
Theory of Steady-State Superradiance

by

Minghui Xu

B.S., Electronic Engineering, Peking University, 2008

M.S., Physics, Peking University, 2011

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Physics

2016



This thesis entitled:
Theory of Steady-State Superradiance

written by Minghui Xu
has been approved for the Department of Physics

Prof. Murray J. Holland

Prof. James K. Thompson

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.



iii

Xu, Minghui (Ph.D., Physics)

Theory of Steady-State Superradiance

Thesis directed by Prof. Murray J. Holland

In this thesis, I describe the theoretical development of the superradiant laser, or laser in the

extreme bad-cavity regime. In this regime, the cavity decay rate is much greater than the atomic

dynamics. The atoms emit photons into the cavity mode superradiantly in steady state. We

develop group-theoretic methods that enable us to exactly solve mesoscopic systems with hundreds

of atoms. We demonstrate the synchronization of atomic dipoles in steady-state superradiance.

With this synchronized system, we propose conditional Ramsey spectroscopy which allows us to

observe Ramsey fringes indefinitely, even in the presence of atomic decoherence. Furthermore,

we explore manifestations of synchronization in the quantum realm with two superradiant atomic

ensembles. We show that two such ensembles exhibit a dynamical phase transition from two

disparate oscillators to quantum phase-locked dynamics. Finally, we study the mechanical effect of

the light-atom interaction in the steady-state superradiance. We find efficient many-body cooling

of atoms. The work described in this thesis lays the theoretical foundation for the superradiant

laser and for a potential future of active optical frequency standards.
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Chapter 1

Introduction

Our era has seen quantum physics beginning to enable new technologies with unprecedented

capabilities, e.g., optical lattice clocks with stability at the 10−18 level [9, 49], small quantum

processors implementing Shor’s factoring algorithm [82, 144], and quantum teleportation over 100

kilometers [84, 145]. The light-matter interaction has been a valuable resource for probing and

controlling quantum systems, and for synthesizing new quantum states. It is therefore the basis

for many quantum technologies such as quantum computation, communication, simulation, sensing

and metrology.

Cavity quantum electrodynamics (QED) represents a particularly important system for ap-

plications in quantum physics. First, cavity output photons are information carriers. It was shown

that cavity fields could be used to probe the Mott insulator to superfluid phase transition [94] and

to detect topological order and statistics of anyonic excitations [58]. Second, cavity dissipation pro-

vides the source to dissipatively control quantum systems. Based on the idea of quantum reservoir

engineering [29], it was shown that an atomic ensemble coupled to a decaying cavity mode could

be driven dissipatively to the targeted spin-squeezed state [25]. The cavity dissipation can also be

used for the feedback control of quantum systems [138] and for cooling the objects coupled to the

cavity [108, 141]. Third, cavity mediated interactions give rise to interesting quantum many-body

states, e.g., crystallinity and frustration with Bose-Einstein condensates in a multimode cavity [38],

frustration and glassiness with cavity-confined spin systems [39], and to the Dicke quantum spin

glass of atoms and photons with atomic qubits coupled to discrete cavity modes [119]. In this thesis,
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it will be shown that the cavity-mediated dissipative coupling leads to synchronization states of

atomic dipoles [140, 142]. Last, optical cavities are ideal for conversion between the stationary gate

qubits and flying qubits (photons), which is essential for quantum networks. Quantum gates can be

implemented in optical cavities with high fidelities [15]. An elementary quantum network of single

atoms in optical cavities has been demonstrated [109]. Therefore, an important theme of current

research in quantum physics is to explore how engineered photon fields interacting with quantum

systems could be harnessed to probe and control the system, synthesize new quantum states, and

process quantum information. Over the past decade, cavity QED has been expanded to new phys-

ical systems, such as atoms coupled to chiral bosonic waveguides [102], nitrogen-vacancy (NV)

centers in diamond coupled with photonic structures [21], quantum dots in photonic crystals [124],

and superconducting qubits coupled with an inductance/capacitance resonator [146]. This will not

only advance quantum technologies, but also allow for better understanding of quantum many-body

physics and fundamental questions in quantum mechanics.

The laser is a typical cavity QED system. Since its first demonstration in 1960 [85], the laser

has had a profound impact on fundamental science research and has found widespread applications

in society in general. Lasers typically operate in the good cavity regime of cavity QED where the

linewidth of the cavity is much narrower than the bandwidth of the gain medium [95]. The atoms

generate a coherent electromagnetic field in the cavity by means of stimulated emission [113].

An important application of lasers is as a stable local oscillator for optical atomic clocks [83].

The precision currently achievable by atomic clocks is remarkable; for example, the accuracy and

instability of state-of-the-art optical lattice clocks lies in the realm of 10−18 [9, 49]. The pursuit of

even more stability is motivated by the potential benefit to a wide range of fields in the physical and

natural sciences, facilitating progress in diverse areas such as; redefinition of the system of physical

units in terms of time [14], clock-based geodesy [20], gravitational wave detection [40], and tests of

fundamental physics and cosmology [6, 26]. Atomic clock developments have also enabled spin-off

applications, including precision measurements [111], quantum state control [77], and investigations

of quantum many-body physics [88, 106].
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Such lasers rely on stabilization against reference cavities. The most advanced such laser

realized to date has been achieved at JILA and reaches linewidths about 40mHz corresponding to

quality factors of Q > 1015 [22]. The principal limiting factor in the way of further improvements

of these local oscillators is thermal vibrations of the dielectric coatings on the cavity mirrors [65].

To overcome this technical challenge, researchers have proposed an alternate approach using an

active system based on steady state superradiance on a clock transition to create an even more

stable light source [18, 93].

As shown in Ref. [93], a steady-state superradiant laser is a possible system to consider for

generating millihertz linewidth light. It was demonstrated in a recent proof of principle experiment

using a two-photon Raman transition [12]. In the regime of steady-state superradiance, the cavity

decay is much faster than all other processes. Therefore, the cavity mode plays the role of a

dissipative collective coupling for the atoms that leads to the synchronization of atomic dipoles [140,

142]. The emergence of a macroscopic collective dipole induces an extremely narrow linewidth for

the generated light [93, 140]. The optimal parameters are in the weak-coupling regime of cavity

QED [95] [single-atom cooperativity parameter C < 1, see definition in Eq. (2.50)], that is opposite

to the strong-coupling situation usually considered. Narrow-linewidth superradiant lasers require

weak-dipole atoms (e.g. using intercombination lines or other forbidden transitions) confined in a

high-finesse optical cavity.

In this thesis, I provide comprehensive studies of the steady-state superradiance. The thesis

is structured as follows:

• Chapter 2 introduces Dicke superradiance, laser theory, and features of steady state su-

perradiance. We emphasize that the superradiant laser is indeed collective spontaneous

emission in steady state.

• Chapter 3 describes novel group-theoretic methods to efficiently solve the laser equation.

The method may be applied to a wide variety of applications for simulating open quantum

systems with large system size.
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• Chapter 4 presents our new perspective on steady state superradiance: the synchronization

of atomic dipoles. This offers an alternative understanding of the narrow linewidth of the

superradiant laser. By demonstrating the synchronization effect, we propose conditional

Ramsey spectroscopy with synchronized atoms. This could have important consequences

for atomic clocks.

• Chapter 5 studies quantum synchronization with two ensembles of superradiant atoms. We

show quantum synchronization as a dynamical phase transition. Quantum fluctuations and

quantum correlations are found to be important, shedding light on current understanding

of the quantum aspects of synchronization.

• Chapter 6 proposes to utilize steady-state superradiance for the efficient cooling of atoms.

The temperature limit is determined by a modified atomic linewidth rather than the cavity

linewidth as in normal cavity assisted cooling. The cooling rate is enhanced by the super-

radiance. The new cooling scheme is dubbed “supercooling”. It represents a first example

of many-body laser cooling.

• Chapter 7 concludes the thesis and discusses the potential future of active optical standards.



Chapter 2

The superradiant laser

2.1 Dicke superradiance

Superradiance is a fundamental quantum optical phenomenon in the photon emission process

by many emitters. It was first predicted by Robert H. Dicke [28] in the context of spontaneous

emission. Consider a gas of atoms (or molecules) initially prepared in the excited state decaying

by spontaneous emission to a lower state. In a dilute atomic system, the photon emission by

each atom can be considered as independent. As shown in Fig. 2.1(a), the emission obeys an

exponential decay law (decay time constant τsp) and the radiation pattern is essentially isotropic.

These features are notably changed when the atomic ensemble becomes dense enough. As shown

in Fig. 2.1(b), the atomic ensemble starts to radiate photons much faster and stronger than the

emission of independent atoms, and that radiation occurs in a well defined direction depending on

the geometry of the atoms [42].

This phenomenon was termed “superradiance” by Dicke in 1954. Essentially, it is due to the

indiscernibility of atoms with respect to the photon emission. This causes constructive interference

in the photon emission by the ensemble. The intensity becomes proportional to the square of the

number of atoms N . In the above case [Fig. 2.1(b)], when the wavelength of light is much greater

than the separation of atoms, the atoms interact with the light in a collective and coherent way.

As the emission begins, the quantum fluctuation of the vacuum field acts on independent atoms,

and an order appears in the atomic ensemble which can be defined as phase-locking of the atomic

dipoles. As a result, the atoms emit light as a high intensity pulse, with rate ∝ N2 and short
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of initial preparation 373 transitionswith the samepolarization and different
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Abstract:
Thisessaypresentsa theoreticaldescriptionof thesuperradiancephenomenon,in which both thequantalandtheclassicalaspectsarediscussed.

Starting from the simple two-level atom-small sample Dicke model, we successivelyintroduce various complications inherent to a realistic
superradianceexperiment:effectsof Van der Waalsinteraction betweentheatoms, propagationand diffraction of theelectromagneticfield in the
sampleand finally theeffectsrelatedto atomiclevel degeneracyor neardegeneracy.We recall how to calculatethefield radiatedby a superradiant
systemin asingleexperimentandhowto determine,for aseriesof identicallypreparedsuperradiantsamples,thelargeshot to shot fluctuationsof the
emittedlight properties.Thepresentationtries to unify variouspointsof view andformalismsdevelopedin previousworksandto introducesimply
and progressivelythebasic physicalconceptsrelevantto thesuperradiancephenomenon.

1. Introduction. Motivation of this essay

In “ordinary” fluorescenceexperiments,agasof atoms(or molecules)initially preparedin the upper
level of an electronictransitiondecaysby spontaneousemissionof light towardslower statesaccording
to a processin which the atoms (or molecules) of the sample can be consideredas interacting
independentlyfrom eachotherwith the radiationfield. Theemission,obeying an exponentiallaw, takes
acharacteristictime r~,equalto the reciprocalof the radiativedecayrateF of the initially excitedlevel
andthe radiation patternof the atomicsampleis essentiallyisotropic (seefig. la). Thesefeaturesare

D~ector

time

.a.

Detector

b. time

Fig. 1. Comparisonbetweenthegeneralcharacteristicsof ordinaryfluorescenceandsuperradianceexperiments.(a)Ordinaryspontaneousemission

is essentiallyisotropic with anexponentiallydecayingintensity(timeconstant;~,).(b) Superradianceis anisotropicwith anemissionoccurringin ashort
burst of duration ~~rw/N.

Figure 2.1: Source: Ref. [42]. Comparison between the general characteristics of ordinary fluo-
rescence and superradiance experiment. (a) Ordinary spontaneous emission is essentially isotropic
with exponential decaying intensity (time constant τsp). (b) Superradiance is anisotropic with an
emission occurring in a short burst of duration ∼ τsp/N .

duration of the order of τsp/N .

Since Dicke’s original work [28], superradiance has been extensively studied and demonstrated

in a wide variety of physical systems [42]. More recently, it was demonstrated in quantum dots [114],

NV centers [62], and atoms trapped along a photonic crystal waveguide [37]. In spite of the

complications of different physical situations, the essential mechanism of superradiance is pretty

simple.

To illustrate the key aspects of superradiance, it is easiest to introduce the permutation

invariant atomic states. Consider an ensemble of N two level atoms, identified by the indices

1, 2, ..., j, ...N . The upper level and lower level of atom j are represented as |e〉j and |g〉j respectively.

All the atoms are prepared in the upper level at time 0 so that

|ψ(0)〉 = |e〉1|e〉2...|e〉N . (2.1)

We make the basic assumption that the atoms are indiscernible with respect to the photon emission

or absorption process in the subsequent evolution. Therefore, the system must remain in a Hilbert

subspace invariant to atomic permutations. Note that the two-level atom can be described as a
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fictitious pseudospin-1/2 system with |e〉 and |g〉 being the spin up and down state respectively.

So the N -atom permutation invariant state is isomorphous to a symmetrical superposition of N

spin-1/2 states [42], which are the familiar angular momentum eigenstates |J,M〉 with J = N/2

and M = −N/2,−N/2+1, ..., N/2−1, N/2. There are N +1 such states, see Fig. 2.2. Due to their

application in superradiance, these states are also referred to as Dicke states. Note that J + M

is the number of atoms in the excited state. So the state in which all atoms are excited may be

written as |ψ(0)〉 = |N/2, N/2〉.

/2/2

, 0 [| , ,..., , ,..., , ]

NN

J M S g g g e e e= º >

/2

,..., , ]

N

,..., ,,..., ,., ,

/2 NN

g g g, ,..., ,, ,..., ,, ,..., ,

N

,...,.,...

Symmetrical state of N two-level identical atoms

Figure 2.2: Dicke states of N two-level atoms. S denotes the symmetrizer with respect to atomic
labels.

To define the electric dipole of j-th atom, we introduce the atomic raising and lowering

operators

σ̂+
j = |e〉j〈g|j , σ̂−j = |g〉j〈e|j , (2.2)

and the atomic population inversion operators

σ̂zj = |e〉j〈e|j − |g〉j〈g|j . (2.3)

These are Pauli matrices and obey the well-known commutation relations

[σ̂+
i , σ̂

−
j ] = δij σ̂

z
j , [σ̂zi , σ̂

±
j ] = ±2δij σ̂

±
j . (2.4)

The dipole operator for the j-th atom is

Dj = (σ̂+
j + σ̂−j )Dε̂ , (2.5)
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where D is the electric dipole matrix element of the |e〉 ↔ |g〉 transition and ε̂ is the normalized

vector along the polarization direction.

Under the condition of Dicke superradiance, individual dipoles may phase-lock. It is natural

to assume that N atoms behave like a macroscopic dipole resulting from the sum of all N individual

dipoles

D̂ =
N∑
j=1

D̂j = (Ĵ+ + Ĵ−)Dε̂ , (2.6)

where we have introduce the collective operators

Ĵ± =
N∑
j=1

σ̂±j . (2.7)

Recalling that the rate of photon emission by a single atom is proportional to 〈σ̂+
j σ̂
−
j 〉, we naturally

generalize this to get the superradiant photon emission rate [42],

WS ∝ 〈Ĵ+Ĵ−〉 . (2.8)

For the Dicke state |J,M〉, we immediately get

WS ∝ (J +M)(J −M + 1) . (2.9)

We have used

Ĵ±|J,M〉 =
√

(J ∓M)(J ±M + 1)|J,M ± 1〉 . (2.10)

From Eq. (2.9), we can see that the photon emission rate increases from N for M = N/2 (fully

excited) to 1
2N(1

2N + 1) for M = 0 (half excited). Therefore, the photon emission rate strongly

increases when the system cascades down the ladder of the |J,M〉 states as shown in Fig. 2.2. The

maximum rate of emission is proportional to N2 for M = 0.

The N2 scaling of the photon emission rate is directly related to the build up of correlations

between atomic dipoles, which is the very essence of Dicke superradiance. By using Eq. (2.7) and

permutation symmetry, we can rewrite Eq. (2.8) as

〈Ĵ+Ĵ−〉 =

〈
N∑
i=1

σ̂+
i

N∑
j=1

σ̂−j

〉
= N〈σ̂+

i σ̂
−
i 〉+N(N − 1)〈σ̂+

i σ̂
−
j 〉 . (2.11)
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There are N terms 〈σ̂+
i σ̂
−
i 〉 representing the population in the excited state and N(N − 1) cross

terms 〈σ̂+
i σ̂
−
j 〉 that represent the atomic correlations. These correlations are reminiscent of the spin-

spin correlations appearing in a ferromagnetic system. In order for the superradiance to manifest,

the atom-atom correlation, measured by 〈σ̂+
i σ̂
−
j 〉, should be nonzero.

It is easy to get

〈J,M |σ̂+
i σ̂
−
j |J,M〉 =

J2 −M2

N(N − 1)
. (2.12)

Therefore, the atom-atom correlation increases from 0 to a maximum value of 1/4 when M goes

from N/2 to zero and decreases to 0 when M = −N/2.

2.2 Laser theory in a nutshell

As noted by Serge Haroche in Ref. [42],

“One of the interests in superradiance study lies in its close connection with the
physics of laser emission. A superradiant medium is indeed nothing but a mirrorless
laser pumped in a percussional way at time t = 0. The superradiant phase-locking
of the dipoles belonging to different atoms thus exhibits a strong relationship with
the ordering process by which the atoms in a laser amplifier acquire a common
phase and start emitting coherently.”

In this section, I provide a simple theory of the laser. The basis of laser action is stimulated

emission of radiation. If a net population inversion of atoms is maintained, the electromagnetic

field will be amplified. As lasing takes place, atoms lose their inversion. Some mechanism must be

provided to pump them back up again so as to maintain the population inversion. Note that by co-

herent drive, the atom will never achieve population inversion regardless of the pump strength [36].

This is because coherent drive involves both atomic excitation and deexcitation. Therefore, a laser

requires the incoherent repumping of the atoms (see below for a possible implementation).

I use the simplest possible laser model as the basis for my analysis. The well-known model [44]

accounts for a single-mode electromagnetic field in a cavity interacting with N identical two-level

atoms in terms of the Jaynes-Cummings Hamiltonian [95], and for the irreversible photon es-

cape (atomic and cavity decay) and atomic decoherence in terms of Liouville operators. The above
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model is treated in terms of the following quantum master equation for the atom plus field density

operator ρ̂:

d

dt
ρ̂ =

1

i~
[Ĥ, ρ̂] + κL[â]ρ̂+

N∑
j=1

γL[σ̂−j ]ρ̂+
1

2T2
L[σ̂zj ]ρ̂+ wL[σ̂+

j ]ρ̂ (2.13)

where L[Ô]ρ̂ = (2Ôρ̂Ô† − Ô†Ôρ̂ − ρ̂Ô†Ô)/2 is the Lindbladian superoperator [80] describing the

incoherent processes. The Hamiltonian Ĥ is

Ĥ = ~ωa
N∑
j=1

σ̂+
j σ̂
−
j + ~ωcâ†â+

~g
2

N∑
j=1

(
â†σ̂−j + σ̂+

j â
)
, (2.14)

where ωa and ωc are the atomic transition frequency and the frequency of the cavity mode respec-

tively, and g is the single atom-cavity coupling strength. Here, â and â† are the annihilation and

creation operators for cavity photons. Note that the Hamiltonian has been specified in the dipole

and rotating wave approximations. The cavity dissipation with power decay rate κ is described by

κL[â]ρ̂. The atomic spontaneous emission with rate γ is described by γL[σ̂−j ]ρ̂. The incoherent

repumping takes the atoms from the ground state to the excited state incoherently and is mod-

eled as inverse spontaneous emission with rate w (term wL[σ̂+
j ]ρ̂). The additional dephasing of

the atomic dipole is modeled phenomenologically as a T2 process and is described by 1
2T2
L[σ̂zj ]ρ̂.

Note that the Liouvillian is derived in the usual Born-Markov approximation [81], assuming weak

system-reservoir coupling and delta-correlation of the reservoir.

Ground state

Excited state

Figure 2.3: Schematic for implementing the incoherent pumping in a three-level configuration.
The coherent driving laser is indicated by the green-dashed arrow and spontaneous decay into the
excited state |e〉 is indicated by the orange-dotted arrow.

Since incoherent pumping generates population inversion in a two-level system, it is induced

by the system coupling to a negative-temperature reservoir and therefore can only be implemented
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using auxiliary atomic levels. A typical approach is coherently driving a transition from the ground

state |g〉 to a third state that rapidly decays to the excited state |e〉, as shown in Fig. 2.3. In the

limit of large γs, this will lead to an effective incoherent pumping rate w = |Ω|2/γs.

