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Thesis directed by Prof. Eric A. Cornell

Unresolved questions in the universe, such as the matter-antimatter asymmetry, challenge

the limitations of the Standard Model. As searches for beyond-the-Standard-Model physics face

escalating energy scale requirements in particle accelerator experiments, low energy investigations

targeting symmetry-breaking properties, like the electron’s electric dipole moment (eEDM), have

become a key tool in probing these theories. Recently, our group at JILA set a world-record limit

on the eEDM, providing a new constraint on the masses of supersymmetric particles.

In order to achieve any more sensitivity in such a measurement, the next iteration of the

experiment must grow dramatically in complexity. The new generation of JILA eEDM experiment

is different in three main ways. First, a new molecular ion species, ThF+, gives inherently longer

coherence times because the experiment can be performed in the ground electronic, vibrational,

and rotational state of the molecule. In order to gain access to this long coherence time, we

must introduce cryogenics to the ion trap so as to reduce ambient black-body radiation that can

incoherently excite the relevant quantum states. Finally, in order to access long coherence times

without sacrificing count rate, the experiment is designed to eventually be multiplexed.

The resulting experiment will take of order one decade from conception to result. This

thesis will cover the design and construction of the third generation eEDM experiment, as well as

demonstrate preliminary measurements of the eEDM-sensitive states of ThF+.
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Chapter 1

Introduction

1.1 Symmetry and the electron electric dipole moment

The prevalence of matter over antimatter is one of the most important outstanding problems

in physics. Before the big bang, the universe had no matter, meaning the universe started with a

symmetric amount of matter and antimatter. The asymmetry must have arisen due to the matter-

forming interactions in the first few moments of the universe The current most accepted description

for the formation of this asymmetry is called Baryogenesis, and it requires three elements1 [1]:

• interactions that violate baryon number symmetry, meaning they can create more matter

than antimatter or vice-versa

• interactions that violate charge-parity (CP) symmetry, meaning that they don’t work the

same way if you swap all charge in the universe with negative charge and flip all spatial

coordinates (r⃗ → −r⃗)

• the universe to be out of thermal equilibrium, meaning that energy can be unequally

distributed in the universe.

To see why we both baryon number symmetry violating and CP symmetry violating interactions

to end up with more matter than antimatter, first consider why we need both baryon number

symmetry violation and charge (C) violation. Charge symmetry implies that matter and antimatter

should behave the same, meaning that for every baryon number symmetry violating interaction that
1 These requirements are known in the field of cosmology as the “Sakharov conditions.”
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produces more matter than antimatter there is an equivalent interaction that produces equally more

antimatter than matter, so the total amount of each would still be symmetric if C symmetry is

preserved. By extension, CP symmetry would also not allow for Baryogenesis, since it would imply

equal amounts of matter of one parity and antimatter of the other. Since it would do so for both

parities, this would still overall lead to equal amounts of matter and antimatter.

The existence of the amount of CP violation that would allow for Baryogenesis is inconsistent

with our understanding of the universe. The current best understanding of the structure of matter,

known as the Standard Model of particle physics, does not contain enough CP symmetry violation

to give rise to Baryogenesis [2], meaning that the Standard Model cannot adequately explain our

existence. Several extensions to the Standard Model have been proposed to fix this [3, 4]. However,

these models require experimental verification. This can be done by measuring the CP-violating

properties of the universe and comparing them to the predicted values from these theories. One

such property is an electric dipole moment (EDM) of any fundamental particle with spin.

To understand why an EDM of a fundamental particle with spin is fundamentally CP violat-

ing, consider the relative orientations of the particle’s electric dipole moment and magnetic dipole

moment (arising from the particle’s spin). A diagram of the orientation of these properties under

charge and parity inversion are shown in Figure 1.1.

μ

μ μ

Figure 1.1: Transformations of a particle’s magnetic dipole moment µ⃗ and electric dipole moment
d⃗ under a charge (C) and parity (P) symmetry transformation. The rotation arrow indicates the
direction of classical rotation of the negative charge that would give rise to the particle’s magnetic
moment.

In order to visualize how spin changes under various inversions, it is helpful to think of the
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particle’s spin as arising from a charge distribution rotating classically. Under charge inversion, the

electric dipole moment flips, and the sign of the classically rotating charge distribution flips meaning

the magnetic moment flips as well. Next, under parity inversion, the electric dipole moment flips,

but the spin does not (rotation direction does not flip under r⃗ → −r⃗). This means that under CP

inversion, the relative orientation of the electric dipole moment and the magnetic dipole moment

of the particle is reversed. Therefore a particle having both an electric dipole moment and a spin

is inherently CP violating.

Efforts to constrain particle physics include measuring the electric dipole moment of the

muon, neutron, and proton. So far the measurement of these quantities is consistent with zero, so

the results are expressed as a bound on the magnitude of the dipole moments. A history of these

measurements is shown in Figure 1.2.

Any dipole moment measured above the Standard Model prediction would be a clear signature

of beyond-the-Standard-Model physics. Electron EDM measurements are particularly exciting

because they have been able to reach much greater sensitivity than neutron EDM measurements,

and the gap between the current experimental bounds and the Standard Model background is

shrinking.
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Figure 1.2: Historical and theoretical context for EDM searches.
Top: Experimental upper bounds [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] on the neutron’s
electric dipole moment (nEDM) compared to the Standard Model prediction [20]. Experimental
upper bounds represent the 90 percent confidence interval for the magnitude of the EDM.
Bottom: Experimental upper bounds [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36]
on the electron’s electric dipole moment (eEDM) compared to the Standard Model prediction [37].
Highlighted in red is our 2023 JILA result [38]. Vertical gray dashed lines indicate the paradigm
shifts of the best bounds being placed by eEDM searches in heavy atoms in 1967 and in polar
molecules in 2011.
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1.2 Thesis layout

This thesis was written at a similar time to that of Kia Boon Ng [39], another graduate student

working on the third generation of JILA eEDM measurements. This thesis delves more into the

technological efforts towards the eEDM measurement while Ng’s focuses more on the physics of the

experiment. The two function well as companion references to a complete understanding of the

experiment.

The thesis is organized as follows: first Chapter 2 will describe in overview the details of

measuring the eEDM in ThF+, providing both an abstract explanation of the measurement concept

and a complete view of the actual experiment. Subsequent chapters will describe the technical

details of the instrumentation developed to do this, highlighting the technical requirements, the

solution, and any data taken. Specifically, Chapter 3 will cover preparation of the ions from their

atomic sources into the relevant quantum states, Chapter 4 will cover the electric fields needed to

trap and polarize the ions, and Chapter 5 the magnetic fields needed to generate the base frequency

f0 and possible sources of decoherence. Next, Chapter 6 will cover the way that the population

in the states of interest is read out, and finally Chapter 7 will present preliminary data and make

concluding remarks.



Chapter 2

Experiment Overview

2.1 Measurement concept

An electric dipole moment has an energy associated with it when placed in an external electric

field. An intuitive explanation of this is shown in Figure 2.1.

a)

+

-

b)

+

- +

-+ -

} } }

Figure 2.1: Intuitive picture of the DC Stark effect.
a) An ideal dipole consisting of two opposite charges of charge magnitude q separated by an in-
finitesimal distance r, resulting in a dipole moment |d⃗| = qr
b) The ideal dipole in an external electric field. The electric potential difference between two points
a distance r away is given by ∆V = dV

dr r = −Er. We can then calculate the energy of each con-
figuration as the sum of the Coulomb potentials of each charge U =

∑
i V (r⃗i)qi. The energies are

shown for several orientations, and it follows that the energy is exactly the projection of the dipole
moment onto the external electric field U = −d⃗ · E⃗.



7

This energy, known as the DC Stark shift, allows us to measure the dipole moment of the

electron de. The difficulty comes from the extremely small size of d⃗e. Even if one were to place

10 kV across electrodes 1 mm apart, the resulting field would produce a Stark shift of less than 1

nHz1 (using the current bound on the magnitude of
→
de [38]).

The solution is to measure the DC Stark shift in the valence electrons of a heavy polar

molecule, as in Figure 2.2

Th F

e-

Figure 2.2: A valence electron in a ThF+ molecule. The internal electric field arising from the polar
nature of the molecule as well as a classical trajectory of the the eEDM-sensitive valence electron
is illustrated. While this classical trajectory is not particularly physical, it demonstrates the key
feature of an eccentric orbit, meaning that the electron experiences vastly different “velocities” at
different spatial locations in the molecule.

The electric fields inside the polar molecule are significantly larger than any electric field that

one can create in a lab. However, the time-averaged electric field experienced by the electron ⟨E⟩t

must be zero for the electron to be bound. Even so, the time averaged Stark shift ⟨−d⃗e · E⃗⟩t can

be nonzero due to the eccentric orbit of the electron.2 As the electron zips by the heavier atom

in the polar molecule, the length contraction of the electron in the laboratory frame means that

d⃗e shrinks in magnitude. This gives rise to a nonzero time average Stark shift in the laboratory

frame, with the complexity of this effect absorbed into an “effective” electric field E⃗eff

⟨d⃗e · E⃗⟩t ≡ d⃗e · E⃗eff. (2.1)

Table 2.1 lists the relativistic effective electric field experienced by a valence electron each polar
1 Here the energy is given as a frequency via implicit division by Planck’s constant h. Frequencies and energies

will be used interchangeably throughout this thesis.
2 Of the two valence electrons in ThF+, only the σ electron exhibits this property.
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molecule in the world’s leading eEDM measurements3 .

Molecule Eeff (GV/cm) Experiment
ThO 78±2 [40, 41] ACME II [42]
HfF+ 21±2 [43, 44, 45] JILA Gen. I [46] and II [38]
ThF+ 36±1 [47, 48] JILA Gen. III (this work)

Table 2.1: Effective electric fields of the polar molecules used in leading eEDM experiments. The
error bars presented are the standard deviation of the theory predictions over the square root of
the number of predictions.

These effective electric fields in the tens of GV/cm are much greater than one could create

with electrodes, and bring the frequency of the Stark shift at the current eEDM bounds up to the

µHz scale, which can be measured in a Ramsey-type experiment.

2.1.1 Molecular structure and the eEDM

The eEDM-sensitive Stark shift described in the previous section manifests as a shift in the

quantized energy levels of the polar molecule which can be measured. First, we must understand

the structure of the molecule to see where the shift shows up.

The quantum state of a molecule is described by quantization of all possible degrees of

freedom, including the configuration of electrons within the molecule, inter-atomic vibration of the

molecule, and rotation of the molecule.

The electron configuration is described by the electronic state, denoted by the molecular term

symbol

2S+1ΛΩ (2.2)

where S is the total spin of the unpaired electrons, Λ is the projection of the orbital angular

momentum onto the internuclear axis (expressed as Greek letters where Σ = 0, Π = 1, ∆ = 2, ...),

and Ω is the projection of the total angular momentum onto the internuclear axis. The ground

electronic state of ThF+ is 3∆1, meaning the two valence electrons give a spin of S = 1, with orbital
3 While ThO boasts a higher Eeff than the JILA molecular ion species, the increased interrogation time offered

by using trapped ions leads to an overall increased sensitivity.
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angular momentum along the internculear axis of Λ = 2, and with these two adding in opposite

directions to give a total angular momentum of Ω = 1 along the internuclear axis.

In addition, the vibrational mode of the two constituent atoms is quantized into the vibra-

tional quantum number v. The bottom of the potential as a function of inter-atomic distance looks

roughly harmonic, so the vibrational levels have harmonic-oscillator-like behavior, starting at v = 0

and having roughly equal energy spacing. This is illustrated in Figure 2.3

Inter-atomic distance

v=0
12

3

Energy

Figure 2.3: Illustration of the quantization of the vibrations of a molecule.

Finally, the rigid-body rotation of the molecule is quantized. Since this is an angular mo-

mentum, it can add with the angular momentum of the electronic wavefunction. The rotational

quantum number J is actually the projection of the total angular momentum (including Ω and

molecular rotation) onto the internuclear axis. For this reason, J must be at least Ω, so the ground

rotational state of 3∆1, v = 0 is J = 1.

Finer structure arises from the nuclear spins of the constituent atoms. The hyperfine states

are depicted in Figure 2.4. 232Th has a nuclear spin of 0, while 19F has a nuclear spin of 1/2 [49].

Therefore the total angular momentum quantum number F of (3∆1, v = 0, J = 1) comes from

the addition of one unit of angular momentum from the angular momentum of the electronic state

(Ω = 1) and 1/2 unit of angular momentum from the nuclear spin of fluorine, with allowed values

of either 1/2 or 3/2. Within each F , there can be a projection of the total angular momentum

mF ∈ [−F, F ]. Finally, each mF level has two nearly degenerate states corresponding to the parity

of the wavefunction, with the degeneracy lifted by a higher order coupling known as Ω-doubling.
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electronic state

-3/2

+

-1/2 1/2 3/2

vibrational state rotational state

hyperfine

-1/2 1/2

 =

 =

1/2

{

{

+

parity

Figure 2.4: Structure of the hyperfine states within 3∆1, v = 0, J = 1. Without any external fields,
nothing sets the quantization axis. In this case, parity is a good quantum number, with degeneracy
of the parities lifted by Ω-doubling. The parity states are illustrated with a ± or ∓ sign because it
is not clear which parity has higher energy, and this was never experimentally determined.

We are interested in the F = 3/2 hyperfine manifold, particularly when we apply an external

electric field E⃗app. The effect of applying such a field on the quantum states is shown in Figure

2.5.

With an external electric field, spatial symmetry is broken and the molecules become polar-

ized. Without spatial symmetry, parity is no longer a good quantum number, and each mF level

becomes split instead into two orientation states (aligned or anti-aligned) of the molecule. Because

the molecule is polar it has its own molecular-frame electric dipole moment,

dmf = 3.37(9) Debye [50], (2.3)

the energy shift of the orientation states is then set by the DC Stark shifts from the molecule’s

electric dipole moment −d⃗mf · E⃗app. In addition, because there is a well defined orientation of
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-3/2 -1/2 1/2 3/2 =

, , ,(                                          )

Figure 2.5: Energy level diagram of the 3∆1, v = 0, J = 1, F = 3/2 manifold of ThF+ in the
presence of an external electric field. For each mF = ±3/2 state, the energy of the state (relative
to the baseline F = 3/2 center energy) are labeled and the quantum state depicting the orientation
of the molecule and the pointing of the eEDM-sensitive valence electron’s spin (and therefore also
its d⃗e) are illustrated.

the molecule and therefore its internal electric field relative to the spin4 of the eEDM-sensitive

electron, these states become modified by the eEDM sensitive Stark splitting5 −d⃗e · E⃗eff, with the

sign of the dot product determined by the relative orientation of the molecule and the electron.

Finally, one more modification to the states is useful. In practice, energy levels of a molecule

are measured as the difference between two energy levels as a frequency. If we want to measure the

energy difference between the opposite sign mF = ±3/2 states for a given orientation, it is useful

to create an intentional energy difference between these states so that the frequency can be tuned

to an experimentally convenient timescale. We can do this by introducing a magnetic field B⃗app.

The modification of the states in the presence of this field is shown in Figure 2.6.

The magnetic field B⃗app couples to the projection of the angular momentum onto the quan-

tization axis mF through the Zeeman effect:

∆UZeeman = −µ⃗total · B⃗app = ±mF g µBBapp (2.4)

where g is the g-factor and µB is the Bohr magneton. Note that the g-factor is slightly different
4 The electric dipole moment of the electron is defined to point the same direction of the spin, so the orientation

of the spin is the same as the orientation of d⃗e.
5 Here we can neglect the −d⃗e · E⃗app coupling since Eapp ≪ Eeff by nine orders of magnitude.
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-3/2 -1/2 1/2 3/2 =

, , ,(                                          )

Figure 2.6: Energy level diagram of the 3∆1, v = 0, J = 1, F = 3/2 manifold of ThF+ in the
presence of an external electric and magnetic field.

for the two orientations, so we label the g-factor as gu and gl for the upper and lower pair of states

respectively, which we measured to be
gu = 0.1475(30) [50]

gl = 0.1505(30) [50].
(2.5)

We call the upper pair of states the “upper doublet” and the lower pair of states the “lower doublet.”

The electric dipole moment of the electron can be measured by measuring the energy differ-

ences of each doublet fu and fl (violet in Figure 2.6), whose energies are
fu = 3guµBBapp + 2deEeff

fl = 3glµBBapp − 2deEeff.

(2.6)

Note that by measuring energy differences between states of the same molecular orientation, the

dmf-dependent term drops out. The magnetic field component gives a background energy f0 =

3gµBBapp designed to turn the eEDM-sensitive energy from nominally zero frequency to one that

can be easily measured (with our f0 on the order of 50Hz), turning the eEDM signal into a small

frequency modification that turns into a phase offset at late time.
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Flipping the orientation of different fields and taking a linear combination of the measured

energies can then isolate the contribution from the electron’s electric dipole moment deEeff.

This encapsulates the essence of the eEDM measurement: measure the energy shift due to

the Stark energy of the electron inside of a polar molecule with large internal effective electric field,

realized by measuring the energy difference between two internal quantum states of the molecule

in the presence of known applied laboratory fields.

2.1.2 Laboratory fields

In the above scheme, we apply an external electric field E⃗app in order to polarize the molecules.

However, since the molecules are ions, the resulting Coulomb force must has a nonzero time average

in order for the molecules to remain trapped, i.e.

⟨qE⃗app(t)⟩t = 0. (2.7)

To get around this, we apply a rotating electric field polarize the molecules, rotating at a frequency

ωrot

E⃗rot = Erot(cos(ωrott)x̂+ sin(ωrott)ŷ). (2.8)

Then the coulomb force on the ions becomes a centripetal force, and the ions move in a circular

trajectory with radius rrot. This is shown in Figure 2.7.

}
(+)

(+)
(+)

Figure 2.7: The rotating polarizing field E⃗rot giving rise to circular motion of the molecular ions
with a trajectory radius of rrot.
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The radius of the trajectory can be calculated by setting the magnitude of the coulomb force

F = qE equal to the centripetal force in angular form F = mω2r and solving for the radius, yielding

rrot =
qErot
mω2

rot
(2.9)

where m is the mass of the ion = ( 232︸︷︷︸
Th

+ 19︸︷︷︸
F

) atomic mass units and q is the charge of the ion

= 1 electron charge. For the typical values used in the experiment (ωrot = 2π·150 kHz, Erot = 60

V/cm), the molecules move in a circle of radius rrot = 2.6 mm.

Since the polarizing field and thus the quantization axis is now rotating, naïvely one might

think that the magnetic field we apply to generate f0 must also rotate so that there is a well defined

magnetic field along the quantization axis. However, we can instead apply a static magnetic field

that diverges in the plane of rotation. This is demonstrated in Figure 2.8.

Figure 2.8: The diverging (in the x−y plane) magnetic field that gives rise to a non-zero ⟨B⃗ · Êrot⟩t.

At each point in the trajectory, the magnetic field is exactly anti-aligned with E⃗rot and

therefore the quantization axis. We can generate such a field by applying a field with an axial

gradient (a field with a gradient in z along ẑ):

B⃗ = Baxgrad(xx̂+ yŷ − 2zẑ). (2.10)

Then Brot, the value of the magnetic field along the quantization axis, is simply given by

Brot = Baxgradrrot. (2.11)
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From the illustration, it may seem as though this method requires that the center of the path traced

out by the ions be exactly at the center of the divergence of the magnetic field. However, an offset

(x0, y0) in the position of the field just looks like a uniform background field,

Baxgrad((x− x0)x̂+ (y − y0)ŷ − 2zẑ) = Baxgrad(xx̂+ yŷ − 2zẑ)︸ ︷︷ ︸
intended field

+Baxgrad(−x0x̂− y0ŷ)︸ ︷︷ ︸
uniform background

, (2.12)

and the contribution from this background field will cancel out as the quantization axis rotates

one cycle (this is shown analytically in Section 5.1). This means that the ions can trace a circular

trajectory of radius rrot around any point in the x−y plane and experience the same time-averaged

field into the quantization axis:

⟨B⃗ · Êrot⟩t = Brot. (2.13)

2.1.3 Measuring energy levels in a molecule

The method we use to measure the energy difference between states in a molecule relies on the

fact for an eigenstate of the molecule’s Hamiltonian (ĤΨ = EΨΨ), the solution to the Schrödinger

equation has a solution of a complex exponential,

iℏ
d

dt
Ψ = Ĥψ = EΨΨ → Ψ(t) = Ψ(t=0) e−i

EΨ
ℏ t, (2.14)

which means the phase of the state Ψ accrues at a frequency equal to its energy divided by Planck’s

constant:

ωΨ =
EΨ

ℏ
. (2.15)

The phase difference between two states then accrues at a frequency proportional to the energy

difference between the states. We can measure this phase using a technique called Ramsey inter-

ferometry.

To understand how Ramsey interferometry works, it’s useful to parameterize a superposition

of the two states |g⟩, |e⟩ in terms of two angles

|ψ⟩ = cos(θ) |g⟩+ eiϕ sin(θ) |e⟩ . (2.16)
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We can then represent any such state as a unit vector on a sphere with coordinates dictated by the

polar angle θ and azimuthal angle ϕ (known as the “Bloch sphere”). The space of this representation

is illustrated in Figure 2.9

population
fraction

relative 
phase

Figure 2.9: The Bloch sphere representation of a superposition of two quantum states.

There are important two properties of the state in this formalism. First, if we measure a state

many times to extract the probability of it being in either eigenstate, we have essentially measured

the angle θ: 
P|g⟩ = | ⟨g|ψ⟩ |2 = cos2(θ)

P|e⟩ = | ⟨e|ψ⟩ |2 = sin2(θ).

(2.17)

Second, ϕ is the relative phase between the two states, so time evolution of the state looks like

rotation about ϕ at a rate of ∆E
ℏ t. where ∆E is the energy difference between the states ∆E =

Ee − Eg.

With these two properties, we can understand the Ramsey-type measurement scheme, which

is as follows:

• prepare a pure state, represented by θ = 0 or ẑ

• rotate6 about x̂ by π/2

• wait some time t for ϕ to evolve by ∆E
ℏ t (a rotation about ẑ)

• rotate about x̂ by π/2.
6 The rotation can be in any direction (other than ẑ) as long as both π/2 rotations are along the same axis, with

a rotation axis in the x-y plane giving the most contrast.
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A representation of this scheme on the Bloch sphere is illustrated in Figure 2.10.

initial state pulse pulseRamsey evolution

Figure 2.10: Bloch sphere representation of the three operators that make up a Ramsey interfer-
ometry measurement.

