot is fixed. This makes the

math more complicated, but we can approximate the velocity as v = ωrotrrot ≃ ωrot
eErot
mω2

rot

=
eErot
mωrot

as long as Bz ≪
mωrot

e
∼ 5 Tesla so it only causes a small perturbation to rrot.

The change in rrot causes a R̃-odd frequency shift as the molecules move through Brev2,0 :

hf = −3gFµBBrev2,0 rrot ≃ −3gFµBBrev2,0

(
eErot
mω2

rot

+ R̃
e2ErotBz
m2ω3

rot

)
(3.29)

We measured this effect with Brev2,0 ≈ 230 mG/cm, which generates f0 ∼ 150 Hz, and Bz ∼ ±10
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Gauss. The data is shown in Figure 3.7. With this value of Brev2,0 we predict fR to have a slope of

−3.1 mHz/G, which is consistent with our measurement −2.98(9) mHz/G. This is the first shift

that we as a group could not initially explain that I understood before anyone else, so it gets a

page in my thesis.

Figure 3.7: We applied a large non-reversing Bz of ±10 G. We observed a shift in fR of −2.98(9)
mHz/G, consistent with the explanation that Bz modifies the size of rrot.

3.4.2 Charging Currents

The largest magnetic field we intentionally apply to our molecules is the quadrupole magnetic

field that reverses sign with B̃. The largest magnetic field that we unintentionally apply is created

by the currents which drive the oscillating voltages Vrot to create Erot. The voltages have amplitude

Vrot ∼ 350 V and oscillate at frot = 375 kHz. They are applied to our eight radial electrodes which

are shown in Figure 3.8.

The radial electrodes, which we sometimes call “fins” due to their peculiar shape, are num-

bered n = 1 through 8 in Figure 3.8. We apply R̃-odd voltages to the electrodes with a phase shift

of
π

4
between neighboring electrodes:20

20The actual phases of V n
rot are discussed in Subsection 4.6.4. These toy phases are simpler to consider and are

sufficient to model the Zeeman shift caused by the charging currents.
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Figure 3.8: Key dimensions of our ion trap, all dimensions in millimeters. The radial electrodes,
two of which are shown in detail on the left, have a peculiar shape to make the E⃗rot as uniform as
possible at the center of the trap. Note that the electrodes have “tabs” at the top and bottom that
reach beyond the top (T) and bottom (B) endcaps. The electrodes can be charged and discharged
through either or both of these notches. A full description of the radial electrode design can be
found in Chapter 4 of William Cairncross’s thesis [1], which is the source of this image.

V n
rot = Vrot cos (R̃ωrott−

nπ

4
+ π) (3.30)

Ignoring the spatial inhomogeneities that are discussed in Chapter 4 of William Cairncross’s thesis

[1], these voltages applied to our radial electrodes creates an electric field E⃗rot = Erot
(
cos (ωrott)x̂+

R̃ sin (ωrott)ŷ

)
as we would expect.

Originally we charged and discharged all eight of our electrodes from the top and bottom

simultaneously. That is, we connected the output of the op-amp which generates V n
rot to both the
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top and bottom tabs of fin n. The idea was to minimize the current flowing through the electrodes

as Vrot varied, therefore reducing the resulting magnetic field. However, due to differences in

the resistances of the electrical feedthroughs above and below each fin, this resulted in all eight

fins generating an unpredictable magnetic field. These resistances were small but had substantial

fractional variations, which meant each electrode had a different proportion of current above and

below them.

Rather than attempt to model the resulting magnetic field, we decided to connect the op-

amps of the odd numbered fins only to the top of the odd numbered electrodes. The even numbered

fins were charged and discharged from the bottom. This meant we knew exactly which direction

the current was traveling as each fin charged and discharged. We can create a simple model of the

magnetic field by assuming that the eight radial electrodes have a height z0 and are centered at

z = 0. We also assume the radial electrodes have capacitance Cfin which is constant as a function

of height so Cfin =
dCfin

dz
z0. With these assumptions and the relationship I = C

dV

dt
we reach the

following expression for the currents on each fin:

Inrot = R̃
dCfin

dz
Vrotωrot sin (R̃ωrott−

nπ

4
+ π)

(
z ∓ z0

2

)
(3.31)

The ∓ symbol is minus for odd radial electrodes that are charged from the top and plus for even

radial electrodes that are charged from the bottom.

We can now calculate the magnetic field at the center of the trap. To keep the expression

simple we assume the radial electrodes are infinitely long thin wires that are a distance Rtrap from

the trap center. If this is true we find that the magnetic field B⃗cc created by the charging currents

is:
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B⃗cc =
2Vrotµ0ωrot

dCfin

dz
z

πRtrap


R̃ cos (ωrott)

sin (ωrott)

0

 = Bccz


R̃ cos (ωrott)

sin (ωrott)

0

 (3.32)

According to this equation the magnetic field caused by the charging currents rotates with a fre-

quency equal to frot and is parallel to E⃗rot for zR̃ > 0 and antiparallel for zR̃ < 0.21

While this model captures the general behavior of B⃗cc, we can calculate its amplitude more

precisely. We used Comsol Multiphysics to simulate where the charge accumulates on the fins as a

function of height.22 We found that each fin has a total capacitance of about 9.7 pF and we found

the current through each fin as a function of height, shown in Figure 3.9.

We then calculated the magnetic field from these current distributions assuming the fins were

thin wires with finite length z0. It was initially unclear what value to use as the distance between

the eight imaginary thin wires and the center of the trap. To be safe we did the calculation twice

with the radius set to 48 and 84 mm, two reasonable radii shown in the bottom left of Figure 3.8.

These calculations predicted the Bcc = 2.9 and 1.1 mG/m respectively. Because the magnetic field

is R̃-odd and B̃-even, this corresponds to a slope
dfBR

dz
between 31.8 and 12.4 mHz/mm. This

compares very well with our observed data, shown in Figure 3.10, where we see a shift of 12.69(6)

mHz/mm. This perhaps indicates that the majority of the charge moves along the back of the

radial electrodes.

There are a few comments worth making about this shift before moving on. The first is that

while the shift ideally goes to zero at the center of the ion trap, we measure fBR ∼ 210 mHz. This

could easily be explained by differences in capacitances of the wiring inside the vacuum chamber

21This magnetic field has a nonzero curl; see Section 5.1.2 for a discussion of this field and Maxwell’s equations.
22These simulations used a realistic rendering of the entire ion trap. It was important to include the voltages

applied to all eight radial electrodes when calculating the capacitance as this effected how much charge needed to

accumulate on a given fin to reach a given voltage.
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Figure 3.9: This graph shows the percentage of the current that drives Vrot through a radial
electrode that is plugged in from the bottom. For the fin to reach Vrot charge must be distributed
roughly evenly in z. Therefore 100% of the current goes through the bottom layer of the fin,
and there is less and less current as we move up the fin. The curves of the graph are explained
by different heights of the radial electrode having different capacitances which were calculated in
Comsol Multiphysics. The two discontinuities occur at points where where the fins suddenly jut
out toward the center of the trap, see Figure 3.8.

between the eight op-amps and fins.

This shift is entirely R̃-odd and shows up in fBR, so it does not contribute to our systematic

error budget. Additionally, because this magnetic field is parallel or antiparallel to E⃗rot, it has

⟨E⃗ · B⃗⟩ /|E|
⟨Ê · B⃗⟩

= 1. This means that there will be a ∼ 460 times smaller shift that appears in fDBR.

Even if somehow a small part of the shift is R̃-even and appears in fB, which could happen because

of the R̃-odd Erot phases discussed in Subsection 4.6.4, it will not cause a systematic error in our

experiment because the effect is taken care of by our shimming/correction procedure.

There is the possibility that this frequency shift will be used intentionally in our third gen-
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Figure 3.10: The y-axis reports fBR in Hz and the x-axis gives the position of the ion cloud along

z in mm. We observe a gradient
dfBR

dz
of 12.69(6) mHz/mm which agrees well with our model.

eration experiment to measure the eEDM. This will be addressed in Section 5.1.3.

3.4.3 Other Zeeman Shifts

For a discussion of other miscellaneous Zeeman shifts, see Section 3.11 of Tanya Roussy’s

thesis [2].

3.5 Berry’s Phase

Other than Zeeman shifts, the only effect that can cause a frequency shift that shows up

in fB is Berry’s phase.23 Berry’s phase shifts are almost on equal footing in importance with the

Zeeman effect in terms of our systematics, but I have relegated them to the fifth section of this

chapter. This is an interesting choice on my part, as when I give talks about the experiment the

Berry’s phase shift described in Subsection 3.5.3 is usually the only systematic effect I mention.

23I mention at the beginning of this chapter that I leave discussion of systematics due to phase shifts to the

Systematics paper. In this section I describe how we can continuously accumulate a Berry’s phase which shows up

in our experiment as a frequency shift that can cause systematic errors. Hopefully this clarifies any confusion.
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Unlike Zeeman shifts, Berry’s phase is an inherently D̃-even effect so it is a bit less worrisome. It

can only causes systematic shifts by changing fB and spoiling our correction to fDB described in

Subsection 3.2.2. That said, Berry’s phase is an important effect that we spent many collective

months (years?) worrying about for the generation two measurement.

As a note, I wrote Chapter 4 to be an independent paper which does not reference any other

chapter in this thesis on the off chance we decide to publish it. It explains how we measure the

sign of gF using Berry’s phase, so it contains an explanation of Berry’s phase I will describe Berry’s

phase from scratch in this section as well, please forgive the repetition. This explanation is also

similar to the one given in Section VI B of the Systematics paper in case you would like to read a

third version.

3.5.1 Berry’s Phase Overview

Our quantization axis defined by E⃗rot completes frot = 375, 000 rotations per second in the

xy-plane. As E⃗rot traces out closed loops, the quantum state accumulates a geometric phase of:

ϕgeo = ∆MFΩs (3.33)

During our spectroscopy the molecules are in a superposition of MF = ±1.5 states, so the

molecules will accumulate a relative phase shift of 3Ωs. Here Ωs is the solid angle traced out by

the electric field, as shown in Figure 3.11, which is a signed quantity. If the electric field rotates

perfectly in the xy-plane, Ωs = ∓2π for R̃ = ±1. In this ideal case the difference of ϕgeo between

the two MF states is ∓6π, meaning that the Berry’s phase is not observable as it is an integer

number of 2π phase shifts. But if we intentionally tilt the electric field up out of the xy-plane by a

small angle α as shown in Figure 3.11, we induce a measurable phase shift that will be accumulated

every Trot = 1/frot. For small tilts, this will appear as a frequency shift for each MF state given

by:
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Figure 3.11: Ideally, the quantization axis defined by E⃗rot rotates perfectly in the xy-plane and
traces out a solid angle of −2πR̃. If E⃗rot is tilted up by a small angle α, it will deviate from the
ideal solid angle by an amount Ω. This image has been reproduced from [31].

fBerry ≈ −
3frot
2π

∫ Trot

0
α(t)ϕ̇(t)dt (3.34)

Here α(t) is the tilt of the quantization axis out of the xy-plane and ϕ̇(t) is the azimuthal

angular velocity. If neither parameter depends on time, we find that:

fBerry = −3frotαR̃ (3.35)

At first glance it is reassuring that fBerry is R̃-odd, which is the case because ϕ̇(t) is R̃-odd.

However we will soon see that our imperfections to the electric field, the ellipticity and various

harmonics of Erot, can themselves be R̃-odd. This results in R̃-even shifts which generally appear

in fB.

3.5.2 Gravity

The only way E⃗rot can have a constant tilt α out of the xy-plane is due to gravity. This is

because the ions sit at the point in the trap where the average net force is equal to zero. Since

gravity pulls the ions downward there is an average electric field pointing up to cancel its effect. This
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field E⃗grav =
mg

e
ẑ ∼ 20 µV/m. This causes a tilt in our total electric field α = arctan

(
Erot
Egrav

)
∼

3.3× 10−7, resulting in a shift fBR ∼ 4 mHz.24 This shift is completely R̃-odd so it does not cause

a systematic effect.

All other Berry’s phase shifts discussed in this section are caused by electric fields that

oscillate along the z-axis interacting with another electric field in the xy-plane which together

cause an average tilt ⟨α⟩.

3.5.3 Ellipticity plus Axial Second Harmonic

The simplest way to get a nonzero value of ⟨α⟩ is from a second harmonic of Erot along the

z-axis and an ellipticity of Erot. Ignoring the trapping electric fields, this gives us a total electric

field:

E⃗(t) =


Erot cos (ωrott+

π

12
+ R̃

7π

4
) + Eϵ cos (2θR̃− ωrott−

π

12
− R̃7π

4
)

ErotR̃ sin (ωrott+
π

12
+ R̃

7π

4
) + EϵR̃ sin (2θR̃− ωrott−

π

12
− R̃7π

4
)

E2hz cos (2ωrott+ ϕ2f )

 (3.36)

The peculiar choice of Erot phase
π

12
+ R̃

7π

4
was used in our experiment to ensure that the ions of

the upper and lower doublet land on different sides of our MCP, as explained in Section 2.2. See

Subsection 4.6.4 for how we confirmed the values of these phases. Here there is an ellipticity Eϵ

along an angle θ from the x-axis and a second harmonic along the z-axis with phase ϕ2f .

As we see in Subsection 4.6.3, we can combine Equations 3.34 and 3.36 to find frequency

shifts that show up in fB and fBR:25

24It would be really cool if we could measure this and see gravity’s effect on molecular ions. 4 mHz is a large

enough shift for us to easily resolve, but it shows up in the same frequency channel as the ∼ 200 mHz shift caused

by the charging currents described in Subsection 3.4.2. If only we could turn our apparatus upside down.
25Note that we get a R̃-odd ⟨α⟩, and therefore a R̃-even frequency shift, even though we assume that E⃗2hz is

R̃-even. If we relax this assumption we find that the resulting frequency shifts are split between fB and fBR as well.
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fB = −9E2hzEϵfrot
2E2rot

cos (2θ) sin (ϕ2f −
π

6
) (3.37)

fBR = −9E2hzEϵfrot
2E2rot

sin (2θ) sin (ϕ2f +
π

3
) (3.38)

While we are not particularly bothered by the shift in fBR, the shift in fB leads to a systematic

that is
δgF
gF

times smaller. Assuming the worst cases for the phases, that the entire shift shows up

in fB, we have a systematic shift with magnitude
9E2hzEϵfrot

2E2rot
δgF
gF

.

We know the magnitude of all of these terms, including E2hz from Appendix B, except for

Eϵ. To find Eϵ we initially applied E2hz ∼ 4 V/m and Eϵ/Erot ∼ 7× 10−3 to make sure that we saw

shifts in fB and fBR. In the data in Figure 3.12 we fixed the angle of the ellipticity θ = −π
8

and

scanned ϕ2f . We saw both frequencies vary sinusoidally with the magnitudes we expected.

Figure 3.12: Measurement of Berry’s phase shift in fB and fBR. We applied an ellipticity with

magnitude Eϵ/Erot ∼ 7 × 10−3 and phase θ = −π
8
. We also applied a second harmonic along the

z-axis with magnitude E2hz ∼ 4 V/m and scanned its phase. We see the sinusoidal frequency shifts
predicted in Equations 3.37 and 3.38.

We then repeated the measurement without intentionally applying an ellipticity and saw a

smaller sinusoidal effect in both frequency channels, shown in Figure 3.13. We inferred from this
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measurement that the natural scale of the ellipticity in our trap is Eϵ/Erot = 3× 10−4. This let us

put a limit on the shift in fB to be 0.8 mHz, corresponding to a systematic effect of 1.7 µHz.

Figure 3.13: To measure Eϵ we applied a second harmonic along the z-axis with magnitude E2hz ∼ 4
V/m and scanned its phase. We see sinusoidal shifts in fB and fBR indicating that there is a
nonzero Eϵ/Erot ∼ 3× 10−4.

3.5.4 nth Harmonic along z plus (n-1) or (n+1)th Harmonic in the xy-plane

Generally, we can get a Berry’s phase shift from the combination of two harmonics when one

is along the z-axis and the other is in the xy-plane:

δ⃗Ex,y = Enhx cos(nωrott+ ϕnhx)x̂+ Enhy cos(nωrott+ ϕnhy)ŷ (3.39)

δ⃗Ez = Emhz cos(mωrott+ ϕmhz)ẑ (3.40)

In these equations m and n are both integers. The combination of these perturbations will result
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in a non-zero time-averaged frequency shift at first order provided m and n differ by ±1. The shift

is given by:

δf = ∓3Emhzfrot(n± 2)

4E2rot

(
Enhx cos(ϕnhx − ϕmhz)± Enhy sin(ϕnhy − ϕmhz)

)
(3.41)

Here the ± correspond to m = n± 1. Depending on the R̃ dependence of the various phases, this

shift could appear in either fB or fBR. We note that the frequency shift corresponding to the

first harmonic on the endcap and second harmonic radially, m = 1, n = 2, is zero, and so the next

largest shifts are expected to come from effects involving the third harmonic or higher.

We measured the voltages of up to the 17th harmonics and put constraints on the various

electric fields in Appendix B. We can plug the electric field measurements in Table B.1 into Equation

3.41 to find the magnitude of shifts that appear in fB or fBR. The results are shown in Table 3.7.

The quadrature sum of all shifts in this table is 1.4 mHz. Assuming the worst case, that the shift

is entirely in fB, we are left with a 3.0 µHz systematic error in fDB.

3.5.5 Other Berry’s Phase Effects

The systematics paper discusses two more sources of Berry’s phase. They are caused by 1) an

AC Stark shift from our only laser that is on during the Ramsey time (Section VI B 2) and 2) the

molecular cloud’s axial slosh (Section VI B 3). I do not have much to add about these effects other

than to point out that I think Luke Caldwell was clever to realize that there could be a Berry’s

phase shift from our laser at all.

3.6 Systematics Summary and Result

To end the chapter I include Table 3.8 which summarizes the systematic errors in our experi-

ment. This table does include the smaller value for the axial magnetic field systematic discussed in

Section 3.1. The section listed in the table below refers to the relevant section of the Systematics
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Table 3.7: Constraints on Berry’s phase frequency contributions to fB or fBR due to possible
combinations of radial and axial field imperfections from harmonic distortion in amplifiers used
to drive radial electrodes. All entries are in µHz. This table is an extension of Table VI in the
Systematics paper.

nz

nx,y 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

2 0 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 11 0 95 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 22 0 87 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 75 0 83 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 31 0 38 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 139 0 947 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 13 0 24 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 545 0 556 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 16 0 35 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 90 0 200 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 33 0 30 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 143 0 107 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 37 0 41 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 144 0 155 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 11
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 105 0

paper.

When we removed the blind from our data we found that:

fDB = −14.6± 22.8stat + 6.9syst µHz (3.42)

We divide this result by −2Eeff
sgn(gF )

h
≃ 1.11× 1031

µHz

e cm
and we find a value for the eEDM:

de =

(
1.3± 2.0± 0.6

)
× 10−30 e cm (3.43)

The combined statistical and systematic uncertainty σde = 2.1×10−30 e cm improves on the ACME

collaboration’s result, which was previously the world leading measurement, by a factor of ∼ 2.
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We can translate our result to an upper bound on de with 90% confidence:

|de| < 4.1× 10−30 e cm (3.44)

Per Equation 1.6, this result rules out the existence of certain beyond the Standard Model particles

with masses up to 40 TeV, well beyond the direct reach of the Large Hadron Collider [30].



Chapter 4

Sign of the G-Factor

“Absolute sign determinations are extremely difficult to perform; there are too many ways one can

overlook one minus sign out of the many which may be present.”

- Larry A. Cohen, John H. Martin, and Norman F. Ramsey. “Signs of rotational g factors.” Physical

Review A 19.2 (1979): 433.

4.1 Introduction

The imbalance between matter and anti-matter in the universe can only be explained if the

combined charge and parity (CP) symmetry is violated [24]. While the Standard Model does

violate CP symmetry in the quark sector, it is not enough to explain the predominance of matter

over antimatter [58]. Many extensions of the Standard Model incorporate novel CP violation

that would induce a non-zero, and potentially measurable, electric dipole moment of the electron

(eEDM) [29,59,60].

We recently made the most precise measurement of the eEDM to date using electrons confined

inside HfF+ molecular ions, subjected to a huge intra-molecular electric field, and evolving coher-

ently for up to three seconds [27]. Like the other leading eEDM measurement made by the ACME

collaboration, we performed our measurement in the 3∆1 electronic state of a diatomic molecule, a

state which is sensitive to the eEDM but relatively immune to magnetic effects [28]. The magnetic
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g-factor gF is suppressed in 3∆1 states because two units of orbital angular momentum with g = 1

point opposite to one unit of spin angular momentum with g ≈ 2.002.

The small g-factor of 3∆1 is a powerful tool to suppress systematic errors in our measurements

[31,61]. However, its small size makes the sign of gF difficult to predict, especially in HfF+ where the

magnetic moment of the fluorine nucleus is comparable in size to the residual electronic magnetic

moment. It is also a tricky parameter to extract experimentally, as only absolute magnitudes of

energy differences are directly observable in standard Ramsey precession experiments.1

In both experiments, the sign of gF is critical because it is necessary to find the sign of the

eEDM. In the HfF+ experiment the eEDM shows up as

de =
−sgn(gF )hfDB

2Eeff
(4.1)

where de is the eEDM, fDB is a particular linear combination of frequencies that we measured (see

Subsection 4.3.2) and Eeff = +23 GV/cm is the effective electric field of HfF+ [36, 42,43,45].2

Once an experiment finds a non-zero value of de, knowing its sign will be crucial to compare

with other measurements to confirm the result. At JILA, we plan to make our next generation

measurement of the eEDM in the 3∆1 state of ThF+ molecules, while the ACME collaboration’s

upcoming measurement continues to use the 3∆1 state of ThO [62]. In order to accurately determine

1Suppose you can apply pi/2 pulses around any axis on the Bloch sphere with states |a⟩ and |b⟩, with the initial

quantum state |ψ(t = 0)⟩ = |a⟩. Consider an experiment where you first apply a pi/2 pulse to rotate about the +x

axis, wait for the state to pick up a phase shift of π/2, and then apply another pi/2 pulse around the +y axis. The

population will end up in |a⟩ if Ea > Eb or in |b⟩ if Ea < Eb. However, it is not clear that you can determine the

direction of the axis of rotation if you do not already know which state has more energy than the other. In any case,

when we apply pi/2 pulses by reducing the magnitude of the rotating electric field, we cannot control the rotation

axis in the Bloch sphere.
2See Appendix 4.6.2 for a discussion of the sign of Eeff .
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the sign of our result, this chapter will detail how we experimentally determined the sign of gF of

the 3∆1 state in HfF+. This method can be used in the near future to do the same for ThF+.