It turns out that simple mean-field theory of Eq. (2.13) can reveal a great deal about the

properties of a laser. The complete set of quantum Langevin equations according to Eq. (2.13) in

the reference frame rotating at frequency ω [36]

d

dt
â = −1

2
(κ+ 2iωc − 2iω)â− iNg

2
Ŝ− + F̂ a, (2.15)

d

dt
Ŝ− = −1

2
(Γ + 2iωa − 2iω) Ŝ− +

ig

2
âŜz + F̂−, (2.16)

d

dt
Ŝz = −(w + γ)

(
Ŝz − d0

)
+ ig

(
â†Ŝ− − âŜ+

)
+ F̂ z, (2.17)

where Γ ≡ w + γ + 2/T2 is the generalized single-atom decoherence and d0 = (w − γ)/(w + γ)

characterizes the atomic inversion that would be obtained for a single-atom in the absence of the

cavity. We have defined the collective operators,

Ŝ± =
1

N

N∑
k=1

σ̂±k , Ŝz =
1

N

N∑
k=1

σ̂zk . (2.18)

The quantum noise operators F̂µ have zero mean and second-order correlations given by

〈F̂µ(t)F̂ ν(t′)〉 = 2Dµνδ(t− t′) . (2.19)

The diffusion matrix elements Dµν can be obtained [36]

2Daa† = κ, 2D+− =
1

N

(
w +

1

T2
(1 + 〈Ŝz〉)

)
2D−+ =

1

N

(
γ +

1

T2
(1− 〈Ŝz〉)

)
, 2D+z = −2w

N
〈Ŝ+〉

2Dz+ =
2γ

N
〈Ŝ+〉, 2D−z =

2γ

N
〈Ŝ−〉

2Dz− = −2w

N
〈Ŝ−〉, 2Dzz =

2γ

N
(1 + 〈Ŝz〉) +

2w

N
(1− 〈Ŝz〉). (2.20)

From Eq. (2.20), we can see that the noise is 1/
√
N smaller than the deterministic terms in

the quantum Langevin equation. To zeroth order, we can discard the noise terms and arrive at the
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mean-field equations of motion

d

dt
a0 = −1

2
(κ+ 2iωc − 2iω)a0 −

iNg

2
S−0 , (2.21)

d

dt
S−0 = −1

2
(Γ + 2iωa − 2iω)S−0 +

ig

2
a0S

z
0 , (2.22)

d

dt
Sz0 = −(w + γ) (Sz0 − d0) + ig

(
a∗0S

−
0 − a0S

+
0

)
, (2.23)

where the 0 subscript denotes the mean value, e.g. 〈â〉 = a0.

A closed-form solution of Eqs. (2.21)–(2.23) can be obtained in steady-state by setting the

left hand sides to zero. We find from Eq. (2.22) and Eq. (2.23)

Sz0 =
d0

1 + g2|a0|2
w+γ

2Γ
Γ2+4(ωa−ω)2

(2.24)

for the steady-state population inversion. Plugging it to Eq. (2.21), we have

a0

1− Ng2

(κ+ 2iωc − 2iω)(Γ + 2iωa − 2iω)

d0

1 + g2|a0|2
w+γ

2Γ
Γ2+4(ωa−ω)2

 = 0. (2.25)

There are two solutions for the average photon number |a0|2,

a0 = 0, (2.26)

and

|a0|2 =
w + γ

g2

Γ2 + 4(ωa − ω)2

2Γ

(
d0Ng

2

(κ+ 2iωc − 2iω)(Γ + 2iωa − 2iω)
− 1

)
. (2.27)

In Eq. (2.27), for |a0|2 to be real, we need to have

ω =
κωa + Γωc
κ+ Γ

, (2.28)

that is the laser frequency ω is the weighted average of the cavity frequency and atomic frequency.

Plugging Eq. (2.28),into Eq. (2.27), we can get a simple expression when |ωc − ωa| � κ+ Γ

|a0|2 ≈
(w + γ)Γ

2g2

(
d0Ng

2

κΓ
− 1

)
= n0(G − 1), (2.29)

where n0 = (w+γ)Γ
2g2 is called the saturation photon number and G = Ng2

κΓ d0 is called the generalized

cooperativity parameter. Clearly, the second solution is only possible if G > 1. G can be varied
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by changing the repumping w. The behavior of the system is completely different depending on

whether G is greater than or less than 1, and there is a threshold at G = 1. Below the threshold,

G < 1, a0 = 0. There is no mean coherent field established. Above the threshold, when G > 1,

a mean coherent photon field arises. More importantly, we emphasize that a nonzero collective

atomic dipole S−0 develops, which is a signature of atomic dipole phase locking.

As introduced in Chapter 1, one of the most important properties of the laser is its spectral

linewidth. Indeed, one impetus to develop a useful form of quantum optical theory came from the

need to understand the properties of laser light. Here, I follow Haken’s phase diffusion method [43,

44] to provide a closed-form solution to obtain the spectral linewidth of the laser light.

Differentiating Eq. (2.15) with respect to time and substituting Eqs. (2.15) – (2.16) we obtain

¨̂a = −1

2
(κ+ Γ) ˙̂a− κΓ

4
â+

Ng2

4
âŜz + F̂ , (2.30)

where

Ŝz =

∫ t

0
dt′e−(w+γ)(t−t′)

(
(w + γ) + F̂ z − 2

N

(
d

dt
(â†â) + κâ†â− â†F̂ a − F̂ a† â

))
, (2.31)

and

F̂ =
Γ

2
F̂ a − iNg

2
F̂− +

˙̂
F a . (2.32)

The annihilation operator â is decomposed according to

â = (a0 + r̂)eiφ̂ . (2.33)

Above threshold, amplitude fluctuations are small so that r̂ can be neglected. We then obtain for

the two time correlation function of the field amplitude

〈â†(t)â(0)〉 = a2
0〈ei[φ̂(t)−φ̂(0)]〉 . (2.34)

After substituting Eq. (2.33) into Eq. (2.30), we take the imaginary part to first order in

products of operators, and find,

¨̂
φ = −1

2
(κ+ Γ)

˙̂
φ+

1

a0
Im[F̂ ] , (2.35)
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where a factor of e−iφ has been absorbed into F̂ . Equation (2.35) is then integrated, assuming that

(κ+ Γ) is large, to arrive at

φ̂(t)− φ̂(0) =
2

a0(κ+ Γ)

∫ t

0
dt′Im

[
Γ

2
F̂ a − iNg

2
F̂−
]
. (2.36)

Since F̂ a and F̂− are Gaussian, we can use

〈ei[φ̂(t)−φ̂(0)]〉 = e−
1
2
〈[φ̂(t)−φ̂(0)]

2〉 . (2.37)

Therefore, we use Eq. (2.36), along with Eqs. (2.20) to find

〈(φ̂(t)− φ̂(0))
2〉 =

(G/d0 + 1)

2(G − 1)

Γ

(w + γ)

g2κ

(κ+ Γ)2 t , (2.38)

so that the linewidth ∆ν in the unit of Hz is given by

∆ν =
(G/d0 + 1)

2(G − 1)

Γ

(w + γ)

g2κ

(κ+ Γ)2 . (2.39)

Lasers typically operate in the good cavity regime of cavity QED where the linewidth of the

cavity is much narrower than the bandwidth of the gain medium, i.e., κ� Γ. In this case,

∆ν ≈ G/d0 + 1

2(G − 1)

κ

(w + γ)Γ/g2
=
G/d0 + 1

4

κ

|a0|2
=

1

4

Sz0 + 1

Sz0

κ

|a0|2

∝ κ

|a0|2
. (2.40)

This is the famous Schawlow-Townes linewidth for laser [113]. In a good-cavity laser, the macro-

scopic phase information that is associated with the coherence of the generated radiation is encoded

in the light field.

2.3 Steady state superradiance

Fritz Haake made an important connection between Dicke superradiance and bad-cavity laser.

As he wrote in Ref. [13]

As has already been pointed out by Dicke the “coherence brightening” occurs
practically exclusively in the axial direction for such a pencil-shaped arrangement.
Emission of radiation does take place in non axial directions, too, but to a much
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lesser extent and essentially unfavored by cooperative effects. It may therefore be
looked upon as an incoherent loss mechanism for the atoms. The latter artifice
greatly reduces the complexity of the problem, for it leaves us with the axial modes
only as dynamical field variables. As a device which further simplifies the problem,
we quantize the electromagnetic field with respect to the volume of the cavity. · · ·
The escape of photons through the non mirrored end face of the pencil into the
radiation field is taken care of as a loss mechanism for the field mode in the cavity.

What we have just described as our model of a superradiant system is nothing
but the well-known simplest possible laser model. · · · However, we have to solve
the laser master equation in a limit that, for good reasons, has hardly ever been
considered in laser theory. We are here concerned with a low-quality cavity. · · ·
In contrast to the laser, the superradiant device must not be designed to lock the
photons in the cavity but rather to release them as fast as they can escape according
to the velocity of light. Moreover, again as opposed to what is typical for a laser,
the incoherent atomic decay process must be so slow that the individual atomic
dipoles do not get out of phase with each other before they can involve themselves
cooperatively in the interaction with the field mode.

Haake’s statement can be made quantitative by a “superradiance master equation” that was first

derived in Ref. [13]. It describes the cooperative decay of atomic excitations without allowing for

any feedback of the field on the atoms.

Let us consider the laser equation Eq. (2.13) in the bad cavity regime, or the superradiant

limit. In this limit, the cavity decay rate κ is much faster than any other time scale. Therefore, it

allows for an expansion in powers of κ−1 and the elimination of the field variable (see Appendix

A). To this end, we start with the quantum Langevin equation for the cavity field according to the

quantum master equation Eq. (2.13) in the rotating frame of the cavity frequency,

d

dt
â = −κ

2
â− i∆â− ig

2
Ĵ− +

√
κξ̂κ(t) , (2.41)

where ∆ = ωc − ωa and ξ̂κ is the quantum white noise originating from the cavity output with

〈ξ̂κ(t)ξ̂†κ(t′)〉 = δ(t− t′). The formal solution to Eq. (2.41) is

â(t) = e−(κ/2+i∆)∆tâ(t0)− ig
2

∫ ∆t

0
dse−(κ/2+i∆)sĴ−(t− s) + F̂(t) , (2.42)

where F̂(t) =
√
κ
∫ ∆t

0 dse−(κ/2+i∆)sξ̂κ(t− s) is the noise term and ∆t = t− t0. Under the approx-

imation of coarse graining, the first term on the right-hand side of Eq. (2.42) vanishes, and it is
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shown in Appendix A that

〈F̂(t)F̂†(t′)〉 ≈ κ

κ2/4 + ∆2
δ(t− t′) . (2.43)

It would be convenient to choose F̂(t) = −i
√
γC
g/2 ξ̂(t), with

γC =
g2κ/4

κ2/4 + ∆2
. (2.44)

Furthermore, the integral in Eq. (2.42) can be expanded in powers of 1/(κ/2 + i∆) (see Appendix

A). As a result we obtain

â(t) ≈
−ig2 Ĵ

−

κ/2 + i∆
+ F̂(t) +O[(κ/2 + i∆)−2] . (2.45)

Because we are interested in the deep bad-cavity regime as motivated above, the expansion can be

truncated in lowest order. This yields the “superradiance master equation”.

d

dt
ρ̂ =

1

i~
[−~γ∆

2
Ĵ+Ĵ−, ρ̂] + γCL[Ĵ−]ρ̂+

N∑
j=1

γL[σ̂−j ]ρ̂+
1

2T2
L[σ̂zj ]ρ̂+ wL[σ̂+

j ]ρ̂ , (2.46)

where

γ∆ =
g2∆/2

κ2/4 + ∆2
. (2.47)

Before discussing the physics of Eq. (2.46), a proof is given of the superradiance master

equation by comparing the equations of motion for spins (i.e. σ̂−j , σ̂zj ) derived from Eq. (2.46) and

Eq. (2.13) in the large κ limit. The complete set of equations of motion for spins according to

Eq. (2.46) is

d

dt
σ̂−j = −(

w

2
+

1

T2
)σ̂−j − i

γ∆

2
σ̂zj cos(kx̂j)Ĵ

− +
γC
2
σ̂zj cos(kx̂j)Ĵ

−

+
√
γC σ̂

z
j cos(kx̂j)ξ̂ −

√
wσ̂zj ξ̂

†
j +

√
2

T2
(ξ̂z†j − ξ̂

z
j )σ̂−j ,

d

dt
σ̂zj = w(1− σ̂zj ) + 2Re

[
(iγ∆ − γC)σ̂+

j Ĵ
−
]

cos(kx̂j)

− 2
√
γC(σ̂+

j ξ̂ + ξ̂†σ̂−j ) cos(kx̂j) + 2
√
w(σ̂+

j ξ̂
†
j + ξ̂j σ̂

−
j ),

(2.48)

where ξ̂j and ξ̂zj are the independent repumping noise and T2 dephasing noise for each atom,

respectively. While the same set of equations according to Eq. (2.13) is

d

dt
σ̂−j = −(

w

2
+

1

T2
)σ̂−j + i

g

2
σ̂zj â cos(kx̂j)−

√
wσ̂zj ξ̂

†
j +

√
2

T2
(ξ̂z†j − ξ̂

z
j )σ̂−j ,

d

dt
σ̂zj = w(1− σ̂zj )− igσ̂+

j â cos(kx̂j) + igâ†σ̂−j cos(kx̂j) + 2
√
w(σ̂+

j ξ̂
†
j + ξ̂j σ̂

−
j ) .

(2.49)
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Plugging Eq. (2.45) into Eq. (2.49) results in a set of equations identical to Eq. (2.48). Consequently,

the superradiance master equation describes the same spin dynamics of atoms as Eq. (2.13) in the

large κ limit.

From the superradiance master equation Eq. (2.46), we see two new terms coming from the

elimination of the photon field:

• γCL[Ĵ−]ρ̂ term

This is a Lindbladian term with decay operator being the collective operator Ĵ−. Therefore,

this term gives rise to the collective photon emission by the atoms into the cavity mode.

We can expand this term as

γCL[Ĵ−]ρ̂ = γC

N∑
j=1

L[σ̂−j ]ρ̂+ γC
∑
i 6=j

1

2
(2σ̂−i ρ̂σ̂

+
j − ρ̂σ̂

+
j σ̂
−
i − σ̂

+
j σ̂
−
i ρ̂) .

Therefore, this collective decay term introduces spontaneous decay of atoms into the cavity

mode with rate γC and dissipative coupling between atoms. The dissipative coupling is

essential for the build up of atom-atom correlations 〈σ̂+
i σ̂
−
j 〉 and thus the superradiant

emission.

• 1
i~ [−~γ∆

2 Ĵ+Ĵ−, ρ̂] term

This is a Hamiltonian term with the Hamiltonian −~γ∆
2 Ĵ+Ĵ−. This term introduces the

coherent coupling between atoms and the energy shift of atom j by−~γ∆/2. The underlying

mechanism of this energy shift is formally similar to that of the Lamb shift [81], that is,

the interaction of atoms with off-resonant light modes through emission and absorption of

virtual photons. When ∆ = 0, the energy shift disappears. An intuitive way to understand

this energy shift in the dispersive limit (∆ � κ) is to view it as ac Stark shift due to

vacuum fluctuations of the cavity field.

It is the collective decay term that gives rise to the superradiance. To focus on the superradiant

behavior of atoms in the bad-cavity laser, we consider the case ∆ = 0 in this section. As a result,
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γC = g2/κ. In this case, we rename γC to ΓC = Cγ. Here,

C =
g2

κγ
(2.50)

is the so-called single-atom cooperativity parameter of the cavity [64]. It is a dimensionless param-

eter that describes the ratio of atomic photon emission rate into the cavity mode as enhanced by

the cavity finesse to atomic photon emission rate into the free space.

A remarkable feature of the superradiant limit of the laser is its linewidth property. According

to the linewidth formula for laser Eq. (2.39), in the bad cavity limit, i.e., κ� Γ,

∆ν ≈ G/d0 + 1

2(G − 1)

Γ

w + γ
ΓC . (2.51)

In the limit that w � γ, 1/T2, d0 ≈ 1 and Γ ≈ w + γ, this can be further simplified to

∆ν ≈ G + 1

2(G − 1)
ΓC ≈

1 + Sz0
2(1− Sz0)

Cγ. (2.52)

The linewidth formula in the superradiant limit Eq. (2.52) differs qualitatively from the Schawlow-

Townes linewidth for good-cavity laser [113]. As the cavity linewidth κ drops out of the linewidth

formula Eq. (2.52), the coherence property of the bad cavity laser does not depend on the cavity

linewidth. By comparing Eq. (2.40) and Eq. (2.52), we reach the conclusion that the coherence is

stored in the photons for the good cavity laser but is stored in the atoms for the bad-cavity laser.

To validate the above discussion about the superradiance emission by atoms in the bad

cavity laser, we employ the methods described in Chapter 3 to numerically solve the laser master

equation Eq. (2.13) in the bad-cavity limit. As shown in Fig. 2.4, we find the build-up of atom-

atom correlations 〈σ̂+
i σ̂
−
j 〉 in steady state, which is a signature of superradiance. Furthermore,

the linewidth of the laser light shown in Fig. 2.4 is Lorentzian and proportional to Cγ, which is

consistent with the prediction of Eq. (2.52).

Therefore, the superradiant decay of an ensemble of atoms in steady state can be described

realistically in terms of the simplest possible laser model Eq. (2.13) in the bad cavity limit. In

2009, Meiser et. al. proposed to use a clock transition of strontium atoms in an optical cavity
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Figure 2.4: Numerical simulation (blue dashed line) of a bad cavity laser. Left panel: Atom-atom
correlation as a function of time. Right panel: Spectrum of the laser light (red solid line is the fit
to Lorentzian). The parameters are N = 200, C = 0.2, w = 18γ, T−1

2 = 2γ, κ = 2500γ.

as a possible realization of such model [93]. The motivation here was to generate an ultranarrow

linewidth laser source by using atoms with extremely small spontaneous emission rate γ and a

bad cavity with C � 1. In this system, the weak radiative power due to small γ of the clock

transition (for example, for 106 fully inverted 87Sr atoms the power of the spontaneous emitted

light is of the order 10−16 W) is not of major concern. This is due to the fact that the photon

emission rate is boosted by the superradiance and scales favorably with atom number. Below I will

give detailed discussion of the proposal.
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Figure 2.5: Source: Ref. [93]. Power as a function of pump rate w and atom number N . The
rapid buildup of power above threshold w ∼ γ can be seen as well as the decrease of emitted power
for too strong a pump. The dashed line shows the boundary of the region of collective emission.
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Consider N ultracold two-level 87Sr atoms confined in an optical cavity. The lasing transition

is the ultranarrow clock transition from 3P0 to 1S0 with extremely weak dipole matrix element of

the intercombination transition of order 10−5ea0. Here e is the electron charge and a0 is the Bohr

radius. The linewidth γ is about 0.01 s−1. The atoms are located in a high-Q optical cavity with

cavity decay rate κ = 1 MHz. The atoms are confined along the axis of the cavity mode in a

1D optical lattice at antinodes of the field, so that the atom-cavity coupling g is uniform to good

approximation. For a bad cavity, the single-atom cooperativity parameter C ≈ 0.15 and g ≈ 37 s−1.

The T2 dephasing time can be pushed to T2 ∼ 1 s in modern optical lattice clock experiment [9].

The repumping rate w can be widely tuned from 0 to the values of order 104 s−1.

According to the parameters, the proposed system is thus an extreme case of a bad cavity

laser. It has astounding potential linewidth of∼ Cγ = 1 mHz according to Eq. (2.52). For reference,

the most stable conventional laser based on stabilization against carefully designed passive cavities

achieve linewidth ∼ 40 mHz [22].

In such a laser, the atoms emit light collectively. As shown in Fig. 2.5, the resulting power

is of order 10−12 W for 106 atoms, which would be large enough to be technological relevant. We

can also identify two lasing thresholds from Fig. 2.5. In the first threshold w ∼ γ, the repumping is

large enough so that the atoms get population inverted and start lasing. For the second threshold,

the repumping is so large that the atoms get fully inverted and the coherence between atoms is

destroyed. This threshold is given by w = NCγ. The maximum power is achieved at w = NCγ/2,

where 〈σ̂zj 〉 = 1/2. A minimum number of atoms is necessary to have superradiance emission.

Assuming T2γ � 1, it is found that Ncritical = 2/CγT2. Physically, this means that there must be

enough atoms for the system to be in the collective strong coupling regime.

As has been discussed, the most striking feature of this laser is its ultranarrow linewidth.