This scheme works by encoding the phase evolution of ϕ (a quantum phase) onto θ (a mea-

surable probability), which happens because rotations along different axes do not commute. Math-

ematically we can represent this scheme as an operator Ô operating on our initial state ẑ via 3D

rotation operators:

Ô ẑ = R̂x(π/2)R̂z(
∆E

ℏ
t)R̂x(π/2) ẑ. (2.18)

If we write out these rotation operators as matrices and perform the operation, we can see how this

encodes the phase accrued onto θ:

Ô ẑ =


1 0 0

0 cos(π/2) − sin(π/2)

0 sin(π/2) cos(π/2)




cos(∆E

ℏ t) − sin(∆E
ℏ t) 0

sin(∆E
ℏ t) cos(∆E

ℏ t) 0

0 0 1




1 0 0

0 cos(π/2) − sin(π/2)

0 sin(π/2) cos(π/2)

 ẑ

(2.19)

=


sin(∆E

ℏ t)

0

− cos(∆E
ℏ t)

 . (2.20)

If we convert this back to spherical coordinates to find θ, we get

θ = tan−1

(√
x2 + y2

z

)
= tan−1


√

sin2(∆E
ℏ t)

− cos(∆E
ℏ t)

 = −∆E

ℏ
t, (2.21)
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so the probability of measuring the either eigenstate after the Ramsey sequence becomes
P|g⟩ = cos2(∆E

ℏ t)

P|e⟩ = sin2(∆E
ℏ t).

(2.22)

We can then simply vary the evolution time t and count the number of cycles in order to measure

the energy difference ∆E between the states.

With this technique, we can measure the eEDM-sensitive frequencies fu and fl introduced in

Equation 2.6.

2.1.4 Sensitivity

In our experiment, the sensitivity δde to the eEDM scales as

δde ∝
1

Eeffτ
√
N
, (2.23)

where τ is the Ramsey evolution time of the measurement (limited by the coherence time) and N is

the total number of ions measured. Several key innovations in our new experiment maximize these

parameters. By moving from HfF+ (the species used in our current best bound [38]) to ThF+, the

sensitivity increases in several ways. The coherence time in HfF+ is limited by spontaneous decay

of the eEDM-sensitive states (∼2 s), while the eEDM-sensitive states in ThF+ are in the ground

electronic, vibrational, and rotational state, meaning that they do not spontaneously decay. Instead,

the coherence time is limited by excitation from blackbody radiation (with cryogenic cooling of the

experiment, coherence times of 20 s are theoretically possible, with more information in Ng’s thesis

[39]). Furthermore, ThF+ has a slightly higher Eeff than HfF+, as mentioned previously.

Measuring the ions for a Ramsey time of 20 s would severely limit the rate at which the

measurements could be done. Therefore, to fully leverage the long coherence time, we design the

experiment to be multiplexed, i.e. ions will be continually loaded and prepared, then shuttled down

the length of the trap as their Ramsey phase evolves, then read out on the other side of the trap.

We can then make a measurement once per ion loading time (∼.5 s) rather than once per Ramsey

time (∼20 s).
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The current iteration of the experiment as was developed in this thesis is not fully multiplexed,

but tests some of the key technology required by shuttling the Ramsey evolving ions down to a

cold region, then back to the original position for detection, demonstrating both the shuttling

capabilities of the electrodes and the coherence time available via cryogenic cooling.

With all the planned improvements, we can make a rough estimate of the statistical sensitivity

we expect to reach with this experiment, which is done in Table 2.2.

Experiment Gen II Gen III
Eeff 21±2 GV/cm [43, 44, 45] 36±1 GV/cm [40, 41]
τ ∼2 s ∼20 s
N/tmeas ∼120/(2 s) ∼20/(.5 s)
tmeas ∼500 hr ∼500 hr
δde 2.1× 10−30 e·cm [38] ∼ 1× 10−31 e·cm (projected)

Table 2.2: Projected sensitivity for the third generation of eEDM experiment at JILA compared
to the second generation. The projected sensitivity is calculated by scaling the Gen II sensitivity
by the factor prescribed in Equation 2.23.

This projected sensitivity hinges on the success of long coherence times and multiplexing,

and it only represents the possible statistical uncertainty of the experiment. Systematic sources of

uncertainty can limit the sensitivity of the experiment as well (see [51] for an example of a study

of systematic uncertainty).

2.2 Experimental realization

Now that we have seen how to measure the eEDM in an abstract sense and what makes such

a measurement sensitive, this section will describe how such an experiment is actually realized.

The first step of the experiment is to create ThF+ out of sulfur hexafluoride gas and solid

thorium. The technique for doing this is shown in Figure 2.11 A pulsed Nd:YAG laser ablates a

pellet of thorium, vaporising a small amount of the metal. At the same time, a gas valve pulses

some SF6 gas, which reacts with the Th vapor to create a beam of neutral ThF in a supersonic

expansion.

The pellet is on a rotation and translation stage that rotates after each ablation such that
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Th pellet
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nozzle pulser

Figure 2.11: Setup for creation of ThF+ ions in the experiment.

each laser pulse hits a fresh polished surface of Th metal. The Th must be periodically polished

as laser ablates away the clean surface in order to maintain production efficiency. The SF6 gas is

pressurized to 80 pounds per square inch on the other end of the nozzle.

The ThF beam then passes through two skimmers, which are mm-scale pinholes with a conical

shape. The skimmers reduce the angle of the beam such that when it reaches the trap it is about

1cm in size. The first skimmer is held at 30V to reject any ionized species in the beam.

Between the skimmers is an intermediate vacuum, with a pressure between that of the vacuum

where the molecules are created (∼ 10−8 Torr, limited by consistent vacuum breaks to polish Th

and consistent leaking of pressurized gas) and the vacuum in the trapping region (< 10−9 Torr,

which must be low to allow for long coherence time). The small aperture of the skimmers allow for

such a pressure gradient.7

Finally, the neutral beam of ThF is photo-ionized to create a packet of ThF+ ions. The

photoionization process is covered in Section 3.1.
7 At these pressures, intuition for vacuum behavior is governed by random scattering of individual atoms rather

than traditional properties of fluid mechanics.



21

The next steps are illustrated in Figure 2.12.

stop pulse

trapping 
potential

 
ramp on

Figure 2.12: Illustration of the experimental procedure for stopping and trapping the ions.

Immediately after ionization, a large electric field is applied in the direction in which the

ions are coming from, which slows the ions to a velocity distribution that can be trapped. The

pulse is roughly 5.3 V/cm for 4.1 µs (though the actual energy delivered to the ions is obscured by

inhomogeneity of the field and rise time of the electrode drivers).

At the same time, the trapping potentials are turned on so that once the ions are slowed they

are immediately trapped. The trapping potentials are discussed in Section 4.1.3

Finally, the rotating polarizing field Erot is ramped up over 1.2 ms, a time such that the ramp

is adiabatic with respect to the rotation of the field ( 1
ωrot

= 1
150 kHz ≈ 7µs ≪ 1.2 ms). The details

on generating the polarizing field are covered in Section 4.1.4.

Once the molecules are polarized, they can be pumped into the eEDM-sensitive states with

lasers and microwaves through four of the viewports of the vacuum chamber, as shown in Figure

2.13. The details of optical pumping are described in Section 3.2.

With the proper initial quantum state prepared, we can execute the Ramsey sequence. This

is shown in Figure 2.14. First, we apply the π/2 pulse by momentarily ramping down the polarizing

field such that the hyperfine states become degenerate. Next, during the Ramsey evolution, the

trapping potentials are modulated to translate the ions down the trap into a region where the trap

is cryogenically cooled and the ions are shielded from room-temperature blackbody radiation. At
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microwaves

lasers

Figure 2.13: Illustration of the experimental procedure for optically pumping them into the eEDM-
sensitive states.

conveyor belt 
potential

cryocooler

insulationtranslation

π/2

Figure 2.14: Illustration of the Ramsey evolution period of the experiment.

the end of the Ramsey evolution time, the ions are shuttled back and given another π/2 pulse.

More details on the π/2 pulse and blackbody radiation can be found in Ng’s thesis [39].

Finally, the state can be read out, as shown in Figure 2.15. The ions are state-selectively

photo-dissociated (details in Section 6.1), while the trapping fields are turned off and Erot is ramped

down to zero. A strong electric field in the direction of the detector (4.9 V/cm for 20 µs) is

then pulsed in order to kick the ions onto the detector. The dissociated Th+ ions as well as the
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ThF+
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Figure 2.15: Illustration of the state detection sequence of the experiment.

undissociated ThF+ ions then arrive on the detector where they are imaged. Details of the detection

scheme are provided in Section 6.2.

The chapters that follow will describe the details of each of these steps as well as the instru-

mentation that was designed and built to actualize each step.



Chapter 3

State preparation

3.1 Ionization

The neutral ThF atoms are ionized in a process called resonance-enhanced multi-photon

ionization (REMPI). An energy level diagram for this process is shown in Figure 3.1.

...

...

REMPI 1

REMPI 2

ThF

ThF+

2Δ3/2

Ω = 3/2

(tunable)

autoionization

(532nm)

(304nm)

Figure 3.1: Diagram of the two photon ionization process

The first laser, denoted REMPI 1, pumps the neutral ThF into an intermediate state, then a

second laser labeled REMPI 2 excites the atoms above the ionization threshold. Ionizing through

an intermediate state of ThF allows the ionization to be state-selective, only ionizing the ground
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state atoms of ThF and leaving the atoms with a well-defined energy, which is just barely above the

ground state of ThF+. This means that when we ionize, we only populate the ground electronic

(3∆1) and vibrational (v = 0) state. The energy resolution is not fine enough to select the ground

rotational or hyperfine states, so we populate a mixture of mF and J levels within 3∆1, v = 0.

The REMPI1 photon is provided by a Lioptec LiopStar dye laser, while the REMPI2 photon

is provided by a Quanta-Ray INDI-40-10 pulsed Nd:YAG laser (the 532 nm light from the Quanta-

Ray also pumps the Lioptec dye laser).

3.2 Optical pumping

After the ThF+ ions are prepared into the 3∆1, v = 0 manifold, we then optically pump

them into the J = 0, mF = ±3/2 states. The lasers used to do this are shown in Figure 3.2.

Each higher vibrational state is optically pumped with lasers labeled “vibrational cleanup”

to a higher Ω = 0, v = 0 state, which then decays among the vibrational levels of 3∆1. Higher

rotational sates within the these vibrational states are coupled to the J = 1 state that the respective

laser talks to using microwaves, labeled “rotational cleanup.” These frequency of these microwaves

are swept to address all the hyperfine transitions in the vibrational manifold. Together these lasers

and microwaves close all the transitions to the next two higher vibrational states of 3∆1 (the

Honl-London factors are such that the v = 3 and above levels are not populated).

Similarly, the higher rotational states of v = 0 are closed with Lrc and Uv=0
rc .

The two remaining sets of photons are meant to move population within the v = 0, J = 1

state. In order to deplete one of the two doublets, Udepl couples the upper or lower doublet to

v = 0, J = 2, where Ldepl then shelves it to a higher rotational state. After some time this

moves the population from the doublet of interest into higher rotational levels of 3∆1 which cannot

decay back into v = 0, J = 1. This way a single doublet within J = 1 has been moved to other

metastable states, and the population of the remaining doublet can be read out directly by reading

out population in J = 1. Finally, LmF is designed to move population into either mF = 3/2 or

mF = −3/2. A diagram of how this works is shown in Figure 3.3.
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Label Description Wavelength/Frequency Polarization Power See Fig.
LmF mF pumping 685.4436371(43) nm circular 3 mW∗ 3.8
Lrc rotational cleanup 685.489059(1) nm linear (z) 80 mW
Uv=0

rc rotational cleanup 43.627-43.667 GHz swept linear (z) -10 dBm
Lv=1

vc vibrational cleanup 717.591265(27) nm linear (z) 15 mW 3.9
Uv=1

rc rotational cleanup 28.81-28.90 GHz swept linear (z) -10 dBm 3.17
Lv=2

vc vibrational cleanup 752.658792(10) nm linear (z) 30 mW 3.10
Uv=2

rc rotational cleanup 28.94-28.98 GHz swept linear (z) -10 dBm 3.19

Udepl depletion
{
29.115642(57) lower
29.082823(29) upper

linear (z) -21 dBm 3.16

Ldepl depletion 685.38160(1) nm linear (z) 25 mW

Figure 3.2: Lasers and microwaves for state manipulation. Red indicates photons for optical
pumping, while blue indicates photons for depletion, with solid lines representing optical transitions
and dashed lines representing microwave transitions. The powers are given as light going into the
chamber for optical transitions, and power going into the microwave horn for microwave transitions
(the power inside the chamber has never been empirically measured and relies on the calculations
in Section 3.2.3.2). Each laser is shaped to have a Gaussian beam width (1σ) of roughly 2.5 mm
to match the spatial extent of the ion cloud.
* LmF is strobed, so the typical power given here corresponds to a duty cycle of 0.5%, i.e. the peak power of the
laser is ∼600 mW.
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a) Pumping to: +3/2-3/2

b) -3/2 3/2-1/2 1/2

}
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other 
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levels
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Figure 3.3: The mF pumping scheme using LmF .
a) LmF is circularly polarized, and is strobed so that it is only on when it is either aligned (left) or
anti-aligned (right) to the quantization axis defined by Erot (each pulse of light is only 0.5% of one
cycle of Erot). This way each photon absorbed gives a well defined quanta of angular momentum
along the quantization axis. The pulsing of LmF is done by sending the laser tightly focused through
an acousto-optic modulator (AOM), so the laser can be turned on and off on a ∼10 ns timescale
with an RF switch on the input signal to the AOM. The pulse is then aligned to the correct phase
of Erot empirically by scanning the timing and looking at population distributions. Note that the
chirality of LmF was never actually measured, so an ambiguity exists with respect to which side we
pump to for a given alignment, i.e. the labels for this depiction could be reversed.
b) Energy level diagram of how pumping to mF = +3/2 works. Because each photon absorbed
increases the angular momentum by 1, absorbing a photon moves to the right. Even though each
intermediate state can decay with ∆mF = {−1, 0,+1}, the total angular momentum change from
absorption and spontaneous emission is between 0 and +2, so they cannot move to the left and on
average they move to the right. While these states can also fall to other rotational and vibrational
levels, these are closed with the optical pumping photons discussed above. Thus if LmF and
optical pumping photons are on for long enough, population will eventually land in mF = +3/2.
Pumping to mF = −3/2 works exactly the same way, but with each photon taking away one angular
momentum.
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3.2.1 Continuous wave laser overview

Optical pumping is done with low power (tens of mW) continuous wave lasers in the red part

of the visible spectrum. Historically these lasers have been external cavity diode lasers (ECDLs)

fabricated by the JILA instrument shop, however many have been switched to fiber lasers or

commercial ECDLs in order to achieve higher power and stability. The currently used optical

pumping lasers are listed in Table 3.1.

Photon Description Manufacturer Model
LmF Fiber laser Precilaser PL202106532
Lrc Fiber laser Precilaser PL202106533
Ldepl JILA ECDL Diode Thorlabs HL6750MG
Ldepl JILA TA Toptica Eagleyard RLS/680NM-TA-250MW
Lv=1

vc JILA ECDL Diode Toptica LD-0725-0040-AR-1
Lv=2

vc Commercial ECDL Toptica DL-pro

Table 3.1: Model numbers for each component of the optical pumping laser system

The complete optical pumping system, highlighting the layout of the JILA ECDLs, is shown

in Figure 3.4. The physical layout of one such JILA ECDL is shown in Figure 3.5. It functions

as follows: The cavity is defined between the back of the diode and the first order diffraction off

the grating. The supported wavelength of the cavity can be tuned by adjusting the angle of the

grating. The grating is mounted on a kinematic mount with a piezolectric crystal in the horizontal

axis, allowing fine control of the wavelength to be done electronically. To prevent parasitic lasing

modes, the diodes are anti-reflection coated to prevent a cavity from forming between the two

surfaces of the diode. For stability purposes, the temperature of both the diode and the cavity

are fixed using a thermoelectric cooler (TEC) and a thermistor. TEC 1 controls the temperature

of the laser diode, whereas TEC 2 stabilizes the temperature of the aluminum enclosure on which

the diode and grating are mounted, preventing cavity length drifts due to thermal expansion. The

whole system is mounted on a large block of aluminum which stabilizes the temperature and acts

as a thermal reservoir for the temperature feedback system.

The light then leaves the ECDL enclosure and passes through an optical isolator to prevent
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Figure 3.4: Optical pumping laser system configuration. Shown is a JILA ECDL and TA pair, as
well as the frequency locking configuration. The fiber switch is a DiCon MEMS 1xN switch and
the wavemeter is a HighFinesse WS-7.

reflections from damaging the laser diode. Some light is then picked off and sent to a fiber switch,

which forwards it to a wavemeter for spectral measurement. When the laser is locked, python will

extract the frequency from the wavemeter, and feed back the difference from the desired frequency

to a voltage on the piezo.

The rate at which the frequency is sampled and the feedback signal is updated is limited by
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Figure 3.5: Photos of the JILA ECDL assembly with the lids removed.

the speed of the fiber switch. While all continuous wave lasers are being locked at once, each laser

is sampled approximately once per second, which is sufficient to compensate for slow thermo/me-

chanical fluctuations. With this system each laser is stable to within ∼5 MHz.

3.2.2 Rb reference

In order to reference the lasers to an absolute frequency standard, we lock a laser to an atomic

transition in Rubidium in a vapor cell. Then the wavemeter can be calibrated to the known energy

of this transition, thereby calibrating the wavemeter’s measurements of all other lasers. A diagram

of the setup is shown in Figure 3.6.

This technique, known as “saturated absorption spectroscopy” or “Doppler-free spectroscopy”

makes use of two counter-propagating laser beams such that the signal corresponds to light that

is resonant in both directions, allowing us to resolve beyond the Doppler width. This is necessary

because the one-sigma Doppler width of the transition, given by

∆f =

√
kT

mc2
f0 , (3.1)

is ∼200 MHz for red light on room temperature rubidium atoms, and we want to lock the lasers to

the ∼1 MHz level.

The technique works as follows: a high-power pump beam is sent one way through the Rb
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Figure 3.6: Optical setup for locking the reference laser to the Rb line.

vapor cell, and a weak probe beam is sent collinearly the other direction and onto a photodetector.

When the pump beam is on resonance for a transition in the Rb, it saturates the transition, so the

probe beam is not absorbed, leading to a spike in the transmission of the pump beam.

When we scan the laser frequency (by scanning the voltage on the piezo controlling the

grating of the ECDL), the resulting signal looks like a broad Doppler absorption dip with local

saturation-induced transparencies at each individual transition. A copy of the probe beam with no

pump is also sent through the vapor cell, which captures only the broad Doppler absorption dip.

The two signal can then be subtracted, leaving only the Doppler-free peaks. The results are shown

in Figure 3.7.

The laser is locked to the (52S1/2 → 52P3/2) transition of 87Rb, from F=2 to halfway be-

tween F ′=2 and F ′=3 in a so called “crossover transition”. This transition has an energy of

384.2279818773(55) THz [52]. Crossover transitions occur when the atoms are moving at a velocity

such that the Doppler shift is exactly half the spacing between two atom-frame transitions. This

way the atom sees each beam as addressing one of the two separate transitions, which still results
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Figure 3.7: Spectroscopy of the Rb87 F=2 line used to calibrate the wavemeter. Top: the raw
photodiode signals of the two beam paths. Middle: the difference of the two photodiode signals.
Each peak is labeled with the F’ to which the transition goes, with ‘co’ indicating a crossover
between two transitions. Bottom: the derivative of the difference signal, which is used to lock the
laser. The zero crossing corresponding to the peak of the (2co3) line is used, with the derivative
providing a signed linear feedback signal which can be used to lock the frequency of the laser.

in transparency of the atoms to the probe beam as the atoms are pumped out of F = 2. Generally,

these crossover transitions are stronger than the Doppler free transitions because of the thermal



33

distribution of atoms in the vapor cell (there are more atoms with the crossover-inducing velocity

in the axis of the beams than atoms with no velocity in the axis of the beams).

Because the crossover transition between F ′ = 2 and F ′ = 3 is the most predominant feature,

it is the most stable feature to lock to so we lock the laser to this transition. The lock is done with

electronics that produce a small dither on the piezo voltage, and takes the time derivative of the

Doppler-free signal. Because the derivative should go to zero at the peak, the derivative can be

used as a signed feedback, which goes into a PID to control the central piezo voltage. In this way,

the laser can be locked to within ∼1 MHz, providing a stable absolute frequency reference to which

we can calibrate the wavemeter.

3.2.2.1 Spectroscopy of optical pumping transitions

We can measure the energy of the optical transitions by reading off the population in the

states that each laser addresses using techniques described in Chapter 6. We can then scan the

frequency of the laser, with the population of the state decreasing when the laser is on resonance.

First we measure the frequency of the LmF transition. If we were to measure the frequency

of the transition with the polarizing field Erot, the large Doppler shift caused by the rotation of the

ions would significantly broaden the transition (to beyond the free spectral range of the ECDL,

meaning it couldn’t be measured in a single scan), as well as shift the center frequency if the timing

of the pulse is off. For this reason we measure the frequency of this transition in the absence of

Erot. We can then simply look at the dip in population in v = 0, J = 1 when the laser is turned

on. This is done in Figure 3.8.

The width of the Gaussian fits to 106.8(3.4) MHz. This apparent linewidth is predominantly

due to the Doppler shift from the micromotion of the ions, rather than from a Doppler width

corresponding to the temperature of the secular motion, a natural linewidth of the transition, or

the width corresponding to the stability of the laser (∼5 MHz).

We repeat this measurement for Lv=1
vc and Lv=2

vc in Figures 3.9 and 3.10 respectively.
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Figure 3.8: Frequency scan of the LmF laser with no Erot. Population in v = 0, J = 1 is read out
by dissociating from the (3∆1, v = 0, J = 1) → (Ω = 0, J = 2) transition measured in Figure 6.3.
The dip in population is fit to a Gaussian, which yields a center frequency of 437.3699627(27) THz
or a vacuum wavelength of 685.4436371(43) nm.
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Figure 3.9: Frequency scan of the Lv=1
vc laser with no Erot. Population in v = 1, J = 1 is read out by

dissociating via the (3∆1, v = 1, J = 1) → (Ω = 0, J = 2) transition measured in Figure 6.4. The
Gaussian dip fits to a frequency of 417.776069(16) THz or a vacuum wavelength of 717.591265(27)
nm
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Figure 3.10: Frequency scan of the Lv=2
vc laser with no Erot. Population in v = 2, J = 1 is read out by

dissociating from the (3∆1, v = 2, J = 1)→ (Ω = 2, J = 2) transition measured in Figure 6.5. The
Gaussian dip fits to a frequency of 398.311241(05) THz or a vacuum wavelength of 752.658792(10)
nm.
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3.2.3 Microwaves

3.2.3.1 Theory

To predict the microwave transition rates, we begin with a model of the microwave-molecule

interactions. We can use a Jaynes-Cummings model Hamiltonian, which is nice because it is

physically intuitive and time-independent, meaning that it’s mathematically simple to work with

and we don’t have to do any work doing a rotating wave approximation to get out the dynamics

of the system (since this approximation is already built in to the Jaynes-Cummings model).