4.2 Possible Methods of Measuring the Sign of gF

Determining the magnitude of a 3∆1 state’s g-factor can be done by measuring the magnitude

of the energy difference between ±MF states in the presence of a known magnetic field. That alone

will not provide information about the g-factor’s sign. A generic technique that can work for 3∆1

states is microwave spectroscopy between neighboring rotational levels that are typically spaced

tens of GHz apart. Consider the J = 1 and J = 2 rotational levels of a 3∆1 state with nuclear spin

I =
1

2
as is the case in HfF+ and ThF+ and shown in Figure 4.1. The diagonal Stark and Zeeman

shifts of the fully stretched states in a given rotational level are given by:

EStark+Zeeman(Ω, J, I =
1

2
, F = J +

1

2
,MF = ±F )

= −
(
D∥EzΩ+ (3gF − gN

me

mp
)µBBz

) MF

F (F + 0.5)
(4.2)

In this equation D∥ is the effective molecular dipole moment, gF is the g-factor of the 3∆1

state, gN ≈ 5.25 is the magnetic moment of the fluorine nucleus, and me and mp are the masses

of the electron and proton. Ez and Bz are the components of the electric and magnetic fields

respectively along the quantization axis that give rise to the diagonal shifts, which in our experiment

are Erot and Brot. If we perform microwave spectroscopy between two stretched states of J = 1 and

J = 2 as shown in Figure 4.1, in addition to the energy offset due to the rotational and hyperfine

splittings, we find an energy difference of:
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Figure 4.1: A schematic of the J = 1 and J = 2 rotational energy levels of the 3∆1 state with
I = 0.5 in the presence of an electric field. This is in the limit where the hyperfine structure is
large compared to the Stark splitting, which is large compared to the omega doublet splitting. The
red lines show transitions between the lower (L) and upper (U) stretched states. Measuring either
transition in the presence of a magnetic field can determine the sign of the state’s g-factor. This
image has been reproduced from [4].
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E(Ω = −1, J = 2, I =
1

2
, F =

5

2
,MF = −5

2
) − E(Ω = −1, J = 1, I =

1

2
, F =

3

2
,MF = −3

2
)

=

(3gF − gN
µN
µB

)µBBz −D∥Ez

6
+ Constant (4.3)

The above equation gives the energy difference of the transition labeled (L) in Figure 4.1. For

a fixed value of Ez, the energy difference becomes a constant plus two terms - one that’s proportional

to the sign of gF and another that depends on very accurately known constants. By measuring this

transition frequency with positive and negative values of Bz, the offset can be removed and the sign

of gF determined. A challenge of this method is that one needs to know which fully stretched MF

state is initially prepared. If the initial state is prepared via optical pumping, the absolute sign of

the optical pumping laser’s helicity must be known.

While this method could be used in a number of instances, it is not feasible in our apparatus.

In order to isolate the sign of gF , the magnitude of the Zeeman shift must be larger than the noise

in the shift due to the electric field. In the part of our dataset where we applied 151 Hz frequency

shifts, the measured frequencies had a 1σ spread of 143 mHz that can be attributed to noise in

Erot. This part in 1000, or 60 mV/cm, electric field noise together with D∥ = 1.97 MHz / (V/cm)

gives about 20 kHz of noise in Equation 4.3. In order for the Zeeman shift to have a comparable

magnitude, we would need a reversible Brot ∼ 10 Gauss, which is roughly three orders of magnitude

larger than we typically apply.

This method could be implemented at the ACME experiment where they apply static electric

and magnetic fields that do not rotate and therefore can be more stable. With a reasonably large

∼ 100 G magnetic field3, they would expect to see a ±1.4/6 MHz ≈ ±230 kHz shift. This would

require electric field stability at the V/cm level or better to see this signal and determine the sign

of their g-factor, which seems attainable.4

31000 Amp*turns and 10 cm radius coils gives a 90 G field at the center of Helmholtz coils
4Note that ACME’s molecule, ThO, does not have any hyperfine structure, simplifying Equation 4.3 as gN = 0.
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Alternatively, the sign of the g-factor can be measured via Ramsey spectroscopy between any

two states that are separated in energy by both a magnetic and non-magnetic effect like Berry’s

phase. For example, suppose two states ±MF are separated by a Zeeman shift of ∼ −sgn(gF )100

Hz. If a non-magnetic then effect lifts the +MF state 10 Hz above the −MF state, the sign of the

g-factor can be determined by observing if the magnitude of the shift becomes 110 or 90 Hz.

One downside of this approach is that not many experiments are set up to apply readily

measurable Berry’s phase shifts. Fortunately, performing our spectroscopy in a bias field Erot that

rotates at 100s of kHz allows us to quite easily apply large Berry’s phase shifts. It can be difficult to

get the sign of a Berry’s phase shift correct, which is crucial for this measurement, so it is re-derived

in Appendix 4.6.1. In Section 4.3 we will introduce the JILA eEDM experiment. In Section 4.4 we

will explain the results of Berry’s phase measurements that reveal the sign of gF in HfF+.

4.3 The JILA eEDM Experiment

4.3.1 Experimental Overview

We trap ∼ 20, 000 HfF+ molecular ions in a two-dimensional Paul trap. We populate the

stretched states of the lowest rovibrational level of the 3∆1 electronic state in the presence of a

rotating bias field E⃗rot with magnitude Erot ≈ 60 V/cm, see Figure 4.2. E⃗rot rotates in the xy-plane

with frequency frot = 375 kHz, causing the ions to move circularly with radius rrot ≈ 0.5 mm. E⃗rot

also polarizes the molecules and defines the quantization axis for our spectroscopy. A magnetic field

causes a Zeeman shift between the stretched MF = ±1.5 states with an absolute value of ∼ 100

Hz, which we measure via Ramsey spectroscopy. For details on how we used HfF+ in this platform

to measure the eEDM, see [2, 27,31] and Chapter 2 of this thesis.

4.3.2 Experimental Switches and Frequency Channels

As is common in precision measurements, we greatly benefit from experimental “switches”.

By measuring Ramsey fringes in different configurations we can isolate the eEDM induced shift
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Figure 4.2: Top: The level structure of 3∆1v = 0, J = 1 state in HfF+ in an external electric field
Erot ∼ 58 V/cm. The energy levels are similar to the 3∆1, v = 0, J = 1 state in ThF+. Grey lines

correspond to states which asymptote to F =
1

2
as Erot tends toward zero, and all other states

asymptote to F =
3

2
. Solid (dashed) lines correspond to states with Ω = +1 (-1), see Appendix

4.6.2. The upper (orange) and lower (blue) doublets of the F =
3

2
state are split by ∼ 100 MHz by

Erot. We can split the MF = ±3

2
states with a Zeeman shift and/or a Berry’s phase, typically on

the order of ∼ 100 Hz. If the eEDM is nonzero it will cause an energy splitting in the upper and
lower doublets of the same size but opposite sign. Bottom: We simultaneously perform Ramsey
measurements within each doublet to measure the ∼ 100 Hz energy difference. The points are from
example HfF+ Ramsey fringes; the curves are fits. This image has been reproduced from [31].
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from much larger spurious effects. Our recent measurement had five switches, but only three that

are relevant for determining the sign of the eEDM and the g-factor: D̃ = ±1, whether we take data

in the upper or lower doublet of 3∆1 as shown in Figure 4.2; B̃ = ±1, whether the magnetic field

is parallel or anti-parallel to E⃗rot; R̃ = ±1, whether the rotation of the electric field points up or

down via the right hand rule. For a description of the other switch states, see [2, 31].

Combining these three switches we make 23 = 8 Ramsey measurements of the energy differ-

ence between the stretch states shown in Figure 4.2. We fit the Ramsey fringes to sine waves, and

we label the eight fit frequencies as f D̃=±1,B̃=±1,R̃=±1.

The ∼ 100 Hz energy difference that we measure is caused by the Zeeman shift between

MF = ±1.5 states and therefore changes sign when we reverse B̃. We do not know this energy

difference’s absolute sign unless we know sgn(gF ). We arbitrarily constrain all of the fit frequencies

to be positive. We then construct eight frequency channels:



f

fD

fB

fDB

fR

fDR

fBR

fDBR



=
1

8



1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1





f+1,+1,+1

f−1,+1,+1

f+1,−1,+1

f−1,−1,+1

f+1,+1,−1

f−1,+1,−1

f+1,−1,−1

f−1,−1,−1



(4.4)

The presence of D or R in the superscript of a frequency channel indicates that it is the

difference between the upper and lower doublet or between the two rotation directions. The absence

of superscriptD or R conversely indicates that it is the average of the doublets or rotation directions.

However, because B̃ determines the sign of the energy difference and we have already taken the
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absolute value, the inclusion or absence of B has the opposite meaning. For example, fBR is the

average of the B̃ and D̃ switches, but the difference between rotation up and rotation down.

As derived in Appendix 4.6.2, fDB, the difference frequency between the upper and lower

doublet and average of the other switches, tells us the value of the eEDM. It is clear from Equation

4.1 that in order to extract the sign of de we need to know the sign of gF . Intuitively, this is for

the same reason that we need to know the sign of the Berry’s phase effect to determine the sign of

gF - because we only measure the magnitude of the splitting between MF = ±3

2
states, we need to

know the sign of the Zeeman effect to know the sign of the eEDM.

4.3.3 Berry’s Phase in JILA eEDM

During the Ramsey spectroscopy, the quantization axis defined by E⃗rot completes on the order

of 105 rotations in the xy-plane per second. As E⃗rot traces out closed loops, the quantum state

accumulates a geometric phase of:

ϕgeo =MFΩs (4.5)

During our spectroscopy the molecules are in a superposition of MF = ±1.5 states, so the

molecules will accumulate a relative phase shift of 3Ωs. Here Ωs is the solid angle traced out by

the electric field, as shown in Figure 4.3, which is a signed quantity. If the electric field rotates

perfectly in the xy-plane, Ωs = ∓2π for R̃ = ±1. In this ideal case the difference of ϕgeo between

the two MF states is ∓6π, meaning that the Berry’s phase is not observable as it is an integer

number of 2π phase shifts. But if we intentionally tilt the electric field out of the xy-plane by a

small angle α, we induce a measurable phase shift that will be accumulated every Trot = 1/frot.

For small tilts, this will appear as a frequency shift for each MF state given by:



119

Figure 4.3: Ideally, the quantization axis defined by E⃗rot rotates perfectly in the xy-plane and traces
out a solid angle of −2πR̃. If E⃗rot is tilted up by a small angle α, it will deviate from the ideal solid
angle by an amount Ω. This image has been reproduced from [31].

fBerry ≈ −
MF frot

2π

∫ Trot

0
α(t)ϕ̇(t)dt (4.6)

Here α(t) is the tilt of the quantization axis out of the xy-plane and ϕ̇(t) is the azimuthal

angular velocity. If neither parameter depends on time, we find that:

fBerry = −MF frotαR̃ (4.7)

In order to measure the sign of the g-factor, we cannot simply apply a constant tilt to E⃗rot as

shown in Figure 4.3 since the average force on our trapped ions must equal zero.5 Attempting to

tilt E⃗rot upwards would simply lift the center of the ion trap. However, we can generate a Berry’s

phase by applying an electric field along the z-axis that time averages to zero. A combination

of fields that gives a nonzero Berry’s phase is an electric field along z that oscillates at twice the

rotation frequency along with an elliptical rotating field:

5There is always a small electric field pointing up to balance the force of gravity. This slightly tilts E⃗rot and

generates a small Berry’s phase that we cannot tune, which is not particularly useful for measuring the sign of gF .

For further discussion of the effect of gravity on Berry’s phase, see [31].
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E⃗(t) =


Erot cos (ωrott+ ϕR + R̃ϕ0) + Eϵ cos (2θR̃− ωrott− ϕR − R̃ϕ0)

ErotR̃ sin (ωrott+ ϕR + R̃ϕ0) + EϵR̃ sin (2θR̃− ωrott− ϕR − R̃ϕ0)

E2hz cos (2ωrott+ ϕ2f )

 (4.8)

Eϵ is the magnitude of the ellipticity and E2hz is the magnitude second harmonic that oscillates

at 2ωrot along the z axis. Note that both magnitudes are defined to be positive. At t = 0, E⃗rot

points in the xy-plane at an angle ϕ0+R̃ϕR from the positive x-axis. The long axis of the ellipticity

points at an angle θ in the xy-plane and the second harmonic has a phase of ϕ2f . By applying this

combination of fields, we see in Appendix 4.6.3 that we generate a Berry’s phase that will appear

as a frequency shift in fB and fBR and depend on the sign of gF .

fB =
9E2hzEϵfrot

2E2rot
sgn(gF ) sin (2θ − 2ϕ0) sin (ϕ2f − 2ϕR) (4.9)

fBR = −9E2hzEϵfrot
2E2rot

sgn(gF ) cos (2θ − 2ϕ0) cos (ϕ2f − 2ϕR) (4.10)

In order to measure the sign of the g-factor, we need to apply these fields with known phases

and see how fB and fBR change as we scan the phase of the second harmonic for a fixed value

of the ellipticity.6 We can then compare the two observed sine waves to the above equations for

sgn(gF) = ±1 to see which value is correct for each of our molecules.

4.4 Results

As discussed in Appendix 4.6.4, we take all of our data with ϕ0 =
7π

4
and ϕR =

π

12
,7 so the

above equations simplify to:

6Alternatively, we could fix ϕ2f and scan θ, but it is easier to scan ϕ2f experimentally.
7These seemingly arbitrary choices of ϕ0 and ϕR ensure that at the time of dissociation the molecules are oriented

to optimize our imaging contrast.
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fB =
9E2hzEϵfrot

2E2rot
sgn(gF ) cos (2θ) sin (ϕ2f −

π

6
) (4.11)

fBR =
9E2hzEϵfrot

2E2rot
sgn(gF ) sin (2θ) sin (ϕ2f +

π

3
) (4.12)

We took data with our usual values of Erot = 58 V/cm and frot = 375 kHz, and applied

Eϵ ∼ 400 mV/cm at an angle of θ =
π

8
. We also applied a second harmonic along the z-axis

E2hz ∼ 40 mV/cm and scanned its phase ϕ2f . We therefore expect the data, which are shown in

Figure 4.4, to behave as follows:

fB =
9E2hzEϵfrot
2
√
2E2rot

sgn(gF ) sin (ϕ2f −
π

6
) (4.13)

fBR =
9E2hzEϵfrot
2
√
2E2rot

sgn(gF ) sin (ϕ2f +
π

3
) (4.14)

We see that the data conform to a sine waves with amplitudes similar to those predicted by

Equations 4.13 and 4.14. The phase of the sine waves predicted by these equations depend on the

sign of the g-factor, and it is obvious from both frequency channels in Figure 4.4 that sgn(gF ) = −1.

We can confirm our assignment by considering data where the ellipticity is rotated by 90

degrees, so θ = −π
8

as shown in Figure 4.5. While there is a slight phase offset between the

predicted and measured values of fB and fBR on the order of a few degrees, that is explained by

the imprecision in determining ϕ0 and ϕR as explained in Appendix 4.6.4. It is again clear that

sgn(gF ) = −1 fits the data.

The data in Figures 4.4 and 4.5 are conclusive, but the result is obscured by a haze of math.

Instead of splitting the data into frequency channels as described in Equation 4.4, we can focus
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(a)

(b)

Figure 4.4: fB (a) and fBR (b) data taken with applied ellipticity at angle θ =
π

8
and different

phases of the second harmonic along the z-axis. The data points in both graphs have error bars on
the order of 10 mHz that are too small to resolve at this scale. Equations 4.13 (a) and 4.14 (b) are
plotted with both signs of gF , there is no fitting. Both datasets clearly show that sgn(gF ) = −1.

on the absolute magnitude of the energy differences measured directly. Consider the eight energy

differences when B̃ = ±1, R̃ = ±1, and when the time-average of α, the angle of the total electric

field above the xy-plane, is positive or negative. To simplify the notation, we introduce the notation

α̃ = ±1 for these two cases respectively.

We have α̃ = +1 when E⃗2hz points downward when the elliptical electric field points along its
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Figure 4.5: fB and fBR data taken with applied ellipticity at angle θ = −π
8

and different phases

of the second harmonic along the z-axis. The data points in both graphs have error bars on the
order of 10 mHz that are too small to resolve at this scale. Equations 4.13 (a) and 4.14 (b) are

plotted with sgn(gF ) = −1, which we found from the data with θ =
π

8
shown in Figure 4.4. This

dataset also shows that sgn(gF ) = −1.

major axis, forming a small downward angle. When the elliptical E⃗rot rotates 90 degrees, E⃗2hz will

point upward as the E⃗rot points along its minor axis, forming a larger upward angle. Therefore the

time-averaged α is positive in this case.8

The sign of the Zeeman shift is −sgn(gF )B̃,9 while the sign of the Berry’s phase shift is −α̃R̃,

as given by Equation 4.7.10 When the Zeeman and Berry’s phase shifts have the same sign, the

absolute energy difference will increase. Therefore, the entries in Figure 4.6 will be larger/smaller

(∼ 159 or ∼ 143 Hz) when −sgn(gF )B̃ ×−α̃R̃ = sgn(gF )α̃B̃R̃ = ±1. The top left entry in Figure

4.6 is one of the smaller entries, with α̃B̃R̃ = (+1)(+1)(+1) = +1, so it must be that sgn(gF ) = −1.

Checking any of the other seven entries gives the same result, all without the potential confusion

8For our data in Figure 4.6, we use data where ϕ2f is 15 degrees away from the value where α is at its maximal or

minimal value. This marginally reduces the magnitude of the Berry’s phase shift, but does not change the analysis.

9We assume that energy shifts are positive when the MF =
3

2
state has more energy than the MF = −3

2
state,

as we do elsewhere.
10While in this case α and ϕ̇ depend on time so we have to use the more general Equation 4.6, Equation 4.7 gives

the correct sign if we replace α with the time-averaged α. This helps clarify the underlying physics.
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Figure 4.6: Absolute energy differences measured with a Zeeman shift plus Berry’s phase, as a
function of B̃, R̃ and α̃. Blue frequencies in the top left of each box have B̃ = +1, red frequencies
in the bottom right have B̃ = −1. The ∼ 8 Hz Berry’s phase shift has the same/opposite sign as
the ∼ 151 Hz Zeeman shift when sgn(gF )α̃B̃R̃ = ±1, giving absolute energy differences of 151 + 8
= 159 Hz or 151 - 8 = 143 Hz. All eight of these entries imply that sgn(gF ) = −1.

of defining fB and fBR. This method still relies on knowing the rotation direction, magnetic field

direction and relative orientation of electric fields of each of our fringes, but it is hopefully more

intuitive.

We can now plug in the sign of gF into Equation 4.1 and find a sign-sensitive relationship in

our HfF+ experiment:

de =
hfDB

2Eeff
(4.15)

h is positive and Eeff = +23 GV/cm in our molecule, so de has the same sign as fDB.

It is important that the signed quantities have the same signs in our code, which is addressed

in Appendix 4.6.5. For a full list of the quantities whose sign we need to define correctly in order

to arrive at these two equations, see Appendix 4.6.6. Given that the sign of gF is negative, we
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can also confirm the calculation from second order perturbation theory that
δgF
gF

is positive. See

Appendix 4.6.7 for that discussion.

4.5 Conclusion

By applying a Zeeman shift in addition to an energy difference with a known sign between

the ±MF states via Berry’s phase, we were able to determine that the sign of the g-factor in the

3∆1 state of HfF+ is negative. As Norman Ramsey said, there are many places to go wrong when

determining absolute energy differences, but we are confident in our assignment. This method will

be repeated for the 3∆1 state of ThF+, and can be checked by anyone who has enough time on

their hands to inspect this thesis chapter diligently.

4.6 Appendices for Sign of the G Factor

4.6.1 Appendix 1: Berry’s Phase Derived

Our method of determining the sign of gF relies on us applying an energy shift of known

sign between the MF = ±3

2
states via Berry’s phase. Simply using an equation like Equation 4.7

is tempting but possibly misleading because the sign of the solid angle can depend on convention.

To confirm the sign of the Berry’s phase shift, we will derive Berry’s phase from purely quantum

mechanical arguments. This treatment will largely follow this paper [63] by Meyer, Leanhardt,

Cornell and Bohn.

Consider a spin-
1

2
system11 in the presence of a magnetic field with the time-dependant

Hamiltonian:

H(t) = −µ⃗m · B⃗(t) = −
gµBB
2

σ⃗ · B̂(t) = ℏ
2
ωLσ⃗ · B̂(t) (4.16)

11The authors of [63] treat both a spin-
1

2
and a spin-j system, and they show that the sign of the effect is the

same in both cases.