Fig. 2.6 shows the linewidth as a function of w and N . The leftmost dashed line in Fig. 2.6(a) is γ

corresponding to the threshold for collective behavior. When the pump strength w passes through

that threshold the linewidth gets rapidly smaller with increasing w. When w reaches T−1
2 , indicated

by the second dashed line, essentially all atoms are phase locked together. From that point on the
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Figure 2.6: Source: Ref. [93]. (a) Linewidth vs w and N . The white dashed lines indicate (from left
to right) the spontaneous decay rate γ, the inhomogeneous relaxation rate T2, and the maximum
pump rate w = NCγ. (b) is a cut through (a) for N = 106 atoms.

pump noise due to w grows in proportion to the size of the collective spin vector. Therefore the

linewidth is approximately constant and is given by ∼ Cγ. The actual numerical factor in front

of Cγ does not change much as a function of w. When w increases beyond NCγ, indicated by

the third dashed line, the collective dipole is destroyed and the linewidth increases rapidly until it

is eventually given by w. It is important to note that the parameters for achieving the maximum

output power and the small linewidth are compatible with each other.



Chapter 3

Group-theoretic methods for solving the laser equation

The laser equation Eq. (2.13) is a quantum master equation in the Lindblad form [80] under

the Born and Markov approximations [81]. It describes the time evolution of a paradigmatic

quantum optical system, i.e., an open quantum system of N two-level atoms (analogous to pseudo-

spin-1/2 systems or qubits) symmetrically coupled to a single-mode photon field. In this chapter,

we show that the laser equation can be efficiently simulated by applying group theoretic methods

to the quantum master equation. This is important since many examples in quantum optics fall

into this class, such as cavity QED, atoms coupled to chiral bosonic waveguides [102], nitrogen-

vacancy (NV) centers in diamond coupled with photonic structures [21], quantum dots in photonic

crystal [124], and superconducting qubits coupled with inductance/capacitance resonator [146].

The method described in this chapter will find numerous applications for simulating open quantum

systems with large system size.

3.1 Lindbladian in terms of generators of the SU(4) group

In general, for all but the smallest system sizes, exact analytic solutions to Eq. (2.13) are

intractable. Various approximation methods have been introduced, e.g. perturbation theories [61],

mean-field approaches [30, 98], cummulant expansions [91, 92, 93], linear response theories [25] and

c-number Langevin equations [7, 69]. However, it is often necessary to benchmark approximate

methods with exact numerical solutions. Existing numerical simulation approaches, such as the

quantum Monte Carlo method [24, 33, 104], scale exponentially with the underlying dimensionality
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of the Hilbert space. Therefore, treating any appreciable system size is extremely difficult. It

should be emphasized that the fully-symmetrical Dicke states [28] do not suffice as a reduced basis

since basis vectors with mixed symmetry are required.

It has been realized that because of the permutation symmetry with respect to the exchange of

spins in Eq. (2.13), the number of independent elements of the atomic density matrix is (N+1)(N+

2)(N+3)/6 [74]. This leads to a tremendous reduction of the number of required basis states needed

to provide an exact solution of the master equation (from exponential to N3). The permutation

symmetry also lead to Hartmann’s development of generalized Dicke states [46], which are fully

symmetrical states in the Liouvillian space. Furthermore, Hartmann found that the Lindbladian

in the laser equation can be expressed in terms of the generators of the SU(4) group. For this

purpose, 18 superoperators O+, O− and O3 where O ∈ {Q,Σ,M,N ,U ,V} are defined

Q±ρ :=
N∑
j=1

σ±j ρσ
∓
j , Q3ρ :=

1

4

N∑
j=1

(
σ3
j ρ+ ρσ3

j

)
Σ±ρ :=

N∑
j=1

σ±j ρσ
±
j , Σ3ρ :=

1

4

N∑
j=1

(
σ3
j ρ− ρσ3

j

)
M±ρ :=

N∑
j=1

σ±j ρ
1 + σ3

j

2
, M3ρ :=

1

2

N∑
j=1

σ3
j ρ

1 + σ3
j

2

N±ρ :=

N∑
j=1

σ±j ρ
1− σ3

j

2
, N3ρ :=

1

2

N∑
j=1

σ3
j ρ

1− σ3
j

2

U±ρ :=
N∑
j=1

1 + σ3
j

2
ρσ∓j , U3ρ :=

1

2

N∑
j=1

1 + σ3
j

2
ρσ3

j

V±ρ :=

N∑
j=1

1− σ3
j

2
ρσ∓j , V3ρ :=

1

2

N∑
j=1

1− σ3
j

2
ρσ3

j . (3.1)

Although this list, Eq. (3.1), contains 18 operator definitions, only 15 of them are independent

(it is possible to write N3, U3, V3 in terms of the others). One can also demonstrate that the 15

remaining superoperators are linear combinations of the familiar Gell-Mann matrices that are the

generators of the SU(4) group, λ1, ..., λ15 (see Appendix B).

In order to see how the superoperators [Eq. (3.1)] are related to generators of the SU(4)

group (Gell-Mann matrices), consider first the fundamental one atom case. We interpret the 2× 2
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density matrix as a 4× 1 vector in the representing vector space (i.e. Liouville space).

a c

d b

→


a

c

d

b


. (3.2)

The relations are then given by [143]

Q± →
1

2
(λ9 ± iλ10) , Q3 →

1

4
λ3 +

1

4
√

3
λ8 +

√
1

6
λ15

Σ± →
1

2
(λ6 ± iλ7) , Σ3 → −

1

4
λ3 +

√
3

4
λ8

M± →
1

2
(λ4 ± iλ5) , M3 →

1

4
λ3 +

√
3

4
λ8

N± →
1

2
(λ11 ± iλ12) , N3 → −

1

4
λ3 +

1

4
√

3
λ8 +

√
1

6
λ15

U± →
1

2
(λ1 ± iλ2) , U3 →

1

2
λ3

V± →
1

2
(λ13 ± iλ14) , V3 → −

1

2
√

3
λ8 +

√
1

6
λ15. (3.3)

The commutation relations of the superoperators are given in both Ref. [46] and [101]. The SU(4)

group has three Casimir operators, one of which is quadratic in the generators, and the others are

of higher order. The quadratic Casimir operator C1 can be expressed in terms of superoperators

C1 =
∑
O

(O−O+ +O3) + U2
3 +

1

3
(U3 + 2Σ3)2 +

1

6
(3Q3 − 2U3 − Σ3)2. (3.4)

We can also identify six SU(2) subalgebras,

[O+,O−] = 2O3, [O3,O±] = ±O±, (3.5)

so that it is useful to define six corresponding quadratic superoperators O2 = O−O+ + O2
3 + O3,

which commute with O3.

The Lindblad operators in the laser equation Eq. (2.13) can be written compactly with
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superoperators O+,−,3

1

2

N∑
j=1

(2σ̂±j ρσ̂
∓
j − ρσ̂

∓
j σ̂
±
j − σ̂

∓
j σ̂
±
j ρ) = −N

2
±Q3 +Q± ,

1

2

N∑
j=1

(2σ̂zj ρσ̂
z
j − 2ρ) = 4M3 − 2Q3 − 2Σ3 −N . (3.6)

The completeness ofO+,−,3 implies that an arbitrary full-symmetrical Hamiltonian can be expressed

by them. Therefore, the Hamiltonian term in Eq. (2.13) can be rewritten as

1

i~
[H, ρ] =

1

i~
[~ωcâ

†â, ρ]− 2iωaΣ3ρ− i
g

2

[
â(M+ +N+)ρ+ â†(M− +N−)ρ

]
+ i

g

2

[
(U+ + V+)ρâ† + (U− + V−)ρâ

]
. (3.7)

3.2 Generalized Dicke states

The generalized Dicke states are the fully symmetric representation of the SU(4) group.

Transcribing notation from the four-flavor quark model, a model with the same symmetry structure,

the fundamental representation is given by u = |1〉〈1|, d = |0〉〈0|, s = |1〉〈0|, and c = |0〉〈1| (up,

down, strange, and charm). For the fully symmetric case, the normalized basis is:

Pα,β,γ,δ =
α!β!γ!δ!

N !

∑
P
P
[
uαdβsγcδ

]
, (3.8)

where P denotes all possible permutations and α + β + γ + δ = N . Therefore, the number of the

basis is (N + 1)(N + 2)(N + 3)/6. Note that only basis states with γ = δ = 0 have non-vanishing

trace of unity.

Although it is perfectly fine to use any three of α, β, γ, δ to label the generalized Dicke states,

Hartmann uses three quantum numbers [46] associated with SU(2) subalgebras [cf. Eq. (3.5)]. To

specify such quantum numbers, we derive the following relations using the definition of the basis

states in Eq. (3.8) and the action of the superoperators on the fundamental representation shown
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u d s c

Q+ 0 u 0 0

Q− d 0 0 0

Q3
1
2u -1

2d 0 0

Σ+ 0 0 0 s

Σ− 0 0 c 0

Σ3 0 0 1
2s -1

2c

u d s c

M+ 0 0 0 u

M− c 0 0 0

M3
1
2u 0 0 -1

2c

N+ 0 s 0 0

N− 0 0 d 0

N3 0 -1
2d

1
2s 0

u d s c

U+ 0 0 u 0

U− s 0 0 0

U3
1
2u 0 -1

2s 0

V+ 0 c 0 0

V− 0 0 0 d

V3 0 -1
2d 0 1

2c

Table 3.1: The action of the SU(4) superoperators on the elements of the fundamental representa-
tion u, d, s, c

in Table 3.1

Q−Q+Pα,β,γ,δ = (α+ 1)βPα,β,γ,δ , Q3Pα,β,γ,δ =
1

2
(α− β)Pα,β,γ,δ

Σ−Σ+Pα,β,γ,δ = (γ + 1)δPα,β,γ,δ , Σ3Pα,β,γ,δ =
1

2
(γ − δ)Pα,β,γ,δ

M−M+Pα,β,γ,δ = (α+ 1)δPα,β,γ,δ , M3Pα,β,γ,δ =
1

2
(α− δ)Pα,β,γ,δ

N−N+Pα,β,γ,δ = (γ + 1)βPα,β,γ,δ , N3Pα,β,γ,δ =
1

2
(γ − β)Pα,β,γ,δ

U−U+Pα,β,γ,δ = (α+ 1)γPα,β,γ,δ , U3Pα,β,γ,δ =
1

2
(α− γ)Pα,β,γ,δ

V−V+Pα,β,γ,δ = (δ + 1)βPα,β,γ,δ , V3Pα,β,γ,δ =
1

2
(δ − β)Pα,β,γ,δ . (3.9)

We can now define the quantum number associated with the six SU(2) subalgebras. By

requesting, as usual, that O2Pα,β,γ,δ = o(o+ 1)Pα,β,γ,δ and O3Pα,β,γ,δ = o3Pα,β,γ,δ, we obtain

q =
1

2
(α+ β) , q3 =

1

2
(α− β)

σ =
1

2
(γ + δ) , σ3 =

1

2
(γ − δ)

m =
1

2
(α+ δ) , m3 =

1

2
(α− δ)

n =
1

2
(β + γ) , n3 =

1

2
(γ − β)

u =
1

2
(α+ γ) , u3 =

1

2
(α− γ)

v =
1

2
(β + δ) , v3 =

1

2
(δ − β) . (3.10)

Note that q + σ = m+ n = u+ v = N/2.
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Hartmann chooses q, q3, σ3 to characterize the generalized Dicke states [46]. Note that

α, β, γ, δ can be expressed in terms of q, q3, σ3,

α = q + q3 , β = q − q3

γ = σ + σ3 , δ = σ − σ3 , (3.11)

where σ = N/2− q. From q = (α+ β)/2, we conclude that q ranges from 0 to N/2 in steps of 1/2

unit. From the SU(2) subalgebras, we conclude that q3 ranges from −q to q in steps of 1 and σ3

ranges from −σ to σ in steps of 1. Therefore, we denote Pα,β,γ,δ by Pq,q3,σ3 with

• q: Q2Pq,q3,σ3 = q(q + 1)Pq,q3,σ3 , q = 0, 1/2, ... , N/2

• q3: Q3Pq,q3,σ3 = q3Pq,q3,σ3 , q3 = −q, −q + 1, ... , q

• σ3: Σ3Pq,q3,σ3 = σ3Pq,q3,σ3 , σ3 = −σ, −σ + 1, ... , σ (σ = N/2− q).

It is straightforward to determine actions of all the raising and lowering superoperators on Pq,q3,σ3 ,

Q±Pq,q3,σ3 = (q ∓ q3)Pq,q3±1,σ3 ,

Σ±Pq,q3,σ3 = (σ ∓ σ3)Pq,q3,σ3±1,

M±Pq,q3,σ3 = (m∓m3)Pq±1/2,q3±1/2,σ3±1/2,

N±Pq,q3,σ3 = (n∓ n3)Pq∓1/2,q3±1/2,σ3±1/2,

U±Pq,q3,σ3 = (u∓ u3)Pq±1/2,q3±1/2,σ3∓1/2,

V±Pq,q3,σ3 = (v ∓ v3)Pq∓1/2,q3±1/2,σ3∓1/2. (3.12)

We note that the fully symmetrical basis are also eigenstates of the quadratic Casimir operator C1

with common eigenvalue 3N(N + 4)/8.

In order to solve the laser equation Eq. (2.13), we expand the density matrix as

ρ =
∑

q,q3,σ3,m,n

Cm,nq,q3,σ3
Pq,q3,σ3

∣∣m〉〈n∣∣ , (3.13)

where Cm,nq,q3,σ3 are complex coefficients, and |n〉 is the photon Fock state. Combining Eqs. (3.6) and

(3.7) with the action rules of the SU(4) superoperators on the basis states Eq. (3.12) gives a closed
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solution of the laser equation Eq. (2.13). In general, this can be solved analytically or numerically

with standard methods. With generalized Dicke states, the numerical complexity with respect to

the atom number reduces from exponential to N3.

3.3 Calculating observables

Having established the procedure for determining the time evolution of ρ, it is now important

to describe how to calculate physical observables. We begin with the trace given by:

Tr[ρ] =
∑
m,q3

Cm,mN/2,q3,0 = 1 , (3.14)

which is an invariant during evolution to represent probability conservation. Average values
〈
a
〉

and
〈
a†a
〉

are found analogously. For the spin-operators, we provide the following examples up to

quadratic order:

〈σzj 〉 = 2Tr[Q3ρ]/N,

〈σzjσzk〉 = (4Tr[(Q2
3 − Σ2

3)ρ]−N)/[N(N − 1)],

〈σ±j 〉 = Tr[(M± +N±)ρ]/N,

〈σ+
j σ
−
k 〉 = Tr[V−(M− +N−)ρ−Q−ρ]/[N(N − 1)],

(3.15)

where j 6= k.

For coherence properties it is necessary to calculate products of operators evaluated at dif-

ferent times. Of particular interest are the first-order and second-order correlations, which can be

found by applying the quantum regression theorem [95]:

〈Ô1(t+ τ)Ô2(t)〉 = Tr
[
Ô1e

Lτ [Ô2ρ(t)]
]
,

〈Ô1(t)Ô1(t+τ)Ô2(t+τ)Ô2(t)〉 = Tr
[
Ô2e

Lτ [Ô2ρ(t)Ô1]Ô1

]
, (3.16)

where eLτ [ρ] is the time propagation from Eq. (2.13) starting with the initial density matrix ρ. For

example, in order to obtain the first-order correlation of Ô1 and Ô2, one takes Ô2ρ(t) as an initial

condition, time evolves it for τ according to Eq. (2.13), applies Ô1, and computes the trace. A
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similar procedure follows for the second-order correlation. In this way, field quantities, 〈a†(t+τ)a(t)〉

and 〈a†(t)a†(t+τ)a(t+τ)a(t)〉 are directly calculated. For spin-coherence, the required expressions

are:

N∑
j,k=1

〈σ+
j (t+ τ)σ−k (t)〉 = Tr

[
(M+ +N+)eLτ [(M− +N−)ρ(t)]

]
,

N∑
j,j′,k,k′=1

〈σ+
j (t)σ+

j′ (t+ τ)σ−k (t+ τ)σ−k′(t)〉 =

Tr
[
V−(M− +N−)eLτ [V−(M− +N−)ρ(t)]

]
. (3.17)

3.4 Transform to the angular-momentum basis representation

Although at this point we have provided a theoretical framework that is complete and pro-

vides exact and efficient solutions to the general quantum master equation, it is often inconvenient

to work in the Pq,q3,σ3 representation of the density operator. For example, it can be a nontriv-

ial procedure to characterize the many-body spin-state in this representation by quantifying the

degree of entanglement, which is derived from a functional (i.e. Tr[ρ log(ρ)]). For this reason, we

illustrate now the procedure for efficiently projecting the density operator from the SU(4) basis

representation onto the usual representation of density matrices formed from the Hilbert space ba-

sis vectors [143]. These Hilbert space basis vectors are specified by the angular momentum eigenket

|S,M〉, where S = N/2, N/2 − 1, ..., (1/2 or 0) is the total spin and M = −S,−S+1, . . . , S is the

spin-projection. Note that S also labels the symmetry of the states, e.g. S = N/2 corresponds to

the fully symmetrical Dicke states.

In order to illustrate how this projection is done, it is instructive for us to first examine

explicitly the N = 2 case where the Hilbert space is 4 dimensional. Two spins form a symmetric

triplet state and an antisymmetric singlet state, corresponding to total spin S = 1 and S = 0
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respectively. In this case, the complete density matrix from Eq. (3.13) for given m,n is



〈1, 1| 〈1, 0| 〈1,−1| 〈0, 0|

|1, 1〉 Cm,n1,1,0

Cm,n
1/2,1/2,1/2√

2
Cm,n0,0,1 0

|1, 0〉
Cm,n

1/2,1/2,−1/2√
2

Cm,n
1,0,0+Cm,n

0,0,0

2

Cm,n
1/2,−1/2,1/2√

2
0

|1,−1〉 Cm,n0,0,−1

Cm,n
1/2,−1/2,−1/2√

2
Cm,n1,−1,0 0

|0, 0〉 0 0 0
Cm,n

1,0,0−C
m,n
0,0,0

2


.

Notice that the resulting matrix is block diagonal in the S = 1 and S = 0 subspaces (a 3× 3 block

and a 1 × 1 block). In addition, the complex coefficients contributing to the matrix element for

|S,M〉〈S,M ′| all satisfy q3+σ3 = M and q3−σ3 = M ′. Finally, the trace is simply
∑1

q3=−1C
m,n
1,q3,0 =

1.

These results can be systematically extended to higher N . For any N , the density matrix is

block diagonal in S, with each block given by

ρm,nS =
∑
M,M ′

Dm,n
S,M,M ′ |S,M〉〈S,M

′|, (3.18)

where DS,M,M ′ are density matrix elements for the symmetry type S. There are nS ways for N spins

to construct the basis for each S, so that
∑

S(2S+ 1)nS = 2N , i.e. the Hilbert space dimension [4].

To find nS , we note that |S,M〉 forms a basis of the (2S+1)-dimensional irreducible representation

of the SU(2) group. Determining nS is accomplished with the help of the Young tableau of the

SU(2) group, where one can obtain the number of equivalent representations iteratively. Fig. 3.1(a)

shows the Young tableau for the N = 4 case. A corresponding tabular method for evaluating nS

for any N is shown in Fig. 3.1(b), which contains about one half of Pascal’s triangle.

With this in mind, one can now derive a systematic algorithm for obtaining density matrix

elements Dm,n
S,M,M ′ given SU(4) expansion coefficients Cm,nq,q3,σ3 . The procedure is outlined as follows.

For each layer of the pyramid [cf. Fig. 3.1(c)], one may start with a corner element (M and M ′

maximal) and fill out the matrix by successive application of the angular momentum lowering

operator Ĵ− =
∑N

j=1 σ
−
j (noting that ρĴ− = (U+ + V+)ρ) to recursively fill out each row, and Ĵ−ρ

(or Hermiticity of ρ) to fill out each column. The layers are filled upwards from the base, starting
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Figure 3.1: (a) Young tableau for determining the irreducible representations contained in the
direct product representation of the SU(2) group for N = 4. The dimension for S = 2, 1, 0 is 5, 3, 1
respectively, and ns = 1, 3, 2, so the total Hilbert space dimension is 5× 1 + 3× 3 + 1× 2 = 24 as
expected. (b) “Pascal’s triangle” to evaluate nS in an iterative way for any N (the case considered
in (a) is the fourth row down from the top). (c) Pyramid representation of the density operator
in the |S,M〉 representation for N = 4. Each layer of the pyramid represents the block matrix for
each S.

with Dm,n
N/2,N/2,N/2 = Cm,nN/2,N/2,0 as the corner element of the lowest layer, and finding the corner

element of higher layers by Gaussian elimination from the trace constraint Eq. (3.14). In Appendix

C, we demonstrate explicit application to 3 atoms, with extrapolation to higher N straightforward.