The Jaynes-Cummings Hamiltonian for the molecule and light field are given by

H = Hmolecule +Hlight +Hinteraction (3.2)

=
1

2
ℏω0σ̂z + ℏω(â†â+

1

2
) + ℏg(σ̂+â+ â†σ̂−). (3.3)

In the first term, ℏω0 is the energy spacing between the two unperturbed molecular states. This

represents the energy of the molecule with an offset to symmetrize the matrix. In the second term,

ω is the frequency of the applied light and â† and â are the photon creation and annihilation

operators. This term represents the energy of all the photons = ℏω(n + 1/2). The third term

represents the interaction whereby a photon can be annihilated and the molecule excited or a

photon can be created and the molecule de-excited. The coupling strength of the interaction is

characterized by g, the vacuum Rabi rate given by

g =
d⃗ · Ê
ℏ

√
ℏω
2ϵ0V

=
q ⟨g| r⃗ |e⟩ · Ê

ℏ

√
ℏω
2ϵ0V

, (3.4)

where V is the volume of the cavity mode, q is the electron charge, Ê is the unit vector indicating the

polarization of the light, and d⃗ is the dipole transition matrix element of the molecular transition,

with |g⟩ and |e⟩ being the lower and excited states of the molecular transition. Since the microwaves

are not actually in a cavity, it’s more instructive to write the interaction part of the Hamiltonian

semi-classically.

First, recognize that the only two relevant combined photon-molecule states are |n, e⟩ and

|n+ 1, g⟩, where n is the number of microwave photons which is arbitrarily large, and e and g
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reference the excited and ground states of the molecule. In this basis, we can write the interaction

Hamiltonian as

Hinteraction = ℏg

 0
√
n

√
n 0

 . (3.5)

In this basis, the whole Hamiltonian is then

H =
1

2
ℏω0

 1 0

0 −1

+ ℏω


 n 0

0 n+ 1

+
1

2

+ ℏg

 0
√
n

√
n 0

 . (3.6)

To get from terms that depend on the cavity properties and the number of photons to terms

that depend only on the classical field strength, we can treat the microwave field in some finite

volume V as light in a cavity. We can then calculate the energy in this volume due to the classical

field and compare this to the photon energy in order to solve for the number of photons n:

nℏω =

∫
V

1

2
ϵ0|E|2d3r =

1

2
ϵ0|E0|2V. (3.7)

Then we can write

g
√
n = g

√
1

2ℏω
ϵ0|E|2V =

q ⟨g| r⃗ |e⟩ · Ê
ℏ

√
ℏω
2ϵ0V

√
1

2ℏω
ϵ0|E0|2V =

1

2

q ⟨g| r⃗ |e⟩ · E⃗
ℏ

, (3.8)

and we have recovered the classical Rabi rate

Ω ≡ q ⟨g| r⃗ |e⟩ · E⃗
ℏ

. (3.9)

Knowing that g
√
n = Ω/2, we can write the Hamiltonian as

H =
1

2
ℏω0

 1 0

0 −1

+ ℏω(

 n 0

0 n+ 1

+
1

2
) + ℏΩ

 0 1
2

1
2 0

 . (3.10)

We now have a Hamiltonian in which the diagonal components describe the combined energies

of the molecule and a photon that would be absorbed or emitted to transfer molecular states in a

second quantization framework, and the off-diagonal components are semi-classical field couplings.

This representation allows both physical intuition of all parts as well as mathematical simplicity.
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Since the dynamics of the system are invariant to overall energy shifts, we can add a constant

to the Hamiltonian. If we add −ℏω(n + 1
2), the light field energy term simplifies to a symmetric

energy difference of the two states. With this the Hamiltonian becomes fully symmetrized.

H =
1

2
ℏω0

 1 0

0 −1

+ ℏω

 −1
2 0

0 1
2

+ ℏΩ

 0 1
2

1
2 0

 (3.11)

= ℏ

 −1
2(ω − ω0)

Ω
2

Ω
2

1
2(ω − ω0)

 (3.12)

= ℏ

 −∆
2

Ω
2

Ω
2

∆
2

 , (3.13)

where ∆ is the detuning of the light from the resonance ∆ ≡ (ω−ω0). If we plot the eigenenergies

of this Hamiltonian as a function of the detuning, we observe an avoided crossing, as shown in

Figure 3.11.
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Figure 3.11: Energies of the dressed state Hamiltonian as a function of the detuning ∆.

If the microwaves are swept, then the dynamics of the dressed states can be described using the

Landau-Zener formulation. The goal of the microwaves is to de-excite the molecule, i.e. population
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starting in |n, e⟩ transfers to |n+ 1, g⟩. If the microwaves are swept adiabatically, the system will

follow the avoided crossings and all population will be transferred. However, if the sweeping of the

microwave frequency is diabatic, some population will remain in the molecular excited state. In

the Landau-Zener formulation, the probability of not transferring (staying in |n, e⟩) after a single

sweep through the resonance is given by [53]

Pe→e = e
−2π

|H12|
2/ℏ

| d
dt

(H22−H11)| . (3.14)

The denominator is simply the sweep rate | ddtℏ∆| = ℏ| ddt(ω − ω0)| = ℏ|dωdt |. The probability of

transferring in a single sweep is then given by

Pe→g = 1− Pe→e = 1− e
−π

2
Ω2

| dω
dt

| . (3.15)

If the sweep occurs periodically with a period Ts and sweeps over a frequency range ∆ω, then we

can turn this probability into a transition rate (assuming a small portion transferred each sweep

and that transferred population is then coupled out of the new state by a laser):

Γµ = Pe→g/Ts =
1− e−

π
2

Ω2

|∆ω/Ts|

Ts
. (3.16)

If we plug in the expression for Ω from Equation 3.9 and solve for the electric field, we can get the

field strength we need to get a desired rate

|E⃗| = 1(
⟨g| r⃗ |e⟩ · Ê

) ℏ
q

√
2 ln( 1

1−TsΓµ
)∆ω

πTs
. (3.17)

Calculating the dipole matrix elements ⟨g| r⃗ |e⟩ · Ê is highly nontrivial and requires some advanced

angular momentum algebra, but we can say that it will be of the form

| ⟨g| r⃗ |e⟩ | = 1

q
d⃗mfAg,e , (3.18)

where q is the charge of the electron, d⃗mf is the molecular frame dipole moment (coming from the

electronic configuration ⟨ψelectronic| r |ψelectronic⟩ = dmf/q), and Ag,e is a dimensionless constant of

order unity. We can then write

|E⃗| = ℏ
dMFAg,e

√
2 ln( 1

1−TsΓµ
)∆ω

πTs
. (3.19)
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3.2.3.2 Power requirements

To calculate the required microwave power, we need to know the strength of the microwave

field at the ion location for a given power we apply. The microwaves are radiated with a horn

through a window in the vacuum chamber. It then passes through the trap electrodes and hits the

ion cloud.

A naive calculation of the field strength can be performed using the directivity DdBi of the

microwave horn measured by the manufacturer. Given that the horn is pointed directly at the ion

cloud and is located a distance rhorn away, the intensity of the electric field seen at the ions is then

I =
Phorn
4πr2horn

(
10DdBi/10

)
. (3.20)

For our setup, the distance from the horn to the ions when placed against a window of the octagon

is rhorn = 15cm, and the directivity of the horn is 17.9 dBi. The electric field magnitude is then

E0 =

√
2I

cϵ0
=

√
Phorn

2πr2horncϵ0

(
10DdBi/10

)
=

√
Phorn
1 W · 4.05 V/cm. (3.21)

Because the electrodes are spaced apart by a distance of similar magnitude to the wavelength of

the radiation, they can significantly alter the field. For a more accurate calculation the electric field

incident on the ions, we can run a finite element model of the geometry of the horn and electrodes.

The COMSOL model simulation results are shown in Figure 3.12.

The result of the simulation is that for a power of 1 W into the horn, the electric field

amplitude at the ion location is 6 V/cm. The electric field seen at the ions as a function of the

power into the horn is thus:

E0 =

√
Phorn

1 W · 6 V/cm. (3.22)

The result is actually a slight enhancement over the naïve calculation (Equation 3.21) due to the

focusing of the field by the rod electrodes.

Another consideration is the loss due to reflection of the microwaves off of the UHV window.

We can treat the free space before and after the glass as well as the propagation in the glass itself
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Figure 3.12: Finite element simulations of 30 GHz microwaves exiting the horn and passing through
the electrodes
a) 3D view of the COMSOL model.
b) The microwave field in the plane of the rod electrodes. The field is polarized into the page,
parallel to the rod electrodes. This means that the field must go to zero near the rod electrodes to
satisfy boundary conditions. The result is an interference pattern where the rods cast a ”shadow”.
c) The microwave field in the plane of the ring electrodes. Since the field is polarized up and down,
perpendicular to the ring electrodes, the boundary conditions do not require that the electric field
go to zero near these electrodes. As such, the ring electrodes have little effect on the microwave field.
However, the boundary conditions do forbid curvature of the field near them since the tangential
field must be zero, so we observe a“flattening” of the wavefront near these electrodes.
d) The electric field on the axis of the microwave horn. The origin is the injection port of the horn
where the field originates from.
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as propagation along a transmission line. The characteristic impedance of the air before and after

the glass is given by the free space impedance:

Z0 ≡
√
µ0
ϵ0
. (3.23)

If the glass has a relative permeability ϵr at the microwave frequency, the glass has a characteristic

impedance

Zwindow =

√
µ0
ϵ0ϵr

=
1
√
ϵr
Z0. (3.24)

The effective impedance of propagation through the glass of thickness l and then into free space is

then given by [54]

Zprop, interface = Zwindow

(
Z0 + iZwindow tan(βl)

Zwindow + iZ0 tan(βl)

)
, (3.25)

where β is the propagation constant in the glass β = 2π
√
ϵrf
c where c is the speed of light. Then

the reflection coefficient of the light incident on the glass is given by

Γ =
Zprop, interface − Z0

Zprop, interface + Z0
. (3.26)

The total power reflected is then

Pr = P0|Γ|2 = P0
(1− ϵr)2

(1 + ϵr)2 + 4ϵr cot(βl)2
. (3.27)

The vacuum windows are made from fused silica (quartz), which has a relative permittivity

of about 3.8 in the Ka band [55]. Using this value we can calculate the power reflected off the glass

for varying thicknesses, as shown in Figure 3.13.

Applying this 20% reduction to our COMSOL result of Equation 3.22, we have a prediction

for the field seen by the ions as

E0 ≈
√
Phorn

1 W · 5 V/cm. (3.28)

We can now use Equation 3.19 to calculate the power we need to apply. A good approximation

for the coupling constant Ag,e is a Clebsch Gordan coefficient associated with projecting the angular

momentum of the initial state and the photon absorbed into the angular momentum of the final

state. Since each hyperfine state in the higher rotational state is swept over a transition to all other
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Figure 3.13: The fraction of power reflected off of a glass window of a given thickness, using a
relative permittivity of 3.8. The dashed line represents the thickness of the windows used in the
experiment.

hyperfine states in the lower rotational stage, the transfer rate out of a specific hyperfine state is

at least the rate given by the transition with the highest Clebsch-Gordan coefficient. The total

transfer out of the higher rotational state is then limited by the slowest of these maximum rates.

Thus taking the minimum over the hyperfine initial states of the maximum over each state it goes

to, we can establish a lower bound on the total population transfer rate.

The required microwave powers are shown in Table 3.2.

Lower doublet Upper doublet J = 3→ 2 J = 2→ 1

Frequency (GHz) 29.1038 29.0942 43.6450 (swept) 28.9828 (swept)
Directivity (dBi) 17.92 17.92 21.41 17.90
Limiting CG coefficient 1 1

√
10/21

√
1/2

Required electric field (V/cm) .0075 .0075 .01094 .011
Required Pout (dBm) -26 -26 -24 -23

Table 3.2: The power required to achieve a microwave coupling rate of Γµ = 200 s−1, calculated
using Equation 3.19 for the electric field, with powers calculated using Equation 3.28 for 30 GHz
and a 20% reduced Equation 3.21 for 43 GHz with the relevant directivity.

A microwave coupling rate of Γµ = 200 s−1 is chosen to be fast compared to the fastest

relevant spontaneous decay rate (∼20 s−1).
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3.2.3.3 Microwave sources

A photograph of the setup for generating the microwaves is shown in Figure 3.14.

Figure 3.14: Photo of the microwave generating setup.

The system consists of many discrete microwave components assembled together. Each mi-

crowave component gets its own power supply that current limits to the appropriate value for

each component. Furthermore, the transistor-based microwave components will suffer damage if

the positive supply rail is applied before the negative supply rail. In this case the positive rail is

supplied through a relay which is only open if the negative rail is active. Furthermore, the negative

rail is given a much larger parallel capacitance so that if the negative rail is interrupted the voltage

slowly returns to zero giving the relay time to disengage. Each custom power supply runs on the

same ±15 V supply so that the whole system can be easily powered off or on.

A schematic of the setup is shown in Figure 3.15.

The system consists of two branches, one at 30 GHz to address J = 1 ↔ J = 2 transitions

and one at 43 GHz to address J = 2 ↔ J = 3 transitions. The signals then get combined and

applied to the ions with a custom broadband microwave horn.
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(a)
U l

depl

(b)
Uv=1,2

rc

(c)
Uv=0

rc

(n)

horn (v)

to ions

label description manufacturer part no.
a 1/8(29.082941 GHz) source RF-Consultant TPI-1001-B
b 1/8(29.115175 GHz) source RF-Consultant TPI-1001-B
c 1/8(28.81-28.98 GHz) swept source Agilent E8251A
d switch, doublet select Mini-Circuits ZYSWA-2-50DR+
e switch, pumping/depletion Mini-Circuits ZYSWA-2-50DR+
f switch, 30 GHz on/off Mini-Circuits ZYSWA-2-50DR+
g passive frequency doubler Marki D97281
h amplifier, 20 dB Avantek APT-18646
i cavity bandpass 7.25 to 7.75 GHz Pasternack PE8741
j isolator µ-wave Associates MA7L604
k variable attuenuator narda 4798
l active frequency quadrupler Marki AQA-2156
m cavity bandpass 27.5 to 31 GHz Pasternack PE8747
n 1/16(43.63-43.67 GHz) swept source Agilent N5181A
o switch, 43 GHz on/off Mini-Circuits ZYSWA-2-50DR+
p active frequency quadrupler Marki AQA-1933K
q cavity bandpass 10.55 to 11.8 GHz Pasternack PE87FL1001
r isolator Ditom D3I8012
s active frequency quadrupler Marki AQA-2156
t cavity bandpass 39 to 45 GHz RF-Lambda RBPF39G45G
u broadband splitter/combiner Mini-Circuits ZC2PD-V18443+
v microwave horn, broadband (28.0 to 45.0 GHz) Dolph DH-320WDBLP122PA

Figure 3.15: The circuit for generating microwave signals
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3.2.4 Spectroscopy

Once again we can measure the exact energy for each transition by using them to deplete the

relavent states and looking for a dip in the population. The two Udepl transitions are measured in

Figure 3.16.
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Figure 3.16: Frequency scan of Udepl at an Erot of 60 V/cm. The lower frequency dip corresponds
to optically pumping into the upper doublet then depleting the upper doublet, while the higher
frequency dip corresponds to optically pumping into the lower doublet, then depleting the lower
doublet. The lower doublet transition U l

depl fits to a frequency of 29.115642(57) GHz, while the
upper doublet transition Uu

depl fits to a frequency of 29.082823(29) Ghz.

The swept microwaves can be measured in a similar manner. Uv=1
rc is measured by pumping

up to v = 1, J = 2 and then watching population fall back down to v = 0, J = 1 as the microwave

and laser pair couple ions out of this state. The results are shown in Figure 3.17.

An important note is that at 60 V/cm, sweeping over this whole range will also address the

mf = ±3
2 transition in v = 0, thus depleting some of the states of scientific interest. This is shown

in Figure 3.18. To avoid this, we only sweep Uv=1
rc to a maximum of 28.995 GHz to maintain a safe

distance from these transitions.

Finally Uv=2
rc is measured in Figure 3.19.



47

28.85 28.90 28.95 29.00 29.05
fcenter (GHz)

40

50

60

70

P
op

ul
at

io
n 

in
 v

=
0,

J=
1 Optical pumping + v = 1

vc

Optical pumping + v = 1
vc

v = 1
rc

28.85 28.90 28.95 29.00 29.05
f (GHz)

0.0

0.2

0.4

T
ra

ns
it
io

n 
st

re
ng

th
 (

ar
b)

Transitions
Theoretical pop. transfer

Figure 3.17: Microwave scan of the Uv=1
rc .

Top: Spectroscopy of the transition. The ions are first optically pumped into v = 1, then either
only Lv=1

vc is turned on to pump out v = 1, J = 2 which falls back down to v = 0, J = 1 or Uv=1
rc

is also turned on, resulting in additional population from v = 1, J = 2. The microwaves are swept
only 5 MHz around the frequency on the axis.
Bottom: Theoretical location and relative strengths of transitions based off of a 32-level Hamiltonian
as calculated by Kia Boon Ng [39]. The theoretical population transfer is found by modeling a fixed
time of sweeping the frequency over each transition using the calculated transition rates.
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Figure 3.18: Demonstration of Uv=1
rc depleting the upper doublet if the frequency is swept too high.

Top: calculated rotational microwave transitions for each vibrational manifold at Erot = 60 V/cm.
Labeled are the lowest v = 0 transition that addresses the upper doublet as well as the transition
Uu

depl that we use to intentionally deplete the upper doublet.
Bottom: measured population in the ro-vibrational manifold containing the states of interest. The
populations are measured after optically pumping, then either doing nothing or applying the swept
Uv=1

rc , then depleting the lower doublet. This processes leaves only population in the upper doublet,
thus a dip in population indicates a transfer of population from the upper doublet.



49

28.70 28.75 28.80 28.85 28.90 28.95 29.00
fcenter (GHz)

20

40

60

80

P
op

ul
at

io
n 

in
 v

=
2,

J=
2

No optical pumping
Optical pumping + v = 2

vc

Optical pumping + v = 2
vc

v = 2
rc

28.70 28.75 28.80 28.85 28.90 28.95 29.00
f (GHz)

0.0

0.2

0.4

0.6

T
ra

ns
it
io

n 
St

re
ng

th Transitions
Theoretical pop. transfer

Figure 3.19: Microwave scan Uv=2
rc .

Top: Spectroscopy of the transition. First the ions are optically pumped up to v = 2, then the
population there is depleted using the microwaves, and measured directly. The population in
v = 2, J = 2 is measured by dissociating from the (3∆1, v = 2, J = 2)→ (Ω = 2, J = 3) transition
measured in Figure 6.5. The microwaves are swept only 5MHz around the frequency on the axis.
Bottom: Theoretical location and relative strengths of transitions based off of a 32-level Hamiltonian
as calculated by Kia Boon Ng [39]. The theoretical population transfer is found by modeling a fixed
time of sweeping the frequency over each transition using the calculated transition rates.



Chapter 4

Electric Fields

4.1 Electrode design

The electrodes used to apply fields to the ions are made up of 8 long ”rod” electrodes running

the length of the trap to apply fields in the x-y plane and many small uniformly spaced ”ring”

electrodes along the axial direction to apply fields along the z-axis. The electrodes were designed in

collaboration with and fabricated by Calvin Schwadron of the JILA instrument shop. The electrode

configuration is displayed in Figure 4.1.

QuadrantRods Special
Rings Rings

Rings

x
y

z

Figure 4.1: CAD rendering of the finalized electrode design.

The ions enter the electrode assembly out of the page between the quadrant ring electrodes

(yellow). Both of these electrodes are divided into four regions with individual control, so they can

apply localized fields in the x-y plane as well as along the z axis. They can then be used to pulse

an electric field along +x right after ionization in order to stop the ions. In addition, individual
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control of the special ring electrodes (red) allows us to pulse a high voltage electric field along −z to

kick the ions to the left onto the detector. Finally, the rest of the ring electrodes (green) are wired

with every fourth electrode held at the same potential. We can then use these rings to translate

the ions forward and backward along the z-axis.

The dimensions of the electrode assembly are given in Figure 4.2.

l

Dimension Value Description
drod 12.7 mm Diameter of rod electrodes
Drod 11.7 cm Distance between opposite pairs of rod electrodes
Lrod 123.2 cm Length of rod electrodes
dring 13.5 cm Inner diameter of the ring electrodes
lring 2 cm Axial spacing of ring electrodes
Lring 1 mm Thickness of ring electrodes
dcollar 19.3 cm Outer diameter of the support collars

Figure 4.2: Relevant dimensions of the electrodes

The choice to have the rod electrodes inside of the ring electrodes is made because the

electric fields that need to be generated in x̂ and ŷ are much stronger than the fields that need to

be generated along ẑ, and having another set of electrodes between the other electrodes and the

ions shields the ions from the electric fields generated by the outer electrodes.

The dimensions are selected with several considerations in mind. First, the whole assembly

must fit inside the vacuum chamber. The vacuum tube is a 10” outer diameter flange nipple, which
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is the largest diameter of the standard ultra-high-vacuum components and has an inner diameter of

19.7 cm, inside of which dcollar must fit. The rod electrodes are then placed as far apart as possible

in the interest of making the fields near the center of the trap as homogeneous as possible.

4.1.1 Overview

There are three main electric fields the electrodes must generate (in addition to the pulses

to stop the initial velocity of the ions and to kick them out onto the detector). These fields are

demonstrated in Figure 4.3. First, the electrodes must apply a strong electric field to polarize the

molecules (Figure 4.3.a). For this field not to apply a time-averaged force on the ions, the field must

rotate. This way there is no net force on the ions over one rotation cycle, and the instantaneous

force acts as a centripetal force as the ions move in a circular trajectory. This field will be further

explained in Section 4.1.4.