126

We are assuming that the magnitude of the magnetic field does not change, but its direction

varies. This Hamiltonian introduces the Larmor frequency ωL = −gµBB
ℏ

. We define the lab-frame

Cartesian coordinates (ξ, η, ζ), and allow the magnetic field to rotate around the ζ axis at a constant

angle θr. In a time t the magnetic field rotates an angle ϕ = ωrtR̃ in the lab frame, where ωr is an

unsigned (always positive) quantity defined by ω⃗r = R̃ωr ζ̂. The rotating magnetic field defines the

rotating-frame coordinates (x, y, z) as shown in Figure 4.7.

Figure 4.7: Image and caption are from [63].

We can write the magnetic field in the lab frame as:

B⃗(t) = (Bξ(t),Bη(t),Bζ(t)) = B(sin θr cosωrt, R̃ sin θr sinωrt, cos θr) (4.17)

We can find an explicit representation of the Hamiltonian in Equation 4.16 in the lab-frame by

plugging in the magnetic field as written in Equation 4.17 and using the explicit forms of the Pauli

matrices. The Hamiltonian acts on the lab-frame basis vectors |mζ = ±
1

2
⟩, and is written as:

H(t) =
ℏωL

2

 cos θr sin θre
−iR̃ωrt

sin θre
iR̃ωrt − cos θr

 (4.18)

The goal now is to find the eigenvalues of this Hamiltonian. We’ll start by writing a general
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ansatz for the wave function in this basis:

|ψ(t)⟩ =

α(t)e−iω+t

β(t)e−iω−t

 (4.19)

ω± are the currently unspecified frequencies of the eigenvectors, which we’ll solve for shortly. We

can now plug this ansatz and the Hamiltonian in Equation 4.18 into the time-dependent Schrodinger

equation:

iℏ
∂

∂t

α(t)e−iω+t

β(t)e−iω−t

 =
ℏωL

2

 cos θr sin θre
−iR̃ωrt

sin θre
iR̃ωrt − cos θr


α(t)e−iω+t

β(t)e−iω−t

 (4.20)

After a few lines of algebra we find that:

iℏ
∂

∂t

α(t)
β(t)

 = ℏ

 ωL

2
cos θr − ω+

ωL

2
sin θre

−i(R̃ωr+ω−−ω+)t

ωL

2
sin θre

i(R̃ωr+ω−−ω+)t −ωL

2
cos θr − ω−


α(t)
β(t)

 (4.21)

This is progress because we now have something resembling the Schrodinger equation, although

the vectors and Hamiltonian both depend on time. We can simplify this if we chose ω± = ±R̃ωr

2
,

as this makes the Hamiltonian time-independent:

iℏ
∂

∂t

α(t)
β(t)

 = ℏ

ωL

2
cos θr − R̃

ωr

2

ωL

2
sin θr

ωL

2
sin θr −ωL

2
cos θr + R̃

ωr

2


α(t)
β(t)

 (4.22)

Recall that this is in the lab-frame basis. It’s also clear that we can split this Hamiltonian

into Zeeman and rotating parts:

Hdressed,lab = HZ,lab +Hr,lab (4.23)
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HZ,lab =
ℏωL

2

cos θr sin θr

sin θr − cos θr

 (4.24)

Hr,lab = −R̃ℏωr

2

+1 0

0 −1

 = −R̃ℏωrmζ

1 0

0 1

 (4.25)

Now that we have a Hamiltonian, it’s tempting to read off the energy shift due to the part

of the Hamiltonian that arises from rotation.12 However, we do our spectroscopy in the rotating

frame so we need to change the Hamiltonian’s basis. We can immediately write the Zeeman shift

in the rotating basis, even though it’s not particularly interesting for us at the moment:

HZ,rot =
ℏωL

2

1 0

0 −1

 (4.26)

This Hamiltonian acts on basis vectors |mz = ±
1

2
⟩. To write Hr in the rotating frame, we

need to transform from the |smζ⟩ basis to the |smz⟩ basis. We can do this by rotating through the

Euler angles (0, θr, 0):
13

R(0, θr, 0) = e−iθRJη = Exp

[
− iθR

0 − i
2

i

2
0

] =

cos

(
θr
2

)
− sin

(
θr
2

)
sin

(
θr
2

)
cos

(
θr
2

)
 (4.27)

We can then write:

12It’s worth noting that this Hamiltonian is exact, there is no assumption that ωr ≪ ωL as is usually the case

when discussing Berry’s phase geometrically.
13 [63] uses Wigner matrices instead of the generators of rotations. I believe the approach I have taken here is

easier to follow.
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+z

−z

 = R

+ζ

−ζ

 =

cos

(
θr
2

)
− sin

(
θr
2

)
sin

(
θr
2

)
cos

(
θr
2

)

+ζ

−ζ

 (4.28)

Note that because the matrix R is invertible, we can find the Hamiltonian in the rotating

frame:

Hr,rot = RHr,labR
−1 = R̃

ℏωr

2

− cos θr − sin θr

− sin θr cos θr

 (4.29)

We can read off the diagonal Berry’s phase shift as −R̃mFωr cos θr. We are interested in evaluating

the Berry’s phase for θr =
π

2
− α, where α is a small angle. When α is positive it denotes a small

angle above the xy-plane. In this case we have:

ωBerry = −R̃mFωr cos (
π

2
− α) ≈ −R̃mFωrα (4.30)

In the last step we used the first term from the following Taylor expansion: cos (
π

2
− α) = α −

α3/6 + α5/120 + .... Since α is small we can keep just the first term, and this justifies the overall

sign in Equation 4.7.

4.6.2 Appendix 2: Relating de to fDB

We define the internuclear axis n̂ to point from the lighter fluorine towards the heavier nucleus

as shown in Figure 4.8.14 The electronic angular momentum projections Λ, Σ and Ω = Λ + Σ are

positive if they point along n̂. In the 3∆1 state where |Λ| = 2, |Σ| = 1 and |Ω| = 1, Λ and Σ must

point in the opposite directions. This gives rise to the Ω = ±1 states shown in Figure 4.8.

14This is a common convention, but it is not universal.
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Figure 4.8: The two possible configurations of Quantum numbers in 3∆1. Note that the (Hf nucleus
+ core of electrons) has a positive charge and the (F nucleus + core of electrons) has a negative
charge. The directions of the molecular dipole moment and effective electric field therefore follow
from the above definitions.

We can now justify the assignment of Ω = ±1 in the level diagram shown in Figure 4.2. In

the absence of an external electric field, the states with well defined Ω shown in Figure 4.8 are

fully mixed and the eigenstates have well defined parity. In the presence of E⃗rot, which defines our

quantization axis, |3∆1,Ω, J, F,MF ⟩ states are well defined. F is the total angular momentum and

is always positive, while MF is positive if it points along E⃗rot, the quantization axis.

Consider the particular rotational ground state (R = 0 so J = Ω + R = Ω) |3∆1, 1, 1,
3

2
,
3

2
⟩.

Since F = J + I = Ω +
1

2
we know that MF points along the same direction as Ω. We also know

that Ω points along n̂ and that MF points along Êrot, so it must be that n̂ ∥ Êrot. As we can see

in Figure 4.8, n̂ is parallel to the molecular dipole moment d⃗mf so we have Êrot ∥ d⃗mf . This means

the |3∆1, 1, 1,
3

2
,
3

2
⟩ state has a negative Stark shift EStark = −d⃗mf · E⃗rot = −dmfErot and we can

identify it as part of the lower doublet, as shown in Figure 4.2. We can repeat a similar process to

identify the value of Ω in the remainder of the states in the upper and lower doublets.

This procedure is important because the shift due to the eEDM depends on Ω. The shift is

given by:

⟨Hedm⟩ = −deEeffΩ (4.31)
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This relationship is given by [36]15, but also intuitively makes sense if we naively imagine that there

is an actual electric field pointing from the positively charged hafnium nucleus to the negatively

charged fluorine nucleus as shown in Figure 4.8. We define the electron’s EDM de to be positive

if d⃗e ∥ s⃗. In our molecule that means d̂e ∥ Σ̂ ∥ −Ω̂. We should expect there to be an energy shift

⟨Hedm⟩ = −d⃗e · E⃗eff = −deEeff(−Ω̂) · (−n̂) = −deEeffΩ as given by [36].

The above argument is appealing and lands at the right answer, but only fortuitously. Draw-

ing an effective electric field from one nucleus to another in Figure 4.8 is useful but misleading.

The energy shift due to the eEDM only occurs when one of HfF+’s valence electrons is very close

to the hafnium nucleus, where the electric field points radially outward and causes the electron to

move at relativistic speeds [64,65]. Instead, the proper treatment is to calculate the magnitude and

sign of the effective electric field, as is done for HfF+ in the following papers [36,42,43,45].

While theorists are consistent in determining the magnitude of Eeff for HfF+, approximately

23 GV/cm, they are maddeningly unclear when it comes to the sign. For example, one author has

published that our Eeff is both positive and negative [43,45]. The confusion only gets worse when we

look at review articles which compare the signs of Eeff between different molecules. We can compare

the signs of Eeff for HfF+, ThO and YbF, the molecules employed by the three currently leading

eEDM experiments. While an overall sign change between review articles could be explained by

different conventions, relative sign changes abound. In one article the signs of Eeff in all three

molecules are the same [35], in another YbF has a different sign than the others [56], and in a third

HfF+ is the odd molecule out [17]. This spans the space of possibilities!

I have adopted the convention of Alexander Petrov who reports that Eeff = +23 GV/cm in

HfF+ [36]. His article is relatively clear when it comes to the sign conventions and explicitly gives

Equation 4.31 which we can consistently apply to see how the eEDM shows up in our experiment.

15Note that I have written the above equation with a minus sign that does not appear in [36] because we define

the internuclear axis n̂ to point in opposite directions and the sign of Ω depends on n̂.
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This has the perk of agreeing with John Bohn’s sign convention, and he’s on my committee [35,66].

We measure the eEDM induced shift in the presence of a magnetic field while minimizing

Berry’s phase, which can contribute systematic errors to our measurement [31]. The magnetic field

interacts with our molecule’s magnetic dipole moment µ⃗F , which we define such that µF = gFµB >

0 when µ⃗F is parallel to the molecule’s total angular momentum F . Note that the Bohr magneton

µB is defined to be a positive quantity, while the g-factor can be positive or negative. As the

quantization axis in our experiment is defined by E⃗rot, we have µ⃗F = gFµBMF Êrot.

We apply a magnetic field B⃗rot that is parallel or antiparallel (B̃ = ±1) to E⃗rot which causes

a Zeeman shift of:

HZeeman = −µ⃗F · B⃗rot = −gFµBMF Êrot · B⃗rot = −gFµBMFBrotB̃ (4.32)

We can now create an effective Hamiltonian for the upper and lower doublets using Equations 4.31

and 4.32:

Heff =
1

2

−3(gF + δgF D̃)µBBrotB̃ + 2deEeffD̃ h(∆ +∆DD̃)

h(∆ +∆DD̃) 3(gF + δgF D̃)µBBrotB̃ − 2deEeffD̃

 (4.33)

In addition to the expected Zeeman and eEDM shifts, we have also included a D̃ odd Zeeman

shift to account for the fact that the upper and lower doublets have slightly different values of gF .

We define gF to be the average g-factor of the two doublets, while δgF =
gupperF − glowerF

2
. We define

∆ and ∆D similarly to account for a D̃-odd mixing between the states within the two doublets.

This effective Hamiltonian acts on states

MF = +3/2

MF = −3/2

.

If we diagonalize this Hamiltonian and solve for the energy difference, we find that:
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EMF=1.5 − EMF=−1.5 = −3(gF + δgF D̃)µBBrotB̃ −
[h(∆ +∆DD̃)]2B̃

3
2(gF + δgF D̃)µBBrot

+ 2deEeffD̃ (4.34)

While finding this energy difference we have dropped a term that is proportional to (deEeff)2 and

used a binomial approximation where we assumed that:

∣∣∣∣ 2deEeff
(gF ± δgF )µBBrot

∣∣∣∣ ,( h(∆±∆D)
3
2(gF ± δgF )µBBrot

)2

≪ 1 (4.35)

Our new result tells us that the numerator of the first term is smaller than 40 µHz, while the

denominator is ∼ 100 Hz [27]. The numerator of the second term is ∼ 1 Hz, making the entire

term ∼ 10−4. The second term is larger than the first, but is still much smaller than 1 so the

approximation is a good one.

As explained in Subsection 4.3.2, we always record a positive value of the energy. Since the

leading term in Equation 4.34 is the largest, we take the absolute value of the energy difference by

multiplying by the sign of the leading term −sgn(gF )B̃:

|∆E| = 3|gF |µBBrot + 3δgFµBBrotsgn(gF )D̃

+ h2sgn(gF )
∆2 + D̃∆∆D + (∆D)2

3
2(gF + D̃δgF )µBBrot

− 2deEeffsgn(gF )B̃D̃ (4.36)

We can immediately see that the only B̃D̃-odd shift is caused by the eEDM. From Equation

4.4, we find that

hfDB = −2deEeffsgn(gF ) (4.37)

This is equivalent to Equation 4.1, which is what we wanted to show.
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4.6.3 Appendix 3: Calculating Berry’s Phase from 2H and Ellipticity

We generate a Berry’s phase by having E⃗rot trace out an elliptical Lissajous figure in xy-plane

and apply also a 2nd harmonic of Erot in the axial direction, as described in Equation 4.8. To

calculate the expected Berry’s phase shift, we need expressions for α(t) and ϕ̇(t) to compute the

integral in Equation 4.6:

α(t) =
Ez(t)√

E2x(t) + E2y(t)
=
E2hz
Erot

cos (2ωrott+ ϕ2f )

(
1− Eϵ
Erot

cos (2R̃(θ − ϕ0)− 2(ϕR + ωrott))

)
(4.38)

ϕ̇(t) =
∂

∂t
arctan

(
Ey(t)
Ex(t)

)
= R̃ωrot −

2R̃ωrotEϵ
Erot

cos (2R̃(θ − ϕ0)− 2(ϕR + ωrott)) (4.39)

In both equations we assume that Erot is large compared to the other electric fields. We can then

plug these expressions into Equation 4.6 and integrate:

fBerry =
3E2hzEϵfrotMF R̃

2E2rot
cos (2R̃(θ − ϕ0) + ϕ2f − 2ϕR) (4.40)

We can now construct an effective Hamiltonian like in Appendix 4.6.2, except this time we

will include the Berry’s phase shift and ignore all D̃-odd effects:

Heff =

Diag
h∆

2
h∆

2
−Diag

 (4.41)

The diagonal term is expressed below so everything fits nicely between the margins of this page:

Diag = −3

2
gFµBBrotB̃ + h

9E2hzEϵfrot
4E2rot

cos (2R̃(θ − ϕ0) + ϕ2f − 2ϕR)R̃ (4.42)
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Again, the effective Hamiltonian acts on states

MF = +3/2

MF = −3/2

. Solving for the difference in

the diagonalized energies, we get:

|∆E| = 3|gF |µBBrot−
9hE2hzEϵfrot

2E2rot
cos (2R̃(θ − ϕ0) + ϕ2f − 2ϕR)B̃R̃sgn(gF )+

h2∆2

6|gF |µBBrot
(4.43)

Note that the the Berry’s phase shift is B̃-odd, but has a complicated R̃ dependence. This means

we should expect the Berry’s phase to show up in both fB and fBR. We can use Equation 4.4 to

find:

fB =
9E2hzEϵfrot

2E2rot
sgn(gF ) sin (2θ − 2ϕ0) sin (ϕ2f − 2ϕR) (4.44)

fBR = −9E2hzEϵfrot
2E2rot

sgn(gF ) cos (2θ − 2ϕ0) cos (ϕ2f − 2ϕR) (4.45)

4.6.4 Appendix 4: Erot Phases in HfF+ Experiment

It is easier to compare the above equations to our experiment if we replace ϕ0 and ϕR with

ϕup and ϕdown:

ϕup = ϕ0 + ϕR (4.46)

ϕdown = ϕ0 − ϕR (4.47)

Substituting these into Equations 4.44 and 4.45 gives us:
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fB =
9E2hzEϵfrot

2E2rot
sgn(gF ) sin (2θ − ϕup − ϕdown) sin (ϕ2f − ϕup + ϕdown) (4.48)

fBR = −9E2hzEϵfrot
2E2rot

sgn(gF ) cos (2θ − ϕup − ϕdown) cos (ϕ2f − ϕup + ϕdown) (4.49)

In order to use these equations to find sgn(gF ), we need to know all four phases in the above

equations. The x and y axes are defined as shown in Figure 4.9, with the z-axis pointing out of the

page. θ, the angle which defines the strong axis of the ellipse, is equal to zero when pointing along

+x̂ and increases as it rotates toward the +ŷ axis. We define ϕup and ϕdown, the direction of Erot

at t=0 for each rotation direction, the same way. ϕ2f is the phase of the second harmonic at t=0.

Figure 4.9: The eight radial electrodes are numbered 1 through 8. There are two “endcap” elec-
trodes in and out of the page to apply fields along the z-axis.

The equations for fB and fBR do not depend on the choice of t=0, so we chose 1 ms after

the first
π

2
pulse in our Ramsey sequence as it is a convenient time to trigger our oscilloscopes that

measure the voltages on our electrodes. We can measure ϕup and ϕdown by simply measuring the

voltages on all eight radial electrodes and finding the direction Erot points at this time. We find

that ϕup =
11π

6
and ϕdown =

10π

6
to within 5 degrees, which means ϕ0 =

7π

4
and ϕR =

π

12
.
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When we apply the second harmonic field along the z-direction, we can control its phase in

our software. We find that when we program the computer to generate the field with “zero” phase,

1 ms after the first
π

2
pulse the electric field is at its maximum pointing upwards. We also verified

that inputting a 30 degree phase shift into our software is equivalent to a +30 degree phase shift.

This means that the phase in our control software is equivalent to the phase in Equation 4.8.

Finally, we can verify that we know θ by observing the voltages that generate Erot on our eight

radial electrodes. For example, if we apply an ellpiticity with θ = 0 we expect that the voltages on

electrodes 1, 4, 5 and 8 in Figure 4.9 will now have slightly larger amplitudes, while the amplitude

of the voltages on the remaining electrodes will decrease. This procedure went as expected.

We can therefore use the fixed values of ϕup and ϕdown and choose values of θ and ϕ2f to

generate a Berry’s phase. By choosing a value of θ and scanning ϕ2f , we should expect to see sine

waves in fB and fBR with phases that are completely known except for the sign of the g-factor.

4.6.5 Appendix 5: Defining the Frequency Channels

We need to know how our code constructs fB, fBR and fDB in order to accurately interpret

their signs. This involves understanding the Matlab code generate lcoms common.m which creates

the frequency channels from the raw data.

We take data through our homemade Labview code in 24 experimental configurations, by

taking every combination of magnetic field (B), rotation direction (R), imaging chop (I) and deple-

tion phase (P). In each of these configurations, we take data for both the upper and lower doublet

(D), giving us data for 25 = 32 total Ramsey fringes. As in Subsection 4.3.2, we are not interested

in the I or P chops in order to find the sign of the g-factor or eEDM. We can narrow our focus to

the 8 data sets made by switching B, R and D.

Labview saves the eight data sets with labels f D̃=±1,B̃=±1,R̃=±1, but it mislabels the the

rotation switch. That is, data taken with E⃗rot rotating up are labeled R̃ = −1 and data taken with
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E⃗rot rotating down are labeled R̃ = +1. This is a bit awkward, but as I will describe this error is

later corrected in the data analysis.

Matlab imports the eight data sets, analyzes each one and fits a positive frequency for each

switch state, as discussed in Subsection 4.3.2. Matlab then creates a doublet even and doublet odd

frequency four the four experimental configurations B̃, R̃ = ±1:

f B̃=±1,R̃=±1
ML =

f D̃=+1,B̃=±1,R̃=±1 + f D̃=−1,B̃=±1,R̃=±1

2
(4.50)

fD,B̃=±1,R̃=±1
ML =

f D̃=+1,B̃=±1,R̃=±1 − f D̃=−1,B̃=±1,R̃=±1

2
(4.51)

This is done when the data is processed in a subroutine called fit fringe common v6.m, see where

it defines the variables b mean and b diff. At this point, Matlab still has the sign of R̃ backwards

as it has inherited Labview’s error.

Matlab now constructs the four doublet even linear combinations, f fB, fR and fBR, out

of its four values f B̃=±1,R̃=±1
ML . It does the same for the four doublet odd linear combinations out

of the four values fD,B̃=±1,R̃=±1
ML , all of which is done in generate lcoms common.m. If inspected

closely, the matrices of ones and minus ones in the code that generate the eight frequency channels

seem to have the wrong signs. However, these “errors” must have been intentional as they fix the

rotation sign error that is inherited from Labview.16

The result is that the frequency channels are defined with the proper signs as given in Equa-

tion 4.4. f is the average of the absolute fitted frequencies, which are all defined to be positive.

fB is the sum of the fitted frequencies with E⃗rot ∥ B⃗rot minus the sum of the fitted frequencies

16This is done without any comment in the code or, as far as I can tell, the lab notebook. Why not just fix the

mistake in Labview? Or at least make the correction when the data is first imported?
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with E⃗rot ∥ −B⃗rot. fR is the sum of the fitted frequencies with the rotation direction of E⃗rot up

by the right hand rule minus the sum of the fitted frequencies with E⃗rot rotating down. fD is the

sum of the fitted frequencies of the upper doublet minus the sum of the fitted frequencies of the

lower doublet. For a frequency channel with multiple superscript letters like fDB, we add up the

frequency channels with positive B̃D̃ and subtract the frequency channels with negative B̃D̃. In

all cases, we divide by the number of frequency channels in the linear combination.

4.6.6 Appendix 6: Table of Signs

Here I provide a list of definitions of signed quantities used in determining the sign of the

g-factor, gathered here in one table. For the entries fB, fBR and fDB, the note points to the

relevant Matlab code which creates the linear combination of frequencies.

