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We describe a method to create and store scalable and long-lived entangled spin-squeezed states within a
manifold of many-body cavity dark states using collective emission of light from multilevel atoms inside an
optical cavity. We show that the system can be tuned to generate squeezing in a dark state where it will be
immune to superradiance. We also show more generically that squeezing can be generated using a
combination of superradiance and coherent driving in a bright state, and subsequently be transferred via
single-particle rotations to a dark state where squeezing can be stored. Our findings, readily testable in
current optical cavity experiments with alkaline-earth-like atoms, can open a path for dissipative generation
and storage of metrologically useful states in optical transitions.
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Subradiant states that emit light at a rate slower than
independent atoms because of (quantum) interference [1],
have attracted widespread interest owing to their potential
applications in quantum memories [2], mirrors [3,4], exci-
tation transport [5,6], topological physics [7–11], entangled
photons [12], and quantum metrology [13–16]. A long-
standing challenge is finding simple ways to prepare target
many-body subradiant states with useful properties such as
scalable entanglement, i.e., entanglement which increases
with system size. Optical cavities have demonstrated the
capability to create collective (i.e., fully symmetric) quan-
tum many-body states with scalable entanglement in the
form of squeezing [17–23]. However, creating optically
excited entangled states that are immune to collective
dissipation and metrologically useful has remained a major
challenge.
In generic atom-cavity experiments with two-level

atoms, collective states are typically not dark but super-
radiant [1,24,25]. One way to stabilize the decay and create
scalable entanglement is by using an additional coherent
drive which competes with superradiance [26–35].
However, after turning off the drive, excited atoms super-
radiantly decay to the ground state, and the entanglement is
destroyed.
Here, we propose to use multilevel atoms coupled to a

dissipative cavity [see Fig. 1(a)] to generate scalable
squeezing in two distinct modes and store it in dark states,
recently shown to exist in these systems [36–38]. At the
mean-field level, these dark states can be understood as the
cancellation of the collective dipoles corresponding to
different internal atomic transitions, see orange arrows in
Fig. 1(b). In the full quantum theory, however, these dark
states are necessarily entangled, as revealed by their
squeezed fluctuations, and are hence absent in single
atoms. We focus on effective four-level atoms [Fig. 1(b)]

and describe two cases: one where collective decay gen-
erates squeezing in a dark state directly, and one where
squeezing is created in a bright state due to a combination
of superradiance and coherent driving. For the bright state,
we show how to transfer the squeezing into a dark state
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FIG. 1. (a) Atom-cavity setup: Atoms loaded inside a standing-
wave cavity, resonant with the atomic transition, decay at a rate Γ.
Atoms are coherently driven with right-circularly-polarized light
with an effective Rabi frequency Ω. (b) Destructive interference
of the collective dipoles D⃗�1=2 among two transitions in six-level
atoms leads to a dark state which does not decay to the ground
state. Blue and orange arrows are the mean Bloch vector and
dipole for the two transitions. (c) Squeezing in a two-level
system, visualized on a Bloch sphere (left) and bosonic noise
distribution (right). The steady state is squeezed along X̂c

1 ∝ Ŝx.
(d) Squeezing in a multilevel system. The panels plot projections
of the noise distribution onto Schwinger boson quadratures X̂c

1;2

and Ŷc
1;2, which are proportional to spin variables perpendicular to

the multilevel Bloch vector. Black arrows indicate that the
distributions shear perpendicular to conserved Bogoliubov bo-
sonic variables X̂b

2 and Ŷb
2 (red arrows), which leads to two

squeezed modes.
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using single-particle rotations, and store it by using
symmetries which preserve quantum noise. The storage
protocol can in principle be applied to squeezing generated
in multilevel systems via other schemes [23,39–42] such as
near-unitary two-mode squeezing in cavities.
The multilevel squeezing can be understood by approxi-

mating the spin projections orthogonal to the mean col-
lective spin, to bosonic degrees of freedom (large N
expansion). In this picture, multilevel superradiance leads
to two-mode squeezing [Fig. 1(d)], in contrast to the one-
mode squeezing of two-level atoms [Fig. 1(c)]. This
provides an alternative method to produce squeezed states
in two independent modes, akin to the two-mode squeezed
states realized in BECs and thermal gases [43–51]. Some
spin projections are unaffected by superradiance, as sug-
gested by the black arrows in Fig. 1(d), where two specific
bosonic quadratures [Xb