Next, the electrodes must generate fields to trap the ions, and translate them along the axial

dimension of the trap. This is done with an oscillating quadrupole field (Figure 4.3.b) applied

by the rod electrodes and a sinusoidal potential along the axial direction (Figure 4.3.c) applied

with the ring electrodes. The mechanism for which these two fields lead to trapping of the ions is

explained in Section 4.1.3

4.1.2 Ponderomotive potential

Before discussing the fields generated by the electrodes, we need to discuss the ponderomotive

effect, by which sinusoidally oscillating inhomogeneous fields impart a time-average force on the

ions. An argument for this force is as follows:

If there is a periodic electric field

E⃗(r⃗, t) = E⃗0(r⃗) cos(ωt), (4.1)

then the equation of motion for a charged particle of charge q and mass m is

m
d2r⃗

dt2
= qE⃗0(r⃗) cos(ωt). (4.2)
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a)

b)

c)

Figure 4.3: Electric potentials generated with the rod and ring electrodes. Left: slice of the electric
potential for the respective type of potential applied. Potentials are generated using COMSOL
Multiphysics finite element analysis software. Red represents positive potential while blue repre-
sents negative potential. Right: Electric potential surfaces for each of the fields. The two horizontal
axes represent physical dimensions while the vertical axis represents potential depth.
a) Vrot polarizing field
b) VRF, oscillating saddle point potential that provides radial confinement
c) Vaxial, sinusoidal potential that provides axial confinement at each valley of the sinusoid
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We then assume the solution looks like an small oscillation (micromotion) at the driven frequency

ω with amplitude r⃗µ, plus a slow spatially larger secular motion r⃗sec(t):

r⃗(t) = r⃗µ cos(ωt) + r⃗sec(t). (4.3)

If the micromotion is small compared to the secular motion r⃗µ ≪ r⃗sec, then we can expand the

electric field about r⃗sec:

E⃗0(r⃗) ≈ E⃗0(r⃗sec) +
⃗⃗∇E⃗0(r⃗sec) · r⃗µ cos(ωt), (4.4)

where ⃗⃗∇E⃗0 is the gradient of the vector field, yielding a tensor

⃗⃗∇E⃗0 ≡


∂
∂x E⃗0

∂
∂y E⃗0

∂
∂z E⃗0

 . (4.5)

To find the amplitude of the micromotion, we can plug Equations 4.3 and 4.4 into Equation 4.2:

m

(
−ω2r⃗µ cos(ωt) +

d2r⃗sec
dt2

)
= q cos(ωt)

(
E⃗0(r⃗sec) +

⃗⃗∇E⃗0(r⃗sec) · r⃗µ cos(ωt)
)
. (4.6)

Grouping terms by timescale,

(
mω2r⃗u + qE⃗0(r⃗sec)

)
cos(ωt) +

(
q
⃗⃗∇E⃗0(r⃗sec) · r⃗µ

)
cos2(ωt)−md2r⃗sec

dt2
= 0. (4.7)

Note that the second two terms are small in magnitude compared to the first term, and they change

on different timescales. Therefore, we can extract the micromotion amplitude by setting the first

term equal to zero, giving

r⃗µ ≈ −
qE⃗0(r⃗sec)

mω2
. (4.8)

We can then write Equation 4.2 as

m

(
ω2 qE⃗0(r⃗sec)

ω2m
cos(ωt) +

d2r⃗sec
dt2

)
≈ qE⃗0(r⃗) cos(ωt) (4.9)

qE⃗0(r⃗sec) cos(ωt) +m
d2r⃗sec
dt2

≈ q
(
E⃗0(r⃗sec) +

⃗⃗∇E⃗0(r⃗sec) · r⃗µ cos(ωt)
)
cos(ωt) (4.10)

m
d2r⃗sec
dt2

≈ q ⃗⃗∇E⃗0(r⃗sec) · r⃗µ cos2(ωt). (4.11)
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Finally, we can plug Equation 4.8 into this and average over a cycle of ω to get

m
d2r⃗sec
dt2

= −q
2 ⃗⃗∇E⃗0(r⃗sec) · E⃗0(r⃗sec)

2mω2
. (4.12)

We can use a modified version of a chain rule (proven in Appendix B),

(
⃗⃗∇E⃗) · E⃗ =

1

2
∇⃗|E|2 −�������:0

E⃗ × (∇⃗ × E⃗) , (4.13)

where we have ignored the cross term since electrostatic fields that obey Maxwell’s equations must

have ∇⃗ × E⃗ = 0. With this, we arrive at

m
d2r⃗sec
dt2

= −∇⃗q
2|E0(r⃗sec)|2

4mω2
, (4.14)

and thus the secular motion is described by an effective potential

U =
q2|E0|2

4mω2
. (4.15)

This effective potential is known as the ponderomotive potential. This potential can be thought of

as the classical harmonic oscillator energy of the micromotion.

U =
1

2
mω2⟨r2micromotion⟩t =

1

2
mω2⟨(rµ cos(ωt))2⟩t =

1

4
mω2r2µ, (4.16)

yielding the same result if we use the expression for rµ from Equation 4.8.

4.1.3 Paul trap

The ions are trapped axially with the ring electrodes producing a sinusoid. The voltages

applied to the rings are shown in Figure 4.4.

By modulating ϕtranslate, the minima of the sinusoid are spatially translated along z. Thus

by changing the phase of the ring electrodes, the ions can be translated. The relationship between

spatial translation and phase applied to the electrodes is given by

ztranslated = ϕtranslate
4lring
2π

. (4.17)

While this potential is confining along z, it is anti-confining along x and y (see Figure 4.3.c). In

general, any static electric potential we can apply with the electrodes can only be confining in up
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Ring Potential applied
1 Vring,pk cos(

0π
2 + ϕtranslate(t))

2 Vring,pk cos(
1π
2 + ϕtranslate(t))

3 Vring,pk cos(
2π
2 + ϕtranslate(t))

4 Vring,pk cos(
3π
2 + ϕtranslate(t))

Figure 4.4: Voltages applied to the ring electrodes to trap the ions axially and to translate them.
The potentials are periodic every fourth ring, e.g. the voltage on the 5th ring is the same as the
voltage on the 1st ring.

to two dimensions since there are no sources (∇⃗ · E⃗ = 0). In order to overcome this anti-confining

potential and confine the ions along x and y, we apply a psuedopotential that is constant along

z and confining along x and y. This is done by applying a quadrupole potential with the rod

electrodes that oscillates at ωRF = 2π × 50 kHz. The voltages applied are shown in Figure 4.5.

Rod Potential applied
1 VRF,pk cos(ωRF t)
2 VRF,pk cos(ωRF t)
3 VRF,pk cos(ωRF t+ π)
4 VRF,pk cos(ωRF t+ π)
5 VRF,pk cos(ωRF t)
6 VRF,pk cos(ωRF t)
7 VRF,pk cos(ωRF t+ π)
8 VRF,pk cos(ωRF t+ π)

Figure 4.5: The voltages applied to the rods in order to generate the RF quadrupole potential

Even though the resulting potential is a saddle point instantaneously, the oscillations of the

field give rise to a ponderomotive potential that is proportional to |E|2, which is radially confining.

This is displayed in Figure 4.6. The saddle point potential near the center of the trap looks like

VRF ≈ αRFVRF,pk(x
2 − y2), (4.18)
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Figure 4.6: The transformation of the RF saddle point potential to its confining effective pondero-
motive potential near the center of the trap.

where αRF is a scaling factor based on the geometry of the electrodes. Then the electric field is

E⃗RF = −∇⃗VRF ≈ αRFVRF,pk(−2xx̂+ 2yŷ). (4.19)

This gives rise to a ponderomotive potential of

URF =
e2|ERF|2

4mω2
RF

=
e2(αRFVRF,pk)

2(x2 + y2)

mω2
RF

=
e2α2

RFV
2

RF,pkρ
2

mω2
RF

, (4.20)

where e is the electron charge and ρ is the cylindrical radial coordinate ρ =
√
x2 + y2. The potential

from the axial field looks like (up to a constant which can be neglected)

Uring = e Vring ≈ e αringVring,pk(2z
2 − ρ2), (4.21)

where αring is once again a scaling factor due to electrode geometry. Thus the full trapping potential

experienced by the ions is given by

Utrap = URF + Uring =
1

2

(
2e2α2

RFV
2

RF,pk
mω2

RF
− 2e αringVring,pk

)
︸ ︷︷ ︸

kρ

ρ2 +
1

2

(
4e αringVring,pk

)︸ ︷︷ ︸
kz

z2. (4.22)

The effective potential has the form of a harmonic oscillator potential. In this form it is easy to

see that the secular motion of the ions in the trap will undergo oscillations at frequencies in ρ and

z respectively:

ωρ =

√
kρ
m

=

√
2e2α2

RFV
2

RF,pk
m2ω2

RF
−

2e αringVring,pk
m

(4.23)

ωz =

√
kz
m

=

√
4e αringVring,pk

m
. (4.24)
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We can invert these equations to find the required voltages to apply to the electrodes in order to

get the desired secular frequencies:

VRF,pk =
mωRF

√
2ω2

ρ + ω2
z

2αRFe
(4.25)

Vring,pk =
mω2

z

4αringe
. (4.26)

The value of the scaling constants can be found by fitting the potentials from the COMSOL

simulations, yielding 
αRF = 348 m−2

αring = 8.73 m−2.

(4.27)

With this we can calculate the parameters of the trap. For example, to get a secular frequency of

2π×2 kHz in each dimension, the voltages are VRF,pk = 25.6 V and Vring,pk = 11.8 V. The digital to

analog converters (DACs) driving the ring electrodes can only go up to 10 V, so we instead apply

a Vring,pk of 9.95 V to stay within the limit, giving us an theoretical ωz of 1.84 kHz and ωρ of 2.08

kHz.

Far enough away from the center of the trap, the harmonic approximation of the potentials

break down. Furthermore, the radial anti-confining of the ring potential grows faster than the

radial confining of the RF potential, leading to a point at which the total effective potential curls

over and is no longer confining. This is shown in Figure 4.7.

The RF confining potential is stronger along the diagonal axes such as (b) than the axes of

the saddle point such as (a), and are thus more tightly radially confined. We can assign each of

the local maxima where the potential curls over an effective trap depth ∆U , equal to the difference

between the minimum of the trap and the local maximum. These values are calculated to be

∆Uaxial = 1330 K

∆Uradial,a = 894 K

∆Uradial,b = 5070 K.

(4.28)
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Figure 4.7: The total effective trap potentials experienced by the ions with VRF,pk = 25.6V and
Vring,pk = 9.95V using |ERF|2 and Vring fields generated in COMSOL. Left: a diagram of the RF
potentials showing the two slices over which the total effective potentials are plotted. Right: Surface
plots of the total effective potentials in Kelvin (related to the potential energy by the Boltzmann
constant). Then highlighted are the potential minimum at which the ions sit and the four points
in which the potential is no longer confining, indicating the boundary of the trap.

In addition, the distance ∆r from the bottom of the trap to each of these local maxima is also a

useful criteria: 

∆raxial = 4.0 cm

∆rradial,a = 2.7 cm

∆rradial,b = 4.4 cm.

(4.29)

With cross-dimensional thermalization, the trap depth is limited by the weakest radial trap depth,

so only ions cooler than 900 K will be trapped. A final useful quantity is the maximum slope of

the ponderomotive potential before the local maximum, which tells us how much we can tilt the
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potential before it no longer has any minimum. By dividing by the charge q of the ion, this then

represents the maximum electric field we can apply in that direction before there is no trap:

1
q
∂U
∂z axial = 0.049 V/cm

1
q
∂U
∂ρ radial,a

= 0.047 V/cm

1
q
∂U
∂ρ radial,b

= 0.228 V/cm.

(4.30)

4.1.4 Rotating polarizing field

The voltages applied to the electrodes in order to generate the rotating polarizing field E⃗rot

are shown in Figure 4.8.

Rod Potential applied
1 Vrot,pk cos(ωrot t+

0π
4 )

2 Vrot,pk cos(ωrot t+
1π
4 )

3 Vrot,pk cos(ωrot t+
2π
4 )

4 Vrot,pk cos(ωrot t+
3π
4 )

5 Vrot,pk cos(ωrot t+
4π
4 )

6 Vrot,pk cos(ωrot t+
5π
4 )

7 Vrot,pk cos(ωrot t+
6π
4 )

8 Vrot,pk cos(ωrot t+
7π
4 )

Figure 4.8: Voltages applied to the rod electrodes to apply the rotating polarizing field

The homogeneity of the field applied is very important for several reasons. Firstly, the

magnitude of the field goes directly into the Ramsey frequency f0 (see Section 5.1), since

f0 ∝ Brot ∝ rrot ∝ Erot. (4.31)

This means that the homogeneity requirement of ∆f
f < 10−4 from Section 5.3.2 requires that in the

region in which the ions are trapped, ∆Erot
Erot

< 10−4.

Secondly, any gradients in the strength of the field applied generates a ponderomotive poten-

tial that could disrupt the ions and cause them to fall out of the trap (while the field is rotating
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rather than oscillating meaning that it can’t be written in the form of Equation 4.1, the pondero-

motive force argument can be made separately in each dimension, where the projection of the field

onto that dimension can be written in this form).

If the electric field oscillating at ωrot applied is composed of the intended uniform-magnitude

E⃗rot and a small spatially-varying perturbation E⃗dev, then the ponderomotive potential is

Upond,rot =
e2

4mω2
rot

∣∣∣E⃗rot + E⃗dev

∣∣∣2 = e2

4mω2
rot

(
|Erot|2 + 2 E⃗rot · E⃗dev︸ ︷︷ ︸

cross term

+|Edev|2
)
. (4.32)

Since |Erot|2 is a constant (not spatially varying), it can be neglected from the potential. Further,

since |Edev| ≪ |Erot|, the ponderomotive potential comes mainly from the cross term

Upond,rot ≈
e2

2mω2
rot
E⃗rot · E⃗dev. (4.33)

This places a constraint on how big the deviation can be before the ions can be lost from the trap

∆|E⃗dev| <
2mω2

rot
e2|E⃗rot|

Utrap depth = 0.6 V/cm. (4.34)

given a Utrap depth of 900 K, an Erot of 60 V/cm, and an ωrot of 2π × 150 kHz.

Studies of the electrode geometry to meet these requirements is detailed in Kia Boon Ng’s

thesis [39].

4.2 Electronics

4.2.1 Amplitude and timing requirements

The electric fields described in the previous section must have their amplitudes modulated

during the experiment, as well as have well defined phases with respect to laser pulses and other

trap potentials. A typical experimental sequence is shown in Figure 4.9 that demonstrates the

specific requirements of these signals.

At the beginning of stage 1, our pulsed lasers ionize the beam of neutral ThF molecules, and

special ring electrodes apply a pulsed potential gradient to slow them. At the same time, the RF

confining potentials are diabatically turned on. The initial phase of VRF is defined such that at the
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Figure 4.9: AC trap electrode envelope profiles for a typical experiment. The experiment is broken
into different functional periods indicated with numerals, with three phase matching conditions
indicated with letters.
1) Catching the ions
2) State preparation
3) π/2 pulse
4) Ramsey evolution time
5) π/2 pulse
6) Depletion
7) Dissociation and kickout
a) and b): The trap must be turned on and off when its amplitude is at a maximum. This corre-
sponds to the point in the ions’ micromotional trajectories where velocity is minimized, meaning
they will not be heated when caught and the cloud will not undergo excess expansion when disso-
ciated and kicked out.
c): In order to align the axis of the molecules with the polarization of the dissociation pulse, Erot
must have a well defined phase at the time of dissociation/kickout. It must then be ramped down
so that it does not affect the trajectories of the dissociated ions as they travel to the detector.

catch time, the RF potentials are at a maximum, as shown in phase criteria a). This minimizes

possible heating of the ion cloud from the applied potentials. The ions are then held for some time

so they can thermalize and reach equilibrium mean trajectories. Erot is then adiabatically ramped

up to lift the degeneracy of the hyperfine states, thus beginning stage 2. In this stage, the ions

are optically pumped into the J = 1, mF = ±3/2 states. Then in stage 3, Erot is ramped down to

allow for mixing of the mF states, then ramped back up. This results in an effective π/2 pulse for
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each doublet. In stage 4, the ions are allowed to freely Ramsey evolve, before undergoing another

π/2 pulse in stage 5. Finally, we optically deplete the states in stage 6, before ramping up the trap

depth and performing dissociation in step 7. At the end of step 7, the dissociated ions are then

kicked out and more special ring electrodes accelerate them towards an imaging MCP.

Once again, the kickout must be done at a place in the micromotion where velocity is mini-

mized to avoid additional expansion of the cloud after the trap is turned off (see phase requirement

c). To achieve this, the kickout time is chosen to be an integer multiple of RF cycles from the

catch time. Finally, the polarization of the dissociation photons with respect to the quantization

axis is critical in achieving high dissociation efficiency, so the phase of Erot during dissociation and

kickout must also be well-defined. This is done by setting the initial phase of Erot at the start of

the experiment such that it will match up at the dissociation time.

4.2.2 DDS boards

In order to generate these waveforms, a multiplexed system of field programmable gate arrays

(FPGAs) and direct digital synthesis (DDS) signal generator chips are used. The system was

designed by Felix Vietmeyer of the JILA electronics. Each board, which outputs a single waveform,

contains its own FPGA and DDS. A schematic is shown in Figure 4.10.

Each DDS has four channels of output which can each be programmed with their own phase

and amplitude. These channels then each pass through their own multiplying digital to analog

converters (DACs) and switches which can ramp the amplitudes and turn the signal on and off

in real time. They then pass through a summing amplifier to combine the signals into a single

channel.

The system also has two standalone DACs which can also be controlled in real time, but

these are not used in the current configuration (the signals are AC coupled to the electrodes so DC

components cannot be applied with these boards).

The computer programs the system via a USB serial decoder which talks to the FPGA. The

FPGA logic can be divided into two devices, one labeled “A1” which forwards the serial commands
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AD9959 DDS

Ch1
Ch2
Ch3
Ch4

RF
Transformers

1.9 MHz
Low pass

Preamps
AD829J

AD5543

×

AD5543

×

AD5433

×

AD5433

×

Mult.
DACs

Fixed-gain
JFETs
ADA4627-1

Switches
ADG5212B

+

High Speed
Summing Amp
ADA4894

Out

Spartan 6 FPGA

A1 Device
(DDS control)
A2 Device
(Sequencer)

USB
Serial
Decoder

D
A

AD5542 AD8675
DACs Amps

D
A

AD5542 ADA4627-1

TTL In

IO update
(t = 0)

t = 0

Figure 4.10: A schematic of the JILA-designed DDS boards. Blue wires represent synchronous,
real-time digital control while red wires represent asynchronous programming done between shots
of the experiment. Black wires represent analog signal channels.

to the DDS chip with the appropriate formatting, and another labeled “A2” which programs a

sequencer. The sequencer stores a list of times (as number of clock cyles) and values of multiplying

DACs, switches, and DACs. Once the system receives a TTL pulse indicating the experiment has

begun, it then executes this table synchronously.

Each channel of the DDS can be programmed asynchronously with its own amplitude and

phase. Generally only relative amplitudes that remain fixed (such as the voltages prescribed in

Figure 4.22) are written to the DDS, and then their amplitudes are ramped synchronously during

the experiment using the multiplying DACs. The only synchronous component of the DDS is that

the TTL input is tied to the DDS’s ‘IO update’ pin, which resets the phase to the programmed
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phase at the next logical clock rising edge, thus synchronizing the phases of each channel to the

t = 0 of the system.

Synchronizing the t = 0 of the DDS and the sequencer to each other and also to the t = 0 of

the system supplying the TTL pulse requires some care. Generally these systems are operating at

different logical clock rates, which can lead to timing jitter if the timings are not synchronized to

the least common denominator of these clock periods. A diagram of the clock distribution setup is

shown in Figure 4.11.

Main 10MHz Clock

Clock Distributor

Function Generator,
125MHz clock

DDG,
10Hz clock

Other Lab
Equipment

PLL x8,
1GHz FPGA

Artiq

TTL out

‘Clock’ Distributor

PLL x10,
100MHz

Clock Distributor

Sequencer

FPGA Logical
Processor

Phase
Accumulator

÷4 Flip-Flop,
25MHz

AD9959 chip

DDS Board (Master)

Sequencer

FPGA Logical
Processor

Phase
Accumulator

÷4 Flip-Flop,
25MHz

AD9959 chip

DDS Board (Slave)

Other DDS
Boards (Slave)

x8

Clock Distributor

sync out sync in

DDS box

Figure 4.11: Diagram of the timing distribution system. Each solid box represents a physically
distinct piece of hardware. Each arrow color represents a different clock frequency of the system.
Red represents 10 MHz, blue represents 100 MHz, orange represents 25 MHz, and green represents
a TTL pulse signifying the DDSs’ t = 0 of the experiment.
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Even though the DDS’s phase accumulator runs at 100 MHz (meaning the output moves to

a new discrete phase once per 10 ns), the logical processor of the DDS chip only operates at 25

MHz, meaning that the DDS only looks for the TTL rising edge once every 40 ns. The sequencer,

however, has a logic clock of 100 MHz. Since they both look for the rising edge of the TTL trigger

on each clock cycle, they can have a relative jitter of up to three cycles of 100 MHz. To avoid

this, the TTL trigger must be sent at an integer multiple of (25 MHz)−1 or 40 ns. This is done

by ensuring that Artiq sends the TTL trigger at an integer multiple of 40 ns from the rising edge

of the 10 Hz clock signal from the DDG. Because 1/10 Hz is cleanly divided by 1/25 MHz, the 10

Hz clock rising edges are separated by an integer multiple of 40 ns (one 10Hz clock cycle is exactly

25×105 cycles of the 25 MHz clock), any TTL pulse given at a 40 ns increment from a rising edge

of the 10 Hz clock will be a multiple of 40 ns from the last TTL pulse, which means no timing jitter

from incommensurate system clocks will occur.

Furthermore, because the rising edge of the logical clock for each DDS occurs once very four

rising edges of the master clock, the logical clock for different DDS boards can be up to three

master clock cycles apart. This is why the DDS boards have a synchronization function, whereby

the logical clocks of nine “slave” DDS boards are aligned to the logical clock of one “master” DDS

board.

Wherever timing signals are distributed to the boards, a clock distributor (Texas Instruments

LMK00301 evaluation board) is used to ensure each board receives the signal at the same time

without any relative phase delay.

4.2.3 Resonant transformers

Second harmonics of Erot on the rod electrodes can introduce systematic error into the ex-

periment [51]. In addition, the amplitude of Erot generating voltages must be quite high (429 Vpk

in order to reach 60 V/cm). In order to deal with both of these issues, the voltages coming out of

the DDS are amplified with a PA94 high-voltage op-amp with a gain of 100, and then applied to

the electrodes through a resonant transformer circuit, which provides extra gain on resonance (re-
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ducing the requirement on the source voltages) and also attenuation of higher harmonics generated

by nonlinearity in the voltage sources.

In addition, the rest of the voltages are introduced to the electrodes through various couplings

based around the resonant transformer design. The rod driver consists of four identical circuits

which each drive a set of two rod electrodes furthest from each other (e.g. rod 1 and rod 5). The

rod driver electronics are designed to apply the following different voltages to each of these pairs

of electrodes:

• An independent DC shim voltage for each rod

• VRF at 50 kHz with the same phase and amplitude.

• Vrot at 150 kHz with the same phase and opposite sign. This must have suppressed higher

harmonics to prevent systematic effects

In order to apply these voltages to the same electrodes, the following scheme is used, with the

circuit diagram in Figure 4.12 and a photo in Figure 4.13:

Vrot is applied via a transformer whose inductance paired with the capacitance on the elec-

trode forms a resonant circuit. This allows resonant enhancement of the gain and suppression of

higher harmonics due to nonlinearity in the DDS voltage or the op-amps. In addition, ground

can be defined relative to the center tap of the transformer, allowing each rod to receive opposite

polarity of Vrot. VRF is then applied to the center tap of the secondary side of the transformer. This

way, VRF is applied with the same polarity to both rods, and the inductance on either side of the

secondary partially cancels out, and with ωRF far away from the resulting resonance this portion

of the circuit can be driven non-resonantly. Finally, DC shims are applied to each rod individually

with a resistive coupling.