Being able to express the density operator in the |S,M〉 representation makes easy the cal-

culation of functionals, such as the purity Tr[ρ2], or the von Neumann entropy

− Tr(ρ ln ρ) = −
∑
j

λj lnλj , (3.19)

where λj are eigenvalues of ρ. The point is that, because the density matrix is block diagonal in

the |S,M〉 representation, we do not need to diagonalize the whole density matrix, which would

be a daunting task. Instead, we only need to diagonalize a series of bN/2c+ 1 blocks of dimension

2S + 1.

Therefore, we have developed powerful methods to transform the density operator in the

SU(4) basis representation to the |S,M〉 representation. This has enabled us to efficiently diago-

nalize the whole density matrix and thus provided complete information about the system, including

state information and functional properties of the density operator.



32

3.5 Further simplifying: U(1) symmetry and quantum jump

We have formulated and applied a SU(4) theory to numerically solve the quantum master

equation, which has reduced the exponential scaling of the problem to cubic in N . It turns out

that it is possible to further simplify the problem by applying U(1) symmetry and by using the

quantum jump method.

Let us first discuss applying the U(1) symmetry. By inspecting the laser equation Eq. (2.13),

we find that it has global U(1) symmetry. By performing the following transformation

â→ âe−iϕ , â† → â†eiϕ ,

σ̂−j → σ̂−j e
−iϕ , σ̂+

j → σ̂+
j e

iϕ , (3.20)

where ϕ is an arbitrary phase, Eq. (2.13) is invariant. As a result, if the initial state of the system

is phase invariant, the time evolution of the system will remain phase invariant. This will simplify

the expansion of the density matrix in Eq. (3.13), where five quantum numbers q, q3, σ3,m, n are

needed. In the case of phase-invariant states, the following condition must be satisfied

2σ3 = n−m. (3.21)

Therefore, only four quantum numbers are needed. This reduces the numerical complexity with

respect to the atom number from N3 to N2. This tremendous reduction should be compared

with the full dimensionality of the Liouville space given by 4N . Therefore, it enables us to obtain

numerical solutions up to a few hundred pseudospins and tens of photons.

Now let us extend the SU(4) method by using quantum jump [24, 33, 104]—a standard

method in quantum optics. As will be shown, this allows us to simulate systems with a moderate

number of photons and atoms. The unusual feature here is that the unraveling is performed in

Liouville space rather than in Hilbert space, because it is in Liouville space that the SU(4) method

operates.

According to Eq. (3.13), the dimension of the density matrix grows as the square of the

photon number. This would impose great difficulties in numerical simulations of the laser region
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due to the large number of photons. To overcome this difficulty, we unravel the master equation

into Monte-Carlo trajectories in Liouville space enabling us to eliminate the photon basis from the

simulation. The essential idea behind the method is that we are able to deduce the photon state

by keeping track of the total number of quanta Nq in the system.

The quantum Monte Carlo method decomposes the density operator evolution into a set

of quantum trajectories where, between applications of random jumps into random channels, the

system evolves under an effective Hamiltonian [24, 33, 104]. The random jumps are chosen with

probabilities such that the correct density operator evolution is obtained when an average is taken

over trajectories. To construct a single trajectory, we first need to identify the jump operators.

In our problem, there are four decay channels: repumping, spontaneous emission, dephasing, and

cavity decay. The corresponding jump operators Ji are

J1ρ̂ = w

N∑
j=1

(σ+
j ρ̂σ

−
j ) = wQ+ρ̂ ,

J2ρ̂ = γ
N∑
j=1

(σ−j ρ̂σ
+
j ) = γQ−ρ̂ ,

J3ρ̂ =
1

2T2

N∑
j=1

(σzj ρ̂σ
z
j )

=
1

2T2
(4M3 − 2Q3 − 2Σ3)ρ̂ ,

J4ρ̂ = κaρ̂a† . (3.22)

When a repumping quantum jump occurs, Nq increases by one. When a spontaneous emission or

a cavity-decay quantum jump happens, Nq decreases by one. The dephasing quantum jumps leave

Nq unchanged. Therefore, during the evolution of a single trajectory, Nq is uniquely determined at

every time step by keeping track of the numbers of jumps of the different types. With knowledge of

Nq, the photon number does not need to be treated as an independent variable but is determined

from the number of excited atoms. In Appendix C we have shown that

ĴzP
(s)
q,q3,σ3

= (q3 + σ3)P (s)
q,q3,σ3

,

P (s)
q,q3,σ3

Ĵz = (q3 − σ3)P (s)
q,q3,σ3

,

(3.23)
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where Ĵz =
∑N

j=1 σ
z
j /2 is the collective spin operator. Therefore, the atomic state for a particular

fully symmetrical atomic basis state in terms of the number of excited atoms is |q3 +σ3 +N/2〉〈q3−

σ3 +N/2|. And thus the corresponding photon state is

∣∣m〉〈n∣∣ =
∣∣Nq − (q3 + σ3 +N/2)

〉〈
Nq − (q3 − σ3 +N/2)

∣∣. (3.24)

The simulation of jump times and decay channels is completely analogous to the wave-function

Monte Carlo method. The effective evolution of the system is governed by the master equation

excluding the above jump operators. As a result, under the effective evolution, the trace of the

density operator is no longer conserved, but decreases as a function of time. This is analogous to

the decay of the norm of the wavefunction in the wave function Monte Carlo method. A jump

occurs when the trace of the density operator is less than a random number uniformly distributed

in the interval [0, 1]. When a decay occurs we stochastically determine the channel i into which the

system decays according to the probability distribution,

P jump
i =

Tr[Jiρ̂]∑4
k=1 Tr[Jkρ̂]

. (3.25)

Finally, in order to get the density operator at each time step, an ensemble average of many

quantum trajectories is required. Then, various observables can be calculated according to Section

3.3. It is also worth noting that if one is only interested in the steady state density operator, a

time average in the steady state can be applied instead of the ensemble average.



Chapter 4

A new perspective on steady state superradiance

In this chapter, we demonstrate a new perspective on the superradiant laser. We show that

the cavity-mediated dissipative coupling between atoms in a superradiant laser acts to synchronize

their phases. With this new perspective, we investigate Ramsey spectroscopy performed on a

synchronized ensemble of two-level atoms. We show that, in principle, with this synchronized

system it is possible to observe Ramsey fringes indefinitely, even in the presence of spontaneous

emission and other sources of individual-atom dephasing. This could have important consequences

for atomic clocks and a wide range of precision metrology applications.

4.1 Synchronization of atomic dipoles

Synchronization is an emergent phenomenon that describes coupled objects spontaneously

phase-locking to a common frequency in spite of differences in their natural frequencies [121]. It

was famously observed by Huygens, the seventeenth century clock maker, in the antiphase syn-

chronization of two maritime pendulum clocks [59]. Dynamical synchronization is now recognized

as ubiquitous behavior occurring in a broad range of physical, chemical, biological, and mechanical

engineering systems [16, 103, 121].

Theoretical treatments of this phenomenon are often based on the study of phase models [1,

71], and as such have been applied to an abundant variety of classical systems, including the

collective blinking of fireflies, the beating of heart cells, and audience clapping [16, 103, 121]. The

concept can be readily extended to systems with an intrinsic quantum mechanical origin such as
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nanomechanical resonators [23, 50], optomechanical arrays [47], Josephson junctions [57, 130], and

viscous collective atomic recoil lasing [110, 123]. When the number of coupled oscillators is large, it

has been demonstrated that the onset of classical synchronization is analogous to a thermodynamic

phase transition [135] and exhibits similar scaling behavior [68].

It turns out that in the superradiant laser regime, an effective synchronization model for the

laser equation Eq. (2.13) can be derived under the mean-field approximation [140]. According to

the model, we find that bad-cavity mediated coupling between atoms acts to synchronize the phase

of atomic dipoles.

First of all, in an extreme regime of bad-cavity, the cavity field is slaved to the atomic field

and can be adiabatically eliminated [13]. This requires κ �
√
Ng,w, T−1

1 , T−1
2 . In a recent 87Sr

lattice clock experiment at JILA [9] (T1 ≈ 160s, T2 ∼ 1s), this condition can be satisfied very well.

Consider typical values of κ = 107s−1 and C = 0.16, then g = 102s−1 and ΓC = C/T1 = 10−3s−1.

Even for N = 106 atoms,
√
Ng = 105s−1, and w < NΓC = 103s−1. The role of the cavity field

then is to simply provide a source for a dissipative collective coupling for the atoms. The effective

evolution is given by a quantum master equation containing only atoms:

dρ

dt
= − i

2
∆ν

N∑
j=1

[σ̂zj , ρ] + ΓCL[Ĵ−]ρ+

N∑
j=1

(
wL[σ̂+

j ] + γL[σ̂−j ] +
1

2T2
L[σ̂zj ]

)
ρ, (4.1)

where ∆ν is the difference between the cavity frequency (in resonant with atomic frequency) and

an external frequency (e.g. the frequency of a local oscillator). The collective decay rate can be

taken to be small, i.e. ΓC � ΓS , where ΓS = (T−1
1 + 2T−1

2 )/2 is the single-atom decoherence rate.

This is because C is a dimensionless geometric cavity parameter that for real systems is typically

much less than 1. For a current generation 87Sr optical clock experiment [9], ΓS ∼ 1s−1, while ΓC

can be as small as 10−3s−1 for C ≈ 0.16.

To derive the effective synchronization model, we first make the mean-field ansatz that the

density matrix in Eq. (4.1) is a product of density matrices for each atom, i.e., ρ =
∏
j ρj . We have

checked that this ansatz is accurate to O(1/N). Plugging this ansatz into Eq. (3) in the paper, we



37

obtain the equation of motion for j-th atom by tracing out all other atoms:

dρj
dt

=
1

i
[
∆ν

2
σ̂zj , ρj ] +

N∑
j=1

(
wL[σ̂+

j ] + (
1

T1
+ ΓC)L[σ̂−j ] +

1

4T2
L[σ̂zj ]

)
ρj

+
ΓC
2

(σ̂−j ρj − ρj σ̂
−
j )O +

ΓC
2

(ρj σ̂
+
j − σ̂

+
j ρj)O

∗, (4.2)

where O =
∑

m6=j〈σ+
m〉. Eq. (4.2) is self-consistent since the effect of all the other atoms is approx-

imated by a mean field O. O acts as an order parameter for the synchronization phase transition:

in the absence of synchronization, or phase correlation between atoms, |O| = 0, while |O| > 0 in

the synchronized phase, breaking the U(1) symmetry of Eq. (4.1).

There are two factors at work in Eq. (4.2), the interaction with the mean field [resulting from

the dissipative coupling in Eq. (4.1)] and quantum noises on individual atoms. We can see this

from the quantum Langevin equation for σ̂+
j ;

d

dt
σ̂+
j = i∆νσ̂+

j −
1/T1 + 1/T2 + w + ΓC

2
σ̂+
j +

ΓC
2
Oσ̂zj + F(t), (4.3)

where F(t) is the quantum noise contributed by spontaneous emission, inhomogeneous dephasing,

repumping and collective decay. The quantum noises randomize the phase of individual atoms, and

thus inhibit phase locking between atoms. To find the effect of the dissipative coupling between

atoms, we parameterize 〈σ̂+
j 〉 as αje

−iφj and derive the equation of motion for φj ,

d

dt
φj = −∆ν +

ΓC
2

〈σ̂zj 〉
αj

∑
m

αm sin(φm − φj). (4.4)

Eq. (4.4) is equivalent to the well-known Kuramoto model [70, 120] for describing the phase syn-

chronization. In the case of 〈σ̂zj 〉 > 0, the coupling gives rise to phase attraction between atoms.

4.2 Probing the synchronization with Ramsey spectroscopy

Ramsey spectroscopy offers an unambiguous way to show the synchronization dynamics of

atoms in a superradiant laser. As shown in Fig. 4.1(b), Ramsey spectroscopy consists of three steps:

(i) initial preparation of a coherent superposition between two quantum states, (ii) accumulation

of a phase difference between the atoms and a local oscillator reference over an interrogation time
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Interrogation time T

(a)

(b)

Figure 4.1: (a) Ramsey spectroscopy where atoms are coupled collectively to a cavity and pumped
individually with incoherent rate w. (b) Ramsey sequence showing preparation in state |g

〉
(pseu-

dospins pointing down to the south pole of the Bloch sphere), the π/2 y-axis rotation from the
south pole to the equator, precession around the equator, and second π/2 x-axis rotation, after
which the z-axis projection carries information about the cosine of the accumulated phase.

T , and (iii) mapping of the phase difference to a population readout. The population measurement

gives the well-known Ramsey fringes [105]. Due to the atomic decoherence, the visibility of Ramsey

fringes decay as a function of T .

It is worth to point out that conventional Ramsey spectroscopy is based on independent-

atom physics, with the role of a large number of atoms entering only through improving the signal

by statistical averaging. Here, however, Ramsey spectroscopy is performed over atoms that are

coupled collectively to a cavity. Conventional Ramsey spectroscopy is recovered by setting ΓC = 0

and w = 0 in Eq. (4.1), with the result that the Ramsey fringe visibility then decays exponentially

with the single-atom decoherence rate ΓS [see Fig. 4.2(a)].

According to Eq. (4.4), the dissipative coupling between atoms will phase lock the atomic

phases. Thus, we expect that the decay of Ramsey fringe visibility will be slower than that of

conventional Ramsey spectroscopy. Indeed, Fig. 4.2(a) shows that the fringe visibility decays much

slower than that of conventional Ramsey spectroscopy under the same T1 and T2 decoherences,

demonstrating the robustness to individual-atom decoherence. When compared to conventional

Ramsey spectroscopy with independent atoms, the principal difference here is that strong spin-spin

correlations between atoms 〈σ̂+
j σ̂
−
k 〉 (j 6= k) develop due to the dissipative coupling, as shown in

Fig. 4.2(b). This feature is a characteristic of phase-locking [72, 93]. After a brief initial transient



39

0 1 2 3 4 5 6

0

0.5

1

-0.5

-1

Time H2Π�DΝL

P
o
p
u
la
ti
o
n
d
if
fe
re
n
ce

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

Time H2Π�DΝL

D
y
n
am

ic
al
q
u
an
ti
ti
es

(a)

(b)

Figure 4.2: Calculations of Eq. (4.1) using SU(4) theory in Chapter 3 with N = 250, ΓC = 0.2/T1,
T2 = T1, and w = NΓC/2. (a) Ramsey fringes with synchronized atoms (red solid line) versus T .
Conventional Ramsey fringes (blue dashed line) for the same T1 and T2. (b) During the interrogation
time, the atomic inversion 〈σ̂zj 〉 (blue dashed line), spin-spin correlation 〈σ̂+

j σ̂
−
k 〉 (red solid line),

〈σ̂+
j σ̂
−
k 〉- 〈σ̂

+
j 〉〈σ̂

−
k 〉 (red dotdashed line) and 〈σ̂+

j σ̂
z
k〉/(〈σ̂

+
j 〉〈σ̂zk〉) (green dotted line).

evolution, the fringe fits well to an exponentially decaying sine function, i.e., Ae−λt sin ∆νt, where

λ is the decay rate of the fringe visibility and A is an amplitude (we derive this behavior later.)

Intuitively, one may expect that in order to effectively phase-lock the atoms, it should be

necessary for the dissipative coupling that provides rephasing to dominate over the ‘random-walk’

due to quantum noises that destroy phase correlations. Because of the all-to-all nature of the

interaction of atoms through the cavity mode, the dissipative coupling strength scales with N and

is given by NΓC/2. We show the effect of this in the inset of Fig. 4.3. For small atom number,

the individual quantum noises dominate over the rephasing, and the fringe envelope decays more

rapidly than in conventional Ramsey spectroscopy, i.e. λ > ΓS . As N increases, the dissipative

coupling increases, and we reach the regime λ < ΓS . For large atom number, we find λ approaches

ΓC . The ΓC limit arises from quantum fluctuations associated with the collective pseudospin decay
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through the cavity.
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Figure 4.3: The decay rate λ of the visibility of Ramsey fringes at ΓC = 0.2/T1 and T2 = T1 as
a function of repumping for N = 200 and as a function of N for w = NΓC/2 (Inset). The dots
are numerical solutions of Eq. (4.1), and the solid blue line is the semiclassical approximation for
comparison.

Therefore, due to the synchronization effect, the coherence time of atoms in steady-state

superradiance is significantly longer than the single-atom coherence time and is essentially inde-

pendent of single atom decoherences. A valid question to consider is: Why does the large incoherent

repumping rate w not destroy the synchronization? One may have thought that the repumping

would simply give rise to additional decoherence channels, on top of the usual T1 and T2 processes,

and cause the Ramsey fringe visibility to decay more rapidly. Somewhat paradoxically, repumping

is crucial for building up phase correlations among atoms. In Fig. 4.3, we show the effect of w on

the decay rates of the Ramsey fringe visibility λ. When the repumping rate is too small or too large

we find λ > ΓS , so that the system performs worse than conventional Ramsey spectroscopy. This

can be understood since the effective Kuramoto model Eq. (4.4) shows that population inversion

of the pseudospins is a necessary condition for phase synchronization. The repumping strength

must be large enough that there is more probability for the atoms to be in the excited state than

in the ground state. However, if the repumping rate is too large, the associated quantum noise

destroys the phase correlations before they can develop. As has also been seen in the case of the

superradiant laser [93], the most coherent system is realized at an intermediate pump strength.

We emphasize that there are three timescales here. At short times, quantum correlations
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develop as the atoms synchronize. This can be seen in the initial transient part of the evolution of

the observables shown in Fig. 4.2(b), and is characterized by the timescale w−1. This phase-locking

time should be less than the atomic coherence time Γ−1
S in order to observe high-visibility fringes.

There is also a long timescale provided by the collective decay time Γ−1
C . It is important to operate

in the parameter regime in which w � ΓS � ΓC .

It is possible to develop an accurate semiclassical approximation to get analytical expression

of λ. The approximation is valid in the case of large numbers of atoms. Taking advantage of the fact

that all expectation values are symmetric with respect to atom exchange, we find from Eq. (4.1),

d

dt
〈σ̂+
j 〉 = i∆ν〈σ̂+

j 〉 −
Γt
2
〈σ̂+
j 〉+

ΓC
2

(N − 1)〈σ̂+
j σ̂

z
k〉, (4.5)

where j 6= k and Γt = 2ΓS + w + ΓC is the total decay rate of the atomic coherence. We first

point out that instead of calculating the population difference measured at the end of the Ramsey

sequence, it is equivalent to calculate 2Im[〈σ̂+
j 〉] just before the second π/2 pulse. The decay rate of

〈σ̂+
j 〉 during the interrogation time T is therefore the same as that of the Ramsey fringe visibility.

As seen in Fig. 4.2(b), the quantities α(t) = 〈σ̂+
j σ̂

z
k〉/(〈σ̂

+
j 〉〈σ̂zk〉) and 〈σ̂zj (t)〉 rapidly approach steady

state on the short timescale of the phase-locking, w−1. We therefore substitute the steady-state

values αss and 〈σ̂zj 〉ss into Eq. (4.5). This produces the exponentially decaying sine function solution

noted earlier with decay constant

λ =
1

2

[
Γt − (N − 1)ΓCαss〈σ̂zj 〉ss

]
. (4.6)

Furthermore αss ≈ 1, see Fig. 4.2(b). At the level of mean-field, 〈σ̂zj 〉ss ≈ Γt/(N − 1)Γc giving the

trivial result λ = 0. It is therefore necessary to develop a semiclassical expression for 〈σ̂zj 〉ss that

goes beyond mean-field.

To find 〈σ̂zj 〉ss, we employ the cumulant approximation method [91, 92, 93]. Expectation

values of the atoms are expanded in terms of 〈σ̂zj 〉 and 〈σ̂+
j σ̂
−
k 〉. Their equation of motion can then
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be found from Eq. (4.1) in the paper,

d

dt
〈σ̂zj 〉 = −(ΓC +

1

T1
)
(
〈σ̂zj 〉+ 1

)
− w

(
〈σ̂zj 〉 − 1

)
− 2ΓC(N − 1)〈σ̂+

j σ̂
−
k 〉

d

dt
〈σ̂+
j σ̂
−
k 〉 ≈ −Γt〈σ̂+

j σ̂
−
k 〉+

ΓC
2
〈σ̂zj 〉

(
1 + 〈σ̂zj 〉

)
+ ΓC(N − 2)〈σ̂+

j σ̂
−
k 〉〈σ̂

z
j 〉.

where we have factorized 〈σ̂zj σ̂zk〉 ≈ 〈σ̂zj 〉2 and 〈σ̂+
j σ̂
−
k σ̂

z
l 〉 ≈ 〈σ̂

+
j σ̂
−
k 〉〈σ̂

z
j 〉. 〈σ̂zj 〉ss can then be found

by setting the time derivatives to zero, and the resulting algebraic equations form a close set and

can be solved exactly.