2 and Yb
2 (red)] are conserved, a

property absent from the two-level case. The squeezing can
therefore be preserved by rotating the state such that the
squeezed quadratures are aligned along the conserved
directions.
Setup.—We consider an ensemble ofN atoms pinned in a

deep magic optical lattice within an optical cavity [see
Fig. 1(a)]. For concreteness, we consider atoms with
degenerate ground states jg;mgi, mg ∈ ½− 1

2
; 1
2
�, and long-

lived electronic excited states je;mei, me ∈ ½− 3
2
; 3
2
� and

ground-excited transition frequency ωa, where the quanti-
zation axis is along the cavity axis. This can be realized, for
example, with the 1S0 and 3P1 states of 171Yb [52]. While
our arguments work for generic multilevel atoms, this is the
simplest nontrivial atomic structure which shows the
relevant physics.
Two cavity modes with angular frequency ωc and

orthogonal polarizations couple ground state atoms to
the excited state. For simplicity, we consider that the cavity
is resonant with the atoms, ωc ¼ ωa ¼ ω. We drive the
cavity modes with a right-circularly-polarized laser whose
frequency is also resonant with the cavity, ωL ¼ ω. In the
bad cavity limit where the cavity field can be adiabatically
eliminated [53], the atom dynamics are described by the
Lindblad master equation ℏρ̇ ¼ −i½Ĥ; ρ� þ L½ρ� with

Ĥ ¼ ℏΩD̂x
þ1; ð1Þ

L½ρ� ¼ ℏΓ
X
α¼�1

�
D̂−

α ρD̂
þ
α −

1

2
fD̂þ

α D̂
−
α ; ρg

�
; ð2Þ

where f� � �g is the anticommutator. Equation (1) describes a
right-circularly-polarized (α ¼ þ1) coherent drive, and
Eq. (2) describes superradiant emission of left-(α ¼ −1)
and right-circular (α ¼ þ1) polarizations. Here, Ω is the
atoms’ effective Rabi coupling strength generated by
the drive, and Γ sets the rate at which atoms decay and
emit light which leaks out of the cavity. The operator

D̂þ
α ¼ P

m Cα
mŜ

þ
m;α describes the collective atomic excita-

tion due to absorbing an α-polarized photon that imparts α
units of angular momentum; Ŝþm;α¼

P
N
i¼1 je;mþαiihg;mji

is the collective spin-raising operator for N atoms
within the two-level manifold of jg;mii and je;mþ αii;
Cα
m ¼ hFg;m; 1; αjFe;mþ αi is the Clebsch-Gordan coef-

ficient for the associated transition; and m is the angular
momentum projection of jg;mi onto the quantization
axis. We further define D̂x

α¼½ðD̂þ
α þD̂−

α Þ=2� and D̂y
α ¼

½ðD̂þ
α − D̂−

α Þ=2i�.
We initialize the atoms in a product of single-particle

ground states jGβi¼cosðβ=2Þjg;−1=2iþsinðβ=2Þjg;1=2i,
and apply a right-circularly-polarizedpulse to excite a fraction
of the atoms to the excited state, leaving them in the coherent
state jΨθ0;βi¼jψθ0;βi⊗N¼expð−iθ0D̂x

þ1ÞjGβi⊗N . The levels
je;−3=2i and je;−1=2i are always empty, so only the
right-handed polarization is relevant [Fig. 1(b)]. For
convenience, we define a family of states jΨðθ; βÞi ¼
expð−iθD̂x

þ1ÞjGβi⊗N , with jΨθ0;βi ¼ jΨðθ0; βÞi.
To study the subsequent evolution it is useful to rewrite

the above master equation as ℏρ̇ ¼ L0½ρ� where L0½ρ� looks
like L½ρ� [Eq. (2)] but with the modified jump operators

D̂−
α ¼ D̂−

α þ i
Ωα

Γ
; ð3Þ

where Ωþ1 ¼ Ω and Ω−1 ¼ 0. One can then show that the
system’s steady state fulfills D̂−