The voltages on the rods can be measured via a resistive voltage divider to ground (resistors

RQ and Rgain). This resistance to ground both limits the quality factor of the resonance, and offers a

point to measure the voltage. The values are chosen with Rgain ≪ RQ so that the voltage is divided

from high voltage down to a voltage more suitable to read with a scope. In addition, this ratio
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Figure 4.12: Circuit for driving the rod electrodes.

ensures that parasitics introduced by the measurement circuit do not interfere with the resonance.

The readout is done with an isolation op-amp of unity gain, in a voltage follower configuration.

Cprimary and Rprimary are designed to protect the op-amp that drives the primary. The

capacitive coupling means that any DC signal on the input to the op-amp sees a high impedance,

and Rprimary limits the current sourced from the op-amp. In addition, the values are chosen such

that the resonance of the primary given by

ωprimary =
1√

Lprimary(
1
2Cprimary)

(4.35)
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Figure 4.13: Photo of the rod-driver box. The PA94 op-amps are thermally coupled to the wall
of the enclosure. On the other side of the enclousure is a thermal block containing a copper pipe
flowing cold water to regulate the temperature of the op-amps. The transformers are each placed
in a shielding Faraday cage to prevent coupling between channels or pickup from external sources.

is far away from the desired resonant frequency, i.e.

ωprimary ≪ ω0. (4.36)

The value of Rprimary is discussed further in Section 4.2.4.2, and the values settled on are
Rprimary = 100Ω

Cprimary = 33 nF.
(4.37)

Csecondary, RDAC , and CDAC are chosen to allow the shim channels to address the DC com-

ponents of the rod voltages independently from the AC components. The capacitors should look

like shorts in the 100 kHz regime but open to DC voltages. Furthermore, RDAC should be large

compared to the reactances of the circuit in this regime. CDAC protects the DAC from any RF

that has made it through RDAC by sending it to ground. The values chosen to satisfy the above



70

requirements are: 

Csecondary = 100 nF

CDAC = 100 nF

RDAC = 1MΩ.

(4.38)

Finally, Cparasitic is the parasitic capacitance both in the cabling and arising from the geometry of

the rod electrodes. The capacitance is measured to be

Cparasitic = 36 pF︸ ︷︷ ︸
cable

transformer→monitor

+ 60 pF︸ ︷︷ ︸
cable

monitor→vacuum

+ 63 pF︸ ︷︷ ︸
inside vacuum

chamber

= 158 pF. (4.39)

In order to correct for asymmetries in the system, Cshim is a variable capacitor with a range of 30

pF that can be tuned until all rods have equal capacitances to ground.

4.2.4 Transformer theory

In order to treat the center tapped transformer, we treat the center tapped transformer as

two separate transformers, as in Figure 4.14.

A

B

C

D

E
Ls

Lp

↙M↘

=

A C

Ls/2Lp/2

↙M/2↘

B

E

D

Ls/2Lp/2

↙M/2↘

Figure 4.14: Equivalent circuit for a center tapped transformer

We can then write out the dynamics of this split transformer in terms of the induced voltages

across each inductor. Let VA,B be the voltage between terminals A and B and iA→B be the current
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flowing from terminal A towards terminal B. The equations governing the transformer are then:

VA,B = −Lp
diA→B

dt + M
2

(
diC→E

dt − diD→E
dt

)
VC,E = −Ls

2
diC→E

dt + M
2

diA→B
dt

VD,E = −Ls
2

diD→E
dt − M

2
diA→B

dt .

(4.40)

4.2.4.1 Resonance

The above equation is a fully general description of the transformer. To describe the resonance

of the circuit at ωrot, we can apply this analysis to the transformer in Figure 4.12, with a few

simplifying assumptions. First we can assume that the circuit is symmetric, i.e. the impedance on

each rod is the same. Because the voltage at the center tap is set by VRF, we can think of this

voltage as ground in the ωrot frequency analysis. Finally, Csecondary offers a negligible reactance at

ωrot (by design), so we can ignore this component. With this assumption, the voltage at the rods

is exactly the voltage across the terminals of the secondary coils. In addition, the currents and

voltages across the output are equal and opposite due to the symmetry of the system:
iD→E = −iC→E

VD,E = −VC,E ,

(4.41)

so the system given by Equation 4.40 reduces to
VA,B = −Lp

diA→B
dt +M diC→E

dt

VC,E = 1
2

(
−Ls

diC→E
dt +M diA→B

dt

)
.

(4.42)

If the voltages and currents are periodic with frequency ω then the time derivatives in the above

equation act to simply multiply by jω, so the system of differential equations becomes a simple

system of linear equations 
VA,B = jω (−LpiA→B +MiC→E)

VC,E = 1
2jω (−LsiC→E +MiA→B) .

(4.43)
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We can then express the currents and voltages above in terms of elements of the circuit. If Zprimary

is all impedance in series with the primary,

Zprimary = Rprimary +
2

jωCprimary
. (4.44)

Then the voltage across the primary is equal to the voltage Vsource driven by the op-amp minus

any voltage drop due to this series impedance:

VA,B = Vsource − (−iA→B)Zprimary. (4.45)

Next, we can write an impedance from the rod to ground

Zrod = (RQ +Rgain)||
(

1

jω(Cparasitic + Cshim)

)
(4.46)

=

(
1

RQ +Rgain
+ jω(Cparasitic + Cshim)

)−1

, (4.47)

so the current across the rod is given by

iC→E = VC,E/Zrod. (4.48)

If we plug Equations 4.45 and 4.48 into Equation 4.43, we get
Vsource + iA→BZprimary = jω

(
−LpiA→B +M

VC,E

Zrod

)
VC,E = jω

(
−Ls

2
VC,E

Zrod
+ M

2 iA→B

)
.

(4.49)

We can now solve this system of equations to get the current on the source iA→B and the voltage

on a rod VC,E :

VC,E = Vsource

(
jωMZrod

ω2 (LpLs −M2)− jω(LsZprimary + 2LpZrod)− 2ZprimaryZrod

)
(4.50)

iA→B = Vsource

(
(2Zrod + jωLs)

ω2 (LpLs −M2)− jω(LsZprimary + 2LpZrod)− 2ZprimaryZrod

)
. (4.51)

This encapsulates the resonant behavior of the circuit. The voltage is plotted in Figure 4.15. The

validity of Equation 4.50 is verified numerically in Section 4.2.4.2.
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Figure 4.15: Amplitude (left) and phase (right) plots of the solution to the voltage on a rod from
Equation 4.50 as a function of the driven frequency f . Standard component values are used:
Lp = Ls = 11.5 mH, M = 0.2Lp, RQ = 300 kΩ, Rgain = 1 kΩ, Cpar = 200 pF, Cprimary = 33 nF,
Rprimary = 100 Ω.

Solving analytically for the resonant frequency and quality factor is difficult with the above

equation. To do this, we must first make some approximations. The capacitance in series has a

small reactance compared to other impedances in the circuit, so we can neglect its effect by taking

Cprimary → ∞. While in reality, Rprimary may not be negligible compared to other impedances,

it is instructive to take it to zero to calculate the resonant frequency, and will discuss its effect

in Section 4.2.4.2. We then take Rprimary → 0. Finally, since Rgain ≪ RQ by design, we can

approximate the resistance to ground as only arising form RQ, i.e. Rgain → 0. With this, the gain

G = |VC,E/Vsource| of the transformer on the rod is

G =
ωMRQ√

R2
Qω

2 (Cparω2 (M2 − LpLs) + 2Lp)
2 + ω4 (M2 − LpLs)

2
. (4.52)

The resonant frequency can be found by setting dG
dω = 0 :

ω0 =

√√√√√ 1− (LpLs−M2)

4LpCparR2
Q

Cpar

2Lp
(LpLs −M2)

. (4.53)

With the appropriate mapping of variables (and using the definition M = K
√
LpLs), this result

corroborates that of the analysis in Kia Boon Ng’s thesis [39]. If the second term in the numerator
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is small ( LpLs−M2

4LpCparR2
Q
≪ 1), then a good approximation for the resonant frequency is given by

ω0 ≈
(
Cpar

2Lp
(LpLs −M2)

)−1/2

. (4.54)

The quality factor can be found by solving G(ω) = G(ω0)
2 for ω to find the half-max frequencies,

and taking the difference of the two solutions. Using this method, the full width at half max ∆ω is

∆ω =
1

CparRQ

√
2(LpLs −M2)(√

4CparLpR2
Q − LpLs +M2 +

√
3(LpLs −M2)(8CparLpR2

Q − LpLs +M2)

−
√
4CparLpR2

Q − LpLs +M2 −
√
3(LpLs −M2)(8CparLpR2

Q − LpLs +M2)

)
. (4.55)

Parameterizing in terms of the small variable

ϵ ≡ LpLs −M2

CparLpR2
Q

(4.56)

(which for our values is of order 10−3), we can expand the full width half max as

∆ω =
1

RQCpar

(
√
3 +

3
√
3

16
ϵ+

63
√
3

512
ϵ2 +O(ϵ3)

)
. (4.57)

Keeping only the first term is sufficient to reach 99.9% accuracy, giving us a quality factor of

Q =
ω0

∆ω
≈ 1√

3
RQCparω0. (4.58)

Finally, the gain on resonance is approximately given by

G(ωo) ≈
1√
2

M

Lp

√
CparLpR2

Q

LpLs −M2
≈
√
3

2

M

Lp
Q. (4.59)

4.2.4.2 Series resistance on primary

Including effects of Cprimary and Rprimary in the analysis performed in the previous section

causes the analytic solution to become intractable. Qualitatively, Cprimary has only negligible

effect on the system in the range of nanofarads and above, while Rprimary severely affects the



75

quality factor and thus the gain. To discuss this effect, we will move away from arguing via

analytic expressions and instead demonstrate the effect using numerical solutions. In addition,

we can verify our analytic expressions by comparing their numerical result with that of a circuit

simulation program (LTspice®). This is done in Figure 4.16 to demonstrate the effect of Rprimary

on the gain.

When Rprimary becomes large enough to be the same order of magnitude as the reactances

characteristic of the resonant circuit’s capacitors and inductors (
∣∣∣ 1
jω(Cpar/2)

∣∣∣ ∼ |jωLp| ∼ 10 kΩ), it

starts to dampen Q and thus also reduces the gain of the circuit. The resonant frequency is also

slightly shifted downwards.

The reason to include an Rprimary is to limit current sourced by the op-amp. The effects

of Rprimary on requirements of the op-amp are explored in Figure 4.17. We can choose its value

in order to satisfy the requirements of the PA94. The op-amp should be operated sufficiently far

enough away from its maximum current capability (100 mA) and from the voltage of the rails (±

343 V) in order to prevent saturation and nonlinearity. In the end, a value of Rprimary=100 Ω was

used in the interest of maximizing gain, and the current draw is still far away from the limit of the

op-amp.

4.2.5 Coupling between rods

In addition to having parasitic capacitance to ground, neighboring rods also have parasitic

capacitance between them. An approximation of the coupling capacitances can be made from the

geometry of the rods. If the rods have a radius a and length L and are separated by a distance d,

then for a rod with a charge per unit length q the electric field due to the rod is given by

E =
q

2πϵ0r
. (4.60)

Then the voltage between the two rods is given by

V =

∫ d−a

a
E(r)dr =

q

2πϵ0
ln r
∣∣r=d−a

r=a
=

q

2πϵ0
ln
d− a
a

. (4.61)
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Figure 4.16: Effect of Rprimary on the gain of the resonant circuit. a) Analytic calculation using
Equation 4.50. The gain profile of the rod voltage from the source voltage is plotted for various
values of Rprimary. b) LTspice model of the resonant circuit c) LTspice calculation confirming the
analytic result. Resistances in the software cannot go to zero, so Rprimary is only probed down to
1 mΩ.
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Figure 4.17: Effect of Rprimary on current requirements for the op-amp driving Vrot. ipk required
is the current needed to drive 60 V/cm on the rods on resonance, while the primary is driven at
whatever voltage is needed to produce 60 V/cm. It is calculated as 429V ·

∣∣∣ iA→B
VC,E

∣∣∣
ω=ω0

. Similarly,
Vpk required is the voltage the op-amps need to put out in order to drive 60 V/cm on the rods on
resonance, calculated as 429V ·

∣∣∣Vsource
VC,E

∣∣∣
ω=ω0

. These quantities are calculated using the analytic
expressions in Equations 4.50 and 4.51. In reality, the required voltages and currents are higher
than in this figure due to parasitics that dampen the gain, but the above plot offers a qualitative
description of the function of Rprimary in limiting current.

The rod-rod capacitance is then given by

C =
qL

V
=

Lπϵ0

ln d−a
a

. (4.62)

This calculation neglects edge effects, and a more accurate capacitance can be calculated using

finite element software (COMSOL) with realistic geometry. If the rods are arranged at a radius

rrod from the origin and are spaced at an angle 2π
8 radians apart, then the distance between nth

nearest neighbors is given by

dn =

∣∣∣∣(rrod cos(n
2π

8
), rrod sin(n

2π

8
)

)
− (rrod, 0)

∣∣∣∣ (4.63)

= rrod

√
(cos(

nπ

4
)− 1)2 + sin2(

nπ

4
) (4.64)

= rrod

√
2− 2 cos(

nπ

4
). (4.65)

Given that the rod electrodes have a radius a = 6.35 mm, a length L = 123.24 cm, and are located

at rrod = 5.85 cm, we can calculate the rod-rod couplings, given in Table 4.1.
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Coupling dn (cm) Analytic approximation (pF) Finite element calculation (pF)
Nearest neighbor 4.48 19.0 18.0
2nd nearest neighbor 8.27 13.8 13.8
3rd nearest neighbor 10.81 12.3 12.6
4th nearest neighbor 11.70 12.0 12.2

Table 4.1: Capacitance between pairs of rod electrodes based on their theoretical geometric cou-
pling. The distances dn are calculated using Equation 4.65 and the analytic approximation is
calculated using Equation 4.62. The couplings may be modified by shielding from other electrodes,
but this effect has not been modeled.

The capacitance leads to two overall effects. Firstly, the capacitances act to reduce the main

resonant frequency of the circuit, since it adds additional capacitance pathways to ground effectively

increasing Cpar.

Secondly, when only one channel is driven and the other voltage supplies are held at zero

volts a second resonance arises. To understand this, first let’s look at what happens when a channel

is not driven. In this case, each other voltage supply looks like a short, so each transformer just

looks like an inductor (argued in Figure 4.18).

0 VLs Lp = Ls Lp =

Ls −M

M

Ls −M

= LpLs−M2

Lp

Figure 4.18: Treatment of a transformer driven at 0 V, equivalent to an inductor. The transfor-
mation of the third equivalence is given by the equivalent circuit prescribed in [56]. While this
transformation makes assumptions about relative grounds, the same result arises from writing out
the governing equations of the transformer (allowing for different relative grounds) and requiring
the voltage across the primary to be 0 V.

We can then think of each coupling as an additional impedance network between the rods.

The conceptual reduction is shown in Figure 4.19.

So each parasitic coupling to an undriven transformer can be modeled as an additional

impedance between rods of

Zcoup,i =
1

jωCcoup,i
+

(
RQ ||

1

jωCpar
|| jωLpLs −M2

Lp

)
+

1

jωCcoup,i
. (4.66)
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Figure 4.19: Schematic reduction of coupling of the rod electrodes to another (undriven) rod-pair
into a single complex impedance Zcoup,i

We can then include the effect of the couplings by modifying Equation 4.50 with additional

impedances to ground

Zrod →

(
1

Zrod
+
∑
i

1

Zcoup,i/2

)−1

. (4.67)

Each coupling adds an additional resonance, since each coupling has its own set of inductance and

capacitance which can behave resonantly.

An expanded LTspice model, shown in Figure 4.20, contains four separately driven trans-

formers with all the relevant rod-rod couplings. The values of the coupling capacitors are taken to

be the COMSOL values from Table 4.1.

The effect of the capacitances is shown in Figure 4.21. The qualitative effect of the coupling

is to create a dual resonance when only one channel is driven. However, if all channels are driven at

their respective phase, the effect of the coupling cancels out and the system exhibits a symmetric
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Figure 4.20: LTspice model for the four parasitically coupled resonant circuits, including all capac-
itive rod-rod couplings

single resonance. The figure also shows the measured response of the system, which exhibits the

same qualitative behavior.

The model differs from the measured behavior in two ways. First, the resonant frequency

of the actual transformer system is higher than that predicted by the model. In addition, the

quality factor of the actual transformer system is lower than that of the model. This is likely due
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to additional parasitic impedances in the system that are not modeled.

In addition, the difference between the resonant response of each channel is due to a com-

bination of different inductances and couplings of each transformer, as well as asymmetry in the

capacitive coupling network.
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Figure 4.21: Demonstration of the dual resonance behavior arising from parasitic capacitive cou-
pling between rods.
a) LTspice simulation of the coupled resonance.
b) Measured gain profile of the resonant circuit using the monitor box readout. The gain of each
channel represents writing a fixed amplitude to a single transformer and taking the difference of the
two relevant rod electrodes. For example, Ch1 represents the difference of rod 5 and rod 1, while
Ch2 represents the difference between rod 6 and rod 2. The black line represents using the method
described in Section 4.2.6 to produce a symmetric set of voltages on the rods at each frequency,
and the value reported is the maximum symmetric amplitude that can be made.
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4.2.6 Control matrix

Due to asymmetry the coupling between adjacent rods described in the previous section, the

voltages on the rods can have significant difference in both phase and relative amplitude to the

voltages applied to the sources. In order to generate the voltages we desire on the rods, some

control theory must be applied in order to choose the voltages applied via the sources.

Because we are driving the system with four sources, it is convenient to only have four output

voltages to keep track of. We can separate the fields produced by the rods into their common mode

and differential voltages (Vdiff,1,5 = Vrod1 − Vrod5, Vcomm,1,5 = Vrod1 + Vrod5. If each transformer

circuit is sufficiently symmetric (Vrod1 ≈ −Vrod5), then we can ignore the common mode term,

as its effect looks like a small oscillating quadrupole field. While this term can actually generate

enough of a ponderomotive potential to lose ions if it is as large as 0.5 V/cm within the ion cloud

(given by Equation 4.34), it can be compensated by applying a small amount of ωrot oscillating

potential onto the RF-generating DDS until the ions are no longer kicked out of the trap. The

differential term then becomes the one that contributes to Erot. Thus, rather than measuring all 8

rod voltages, we need only to keep track of the difference of the voltage on opposite rod pairs. We

can then characterize the system with a mapping from each voltage source to the difference of the

two rods connected to that source’s transformer.

While applying a resonant voltage to each rod does drive all other rods with varying ampli-

tudes and phases, the response of the system is linear in the in phase (I) and quadrature (Q) basis.

Therefore, the response of the system can be represented with a matrix.

The basis for describing the Vrot on each rod-pair is defined to be
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V⃗ =



I1

Q1

I2

Q2

I3

Q3

I4

Q4


(4.68)

where each element is the in-phase and quadrature component for each channel, i.e. the voltage on

channel 1 is given by

v1(t) ≡ I1 cos(2πωrott) +Q1 sin(2πωrott). (4.69)

We can then write a matrix M such that

V⃗rods =MV⃗dds (4.70)

which fully characterizes the gain and phase shift of each channel, as well as all parasitic couplings

between channels. We can then produce any arbitrary set of voltages on the rods by inverting the

matrix:

V⃗dds =M−1V⃗rods. (4.71)

A symmetry requirement of the matrix is that a time shift on the input will shift the output by the

same amount without changing anything else. This is equivalent to saying that global phase does

not change the response of the system. This can be represented mathematically with a global phase

shift operator R(θ). Phase shifting the input and looking at the output (represented as R(θ)M)

should be the same as just phase shifting the output and phase shifting (represented as MR(θ)).

In other words, our matrix must commute with the global phase operator.

Global phase is achieved by applying a phase shift to each channel, meaning applying a
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rotation matrix to each pair of I,Q. This is represented in our space as a block diagonal matrix:

R(θ) =



cos(θ) − sin(θ) 0 0 0 0 0 0

sin(θ) cos(θ) 0 0 0 0 0 0

0 0 cos(θ) − sin(θ) 0 0 0 0

0 0 sin(θ) cos(θ) 0 0 0 0

0 0 0 0 cos(θ) − sin(θ) 0 0

0 0 0 0 sin(θ) cos(θ) 0 0

0 0 0 0 0 0 cos(θ) − sin(θ)

0 0 0 0 0 0 sin(θ) cos(θ)



. (4.72)

For a general matrix M with elements mi,j , our symmetry requirement is that the commutator

R(θ)M −MR(θ) =

sin(θ)



−m1,2 −m2,1 m1,1 −m2,2 −m1,4 −m2,3 m1,3 −m2,4 −m1,6 −m2,5 m1,5 −m2,6 −m1,8 −m2,7 m1,7 −m2,8

m1,1 −m2,2 m1,2 +m2,1 m1,3 −m2,4 m1,4 +m2,3 m1,5 −m2,6 m1,6 +m2,5 m1,7 −m2,8 m1,8 +m2,7

−m3,2 −m4,1 m3,1 −m4,2 −m3,4 −m4,3 m3,3 −m4,4 −m3,6 −m4,5 m3,5 −m4,6 −m3,8 −m4,7 m3,7 −m4,8

m3,1 −m4,2 m3,2 +m4,1 m3,3 −m4,4 m3,4 +m4,3 m3,5 −m4,6 m3,6 +m4,5 m3,7 −m4,8 m3,8 +m4,7

−m5,2 −m6,1 m5,1 −m6,2 −m5,4 −m6,3 m5,3 −m6,4 −m5,6 −m6,5 m5,5 −m6,6 −m5,8 −m6,7 m5,7 −m6,8

m5,1 −m6,2 m5,2 +m6,1 m5,3 −m6,4 m5,4 +m6,3 m5,5 −m6,6 m5,6 +m6,5 m5,7 −m6,8 m5,8 +m6,7

−m7,2 −m8,1 m7,1 −m8,2 −m7,4 −m8,3 m7,3 −m8,4 −m7,6 −m8,5 m7,5 −m8,6 −m7,8 −m8,7 m7,7 −m8,8

m7,1 −m8,2 m7,2 +m8,1 m7,3 −m8,4 m7,4 +m8,3 m7,5 −m8,6 m7,6 +m8,5 m7,7 −m8,8 m7,8 +m8,7


(4.73)

must be identically zero for any phase θ. This means that each element of the above array must

be zero, which establishes a relationship between the elements of M. Put succinctly, if you divide

up M into 2x2 blocks, the diagonal components of each block must be equal and the off-diagonal

components must be opposite in sign but equal in magnitude.