Table 4.1: List of quantities whose signs matter for determining the sign of the g-factor

Quantity Description Notes

B̃ +1 for B⃗rot ∥ E⃗rot, -1 for B⃗rot ∥ −E⃗rot Magnetic Field Chop

R̃ +1 for Up, -1 for Down Rotation Chop

D̃ +1 for Upper, -1 for Lower Doublet Chop
Labview B Sign +1 Labview knows B Sign
Labview R Sign -1 Labview is wrong about R sign
Labview D Sign +1 Labview knows D Sign

sgn(fB) f B̃=+1 − f B̃=−1 See generate lcoms common.m

sgn(fBR)
f B̃=+1,R̃=+1 − f B̃=−1,R̃=+1

−f B̃=+1,R̃=−1 + f B̃=−1,R̃=−1
See generate lcoms common.m

sgn(fDB)
f D̃=+1,B̃=+1 − f D̃=−1,B̃=+1

−f D̃=+1,B̃=−1 + f D̃=−1,B̃=−1
See fit fringe common v6.m

d⃗ points from -q to +q Implies Udip = −d⃗ · E⃗
Eeff + 23 GV/cm See Appendix 4.6.2
n̂ points from F to Hf nuclei The internuclear axis

µ⃗ points normal to current loop Implies Udip = −µ⃗ · B⃗
µ⃗F µF = gFµB > 0 when µ⃗F ||F⃗ This defines the sign of the gF
fBerry = −mF frotαR̃ Sign of Berry’s phase shift

ϕup 330 degrees Initial E⃗rot phase when R̃ = +1

ϕdown 300 degrees Initial E⃗rot phase when R̃ = −1
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4.6.7 Appendix 7: The sign of δgF in HfF+

From Equation 4.36 we can read that f = 3|gF |µBBrot and fD = 3δgFµBBrotsgn(gF ). There-

fore we have:

fD

f
=

3δgFµBBrotsgn(gF )
3|gF |µBBrot

=
δgF

|gF |sgn(gF )
=
δgF
gF

(4.52)

We can compare this expression with the Figure 6a in the systematics paper [31], repeated here as

Figure 4.10.

Figure 4.10: Repetition from systematics paper caption: fD vs f0 for various values of the applied

quadrupole magnetic field, B⃗0. Data taken at Erot ∼ 58 V/cm. Fit is to fD =
δgF
gF

f0 +
∆0∆D

f0
,

giving
δgF
gF

= −0.002149(3), ∆0∆D = −0.39(4)Hz2.

We’ve concluded in Section 4.4 that gF is negative, and as we can see from Figure 4.10
δgF
gF

is negative as well. Therefore δgF is a positive quantity. We can compare this experimentally

determined sign to theory by evaluating the leading order term of δgF from our Hamiltonian as

follows.

δgF primarily comes from a difference in the sign of the mixing terms between the upper

and lower doublets to J = 2. We can start by finding g
(2)
upper and g

(2)
lower, where the superscript (2)

denotes that these are calculated from 2nd order perturbation theory:
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g(2)upper =
∆E

(2)
upper,MF=3/2 −∆E

(2)
upper,MF=−3/2

−3µBBrot

=

( ∑
n∈J=2

| ⟨upper,MF = 1.5|Hstark +Hzeeman |n⟩ |2

−4B

−
∑

n∈J=2

| ⟨upper,MF = −1.5|Hstark +Hzeeman |n⟩ |2

−4B

)
/(−3µBBrot) (4.53)

Note that we define the g-factor of the upper doublet to be the difference in energy of the two

stretched states divided by−3µBBrot, which is the term for a Zeeman shift sans gF . There’s a similar

expression for g
(2)
lower. Also note that we’re approximating the energy difference as −4B because the

only relevant states |n⟩ are in the J = 2 rotational level and E(J = 1)−E(J = 2) = 2B−6B = −4B.

Now we need to evaluate the matrix elements, where Hstark + Hzeeman = −D⃗ · E⃗ − µ⃗ · B⃗.

Here’s an equation from chapter 2 of Will Cairncross’s thesis, which I’ve checked with Brown and

Carrington [1, 67]:

⟨J, F,MF ,Ω|Hstark +Hzeeman |J ′, F ′,M ′
F ,Ω

′⟩

=
(
−D∥Erot −G∥BrotµBΩ

)
(−1)F−MF

 F 1 F ′

−MF 0 M ′
F



× (−1)F ′+J+1.5
√

(2F + 1)(2F ′ + 1)

J
′ F ′ 0.5

F J 1


×

1∑
q=−1

(
(−1)J−Ω

 J 1 J ′

−Ω q Ω′

√(2J + 1)(2J ′ + 1)

)
(4.54)

Note that G∥ = 3gF −gN
me

mp
. This expression only applies for the simplified case where the electric

and magnetic fields are along the quantization axis and only applies within the 3∆1, v = 0 manifold.

For the full expression, see Equation 2.15 in Will Cairncross’s thesis [1].
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The above equation does not mix terms with different values of MF or Ω, which means there

are only a few terms that appear in the sums in Equation 4.53. Writing those terms out we get:

g(2)upper =
| ⟨1, 1.5, 1.5,−1|Hstark +Hzeeman |2, 1.5, 1.5,−1⟩ |2

−4B(−3µBBrot)

+
| ⟨1, 1.5, 1.5,−1|Hstark +Hzeeman |2, 2.5, 1.5,−1⟩ |2

−4B(−3µBBrot)

− | ⟨1, 1.5,−1.5, 1|Hstark +Hzeeman |2, 1.5,−1.5, 1⟩ |2

−4B(−3µBBrot)

− | ⟨1, 1.5,−1.5, 1|Hstark +Hzeeman |2, 2.5,−1.5,= 1⟩ |2

−4B(−3µBBrot)

= −
D∥ErotG∥

20B
(4.55)

A similar calculation for g
(2)
lower gives:

g
(2)
lower =

D∥ErotG∥

20B
(4.56)

We can put them together to find δg
(2)
F :

δg
(2)
F =

g
(2)
upper − g(2)lower

2
= −

D∥ErotG∥

20B
(4.57)

At the start of this appendix, we found experimentally that δgF is positive. The relationship

G∥ = 3gF −gN
me

mp
tells us that G∥ is positive as well. We can take the sign of the terms in Equation

4.57 and we find that:

sgn(δg
(2)
F ) = sgn

(
−
D∥ErotG∥

20B

)
= −

sgn(D∥)sgn(Erot)sgn(G∥)

sgn(B)
= −(+1)(+1)(−1)

(+1)
= +1 (4.58)
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So we expect the sign of δg
(2)
F to be positive, which makes sense because we found δgF to be positive

experimentally.

Since we’ve made it this far, we may as well calculate
δg

(2)
F

gF
from G∥ = 3gF − gN

me

mp
:

δg
(2)
F

gF
= −

D∥ErotG∥

20B

3

G∥ + gN
me

mp

= −
3D∥Erot

20B

(
1 +

gNme

G∥mp

) ≈ −D∥Erot
5.102B

= −4.298× 10−5 Erot
V/cm

(4.59)

Note that in the last step, I’ve plugged in experimental values as reported in [31]. Using the value

in generation 2 of Erot = 58 V/cm, we find that:

δg
(2)
F

gF
= −0.00249 (4.60)

This has the same sign as and is 16% larger than the measured value −0.002149(3) from

Figure 4.10. The discrepancy in magnitude arises at least in part from the fact that we have

ignored smaller perturbations. A more complete calculation was done by Alexander Petrov [57]

who included perturbations due to the rotation Hamiltonian and higher order effects that couple

to the 3∆2,
3Π0+ and 3Π0− electronic states. Petrov claims that his numerical results are within

5% of the analytical formulas we presented in our systematics paper [31], and he found a value of:

δgF
gF

= − 1

473
≈ −0.002114 (4.61)

Petrov’s result is much closer to the measured value −0.002149(3) than the second order perturba-

tion result I calculated in this appendix.



Chapter 5

Magnetic Shielding

“Science is magic that works.”

- Kurt Vonnegut, Cat’s Cradle.

One of the main challenges of measuring the eEDM is measuring the energy shift deEeff in

the face of the much larger Zeeman effect. As explained in Section 2.1, our experiment 1) uses

a molecule with a small value of gF , 2) makes a differential measurement between the upper and

lower doublets, pairs of states with similar magnetic sensitivities but opposite eEDM shifts, and 3)

uses a rotating quantization axis to average out shifts caused by uniform magnetic fields. There is

a fourth, and perhaps obvious, strategy to minimize the systematic errors caused by the Zeeman

effect. That is to surround the apparatus with magnetic shielding to passively reduce the magnitude

of the field and therefore all associated systematic shifts. Fortunately, the first three methods to

minimize magnetic systematics were sufficient in our first and second generation measurements of

the eEDM at JILA. As discussed in Chapter 3, the total magnetic systematic error in generation

two was just a few µHz, almost an order of magnitude smaller than our statistical error bar.

The absence of magnetic shielding in our previous measurements makes us unique among

modern EDM experiments. Two of the leading electron EDM measurements, the ACME collabo-

ration and the Imperial College eEDM experiment, have both required multiple layers of magnetic

shielding from their outset [47,68]. Regrettably, our experiment will need magnetic shielding in its
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next iteration. We want our third generation measurement to have an order of magnitude smaller

statistical and systematic error bars, the latter of which we can no longer achieve without shielding

the magnetic field in our lab.

5.1 Generation Three JILA eEDM Experiment

5.1.1 Desired Statistical Sensitivity

The goal of the third generation measurement at JILA is to improve our sensitivity to the

eEDM by another order of magnitude. As seen in Table 3.8, our leading source of error in generation

two was statistical. To reduce the statistical error we can refer to Equation 2.3, which indicates we

will need to increase a combination of the effective electric field Eeff , the coherence time τ and the

number of molecules we measure N .

There is not a clear path forward to substantially improving any of these quantities if we stick

with HfF+. Eeff is a fixed quantity and τ is limited to about 3 seconds due to the finite lifetime of

the 3∆1 state. It should be possible to increase N by improving the state preparation efficiency of

3∆1 as described in Subsection 2.2.1.5; we only move ≳ 20% of the HfF+ molecules we trap from

the electronic ground state to 3∆1. If we improve the efficiency to ∼ 90% we would gain roughly

a factor of four in ion number, doubling our statistical sensitivity. It is not exactly clear how we

would improve this efficiency but it should be possible. Alternatively, we could just take more hours

of data. The ∼ 650 hours of data that Tanya Roussy, Luke Caldwell and I took over ∼ 2.5 months

could be extended indefinitely, or at least until the equipment/grad students/postdocs break.

Our plan is to work smarter instead of longer hours. The third generation experiment will be

made with ThF+ molecular ions instead of HfF+. This switch has involved a significant overhead in

order to learn how to produce, trap and manipulate the quantum states of this new molecule [3,4].

However, we are optimistic that the payoff will be worth it.

The 3∆1 state of ThF
+ has Eeff = 35 GV/cm, about 1.5 times larger than HfF+ [69,70]. That
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means in order to measure the eEDM 10 times more precisely, we only need a ∼ 6.7 times smaller

error bar in our frequency measurement. The key advantage of ThF+ is that 3∆1 is its electronic

ground state, so τ will not be limited by a finite lifetime. We hope to achieve τ ∼ 20 seconds for

our generation three measurement.

In the generation two apparatus a longer coherence time τ means that we have to spend more

time waiting for the experiment to run and therefore measure fewer ions N . If we assume the best

case that the “dead time” between the end of one measurement and the beginning of the coherence

time of the subsequent clouds of ions is minimal, increasing our coherence time only improves our

statistical sensitivity by
√
τ . This means an increase of coherence time from 3 to 20 seconds would

only net us a factor of
√

20/3 = 2.6 in sensitivity. In order to improve our statistical sensitivity

even further, we have completely redesigned our ion trap. Instead of trapping a single cloud of

ions, we will trap many ion clouds and make semi-continuous measurements of the eEDM.

See Figure 5.1 which shows the design of the “Bucket Brigade” ion trap. The eight radial

electrodes in the generation two ion trap shown in Figure 3.8 are replaced with eight long rod

electrodes that run the length of the new trap, from the bottom left to bottom right of the Figure

5.1. The two endcap electrodes from generation two are replaced with a series of ring electrodes

whose voltages can be set to create many ion traps along the length of the rods.

We create a neutral beam of ThF molecules which are ionized and trapped on one end of the

Bucket Brigade. We do all of the state preparation and begin the Ramsey evolution at this initial

location. We will then slowly move the center of the ion trap by varying the voltages on the ring

electrodes to the other end of the Bucket Brigade, where after the coherence time τ the Ramsey

measurement is completed. However, once the ions have moved far enough,1 another “bucket” of

ions is prepared in the state preparation region. In this way many buckets of ions are prepared

1How far is far enough between buckets of ions? This is currently an open question, look to a future JILA EDM

thesis for the answer.
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and shuttled from one end of the ion trap to the other in unison, and we can make measurements

semi-continuously. This will substantially increase the number of ions N we measure in a given

amount of time.

Figure 5.1: A conceptual drawing of the Bucket Brigade for our generation three eEDM measure-
ment. We plan to trap many buckets of ions simultaneously, all moving from the state preparation
region on the left to the dissociation region on the right. While the ions move in parallel they are
undergoing their ∼ 20 second coherence time. This image was made by Kia Boon Ng [4].

For significantly more detailed explanations of our next EDM experiment, please see the

theses recently written by Kia Boon Ng [4] and Noah Scholssberger [3].

5.1.2 One of Maxwell’s Equations

Before jumping into more details about generation three, it will help to discuss one of

Maxwell’s equations:

∇⃗ × B⃗ = µ0j⃗ +
1

c2
∂E⃗
∂t

(5.1)
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In our experiment the largest electric field is E⃗rot = Erot
(
cos(ωrott)x̂+ R̃ sin(ωrot)ŷ

)
. According to

the above equation this will lead to time-varying magnetic field gradients:


∂By
∂z
− ∂Bz

∂y
∂Bz
∂x
− ∂Bx

∂z
∂Bx
∂y
− ∂By

∂x

 =
ωrotErot
c2


− sin(ωrott)

R̃ cos(ωrott)

0

 (5.2)

Because our experiment relies on E⃗rot we cannot remove these magnetic field gradients from our

experiment. Note that the above equation does not uniquely determine any of the six gradients,

they must be determined by the boundary conditions of our experiment.

We saw the effect of these gradients in generation two; they were discussed in Subsection

3.4.2 under the name B⃗cc. In that section we said that:

B⃗cc = Bccz


R̃ cos (ωrott)

sin (ωrott)

0

 (5.3)

This is equivalent to Equation 5.2 with boundary conditions that set
∂Bz
∂y

=
∂Bz
∂x

=
∂Bx
∂y

=
∂By
∂x

=

0. We can see that by applying these boundary conditions to Equation 5.2 and integrate along z

to find that:


By

Bx

0

 = −ωrotErotz
c2


sin(ωrott)

R̃ cos(ωrott)

0

 (5.4)

Noting that the first and second entries of the vectors are flipped from their usual order, we can

compare to Equation 5.3 to find Bcc = −
ωrotErot
c2

. When we plug in the generation two values we
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find that |Bcc| = 1.6 mG/m, which is about 50% larger than the value 1.1 mG/m we measured in

Section 3.4.2. This indicates that there were magnetic field gradients
∂Bz
∂y

and
∂Bz
∂x

possibly as

large as 0.5 mG/m that we did not consider in generation two. The systematics shifts created by

these magnetic field gradients will be discussed in Subsection 5.2.2.

Because we plan to keep Erot and ωrot roughly the same magnitude, a choice we discuss

in Subsection 5.2.1, we should expect similarly sized magnetic field gradients in generation three.

These gradients will be more problematic in generation three because instead of sitting at one point

the molecules will move up to three meters along the z-axis! These gradients will be referenced

multiple times during the rest of this chapter.

5.1.3 Methods of Generating f0

The combined improvements of Eeff , τ and N should give us a factor of ∼ 10 improvement

in the statistical sensitivity of our next eEDM measurement. The larger value of Eeff means we

can achieve this factor of 10 by reducing our statistical uncertainty by a factor of 10/1.5 = 6.7,

corresponding to an uncertainty of about 3.5 µHz. This new sensitivity is crucial, but only matters

if our systematic error bar shrinks as well. As seen in Table 3.8, our largest individual systematic

error was 3.5 µHz. To keep our total systematic error ∼ 3 times smaller than our statistical error,

we want our each of our individual systematic errors to be no larger than 500 nHz at most.2

As we saw in Chapter 3, the magnitude of a given systematic effect depends on our method of

generating f0 ≈ 100 Hz.3 In generation two f0 was produced by the B̃-odd Zeeman shift caused by

our molecules rotating in the magnetic field gradient B⃗2,0. This effect has
⟨E⃗ · B⃗⟩ /|E|
⟨Ê · B⃗⟩

= 1, so it also

2Assuming that all systematic errors are uncorrelated, there need to be 49 individual 500 nHz systematics to

result in a total systematic error bar of 3.5 µHz, the size of our desired statistical error bar. We do not want the

total systematic error bar to be this large, but a few ∼ 500 nHz systematic errors are fine.
3f0 is the name for the channel that measures the ∼ 100 Hz Zeeman shift. In other JILA EDM documents it has

been called f and f0.
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causes a D̃-odd shift that is
δgF
gF

times smaller. We saw in Subsection 3.2.2 that all other frequency

shifts with the same ratio of fD/f0 did not cause an appreciable systematic shift because of our

shimming/correction procedure. This means that the magnitude of systematic effects in generation

3 will depend on the method we choose for generating f0. For example, if we generate f0 with

Berry’s phase then all Berry’s phase shifts and magnetic effects with
⟨E⃗ · B⃗⟩ /|E|
⟨Ê · B⃗⟩

= 0 will not cause

a systematic error.4

As a group we have put a substantial amount of thought into how we want to generate f0 in

generation 3, evidenced by chapter 8 of Kia Boon Ng’s thesis which is titled “Generating f0 in the

Bucket Brigade” [4]. He details five plans for generating f0 which are listed in Table 5.1, focusing

on how to implement each plan while keeping the required fields homogeneous enough to maintain

τ ≳ 20 seconds.

Table 5.1: Kia Boon’s Plans to Generate f0

Plan Description
fD

f0
value

A Zeeman shift from B2,0 plus Erot
δgF
gF

B Berry’s Phase from Eϵ plus E2hz 0

C Zeeman shift from B1,±1 plus E2hxy 0

D Zeeman shift from B2,±2 plus Eϵ
4

3

δgF
gF

E Zeeman shift from Brot plus Erot
δgF
gF

Plans A through D make use of frequency shifts already discussed in Chapter 3. Plan E

relies on a magnetic field B⃗rot that rotates in the xy-plane at a frequency frot so that it is always

parallel or anti-parallel to E⃗rot depending on B̃. This is a similar field to B⃗cc which also rotates in

4This is true for the magnetic effects up to the small corrections discussed in Subsection 3.2.1 and [57]. In practice,

these shifts would cause negligible systematics unless things go horribly wrong.
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the xy-plane at frot. The differences are 1) that B⃗cc is parallel or anti-parallel to E⃗rot depending on

R̃ instead of B̃, 2) B⃗cc is a magnetic field gradient along the z-axis while B⃗rot is spatially uniform

over the Bucket Brigade and 3) B⃗cc is applied unintentionally due to the charging currents while

B⃗rot would be applied by intentionally sending additional current through the radial electrodes. In

order to apply a ∼ 100 Hz frequency shift with B⃗rot we do not want B⃗cc interfering and causing the

frequency shift to be R̃-odd or having a spatial gradient. The implementation of B⃗rot with minimal

B⃗cc is depicted in Figure 5.2 and can be created with the following voltages and currents applied

to the eight radial electrodes:

V n
rot = Vrot cos (R̃ωrott−

nπ

4
+ π) (5.5)

Inrot = B̃Irot sin (R̃ωrott−
nπ

4
+ π) (5.6)

Note that Inrot are the intentionally applied currents that flow through the eight rods to create B⃗rot,

they are not the currents that charge the rods and give rise to V n
rot. When these voltages and

currents are applied to the rods they create the following electric and magnetic fields:

E⃗rot = Erot
(
cos(ωrott)x̂+ R̃ sin(ωrott)ŷ

)
(5.7)

B⃗rot = BrotB̃
(
cos(ωrott)x̂+ R̃ sin(ωrott)ŷ

)
(5.8)

Assuming that the rods are infinitely long,5 we find that Brot =
2Irotµ0
πR0

, where R0 is the radius of

the Bucket Brigade. For R0 = 5.85 cm, the value of our current design [3], we need a reasonable

5While this is a better approximation in generation three then in generation two, it should not be taken too

seriously. It is sufficient to find the approximate value of Irot.
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Figure 5.2: If we choose to generate f0 via plan E this is our design to generate B⃗rot without B⃗cc.
The eight rods in the Bucket Brigade, two of which are shown in blue, have finite capacitance. If
they are charged from one side a magnetic field B⃗cc will arise as described in Subsection 3.4.2. We
can minimize this field by charging the radial electrodes via the charging current Icc which connects
to many points spaced along the rods and is generated by the amplified Vrot. This minimizes the
current traveling along the rods and therefore B⃗cc. In order to create B⃗rot we can apply the currents
Irot in Equation 5.6 to run all the way though the electrodes. Since these currents do not need to
induce a voltage in the rods, they will have the same magnitude as a function of z and B⃗rot will
not have a spatial gradient.

Irot = 12 mA to apply Brot = 1.6 mG and a Zeeman shift of 100 Hz.