þ1ρss ¼ 0 [26,34,35].
Mean-field physics.—A convenient way to visualize the

state under the mean-field approximation is in terms of
multiple Bloch spheres (labeled m), one for each of the
two-level subspaces composed of jg;mi (south pole) and
je;mþ 1i (north pole), see Fig. 1(b). The dynamics of the
mth Bloch vector, S⃗m ¼ ðhŜxmi; hŜymi; hŜzmiÞ, where expect-
ation values are taken in the mean-field state and we

dropped the subscript α, is given by [53] ˙S⃗m ¼ Cþ1
m ðΩ⃗þ

ΓD⃗⊥Þ × S⃗m where Ω⃗ ¼ ðΩ; 0; 0Þ and D⃗⊥ ¼ ð−hD̂y
þ1i; 0; 0Þ

for the initial state jΨθ0;βi. Therefore, both the Rabi drive
and superradiance separately lead to a rotation of each
Bloch vector around an axis with fixed direction
Ω⃗=jΩ⃗j at a rate ∝ Cþ1

m . This means that all Bloch vec-
tors can be described by the single angle θðtÞ as
S⃗mðtÞ ¼ jS⃗mjð0; sin½Cþ1

m θðtÞ�;− cos½Cþ1
m θðtÞ�Þ, where jS⃗mj

is constant and θð0Þ ¼ θ0. The mean-field time-evolved
state associated with this Bloch vector is jΨðθðtÞ; βÞi.
TheangleθðtÞevolvesaccordingto θ̇¼Ω−NΓ½∂VβðθÞ=∂θ�,

where VβðθÞ ¼ 1
2
þ ð1=NÞhΨðθ; βÞjPm ŜzmjΨðθ; βÞi is the

superradiance potential [36]. The potential VβðθÞ ¼
cos2ðβ=2Þsin2ðθ=2 ffiffiffi

3
p Þ þ sin2ðβ=2Þsin2ðθ=2Þ is plotted in

Fig. 2(a). We can visualize the mean-field dynamics as
the classical evolution of a particle with coordinate θ on
the potential VβðθÞ. Superradiance, which is a form of
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dissipation, pulls θ towards a minimum of the potential,
keeping β fixed, whereas the coherent drive increases
(decreases) θ at a constant rate for Ω > 0 (Ω < 0).
The mean-field steady state (θ̇ ¼ 0) is given by the

solution to Ω ¼ NΓ½∂VβðθÞ=∂θ�, when it exists. The stabil-
ity of this steady state is determined by the curvature of the
potential. The steady state is stable to quantum fluctuations
for ½∂2VβðθÞ=∂θ2� > 0, and unstable for ½∂2VβðθÞ=∂θ2� < 0.
The inflection points at ½∂2VβðθÞ=∂θ2�jθ¼θc

¼ 0 [red dashed
lines in Fig. 2(a)] determine critical lines that separate the
stable and unstable regions. In the absence of drive, Ω ¼ 0,
the steady states are mean-field dark states, and occur when
the potential has a minimumwith respect to θ [black dashed
lines in Fig. 2(a)]. They emerge from destructive interfer-
ence of the collective dipoles D⃗m in the various Bloch
spheres [Fig. 1(b)] [36].
The steady-state solution for θ depends on θ0, Ω=NΓ,

and β. For simplicity, we choose throughout the Letter
Ω¼NΓ½∂VβðθÞ=∂θ�jθ¼θ0

and ½∂2VβðθÞ=∂θ2�jθ¼θ0
> 0. For

this choice, the initial state jΨθ0;βi is a stable mean-field
steady state. Below the critical points, jΨθ0;βi is a good
approximation to the full quantum steady state, and we can
treat fluctuations around the mean field as a perturbation.
Quantum noise.—We treat the perturbations around the

mean field in a bosonic picture in the large-N approxima-
tion. For atoms with l relevant internal levels in the ground
and excited manifolds, we can define Schwinger boson
operators âgðeÞ;m that annihilate particles in jgðeÞ; mi, but a
more convenient choice turns out to be θ0-dependent
operators ĉμðθ0; βÞ, μ∈ ½0;l − 1�, that are related to
âgðeÞ;m via a unitary transformation. For brevity, we will
drop the ðθ0; βÞ dependence of ĉμ.
We choose the definition of ĉμ based on two consid-

erations. First, we define ĉμ¼0 to annihilate particles in
jψθ0;βi. Since we have chosen the initial state jΨθ0;βi to be a
mean-field steady state, in the large-N limit we can make

the generalized Holstein-Primakoff (HP) approximation
[40], ĉ0 ∼

ffiffiffiffi
N

p
, and assume that the occupation in jψθ0;βi

is always close to N. Note that jΨθ0;βi is a macroscopically
occupied state of ĉ0, and the coherent vacuum for ĉμ>0. The

real and imaginary parts of ĉμ>0, X̂
c
μ ¼ ½ðĉμ þ ĉ†μÞ=

ffiffiffi
2

p � and
Ŷc
μ¼½ðĉμ− ĉ†μÞ=

ffiffiffi
2

p
i�, describe spin variables perpendicular

to the Bloch vector (see below). Second, we define ĉμ>0
such that D̂−

þ1, which is a linear combination of ĉμ>0, has a
simple form [53]. We exemplify this later.
We diagonalize the Lindbladian with a Bogoliubov

transformation of ĉμ>0 which defines Bogoliubov bosons
b̂μ>0 such that D̂−

þ1 ∝
ffiffiffiffi
N

p
b̂1. b̂μ also depends on ðθ0; βÞ

and we denote their real and imaginary parts as X̂b
μ and Ŷb

μ.
This transformation lets us visualize the many-body
steady state satisfying D̂−