One result of this symmetry is that the matrix can be measured in 4 steps by applying only

an I-type signal to each input and then reading out the odd rows of the matrix. The even rows are

then defined by the symmetry relationships.
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Another result of the symmetry is that any feedback algorithms to fine-tune the matrix must

be carefully crafted to ensure the symmetry is preserved. One such algorithm is as follows: once

we have measured M, pick the desired set of outputs V⃗d and use the measured matrix M to find

the DDS voltages

v⃗DDS =M−1V⃗d. (4.74)

When v⃗DDS is actually applied, a slightly different output is measured V⃗m ̸= V⃗d. Then a feedback

matrix can chosen

N =

Vd1Vm1+Vd2Vm2

Vm
2
1+Vm

2
2

Vd1Vm2−Vd2Vm1

Vm
2
1+Vm

2
2

0 0 0 0 0 0

Vd2Vm1−Vd1Vm2

Vm
2
1+Vm

2
2

Vd1Vm1+Vd2Vm2

Vm
2
1+Vm

2
2

0 0 0 0 0 0

0 0 Vd3Vm3+Vd4Vm4

Vm
2
3+Vm

2
4

Vd3Vm4−Vd4Vm3

Vm
2
3+Vm

2
4

0 0 0 0

0 0 Vd4Vm3−Vd3Vm4

Vm
2
3+Vm

2
4

Vd3Vm3+Vd4Vm4

Vm
2
3+Vm

2
4

0 0 0 0

0 0 0 0 Vd5Vm5+Vd6Vm6

Vm
2
5+Vm

2
6

Vd5Vm6−Vd6Vm5

Vm
2
5+Vm

2
6

0 0

0 0 0 0 Vd6Vm5−Vd5Vm6

Vm
2
5+Vm

2
6

Vd5Vm5+Vd6Vm6

Vm
2
5+Vm

2
6

0 0

0 0 0 0 0 0 Vd7Vm7+Vd8Vm8

Vm
2
7+Vm

2
8

Vd7Vm8−Vd8Vm7

Vm
2
7+Vm

2
8

0 0 0 0 0 0 Vd8Vm7−Vd7Vm8

Vm
2
7+Vm

2
8

Vd7Vm7+Vd8Vm8

Vm
2
7+Vm

2
8


(4.75)

such that

V⃗d = NV⃗m. (4.76)

Substituting this into Equation 4.74,

v⃗DDS =M−1NV⃗m, (4.77)

and M−1N serves as a more accurate inverse transform matrix. We then update our characteristic

matrix:

M ′ = (M−1N)−1. (4.78)

Note that the matrix N was formulated specifically to commute with R(θ) so that M ′ preserves

global phase invariance. If a diagonal matrix is used instead, measurement noise can break the

symmetry, causing instability when scanning trap times.
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The measured matrix M of the system is displayed in Figure 4.22. Each 2x2 block represents

a coupling from an input channel to an output channel. If there were no crosstalk between channels,

the matrix would be block diagonal, and deviation from a block-diagonal matrix indicates strong

couplings between channels. Within each 2x2 block, the diagonal components represent coupling

without phase shift, while the off-diagonal components represent coupling with π/2 phase shift.

After several iterations of feedback as in Equation 4.78, we are able to reach an Erot where

each pair of rods has the same amplitude to within 0.1% and each phase is correct to within one

tenth of a degree.
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Figure 4.22: The control parameters for making a uniform Erot with the rod electrodes.
a) The measured (normalized) control matrix M relating VDDS to the voltage on the rods Vrod.
b) The voltages applied to the DDSs to generate the desired Vrot given by inverting the matrix.
c) The resulting (desired) voltages applied to the rods.



Chapter 5

Magnetic Fields

5.1 Effect of magnetic fields in the Hamiltonian

Any magnetic field that is aligned or anti-aligned with the quantization axis (defined by

Erot) will cause phase accumulation due to the spin of the electron. Because one rotation of the

quantization axis is much faster than all other motions of the ions, phase will be accumulated if

the time-average of B⃗ · r⃗rot over one cycle of Erot is nonzero, and the corresponding frequency f0 is

given by

f0 =
3gµB
h
Brot with Brot ≡ ⟨B⃗ · r̂rot⟩t, (5.1)

where g is the g-factor, µB is the Bohr magneton, h is Planck’s constant, and Brot is the magnetic

field introduced in Section 2.1.2. The simplest field that will do this if of the form

B⃗ = Baxgrad (x x̂+ y ŷ − 2z ẑ) . (5.2)

Note that as an ion traces out a circle of radius rrot in the x-y plane, the time-average over once

cycle is exactly

Brot = Baxgradrrot. (5.3)
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This is in fact the case for an ion anywhere in the x-y plane. To see this, consider an ion at location

(x0, y0, z0), rotating around this point with a radius rrot and period T . We can then calculate

⟨B⃗ · r̂rot⟩t =
1

T

∫ T

0
B⃗

[
x0 + rrot cos(

2π

T
t), y0 + rrot sin(

2π

T
t), z0

]
·
{
cos(

2π

T
t), sin(

2π

T
t), 0

}
dt

=
1

T

∫ T

0
Baxgrad


x0 + rrot cos(

2π
T t)

y0 + rrot sin(
2π
T t)

−2z0


·
{
cos(

2π

T
t), sin(

2π

T
t), 0

}
dt

=
Baxgrad

T

∫ T

0

(
x0 cos(

2π

T
t) + y0 sin(

2π

T
t) + rrot

(
cos(

2π

T
t) + sin(

2π

T
t)

))
dt

=
Baxgrad

T

(
x0(0) + y0(0) + rrot

(
T

2
+
T

2

))
= Baxgradrrot.

(5.4)

The result is independent of (x0, y0, z0). This means that all ions at all locations in the trap

experience the same phase accumulation.

The ions only start to see different phase accumulations if Baxgrad starts to vary over the

length scale of the size of the ion cloud. A first order derivative would lead to temporary phase

decoherence, but would average to zero over a longer timescale as the ions slosh back and forth

harmonically in the trap. A second order derivative, however, would not cancel, and would lead to

decoherence.

5.2 f0 from anti-Helmholtz coils

We can use a Baxgrad field configuration as the main source of frequency in our Ramsey

measurement. Such a field can be created with a set of anti-Helmholtz coils. For practical reasons,

a set of square coils are used. The analytical result for the field produced by a square coil is derived

in Appendix A.1.

If we place two coils centered around the same axis with opposite a distance d apart and

flow current in the opposite directions (as we would do for an anti-Helmholtz configuration), the
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resulting fields are given by

B⃗anti-Helmholtz = B⃗coil(x, y, z +
d

2
)− B⃗coil(x, y, z −

d

2
). (5.5)

where B⃗coil is given by Equation A.5. Physically, the coils must rest outside of the cryogenic

insulation foam block, so the length of each side of the square coils is set to L = 54 cm. To find

the correct spacing d between the coils for an anti-Helmholtz configuration, we look at the on-axis

equation and Taylor expand about the origin:

B⃗anti-Helmholtz(0, 0, z) =z

(
−

16µ0I
(
L2d

(
3d2 + 5L2

))
π (d2 + L2)2 (d2 + 2L2)3/2

)

+ z3

(
64µ0IL

2
(
−10d9 − 40d7L2 − 39d5L4 + 26d3L6 + 43dL8

)
π (d2 + L2)4 (d2 + 2L2)7/2

)

+O(z5). (5.6)

The first term leads to the linear gradient we want for the anti-Helmholtz configuration, but the

second term represents an unwanted third derivative. We can then select d so that the second term

goes to zero. This occurs when d = 51 cm.

The expected Baxgrad produced by the coils is then given by the derivative

Baxgrad =
1

2

∂
(
ẑ · B⃗anti-Helmholtz(0, 0, z)

)
∂z

=
8µ0IdL

2
(
3d2 + 5L2

)
π (d2 + L2)2 (d2 + 2L2)3/2

. (5.7)

The coils are wound on aluminum u-channels to set the dimensions. Additional coil sets in all

dimensions are added in Helmholtz configurations to shim away the background field, forming an

aluminum cage structure that also acts to set the spacing of each coil set. Details of the setup are

in Figure 5.1

5.3 Characterization of homogeneity

In Equation 5.2, Baxgrad is treated as a constant. However, one can imagine that fields of

this form can have a spatially varying Baxgrad (or other phase-contributing forms with an effective

Baxgrad that is spatially varying). Since the phase seen by the ions is no longer independent of
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a

c

b

Name L (cm) d (cm)
a Anti-Helmholtz, 54.6 50.8

North-South Helmholtz
b East-West Helmholtz 46.2 52.7

c Up-Down Helmholtz
{
46.2

43.3
52.7

Figure 5.1: The field-generating coils for both shimming away background fields and creating
Baxgrad. The coils that lie on the North-South axis (a) serve both purposes. The dimensions of
each coil’s side length (L) and spacing (d) are listed in the table on the right, with allowances for a
1/2 cm offset between the current and the u-channel to account for the finite thickness of the wire
assembly. Note that the Up-Down coils (c) were reduced in size along the East-West axis so that
they could fit between the two pieces of aluminum used to clamp the foam assembly.

their position, this can cause the ions to decohere. Such field can be caused by inhomogeneity

in the applied fields as well as any background magnetic fields. To place a bound on this effect,

we aim to measure the magnetic field around the ions’ resting place. Since we are interested in

deviations on the order of a part in 104 of the fields over the spatial extent of the ion cloud, of order

1 cm, directly measuring the fields is impractical. Instead, we can measure the fields on a much

larger surface enclosing the ion trap, with Maxwell’s equations prescribing the fields inside. The

proper machinery for this technique is to perform a multipole expansion of the fields about the ion

location. Once we measure enough points to determine the multipole coefficients, the fields and its

derivatives can be sensitively found from the analytic form of the multipole fields.

5.3.1 Multipole expansion

In the region where the ions are there are no current sources. In the magnetostatic regime, ∇⃗ · B⃗ = 0

∇⃗ × B⃗ = 0.

(5.8)
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We can then write the magnetic field as the gradient of a scalar potential ΦB:

B⃗ = −∇⃗ΦB. (5.9)

This scalar potential can be decomposed into a multipole expansion [57]

ΦB =
∞∑
l=0

l∑
m=−l

1

2l + 1

(
almr

′l + blm
1

r′l+1

)
Y m
l (θ, ϕ), (5.10)

where alm and blm are the multipole moments and Y m
l are the spherical harmonics. (For conve-

nience, we define r′ as a dimensionless quantity r′ ≡ r
r0

to absorb the spatial dimensions of the

coefficients alm and blm. This is so that each coefficient has the same units. For further conve-

nience we can define r0 as 1 meter.) Since there are no currents near the origin, it is unphysical

to have terms that go to infinity at the origin. Therefore all blm terms must be zero, and we can

leave them out of our expansion. Furthermore, since we are working with real magnetic fields, it

is convenient to work with the “real spherical harmonics” Ylm, which give rise to physical fields.

These are defined as [58]

Ylm ≡


1√
2

(
Y m
l + (−1)mY −m

l

)
m > 0

Y m
l m = 0

1
i
√
2

(
Y m
l − (−1)mY −m

l

)
m < 0.

(5.11)

We can then define our expansion as

ΦB =

∞∑
l=0

l∑
m=−l

almϕlm where ϕlm ≡
(

1

2l + 1
r′lYlm(θ, ϕ)

)
. (5.12)

In this formulation, the fields are fully described by the real scalar multipole coefficients alm.

The basis scalar fields ϕlm and the resulting basis vector fields Blm ≡ −∇⃗ϕlm(1T ·m) are tabulated

in Table 5.1. Note that the l = 0 term is not included since it is a constant, so it goes to zero when

the gradient is taken and therefore it does not produce a magnetic field.

Note that the l = 2, m = 0 term gives rise to a Baxgrad:

−∇⃗ϕ2,0 ∝
1

2
√
5π

(x x̂+ y ŷ − 2z ẑ) . (5.13)
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Table 5.1: Mathematical formulations of the ϕlm multipole expansion functions up to l = 4 and
the resulting magnetic fields. Dimensional constants are dropped.
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5.3.2 Sources of decoherence

We can repeat the integral from Equation 5.4 to find which of the basis fields contribute to

phase of the ions. The fields with non-zero phase contributions are listed in Table 5.2.

l m ∂zB
lm
z {∂2x∂z, ∂2y∂z, ∂2z∂z}Blm

z

〈
B⃗lm(r⃗0 + r⃗rot) · r̂rot

〉
t

2 0 − 1√
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{0, 0, 0} 1
2
√
5π
rrot
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√
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√
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√
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√
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2π rrot y0 z0
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{
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π
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π
,− 4√

π
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4
√
π
rrot
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(
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√
10
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√
5
2π rrot x0 z0

2 −1
2

√
5
π (x− y)(x+ y)

{
−
√

5
π ,
√

5
π , 0
}

1
4

√
5
π rrot

(
x20 − y20

)
Table 5.2: The multipole expansion fields up to l = 4 that lead to phase accumulation and decoher-
ence. Dimensional constants are dropped. To recover dimensions for quoted

〈
B⃗lm(r⃗0 + r⃗rot) · r̂rot

〉
t
,

use rrot and spatial initial positions in m and the result is given in T.

From this we can infer the sources of decoherence. While the l=3, m={0,±1} terms contribute

a frequency that depends linearly on an ion’s position in a single dimension during the cycle of

Erot, the harmonic motion of the ions in the trap means that this phase contribution will average

to zero over the timescale of the Ramsey fringe.

Next, consider the l=4,m={-2,-1,1} terms, which have spatial dependence on products of

different dimensions. Consider the sign of such a frequency in each octant. The term x0y0 is

positive in half the octants and negative in the other half. If the ions move in a harmonic trap with

the same trapping frequency in each dimension, then assuming the ions traveled in a trajectory

through the origin, the each ion will only occupy two opposite octants which contribute frequencies
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of the same sign, so they will contribute an overall frequency. However, if the trapping frequencies

are different in each dimension, the ions trajectories will occupy all eight octants for equal times,

so the overall frequency contribution cancels out.

This means that the leading cause of decoherence in the ion cloud terms from the l=4,

m={0,2} terms, which have quadratic dependence on ion location. These terms are synonymous

with a ∂2xi
∂zBz since they are the only terms that have such nonzero third derivatives.

To quantify how much decoherence these terms cause, consider these derivatives as derivatives

of the effective Baxgrad, as in ∂2xi
∂zBz = 2∂2xi

Baxgrad. Consider a hard shell of ions with radius rcloud.

The difference between the highest and lowest phase-contributing Baxgrad that the ions see due to

each derivative is then

∆Baxgrad = −1

2
∂2xi

∂zBzr
2
cloud. (5.14)

We want the spread in frequencies to be such that after 20s of our Ramsey fringe we want the

highest deviating frequencies to have only lost or gained one tenth of a period.

The number of cycles of Ramsey fringe is given by

N = ft,

where t is the evolution time and f is the frequency. For a decohering ion, we require that the

number N of cycles it undergoes is within 1/10 of the mean number of cycles N0

|N −N0| <
1

10
,

or in terms of frequencies

|(f0 +∆f)t− f0t| <
1

10
.

From this we can derive our constraint on the frequency deviation ∆f :

|∆f | < 1

10

1

t
.

From Equations 5.1 and 5.3 we can rewrite ∆f in terms of ∆Baxgrad:∣∣∣∣3gµBh (∆Baxgrad) rrot

∣∣∣∣ < 1

10

1

t
.
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Then using Equation 5.14 we have∣∣∣∣3gµBh
(
1

2
∂2xi

∂zBzr
2
cloud

)
rrot

∣∣∣∣ < 1

10

1

t
,

which finally gives us a limit on the third derivatives of the magnetic field:

∣∣∂2xi
∂zBz

∣∣ < h

15gµBr2cloudrrott
. (5.15)

Given an rcloud of 0.5 cm, an rrot of 2.6 mm, and a Ramsey evolution time of 20 s, this gives

∣∣∂2xi
∂zBz

∣∣ < 2.5× 10−3 mG/cm3. (5.16)

For a Baxgrad of 3.07 mG/cm (corresponding to an f0 of 50 Hz), a fractional representation of this

bound is given by ∣∣∣∣∆Baxgrad

Baxgrad

∣∣∣∣ < 10−4. (5.17)

5.3.3 Magnetic field measurement scheme

To determine the coefficients that describe the background magnetic field near the ions, we

measure the field at grid points on the surface of a cuboid centered at the ion location with sides of

length 20 cm (details in Figure 5.2). There are a few key points of this measurement grid. Firstly,

each Y m
l has a spatial dependence of order (cos(θ))l eimϕ, meaning some component of the fields

have l/2 periods over the domain of θ (since θ only goes from 0 to π) and m periods over the domain

of ϕ. To accurately sample the fields, the measurement grid must contain at least l points about

θ and 2m points about ϕ to reach the spatial Nyquist frequency. This is demonstrated visually in

Figure 5.2c.
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Figure 5.2: The setup for measuring the magnetic field around the ion location.

a) an LSM303 triple-axis magnetometer, read by a microcontroller, is used to measure the fields.

The magnetometer is mounted on non-magnetic plastic and aluminum components that hold it

above the table. A grid of nine points spaced 10 cm apart are measured at three different heights.

b) the resulting grid of points. The green point at the center of the grid represents the location of

the ions at their resting point in the prototype experiment.

c) The radial component of B4,±4 in the context of the measurement grid. This view is looking

down ẑ. Blue represents negative values and red represents positive values. Each lobe has its own

measurement point, just meeting the spatial Nyquist sampling criteria.

We can then use the measured fields to fit the multipole coefficients, and then multiply each

coefficient by its corresponding field’s theoretical contribution to Baxgrad and its derivatives.

Let Bmeas be a matrix where each row corresponds to a different spatial location on the

measurement grid, and the columns are the Bx, By, and Bz measured at each location. One can

then evaluate the value of Blm at each measurement point and construct the corresponding Blm

basis fields. Then the alm that fully describe the fields inside the region can be found via

Bmeas =
∑
l,m

al,mBlm. (5.18)

We truncate the expansion at l = 4 since higher order terms do not occur far from field sources. If

we flatten the matrices into one-dimensional row vectors (Bmeas → Bmeas, Blm → Blm), then this
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relation can be written as

Bmeas =



a(1,−1)

a(1,0)

...

a(4,4)


[
B(−1,1), B(−1,0), ..., B(4,4)

]
. (5.19)

This can now be solved with traditional multiple linear regression techniques, with appropriate

error estimation.

5.4 Background fields from the optical table

Standard optical tables are made from ferromagnetic steel. Since our experiment is sensitive

to magnetic fields, we need to characterize the effect of the tables on the relevant magnetic field

parameters at the location of the ions. The magnetic nature of the table is demonstrated in Figure

5.3, which maps out the magnetic domains by measuring the fields on the surface of the table. The

Melles Griot  4’x8’x12” optical table

Ion location

Position (in)

!𝐵!"#!$

Baxial (Gauss)

Po
si

tio
n 

(in
)

Figure 5.3: Axial magnetic field measured at the surface of the table. The fields are measured
at points on a 2 inch by 2 inch grid, and the measurement is then smoothed out with a gridded
interpolation.
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spatial size of the domains is of order a few inches, which looks like high order multipole terms

when near to the ions. We characterize the relevant fields using the technique described in Section

5.3.3 at various points in relation to the optical table. First, we measure 35 cm above the table,

which represents the ideal location of the ion location for practical engineering-related concerns.

Next, we measure 45 cm above the table, which represents lifting the ion trap up by (or equivalently

lowering the optical table) by 10 cm to reduce the effects of the optical table. Finally, we measure

35 cm above the table and 90 cm off the end of the table, which represents the effect of the second

nearest optical table if we were to remove the optical table from underneath the trap and replace

it with a non-magnetic 80-20 structure. The fields at each location are listed in Table 5.3

Baxgrad ∂2xBaxgrad ∂2yBaxgrad ∂2zBaxgrad

(mG/cm) (mG/cm3) (mG/cm3) (mG/cm3)
35 cm above 0.20± 0.15 0.0034± 0.0043 0.0039± 0.0043 −0.0073± 0.0055

45 cm above 0.01± 0.06 −0.0004± 0.0020 0.0015± 0.0019 −0.0011± 0.0024

90 cm off edge −0.46± 0.58 −0.0003± 0.0004 0.0004± 0.0004 −0.0004± 0.0005

Table 5.3: Measurements of the relevant derivatives of the background magnetic fields with 95%
confidence intervals

To meet the requirement prescribed by Equation 5.16 with some margin for error, we decide

to lower the table by 15 cm such that the ions sit 50 cm above the table.

5.5 Field-distorting effects of the optical table

The ferromagnetic properties of the table not only produce spatially inhomogeneous back-

ground magnetic fields, but can also have their spins aligned by experimental field sources, thus

distorting the field lines near the surface of the table. To characterize this effect, we take a single

coil from the up-down coil pair of the apparatus described in Figure 5.1 and place it so that it’s

axis is pointing into the table. We then measure the on-axis field due to the coil both with and

without the presence of the table. Each measurement is performed once with the coil turned off

and once with the coil turned on, so the difference represents the background-free fields from the

coils. The results are shown in Figure 5.4.
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Figure 5.4: The effect of the optical table on the fields produced by a current-carrying coil with its
axis perpendicular to the surface of the table

We see significant enhancement of the field produced by the coil near the surface of the table,

consistent with the field from the coil magnetizing the table and aligning its spins. The experiment

is performed again with the current running in the opposite direction, and the magnitude of the

fields was found to be the same within errorbar.

5.6 Homogeneity of anti-Helmholtz fields

As you move away from the center of a pair of anti-Helmholtz coils, the higher order deriva-

tives start to become nonzero. This could look like deviations of Baxgrad that lead to decoherence.

To verify our coil design, we can use the full analytic fields of our anti-Helmholtz coils given by

Equations 5.5, A.4, and A.3. If we evaluate take their derivative along z, we can find Baxgrad and

then we can look for deviations of Baxgrad in the size of the ion cloud. The results are shown in

Figure 5.5.

The saddle point behavior of Baxgrad is characteristic of the l=4, m=0 multipole term from

Table 5.2. Comparing the inhomogeneity to the benchmark prescribed by Equation 5.17, we can
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Figure 5.5: Homogeneity of the Baxgrad generated by the analytic fields from the designed square
anti-Helmholtz coils over the spatial extent of the ion cloud. Each line represents a path along z
at a different displacement along x, representing the radial distance from the trap’s z-axis.

see that over the spatial extent of a 0.5cm radius cloud, the inhomogeneities are two orders of

magnitude smaller than what is required.

While the theoretical fields are sufficiently homogeneous, the actual dimensions of the con-

structed coils will be slightly different than their theoretical counterparts. In addition, we are

concerned that the ferromagnetic table underneath the coils might distort the fields in a way that

causes decoherence. For these reasons, we perform the measurement described in Section 5.3.3 at

the center of the anti-Helmholtz configuration both with the coils suspended on a nonmagnetic

frame and above the optical table.

We pass 3.2 A of current through the coils, which are each three turns. Using Equation

5.7, the theoretical Baxgrad produced is 4.3 mG/cm. The measurements are listed in Figure 5.6.