5.1.4 Choosing a Method to Generate f0

Now that all five plans listed in Table 5.1 have been explained, we can see which would be

best in terms of limiting our systematic error. Plan B, where we generate f0 ∼ 100 Hz via a second

harmonic and ellipticity to create a Berry’s phase shift, at first appears promising. Berry’s phase
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does not cause a D̃-odd shift so there would be no need to worry about higher harmonics causing

additional small Berry’s phase shifts, and we would not need to apply a correction to our eEDM

frequency channel. Additionally, some of the Zeeman effects which are currently systematics have

⟨E⃗ · B⃗⟩ /|E|
⟨Ê · B⃗⟩

= 0 so they will not cause systematic errors either. The only systematic errors from

frequency shifts that we need to mind are magnetic and the experiment could be done inside some

serious magnetic shielding.

There are two problems with this approach. The first is that the Zeeman shift from our

molecules rotating inside the magnetic field gradient B⃗2,0 would cause a systematic 3δgFµBB2,0rrot.

Unlike all of the magnetic systematics listed in Table 3.6, this systematic effect is not multiplied by

an electric field imperfection divided by Erot. That will make this the most worrying Zeeman shift

and require B2,0 < 75 nG/cm for the effect to be 500 nHz or less. As we will soon see, this would

be the most stringent restriction on the allowed magnetic fields by far! The second problem is that,

as described in Subsection 5.1.2, we cannot completely remove magnetic field gradients from our

apparatus. As discussed in Subsection 5.2.2, the largest Zeeman effects caused by these gradients

have
⟨E⃗ · B⃗⟩ /|E|
⟨Ê · B⃗⟩

= 1 and would therefore cause systematic errors.

While these considerations eliminate plan B, they have also pushed us away from plans C

and D. Plan C, to generate a Zeeman shift with
⟨E⃗ · B⃗⟩ /|E|
⟨Ê · B⃗⟩

= 0, suffers the same strict magnetic

shielding requirements. Plan D generates f0 ∼ 100 Hz with
⟨E⃗ · B⃗⟩ /|E|
⟨Ê · B⃗⟩

=
4

3
and could possibly

be simpler to apply over a two or three meter long region,6 but it still requires B2,0 < 225 nG/cm.

As we see in Subsection 5.2.1, this somewhat relaxed requirement is still three orders of magnitude

more demanding then if we pick a plan with
⟨E⃗ · B⃗⟩ /|E|
⟨Ê · B⃗⟩

= 1. From this point on we assume that

we generate f0 from either plan A or E, where one of B2,0 or Brot causes a f0 ∼ 100 Hz Zeeman

shift via the interaction with Erot.
6Plan D involves an ellipticity interacting with a magnetic field gradient B2,±2 which is entirely in the xy-plane.

The ellipticity could be intentionally applied by “displacing” one or more of the rod electrodes and the magnetic field

gradient could be created by a single current carrying wire that runs the length of the Bucket Brigade.
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5.2 Magnetic Systematics in Generation 3

One of the downsides of ThF+ is that its g-factor |gF | = 0.0149(3) in the 3∆1 electronic

state is nearly five times larger than in HfF+ [62].7 Its differential g-factor is larger as well, with

|δgF | ∼ 5.7 times larger than in HfF+, see Figure 5.3. This larger magnetic sensitivity and the

fact that the molecules will move over a 2 or 3 meter long region during the coherence time make

magnetic systematics more worrying in our next measurement. I will first discuss how the magnetic

systematic effects that worried us in generation two translate to our new experiment in Subsection

5.2.1, and then discuss the new magnetic systematics we expect to encounter in Subsections 5.2.2

and 5.2.3.

Figure 5.3: A measurement of fD vs f0 in ThF+ for various values of the applied magnetic field.

Data is taken with Erot = 60 V/cm. The data is fit to Af0 + B/f0, where A =
δgF
gF

and B = ∆∆D.

The parameter A is equal to
δgF
gF

= −0.00255(6), comparable to
δgF
gF

in HfF+. This fit combined

with the measured value |gF | = 0.0149(3) gives |δgF | = 3.8(1)× 10−6, about 5.7 times larger than
in HfF+. This image was made by current JILA eEDM graudate student Sun Yool Park.

7Note that the sign of gF in ThF+ is still unknown. This can be determined by repeating the method described

in Chapter 4.
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5.2.1 Known Magnetic Systematics from Generation 2

5.2.1.1 Overview

The magnetic systematics in generation two, discussed in Section 3.3, concerned electric and

magnetic field imperfections in a small ∼ 1 cm3 region of space. In generation three our molecules

will move in a similarly sized ion cloud over a two to three meter long distance down the Bucket

Brigade. Fortunately, this does not complicate the systematics in Table 3.6 because they are

proportional to the average electric and magnetic field imperfections experienced by the ions. That

means the restrictions on these fields in generation three will be averaged over the entire length of

the Bucket Brigade, assuming the ions move at a uniform velocity.

As discussed earlier in this chapter we have a ∼ 5.7 times larger δgF and want to keep

each systematic smaller than 500 nHz. The largest magnetic systematics in generation two were

∼ 2 µHz. If we have the same field imperfections in our Bucket Brigade these will cause systematic

shifts greater than 10 µHz, over twenty times larger than we want to allow!

We would like the magnitude of these systematics to drop by at least a factor of ∼ 20,

which we can accomplish in one of two ways. The first method is to reduce the magnitude of the

stray electric fields relative to Erot, which we plan to keep ∼ 60 V/cm. The ellipticity is largely

constrained by geometric imperfections that we expect to be similar in magnitude to our generation

two ion trap. We do have a plan to reduce the harmonics of Erot by replacing the op-amps which

generated Vrot in generation two with resonant transformer circuits. These circuits generate a large

voltage at their resonant frequency frot and suppress the off-resonant harmonics. The circuits have

been built with a new resonant frequency frot ∼ 150 kHz and are currently in use, and they are

described in Chapter 4 of Noah Schlossberger’s thesis [3].

While the circuits have been successful in suppressing harmonics, the lower value of frot ∼ 150

kHz has increased rrot =
eErot

4π2mf2rot
by a factor of 5 relative to rrot in generation two. This will

cause the systematic effects due to magnetic field gradients to grow as they scale like Bl,mrl−1
rot .



156

The lower frequency has also caused larger pondermotive forces which have caused trouble in our

current generation three ion trap. In order to solve both of these problems we plan on rebuilding

the resonant circuits with frot ∼ 375 kHz. This will result in rrot ∼ 0.4 mm, a slightly smaller value

than in generation two due to the higher mass of ThF+. Because the new resonant circuit has not

been built yet we do not know the values of the harmonic electric fields. To be overly cautious, I

assume that the harmonics will have the same values in generations two and three for the rest of

this section.

While we hope to have smaller electric field imperfections, the other option for reducing the

Zeeman systematics is to reduce the magnitude of the magnetic field and its gradients in the ion

trap. We can determine the required magnetic field limits by investigating the largest effects in

Table 3.6 and the off diagonal effects in Subsection 3.1.

5.2.1.2 Uniform Magnetic Fields

The magnitude of the only systematic effect in Table 3.6 caused by a uniform magnetic field is

3δgFµB
B1,±1E2hxy

4Erot
, which caused a 2.2 µHz systematic in generation two. Assuming a similar value

of
E2hxy
Erot

∼ 4.2 × 10−5 and accounting for the larger value of δgF , we require B1,±1 = Bxy < 0.25

mG. Magnetic fields along the z-axis in generation two caused systematics by creating off-diagonal

mixing terms ∆ that had switch state dependencies other than ∆0 and ∆D. In generation three

we need to consider all magnetic fields that are perpendicular to E⃗rot, not just B1,0 = Bz. If we

choose plan E and apply f0 via a rotating magnetic field B⃗rot, there will inevitably be a portion of

that field that is perpendicular to E⃗rot. We next consider the systematics caused by both of these

perpendicular magnetic fields which will be grouped together with the label B⊥.

In general the systematics described in Section 3.1 due to ∆ will be larger in generation

three. This is because ∆0 and ∆D are both proportional to the Ω-doubling constant ωef , as shown

in Equation 2.21, which is ∼ 7 times larger in ThF+ than it was in HfF+. Assuming that frot = 375

kHz in generation three, ∆0 and ∆D will be ∼ 5 Hz. We can first consider the systematic effects
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from the terms in Equation 3.4 which are:

∆0δ∆DB +∆Dδ∆B + δ∆DRδ∆BR + δ∆Rδ∆DBR

|f00 |
=

30g2Fµ
2
BB⊥BB⊥∆0∆D

h2f2rot|f00 |
(5.9)

See Section 3.1 for how we arrived at the right hand side of this equation. Using ∆0 ∼ ∆D ∼ 5 Hz

as we expect in generation three, we find that the shift has a magnitude of 23
nHz

mG2
B⊥BB⊥ .

In order to keep this combined systematic effect smaller than 500 nHz, we require B⊥BB⊥ ≲ 20

mG2. If we follow plan A and we do not apply B⃗rot then we are only concerned with magnetic

fields along the z-axis. In this case we will intentionally apply a magnetic field gradient along z

B2,0 that flips with the magnetic field. Therefore the ions will experience an average magnetic

field B⊥ = B2,0zoffset as they move through the Bucket Brigade. zoffset is the distance between the

center of the Bucket Brigade and the location where the applied magnetic field along z goes to

zero. Assuming that we reduce the background field BBz to ≲ 1 mG by magnetic shielding, then

we require B2,0zoffset < 20 mG.

If we choose plan E we also have to consider B⊥ due to imperfect alignment between E⃗rot

and B⃗rot. As discussed in Subsection 5.1.3 we only need Brot ∼ 1.6 mG in order to create a ∼ 100

Hz frequency shift. Even if we messed up B⃗rot so badly that B⊥ = BB⊥ = 1.6 mG, Equation 5.9

would still only result in a ∼ 60 nHz systematic shift. Because this shift is small enough to not

be a problem and plan E does not involve applying large Bz gradients, this systematic shift would

not be very concerning if we generate f0 with B⃗rot. Limiting Bz ≲ 1 mG would be more than good

enough to keep this systematic shift small.

The last systematic we need to consider from Bz is the shift proportional to fBR, which we

assume will still be our largest frequency channel outside of f0, given in Equation 3.6. We find that

we need fBRB⊥ ≲ 0.6 mG Hz. It is hard to predict how large fBR will be in generation three due to

the charging currents, so it will be important to check this requirement in the future. If we assume
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fBR ∼ 200 mHz like in generation two, we need B⊥ ≲ 3 mG. Recall that this is the magnetic

field that is perpendicular to E⃗rot and switches sign with B̃. This should be straightforward if we

choose plan E, but if we choose plan A we would require B2,0zoffset < 3 mG unless fBR is smaller

in generation three.

5.2.1.3 Magnetic Field Gradients

Table 3.6 has two more magnetic systematic effects that are a few µHz in size, both from

first order magnetic field gradients. They are 3δgFµB

√
3B2,±2E3hxyrrot

4Erot
and 3δgFµB

√
3B2,±2Eϵrrot

2Erot
,

which caused systematics of 1.5 and 1.7 µHz respectively in generation two. Assuming the gener-

ation two values for E3hxy and Eϵ, we require B2,±2 < 0.25 mG/cm. This provides the strongest

restriction on first order magnetic field gradients as we will shim B2,0 to zero.8 To be safe, we would

like all first order gradients B2,m < 0.25 mG/cm.

Table 3.6 does include frequency shifts caused by second order magnetic field gradients B3,m,

though they only caused systematics on the order of 10s of nHz in generation two. In order to keep

these systematics less than 500 nHz in generation three, we require B3,m ≲ 25 mG/cm2. Note that if

we apply magnetic shielding to keep the zero and first order gradients of the magnetic field less than

0.25 mG and 0.25 mG/cm respectively, it would be very odd if B3,m ≲ 25 mG/cm2. We can make

the argument stronger by noting that the ions will always be more than 10 cm from the magnetic

shielding,9 so we would expect higher order gradients to fall at least as fast as
0.25 mG/cm

(10 cm)n
with

8If we go with plan E and generate f0 ∼ 100 Hz via Brot, shimming fB to zero by changing the value of BB
rot

will likely leave nonzero values of BB
rot and BB

2,0. At first glance this appears to cause systematics due to effects 9-14

and 33-45 in Table 3.6 which are proportional to B2,0 but have
⟨E⃗ · B⃗⟩ /|E|
⟨Ê · B⃗⟩

̸= 1. However, the shimming procedure

will guarantee that BB
rot = −BB

2,0rrot. Additionally, Table 3.6 does not include frequency shifts caused by Brot. Since

B2,0rrot looks exactly like a rotating magnetic field to the ions (see Figure 2.4) Table 3.6 would include duplicates of

all entries proportional to B2,0 with B2,0rrot replaced by Brot. Therefore the frequency shifts from B2,0 will cancel

with shifts caused by Brot and there will be no resulting systematics.
9As discussed in Sections 5.4 and 5.5 we expect the innermost magnetic shield to have R1 = 25 cm, so 10 cm is

conservative. The shield will be the nearest object to the ions that is magnetic.
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higher orders of gradient n. All that is to say that if we constrain the zero and first order gradients

of the magnetic field to be < 0.25 mG and < 0.25 mG/cm respectively, and we do not increase

the size of rrot by using a lower value of frot, systematics from higher order gradients should be

negligible.

5.2.2 Maxwell Systematics

Figure 5.2 outlines a potential plan to control the magnetic field gradients guaranteed in our

experiment by Maxwell in Equation 5.1. Since we are not sure if we will implement this plan, and

even if we do there is no guarantee how well it will work, we now consider the systematic effects

caused by any of the magnetic gradients created by E⃗rot.

From Equation 5.2 we see that E⃗rot can lead to four10 magnetic field gradients, where the

total “Maxwell” magnetic field is:

B⃗Maxwell =


−R̃zBx∂z cos (ωrott)

−zBy∂z sin (ωrott)

R̃xBz∂x cos (ωrott) + yBz∂y sin (ωrott)

 (5.10)

While only the differences in these amplitudes is fixed by Equation 5.2, we can expect that they

are each ∼ ωrotErot
c2

= 1.6 mG/m.

What frequency shifts are created by this magnetic field gradient? Using E⃗rot as defined in

Equation 5.7, we arrive at a D̃-even frequency shift of−3gFµB ⟨Êrot · B⃗Maxwell⟩ /h = −1.5gFµB(Bx∂z+

By∂z)zR̃/h ∼ −
3gFµBωrotErot

hc2
zR̃, which has a magnitude of about 1 Hz/cm. Since

⟨E⃗ · B⃗⟩ /|E|
⟨Ê · B⃗⟩

= 1

in this case, there will also be a D̃-odd shift that is smaller by a factor of
δgF
gF

. Fortunately this will

not cause a systematic if we choose plans A or E, but it does mean that our ions would have their

10Because E⃗rot has no component along the z-axis, we assume that the two remaining magnetic field gradients are

each zero.
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Ramsey frequency vary by ∼ 200 Hz over a 2 meter long Bucket Brigade! If we engineer so most of

the gradients are in Bz∂x or Bz∂y, we can make the gradient small. This may be a necessity as we

need the frequency to be large compared to ∆ for the entire coherence time or else the MF = ±1.5

stretched states will mix.

If we gloss over the problem of the frequency going through zero, when we average the

effect over the entire Bucket Brigade there will be a frequency shift of 1
Hz

cm
z0R̃ where z0 is the

distance between the center of the Bucket Brigade and the position along the z-axis where the

Maxwell magnetic field goes to zero. We think those locations should be near one another since the

apparatus will be mostly symmetric, but a z0 of at least few centimeters would not be surprising

given that the length of the entire apparatus will be a few meters.

In order to see how this frequency gradient can cause systematic effects I have repeated

the procedure outlined in Section 3.3. I numerically and analytically searched for frequency shifts

caused by B⃗Maxwell and stray electric fields. Table 5.2 contains all of the shifts found by the analytic

method up to O(κ2), which were verified numerically.11

Shifts number 1-4 in Table 5.2 cause a systematic shift because they cause a D̃-even but

not D̃-odd shift. The four shifts can suggestively be rewritten as

(
Bx∂z − By∂z

)
E3hxz0 cosϕ3x

8Erot
and(

By∂z − Bx∂z
)
E3hyz0 sinϕ3y

8Erot
. In this form it is perhaps clear why we ignored this systematic in

generation two. Assuming that our ion trap is rotationally symmetric about the z-axis, there are

no major differences between x and y, Bx∂z and By∂z will have the same magnitude and sign causing

these frequency shifts to cancel. And even if the effect does not cancel and we suppose somehow that

Bx∂z − By∂z ∼
ωrotErot
c2

= 1.6 mG/m, the systematic in generation two is still just 1.2 µHz/meter

times z0. Per Figure 3.8 the entire generation two ion trap was 160 mm tall, meaning z0 should

be much smaller than 80 mm. Assuming the worst case where z0 = 80 mm, the systematic shift

11For curious graduate students in the JILA EDM group, or in case these systematic effects are dramatically larger

than anticipated, I have recorded the shifts up to O(κ3) in the group meeting slides on November 13th 2023.
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Table 5.2: Analytically Calculated Zeeman Shifts from B⃗Maxwell

Number ⟨Ê · B⃗⟩ ⟨E⃗ · B⃗⟩ /Erot
⟨E⃗ · B⃗⟩ /Erot
⟨Ê · B⃗⟩

1
Bx∂zE3hxz0 cosϕ3x

8Erot
0 0

2 −
By∂zE3hxz0 cosϕ3x

8Erot
0 0

3 −
Bx∂zE3hyz0 sinϕ3y

8Erot
0 0

4
By∂zE3hyz0 sinϕ3y

8Erot
0 0

5
Bx∂zE2hzrrot cosϕ2z

16Erot
Bx∂zE2hzrrot cosϕ2z

16Erot
1

6 −
By∂zE2hzrrot cosϕ2z

16Erot
−
By∂zE2hzrrot cosϕ2z

16Erot
1

7 −Bz∂xE2hzrrot cosϕ2z
4Erot

−Bz∂xE2hzrrot cosϕ2z
4Erot

1

8
Bz∂yE2hzrrot cosϕ2z

4Erot
Bz∂yE2hzrrot cosϕ2z

4Erot
1

9 −Bx∂zEϵz0 cos 2θ
4Erot

−Bx∂zEϵz0 cos 2θ
2Erot

2

10
By∂zEϵz0 cos 2θ

4Erot
By∂zEϵz0 cos 2θ

2Erot
2

would only be 100 nHz in generation two.

While we were safe to ignore these shifts in generation two, it is not so easy in generation

three. All magnetic effects are inherently 5.7 times larger, our desired uncertainty is 10 times

smaller and the ion trap will be multiple meters long. This time around the shift will be 6.7

µHz/meter if Bx∂z−By∂z ∼
ωrotErot
c2

= 1.6 mG/m. In order to keep this shift smaller than 500 nHz

we must keep
(
Bx∂z −By∂z

)
z0 ≲ 0.1 mG.12 This should not be particularly challenging, but it will

need to be confirmed experimentally.

Shifts number 5-8 in Table 5.2 are interesting because they are proportional to rrot instead

12This constraint assumes the generation two value for E3hxy. If this harmonic is suppressed in generation three,

which it should be due to the resonant circuits discussed in Subsection 5.2.1, this restraint will be relaxed.



162

of z0. Fortunately they will not cause systematic errors because they each have
⟨E⃗ · B⃗⟩ /|E|
⟨Ê · B⃗⟩

= 1.

Shifts 9 and 10 in Table 5.2 can be combined to get

(
By∂z − Bx∂z

)
Eϵz0 cos 2θ

4Erot
. Like shifts 1

through 4 this effect goes to zero if the ion trap is symmetric between x and y. Assuming this is not

the case, generation two would have had a systematic of 3.3 µHz/meter and is still small enough to

ignore. In the worst case described above, the systematic shift would be less than 300 nHz and is

likely much smaller. For generation three I expect this systematic to be more worrying than shifts 1

through 4 because while we have a plan to reduce the third harmonic, the ellipticity will likely have

the same magnitude as in generation two. If that is the case and if Bx∂z − By∂z ∼
ωrotErot
c2

= 1.6

mG/m, this shift will be 18.8 µHz/meter times z0. This will require
(
Bx∂z − By∂z

)
z0 ≲ 0.04 mG,

a more demanding constraint then before. This will require a bit of thought and effort to achieve,

but should not be an intractable obstacle.

5.2.3 Systematics from Spatial Gradients

The last category of magnetic systematics to consider are those that are caused by spatial

inhomogeneities in our electric and magnetic fields. In generation two our ion cloud sat at the same

point in space, and we could verify the temporal stability of Vrot and the current that drove B⃗2,0.

In generation three it will be inevitable that spatial inhomogeneities in E⃗rot and either B⃗2,0 or B⃗rot

which can lead to systematic errors. Because the frequency shift caused by B⃗2,0 depends on rrot

which is a function of Erot, we will start by considering the simpler case where our frequency shift

is caused by B⃗rot.

We start by considering the simplest case where Brot is uniform over the entire length of the

Bucket Brigade L but Erot is larger by Ebump for a small region of the Bucket Brigade LE , as shown

in Figure 5.4. This change in Erot magnitude will not change the D̃-even frequencies because ⟨B⃗ · Ê⟩

will be the same size throughout the Bucket Brigade. On the other hand the D̃-odd frequencies

will change size because ⟨B⃗ · E⃗⟩ is not the same over the entire ion trap.13 Assuming that the ions

13See Subsection 3.2.1 for an explanation of this difference between D̃-even and D̃-odd Zeeman shifts.
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move with a uniform velocity, we measure:

fD

f0
=
δgF
gF

(
1 +

LEEbump

LErot
)

(5.11)

Note that this can cause an increase in
fD

f0
because Ebump is a signed quantity. In the case where

LE = L, this equation tells us that
δgF
gF

is proportional to Erot, which we found in Equation 4.57.