Fig. 4.3 compares λ from the semiclassical expression with the quantum master equation

solution, showing good agreement over the full range of pumping rates.

4.3 Robustness of the synchronization

In the above discussion, the atom-cavity coupling strength g is assumed to be identical for

all atoms. In principle, this could be achieved by trapping the atoms at the antinodes of the cavity

mode by an optical lattice in the Lamb-Dicke regime. Even so, there is still weak inhomogeneity of

g. In this section, we show that the synchronization of atoms is robust against spatial variations

of the atom-photon coupling strength, g.

We calculate the decay rate of the visibility of Ramsey fringes, λ, under an inhomogeneous

g factor. As shown in Fig. 4.4(a), λ will increase slowly when the spread in g (∆g) increases.

However, this can be interpreted as a reduced effective atom number. Fig. 4.4(b) shows that given

the inhomogeneity of g, λ will approach ΓC simply by increasing the number of atoms. This is

precisely due to the fact that the collective dissipative coupling strength is given by NΓC/2. As

long as the dissipative coupling can be made to dominate the individual-atom quantum noises,

which can be done by increasing N , the spread in g does not play an important role.

4.4 Conditional Ramsey spectroscopy with synchronized atoms

The performance of conventional Ramsey spectroscopy is limited by the atomic coherence

time, which causes decay of the fringe visibility as a function of T . Due to this decay, an optimal
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Figure 4.4: (a) The decay rate of the visibility of the Ramsey fringes as a function of standard
deviation of the g factor at ΓC = 0.2/T1, T2 = T1, and w = NΓC/5 for N = 250 atoms. (b) The
decay rate of the visibility of the Ramsey fringes as a function of number of atoms at ΓC = 0.2/T1,
T2 = T1, w = NΓC/5, and ∆g/ḡ = 0.2. ΓC in both (a) and (b) is defined using the mean of the g
distribution, ḡ. Statistics are accumulated by sampling g from a Gaussian distribution. The dots
are average values for 100 runs, and error bars represent the standard deviations.

strategy is typically used that involves setting T to be of the order of the coherence time, and filling

up the total measurement interval τ by repeated Ramsey cycles [54]. This gives an uncertainty in

the frequency difference between the atoms and local oscillator that scales as 1/(
√
Nτ), with the

√
N coming from the quantum projection noise at each readout. This scaling τ−1/2 is much worse

than the fundamental Fourier limit τ−1.

There are two paths to improving on the standard limit for Ramsey spectroscopy, apart

from simply increasing N . Firstly, the projection noise can be reduced by preparing spin-squeezed

states [66, 132, 133]. Pursuing this direction, there have been numerous efforts to produce spin-

squeezing in various physical situations [3, 19, 34, 41, 76, 107, 115]. It is worth pointing out

that entangled states are often fragile and sensitive to decoherence processes, which may limit

their potential for providing significant improvements to the sensitivity [2, 55]. Secondly, one

can increase the coherence time of atoms. One approach has been to increase the dephasing

time of magnetically and optically trapped atomic ensembles by spin self-rephasing induced by the

exchange interaction between two identical particles [27, 67]. In recent lattice clock experiments [9],

the atomic dephasing time T2 has been pushed to ∼1s. Even if further technical improvements are
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made, there is a fundamental upper limit to the atomic coherence time provided by the lifetime, T1,

of the long-lived excited clock state (∼160s for 87Sr) [100].

In this section, we propose that Ramsey Spectroscopy using synchronized atoms is poten-

tially more robust against decoherence [140]. We show that synchronized atoms undergo only a

collective quantum phase diffusion. However, the collective phase can be continuously monitored by

observing the cavity output field. Consequently, this system provides a kind of conditional Ramsey

spectroscopy, conditioned on the cavity output, where fringes of high visibility may be observed

indefinitely.

We have shown that with synchronized atoms the Ramsey fringe decays extremely slowly

with rate ΓC . This results from a statistical average of independent trials. The decay of the fringe

visibility is really due to the averaging itself, as we will now see. In each trial, the quantum phase

is diffusing as a function of interrogation time. This means that as time goes on, different trials

begin to add out of phase, and so the fringe visibility decays.

This motivates us to consider the properties of a single experimental run, where the behavior

is qualitatively different. Although in a single run, the fringe undergoes a quantum phase diffu-

sion, it does so with non-decaying visibility. This quantum phase diffusion has a simple physical

interpretation in terms of quantum measurements. Since the cavity field follows the atomic coher-

ence through adiabatic elimination, measuring the phase of the cavity output field, for example by

homodyne measurement, is equivalent to a continuous non-destructive measurement on which infor-

mation is gathered about the evolving collective atomic phase. The back-action of this measurement

introduces fluctuations that cause the collective atomic phase to undergo a random-walk [11].

We demonstrate this in Fig. 4.5(a), where we show a typical Ramsey fringe for a single

experimental trial by using the method of quantum state diffusion [137, 136] to yield conditional

evolution of the system subject to continuous measurements of the cavity field. The phase diffusion

of the synchronized atoms is evident from the phase fluctuation of the Ramsey fringe. To find

the phase diffusion coefficient, Fig. 4.5(b) shows the statistics of the positions of the zero crossings

of the fringe for 4000 trials. They fit well to Gaussian distributions with variance given by TΓC ,
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Figure 4.5: Quantum state diffusion calculations of conditional Ramsey fringes subject to contin-
uous homodyne measurement of the cavity output field for N = 10 and w = NΓC/2. The blue
dashed lines are the ensemble average for reference. (a) A typical Ramsey fringe for a single exper-
imental trial (red solid line). (b) Histograms are the statistics of the positions of zero crossings of
each fringe for 4000 trials. The blue solid lines are fitted Gaussian distributions with variance of
TΓC centered on the zero crossing of the ensemble average.

clearly demonstrating that it is a diffusion process and that the diffusion coefficient is
√

ΓC . Note

that this is the same mechanism that also sets the quantum limited linewidth in a superradiant

laser to be ΓC [93], observed here in the time rather than frequency domain.

We should emphasize that the quantum phase diffusion does not itself provide a fundamental

limit to the performance of conditional Ramsey spectroscopy, since the collective atomic phase can

be tracked by measuring the light output from the cavity. This opens up the exciting possibility

of observing conditional Ramsey fringes (meaning an experimental trial conditioned on the mea-

surement record of the output field) of near maximum fringe visibility for as long as the atoms

can be stored, even in the presence of T1 and T2 processes. Of course a practical limit is also set

by the length of time for which the local oscillator can remain phase coherent. In principle, if
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experimentally achieved, this work could lead to dramatic advances in the sensitivity of Ramsey

spectroscopy, since the entire measurement interval could then be used to determine frequency at

the Fourier limit.



Chapter 5

Quantum synchronization of two ensembles of superradiant atoms

Recently, there has been increasing interest in exploring manifestations of synchronization

in the quantum realm [35, 48, 53, 56, 72, 73, 75, 86, 87, 127, 128, 147]. Connections between

quantum entanglement and synchronization have been revealed in different systems [72, 73, 87, 147].

Based on Heisenberg uncertainty principle, quantum synchronization measures have been applied

to coupled optomechanical cells [87]. The effect of quantum noise has been shown to reduce the

synchronization region of a driven self-sustained oscillator [127]. Since the phenomenon is inherently

non-equilibrium, all of these systems share the common property of competition between coherent

and incoherent driving and dissipative forces.

In this chapter, we propose a modern-day realization of the original Huygens experiment [59].

We consider the synchronization of two active atomic clocks coupled to a common single-mode opti-

cal cavity. It has been predicted that in the regime of steady-state superradiance [10, 12, 91, 92, 93]

a neutral atom lattice clock could produce an ultracoherent optical field with a quality factor (ratio

of frequency to linewidth) that approaches 1018. We show that two such clocks may exhibit a

dynamical phase transition [30, 52, 61, 122] from two disparate oscillators to quantum phase-locked

dynamics. The onset of synchronization at a critical pump strength is signified by an abruptly

increased relative phase diffusion that diverges in the thermodynamic limit. Besides being of fun-

damental importance in nonequilibrium quantum many-body physics, this work could have broad

implications for many practical applications of ultrastable lasers and precision measurements [93].
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5.1 Setup

Figure 5.1: Two ensembles of driven two-level atoms coupled to a single-mode cavity field. The
atoms in ensemble A are detuned above the cavity resonance (dashed line). Ensemble B contains
atoms detuned below the cavity resonance by an equivalent amount.

The general setup is shown schematically in Fig. 5.1. Two ensembles, each containing N two-

level atoms with excited state |e〉 and ground state |g〉, are collectively coupled to a high-quality

optical cavity. The transition frequencies of the atoms in ensembles A and B are detuned from

the cavity resonance by δ/2 and −δ/2 respectively. This could be achieved by spatially separating

the ensembles and applying an inhomogeneous magnetic field to induce a differential Zeeman shift.

The atoms in both ensembles are pumped incoherently to the excited state as in the steady-state

superradiance [10, 12].

This system is described by the Hamiltonian in the rotating frame of the cavity field:

Ĥ =
~δ
2

(ĴzA − ĴzB) +
~g
2

(â†Ĵ−A + Ĵ+
A â+ â†Ĵ−B + Ĵ+

B â) , (5.1)

where g is the atom-cavity coupling. Here ĴzA,B = 1
2

∑N
j=1 σ̂

z
(A,B)j and Ĵ−A,B =

∑N
j=1 σ̂

−
(A,B)j are the

collective atomic spin operators, written in terms of the Pauli operators for the two-level system

σ̂z(A,B)j and σ̂−(A,B)j = (σ̂+
(A,B)j)

†.

In addition to the coherent atom-cavity coupling, incoherent processes are critical and include:

the cavity intensity decay at rate κ, the pump rate w, the free-space spontaneous emission rate

γ, and a background dephasing of the |e〉–|g〉 transition at rate T−1
2 . The total system is then

described using a master equation for the reduced density operator ρ:

dρ

dt
=

1

i~
[Ĥ, ρ] + κL[â] ρ+

∑
T =A,B

N∑
j=1

(
γL[σ̂−T j ] + wL[σ̂+

T j ] +
1

2T2
L[σ̂zT j ]

)
ρ . (5.2)



49

Again, the regime of steady-state superradiance is defined by the cavity decay being much

faster than all other incoherent processes [10, 12, 91, 93]. In this regime, the cavity can be adi-

abatically eliminated, resulting in a field that is slaved to the collective atomic dipole of the two

ensembles of atoms:

â ' − ig

κ+ iδ
Ĵ−A −

ig

κ− iδ
Ĵ−B . (5.3)

For small detuning on the scale of the cavity linewidth, δ � κ, Eq. (5.3) reduces to â ' −igĴ−/κ,

where Ĵ− = Ĵ−A + Ĵ−B is the total collective spin-lowering operator. In this limit, the net effect of

the cavity is to provide a collective decay channel for the atoms, with rate γC = Cγ. This collective

decay should be dominant over other atomic decay processes, i.e., NγC � γ, T−1
2 , so that the time

evolution is effectively given by a superradiance master equation containing only atoms:

dρ

dt
=

δ

2i~
[JzA − JzB, ρ] + γCL[Ĵ−] ρ+ w

N∑
j=1

(L[σ̂+
Aj ] + L[σ̂+

Bj ]) ρ. (5.4)

With this system we naturally provide the three necessary ingredients for quantum synchro-

nization; a controllable difference between the oscillation frequencies of two mesoscopic ensembles, a

dissipative coupling generated by the emission of photons into the same cavity mode, and a driving

force produced by optical pumping.

5.2 Mean-field picture

It is possible to understand a great deal about the synchronization of the proposed system

with a simple mean-field treatment. Starting from Eq. (5.4), we make the mean-field ansatz that the

density matrix is a product of density matrices for each atom, i.e., ρ =
⊗

j ρAj ⊗ ρBj . Substituting

this ansatz into the master equation, we obtain the equation of motion for the j-th atom in each

ensemble by tracing out all other atoms, i.e.

d

dt
ρAj = −i[δ

2
σ̂zAj , ρAj ] + wL[σ̂+

Aj ]ρAj +
γC
2

(σ̂−AjρAj − ρAj σ̂
−
Aj)O +

γC
2

(ρAj σ̂
+
Aj − σ̂

+
AjρAj)O

∗ ,

d

dt
ρBj = −i[−δ

2
σ̂zBj , ρBj ] + wL[σ̂+

Bj ]ρBj +
γC
2

(σ̂−BjρBj − ρBj σ̂
−
Bj)O +

γC
2

(ρBj σ̂
+
Bj − σ̂

+
BjρBj)O

∗ ,

where O =
∑

j〈σ̂
+
Aj〉+ 〈σ̂+

Bj〉 is the mean-field.
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The above mean-field equation enables us to obtain an analogous two-component phase model

to the well-known Kuramoto model for studying synchronization. To this end, we first derive the

equation of motion for 〈Ĵ−A 〉 and 〈Ĵ−B 〉,

d

dt

〈Ĵ−A 〉
〈Ĵ−B 〉

 = M

〈Ĵ−A 〉
〈Ĵ−B 〉

 =

−i δ2 − w
2 + γC

2 〈Ĵ
z
A〉

γC
2 〈Ĵ

z
A〉

γC
2 〈Ĵ

z
B〉 i δ2 −

w
2 + γC

2 〈Ĵ
z
B〉


〈Ĵ−A 〉
〈Ĵ−B 〉

 . (5.5)

By parameterizing 〈Ĵ−A 〉 as α exp(iθA) and 〈Ĵ−B 〉 as β exp(iθB), we have

d

dt
θA = −δ

2
+
γC
2

β

α
〈ĴzA〉 sin(θB − θA),

d

dt
θB =

δ

2
+
γC
2

α

β
〈ĴzB〉 sin(θA − θB). (5.6)

From Eq. (5.6), we find a phase attraction between the two ensembles of atoms that exists as long

as the atoms are repumped so that the atomic population inversion 〈ĴzA,B〉 is positive. It is the

phase attraction resulting from the dissipative coupling that gives rise to the synchronization.

We may identify the synchronization transition within the mean-field theory. In the syn-

chronized phase, the frequencies of the atoms are locked to the cavity frequency, leading to a

non-oscillatory steady state in Eq. (4.2). In this case, it is easy to calculate the steady state value

of 〈ĴzA,B〉 to be (w2 + δ2)/(2wγC). However, as δ > w, the matrix M in Eq. (5.5) acquires complex

(non-real) eigenvalues, indicating oscillations and therefore a precession of the relative phase. We

refer to this as the unsynchronized parameter region.

The photons emitted by the cavity provide directly measurable observables. Synchronization

is evident in the properties of the photon spectra. In the case of two independent ensembles in

the unsynchronized phase, each ensemble radiates photons at its own distinct transition frequency.

This leads to two Lorentzian peaks that are typically well-separated. In the synchronized phase,

all of the atoms radiate at a common central frequency resulting in a single peak.

5.3 Quantum signatures of the synchronization

Although the mean-field treatment correctly predicts the phase transition, the associated

quantum noises in the open quantum system and quantum correlations between the pseudospins
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are absent. These are the aspects that distinguish quantum synchronization from classical synchro-

nization.

To solve this problem quantum mechanically, we use a semiclassical approximation that

is applicable to large atom numbers. Cumulants for the expectation values of system opera-

tors {σ̂z(A,B)j , σ̂
±
(A,B)j} are expanded to second order [91, 93]. All expectation values are symmetric

with respect to exchange of atoms within each ensemble, i.e. 〈σ̂+
Biσ̂
−
Bj〉 = 〈σ̂+

B1σ̂
−
B2〉, for all i 6= j.

Due to the U(1) symmetry, 〈σ̂±(A,B)j〉 = 0. Therefore, all nonzero observables can be expressed in

terms of 〈σ̂z(A,B)j〉, 〈σ̂
+
(A,B)iσ̂

−
(A,B)j〉, and 〈σ̂z(A,B)iσ̂

z
(A,B)j〉. Expectation values involving only one en-

semble are the same for both ensembles and for these cases we omit the superfluous A,B subscripts.

The equations of motion can then be found from Eq. (5.4):

d

dt
〈σ̂z1〉 = −γC (〈σ̂z1〉+ 1)− w (〈σ̂z1〉 − 1)

− 2γC(N − 1)〈σ̂+
1 σ̂
−
2 〉 − γCN

(
〈σ̂+
A1σ̂

−
B1〉+ c.c

)
, (5.7)

d

dt
〈σ̂+

1 σ̂
−
2 〉 = −(w + γC)〈σ̂+

1 σ̂
−
2 〉+

γC
2

(〈σ̂z1σ̂z2〉+ 〈σ̂z1〉)

+ γC(N − 2)〈σ̂z1〉〈σ̂+
1 σ̂
−
2 〉

+
γC
2
N〈σ̂z1〉

(
〈σ̂+
A1σ̂

−
B1〉+ c.c

)
, (5.8)

d

dt
〈σ̂+
A1σ̂

−
B1〉 = −(w + γC − iδ)〈σ̂+

A1σ̂
−
B1〉+

γC
2

(〈σ̂zA1σ̂
z
B1〉+ 〈σ̂z1〉)

+ γC(N − 1)〈σ̂z1〉
(
〈σ̂+
A1σ̂

−
B1〉+ 〈σ̂+

1 σ̂
−
2 〉
)
, (5.9)

describing population inversion, spin-spin coherence within each ensemble, and correlation between

ensembles, respectively. In deriving Eq. (5.8) and (5.9), we have dropped third order cumulants.

We also factorize 〈σ̂z(A,B)iσ̂
z
(A,B)j〉 ≈ 〈σ̂

z
1〉2, which we find to be valid outside the regime of very

weak pumping where a non-factorizable subradiant dark state plays an important role [91]. After

making these approximations, Eq. (5.7) to (5.9) form a closed set of equations. The steady state

is found by setting the time derivatives to zero and the resulting algebraic equations can be solved

exactly.

We have validated Eq. (5.7) to (5.9) by comparison with exact numerical solutions of the
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quantum master equation based on applying the SU(4) group theory (see Chapter 3). As shown

in Fig. 5.2, the comparison is very good even for small system size of 30 atoms in each ensemble.

Due to the presence of multiple ensembles it is difficult to implement exact calculations for more

than about 50 atoms.

Figure 5.2: Steady state value of population inversion 〈σ̂z1〉, spin-spin coherence within each
ensemble 〈σ̂+

1 σ̂
−
2 〉 and correlation between ensembles 〈σ̂+

A1σ̂
−
B1〉 as a function of detuning. Red dots

are exact numerical calculation by applying the SU(4) group theory. Blue lines are semiclassical
results based on solutions to Eq. (5.7) to (5.9).

In order to calculate the photon spectrum, we employ the quantum regression theorem [95]

to obtain the two-time correlation function of the light field, 〈â†(τ)â(0)〉, where time 0 denotes

an arbitrary time-origin in steady-state. In the limit δ � κ, according to Eq. (5.3), the phase

diffusion of the atoms and light are the same, i.e. 〈â†(τ)â(0)〉 ∼ 〈Ĵ+(τ)Ĵ−(0)〉. We begin by

deriving equations of motion for 〈σ̂+
A1(τ)σ̂−B1(0)〉 and 〈σ̂+

B1(τ)σ̂−B2(0)〉:

d

dτ

〈σ̂+
A1(τ)σ̂−B1(0)〉

〈σ̂+
B1(τ)σ̂−B2(0)〉

 =
1

2

X Y

Y X∗


〈σ̂+

A1(τ)σ̂−B1(0)〉

〈σ̂+
B1(τ)σ̂−B2(0)〉

 , (5.10)
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where X = γC(N − 1)〈σ̂z1(0)〉 − γC −w + iδ , Y = γCN〈σ̂z1(0)〉 . We have systematically factorized:

〈σ̂z1(τ)σ̂+
A1(τ)σ̂−B1(0)〉 ≈ 〈σ̂z1(0)〉〈σ̂+

A1(τ)σ̂−B1(0)〉 ,

〈σ̂z1(τ)σ̂+
B1(τ)σ̂−B2(0)〉 ≈ 〈σ̂z1(0)〉〈σ̂+

B1(τ)σ̂−B2(0)〉 . (5.11)

Similarly, one finds that 〈σ̂+
A1(τ)σ̂−A2(0)〉 and 〈σ̂+

B1(τ)σ̂−A1(0)〉 satisfy the same equation of motion as

Eq. (5.10). The solution of this coupled set is straightforward and shows that both 〈σ̂+
A1(τ)σ̂−B1(0)〉

and thus also 〈â†(τ)â(0)〉 evolve in proportion to the exponential:

exp

[
−1

2

(
w + γC − (N − 1)γC〈σ̂z1〉 −

√
(NγC〈σ̂z1〉)2 − δ2

)
τ

]
, (5.12)

which we parametrize by exp [−(Γ + i∆)τ/2], where Γ represents the decay of the first-order corre-

lation and ∆ the modulation frequency. Laplace transformation yields the photon spectrum which

consists of Lorentzians of halfwidth Γ/2 centered at frequencies ±∆/2.
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Figure 5.3: Steady-state relative phase precession for two ensembles as a function of detuning at
w = NγC/2 for N = 100 (blue dashed line), N = 500 (purple dot dashed line) and N = 106 (red
solid line). The straight dotted line is δ = ∆.