From these measurements we can determine that the optical table does not significantly affect the

fields from the coils near the ions, and in both cases the homogeneity is sufficient to satisfy the

requirement of Equation 5.16.
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Baxgrad ∂2xBaxgrad ∂2yBaxgrad ∂2zBaxgrad

(mG/cm) (mG/cm3) (mG/cm3) (mG/cm3)

4.67 ± .05 .0004 ± .0014 .0014 ± .0014 -.0017 ± .0018

4.8 ± .05 .0011 ± .0016 .0007 ± .0016 -.0018 ± .0021

Figure 5.6: Measurements of the fields from the anti-Helmholtz coils. Top: measured away from
the optical table on a non-magnetic aluminum surface. Bottom: measured on the surface of the
optical table. Measurements at all 27 points are taken with the coils turned off, then measured
again with the coils turned on. We then subtract the two to isolate the fields due to the coils, and
perform the multipole expansion fits on this differential set of measurements.
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5.7 Shim coils for B4,0 and B4,2

If we are unable to keep the area of interest sufficiently nonmagnetic to avoid decoherence

due to magnetic field effects, we wish to be able to shim away the responsible magnetic sources

of decoherence. As demonstrated in Section 5.3.2, the primary source of magnetic-field based

decoherence arises from the l = 4, m = 0 and l = 4, m = 2 terms of the multiple expansion of the

magnetic field. If we can re-create these fields using coils, we should be able to shim away these

fields.

A coil array is designed to be low-profile and fit within the existing configuration, while still

providing the necessary degrees of freedom required for generating the higher-order magnetic fields.

The design is shown in Figure 5.7.

12
3

4

a

ab

b

Figure 5.7: Layout of the B4,0 and B4,2 shim coils.

Each coil is placed on the surface of the foam, 25.4 cm away from the axis of the trap. Each

coil has a radius of 5 cm, and adjacent coils are spaced 26 cm apart.

We will use the following notation, as labeled in Figure 5.7. coil set 1 is the existing Baxgrad

coil set, coil set 2 are the four coils closest to the source chamber, coil set 4 is the four coils closest

to the cryocooler, and coil set 3 is the last four coils. Each coil set has a subset a of two horizontal
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coils and a subset b of two vertical coils.

Observing symmetries of the basis fields reduces the degrees of freedom of the relative currents

through each coil. The following symmetries can be observed. For both fields coil sets 2 and 4

have the same current magnitude. For B4,0, each coil set has its a subset with equal current to its

b subset, and in B4,2 each coil has its a subset with opposite current to its b subset.

Not counting the degree of freedom of overall amp-turns, there are then two degrees of freedom

for the amp-turns of the m = 0 coil pair and one for the m = 2 coil pair. The fields are then given

by 
B⃗4,0coils = B⃗coils1 − α4,0(B⃗coils2 + B⃗coils4) + β4,0B⃗coils3

B⃗4,2coils = (B⃗coils2a −Bcoils2b + B⃗coils4a − B⃗coils4b) + α4,2(B⃗coils3b − B⃗coils3a).

(5.20)

The relevant amp-turn ratio for each coil subset can be found using the analytic form of the fields,

which are given in Appendix A.2. We can then rotate and translate these fields to model the

field from each coil subset and decompose these fields into the spherical harmonic basis field set

described in Section 5.3.

For the B4,0 coils, the two degrees of freedom are constrained to set the B2,0 and B4,2

components to zero, while for the B4,2 coils, the single degree of freedom is constrained such that

the B2,2 component is zero. The resulting amp-turn ratios can be found in Table 5.4.

α4,0 0.93
β4,0 7.56
α4,2 6.50

Table 5.4: Solved relative amp-turn ratios for the shim coils

The fields resulting in these amp-turn ratios for this coil configuration are shown in Figure

5.8. The discrete nature of the coils results in an artifact on the generated B4,0 fields, which shows

up as an l = 4, m = 4 contribution. Since this term does not contribute to decoherence, and in

fact does not generate a Brot at all, this artifact is not a problem.
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Figure 5.8: Analytic fields generated by the B4,0 and B4,2 shim coil configurations. Left: the
radial component of the theoretical B⃗l,m of the two decoherence-causing fields. Middle: The radial
component generated by the coil configuration. Right: A decomposition of the resulting field into
the basis fields.



Chapter 6

Detection

The population in the state of interest is read out by dissociating the ions state-selectively.

As the molecular ions dissociate, the thorium keeps the ion’s charge, leaving the fluorine atoms

neutral. A high-voltage electric field is then pulsed to accelerate the thorium ions towards a

detector. Because the dissociated Th+ ions are lighter than the un-dissociated ThF+ ions, they

acquire more speed while traversing the same potential gradient, so they arrive at the detector

sooner. This allows the two species to be differentiated, and the dissociated Th+ cloud representing

the population in the state of interest (times the dissociation efficiency) can be read off separately

from the un-dissociated ThF+ cloud which represents the remaining total ion number.

6.1 Dissociation

Just as the neutral atoms are state-selectively ionized using a two photon process, the ions

are dissociated state-selectively using a two photon process with pulsed lasers. This method is

illustrated in Figure 6.1.

6.1.1 Optics

The REMPD1 photon is generated using a Sirah CBST-LG-18 dye laser pumped by a Quanta-

Ray PRO pulsed Nd:YAG laser. The REMPD2 photon is generated using doubled light from the

same Nd:YAG laser. A diagram for generating the tunable REMPD1 photon is shown in Figure 6.2.

The cavity of the laser is formed between the diffraction grating and the reflective surface of the
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...

REMPD1 (tunable)

(312nm)REMPD2

Dissociated Continuum

Intermediate State

Figure 6.1: Energy level diagram for state detection using resonance-enhanced multi-photon ion-
ization (REMPD). The first photon, denoted REMPD1, excites the ions from the state of interest
to an intermediate state. The wavelength of this photon can be tuned to excite from a different
initial state to the same intermediate state, thus providing state selectivity for the dissociation.
Then the second photon, denoted REMPD2, excites the ions from the intermediate state to above
the dissociation threshold, allowing the molecule to fly apart.

output coupler. Similarly to the ECDL configuration, the wavelength can be tuned by changing the

angle of the diffraction grating with a piezoelectric crystal. The gain medium is a dye cell pumped

with 532nm light from the same Nd:YAG laser that generates the REMPD2 photon. The pump

light is formed into a sheet with a diverging cylindrical lens which allows the pump to spatially

overlap with the profile of the lasing beam inside of the dye.

Once the light leaves the cavity, it passes through the cell again in a ‘‘preamplification’’ stage.

It then is expanded with a set of telescoping lenses to prevent saturation of the gain medium, and is

amplified in the main amplifier dye cell. Once the light leaves the laser, a small amount of power is

picked off to a wavemeter and Fabry-Perot cavity to read the wavelength and image the spectrum



108

BBO
crystal

Sirah Commercial Dye laser

Pellin-Broca
prism

electronic 
rotation stages

aperature

partial 
beamsplitter

partial 
beamsplitter

photo-
detector

to 
wavemeter

python control

PBS

532nm from Nd:YAG
pump

piezo

telescope

quadrant
photodetector

to experiment

diffraction
gratings

osc./preamp
dye cell

amplifier
dye cell

output 
coupler

downstream
to 

Fabry-Perot

Figure 6.2: Optics layout for generating the tunable REMPD1 photon.

of the light. The rest of the power goes into a beta barium borate (BBO) crystal in which second

harmonic generation (SHG) produces frequency doubled light. The light then passes through a

Pellin-Broca prism in which dispersion causes the two frequencies of light (fundamental and second

harmonic) to become angularly resolved. The doubled light is then selected with an aperture. The

doubled power is measured with a photodetector. Finally, the beam travels of order one meter to

the experiment. Some of the light is sent into a quadrant photodetector, so that the downstream

pointing of the beam can be measured.

The efficiency of the process of SHG in the BBO crystal is sensitive to the angle of the

BBO, and the optimal angle changes with the wavelength of the light. For each wavelength, the

angle of the BBO can be optimized using the intensity on the photodetector as a feedback. After

performing this calibration at many different wavelengths, an optimal angle for all wavelengths can

be calculated with a piecewise cubic interpolation of the optimal angle as a function of wavelength.
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The downstream beam pointing can also change with the wavelength, as well as with thermal

fluctuations. Since the horizontal beam pointing can be adjusted with the angle of the Pellin-Broca

prism, the angle of the Pellin-Broca can be actively closed-loop controlled such that the beam points

to the center of the quadrant photodetector, providing a spatially stable beam to the experiment.

The dye used in the cell is 4-Dicyanomethylene-2-methyl-6-p-dimethylaminostyryl-4H-pyran

(DCM) dye in a 0.3 g/L solution in ethanol (with a diluted solution of 0.09 g/L in the amplifier

cell). This dye is chosen because it fluoresces over a broad range, offering a flat response to within

15% over the range of 600-650 nm [59], allowing the doubled photon to be tunable over a range of

roughly 30800-33300 cm−1.

6.1.2 Spectroscopy

Reading the population in the different ro-vibrational states of 3∆1 is done by changing the

wavelength of REMPD1. Spectroscopy of the different transitions gives us a roadmap for which

REMPD1 energies we can use to measure the population in each ro-vibrational state. Spectroscopy

of the 3∆1, v = 0 manifold is shown in Figure 6.3.

The population in the state of interest to the eEDM measurement (3∆1, v = 0, J = 1) is

measured by choosing the (3∆1, v = 0, J = 1)→ (Ω = 0, J = 2) transition.

Similarly, the populations the states of interest in the higher vibrational manifolds can be

read off by tuning REMPD1 to a transition from these manifold. Transitions from 3∆1, v = 1 are

shown in Figure 6.4, while transitions from v = 2 are shown in Figure 6.5.
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a)

b)
Transition Energy (cm−1)
(3∆1, v = 0, J = 1)→ (Ω = 0, J = 2) 32098.16(05)
(3∆1, v = 0, J = 2)→ (Ω = 0, J = 3) 32098.53(05)

Figure 6.3: Dissociation spectroscopy for v = 0. The electronic configuration of intermediate state
is unknown. However Ω can be inferred by the spacing and relative amplitudes of the transitions.
a) Transitions to an Ω = 2 intermediate state. Each peak represents a single transition, except
for the central peak in which all of the transitions which preserve J overlap. b) Energies of the
prominent and well-isolated transitions.

a)

b)
Transition Energy (cm−1)
(3∆1, v = 1, J = 1)→ (Ω = 0, J = 2) 31973.94(05)
(3∆1, v = 1, J = 2)→ (Ω = 0, J = 3) 31974.31(05)

Figure 6.4: Dissociation spectroscopy for v = 1. a) Transitions to an Ω = 2 intermediate state. b)
Energies of the prominent and well-isolated transitions.
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a)

b)

c)

Transition Energy (cm−1)
(3∆1, v = 2, J = 2)→ (Ω = 0, J = 1) 32040.18(05)
(3∆1, v = 2, J = 2)→ (Ω = 0, J = 3) 32042.40(05)
(3∆1, v = 2, J = 1)→ (Ω = 2, J = 2) 31202.31(05)
(3∆1, v = 2, J = 2)→ (Ω = 2, J = 3) 31202.74(05)

Figure 6.5: Dissociation spectroscopy for v = 2. a) Transitions to an Ω = 0 intermediate state.
b) Transitions to an Ω = 2 intermediate state. c) Energies of the prominent and well-isolated
transitions.
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6.1.3 Hyperfine selectivity

Because the Ramsey spectroscopy involves the hyperfine states within 3∆1, v = 0, J = 1, it

is not enough to read out the whole of the population in this manifold, as we can do by dissociating

from the (3∆1, v = 0, J = 1)→ (Ω = 0, J = 2) transition from Figure 6.3. We additionally need to

be able to distinguish population in mF = 3/2 and mF = −3/2. We can do this by turning back

on LmF without closing any of the other vibrational and rotational levels. The effect of doing this

is shown in Figure 6.6

-3/2 3/2-1/2 1/2

}

}

other 
rovibrational

levels

=

Figure 6.6: Shelving of the unwanted hyperfine states into higher ro-vibrational states with LmF .

Because the excited Ω = 0− state does not have an mF = 5/2 state, LmF does not talk to

the mF = 3/2 state. Meanwhile, all other mF levels will be excited to the Ω = 0− state and fall

down predominantly into other ro-vibrational manifolds. If we then dissociate from J = 1, the

population we dissociate will represent the population that was in mF = 3/2.

Alternatively, we can do the exact procedure for mF = −3/2 by swapping the orientation of

LmF with respect to the quantization axis.

6.2 Ion imaging

After being state-selectively dissociated, the ions are imaged using a micro-channel plate

(MCP) detector. The setup is shown in Figure 6.7. The mesh is a grid-like electrode designed

to prevent electric fields from leaking out and causing lensing of the ions as they approach the

detector. The MCP itself is held at a negative high voltage so that the ions accelerate towards the
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Figure 6.7: Ion imaging scheme using a micro-channel plate (MCP) detector.

detector and strike the detector with around 2700 eV of kinetic energy. This collision induces an

electron avalanche along the potential gradient between the front and back plate of the MCP. The

electron avalanche produces a current which can be capacitively read out from the MCP, resulting

in a time-of-flight (TOF) signal of ions arriving.

The detector consists of an array many small channels. Electron avalanches happen individ-

ually in each of these small channels, keeping the detection spatially resolved. The electrons then

fly out the back of the MCP and are then accelerated towards a phosphor screen a short distance

away held at a high voltage. Once again, the potential gradient caused by the high voltage means

the electrons hit the phosphor screen with a kinetic energy of over 3 keV, which is enough energy

to cause the phosphor screen to fluoresce. Because the lifetime of the fluorescing states of the

phosphor is long compared to the timescales of the ion detection (tens of µs), the phosphor screen

effectively integrates the 2-D projection of ions incident on the detector. A charge coupled device

(CCD) camera is then used to image the fluorescing phosphor plate.
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6.2.1 Electronics
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Figure 6.8: Schematic for the MCP readout circuit. Cp,f and Cp,b are the parasitic capacitance to
ground of the front and back plate of the MCP respectively, while Cp,s is the parasitic capacitance
of the oscilloscope and the cabling to the scope. The MCP is a Beam Imaging Solutions BOS-40-
OPT01-MS dual matched MCP with a BOS-40-92% transmission grid mesh and a P42 phosphor
screen. The switches SWm and SWp are Behlke HTS 31-03-HB-C fast HV transistor switches,
which are controlled with an opto-isolator to protect the TTL generator from high voltage shorts.
Additional protection to the power supplies on the switching circuits is provided by a set of diodes
which allow high-voltage transients induced by the switching to be dumped from the output of the
switch to ground.

The electronics used to drive the detector are shown in Figure 6.8. If the time domain signal

is a Gaussian of width σt then the corresponding Fourier domain signal is also a Gaussian, of width

σω = 1
σt

To faithfully capture the signal, we want to capture frequencies up to 2σω, which includes

97% of all frequency components in the signal. The characteristic frequency ω that we need to be

sensitive to is then ω = 2
σt

.
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This frequency informs our choice of values for the components in the readout circuit. If

we want the current induced on the MCP to flow primarily through the coupling capacitor and

through the gain resistor, we want the impedance of this path to be small compared to the direct

path to ground through the parasitic capacitance.

ZCcoup + (Rgain||ZCp,s)≪ ZCp,f (6.1)

1

iωCcoup
+

(
1

Rgain
+ iωCp,s

)−1

≪ 1

iωCp,f
(6.2)

1

Ccoup
≪ 1

Cp,f
− iω

(
1

Rgain
+ iωCp,s

)−1

(6.3)

Ccoup ≫

(
1

Cp,f
− i 2

σt

(
1

Rgain
+ i

2

σt
Cp,s

)−1
)−1

, (6.4)

where || represents impedances in parallel (A||B) ≡ (A−1 + B−1)−1. We also want the RC time

of the coupling capacitor and the gain resistor to be small compared to the timescale of the signal

so that the voltage at the readout port can rise and fall quickly enough to faithfully reproduce the

signal, i.e.

RgainCcoup ≪ σt. (6.5)

The final requirement is one of signal to noise. The voltage readout on the port will be equal to

the gain resistance times the current induced on the MCP plate. If we require a signal of at least

Vmin for adequate signal to noise, this means that

IinducedRgain > Vmin. (6.6)

The parameters can then be chosen to satisfy Equations 6.4, 6.5, and 6.6. Given the measured values

of the relevant parameters, as given in Table 6.1, a set of parameters that satisfy the requirements

are:


Rgain = 200 Ω

Ccoup = 235 pF.
(6.7)
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σt 0.5 µs
Cp,s 110 pF
Cp,f 118 pF
Cp,b 174 pF
Iinduced 0.1 mA
Vmin 20 mV

Table 6.1: Measured values relevant to the MCP readout electronics

6.2.2 Mesh gating

While holding the mesh at ground does minimize ion lensing effect from electric fields leaking

out from the detector attracting the ions, it also leaves a ”shadow” artifact on the ion cloud. This

effect is shown in Figure 6.9. We leave the mesh at the same voltage as the front plate of the MCP,

because the lensing can be accounted for and the grid resulting from the alternative interferes with

individual ion counting.

tmesh = 162.86 s 167.14 s 171.43 s 173.57 s 175.71 s 180.00 s

Figure 6.9: Effect of the mesh of the ion image. The mesh is held at ground until the time tmesh

listed above each image, at which point the voltage is switched to be the same as the front plate of
the MCP. In the time scale of the ion arrivals, the left image is equivalent to leaving the mesh at
the same voltage as the front plate the whole time, while the right image is equivalent to leaving
the mesh at ground the whole time. The images in between represent switching the voltage during
the ion arrival, resulting in extreme lensing. When the mesh is grounded, lensing is suppressed,
but the mesh leaves an artifact on the image. When the mesh is held at the same voltage as the
front plate of the MCP, lensing focuses the image of the cloud and the grid artifact is removed.
The images are taken using ThF+ without dissociation.

The image of the mesh projected on the ion cloud can be used to calibrate the distance scale

on the image to the distance scale on the plane of arrival of the ions onto the MCP. This calibration

is done in Figure 6.10.
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a)

1.04(1) mm

3.64(5) cm

b)

25.7(2) px

Figure 6.10: Comparison of the MCP mesh geometry and image artifact. a) An image of the MCP
detector. b) An image of a ThF+ cloud with the mesh grounded. From these the pixel size can be
calibrated to a size of the ion cloud when it hits the detector. 1 pixel represents a size of 40.5(5)
µm.

6.2.3 Phosphor screen gating

The dissociated Th+ ion number constitutes the signal of interest. In general in our system,

there are no more than 200 dissociated ions, meaning we can image them in 2-D on our detector

and can count individual ions based on their location without significant overlap. However, the

non-dissociated ThF+ ions will also arrive at the detector. The slight difference in mass between

the two species means that the Th+ ions will arrive at the detector slightly before the ThF+ ions.

We can then selectively image the Th+ ions by turning off the phosphor screen in the time between

the arrival of the two species. This is demonstrated in Figure 6.11.

High temperature ions on the tail of the ThF+ cloud can still be captured by the phosphor

screen and show up as background on the signal. To prevent this, the time at which the phosphor

screen is turned off is tuned to maximally capture the Th+ cloud without any pollution of ThF+

ions. Because this timing changes with arrival time, it must be scanned every time the trap is

shimmed. Figure 6.12 shows an example of such a scan.
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Captured by phosphor screen

Th+

ThF+

Figure 6.11: MCP capacitive readout signal with phosphor gating. Top: the set voltage on the
phosphor plate as a function of time. The potential is turned off between the Th+ and ThF+ arrival
times so that only the Th+ is imaged. Middle: the resulting scope trace of the capacitive readout
of the front. Switching the phosphor voltage to ground creates a pickup on the signal via parasitic
capacitance between the mesh and the MCP (orange). However, this pickup is repeatable, so the
difference between the scope trace and a background trace with no ions gives the ion signal, shown
in the bottom. The data shown is a single shot, with a single shot background. This data was
taken with high REMPD power and optically pumping all ions into the dissociated state, so the
Th+ count in this trace is higher than in normal operation.
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Figure 6.12: Scan of phosphor gate turn off time. Top: ions counted on the phosphor image. The
data without REMPD is fitted to a single erf function representing the integral of the ThF+ cloud,
while the data with REMPD is fitted to a sum of two erf functions representing the integral of
both the Th+ and ThF+ clouds. Bottom: the derivative of the above curves, corresponding to the
actual ion intensity profile. Overlayed in green is a time of flight trace from another experiment.
The dashed vertical line represents the time in which no ThF+ ions pollute the phosphor signal,
i.e. the blue signal on the top plot is negligible.
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6.2.4 Capacitive readout interpretation

6.2.4.1 Theory

The MCP plate is held at −2700 V, so the kinetic energy at the time of impact is 2700 eV. For

ThF ions, this equates to 45 km/s, meaning the ions spend only 0.2 µs within 1 cm of the detector.

The electrons knocked loose then undergo an acceleration in an electric field of order kV/cm, so

the timescale of the electron avalanche effect is similarly short. Since this is small compared to RC

times of the detector, the shape of a single ion’s response is dominated by the RC response of the

system rather than the shape of the individual ion’s interaction. If the detector has a rise time of

τrise and a fall time of τfall, then the voltage response of an individual ion on the detector is given

by

RV (t) =
e
1− t

τrise
(
et/τrise − 1

)
θ(τrise − t, t)

e− 1
+ θ(t− τrise)e

τrise−t

τfall , (6.8)

where θ is the Heaviside step function. Since we are reading out the current via a capacitive

coupling, the current response is given by

RI(t) = C
dRV

dt
∝ e

1− t
τrise θ(τrise − t, t)
(e− 1)τrise

− e
τrise−t

τfall θ(t− τrise)

τfall
. (6.9)

If Nions fall on the detector in the form of a Gaussian with width σion, then the signal read on the

detector look like a convolution of this with the current response function:

Ireadout(t) ∝

(
Nions

σion
√
2π
e
− t2

2σ2
ion

)
∗RI(t)

=Nions

 e

σ2
ion−2τriset

2τ2rise
+1(

erf
(

σ2
ion+τrise(τrise−t)

√
2σionτrise

)
−erf

(
σ2

ion−τriset√
2σionτrise

))
2(e−1)τrise

−
e

σ2
ion+2τfallτrise−2τfallt

2τ2fall erfc
(

σ2
ion+τfall(τrise−t)

√
2σionτfall

)
2τfall

 .

(6.10)

This current is converted to a voltage ready by the scope by the gain-setting resistor Rgain. The

impulse response functions (Equation 6.8 and 6.9) and the resulting readout signal (Equation 6.10)



121

are shown in Figure 6.13, wherein a fit to the TOF signal yields time constants:
τrise = 2.50± .04 µs

τfall = 44± 3 µs.
(6.11)
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Figure 6.13: The impulse response functions of the MPC capacitive readout. Top: The TOF trace
of a ThF+ cloud, and a fit of the theoretical form given by Equation 6.10. Bottom: The voltage
and current impulse response given by Equations 6.8 and 6.9, where the time constants are given
by the above fit.