Figure 5.4: Brot is uniform over the L = 2 meter long Bucket Brigade, but Erot is larger by Ebump

for a region LE < L. This changes the ratio fD/f0.

On its own, Ebump is not problematic. It will change our measured value of
fD

f0
, but as long

as it is stable over time we will take all of our data with the same ratio.14 Spatial variations in the

magnitude of Erot are most likely to come from geometric imperfections of the rods, i.e. the rods

are closer together on one end of the Bucket Brigade then the other, which will be stable over time.

Spatial variation in Erot and Brot at the same time is more worrying. Now we assume that the

magnitude of Brot changes by Bbump for a region LB as shown in Figure 5.5. Let LEB be the length

of the region where the two bumps overlap. In the case of Figure 5.5 LEB = 0, but in general the

14This modification of
fD

f0
is similar to an effect of the trapping electric fields described in Section VI A 6 of the

Systematics paper [31].
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bumps can be centered anywhere in the region L and the two bumps can partially or completely

overlap. In this case the change in
fD

f0
is more complicated. Expanding in powers of

Bbump

Brot
, we

find that:

fD

f0
=
δgF
gF

(
1 +
Ebump

Erot

(
LE

L
+
Bbump

Brot
LLEB − LELB

L2
+O

(Bbump

Brot
)2))

(5.12)

Note that this equation reduces to Equation 5.11 when Bbump = 0, as expected.

Figure 5.5: Erot is larger than its usual value by Ebump for a region LE < L and Brot is larger
than its usual value by Bbump for a region LB < L. This changes the ratio fD/f0 and can cause a
systematic shift.

The scary part of Equation 5.12 is that Bbump should be replaced by B̃Bbump + BBbump as in

general the Brot non-uniformity will have B̃-even and B̃-odd components. The B̃-even component

BBbump will cause a shift in fDB with magnitude:

δfDB = f0
δgF
gF

Ebump

Erot
BBbump

Brot
(5.13)

Note that we have dropped the factor of
LLEB − LELB

L2
from Equation 5.12 because the spatial

inhomogeneities of the fields will not be perfect bumps and this order one number will be replaced
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by another order one number. What makes this systematic effect worrying is that there will not

be an analogous shift in fB that occurs without the factor of
δgF
gF

. That is because this effect

is inherently D̃-odd like the D̃-odd cloud size effect described in Subsection 3.2.3 – the D̃-odd

frequency changes suddenly due to the bump in Erot while the D̃-even frequency is unaffected.

If there are inhomogeneities in Brot we do have a method to measure them. We can move

the ions to a certain point in the trap, perform the entire Ramsey sequence by applying the π/2

pulses with the molecules in place, and then read out the frequency f0. This works because the

frequency depends only on Brot and not Erot in this case, and we can map out the variation in Brot.

Unfortunately, given the method for creating Brot in Figure 5.2, it may be difficult to correct for

gradients in Brot. After mapping out Brot we could then measure variations in Erot by looking for

variations in
fD

f0
as a function of ion position. Assuming we have f0 = 100 Hz, we need to keep

Ebump

Erot
BBbump

Brot
< 2× 10−6 in order to keep the systematic effect less than 500 nHz.

As mentioned before, the story becomes more complicated if we use B2,0 instead of Brot to

generate f0 ∼ 100 Hz because the frequency shift which is proportional to B2,0rrot depends on the

magnitude of Erot. However, this does not significantly change Equation 5.12. All it does is add

O
(Ebump

Erot
)2

terms that are small compared to the shift we focus on in Equation 5.13.

The upside of B2,0 for this systematic is that we will likely be able to tune the magnetic field

along the Bucket Brigade quite easily. We envision applying B2,0 via a series of coils along the

outside of the vacuum chamber around the Bucket Brigade, which will be discussed in Subsection

5.5. We can change the value of the B̃-even and B̃-odd bumps in B2,0 by adjusting the currents

through these coils. Unfortunately, it will be challenging to measure the spatial profile of B2,0 with

the ions. Our frequency measurements in this case will give us information about B2,0rrot ∝ B2,0Erot,

so it will be difficult to disentangle the information about the two fields. Because these spatial

gradients do not oscillate they could be measured by inserting a magnetometer into the apparatus.
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In the case that we apply B2,0 we also require
Ebump

Erot
BBbump

B2,0
< 2× 10−6 where Bbump is now

understood to be a bump in the magnetic field gradient.

5.2.4 Other Magnetic Systematics

There are more magnetic systematics to be concerned about for generation three. For ex-

ample, we only limited the D̃-odd cloud size systematic discussed in Subsection 3.2.3 to 3.5 µHz

in generation two. This is the desired size of the statistical error bar in generation three, so the

systematic effect will need to be reduced by about an order of magnitude. For a summary of all

the known requirements for the magnetic fields in generation three, see Table 5.3.

Table 5.3: Known Magnetic Field Requirements for Generation Three. These limits assume frot =
375 kHz and f0 = 100 Hz.

Limit Section in Thesis Comments

B1,±1 < 0.25 mG 5.2.1.2 B1,±1 = Bx,By

B1,0 < 1 mG 5.2.1.2 B1,0 = Bz

B⊥BB⊥ < 20 mG2 5.2.1.2 B⊥ is perpendicular to E⃗rot

fBRB⊥ < 0.6 mG Hz 5.2.1.2 B⊥ is perpendicular to E⃗rot

B2,m < 0.25 mG/cm 5.2.1.3 Assumes gen two values of E3hxy and Eϵ

B3,m < 25 mG/cm2 5.2.1.3 Assumes gen two values of E3hxy and Eϵ(
Bx∂z − By∂z

)
z0 < 0.04 mG 5.2.2 Assumes gen two values of E3hxy and Eϵ

Ebump

Erot
BBbump

Brot
< 2× 10−6 5.2.3

D̃-odd Cloud Sizes 3.2.3 See Section VI D 2 of the Systematics paper

There will likely be new magnetic systematics we will discover when we take data with higher

statistical precision. We did not fully appreciate the distinction between the D̃-even and D̃-odd

Zeeman shifts until we saw evidence that Zeeman shifts could have different ratios of
fD

f0
in January

2022, months before we took the generation two dataset. It will be exciting to see what details

another order of magnitude or so in precision reveal about our experiment.
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Of course there can always be systematic effects, magnetic or otherwise, that we do not

predict or discover in our data. This is equally true of the JILA eEDM experiment and every other

precision measurement, but that doesn’t help me sleep at night.

5.3 Magnetic Shielding Overview

Our group is entirely new to magnetic shielding. Fortunately, there are groups here at CU and

EDM experiments around the world that have extensive experience in the subject. In this section

I will compile the useful resources I have found which will hopefully serve as a useful jumping off

point for future JILA EDM students.

5.3.1 Diamagnetic, Paramagnetic and Ferromagnetic Materials

To this point we have discussed the magnetic field B⃗ in a vacuum. An external magnetic

field will induce a magnetic response in a solid that is parameterized by its dimensionless relative

magnetic permeability µR. The convention is to distinguish between the external magnetic field

intensity H⃗, which has units of Amps/meter, and the induced magnetic field inside the material B⃗.

These quantities are related by:

B⃗ = µRµ0H⃗ (5.14)

Here µ0 = 4π × 10−7 T·m/A is the magnetic permeability of free space.

I have always found notation a bit confusing. In order to understand magnetic shielding we

need to know what magnetic field will be induced inside a material (in units of Gauss or Tesla)

depending on the external field in our lab (also in units of Gauss or Tesla). It is easy to imagine

how the definition of H⃗ would be useful in the case where one material is enclosed in another, but

for our purposes it would be easier to simply use the equation B⃗int = µRB⃗ext. In the end it is less

work to use the notation in Equation 5.14 as it is ubiquitous in the literature.
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Materials are classified magnetically by their value of µR. Diamagnetic materials are those

with µR slightly less than one. An example is silver which has µR = 0.99998 [71]. That means inside

an external magnetic field, silver generates its own magnetic field that is 2 × 10−5 times smaller

and pointing in the opposite direction as B⃗ext. The net magnetic field inside silver still points in

the same direction as the external field but it is slightly reduced. Paramagnetic materials have

µR slightly greater than one such as aluminum with µR = 1.00002 = 1 + 2 × 10−5. The magnetic

field inside aluminum is therefore slightly greater than the external field. Ferromagnetic materials,

those with µR ≫ 1, will be the ones we use for magnetic shielding. Two commonly used materials

for shielding are steel (µR ∼ 2, 000) and mumetal (µR ∼ 80, 000). These materials significantly

amplify the external magnetic field.

An important point to make is the relative permeability µR of ferromagnetic materials is only

constant for small values of Bext. Figure 5.6 shows the B vs H and Bext vs Bint curves of mumetal,

and the slope of these curves gives the value of µR. For small values of Bext ≲ 0.2 G mumetal has

a constant µR ≈ 80, 000. After this value mumetal begins to saturate – the the dipole moments of

almost all of the atoms in the mumetal have already aligned in the external magnetic field – and

the internal magnetic field no longer increases as quickly. Once Bext ≳ 2 G and all of the dipoles

in the mumetal have been aligned, the field can no longer be further amplified and we say that

the material has been saturated. Unless otherwise mentioned, the calculations in this section will

assume that the ferromagnetic materials are unsaturated and µR can be treated as a constant.

5.3.2 Cylindrical Shield – Transverse Shielding Factor

We can now see how ferromagnetic materials like mumetal can be used to passively shield

a volume of space from an external magnetic field. We are particularly interested in cylindrical

shields as they will fit nicely around the Bucket Brigade and have conveniently calculable shielding

factors. The transverse shielding factor ST is defined as the magnitude of an external magnetic

field perpendicular to the length of the shield divided by the field’s magnitude inside the shield.
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Figure 5.6: On the left is the B vs H curve for mumetal. The same information is shown, in my
opinion more clearly, on the right in the Bext vs Bint plot. The data shows that mumetal is responds
linearly to an external field only up to about 0.2 Gauss. The data in these plots is from Comsol
Multiphysics and is a set of discrete points connected by lines. This B vs H curve is what is used
to simulate saturation effects later in this chapter.

The shield also has an axial shielding factor SA defined the same way for magnetic fields along

the shield’s z-axis. In this subsection we analytically calculate ST for an infinitely long cylindrical

shield with mean radius R and thickness t, so the outer and inner radii are R± t

2
. The situation is

shown in Figure 5.7, and the derivation follows Timothy Sumner’s 1979 dissertation on magnetic

shielding for a neutron EDM experiment [72].15

We are interested in finding ST at steady state without any currents moving around, so we

can define the magnetic potential ϕ where H⃗ = −∇⃗ϕ. Because there are no magnetic monopoles so

∇⃗ · B⃗ = 0, and B⃗ = µH⃗, we know that ϕ will satisfy Laplace’s equation ∇2ϕ = 0. At the boundary

of two materials with different values of µR, there are two relevant boundary conditions to calculate

the shielding factor. The component of B⃗ that is normal to the boundary is continuous, and the

tangential component of H⃗ is continuous.16 Because the external magnetic field is uniform, we can

write the potential in all three regions of space as:

15While many such derivations assume that R ≫ t, Timothy Sumner’s derivation does not.
16H⃗ is continuous as long as the surface current K⃗ = 0, which we have already assumed. The general condition is

n̂× (H⃗2 − H⃗1) = K⃗.
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Figure 5.7: A two dimensional view of an infinitely long cylindrical magnetic shield. The space is
split into regions one through three, inside the shield, the shield itself and outside the shield. There
is a uniform external magnetic field B⃗3 that is transverse to the shield. The magnetic field lines
bunch together inside the shield as its material has µR ≫ 1, and the internal magnetic field B⃗1 is

small compared to B⃗3. The transverse shielding factor ST =
B1
B3

is calculated in the text.

ϕk = (Ckρ+
Dk

ρ
) cos θ (5.15)

Here k = 1, 2, 3 for the inner, shield and outer regions respectively, and Ck and Dk are yet to

be determined constants. The expression is written in cylindrical coordinates (ρ, θ, z). We can

immediately determine that D1 = 0 to prevent the potential from going to infinity at ρ = 0.

The boundary conditions set constraints on the potentials:
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µk
dϕk
dρ

∣∣∣∣
rk,k+1

= µk+1
dϕk+1

dρ

∣∣∣∣
rk,k+1

(5.16)

1

rk,k+1

dϕk
dθ

∣∣∣∣
rk,k+1

=
1

rk,k+1

dϕk+1

dθ

∣∣∣∣
rk,k+1

(5.17)

Here rk,k+1 is the radius of the boundary between regions k and k + 1. These two boundary

conditions at each side of the shield provide four equations that relate C1, C2, C3, D2 and D3. The

system of equations can be solved to give the following expressions in terms of C1:

C2 = C1
µR + 1

2µR
(5.18)

D2 = C1
(µR − 1)(t− 2R)2

8µR
(5.19)

C3 = C1
(2RµR + t)(2R+ tµR)

µR(2R+ t)2
(5.20)

D3 = C1
Rt(µ2R − 1)

2µR
(5.21)

Note that the magnetic field outside the shield goes like C3 −
D3

ρ2
, so C3 on its own defines

the external magnetic field far away from the shield. Therefore the shielding factor is given by:

ST =
C3

C1
=

(2µRR+ t)(2R+ µRt)

µR(2R+ t)2
(5.22)

In the limit where R≫ t the transverse shielding factor simplifies to:
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lim
R≫t

ST = 1 +
(µR − 1)2t

2RµR
(5.23)

A good sanity check is that ST = 1 when t = 0, as there will be no shielding if the magnetic

shield is not there. This equation makes it clear why we want to make the magnetic shields out of

ferromagnetic material like mumetal with µR ≈ 80, 000. So long as the mumetal is not saturated,

we can take the limit where µR ≫ 1 to further simplify the expression:

ST ≈ 1 +
µRt

2R
(5.24)

Now we have arrived at the formula for ST that is most easily found online and in the

literature. We can compare the general result in Equation 5.22 to Comsol Multiphysics simulations,

as shown in Figure 5.8. The Comsol simulations were run in 2D with µR = 80, 000 and t = 2 mm

for various values of R. The results were fit to a two parameter model ST =
a

R
+ b and shows

remarkable agreement with the analytically calculated shielding factor.

We can now consider how ST changes when the cylinder has a finite length L that stretches

from z = −L
2

to
L

2
, as shown in Figure 5.9. For L≫ R we should expect that the shielding factor

at z = 0 is unchanged, while the transverse magnetic field leaks some distance into the shield.

Sumner shows this is the case by considering the general solution of the magnetic potential inside

the shield [72]. The potential is given by Bessel functions of the first kind:

ϕ =
∑
k,n

Jn(kρ)

(
Ake

kz +Bke
−kz

)
cos (nθ) (5.25)

As the external magnetic field is transverse to the cylindrical shield its angular dependence is given

by cos (θ). We should expect that the solution to ϕ has the same angular dependence so we can

restrict the sum to n = 1:
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Figure 5.8: Comsol Multiphysics was used to calculate ST for an infinitely long cylindrical shield
with µR = 80, 000 and t = 2 mm for various values of R. The results are shown in green, which are

then fit to a two parameter model
a

R
+ b shown in red. The prediction of Equation 5.22 is shown

in blue which agrees quite nicely with the Comsol results.

Figure 5.9: Transverse magnetic shielding with a cylinder of finite length. At the ends of the
cylinder the magnetic shielding w.

ϕ =
∑
k

J1(kρ)

(
Ake

kz +Bke
−kz

)
cos (θ) (5.26)
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We can further restrict ϕ by noticing that the axial magnetic field at z = 0 must vanish by symmetry.

That means that
∂ϕ

∂z

∣∣∣∣
z=0

= 0 which can only be achieved if Ak = Bk. We can therefore write ϕ as:

ϕ =
∑
k

J1(kρ)Ak cosh (kz) cos (θ) (5.27)

For high permeability shielding the axial and azimuthal magnetic field components must go to zero

at ρ = R, meaning that
∂ϕ

∂z

∣∣∣∣
ρ=R

=
1

ρ

∂ϕ

∂θ

∣∣∣∣
ρ=R

= 0. This can only be true if J1(kR) = 0, so we are

restricted to k =
3.83

R
,
5.14

R
,
6.38

R
etc. where the coefficients in the numerator are the zeros of J1.

With this restriction in place we can find what we were after originally, the transverse field within

the shielded region:

Bρ = −µ0
∂ϕ

∂ρ
= −µ0

∑
k

kJ ′
1(kρ)Ak cosh (kz) cos (θ) (5.28)

We are interested in how the transverse magnetic field behaves as we move from z = ±L
2

toward z = 0. The argument cosh (kz) in the above equation tells us that the field will exponentially

decay as we enter the shield. The smallest allowed value of k, k =
3.83

R
, will quickly be the largest

term in the summation as we move into the magnetic shield. If we let x be the distance we move

from the edge of the shield towards its center, the magnetic field decays as e−3.83x/R. This result

derived by Sumner agrees reasonably well with another source that approximates the decay as

e−3.5x/R [73].

Note that the leaking transverse field Bρ will not decay all the way to zero as we move further

toward the center of the shield. Its value will asymptote toward the shielded value
Bρ(z →∞)

ST
.

In cases where L is not large enough for the field to decay below
Bρ(z →∞)

ST
at z = 0, the total

transverse shielding factor at the center of the shield is given by:
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1

Stot
T

=
1

ST
+

1

cosh

(
3.83L

2R

) (5.29)

We can use this equation, as well as the analogous equation for the axial shielding factor in Subsec-

tion 5.3.3, to determine how far the shield should extend beyond the ends of the Bucket Brigade.

5.3.3 Cylindrical Shield – Axial Shielding Factor

The axial shielding factor SA for an open cylindrical shield is, perhaps unsurprisingly, worse

than its transverse shielding factor. Timothy Sumner derives this shielding factor as well, but I

found it much less illuminating than his derivation of ST . If we first ignore the effects of magnetic

fields leaking into the ends of the cylinder, or take the limit L ≫ R and only worry about the

shielding factor at the origin, we find that:

SA = 1 +
2K

1 +
L

R
+
αL2

3R2

µRt

2R
(5.30)

K = β − R

L
+
βR3

4L3
+ 2α(I1 − I2) (5.31)

I1 = ln

(
L

R
+

√
1 +

L2

R2

)
(5.32)

I2 = 2

√
1 +

R2

L2
− 2R

L
(5.33)

α = 0.85 and β = 1.83 are coefficients that Sumner determines in his thesis.

The contribution from the axial field that leaks into the ends of the shield can again be found

by consider the magnetic potential ϕ written in terms of Bessel functions in Equation 5.25. This
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time the external field has no angular dependence so we restrict the sum to n = 0. A similar

argument means that the first zero of J0 will determine the length scale for the exponential decay.

We find that the axial magnetic field decays as e−2.41x/R, which compares well to another source

that approximates the decay as e−2.25x/R. The total axial shielding factor at the center of the shield

is therefore:

1

Stot
A

=
1

SA
+

1

cosh

(
2.41L

2R

) (5.34)

We plot Stot
A , the axial shielding factor at the origin, against the length of the shield in Figure

5.10. Here we use values of R = 0.25 m, t = 2 mm and µR = 80, 000. The figure also includes

Comsol simulations of the axial shielding factor with the same parameters, which confirms the

general behavior of Equations 5.30 and 5.34. It also verifies that for L ≳ 8R the axial shielding

scales like
1

L
.

This is a surprising result! It makes sense that the axial shielding is poor for L ∼ R because

the shield is not long enough to attract the magnetic field lines away from the shielded region. But

as L becomes large compared to R the axial shielding factor gets worse again. We do not have an

intuitive explanation for this phenomenon but it is be important to remember when designing the

shields. The axial shielding factor also gets worse with larger values of R, as shown in Figure 5.11,

but that is less surprising.

5.3.4 Layers of Magnetic Shields

We can extend the transverse and axial shielding factors ST and SA to the case where we

have multiple concentric magnetic shields with lengths Li and radii Ri, where i = 1 denotes the

innermost magnetic shield. To keep the expressions simple we assume they are made of the same

material with magnetic permeability µR and thickness t ≪ R1, and that Li ≫ Ri so we do not

have to worry about field lines that enter through the ends of the shields.
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Figure 5.10: Comsol Multiphysics was used to calculate SA for an cylindrical shield with R = 0.25
meters, t = 2 mm and µR = 80, 000 for various values of L. The results of the Comsol simulations

shown in green. Comsol results with L ≥ 4 meters are then fit to a two parameter model
a

L
+ b.

The prediction of Equation 5.30 is shown in blue, which slightly overestimates the Comsol results
but has the same general behavior.

Figure 5.11: The prediction SA vs R given by Equation 5.30. The calculation assumes L = 4
meters, t = 2 mm and µR = 80, 000.
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The method in Subsection 5.3.2 where we calculated ST via a system of equations derived

from boundary conditions can be extended to the case where there are many cylindrical shields. We

define ST
i =

µRt

2Ri
to be the transverse shielding factor of a cylindrical shield, ignoring the addition

of one that gives the correct answer in the limit t→ 0. Starting with the case of two nested shields

we have:

ST
2 nested = 1 + ST

1 + ST
2 + ST

1 S
T
2

(
1−

(
R1

R2

)2
)

= 1 +
µRt

2R1
+
µRt

2R2
+

µ2Rt
2

4R1R2

(
1−

(
R1

R2

)2
)

(5.35)

The total transverse magnetic shielding factor is equal to 1 plus sum of the individual shielding

factors plus another term that is proportional to the product of the two shielding factors. As seen

in Figure 5.8 the transverse shielding values for the individual shields with reasonable parameters

will be on the order of 100, so the final term in Equation 5.35 will dominate. Importantly, this term

tells us that by using two nested shields we get to multiply the individual shielding factors. If we

had instead just doubled the thickness of one of our shields, by Equation 5.24 we would have only

doubled the shielding factor.17 Note that the shielding factor is maximized when
R2

R1
=
√
3 [73].