The importance of the two-time correlation function is that it provides direct access to the

correlated phase dynamics of the two ensembles. The parameter ∆ physically represents the pre-

cession frequency of the phase of the collective mesoscopic dipoles with respect to one another. In

Fig. 5.3, we show ∆ as a function of δ at w = NγC/2 for several values of N . For large detuning,

∆ approaches δ, indicating that the dipoles precess independently at their uncoupled frequency.

Below a critical δ, we find ∆ to be zero, indicating synchronization and phase locking.
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There is not yet a generally accepted meaning of the term ‘quantum synchronization’. In

general, we believe that in the quantum synchronization case, quantum mechanics introduces two

effects. The first is the quantum noise, which is due to the oscillator gaining or losing individual

quanta. This can be equivalently viewed as the fundamental fluctuations due to the interaction

of the system with its environment. The second effect is that the oscillators can be quantum

mechanically correlated.

Figure 5.4: (a) Nonequilibrium phase diagram of the quantum synchronization represented by Γ (in
units of γC) on the w-δ parameter plane, where the dissipative coupling NγC (N = 104) is fixed.
An abrupt peak is observed at the boundary between the synchronized and unsynchronized phases.
(b) As for (a) but on the w-NγC parameter plane.

We first discuss the quantum noise aspect. The fact that this system undergoes a synchro-
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nization transition that is fundamentally quantum mechanical is evident in the manifestation of

quantum noises associated with the repumping process and the cavity decay. It is shown that quan-

tum noises result in the phase diffusion of the collective atomic dipoles (see Chapter 4), setting the

ultimate quantum limit for the linewidth of the superradiant laser to be γC . They also give rise

to the relative quantum phase diffusion between the two ensembles, as quantified by the linewidth

Γ of the Lorentzian peak(s). Therefore, Γ/γC can be a dimensionless measure of the degree of

the synchronization between the two ensembles as normalized by the phase diffusion within each

ensemble.

This system has three independent control variables; the detuning δ, the dissipative coupling

NγC and the pumping w, so we show Γ/γC on the w-δ parameter plane in Fig. 5.4(a) and on the

w-NγC parameter plane in Fig. 5.4(b). In the region of no quantum correlation, the quantum noise

due to pumping destroys the coherences between spins faster than the collective coupling induced

by the cavity field can reestablish them. Therefore the mesoscopic dipole is destroyed and the

observed spectra are broad. In both the synchronized and unsynchronized regions, spins within

each ensemble are well-correlated so that the corresponding Lorentzian peaks have ultranarrow

linewidth (∼ γC). As is apparent in Fig. 5.4(a), the two ensembles cannot be synchronized when

NγC < δ since then the coherent coupling is not sufficient to overcome the relative precession that

arises from the detuning.

For strong coupling, NγC > δ, the synchronization transition occurs as the pump rate passes

a critical value. The two phases on either side of the critical region are abruptly separated. As

one approaches the synchronized phase from the unsynchronized one by variation of either δ or w,

the linewidth increases rapidly, showing amplification of the effect of quantum noise in vicinity of

the critical point. After passage of the critical region, the linewidth drops rapidly, leading to rigid

phase locking between the two collective dipoles.

We emphasize that the synchronization dynamics shown in Fig. 5.3 and 5.4 is a dynamical

phase transition [30, 52, 61, 122] that is reminiscent of a second-order quantum phase transition.

To capture features of the quantum criticality, we numerically study the finite size scaling behavior.
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Figure 5.5: Finite size scaling behavior of the quantum criticality for δ = NγC/2. For N →∞, the
critical pump rate is wc = δ. The red dots show the offset between the critical pump rate wN for
finite N and wc. The blue squares show Γ (in units of γC) at wN . Both exhibit linear scalings on
the log-log plot.

Fig. 5.5 shows both the critical pump rate wN for finite N and the corresponding Γ at wN . The

scaling laws of (wN − wc)/wc ' N−0.34 and Γ/γC ' N0.66 can be identified.

In Hamiltonian systems, a quantum phase transition results from the competition between

two noncommuting Hamiltonian components with different symmetries on changing their relative

weight. The transition between the two distinct quantum phases can be identified from the nonan-

alytical behavior of an order parameter, and the scaling behavior of certain correlation functions

that diverge at the critical point. By analogy, the synchronization phase transition is caused by

the competition between unitary dynamics that is parametrized by δ and enters asymmetrically for

the two ensembles, and driven-dissipative dynamics parametrized by γC that is symmetric. The

order parameter ∆ is zero in the synchronized phase and non-zero in the unsynchronized phase.

The critical behavior is encapsulated by the divergence of the relative quantum phase diffusion.

It should be emphasized that the treatment given here is quite different to the typical analysis

since the transition is embodied by the characteristic features of the two-time correlation functions,

rather than the behavior of an energy gap or correlation length.

In the thermodynamic limit, simple expressions for 〈σ̂z1〉 to leading order in 1/N can be
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obtained:

〈σ̂z1〉 =


w

2NγC
, if δ = 0

w2+δ2

2wNγC
, if 0 < δ < w

w
NγC

, if δ ≥ w

, (5.13)

where w should be such that 〈σ̂z1〉 < 1. A critical point at wc = δ can be found by substituting

Eq. (5.13) into Eq. (5.12). In particular, ∆ = (δ2−w2)1/2 in the unsynchronized phase, which shows

an analogous critical exponent to that of a second-order quantum phase transition, i.e., β = 1/2.

As a second point, we provide in-depth detail to quantify the effect of correlations. We do

this by a calculation of what is known as the quantum discord. It is worth to point out that the

connection between synchronization phenomena and quantum correlations are subtle and subject

of current research. Quantum discord can generally be thought of as a measure of the degree of

nonclassical correlations between two subsystems. Fig. 5.6 shows the degree of “quantumness” of

the correlation presented in our system. We also see that the cumulant expansion provides a good

description of the important quantum correlations in the system.

Figure 5.6: Classical correlation and quantum discord between one atom in ensemble A and one
atom in ensemble B. The blue dashed line is based on semiclassical approximation described in
the paper. The red dots are exact numerical calculations. There are 30 atoms in each ensemble.
The comparison between these two lines indicates the “quantumness” of correlations present in our
system.

We have presented a system that exhibits quantum synchronization as a modern analogue of

the Huygens experiment but is implemented using state-of-the-art neutral atom lattice clocks of the
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highest precision. It sheds lights on the ongoing efforts of understanding the quantum aspects of

synchronization. It will be intriguing in future work to study the many possible extensions that are

inspired by these results, such as the effect of an atom number imbalance on the synchronization

dynamics, and the sensitivity of the phase-locking to external perturbation.



Chapter 6

Supercooling of atoms based on steady-state superradiance

In the previous discussion of steady-state superradiance, the external motions of atoms were

assumed to be frozen. Therefore, the mechanical effects of cavity-photon atom interaction was

neglected. In this chapter, we investigate the motional effects on atoms in steady-state superradi-

ance. We focus on how the novel features of steady-state superradiance can be used for efficient

cooling of the atoms. We demonstrate that when atomic dipoles are synchronized in the regime

of steady-state superradiance, the motion of the atoms may be subject to a giant frictional force

leading to potentially very low temperatures. The ultimate temperature limits are determined by

a modified atomic linewidth, which can be orders of magnitude smaller than the cavity linewidth.

The cooling rate is enhanced by the superradiant emission into the cavity mode allowing reasonable

cooling rates even for dipolar transitions with ultranarrow linewidth.

6.1 Cavity cooling in the strong coupling regime

The discovery of laser cooling [129] has enabled new areas of quantum gas physics and quan-

tum state engineering [8]. Laser cooling is an essential technology in many fields, including precision

measurements, quantum optics, and quantum information processing [83, 126, 131]. Doppler laser

cooling [45, 134] relies on repeated cycles of electronic excitation by lasers followed by spontaneous

relaxation, reaching temperature limits determined by the atomic linewidth. Only specific atomic

species can be Doppler cooled because they should possess an internal level structure that allows

for closed cycling transitions.
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Cavity-assisted laser cooling [32, 108] utilizes the decay of an optical resonator instead of

atomic spontaneous emission for energy dissipation. It is based on the preferential coherent scat-

tering of laser photons into an optical cavity [51, 125]. Temperatures that can be achieved in

this way are limited by the cavity linewidth. Since the particle properties enter only through the

coherent scattering amplitude, cavity-assisted cooling promises to be applicable to any polarizable

object [63, 78, 79, 89, 90, 96, 97, 116, 139], including molecules [79, 97] and even mesoscopic systems

such as nanoparticles [63, 96]. The requirement of cavity cooling [51, 125] is that the single-atom

cooperativity parameter C should be much greater than 1, since we want the atom to scatter light

mostly into the cavity rather than the free space.

In this section, I provide a simple model to illustrate the underlying mechanism of cavity

cooling. Consider that an atom is confined within a standing-wave resonator and is illuminated

by a transverse laser (see Fig. 6.1). A dipolar transition of the atom couples far-detuned with the

laser fields and scatters photons from the laser into the cavity. Therefore, the cavity is effectively

Lorentzian lineshape

Figure 6.1: An atom with velocity v is moving freely along the cavity axis. The atom coherently
scatters the photons of the transverse laser into the cavity mode. The frequency of the laser ωL is
red detuned from the cavity resonance frequency ωc by ∆c. Due to Doppler effect, the atom will
scatter more photons into the direction along which it moves.



61

pumped by laser photons. The effective Hamiltonian of the cavity-atom system is [117]

Ĥ =
p̂2

2m
+ ~

Sd
2

(â+ â†) cos(kx̂) + ~∆câ
†â, (6.1)

where Sd is the effective pumping rate of the cavity and ∆c is the detuning between the cavity

frequency and laser frequency. Here, the motion of the atom is restricted to the cavity axis (x-

axis). The position and canonically conjugated momentum of the atom are given by x̂ and p̂ with

[x̂, p̂] = i~. Note that the shift of the cavity frequency due to the interaction with the atom is

neglected in Eq. (6.1) since it is much smaller than ∆c [117].

In the regime C � 1, spontaneous emission of the atom can be neglected [117]. Therefore,

the only decay channel of the system is the cavity decay and the system can be described by the

quantum master equation for the density matrix ρ,

d

dt
ρ =

1

i~
[Ĥ, ρ] + κL[â]ρ . (6.2)

Let us focus on the condition under which the motion of the atom can be treated semiclassically.

This requires that

~k � ∆p, (6.3)

where ~k is the photon momentum and ∆p is the momentum width of the atom.

In the parameter regime of interest, the cavity linewidth is much larger than the atomic

motion,

k
∆p

m
� |κ+ i∆c|. (6.4)

Note that when the recoil frequency ωr = ~k2/2m is much less than κ, this condition is consistent

with Eq. (6.3). Therefore, the cavity field can be adiabatically eliminated. In order to correctly

encapsulate the cavity cooling mechanism, the adiabatic elimination of the cavity field has to be

expanded beyond the leading order. Specifically, the retardation effects between the cavity field

and atomic variables should be included.

The Langevin equation of motion for the cavity field is

d

dt
â = −κ

2
â− i∆câ− i

Sd
2

cos(kx)−
√
κξ̂κ(t), (6.5)
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where x is now the semiclassical position and ξ̂κ is the quantum white noise originating from the

cavity output with 〈ξ̂κ(t)ξ̂†κ(t′)〉 = δ(t − t′). Following the procedure of doing adiabatic elimina-

tion (see Appendix A), we have

â ≈
∫ t

0
dse−(κ/2+i∆c)s

(
−iSd

2
cos(kx)−

√
κξ̂κ

)
≈
−iSdκ

4 cos(kx)

κ2/4 + ∆2
c

−
Sd∆c

2 cos(kx)

κ2/4 + ∆2
c

+
κ∆c

Sd
2
d
dt cos(kx)

(κ2/4 + ∆2
c)

2
+
iSd

2 (κ2/4−∆2
c)

d
dt cos(kx)

(κ2/4 + ∆2
c)

2
−

√
κξ̂κ

κ/2 + i∆c
.

(6.6)

We can see from Eq. (6.6) that the retardation between the cavity field and the atomic motion has

been included to the second order in 1/κ.

The total force on the atom is given by the derivative of the Hamiltonian

f = −∇H = ~k sin(kx)
Sd
2

(â+ â†) (6.7)

By plugging Eq. (6.6) into Eq. (6.7), we find the conservative force to be

f c = −~k sin(kx)
Sd
2

Sd∆c

κ2/4 + ∆2
c

cos(kx), (6.8)

the frictional force to be

ff = ~k sin(kx)
Sd
2

κ∆cSd
d
dt cos(kx)

(κ2/4 + ∆2
c)

2
= −~k sin2(kx)

κS2
d/4

κ2/4 + ∆2
c

2∆ck/m

κ2/4 + ∆2
c

p , (6.9)

and the diffusion force has the correlation matrix

〈dpdp〉 = ~2k2 κS2
d/4

κ2/4 + ∆2
c

sin2(kx)dt (6.10)

The final cooling temperature T for the atom is

kBT =
〈p2〉
m

=
D

2mα
= ~

∆2
c + κ2/4

4∆c
, (6.11)

since from Eq. (6.10) and Eq. (6.9), the diffusion and friction coefficient, D and α, are given by

D = ~2k2 sin2(kx)
κS2

d/4

κ2/4 + ∆2
c

,

α = ~k sin2(kx)
κS2

d/4

κ2/4 + ∆2
c

2∆ck/m

∆2
c + (κ/2)2

. (6.12)
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According to Eq. (6.11), the minimum temperature that can be achieved by cavity cooling is

kBT = ~κ/4 at ∆c = κ/2.

The many-atom effects of cavity-assisted cooling were theoretically discussed by Ritsch and

collaborators [31] and experimentally reported [5, 17]. It is shown that the many-atom case exhibits

a threshold, which is mainly determined by the intensity of the transverse laser. Below the threshold,

the atoms distribute homogeneously along the cavity axis. The physics is the same as the single-

atom case discussed above. Above threshold, self-organized atomic structure (Bragg gratings)

form, which superradiantly scatters photons into the cavity. Recently, it has been shown that

the long-range nature of the cavity-mediated interaction between atoms gives rise to interesting

prethermalization behavior [118]. In spite of the intrinsic many-body nature, the underlying cooling

mechanism shares much with the single-atom case, and indeed the final temperature observed in

these systems is limited by the cavity linewidth.

6.2 Supercooling

Repump

laser

Rapid decay

Figure 6.2: Atoms with ultranarrow transition
∣∣g〉↔ ∣∣e〉 are confined to the axis of a standing-wave

mode of an optical cavity. Different implementations of pumping may be considered [12, 93]. In the
simplest scenario shown, a transition is driven from the ground state |g〉 to an auxiliary state |a〉
that rapidly decays to the excited state |e〉. In this way |a〉 can be adiabatically eliminated and a
two-state pseudospin description in the {|g〉, |e〉} subspace used, with repumping corresponding to
an effective rate w from |g〉 to |e〉. If the repumping laser is directed normal to the cavity axis, the
absorption does not modify the momentum. Momentum recoil is induced by the on-axis component
of the wavevector ~k′ of the dipole radiation pattern for the |a〉 ↔ |e〉 transition.

In this section, we demonstrate that the mechanical action of the atom-cavity coupling takes
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on a dramatically new character for atoms in the regime of steady-state superradiance [11, 12,

91, 93, 140, 142]. Specifically, the frictional force on a single atom is significantly enhanced, and

the final temperature is much lower than the temperature that can be achieved in cavity-assisted

cooling [51, 125]. Furthermore, as the atom number increases, the cooling may become faster due to

the increasing rate of superradiant collective emission. We show that ability to achieve much lower

temperatures than for single-atom cavity-assisted cooling derives from the emergence of atom-atom

dipole correlations in the many-body atomic ensemble.

We now consider a specific situation of an ensemble of N point-like two-level atoms with tran-

sition frequency ωa and natural linewidth γ, interacting with a single-mode cavity with resonance

frequency ωc and linewidth κ, as shown in Fig. 6.2. The atoms are restricted to move freely along

the direction of the cavity axis (x-axis), a situation that can be realized by tightly confining the

atoms in the other two directions. The atom-cavity coupling strength is given by g cos(kx), where

g is the vacuum Rabi frequency at the field maximum and cos(kx) describes the one-dimensional

cavity mode function. The atoms are incoherently repumped at rate w, thus providing the source

of photons.

The Hamiltonian describing the atom-cavity system in the rotating frame of the atomic

transition frequency is given by,

Ĥ = ~∆â†â+
N∑
j=1

p̂2
j

2m
+ ~

g

2

N∑
j=1

(â†σ̂−j + σ̂+
j â) cos(kx̂j) , (6.13)

where ∆ = ωc−ωa. We have introduced the bosonic annihilation and creation operators, â and â†,

for cavity photons. The j-th atom is represented by Pauli pseudospin operators, σ̂zj and σ̂−j = (σ̂+
j )†,

and position and momentum x̂j and p̂j , respectively.

In the presence of dissipation, the evolution of the system is described by the Born-Markov

quantum master equation for the density matrix ρ̂ for the cavity and atoms,

d

dt
ρ̂ =

1

i~

[
Ĥ, ρ̂

]
+ κL[â]ρ+ w

N∑
j=1

∫ 1

−1
duN(u)L[σ̂+

j e
iuk′x̂j ]ρ , (6.14)

The term proportional to κ describes the cavity decay. The repumping is the term proportional

to w and is modeled by spontaneous absorption with recoil [44]. The recoil is parametrized by the



65

normalized emission pattern N(u) and wavevector k′. It will generally be a good approximation to

neglect the effect of free-space spontaneous emission of the atoms outside of the cavity, since the

natural linewidth γ is assumed to be extremely small for atoms with an ultraweak-dipole transition.

The typical relaxation time of the cavity mode is of the order of TC ∼ |κ+ i∆|−1, while the

one of the atoms is given by TA ∼
(

max
{√

Nn̄g, w, k
√
〈p2〉/m

})−1
, where n̄ is the mean photon

number in the cavity. In steady state superradiance, the relaxation time of the cavity is assumed to

be much shorter than the timescale on which the atoms are evolving, namely TA � TC . Therefore,

the cavity field can be quasiadiabatically eliminated as in Section 6.1. To this end, we start with

the quantum Langevin equation for the cavity field according to the quantum master equation

Eq. (6.14),

d

dt
â = −κ

2
â− i∆â− ig

2
Ĵ− +

√
κξ̂κ(t) , (6.15)

where Ĵ− =
∑N

j=1 σ̂
−
j cos(kx̂j) is redefined in this case to include the atomic position and ξ̂κ is

again the quantum white noise originating from the cavity output with 〈ξ̂κ(t)ξ̂†κ(t′)〉 = δ(t− t′).

The formal solution to Eq. (6.15) is

â(t) = e−(κ/2+i∆)∆tâ(t0)− ig
2

∫ ∆t

0
dse−(κ/2+i∆)sĴ−(t− s) + F̂(t) , (6.16)

where F̂(t) =
√
κ
∫ ∆t

0 dse−(κ/2+i∆)sξ̂κ(t − s) is the noise term and ∆t = t − t0. Under the ap-

proximation of coarse graining (TA � ∆t� TC), the first term on the right-hand side (RHS) of

Eq. (6.16) vanishes, and it is shown in Appendix A that

〈F̂(t)F̂†(t′)〉 ≈ κ

κ2/4 + ∆2
δ(t− t′) . (6.17)

It would be convenient to choose F̂(t) = −i
√
γC
g/2 ξ̂(t), with

γC =
g2κ/4

κ2/4 + ∆2
. (6.18)

Furthermore, the integral in Eq. (6.16) can be expanded in powers of 1/(κ/2 + i∆) (see Appendix

A). As a result we obtain

â(t) ≈
−ig2 Ĵ

−

κ/2 + i∆
−

d
dt(−i

g
2 Ĵ
−)

(κ/2 + i∆)2
+ F̂(t) +O[(κ/2 + i∆)−3] . (6.19)
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As can be seen from Eq. (6.19), the retardation effects between the cavity field and atomic variables

are included.