The fall time can be understood to as the RC time for the power supply to recharge the

front plate through the 150 kΩ current-limiting resistor, with the relevant capacitance being all

capacitances from the front plate to ground:

τfall ∼ (150 kΩ)(Cp,f +
(
C−1

coup + C−1
p,s )

−1
)
= 30 µs. (6.12)

One thing to note is that integrating the whole waveform is not a measure of Ion number since it

evaluates identically to zero: ∫ ∞

−∞
Ireadout(t)dt = 0. (6.13)
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Instead, one can first take the indefinite integral of the measured waveform and then integrate

this signal over all time. Using first the relation of convolution to indefinite integrals and then the

relation of convolution to integrals over all space, we can see how this is proportional to the number

of ions:∫ ∞

−∞

∫ t′

−∞
Ireadout(t)dtdt

′ ∝
∫ ∞

−∞

∫ t′

−∞

(
Nions

σion
√
2π
e
− t2

2σ2
ion

)
∗RI(t) dtdt

′ (6.14)

=

∫ ∞

−∞

(
Nions

σion
√
2π
e
− t′2

2σ2
ion

)
∗

(∫ t′

−∞
RI(t) dt

)
dt′ (6.15)

∝
∫ ∞

−∞

(
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σion
√
2π
e
− t2

2σ2
ion

)
∗RV (t) dt (6.16)

= Nions

(∫ ∞

−∞

(
1

σion
√
2π
e
− t2

2σ2
ion

)
dt

)(∫ ∞

−∞
RV (t) dt

)
(6.17)

∝ Nions. (6.18)

since the first integral evaluates to 1 and RV does not depend on any ion-dependent features. In

practice, this method for ion counting is impractical because a) any low-pass filtering from parasitic

capacitance interferes with this measure, b) this requires that multiple ion clouds arriving on the

detector be much farther apart than the length of the MCP recharge, and c) this method is more

susceptible to noise and offsets on the signal.

Alternatively, we can recover the signal representing the time density of ions hitting the

detector. If we know the impulse response function RI using the time constants fit in Figure 6.17,

we can simply deconvolve the measured signal with this impulse response to recover the time-domain

ion density.

Generally, deconvolution is sensitive to noise, particularly high frequency noise. This is

because deconvolution of A and B is mathematically equivalent to dividing A by B in Fourier

space. The regions of frequency space where the Fourier transform of B, F{B}, goes to zero are

divided by a small number, so any noise in F{A} in these regions is greatly enhanced.

To treat this, we can apply a low-pass bidirectional Butterworth filter with cutoff frequency

at ωc = 2π 2
τrise

. Because frequencies above this are naturally filtered away by the RC response
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of the MCP, we do not lose any signal information by applying this filter, and we only remove

detection noise. With this treatment, we are able to successfully deconvolve the impulse response

RI from the detector to remove the negative tail corresponding to MCP recharging. The result is

shown in Figure 6.14.
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Figure 6.14: Recovery of the ion signal of a ThF+ cloud via deconvolution with the current impulse
response function, given by Equation 6.9 with values from Equation 6.11. The deconvolution
removes the negative tail of the signal, allowing the signal to be directly integrated to recover the
ion number corresponding to the peak.

The deconvolution algorithm still requires sufficient signal to noise ratio, since some frequen-

cies below ωc are still enhanced. For lower ion numbers with insufficient signal to noise, directly

integrating the positive part of the signal is a good approximation of the area, and a much more

robust algorithm.

6.2.4.2 Area algorithm and uncertainty

To count the number of ThF+ ions in the TOF trace, we must integrate the area under the

TOF signal. There is some nuance in the way this is done in order to allow for noise and offsets,

as well as to characterize the uncertainty in the measurement. The algorithm used to extract the

area is as follows:

(1) Use timings to predict rough arrival time of ion cloud
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(2) Fit the ion signal to a Gaussian using the prediction of arrival time as the initial fit condi-

tion. From the fit extract the arrival time and the Gaussian width

(3) Take the mean of the portion of the signal that is 3.5σ or more away from the fit location

in order to find the background on the signal. Subtract this background away

(4) Numerically integrate the background-subtracted signal to 3.5σ on either side of the arrival

time to extract the area under the curve.

In order to place an uncertainty prediction on this measurement, we must consider the fol-

lowing:

(a) Statistical uncertainty in the background of the signal. This uncertainty is given by the

product σbackground · (width of area integrated), where σbackground is standard deviation of

the points used to determine the background divided by the square root of the number of

points.

(b) Algorithmic uncertainty from the arbitrary assignment of 3.5σ as the region of interest. To

probe this, we can vary the width integrated over and look at the standard deviation of

the results.

(c) Statistical uncertainty from the noise on the signal. Since this cannot be directly measured,

we can approximate it by assuming that the noise profile in the background is the same as

the noise profile on the signal. This is mathematically equivalent to the value calculated in

the uncertainty of the background.

The total uncertainty can be estimated by adding these three uncertainties in quadrature. To

verify the validity of this error characterization method, a Monte Carlo simulation is done with a

Gaussian signal in the presence of white noise. The results are displayed in Figure 6.15.
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Figure 6.15: Monte Carlo simulation of the area counting algorithm for a small Gaussian signal
in the presence of significant noise. Left: A single simulated signal. Middle: The area counted by
the algorithm for 30 simulations, with error bars representing the uncertainty calculated according
the the method proposed. The actual area of the simulated Gaussian is 1. Right: statistics on
500 simulations. The percent of simulations in which the area measured by the algorithm is Nσ
away from the true value is shown for varying N. The black line represents the ideal behavior of a
Gaussian distribution. Agreement with this line indicates that the σ calculated by the algorithm
is correct.

6.2.5 Ion counting

Ions imaged on the phosphor screen are counted individually using the phython package

skimage. The code is listed in Figure 6.16. First, a smoothing filter is applied with a width of two

pixels, so that pixel-to-pixel CCD noise is removed. Then, an erosion filter is applied such that

nearby, partially overlapping ions have the bridging region between them carved away. This helps

in uniquely identifying the two neighboring ions. Next, the peaks are found using a threshold of

three pixel brightness units and a minimum ion-ion distance of five pixels.

import skimage as sk
import scipy.ndimage as sn

def get_img_info_count(img, IMG_threshold = 3, IMG_min_distance = 5):
# Smooth image
img = sn.median_filter(img, size=2)
# Erode between ions
img = sk.morphology.erosion(img)
# Find peaks
peaks = sk.feature.peak_local_max(img, threshold_abs=IMG_threshold , min_distance=

IMG_min_distance)
return peaks

Figure 6.16: Python code to count individual ions on the phosphor screen image
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Using ions identified with this algorithm, a point spread function for an ion incident on the

detector can be measured. This is done in Figure 6.17.

If the ion density is high enough that the distance between adjacent ions is smaller than

the width of the point spread function, the ions become indiscernible in the image, and cannot be

counted separately. This means that the algorithm that counts the number of ions in the image

will begin to saturate. This is demonstrated in Figure 6.18 using a Monte Carlo method.

6.3 Simultaneous doublet readout

Reading the dissociated Th+ ions in a spatially resolved way allows additional information

to be extracted from the readout. In a single image, populations in the two different doublets can

be differentiated by making use of the fact that the two doublet states have opposite orientation

relative to Erot. During photodissociation, the excess energy of the absorbed photons relative to the

dissociation threshold translates into kinetic energy of the dissociated atoms, which then fly apart

from each other along their inter-nuclear axis. As the neutral flourine atom flies away from the

heavier thorium ion, the direction of the kinetic energy imparted to the thorium is determined by

the molecule orientation. The result of this process is that we see two spatially separated clouds of

Thorium ions on our detector, each cloud corresponding to different orientation and thus a different

doublet state. This is demonstrated in Figure 6.19.

We can then count individual ions in each cloud, thereby directly reading out the number of

ions in each state. This dissociation-based state readout technique is further detailed in [60], as

well as in Ng’s thesis [39].
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Figure 6.17: Phosphor image of Th+ ions. 2153 captured images of individual ions are analyzed.
a) The point spread function of each ion on the detector. On the left is the mean image of all ions
counted, and on the right is an image of a single ion. Each dimension is integrated along both axes.
The spatial distribution fits nicely to a Lorentzian as a function of radius.
b) Statistics on the ion pictures. On the left is the integrated brightness on the detector due to
the ion. The greyed histogram bar indicated where the algorithm used to count the ions is under-
counting due to low signal to noise ratio. This bin is excluded from the fit of the distribution. On
the right is the distribution of widths of a Lorentzian fit to each ion image. Both distributions fit
nicely to normal distributions.
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Figure 6.18: Demonstration of ion counting algorithm and its saturation via a Monte Carlo sim-
ulation. a) Top: simulated images of ion clouds using the point spread function from Figure 6.17
for each of 300 ions in a normal spatial distribution of varying widths. Bottom: The same images,
with the ions detected by the counting algorithm overlaid in red. Significant under-counting of the
ions can be observed in the image with distribution width 20 px. b) Resulting saturation of the
counting algorithm at different cloud widths. Each point represents five simulations.
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Figure 6.19: Spatially resolved images of the two doublets. For each image, the one double is
depleted using the appropriate microwave transition, leaving only population in the remaining
doublet. Each image represents the ion locations cumulatively counted from 3 images. Plotted to
the right is the integral of each cloud across the horizontal axis. The shaded gray region indicates
the region where the doublets overlap, beyond which the signal predominantly represents a single
doublet.



Chapter 7

Preliminary Results and Conclusion

7.1 Rabi oscillations

With the trapping, state preparation, and readout techniques previously described we are able

to perform quantum operations in the eEDM sensitive states. A demonstration of Rabi flopping is

shown in Figure 7.1.

The Rabi flopping is done by reducing the magnitude of the polarizing field until the hyperfine

states are near-degenerate leading to population mixing. An Erot of 13.7 V/cm is chosen such that

the Rabi rate is equal for both doublets. More information on this can be found in Ng’s thesis [39].

Each of the ion number data points corresponds to either preparing one hyperfine level1

mF = ±3/2 and reading out the population2 in the same state mF = ±3/2 (labeled as “In”)

or preparing in the other hyperfine level mF = ∓3/2 and reading out from mF = ±3/2 (labeled

as “Anti”). We vary the prepared state instead of the final state because the polarization of

the dissociation laser changes the efficiency of dissociating from different final states. From the

population in each of the two states we can extract the “asymmetry.” The asymmetry between the

ion numbers NIn and NAnti measured in this way is defined as

Asymmetry ≡ NIn −NAnti
NIn +NAnti

. (7.1)

This quantity is normalized and is therefore immune certain types of common mode noise, such as

slow drift in ion creation or dissociation efficiency.
1 Here we denote a the mF level with ± because of the ambiguity as to which state is prepared.
2 The method for reading out population in a specific hyperfine state is described in Section 6.1.3.
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Figure 7.1: Rabi flopping of the eEDM-sensitive states.
a) Modulation of the magnitude of Erot that gives rise to the Rabi oscillations. The magnitude is
ramped in 1.2 ms, the maximum speed at which the resonant circuit can ramp linearly based on
its response time (which is different for each channel).
b) Oscillations in the population in each state. First the ions are optically pumped to one side
of the hyperfine manifold, then the Rabi sequence is performed. Finally, the population on one
side of the hyperfine manifold is read out by turning on LmF and dissociating. The asymmetry of
the two curves (defined in Equation 7.1) is calculated and the results fit to a sinusoid. The Rabi
frequency ΩRabi is fit to 60.30(49) Hz. From this we can determine the time at which the phase of
the sinusoid is π/2 (marked with a dashed black line). The time for an effective π/2 pulse can then
be extracted from this phase, yielding Tπ/2=3.95(6) ms.

.



132

We can then fit this quantity to extract the Rabi frequency and the phase. The phase of the

asymmetry does not quite go to zero for zero TRabi since the ramps have finite duration, so a small

amount of phase accrues during each ramp. An effective π/2 pulse can then be chosen by finding

where the asymmetry first crosses zero.

7.2 Ramsey oscillations

With a π/2 pulse demonstrated in the Rabi oscillation, we then have the tools to perform the

Ramsey scheme discussed in Section 2.1.3. Since our state preparation sequence populates both

orientation states of the mF = ±3/2 hyperfine state and the π/2 pulse is designed to be effective

for both doublets, the Ramsey experiment will work on both doublets simultaneously. If we then

use the spatially selective readout technique discussed in Section 6.3 to measure the population in

each doublet independently, we can measure the frequencies of both doublets simultaneously in a

single Ramsey experiment. This is done in Figure 7.2

We apply a magnetic field with coils described in Section 5.2 to generate an f0 of ∼110 Hz.

At early times the doublets are in phase, but after some time the doublets go out of phase due

to their different g-factors (as in Equation 2.5). At around 1 s, the doublets are maximally out of

phase.

With this, we have demonstrated simultaneous measurement of the eEDM sensitive frequency

channels fu and fl from Equation 2.6.

7.3 Concluding remarks

This thesis has documented the building of an experiment to measure the eEDM from con-

ceptual design of the experiment to the sensitive measurement of eEDM sensitive states. Along the

way, we have provided many engineering and technological solutions to the unique problems of an

experiment as complicated as this one.

Now that Ramsey fringes have been demonstrated, the next steps towards realizing an eEDM

measurement in this system are:
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Figure 7.2: Ramsey fringes for the two doublets measured simultaneously via angular resolved
photo-dissociation.

• Demonstrate blackbody-limited coherence time (∼ 20 s).

• Multiplex the experiment to allow for continuous loading and readout using the demon-

strated ion shuttling electrode design.

• Characterize sources of systematic error in the experiment (as was done in [51]).

• Collect blinded eEDM-sensitive measurements until the statistical uncertainty is similar in

magnitude to the characterized systematic uncertainty.
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Just as several graduate student years had been spent on production techniques and spec-

troscopy of ThF+ before I joined, many graduate student years will be spent after I leave completing

these four steps, and I am confident that they are left in capable hands.
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Appendix A

Biot-Savart Integrals

In order to design coil geometries for generating desired magnetic fields, it is useful to have

analytic expressions for the general building blocks for these coils. While the resulting expressions

are complicated, they can be evaluated numerically in order to simulate the fields of a superposition

of these coils without the need for approximation. The square coil expression is used in Sections

5.2 and 5.6, while the circular coil expression is used in Section 5.7.

A.1 Square current loop

Here we derive the analytic expression for the fields from a square loop of wire. Begin with a

single square current loop with sides of length L. The relevant geometry is depicted in Figure A.1.

The Biot-Savart law [57] tells us that the magnetic field from a length of current is given by

B⃗(r⃗) =
µ0I

4π

∫
dr⃗′ × R⃗′

|R⃗′|3
. (A.1)

Considering each segment separately we can write this as

B⃗coil(r⃗) = B⃗12 + B⃗23 + B⃗34 + B⃗41

=
µ0I

4π

(∫ L
2
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2
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(A.2)
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Figure A.1: The geometry of a square loop of current. The origin is taken to be the center of the
loop. The current is taken to run anticlockwise in the order of nodes 1, 2, 3, and 4. r⃗ is defined as
the vector to an arbitrary point in space (x, y, z) at which we wish to know the field, r⃗′ is defined
as the vector to the differential part of the current loop which we are integrating over, and R⃗′ is
defined as the distance from this differential wire length to (x, y, z). Note that R⃗′ = r⃗ − r⃗′.

If we define a function that looks like the solution to an integral of this form,

H(a, b, i, j, k) ≡µ0I
4π

(
a− L

2(
−
(
b+ L

2 (−1)i
)2 − z2)√(L2 (−1)(k+1)δj,0+i + x
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)
2 + z2

)
,

(A.3)

where δi,j is the Kronecker delta, then the solution to the integral from Equation A.2 can be written

as

B⃗coil(r⃗)=


zH(y, x, 1, 1, 1)− zH(y, x, 0, 0, 1)

zH(x, y, 1, 1, 0)− zH(x, y, 0, 0, 0)(
L
2 + y

)
H(x, y, 0, 0, 0) +

(
L
2 − y

)
H(x, y, 1, 1, 0) +

(
L
2 + x

)
H(y, x, 0, 0, 1) +

(
L
2 − x

)
H(y, x, 1, 1, 1)


. (A.4)

If we evaluate this expression at x = y = 0, this turns into the familiar expression for the on-axis

field from a square loop of wire:

B⃗coil(0, 0, z) =

0, 0,
µ0IL

2

2π
(
L2

4 + z2
)√

L2

2 + z2

 . (A.5)
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A.2 Circular current loop

Direct integration of the Biot-Savart equation (Equation A.1) tells us the magnetic field from

a circular loop of current centered at the origin with its axis aligned in ẑ with a radius or R passing

current I:

B⃗ =
µ0I
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(
− 4Rρ

ϱ2

))
+ζ
(
r2+R2

)
E

(
4Rρ

ζ2

)
+ϱ
(
r2+R2

)
E

(
− 4Rρ

ϱ2

))


,

(A.6)

where 

ρ = x2 + y2

r = x2 + y2 + z2

ϱ =
√
(R− ρ)2 + z2

ζ =
√
(ρ+R)2 + z2

and E and K are the elliptic E and K integrals, respectively.



Appendix B

A modified chain rule for vector fields

In the derivation for the ponderomotive potential in Section 4.1.2, in order to expand the

electric field about the secular position, we had to introduce an operator for the gradient of a vector

field:

⃗⃗∇E⃗ ≡


∂
∂x E⃗

∂
∂y E⃗

∂
∂z E⃗

 . (B.1)

We then later used a modified version of the chain rule in this higher-dimensional space to arrive

at our result:

(
⃗⃗∇E⃗) · E⃗ =

1

2
∇⃗|E|2 − E⃗ × (∇⃗ × E⃗). (B.2)

We will prove this relation here. Begin with the left hand side:

(
⃗⃗∇E⃗) · E⃗ =


∂
∂x E⃗

∂
∂y E⃗

∂
∂z E⃗

 ·

Ex

Ey

Ez

 =
∑
i

Ei

(
∂

∂ri
E⃗

)
, (B.3)

where the sum over i is a sum over the dimensions ri = {x, y, z} and Ei = {Ex, Ey, Ez}. We can

write this in vector form and distribute the factor of Ei, giving

(
⃗⃗∇E⃗) · E⃗ =

∑
i

Ei


∂
∂ri
Ex

∂
∂ri
Ey

∂
∂ri
Ez

 =
∑
i


Ei(

∂
∂ri
Ex)

Ei(
∂
∂ri
Ey)

Ei(
∂
∂ri
Ez)

 . (B.4)
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We can add a clever zero to this equation of the form

(
⃗⃗∇E⃗) · E⃗ =

∑
i


Ei(

∂
∂ri
Ex)

Ei(
∂
∂ri
Ey)

Ei(
∂
∂ri
Ez)

−
∑
i


Ei(

∂
∂xEi)

Ei(
∂
∂yEi)

Ei(
∂
∂zEi)

+
∑
i


Ei(

∂
∂xEi)

Ei(
∂
∂yEi)

Ei(
∂
∂zEi)


︸ ︷︷ ︸

=0

, (B.5)

then combine the first two sums to get

(
⃗⃗∇E⃗) · E⃗ =

∑
i


Ei(

∂
∂ri
Ex − ∂

∂xEi)

Ei(
∂
∂ri
Ey − ∂

∂yEi)

Ei(
∂
∂ri
Ez − ∂

∂zEi)

+
∑
i


Ei(

∂
∂xEi)

Ei(
∂
∂yEi)

Ei(
∂
∂zEi)

 . (B.6)

We can then move the sum inside the vector:

(
⃗⃗∇E⃗) · E⃗ =


∑

iEi(
∂
∂ri
Ex − ∂

∂xEi)∑
iEi(

∂
∂ri
Ey − ∂

∂yEi)∑
iEi(

∂
∂ri
Ez − ∂

∂zEi)

+
∑
i


Ei(

∂
∂xEi)

Ei(
∂
∂yEi)

Ei(
∂
∂zEi)

 . (B.7)

Note that the term in parenthesis goes to zero if i = x in the first row, i = y in the second row, or

i = z in the third row, so we can exclude his from the sum, giving

(
⃗⃗∇E⃗) · E⃗ =


∑

i ̸=xEi(
∂
∂ri
Ex − ∂

∂xEi)∑
i ̸=y Ei(

∂
∂ri
Ey − ∂

∂yEi)∑
i ̸=z Ei(

∂
∂ri
Ez − ∂

∂zEi)

+
∑
i


Ei(

∂
∂xEi)

Ei(
∂
∂yEi)

Ei(
∂
∂zEi)

 , (B.8)

or explicitly

(
⃗⃗∇E⃗) · E⃗ =


Ez(

∂
∂zEx − ∂

∂xEz) + Ey(
∂
∂yEx − ∂

∂xEy)

Ex(
∂
∂xEy − ∂

∂yEx) + Ez(
∂
∂zEy − ∂

∂yEz)

Ey(
∂
∂yEz − ∂

∂zEy) + Ex(
∂
∂xEz − ∂

∂zEx)

+
∑
i


Ei(

∂
∂xEi)

Ei(
∂
∂yEi)

Ei(
∂
∂zEi)

 . (B.9)

We can then recognize each term in parentheses as a component of the curl of E⃗:

(
⃗⃗∇E⃗) · E⃗ =


Ez(∇⃗ × E⃗)y − Ey(∇⃗ × E⃗)z

Ex(∇⃗ × E⃗)z − Ez(∇⃗ × E⃗)x

Ey(∇⃗ × E⃗)x − Ex(∇⃗ × E⃗)y

+
∑
i


Ei(

∂
∂xEi)

Ei(
∂
∂yEi)

Ei(
∂
∂zEi)

 , (B.10)
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and then recognize this vector as (negative) the cross product of E⃗ with its curl:

(
⃗⃗∇E⃗) · E⃗ = −E⃗ × (∇⃗ × E⃗) +

∑
i


Ei(

∂
∂xEi)

Ei(
∂
∂yEi)

Ei(
∂
∂zEi)

 . (B.11)

With the remaining vector, we can then use the one dimensional chain rule ∂
∂x(f(x)

2) = 2f ∂f
∂x to

arrive at

(
⃗⃗∇E⃗) · E⃗ = −E⃗ × (∇⃗ × E⃗) +

∑
i


1
2(

∂
∂xE

2
i )

1
2(

∂
∂yE

2
i )

1
2(

∂
∂zE

2
i )

 . (B.12)

We can pull out the factor of 1/2 from the vector and move the sum inside the derivatives:

(
⃗⃗∇E⃗) · E⃗ = −E⃗ × (∇⃗ × E⃗) +

1

2


∂
∂x(
∑

iE
2
i )

∂
∂y (
∑

iE
2
i )

∂
∂z (
∑

iE
2
i )

 , (B.13)

and finally, recognizing that
∑

iE
2
i is exactly the magnitude |E|2, we arrive at the result:

(
⃗⃗∇E⃗) · E⃗ = −E⃗ × (∇⃗ × E⃗) +

1

2
∇⃗|E|2. (B.14)
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