We can extend the expression further to a system of n cylindrically nested shields:

ST
n nested =1 +

n∑
i=1

ST
i +

n−1∑
i=1

n∑
j>i

ST
i S

T
j

(
1−

(
Rj−1

Rj

)2
)

+
n−2∑
i=1

n−1∑
j>i

n∑
k>j

ST
i S

T
j S

T
k

(
1−

(
Rj−1

Rj

)2
)(

1−
(
Rk−1

Rk

)2
)

+ ... (5.36)

17See this article [74] for an interesting discussion of modeling magnetic shielding as an electrical circuit, which is

interesting in its own right and explains why better shielding is achieved through multiple layers instead of thicker

shielding.
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The final term in this expression is equal to
∏n−1

i=1 S
T
i S

T
n

(
1 −

(
Ri

Ri+1

)2
)
. This term is typically

the largest as it is proportional to the product of all the individual shielding factors.

We can also write down the axial shielding factor for 2 and n nested cylindrical shields.

We define Si
A to be equal to the right hand side of Equation 5.30 without the +1 and, following

Sumner [72], we find:

SA
2 nested = 1 + SA

1 + SA
2 + SA

1 S
A
2

(
1− L1

L2

)
(5.37)

SA
n nested =1 +

n∑
i=1

SA
i +

n−1∑
i=1

n∑
j>i

SA
i S

A
j

(
1− Lj−1

Lj

)

+
n−2∑
i=1

n−1∑
j>i

n∑
k>j

ST
i S

T
j S

T
k

(
1− Lj−1

Lj

)(
1− Lk−1

Lk

)
+ ... (5.38)

For the transverse shielding factors we are guaranteed to get terms that are proportional to products

of the individual shielding factors because Ri+1 > Ri by definition. On the other hand, if the

cylindrical shields all have the same length the net axial shielding factor will only be the sum of

the individual axial shielding factors, as can be seen in Figure 5.12. This tells us that we want our

nested shields to grow in both radius and length as we move from the innermost shield outward.

5.3.5 Shielding Induced Gradients

Up to this point we have calculated shielding factors for axial and transverse magnetic fields.

These are important because they will inform us what sort of shields allow us to reduce Earth’s 500

mG field to ≲ 0.25 mG which we require, as discussed in Subsection 5.2.1. It is equally important

that we keep the magnetic field gradients to be ≲ 0.25 mG/cm.

We can use Comsol to simulate the magnetic field gradients experienced by the ions due to

shielded uniform transverse and axial magnetic fields. We define these “gradient shielding factors”
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Figure 5.12: SA when there are two layers of magnetic shielding. The inner shield has R1 = 0.25
m, t = 2 mm, µR = 80, 000 and L1 is varied. The outer shield has R2 = 0.25 ×

√
3 m, L2 = 4

m, t = 2 mm and µR = 80, 000. The plot shows the prediction of Equation 5.37 in blue and the
results from Comsol simulations in green. Comsol verifies that the shielding factor grows as L1 gets
shorter than L2.

to be equal to Sgrad
A =

Bextz

∂Bintz

∂z

and Sgrad
T =

Bextx

∂Bintx

∂x

=
Bexty

∂Binty

∂y

, which have units of distance. We are

interested in calculating these gradient shielding factors far away from the edges of the shields as

we have already seen how transverse and axial fields decay as they enter the openings of the shields

in Subsections 5.3.2 and 5.3.3 respectively.

A single layer of mumetal shielding with R = 25 cm, L = 4 m, t = 2 mm and µ0 = 80, 000 has

a axial shielding factor of ∼ 30. Figure 5.13 shows the magnetic field as a function of z at ρ = 0.

We can see that the magnetic field gradient is ∼ 0.1 mG/cm over the central meter of the region

with an external field of 100 mG, giving us Sgrad
A ∼ 1000 cm. Because the axial shielding function

in Equation 5.30 is fairly complicated this relationship should be checked for different parameters

R, L and t, but Sgrad
A ∼ 1000 cm should provide a reasonable order of magnitude estimate.

With the finest mesh and highest precision I was able to manage, Comsol was still unable

to resolve the residual magnetic field gradients for transverse fields in an infinitely long magnetic

shield. We could conclude that Sgrad
T ≫ 1000 cm, but in practice the dominant transverse gradients
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(a) Full Plot

(b) Zoomed In

Figure 5.13: A Comsol simulation of the magnetic field vs z along the center (ρ = 0) of a single
mumetal shield with R = 25 cm, L = 4 m, t = 2 mm and µ0 = 80, 000. (a) The shield is centered
at z = 0 and is in a background magnetic field of 100 mG along the z-axis. The blue trace shows
how the magnetic field has a slight increase from 100 mG and then falls as it enters the magnetic
shield at z = ±2. (b) The axial magnetic field has decayed to ≲ 5 mG over the region between
z = ±1 where the ions travel, and the gradient is ≲ 0.25 mG/cm over this region as well.
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will likely be caused by magnetized regions of the innermost magnetic shield. The consequences of

these regions and how to minimize them are discussed in Subsection 5.3.7.

Fortunately, both external transverse and axial magnetic fields do not directly induce wor-

ryingly large magnetic field gradients inside the magnetic shielding. In the case where there is an

external magnetic field gradient, the transverse and axial shielding factors are higher than those

for uniform fields [75].

5.3.6 Seams and Holes

Up until now we have assumed that our magnetic shields will be perfect cylinders. This will

not be the case for two reasons. The first is that our cylinders will need holes to let laser light and

various other parts of the apparatus through. The second is that mumetal cylinders with a R ∼ 0.5

meters and L ∼ 4 meters are hard to make, ship and install around our apparatus. Instead each

cylinder will be made of two half cylinders, or “clam-shells,” that attach together at a seam. In

this subsection I will address each of these imperfections.

We can approximate a hole in a magnetic shield as a magnetic dipole, so long as its diameter

d is small compared to the shield’s characteristic lengths L and R [73].18 We can estimate the

magnitude of the dipole to be µhole ≈ Bext
4π

3µ0
d3. This will cause a magnetic field and magnetic

field gradient at the center of the cylinder, where the ions live. From dimensional analysis, the

magnitudes of the magnetic field and its gradient will approximately be
µ0
4π

3µhole
R3

≈ d3

R3
Bext and

µ0
4π

12µhole
R4

≈ 4
d3

R4
Bext respectively.

If we just had one shield with R = 25 cm and did not reduce the background magnetic field

from 500 mG, we would require any holes to have d < 2.0 cm and d < 3.6 in order to keep the

magnetic field and its gradient less than 0.25 mG and 0.25 mG/cm, respectively. As discussed in

18We can think of the shield as a bunch of magnetic dipoles that conspire together to reduce the magnetic field in

the shielded volume. A hole in the shield is equivalent to adding a magnetic dipoles pointing in the opposite direction

in the same position as the hole.
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Sections 5.4 and 5.5 we plan on using coils to reduce the background field to ≲ 100 mG and will

have multiple layers of shielding. With these precautions in place, holes in the shields will likely not

be a problem. Even so, it would be good to check this via simulations before building a finalized

design.19

Figure 5.14: It is possible that there is an opening with angle θ between the two halves of our
magnetic shields. This could reduce the parallel and perpendicular shielding factors for the two
types of transverse magnetic fields shown in the image.

The other problem, that our cylinders will be made of two halves clamped together, could

be more significant.20 Suppose that the two halves of the shields do not quite meet each other so

there is an opening with angle θ on both sides of the shield, as shown in Figure 5.14. This opening

breaks the symmetry between magnetic fields along the x and y axes, which so far we have lumped

together when calculating ST . We now need to find both the parallel and perpendicular ST values

for the transverse magnetic field that are parallel and perpendicular to the opening.

We can see the calculated parallel and perpendicular transverse shielding factors as a function

19If holes prove to be a problem, the penetrating magnetic fields can be minimized with cylindrical ferromagnetic

collars mounted over the holes [73]. See the cited article for more details.
20The Imperial College eEDM team ran into this issue when they first built their magnetic shields. They have

since fixed the problem, and are good people to talk to if we have further questions.
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of θ in Figure 5.15. Shields with an opening are still reasonably good at shielding transverse

magnetic fields that are perpendicular to the gap for small values of θ, but are horrendous at

shielding parallel transverse magnetic fields. We can mitigate this problem by 1) having the seam

of subsequent layers of magnetic shielding be rotated and 2) ensuring the shield halves overlap one

another instead of just meeting at the seems.

Figure 5.15: Transverse shielding factors calculated in Comsol for an infinitely long single shield
with R = 0.25 m, t = 2 mm, and µR = 80, 000. The opening angle, defined in Figure 5.14, is
varied between 0 and 20 degrees. Perpendicular magnetic fields are still shielded reasonably well
with small opening angles, but ST drops to about 3 for parallel magnetic fields at an opening angle
of just 0.25◦.

Say that the two halves of the shield overlap one another by 10 degrees but there is a small

gap between the pieces of mumetal. How will the shielding factor change as a function of distance

between the two shields? Figure 5.16 shows that, again, the parallel shielding factor falls rapidly

according to simulations. While parallel ST is over 300 for our expected parameters when the shield

halves touch, it drops to about 40 if the distance is just 0.5 mm.

The discussion so far about gaps between the shields has avoided magnetic field gradients.

As a general rule, when the parallel ST is far below its intended value ∼ 300 in Figures 5.15 and
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Figure 5.16: Transverse shielding factors calculated in Comsol for an infinitely long single shield
with R = 0.25 m, t = 2 mm, and µR = 80, 000. The shields are overlapped by θ = 10◦. The gap
between the shields is varied between 0 and 10 mm. Surprisingly, perpendicular magnetic fields are
shielded better with a small gap between the shields. However, parallel magnetic fields can find
their way through a small gap even if the shields are overlapped.

5.16, simulations show that the magnetic field gradients that leak into the center of the shield are

unacceptably large as well. Because the gradients are linked to whether or not ST is acceptably

large along both the parallel and perpendicular axes, this does not need to be treated as a separate

issue.

5.3.7 Degaussing

As mentioned in Subsection 5.3.5, improperly magnetized parts of the innermost shield can

cause magnetic fields and gradients at the position of the ions. Highly ferromagnetic materials

like mumetal are magnetically fragile, standard handling and assembly of the shields can result

in magnetized regions. Fortunately, there is a standard procedure known as degaussing that can

reduce the residual magnetic fields to well below our required sensitivity [73].

The idea of degaussing is to apply an AC magnetic field that is originally large enough to
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saturate the shield (∼ 1 G for mumetal) and then ramp the AC field to zero. If done properly, the

magnetization of the shield will follow the applied magnetic field to zero, leaving the shield in its

best state to have the theoretically predicted shielding factors.

The theory behind degaussing is explained well in the first two sections of [76],21 and Zach

Lasner gives a detailed explanation of how it was implemented in the ACME II experiment in

section 5.2 his thesis [77]. ACME II required five(!) layers of mumetal magnetic shielding for their

eEDM result. While we have not yet degaussed magnetic shields in the JILA EDM experiment,

fortunately we do not need to reinvent the wheel.22

5.4 Magnetic Shield Design – Plan E

Now that I have introduced the generation three experiment (Section 5.1), covered its mag-

netic systematics (Section 5.2) and described magnetic shielding (Section 5.3), I will now outline

our designs for the magnetic shields. The shielding requirements will depend on if we choose plan

A or E. Shielding is more complicated if we choose plan A which requires B2,0 ∼ 4 G/m to generate

the ∼ 100 Hz f0. This magnetic field would likely saturate the inner layer of magnetic shielding,

complicating matters. Magnetic shielding with plan A will be discussed in Section 5.5.

Plan E, where we generate f0 ∼ 100 Hz by applying a 1.6 mG magnetic field that rotates at

frot, poses no risk of saturating the shields. With this plan we only have to worry about the lab

magnetic field saturating the shields. Using the B vs H curve in Figure 5.6, we can use Comsol to

calculate the transverse and axial shielding factors for a single shield as a function of the external

magnetic field. The results of these simulations are shown in Figure 5.17, which show that the SA

starts to drop at ∼ 0.5 Gauss while ST remains constant until almost 5 Gauss. The important

conclusion to draw is that the calculated shielding factors are on the edge of being effected by

21The paper [76] explains that degaussing was invented out of necessity – magnetized submarines made easy targets

in WWII.
22Future JILA EDM graduate students should be able to find all of the information they need in the three citations

of this subsection.
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saturation effects from Earth’s magnetic field ∼ 0.5 G.

Figure 5.17: Comsol simulations of axial and transverse shielding factors vs applied external
magnetic fields. The shield has R = 0.25 m, t = 2 mm and the B vs H curve defined in Figure 5.6.
SA is calculated with L = 4 m, while ST is calculated assuming L≫ R.

In order to be confident that our outermost magnetic shield is not saturated we will build

pairs of lab-scale x, y and z coils to reduce the magnetic field around our apparatus. This will

be similar to the x, y and z coils that surrounded the generation two ion trap which brought the

magnetic field to ∼ 10 mG in all directions. In generation three these coils, and the volume of space

they enclose, will be much larger. This sort of lab-scale shimming has been done at Nick Hutzler’s

lab at Caltech, where 6 ft x 7 ft x 8 ft coils reduce the ∼ 420 mG background field to ≲ 10 mG

within ∼ 15 cm from the center of the coils [78].

Our shields will a few meters long to enclose the ∼ 2 meter long bucket brigade, so we want

to reduce the magnetic field over length scales that are an order of magnitude larger. This would

be more challenging, except that we only want the field to be ≲ 100 mG. This is enough to prevent

the mumetal from saturating and will relax our required shielding factors by a factor of ∼ 5. With

an ambient magnetic field is ∼ 100 mG, we need SA > 100 and ST > 400 to meet the requirements

spelled out in Table 5.3. To be conservative, and because magnetic shielding is notoriously finicky

to implement properly, we will design the shields to have SA > 1000 and ST > 4000. This will

also make imperfections from seams and holes in the shields discussed in Subsection 5.3.6 not as
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worrisome.

There are a number of constraints on the parameters of our shields. First, the curtained off

section of our lab that contains the apparatus and lasers is about 6.2 meters long. To leave room

for students and postdocs to walk around the magnetic shields we would like the length of our

outermost and longest shield to be no more than 5 meters. The radius of our outermost shield

would ideally be smaller than one meter so there is room for the optics, electronics and everything

else that needs to be around the apparatus. On the other hand, we cannot make our innermost

magnetic shield too small. The innermost shield must be longer than the two or three meter long

Bucket Brigade or else there will be large magnetic gradients where the ions are coherently evolving.

Additionally, the innermost shield’s radius must fit around the apparatus and must be large enough

that holes and imperfectly degaussed regions of the shield are not problematic.

To satisfy all of these constraints, I propose that we have three layers of mumetal shielding

with t = 2 mm.23 They will have R1 = 0.25 m, R2 = 0.25×
√
3 = 0.433 m, R3 = 0.75 m, L1 = 3.5

m, L2 = 4 m and L3 = 4.5 m. These magnetic shields meet our practical constraints and shielding

requirements. Figure 5.18 shows the axial magnetic field along ρ = 0 in an external magnetic field

Bz = 100 mG. The magnetic field over the central two meters is ∼ 0.1 mG meaning that SA ∼ 1000.

Additionally, the magnetic field gradient
∂Bz
∂z

≲ 0.01 mG/cm for the central 2 meters, comfortably

below the required 0.25 mG/cm limit.

The same simulation that produced Figure 5.18 tells us that the magnitude of the gradient

peaks at about 3 mG/cm at z = ±2 meters, at the openings of the intermediate shield. The

magnitude of the magnetic field peaks close to 200 mG at z = ±2.5 meters, just outside the

opening of the largest shield. While the axial magnetic field and its gradient are comfortably small

at z = ±1 meter, they are both too large at z = ±1.5 meters. This means that if we want to

23This is a standard thickness for mumetal shields. Thicker shields will be more expensive and heavier, but will

improve SA and ST which are proportional to t.
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(a) Full Plot

(b) Zoomed In

Figure 5.18: The axial magnetic field and its gradient in three layers of magnetic shielding designed
for plan E as described in the text. The external magnetic field is Bz = 100 mG, and we can
see that SA > 1000. The axial magnetic gradient is much smaller than the 0.25 mG/cm that we
require.
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lengthen the Bucket Brigade, we will need shields with lengths approaching the 6.2 meters of space

we currently have.

This configuration of three shields works for the axial field, but what about the transverse

field? According to Comsol, ST = 3.1 × 106, so a 100 mG external transverse magnetic field will

result in a negligible ∼ 33 nG magnetic field far from the openings of the shields. As discussed in

Subsection 5.3.2, transverse magnetic fields decay faster than axial magnetic fields as a function

of distance from the ends of the shield. If the shields work as advertised, transverse fields and

gradients will not be a problem.

What if we cannot completely remove the issue of transverse magnetic fields leaking through

the seams? We can combat this issue by rotating the seam locations in each shielding layer by

45 degrees, as shown in Figure 5.19. We assume that the layers of the shield are θ = 10 degrees

overlapped but have a 2 mm gap between layers. Note that Figure 5.16 tells us that the shielding

factor for magnetic fields parallel to the seam is only 12 in this case instead of ∼ 320 if there were

no seam. The net ST in this configuration depends on the orientation of the external transverse

magnetic field, but ST ≳ 5, 000 in all cases. This strategy of rotating the seams for each layer of

magnetic shielding should mitigate the issue.

We have not settled on the number or size of holes needed in the magnetic shields. When

that has been decided, these simulations should be revisited to determine if the holes will cause an

issue for the magnetic shielding. As long as the holes are not a problem, this geometry should give

shielding factors that are 10 times larger than we need and stomp out the magnetic field gradients

to a comfortable level.

5.5 Magnetic Shield Design – Plan A

Kia Boon Ng discusses two ways to implement plan A in his thesis [4]. The first option is to

apply a magnetic field gradient B2,0 ∼ 4 G/m that has the opposite sign for every bucket of ions, as
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Figure 5.19: A schematic of the seams in three layers of concentric magnetic shielding. Each
magnetic shield will be made of two half cylinders that are attached together. The gaps visible in
the shields indicate the location of the seams, but the layers will have ∼ 10 degree overlap at these
spots. This diagram shows the optimal location of their seams to keep ST ≳ 5000 for magnetic
fields along x and y, given the shielding parameters proposed in Section 5.4, 10 degrees of layer
overlap and 2 mm gaps between the layers. ST will be larger if the gaps are smaller than 2mm.

shown in Figure 5.20. The main difficulty with this approach is that, in order to have a coherence

time τ ≳ 20 seconds, we have the magnetic uniformity requirement |∂
2B⃗2,0
∂z2

| ≲ 12.5 G/m3.24 The

buckets of ions will likely be spaced ∼ 30 cm apart from one another, and the magnetic field gradient

needs to flip sign over that distance. Doing so while keeping
∂2B⃗2,0
∂z2

≲ 12.5 G/m3 at the bucket

locations with a few coils seems challenging, which is discussed in Section 8.2.2.2 of Kia Boon Ng’s

thesis [4]. The magnetic shielding for this version of plan A is the same as plan E as discussed in

the previous section.

24This requirement assumes that ions maintain their secular amplitude for their entire coherence time. If this were

the case and
∂2B⃗2,0

∂z2
̸= 0 G/m3, molecules with large secular amplitude would have a larger frequency than molecules

with a small secular amplitude. If the gradient is larger than 12.5 G/m3, the two sets of molecules will dephase after

20 seconds. This assumption will not hold if ion-ion collisions change the secular amplitude of the ions involved.

These collisions do take place but are difficult to characterize, so the 12.5 G/m3 requirement is conservative.
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Figure 5.20: A schematic depicting how we can implement plan A so B̃ changes sign between every
bucket. Clouds of ions are shown in blue, which are spaced by a distance Λ. The vertical dots
lines are visual aids which indicate the boundary between buckets. There are four coils with radius
R for every bucket with currents that drive the magnetic field gradients B2,0. The magnetic field
is indicated by the dashed lines that end in arrows. As the ions move left to right, the currents
through each coil change to keep the magnetic field gradient a constant magnitude at the bucket
locations. This image is from Kia Boon Ng’s thesis [4].

The simpler option to meet the magnetic field uniformity requirement is to apply B2,0 ∼ 4

G/m over the entire Bucket Brigade. The magnetic field gradient is defined as B⃗2,0 = B2,0
(
− x⃗−

y⃗ + 2z⃗
)
, so this corresponds to a ∼ 8 G/m magnetic field gradient along the 2 meter long z-axis.

While it will be easier to make the magnetic gradient uniform, the challenge is that this field will

saturate the innermost magnetic shield.

We can generate B2,0 ∼ 4 G/m with
∂2B⃗2,0
∂z2

∼ 8.3 G/m3 with 32 coil pairs of radius 5.25

inches, with locations and currents shown in Tables 5.4 and 5.5. These coil positions and currents

were found numerically to minimize
∂2B⃗2,0
∂z2

and keep B2,0 ∼ 4 G/m over the two meter long bucket

brigade, with the constraint that the coils must be evenly spaced.25 The magnetic field created by

these coils along ρ = 0, as well as its first and third order gradients, are plotted in Figure 5.21. We

could generate a magnetic field that meets these requirements with fewer coil pairs if we increase

the coils’ radii. However, we want the coils to be as small as possible to minimize the magnetic

25Kia Boon Ng mentions in Section 8.2.2.3 of his thesis that the homogeneity of B2,0 can be controlled with “some

numerical modeling” [4]. This result is one possible solution.
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field at the innermost shield. The vacuum chamber containing the Bucket Brigade will have a 5

inch radius, so a radius of 5.25 inches is as small as the coils can be unless we put them in the

vacuum chamber which is already crowded with electronics [3].