The force on the j-th atom F̂j is given by

F̂j =
d

dt
p̂j = ~k sin(kx̂j)

g

2
(σ̂+
j â+ â†σ̂−j ) + N̂ pump

j , (6.20)

where N̂ pump
j represents the random force due to recoil of the incoherent pumping process. Sub-

stituting Eq. (6.19) into the above equation, we have

d

dt
p̂j ≈ ~k sin(kx̂j)

γC
2

(
−iσ̂+

j Ĵ
− + iĴ+σ̂−j

)
− ~k sin(kx̂j)

γ∆

2

N∑
l=1

cos(kxl)

(
σ̂+
j σ̂
−
l + σ̂+

l σ̂
−
j − β1σ̂

+
j

d

dt
σ̂−l − β

∗
1

d

dt
σ̂+
l σ̂
−
j

)

− sin(kx̂j)
γC
2

N∑
l=1

η

2
[sin(kx̂l), p̂l]+

(
σ̂+
j σ̂
−
l + σ̂+

l σ̂
−
j + β2σ̂

+
j σ̂
−
l + β∗2 σ̂

+
l σ̂
−
j

)
+ N̂j ,

(6.21)

where
[
Â, B̂

]
+

= ÂB̂ + B̂Â is the anticommutator and the coefficients are

γ∆ =
g2∆/2

κ2/4 + ∆2
, β1 =

κ

κ2/4 + ∆2
+ i

κ2/4−∆2

∆(κ2/4 + ∆2)
, β2 = i

κ2/4−∆2

κ∆
, η =

4ωr∆

κ2/4 + ∆2
. (6.22)

Here N̂j = N̂ cav
j + N̂ pump

j is the sum of the noise processes originating from the cavity output N̂ cav
j

and repumping N̂ pump
j . In the first line of equation (6.21) we neglect β1 because in the steady

state superradiance regime it holds that |β1|〈σ̂+
j
d
dt σ̂
−
l 〉 ∼

w
κ 〈σ̂

+
j σ̂
−
l 〉 � 〈σ̂

+
j σ̂
−
l 〉. This has also been

checked numerically. Therefore we get

d

dt
p̂j =

d

dt
p̂0
j + N̂j , (6.23)

where we define the force without noise as

d

dt
p̂0
j ≈ ~k sin(kx̂j)

γC
2

(
−iσ̂+

j Ĵ
− + iĴ+σ̂−j

)
− ~k sin(kx̂j)

γ∆

2

N∑
l=1

cos(kxl)
(
σ̂+
j σ̂
−
l + σ̂+

l σ̂
−
j

)
− sin(kx̂j)

γC
2

N∑
l=1

η

2
[sin(kx̂l), p̂l]+

(
σ̂+
j σ̂
−
l + σ̂+

l σ̂
−
j + β2σ̂

+
j σ̂
−
l + β∗2 σ̂

+
l σ̂
−
j

)
.

(6.24)

We work at the detuning ∆ = κ/2 so that η is maximized and β2 vanishes. Note that at ∆ = κ/2,
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γC = g2/2κ = ΓC/2. As a result we obtain

d

dt
p̂0
j ≈ ~k sin(kx̂j)

γC
2

(
−iσ̂+

j Ĵ
− + iĴ+σ̂−j − σ̂

+
j Ĵ
− − Ĵ+σ̂−j

)
− sin(kx̂j)

γC
2

N∑
l=1

η

2
[sin(kx̂l), p̂l]+

(
σ̂+
j σ̂
−
l + σ̂+

l σ̂
−
j

)
.

(6.25)

The first term on the RHS of Eq. (6.25) represents forces originating from the adiabatic component

of the cavity field, while the second term represents the frictional force arising from retardation

effects. The noise term N̂j in equation (6.23) gives rise to momentum diffusion due to quantum

noises associated with incoherent processes. So we derive the equations of motion for the second

moments of momenta,

d

dt
〈p̂j p̂l〉 =

〈
p̂0
j

dp̂0
l

dt

〉
+

〈
dp̂0

j

dt
p̂0
l

〉
+ γC~2k2〈sin(kx̂j) sin(kx̂l)σ̂

+
j σ̂
−
l 〉+ wδjl~2k′2u2〈σ̂−j σ̂

+
l 〉 ,

(6.26)

where δjl is the Kronecker delta, and u2 is the second moment of the dipole radiation pattern, i.e.,

u2 =

∫ 1

−1
duN(u)u2 =

2

5
, (6.27)

where we have taken the dipole pattern N(u) = 3
2 |u|
√

1− u2.

We treat the external atomic motion classically under the assumption that the momentum width of

the particles
√
〈p2〉 is larger than the single photon recoil ~k [Eq. (6.3)]. So we make the mapping

〈p̂j〉 → pj and 〈x̂j〉 → xj . As a result this leads to

d

dt
pj =

d

dt
p0
j + ξpj , (6.28)

with

d

dt
p0
j = ~k sin(kxj)γC

(
Im[〈σ̂+

j Ĵ
−〉]− Re[〈σ̂+

j Ĵ
−〉]
)
− sin(kxj)γC

N∑
l=1

ηRe[〈σ̂+
j σ̂
−
l 〉] sin(kxl)pl ,

(6.29)

where ξpj is the classical noise acting on the momentum of j-th atom and 〈ξpj (t)ξpl (t′)〉 = Djlδ(t−t′).

The diffusion matrix Djl can be computed by making quantum-classical correspondence for the

second moments. According to Eq. (6.28),

d

dt
〈pjpl〉 =

〈
p0
j

dp0
l

dt

〉
+

〈
dp0

j

dt
p0
l

〉
+Djl . (6.30)
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We use symmetric ordering of quantum operators for the quantum-classical correspondence, i.e.,

1
2

〈[
p̂j ,

dp̂l
dt

]
+

〉
→
〈
pj
dpl
dt

〉
. Matching Eq. (6.26) and Eq. (6.30), we get

Djl = γC~2k2 sin(kxj) sin(kxl)Re[〈σ̂+
l σ̂
−
j 〉] + wδjl~2k′2u2〈σ̂−j σ̂

+
l 〉 . (6.31)

Therefore, we could simulate the external motion of atoms with Eq. (6.28) and the equation of

motion for xj

d

dt
xj =

pj
m
. (6.32)

The classical noises ξpj with diffusion matrix Djl make sure that we have the right second order

moments for momenta.

To begin with, we first consider the case in which the effect of recoil associated with the

repumping is neglected, i.e. we set k′ = 0. This will determine the ultimate temperature limit

imposed by the vacuum noise due to the cavity output. For the simple one-atom (labeled by 1)

case, we can then directly find the friction (α1) and diffusion (D1) coefficient from Eq. (6.28) and

Eq. (6.31). The steady-state temperature T for the single atom is

kBT =
〈p2

1〉
m

=
D1

2mα1
=

~κ
4
, (6.33)

since

D1 = ~2k2γC sin2(kx1)〈σ̂+
1 σ̂
−
1 〉 ,

α1 = ηγC sin2(kx1)〈σ̂+
1 σ̂
−
1 〉 . (6.34)

Note that this is precisely the same temperature limit previously found in the cavity-assisted cooling

case in Section 6.1. Here the rate of the decay into the cavity mode is proportional to γC〈σ̂+
1 σ̂
−
1 〉,

which is applicable to the weak coupling regime of cavity QED [95]. In Fig. 6.3(a), we show a

numerical simulation of the cooling trajectory of a single atom as a function of time. As expected,

the final temperature kBT asymptotes to ~κ/4 and the cooling rate is well approximated by RS =

ηγC〈σ̂+
1 σ̂
−
1 〉.

The cooling in the many-atom case exhibits a distinctly different character. A feature of this

model is the pseudospin-to-motion coupling of the atoms. In order to close the evolution equations
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Figure 6.3: Time evolution of the average momentum square (red dots) evaluated from 4000 tra-
jectories simulated by integrating Eqs. (6.28) and (6.32) for 1 atom (a), 20 atoms (b), and 60
atoms (c). The blue solid line is a fit to an exponential decay. The parameters are ∆ = κ/2 = 100,
γC = 0.1, and ωr = 0.25. The repumping rates are chosen such that the average atomic population
inversion in all cases is the same [w = 0.15 (a), 0.28 (b), 1.3 (c)]. Insets show the momentum
statistics. The blue solid line is a fit to a Gaussian distribution.

of the atomic motion as described by Eq. (6.28) and Eq. (6.32), it is also necessary to solve for the

dynamics of the pseudospins. For this purpose, we derive the effective quantum master equation

for the pseudospins.

For the internal dynamics of atoms in a superradiant laser, it is sufficient to keep the first
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order term in Eq. (6.19),

â(t) ≈ −iγC
g
Ĵ− − γ∆

g
Ĵ− + F̂(t) . (6.35)

Here, retardation effects are not included because they give rise to corrections that are of higher

order and their contribution is negligible. The adiabatic elimination of the cavity field leads to an

effective quantum master equation for the atomic spins only

d

dt
ρ =

1

i~
[Ĥeff , ρ] + γCL[Ĵ−]ρ+ w

N∑
j=1

∫ 1

−1
duN(u)L[σ̂+

j e
i~k′·~xj ]ρ , (6.36)

where the Hamiltonian Ĥeff = −~γC
2 Ĵ+Ĵ− describes the coherent coupling between each pair of

atoms, and the collective decay [term γCL[Ĵ−] in Eq. (6.36)] leads to dissipative coupling. We want

to emphasize that this atomic master equation is not sufficient for the external degrees of freedom,

for which retardation effects are not negligible.

The spin degrees of freedom of atoms scale exponentially with the number of atoms. To solve

Eq. (6.36), we thus use a semiclassical approximation that is applicable to large atom numbers in

the steady-state superradiance [91, 92]. Cumulants for the expectation values of spin operators

are expanded to second order. Because of the U(1) symmetry, 〈σ̂±j 〉 = 0. Therefore, all nonzero

observables are expanded in terms of 〈σ̂+
j σ̂
−
j 〉 and 〈σ̂+

j σ̂
−
l 〉 (j 6= l). Their equations of motion can

then be found from the effective master equation,

d

dt
〈σ̂+
j σ̂
−
j 〉 = w(1− 〈σ̂+

j σ̂
−
j 〉)−

1

2
(γC + iγ∆) cos(kx̂j)〈Ĵ+σ̂−j 〉 −

1

2
(γC − iγ∆) cos(kx̂j)〈σ̂+

j Ĵ
−〉,

d

dt
〈σ̂+
j σ̂
−
l 〉 = −w〈σ̂+

j σ̂
−
l 〉+

1

2
(γC + iγ∆) cos(kx̂j)〈Ĵ+σ̂−l σ̂

z
j 〉+

1

2
(γC − iγ∆) cos(kx̂l)〈σ̂zl σ̂+

j Ĵ
−〉

≈ −
(
w + (γC + iγ∆) cos2(kx̂j)〈σ̂+

j σ̂
−
j 〉+ (γC − iγ∆) cos2(kx̂l)〈σ̂+

l σ̂
−
l 〉
)
〈σ̂+
j σ̂
−
l 〉

+
1

2
(γC + iγ∆) cos(kx̂j)(2〈σ̂+

j σ̂
−
j 〉 − 1)〈Ĵ+σ̂−l 〉+

1

2
(γC − iγ∆) cos(kx̂l)(2〈σ̂+

l σ̂
−
l 〉 − 1)〈σ̂+

j Ĵ
−〉,

(6.37)

describing the population inversion and spin-spin correlation respectively. In deriving Eq. (6.37),

we have dropped the third-order cumulants. In the simulations we integrate (6.28), (6.32) and

(6.37) simultaneously.
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Figure 6.4: (a) Cooling rate (in units of the single atom cooling rate RS) as a function of atom
number. (b) Final momentum width (∆p =

√
〈p2〉, blue squares) and spin-spin correlation (red

dots) as a function of atom number. The parameters are the same as those in Fig. 6.3.

Simulations of the cooling dynamics for many atoms are shown in Figs. 6.3(b) and (c).

Remarkably, we find the collective atomic effects to lead to a more rapid cooling rate, and simulta-

neously to generate a lower final temperature. Figure 6.4 shows the cooling rate (a) and the final

momentum width (b) as a function of the atom number. We note that the cooling rate exhibits two

kinds of behavior, hinting towards the existence of a N -dependent threshold, see Fig. 6.4(a). For

N . 20, the cooling rate is independent of N , while for N & 20, it increases monotonously. Cor-

respondingly, in this regime, the momentum width has reached a minimum which is independent

of N , see Fig. 6.4(b). Note that when the final temperature gets closer to the recoil temperature,

the momentum distribution is not Gaussian anymore, rendering the notion of temperature invalid.

The semiclassical treatment predicts a uniform distribution in the momentum interval [−~k,~k]

corresponding to the recoil limit, as shown in the inset of Fig. 6.3(c). We note that sub-Doppler

temperatures for a similar setup have been reported in Refs. [112], where spontaneous decay was
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assumed to be the fastest incoherent process. Differing from that regime, the recoil limit is here

reached thanks to the small spontaneous decay rate. When the temperature approaches the recoil

temperature, however, the validity of the semiclassical treatment of atomic motion is questionable

and a full quantum model is necessary in order to determine the asymptotic energy. These results

demonstrate that for atoms in the steady-state superradiant regime, not only is the cooling more

efficient due to the rapid rate of superradiant light emission, but also the final temperature is

determined by the relaxation rate of the atomic dipole, and not the cavity linewidth.

The principal new feature here is that spin-spin correlations between atoms develop due to

the cavity-mediated coupling. In order to measure the extent of this effect, we introduce 〈σ̂+σ̂−〉E

defined as averaged spin-spin correlations,

〈σ̂+σ̂−〉E =

〈Ĵ+Ĵ−〉 −
N∑
j=1

〈σ̂+
j σ̂
−
j 〉 cos2(kxj)

 /[N(N − 1)] . (6.38)

Fig. 6.4(b) shows 〈σ̂+σ̂−〉E as a function of the number of atoms. The equilibrium tempera-

ture is seen to decrease as the collective spin-spin correlation emerges. This is reminiscent of the

linewidth of the superradiant laser, where the synchronization of spins leads to a significant reduc-

tion of the linewidth to the order of γC [93, 140]. The establishment of spin-spin correlations is a

competition between dephasing due to both cavity output noise and repumping, and the dissipative

coupling between atoms which tends to synchronize the dipoles [140]. Since the coupling strength

scales with N , a sufficient atom number is required to establish strong spin-spin correlations [140].

Further characterizing the ultimate temperature limits, Fig. 6.5(a) shows the final momentum

width as a function of γC . We see that as γC is decreased, the final temperature reduces in

proportion to γC until it hits the recoil limit. This effect is consistent with a significantly increased

friction coefficient providing a reduction of the order of the final temperature from the one to many

atom case from κ to γC .

In the large atom number limit, we are able to derive analytically the average frictional force

on a single atom moving in a large ensemble of atoms that are in steady-state superradiance.

We start by finding the steady state of the large ensemble of atoms in equilibrium. In the
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Figure 6.5: (a) Final momentum width as a function of γC for 40 atoms. The parameters are
∆ = κ/2 = 200, w = NγC/4, and ωr = 0.25. (b) Final momentum width as a function of
repumping strength for 40 atoms without (k′ = 0, blue squares) and with recoil associated with
repumping (k′ = k, red dots). The parameters are ∆ = κ/2 = 200, γC = 0.5, and ωr = 0.25.

moving frame of atoms, the master equation for the system [Eq. (6.14)] becomes

d

dt
ρ =

1

i~

~g
2

N∑
j=1

(â†σ̂−j + σ̂+
j â) cos(δjt), ρ

+ κD[â]ρ+ w

N∑
j=1

∫ 1

−1
duN(u)D[σ̂+

j e
i~k′·~xj ]ρ , (6.39)

where δj = kpj/m is the Doppler frequency for j-th atom. Following the cumulant expansion

method developed in Ref. [93], we get a set of closed equations from the above master equation,

d

dt
〈â†σ̂−l 〉 ≈ −(κ′ − i∆)〈â†σ̂−l 〉+ i

g

2
cos(δlt)

(
〈â†â〉〈σ̂zl 〉+

1 + 〈σ̂zl 〉
2

)
+ i

g

2

∑
j 6=l

cos(δjt)〈σ̂+
j σ̂
−
l 〉 , (6.40a)

d

dt
〈σ̂+
j σ̂
−
l 〉 = −w〈σ̂+

j σ̂
−
l 〉+ i

g

2

(
cos(δlt)〈σ̂zl 〉〈σ̂+

j â〉 − cos(δjt)〈σ̂zj 〉〈â†σ̂−l 〉
)
, (6.40b)

d

dt
〈σ̂zl 〉 = w(1− 〈σ̂zl 〉) + ig (Xl −X ∗l ) , (6.40c)

d

dt
〈â†â〉 = −κ〈â†â〉 − ig

2

∑
j

(
Xj −X ∗j

)
, (6.40d)
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where Xj = 〈â†σ̂−j 〉 cos(δjt) and κ′ = (κ + w)/2. In the adiabatic region where w � δj , we obtain

from Eq. (6.40b) the spin-spin correlation

〈σ̂+
j σ̂
−
l 〉 ≈ i

g

2w

(
cos(δlt)〈σ̂zl 〉X ∗j / cos(δjt)− cos(δjt)〈σ̂zj 〉Xl/ cos(δlt)

)
. (6.41)

Plugging it into Eq. (6.40a) in the steady state,

Xl ≈
∑
j 6=l

g2

4w(κ′ − i∆)

(
cos2(δjt)〈σ̂zj 〉Xl − cos2(δlt)〈σ̂zl 〉X ∗j

)
, (6.42)

where we have dropped the single-atom terms in Eq. (6.40a), because the collective terms dominate

in the steady-state superradiance for many atoms [93].

For further simplification, we define the average of a quantity q in terms of ensemble average

〈q〉E =
∑N

j=1 qj/N and time average in steady state q. By assuming the ergodicity of the system,

〈q〉E = q. Performing time average on both sides of Eq. (6.42), we end up with a simple equation

〈X 〉E ≈
Ng2〈σ̂z〉E

8w(κ′ − i∆)
(〈X 〉E − 〈X ∗〉E) . (6.43)

The approximation employed here is that

〈cos2(δjt)〈σ̂zj 〉〉E =

N∑
j=1

cos2(δjt)〈σ̂zj 〉/N ≈
1

2
〈σ̂z〉E ,

cos2(δlt)〈σ̂zl 〉 ≈
1

2
〈σ̂z〉E ,

(6.44)

assuming homogeneous density distribution of atoms. Furthermore, from Eq. (6.40c), we have

w(〈σ̂z〉E − 1) = ig(〈X 〉E − 〈X ∗〉E) . (6.45)

For convenience, we introduce a real quantity 〈σ̂+σ̂−〉E,

〈X 〉E =
iNg

2

1

κ′ − i∆
〈σ̂+σ̂−〉E . (6.46)

Solving Eq. (6.43) and Eq. (6.45), we finally obtain in the steady state

〈σ̂z〉E =
2wκ

Ng2

κ′2 + ∆2

κ′2
≈ 2w

NγC
, 〈σ̂+σ̂−〉E ≈

1

4
〈σ̂z〉E(1− 〈σ̂z〉E) , 〈â†â〉 =

N2γC〈σ̂+σ̂−〉E
κ

.

(6.47)
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〈σ̂+σ̂−〉E can be understood as the averaged spin-spin correlation, because

〈σ̂+σ̂−〉E = 〈Ĵ+Ĵ−〉/N2 . (6.48)

We now proceed to calculate the average frictional force on a single atom (labeled by 1)

moving in a large ensemble of atoms in steady state. From Eq. (6.39), this force is

f1 = ~kgRe[(S −R)/2i] . (6.49)

where S = 〈â†σ̂−1 〉eiδ1t and R = 〈â†σ̂−1 〉e−iδ1t. The equation of motion for S is

d

dt
S = iδ1S + eiδ1t

d

dt
〈â†σ̂−j 〉 ≈ iδ1S − (κ′ − i∆)S + i

g

2

∑
j 6=l

cos(δjt)e
iδ1t〈σ̂+

j σ̂
−
1 〉 , (6.50)

where we once again omit the single-atom terms. Since we only care about the average frictional

force in the steady state, this would require that eiδ1t〈σ̂+
j σ̂
−
1 〉 is in steady state, i.e.

0 =
d

dt
〈σ̂+
j σ̂
−
1 〉e

iδ1t = −(w − iδ1)〈σ̂+
j σ̂
−
1 〉e

iδ1t

+eiδ1ti
g

2

(
cos(δ1t)〈σ̂z1〉X ∗j / cos(δjt)− cos(δjt)〈σ̂zj 〉x1/ cos(δ1t)

)
.(6.51)

Solving the above equation for 〈σ̂+
j σ̂
−
1 〉eiδ1t and plugging the result into Eq. (6.50), we can get

d

dt
S = −(κ′ − i∆− iδ1)S +

g2

4(w − iδ1)

∑
j 6=l

cos2(δjt)〈σ̂zj 〉S − eiδ1t cos(δ1t)〈σ̂z1〉X ∗j . (6.52)

Invoking the approximation in Eq. (6.44), we end up with a simple equation for S

(κ′ − i∆− iδ1)S ≈ Ng2〈σ̂z〉E
8(w − iδ1)

(S − 〈X ∗〉E) . (6.53)

Similarly, for R

(κ′ − i∆ + iδ1)R ≈ Ng2〈σ̂z〉E
8(w + iδ1)

(R− 〈X ∗〉E) . (6.54)

Plugging S and R into Eq. (6.49),

f1 ≈ −~kg2 δ1∆κ′/2

(κ′2 + ∆2)2

4κ′

w
N〈σ̂+σ̂−〉E . (6.55)

In deriving the above equation, we only keep terms to the first order in δ1/w. Recall the one-atom

friction coefficient α1 in Eq. (6.34)

α1 = γC sin2(kx1)η〈σ̂+
1 σ̂
−
1 〉 . (6.56)
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Therefore, the average 〈α1〉 = γCη〈σ̂+
1 σ̂
−
1 〉/2, and

f1 ≈ −〈α1〉p1 ·
κ

w

N〈σ̂+σ̂−〉E
〈σ̂+

1 σ̂
−
1 〉/2

, (6.57)

where we can identify a significant enhancement of the friction by a factor κ
w
N〈σ̂+σ̂−〉E
〈σ̂+

1 σ̂
−
1 〉

. Because

N〈σ̂+σ̂−〉E
〈σ̂+

1 σ̂
−
1 〉/2

=
γC〈Ĵ+Ĵ−〉/N
γC〈σ̂+

1 σ̂
−
1 〉/2

, (6.58)

the enhancement is due to increased single-atom photon emission rate by superradiance and the

factor κ/w. Plugging in w, we immediately see a great increase of the average frictional force on

a single atom by a factor of order κ/γC . Note also that 〈σ̂+σ̂−〉E should have finite value, or else

there would be no superradiant emission.

From Eq. (6.57), we find a significantly increased friction coefficient for the many-atom laser

cooling case due to both the increased photon emission rate due to superradiance (i.e. N〈σ̂+σ̂−〉E �

〈σ̂+
1 σ̂
−
1 〉/2) and the large ratio κ/w. The friction coefficient is enhanced by a factor of κ/γC

compared to the one-atom case. This is consistent with the reduction of the order of the final

temperature from the one to many atom case from κ to γC .

So far our discussion has neglected the recoil associated with repumping. We have done that

because its effect on the final temperature will depend crucially on specifics of its implementation,

including factors such as the polarizations and directions of repump lasers, the atomic system, and

the transitions used. However, in the specific repumping model shown in Fig. 6.2, the magnitude

of k′ controls the recoil effect of the repumping on the momentum diffusion. Fig. 6.5(b) shows the

final momentum width as a function of repumping for k′ = 0 and k′ = k. Again, in the region

of small and large repumping, where spin-spin correlations are very small, the final temperature

is high. When the recoil due to repumping is included, the final temperature becomes higher and

is eventually determined by wu2. However for weak repumping, with w not significantly larger

then γC it is still possible to achieve temperatures not much higher than that predicted when

pump recoil was neglected. This is especially promising for the implementation of supercooling in

realistic experimental systems. Note that k = k′ is more or less a worst case scenario, since by
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using a dipole allowed transition for the relaxation from the auxiliary state to the excited state,

one could in principle use a much reduced frequency with correspondingly small recoil.

To summarize, we have proposed supercooling of the atomic motion along the axis of an

optical cavity. The superradiant emission was observed to lead to an enhanced cooling rate and

extremely low final temperature. The ultimate temperatures were constrained by the relaxation

of the atomic dipole, and may be orders of magnitude lower than for single atom cooling where

temperatures are limited by the cavity linewidth. From a broader viewpoint, we have demonstrated

an example of many-body laser cooling in which all motional degrees of freedom of a collective

system are simultaneously cooled and in which macroscopic spin-spin correlations are essential and

must develop for the cooling mechanism to work.
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Summary and outlook

Time and frequency are the most accurately measured physical quantities so far. State-of-the-

art optical lattice clocks achieve accuracy in the realm of 10−18 [9, 49]. Up to now, all these high-

precision optical clocks are passive frequency standards, where the frequency of a narrow linewidth

laser (local oscillator), stabilized to an ultrastable optical resonator, is used for the interrogation of

trapped ions or neutral atoms [60]. In these systems, the optical resonator undergoes unavoidable

thermal vibrations of the dielectric coatings on the cavity mirrors [65], giving rise to frequency

fluctuations of the local oscillator. Instability of the local oscillator is one of the main limiting

factors for the short-term stability of modern optical clocks [83]. Improvement may be attained

by minimizing the thermal vibration of the reference cavity [22] or by locking the local oscillator

to another reference that is more stable than the reference cavity. A promising candidate for this

reference is an active optical frequency standard. For example, in the microwave domain, the

Hydrogen maser is used as a flywheel for the Caesium timekeeping system. In the optical domain,

there is still no working system whose stability could compete with the stability provided by the

reference cavity [60]. The steady-state superradiant laser offers such potential, which is supported

by what we have done in this thesis. The synchronization and supercooling mechanism revealed

in this thesis lay the theoretical foundation for an active frequency standard. Combined with

the recent demonstration of Dicke superradiance on the clock transition of strontium atoms in an

optical cavity [99], an eventual experimental realization of the superradiant laser may be on the

horizon.
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[14] C. J. Bordé. Base units of the si, fundamental constants and modern quantum physics.
Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences, 363(1834):2177–2201, 2005.
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and H. J. Kimble. State-insensitive cooling and trapping of single atoms in an optical cavity.
Phys. Rev. Lett., 90:133602, Apr 2003.

[91] D. Meiser and M. J. Holland. Intensity fluctuations in steady-state superradiance. Phys. Rev.
A, 81:063827, Jun 2010.

[92] D. Meiser and M. J. Holland. Steady-state superradiance with alkaline-earth-metal atoms.
Phys. Rev. A, 81:033847, Mar 2010.

[93] D. Meiser, Jun Ye, D. R. Carlson, and M. J. Holland. Prospects for a millihertz-linewidth
laser. Phys. Rev. Lett., 102:163601, Apr 2009.



85

[94] I. B. Mekhov, C. Maschler, and H. Ritsch. Probing quantum phases of ultracold atoms
in optical lattices by transmission spectra in cavity quantum electrodynamics. Nat Phys,
3(5):319–323, May 2007.

[95] P. Meystre and M. Sargent III. Elements of Quantum Optics. Springer, New York, 1998.

[96] J. Millen, P. Z. G. Fonseca, T. Mavrogordatos, T. S. Monteiro, and P. F. Barker. Cavity
cooling a single charged levitated nanosphere. Phys. Rev. Lett., 114:123602, Mar 2015.

[97] G. Morigi, P. W. H. Pinkse, M. Kowalewski, and R. de Vivie-Riedle. Cavity cooling of internal
molecular motion. Phys. Rev. Lett., 99:073001, Aug 2007.

[98] D. Nagy, G. Szirmai, and P. Domokos. Critical exponent of a quantum-noise-driven phase
transition: The open-system dicke model. Phys. Rev. A, 84:043637, Oct 2011.

[99] M. A. Norcia, M. N. Winchester, J. R. K. Cline, and J. K. Thompson. Superradiance on the
millihertz linewidth strontium clock transition. arXiv:1603.05671, Mar 2016.

[100] L. Ostermann, H. Ritsch, and C. Genes. Protected state enhanced quantum metrology with
interacting two-level ensembles. Phys. Rev. Lett., 111:123601, Sep 2013.

[101] W. Pfeifer. The Lie algebras SU(N). Birkhäuser Verlag, 2003.
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[118] S. Schütz and G. Morigi. Prethermalization of atoms due to photon-mediated long-range
interactions. Phys. Rev. Lett., 113:203002, Nov 2014.

[119] P. Strack and S. Sachdev. Dicke quantum spin glass of atoms and photons. Phys. Rev. Lett.,
107:277202, Dec 2011.

[120] S. H. Strogatz. From kuramoto to crawford: exploring the onset of synchronization in popu-
lations of coupled oscillators. Physica D: Nonlinear Phenomena, 143(14):1 – 20, 2000.

[121] S. H. Strogatz. Sync: The Emerging Science of Spontaneous Order. Hyperion, New York,
2003.

[122] A. Tomadin, S. Diehl, and P. Zoller. Nonequilibrium phase diagram of a driven and dissipative
many-body system. Phys. Rev. A, 83:013611, Jan 2011.

[123] C. von Cube, S. Slama, D. Kruse, C. Zimmermann, Ph. W. Courteille, G. R. M. Robb,
N. Piovella, and R. Bonifacio. Self-synchronization and dissipation-induced threshold in
collective atomic recoil lasing. Phys. Rev. Lett., 93:083601, Aug 2004.

[124] J. Vuckovic. Quantum optics and cavity qed with quantum dots in photonic crystals.
arXiv:1402.2541, Feb 2014.
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Appendix A

Adiabatic elimination

There is a systematic way to perform adiabatic elimination of fast varaibles. Suppose we

have an differential equation such as

d

dt
y(t) = −(κ/2 + i∆)y(t) + x(t). (A.1)

The formal solution to it is

y(t) = e−(κ/2+i∆)ty(0) +

∫ t

0
dse−(κ/2+i∆)sx(t− s). (A.2)

Under the approximation of coarse graining (κ is large), i.e., t� κ−1, we have

y(t) ≈
∫ t

0
dse−(κ/2+i∆)sx(t− s)

≈
∫ t

0
ds

[
x(t)− x′(t)s+

1

2!
x′′(t)s2...

]
e−(κ/2+i∆)s

=
1

(κ/2 + i∆)
x(t)− 1

(κ/2 + i∆)2
x′(t) +

1

(κ/2 + i∆)3
x′′(t) + · · · .

(A.3)

We can see that it is a systematic expansion with respect to 1/κ. As a result, we can approximate

y(t) in terms of x(t) and its time derivatives. To the first order, y(t) is locked to x(t).

When x(t) contains the noise term such as
√
κξ̂κ(t) with 〈ξ̂κ(t)ξ̂†κ(t′)〉 = δ(t− t′), we need to

deal with it seperately. Following Eq. (A.3), the noise entering into y(t) is

F̂(t) =

∫ t

0
dse−(κ/2+i∆)s√κξ̂κ(t− s) =

∫ t

0
dτe−(κ/2+i∆)(t−τ)√κξ̂κ(τ) . (A.4)
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It is obvious that 〈F̂(t)〉 = 0. The non-zero second order correlation is

〈F̂(t)F̂†(t′)〉 =

∫ t

0
dτ1

∫ t′

0
dτ2e

−(κ/2+i∆)(t−τ1)e−(κ/2−i∆)(t′−τ2)κ〈ξ̂κ(τ1)ξ̂†κ(τ2)〉

=

∫ t

0
dτ1

∫ t′

0
dτ2e

−(κ/2+i∆)(t−τ1)e−(κ/2−i∆)(t′−τ2)κδ(τ1 − τ2),

= e−κ(t+t′)/2−i∆(t−t′)
∫ t

0
dτ1

∫ t′

0
dτ2κe

κ/2(τ1+τ2)+i∆(τ1−τ2)δ(τ1 − τ2)

≈ e−κ|t′−t|/2−i∆(t−t′)

(A.5)

Let us now examine the function f(τ) = e−κ|τ |/2−i∆τ . We first notice that∫ ∞
−∞

dτf(τ) =
1

κ/2 + i∆
+

1

κ/2− i∆
=

κ

κ2/4 + ∆2
. (A.6)

Therefore,

κ2/4 + ∆2

κ
e−κ|τ |/2−i∆τ = δ(τ), κ� τ−1. (A.7)

As a result,

〈F̂(t)F̂†(t′)〉 =
κ

κ2/4 + ∆2
δ(t− t′). (A.8)

We can then choose

F̂(t) =
eiθ
√
κ

κ/2 + i∆
ξ̂(t), (A.9)

where θ is an arbitrary phase and ξ̂(t) is the normal white noise satisfying 〈ξ̂(t)ξ̂†(t′)〉 = δ(t− t′).



Appendix B

SU(4) generators and λ-matrices

The hermitian 4 × 4 matrix generators of SU(4) group, analogous to the Pauli matrices of

SU(2) group are [101]:

λ1 =



0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


, λ2 =



0 −i 0 0

i 0 0 0

0 0 0 0

0 0 0 0


, λ3 =



1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0


,

λ4 =



0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0


, λ5 =



0 0 −i 0

0 0 0 0

i 0 0 0

0 0 0 0


, λ6 =



0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0


,

λ7 =



0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0


, λ8 =

1√
3



1 0 0 0

0 1 0 0

0 0 −2 0

0 0 0 0


, λ9 =



0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0


,
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λ10 =



0 0 0 −i

0 0 0 0

0 0 0 0

i 0 0 0


, λ11 =



0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0


, λ12 =



0 0 0 0

0 0 0 −i

0 0 0 0

0 i 0 0


,

λ13 =



0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0


, λ14 =



0 0 0 0

0 0 0 0

0 0 0 −i

0 0 i 0


, λ15 =

1√
6



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −3


.

The λ matrices are traceless, orthogonal and satisfy

Tr(λµ)2 = 2 , µ = 1, ..., 15 .



Appendix C

|S,M〉〈S,M ′| representation

In order to project the density operator from the SU(4) basis onto the |S,M〉〈S,M ′| represen-

tation, let us first show that M and M ′ are related to the P
(s)
q,q3,σ3 by q3 +σ3 = M and q3−σ3 = M ′.

To see this, defining Ĵ3 =
∑N

j=1 σ
(3)
j /2, we could get

Ĵ3P
(s)
q,q3,σ3

=
1

2
(α+ γ − β − δ)P (s)

q,q3,σ3
= (q3 + σ3)P (s)

q,q3,σ3
,

P (s)
q,q3,σ3

Ĵ3 =
1

2
(α+ δ − β − γ)P (s)

q,q3,σ3
= (q3 − σ3)P (s)

q,q3,σ3
,

(C.1)

and by definition, we have

Ĵ3|S,M〉〈S,M ′| = M |S,M〉〈S,M ′|,

|S,M〉〈S,M ′|Ĵ3 = M ′|S,M〉〈S,M ′|.
(C.2)

Therefore, the complex coefficients from the P
(s)
q,q3,σ3 basis contributing to the matrix element for

|S,M〉〈S,M ′| all satisfy q3 + σ3 = M and q3 − σ3 = M ′.

With this in mind, we now describe a systematic algorithm to obtain the density matrix

elements Dm,n
S,M,M ′ from the SU(4) expansion coefficients Cm,nq,q3,σ3 . We illustrate our method by

considering in detail the elementary case of three atoms. The density matrix in the |S,M〉〈S,M ′|

representation is block diagonal in S; the block matrices for all S can be arranged in the shape of

a pyramid as shown in Fig. 3.1(c). For instance, the base layer corresponds to S = N/2, with the

matrix dimension being (N + 1)2. The second layer has S = N/2− 1 and dimension (N − 1)2, and

so on. Furthermore there are nS copies associated with each layer, so that
∑

S(2S + 1)nS = 2N .

Taking N = 3 for example, there are two layers, S = 3/2 and S = 1/2 with n3/2 = 1 and n1/2 = 2,

so that the Hilbert space dimension is (3 + 1) + 2× (1 + 1) = 23.
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The density matrix needs to be built from the bottom layer upwards. In the bottom layer, we

find that the only element contributing to |N/2, N/2〉〈N/2, N/2| is P (s)
N/2,N/2,0. So the top left corner

is Dm,n
N/2,N/2,N/2 = Cm,nN/2,N/2,0. We next apply the lowering operator Ĵ− =

∑N
j=1 σ

−
j to iteratively

generate Dm,n
N/2,N/2,M , with M = N/2− 1, . . . ,−N/2. To do this, we need the recursion relation

Dm,n
S,M,M ′−1 = 〈S,M |ρm,n|S,M ′ − 1〉 =

〈S,M |ρm,nĴ−|S,M ′〉√
(S +M ′)(S −M ′ + 1)

=
〈S,M |(U+ + V+)ρm,n|S,M ′〉√

(S +M ′)(S −M ′ + 1)
.

(C.3)

Therefore, with the actions of the raising and lowering operators [Eq. (3.12)], we can derive

all Dm,n
N/2,N/2,M ′ , i.e. the first row of the bottom layer. Using the fact that the density matrix

is Hermitian and Cm,nq,q3,σ3 = (Cm,nq,q3,−σ3
)∗, we could get all the elements for the first column by

Dm,n
N/2,M ′,N/2 = (Dm,n

N/2,N/2,M ′)
∗. By repeatedly applying the recursion relation [Eq. (C.3)] in each

row, we then construct the full base layer. As an explicit example, we have constructed the bottom

layer, i.e. S = 3/2 for the three atom case,



〈32 ,
3
2 | 〈32 ,

1
2 | 〈32 ,−

1
2 | 〈32 ,−

3
2 |

|32 ,
3
2〉 Cm,n3/2,3/2,0

Cm,n
1,1,1/2√

3

Cm,n
1/2,1/2,1√

3
Cm,n0,0,3/2

|32 ,
1
2〉

Cm,n
1,1,−1/2√

3

Cm,n
3/2,1/2,0

+Cm,n
1/2,1/2,0

3

Cm,n
1,0,1/2

+Cm,n
0,0,1/2

3

Cm,n
1/2,−1/2,1√

3

|32 ,−
1
2〉

Cm,n
1/2,1/2,−1√

3

Cm,n
1,0,−1/2

+Cm,n
0,0,−1/2

3

Cm,n
3/2,−1/2,0

+Cm,n
1/2,−1/2,0

3

Cm,n
1,−1,1/2√

3

|32 ,−
3
2〉 Cm,n0,0,−3/2

Cm,n
1/2,−1/2,−1√

3

Cm,n
1,−1,−1/2√

3
Cm,n3/2,−3/2,0


. (C.4)

In order to illustrate the use of the recursion relation, we now show how to get Dm,n
3/2,1/2,1/2 from

Dm,n
3/2,1/2,3/2. Because V+P

(s)
3/2,1/2,0 = P

(s)
1,1,−1/2 and U+P

(s)
1/2,1/2,0 = P

(s)
1,1,−1/2 , we have Dm,n

3/2,1/2,1/2 =

(Cm,n3/2,1/2,0 + Cm,n1/2,1/2,0)/
√

3/
√

3.

To construct the next layer, we thus find out the top left matrix element first, and then apply

the same procedure as before to determine the rest of the matrix elements. Let us first examine

the three atom case. The S = 1/2 layer has two copies, each of which is a 2×2 matrix. To find the

top left element Dm,n
1/2,1/2,1/2, noticing the constraint imposed by the trace of the density matrix, we

derive 2Dm,n
1/2,1/2,1/2 + Dm,n

3/2,1/2,1/2 = Cm,n3/2,1/2,0 so that Dm,n
1/2,1/2,1/2 = (2Cm,n3/2,1/2,0 − C

m,n
1/2,1/2,0)/6. By
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applying the same method as in the bottom layer, we construct the block matrix for S = 1/2 layer


〈12 ,

1
2 | 〈12 ,−

1
2 |

|12 ,
1
2〉

2Cm,n
3/2,1/2,0

−Cm,n
1/2,1/2,0

6

Cm,n
1,0,1/2

−2Cm,n
0,0,1/2

6

|12 ,−
1
2〉

Cm,n
1,0,−1/2

−2Cm,n
0,0,−1/2

6

2Cm,n
3/2,−1/2,0

−Cm,n
1/2,−1/2,0

6

. (C.5)

Therefore in general, if we suppose that we have constructed the block matrix for S′ > S,

the formula to find the top left matrix element Dm,n
S,S,S for layer S is

∑
S≤S′≤N/2

nS′D
m,n
S′,S,S = Cm,nN/2,S,0. (C.6)

Having the top left matrix element for each layer S, we can easily construct the (2S+ 1)× (2S+ 1)

block matrix by applying the recursion relation based on the angular momentum lowering operator.

Repeated iteration of these steps systematically fills in all sites of the pyramid.
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