Table 5.4: Coil Positions and Currents to generate uniform B2,0 ∼ 4 G/m, Part 1

Coil Pair Number Position (cm) Current (Amp Turns)

1 ±2.698 ±0.937

2 ±8.095 ±2.810

3 ±13.492 ±4.683

4 ±18.889 ±6.557

5 ±24.286 ±8.431

6 ±29.623 ±10.306

7 ±35.079 ±12.181

8 ±40.476 ±14.057

9 ±45.873 ±15.933

10 ±51.270 ±17.813

11 ±56.667 ±19.690

12 ±62.064 ±21.575

13 ±67.460 ±23.453

14 ±72.857 ±25.347

15 ±78.254 ±27.223

16 ±83.651 ±29.136

The magnetic field generated by these coils along ρ = 0 is shown in Figure 5.22 with and

without the three layers of magnetic shielding discussed in Section 5.4. We can see that the shields
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Table 5.5: Coil Positions and Currents to generate uniform B2,0 ∼ 4 G/m, Part 2

Coil Pair Number Position (cm) Current (Amp Turns)

17 ±89.048 ±30.996

18 ±94.444 ±32.974

19 ±99.841 ±34.713

20 ±105.238 ±36.962

21 ±110.635 ±38.879

22 ±116.032 ±40.603

23 ±121.429 ±41.864

24 ±126.825 ±42.812

25 ±132.222 ±46.335

26 ±137.619 ±46.567

27 ±143.016 ±49.680

28 ±148.413 ±50.585

29 ±153.810 ±52.760

30 ±159.206 ±53.621

31 ±164.603 ±156.333

32 ±170.000 ±91.189

slightly increase the slope from 8.04 G/m to 8.11 G/m, a phenomenon explained in [75]. Since the

precise values of B2,0 and f0 are not particularly important for our experiment, this 0.9% change

will not be a problem.

Figure 5.23 shows the magnetic field without magnetic shielding at ρ = 0.25 meters, the
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radius of the innermost magnetic shield discussed in Section 5.4. This plot clearly shows that

the innermost shield, which is 3.5 meters long and stretches between z = ±1.75 meters in the

figure, will saturated towards its ends due to the magnetic field generated by the coils. This should

make the shield less effective at reducing the background magnetic field and potentially allow large

systematics.

The safest approach is to assume the innermost shield does not shield the external field at

all. Its role would be to protect the remaining shields from the magnetic field generated by the

coils. As we see in Table 5.5, the outermost coils have the largest number of amp turns and are

∼ ±1.65 meters from the center of the Bucket Brigade. If we keep the radius of the inner shield

the same at R1 = 0.25 meters and increase its length slightly to L1 = 4 meters to better enclose

the coils, the magnetic field just outside this shield at ρ = 0.3 meters will peak at about 60 mG.

This means that we could have similar total magnetic shielding to plan E with four layers. These

layers would all have t = 2 mm, with R1 = 0.25 meters, R2 = 0.3 meters, R3 = 0.3 ×
√
3 = 0.520

meters, R4 = 0.9 meters, L1 = 4 meters, L2 = 4 meters, L3 = 4.5 meters and L4 = 5 meters.

To see if another layer of shielding is necessary, we can look at the magnetic field along ρ = 0

with the coils and plan E’s shielding, with and without an external axial magnetic field ∼ 100

mG.26 These two magnetic field profiles are shown in Figure 5.24a. The difference in these two

simulations, displayed in Figure 5.24b, shows the axial shielding while the inner shield is partly

saturated. We can compare this magnetic field profile with Figure 5.18, which shows the axial

shielding without the magnetic coils. Remarkably, Comsol says that these magnetic field profiles

agree to within 10−8 mG at all points along ρ = 0, indicating that the partial saturation of the

magnetic shields due to the coils will not make the shields less effective.

The takeaway is that the magnetic shields described in Section 5.4 should work for both

26SA is more important to check because SA < ST generally and axial magnetic fields leak farther into the shields

as we saw in Subsection 5.3.3. Conveniently, the coils, finite length shields and external axial fields can all be simulated

in 2D axially-symmetric models that are much faster to simulate than 3D models.
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plans A and E. According to Comsol, we should not need an additional layer of shielding to prevent

B⃗2,0 from harming the magnetic shielding of the inner layer. It is important to note that these

simulations do not include the effect of us reversing the sign of B⃗2,0 many times over when we flip

B̃. To be safe with the magnetic shielding in plan A, an additional layer of shielding at ρ = 0.3

meters would be enough to keep the shielding factors large enough if the inner shield is not as

effective as Comsol suggests.

To summarize, we saw that magnetic systematic effects and magnetic shielding would both

be more manageable if we choose plan E. Applying a uniform magnetic field of ∼ 1.6 mG that

rotates at frot is not something we have done at JILA before, but we expect that we can overcome

the new engineering challenge. If that fails we can still apply f0 ∼ 100 Hz with plan A which we

have used in the previous two generations of the JILA eEDM experiment.
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(a) Bz

(b)
∂Bz
∂z

(c)
∂3Bz
∂z3

Figure 5.21: The magnetic field and two of its gradients along ρ = 0 created by the coils with a
radius of 5.25 inches and positions and currents given by Tables 5.4 and 5.5. The red vertical lines
indicate the Bucket Brigade region between z = ±1. There are no magnetic shields around the coils
in these calculations. The average first and third order gradients between z = ±1 are 8.04 G/m
and 8.3 G/m3. This will create f0 ∼ 100 Hz while keeping the coherence time above 20 seconds
even in the absence of ion-ion collisions. The peak magnetic field along ρ = 0 is ∼ ±15 Gauss and
occurs at z ∼ ±1.7 meters. Ideally the magnetic field would drop to zero outside of z = ±1, but it
needs to continue increasing to keep the third order gradient in the Bucket Brigade region small.
Further numerical optimization may be be able to decrease this peak field closer to ∼ ±10 Gauss.
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(a)

(b)

Figure 5.22: (a) Comsol simulations of Bz vs z along ρ = 0 from magnetic field created by the coils
with parameters given in Tables 5.4 and 5.5. Blue and red dots are values of the field with and
without magnetic shields. (b) The difference between the two magnetic fields in (a). The difference
between the two fields is caused by the magnetic shields changing the field made by the coils.
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Figure 5.23: The magnetic field generated by the coils in Tables 5.4 and 5.5 along ρ = 0.25 meters
without magnetic shields. There total magnetic field is shown in blue, its radial component in green
and its axial component in red. The innermost mumetal shield is centered at zero and stretches
between z = ±1.75 meters, and is saturated at the peak ∼ 1.5 Gauss magnetic field (see Figure
5.6). This will decrease the shielding efficacy of the innermost shield.
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(a)

(b)

Figure 5.24: (a) The magnetic field Bz created by the coils in Tables 5.4 and 5.5 with the magnetic
shielding for plan E described in Section 5.4. The red field also has a 100 mG external magnetic
field along the z-axis. (b) The difference between the two magnetic fields in (a) which shows how
well the external magnetic field is shielded with the innermost shield partly saturated.
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Conclusion

“I open at the close.”

- J. K. Rowling, Harry Potter and the Deathly Hallows

This chapter is mostly an excuse to get in another Harry Potter quote, which I have already

accomplished. I would like to wish everyone working on generation three of the JILA EDM exper-

iment the best of luck. I think we don’t get enough credit for how complicated this experiment is,

especially given how few people work on it. Most AMO experiments are simpler, get results faster

and publish more frequently. I think the experiment is incredibly cool and worth working on, but

there really are a lot of steps between producing ions and making a particle physics measurement.

I’d like to conclude by presenting a plot that I’ve made, shown in Figure 6.1, which closely

resembles a plot made by Dave DeMille. He was my advisor for my first two years in graduate school,

so I think I can get away with it. It shows the relatively recent history of eEDM measurements

and how their results compare to predictions made by beyond the Standard Model theories.

I have been incredibly lucky to work with/for many of the professors responsible for these

experiments. The Amherst measurement was led by Larry Hunter, my undergraduate advisor, at

a small liberal arts school with little funding and no graduate students to do all the work. Despite

these constraints he reduced the limit on the eEDM by an astonishing factor of 21 [79]. Two of
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Figure 6.1: The black vertical lines are 90% confidence upper limits on the eEDM set by experiments
dating back to 1989. That is to say, each experiment is 90% sure that the true value of the eEDM
lies to the left of the black line. The experiments are labeled by the institution/collaboration
which made the measurement and the year the result was published. The height of the line is
proportional to the publication year, in some funny units. In the background are boxes which
very roughly indicate the proposed value of the eEDM by different theories. The Standard Model
prediction is in a blue box,1the beyond the Standard Model theories are in green boxes. The rough
values of the eEDM predictions made by these theories were taken from Dave DeMille. The JILA
generation two result is in blue and in a larger font because I was involved in that measurement
and I made this plot.

the professors behind the Imperial College result, Ben Sauer and Mike Tarbutt, were kind enough

to invite me to work in their lab in London for the summer of 2023 [47]. Dave DeMille is one of

the three professors in charge of the ACME collaboration [28, 68]. I never met Eugene Commins,

the professor who led of the experiment at Berkeley, but he advised both Larry Hunter and Dave

DeMille who I learned much from [80, 81, 82]. And of course Eric Cornell and Jun Ye are my

advisors at JILA, who have done their best to make me a qualified AMO physicist [27,38].

I find it incredibly meaningful my work in graduate school resulted in a new measurement

on this plot. Thank you to everyone who made my journey through graduate school possible.

1In Subsection 1.3.2 I state that the Standard Model prediction of the eEDM is 5.8× 10−40 e cm, a value much

smaller than is indicated in Figure 6.1. This larger value indicates the sensitivity required to measure the SM predicted

value of the T-violating CS term discussed briefly in Section 3.2, which will be measurable before the eEDM [83].
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Appendix A

Bz and BB
z Measurements

In Section 3.1 we saw that the off diagonal terms in our effective Hamiltonian gave us the

following systematic errors:

δfDB =
∆0δ∆DB +∆Dδ∆B + δ∆DRδ∆BR + δ∆Rδ∆DBR

|f00 |
+ fBR∆0δ∆DR +∆Dδ∆R

|f00 |2
(A.1)

Later in that section we estimated the size of the δ∆ terms in this expression, which depend on

Bz and BBz . We were able to measure the magnetic field along the x and y axes by using the

Zeeman shift described in Subsection 3.3.3, but we have no analogous effect that can easily probe

the magnetic field along the z axis.

Instead we can find upper limits on Bz and BBz by carefully investigating some of our other

frequency channels. We can write out the full expression for fDR analogously to how we wrote

Equation 3.2 for fDB:

fDR = δfDR
0 +

∆0δ∆DR +∆Dδ∆R

|f00 |
− δfDR

0

(∆0)
2
+ (∆D)

2

2|f00 |2
− δfR0

∆0∆D

|f00 |2

+
1

16

∑
B̃,R̃,Ĩ,D̃=±1

[
D̃R̃

δD2

2|f00 |
− D̃B̃R̃δF0

2R̃(∆0 + D̃∆D)δD + δD2

2|f00 |2
+ ...

]
(A.2)
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Keeping only the largest terms as discussed in Section 3.1 we find that:

fDR = δfDR
0 +

∆0δ∆DR +∆Dδ∆R + δ∆Bδ∆DBR + δ∆DBδ∆BR

|f00 |

+ fBR∆0δ∆DB +∆Dδ∆B + δ∆BRδ∆DR + δ∆DBRδ∆R

|f00 |2
(A.3)

We now assume that the only frequency shifts included in δfDR
0 are Zeeman effects with

⟨E⃗ · B⃗⟩ /|E|
⟨Ê · B⃗⟩

=

1 so they show up ∼ 460 times larger in δfR0 .1 In that case we can write:

fDR − δgF
gF

fR =
∆0δ∆DR +∆Dδ∆R + δ∆Bδ∆DBR + δ∆DBδ∆BR

|f00 |

+ fBR∆0δ∆DB +∆Dδ∆B + δ∆BRδ∆DR + δ∆DBRδ∆R

|f00 |2
(A.4)

Note that we are ignoring the ∆ contributions to fR. While these shifts have similar magnitude to

the ones on the right hand side of the above equation, they are suppressed by a factor of
δgF
gF

and

can be ignored.

Plugging in the values of δ∆R, δ∆B, δ∆BR, δ∆DR, δ∆DB and δ∆DBR found in Section 3.1

into Equation A.4 we find that:

fDR − δgF
gF

fR =
6BzgFµB∆0∆D

h|f00 |frot
+

36Bz(BBz )2g3Fµ3B∆0∆D

h3|f00 |f3rot
+ fBR 30BzBBz g2Fµ2B∆0∆D

h2|f00 |2f2rot
(A.5)

1While there are Zeeman effects with
⟨E⃗ · B⃗⟩ /|E|
⟨Ê · B⃗⟩

= 1 and Berry’s phase shifts that are entirely D̃-even, the

largest shift by far in our experiment is a Zeeman shift with
⟨E⃗ · B⃗⟩ /|E|
⟨Ê · B⃗⟩

= 1. This shift ideally does not show up in

fR but it can due to the digitization of how we apply Vrot, see Appendix B 3 of our Systematics paper. We expect

this shift to overwhelm other Zeeman shifts with
⟨E⃗ · B⃗⟩ /|E|
⟨Ê · B⃗⟩

̸= 1 and Berry’s phase shifts which naturally show up

in our B̃-odd frequency channels.
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The second and third terms in this equation are much smaller than the first for reasonable values

of Bz and BBz ≲ 1 Gauss. We can therefore drop the latter two terms and use our measured

values of fDR = 0.07(2) mHz and fR = −4.23(9) mHz to find that Bz = 80 mG in our generation

two experiment. We expect that this is an overestimate of the magnetic field as we measure

Bx ∼ By ∼ 10 mG before using our ions to further reduce this field, but we use Bz = 80 mG to

calculate the systematic shifts in Section 3.1.

We can go through a similar procedure for fDBR and fBR, in which case we find:

fDBR − δgF
gF

fBR =
6BBz gFµB∆0∆D

h|f00 |frot
+

36B2zBBz g3Fµ3B∆0∆D

h3|f00 |f3rot
+ fBR∆0∆D

|f00 |2
(A.6)

Unsurprisingly, the B̃-odd version of Equation A.5 allows us to set a limit on the magnetic field with

the opposite B̃ dependence, BBz . In this equation the term proportional to fBR is not negligible.

This is because the product of fBR, ∆0 and ∆D, the largest frequency channel other than f0 and

largest ∆s, happens to have the correct switch state dependence to show up in fDBR. While we

cannot neglect this term we do know its value, so it can be included when finding BBz . In this case

we also allow for a 5 mHz contribution to fBR from Berry’s phase2 that is not otherwise accounted

for which inflates the maximum possible value of BBz . Even with this all taken into account we find

that BBz < 88 mG.

2As discussed in Section 3.5, Berry’s phase shifts can naturally show up in fB or fBR. While analyzing systematics

we found that we expect that a 5 mHz shift is split between these two frequency channels which we assumed showed

up entirely in fB as that would cause the largest systematic. Here we assume the effect is entirely in fBR.



Appendix B

The Harmonics of Erot

“Is it over now?”

- Taylor Swift, Is It Over Now? (Taylor’s Version)

In order to apply Erot we have eight op-amps each amplify a 375 kHz sine wave. The output

voltage Vrot of each op-amp is sent to the top or bottom of one of our eight radial electrodes as

described in Subsection 3.4.2. These voltages result in our rotating electric field E⃗rot that we need

to perform our EDM measurement. Our op-amps are imperfect and in addition to outputting Vrot

the op-amps also produce harmonics that oscillate at n × 375 kHz where n is a positive integer.

These harmonic voltages produce electric fields that contribute to Zeeman and Berry’s phase shifts

which cause systematic shifts as explained in Chapter 3.

In order to quantify these systematic shifts we measured the magnitude of the harmonic

voltages on each of our radial electrodes. The challenge of this measurement is that there is a

∼ 350 Volt fundamental signal at 375 kHz on each of the radial electrodes that is, by design, much

larger than the harmonics we want to measure. If our measurement device is nonlinear and causes

any harmonic distortion itself it will be difficult to tell if the measured harmonics are really on the

fins or artifacts of our measurement.

To that end I built a very linear custom filter designed to notch the fundamental voltage at
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375 kHz, as well as the smaller RF voltage ∼ 23.5 V at 50 kHz. This filter was also designed to

have a relative maximum of transmission at 750 kHz, the frequency of the second harmonic. This is

because the second harmonic was a particularly worrying source of systematics – it interacts with

magnetic fields in the xy-plane to create a Zeeman shift or ellipticity in Erot to induce a Berry’s

phase shift, both of which are relatively large systematics in our experiment.

The circuit diagram of the home built filter, attached to a radial electrode and our fancy

oscilloscope, can be seen in Figure B.1. The input voltage comes from one of our eight op-amps

that creates Vrot. This voltage is connected directly to the radial electrode, denoted in this circuit

diagram by the fin capacitor. The input voltage also goes to a system of four resistors which, if

unattached from the rest of the circuit, act like a voltage divider. The voltage division is either a

factor of 7 or 14 depending on if the switch is attached high or low in Figure B.1. We made eight

small identical boxes that contain the voltage divider and switch, one for each of the fins. They

were electrically connected to their op-amp and fin during the data collection.

Figure B.1: Circuit diagram of the electronics used to measure harmonics. The components are
described in the text.

We made one circuit containing the two notch filters in Figure B.1. These inductors are made

using hand wound coils with an air core to prevent harmonic distortion, each with an inductance

of about 200 µH. The inductors were connected to capacitors which were chosen such that
1√
LC

=

ωrot, ωRF. These components together have very low impedance at their resonant frequencies,

causing Vrot and Vrf to be grounded and not reach the output port of our circuit. In order to make

sure the resonance of the filters was very close to ωrot and ωRF, the main capacitors were connected
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to variable capacitors that could vary from ∼ 0 to 50 pF. These two notch filters were held in

a separate grounded box that had an input (connected to a voltage divider box) and an output

(connected to the scope).

The two boxes and scope were connected by standard BNC cables which had a total capac-

itance of about 337 pF. The cabling connected the notch filter box to our oscilloscope which had

an input impedance of 100 MΩ. The complete circuit had one additional resonance that allowed

a relatively large amount of the signal to pass through. This was engineered to appear near 2ωrot,

the frequency of the second harmonic. We added a third variable capacitor in parallel with the

cabling (which we put in the same box as the notch filters) that tuned this final resonance. The

measured throughput of the entire circuit is shown in Figure B.2.

Figure B.2 only shows the throughput of the first and second harmonics of Erot. We measured

the throughput all the way out to the 17th harmonic for the “High V” or “switch up” setting of

our circuit, shown in Figure B.3.

This allowed us to measure the voltages on each of our radial electrodes and two endcaps

(electrodes at the top and bottom of our ion trap we used to apply the DC trapping potential) up to

the 17th harmonic, as shown in Table B.1. Because we were particularly worried about the second

harmonic, we used our initial measurements of its amplitude to apply a “feedforward” signal, also

at 2ωrot to minimize the second harmonic as much as possible. The data shown in Table B.1 is

with the feedforward signal applied. Note that we saw a signal that stood out from the noise floor

for all 17 harmonics on the radial electrodes. This was only the case up to the third harmonic on

the axial endcaps; for the higher harmonics on the endcaps we conservatively report the noise floor

of our reading modulo the frequency dependent conversion factor in Figure B.3 as the magnitude.

Table B.1 also includes the magnitude of the electric fields generated by the harmonic voltages

we measured. There are two pages of fairly dry math in Section VI B 5 of the Systematics paper

that explain how we perform this conversion.
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Figure B.2: Throughput data from home built circuit in Figure B.1. It was collected by the JILA
electronics shop’s signal analyzer which also had a 100 MΩ input impedance. The blue “High V”
data was taken with the switch in Figure B.1 “up”, and the red data was taken with the switch
“down”. The thin blue vertical lines indicate the three desired resonance frequencies ωRF, ωrot and
2ωrot. The power and frequencies are given at the local maxima/minima recorded by the signal
analyzer, which reports the throughput power at discrete frequencies.

All I will say here is to comment on why the electric fields in the xy plane for the 7th, 9th,

15th and 17th harmonics are particularly large given the radial voltages. This is because when n

differs from a multiple of 8 by ±1 is a special case. Suppose that the nth harmonic on all eight

electrodes has the same phase difference ϕn from Vrot. In this case the voltages for when n differs

from a multiple of 8 by ±1 constructively interfere to create the electric field Ex,ynh. For these

harmonics we assume this worst case which results in comparatively large electric field magnitudes.

This effect explains why we measured all the way out to the 17th harmonic.
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Figure B.3: This is the recorded power throughput of our circuit immediately before measuring the
voltages on our ten electrodes, as reported in Table B.1.
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Table B.1: Constraints on electric fields from higher-harmonic voltages on radial electrodes and
endcaps. For reference, the amplitude of the fundamental on the radial electrodes is ∼ 350V. This
table is an extension of Table V in the Systematics paper.

Amplitudes (mV) Fields (mVm−1)

n Radial Axial |δEx,ynh| |δEznh|

2 11 0.5 250 1.0
3 310 0.3 1296 2.1
4 190 0.1 649 1.8
5 410 0.2 1715 2.7
6 100 0.4 341 0.8
7 230 0.5 4000 1.7
8 45 0.7 154 3.1
9 170 1.0 2957 1.8
10 37 1.4 126 2.0
11 140 1.8 586 2.7
12 42 2.1 143 3.1
13 120 2.2 501 1.8
14 60 2.2 206 1.7
15 45 2.1 777 1.5
16 16 1.9 53 1.4
17 34 1.9 596 1.4
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