þ1ρss ¼ 0, as the vacuum of b̂1.
Thus, during the dynamics, the system evolves from
the vacuum of ĉμ>0, which has a positive value for
hb̂†1b̂1i ¼ 1

2
½ðΔXb

1Þ2 þ ðΔYb
1Þ2 − 1�, to the vacuum of b̂1,

which has hb̂†1b̂1i ¼ 0 and ðΔXb
1Þ2 ¼ ðΔYb

1Þ2 ¼ 1=2, while
the b̂1<μ<l bosons remain untouched [Fig. 1(d)]. This noise
reduction perpendicular to the Bloch vector corresponds to
the generation of spin squeezing.
Specifically, the system is squeezed if some of the spin

variables S⊥;γ perpendicular to the Bloch vector fulfill
ξ2γ ≡ 4ðΔS⊥;γÞ2=N < 1. In our approximation, this corre-
sponds to a variance in the ĉμ>0 bosons. We find the
smallest variances by calculating the 2ðl − 1Þ eigen-
values ξ2γ of the covariance matrix Σ, whose matrix
elements are fhfX̂c

μ; X̂
c
νgiC; hfX̂c

μ; Ŷ
c
νgiC; hfŶc

μ; Ŷ
c
νgiCg,

where hfÂ; B̂giC ¼ hÂ B̂þB̂ Âi − 2hÂihB̂i [53]. Initially,
Σ is the identity matrix, which corresponds to no squeezing.
As the driven-dissipative system evolves, some eigenvalues
of Σ become squeezed, ξ2γ < 1. We show in [53] that an
eigenvalue ξ2γ < 1 is an entanglement witness [54,55].
Two-level systems.—To exemplify squeezing in the

simplest case, we consider jGβ¼πi ¼ jg; 1=2i [yellow line
in Fig. 2(a)]. In this case, the dynamics is constrained to
jg; 1

2
i and je; 3

2
i, effectively realizing a two-level system

whose physics has been extensively studied previously
[26,27,29–35]. For this case, the superradiance potential is
Vβ¼πðθÞ¼sin2ðθ=2Þ, whose critical points are θc¼�ðπ=2Þ.
The steady-state Bloch vector is along ŜBlochθ0 ¼ sin θ0Ŝ

y
1=2−

cos θ0Ŝ
z
1=2, stabilized at the mean-field level with a drive

strength Ω ¼ ðNΓ=2Þ sin θ0 for jθ0j < ðπ=2Þ. Defining
Schwinger bosons such that [53] X̂c

1 ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffið2=NÞp

Ŝx1=2 and

Ŷc
1 ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffið2=NÞp ðcos θ0Ŝy1=2 þ sin θ0Ŝ
z
1=2Þ in the HP approxi-

mation [see Fig. 1(c)], the Lindblad operator can be
written as D̂−

þ1 ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiðN=2Þp ðX̂c

1 þ i cos θ0Ŷ
c
1Þ. Thus, we

define the Bogoliubov operator b̂1 ¼ ðX̂c
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cos θ0

p Þþ
iŶc

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðcos θ0=2Þ
p

, so that D̂−
þ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N cos θ0

p
b̂1. Since the

(a) (b)) (

critical

dark

FIG. 2. Superradiance potential VβðθÞ. Both height and color
indicate VβðθÞ, black dashed lines are stable mean-field dark
states, and red dashed lines are critical lines. Pink, gray, and
yellow lines are parametric cuts explored in this Letter.
(b) Steady-state squeezing ξ2XðYÞ in the X̂ (Ŷ) quadratures. The

squeezing becomes significant near the critical points [red dashed
lines in (a)]. White regions are unstable. The dot indicates where
the dark state and critical point coincide.
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steady state is the vacuum of b̂1 with ðΔX̂b
1Þ2 ¼

ðΔŶb
1Þ2 ¼ 1

2
, this implies that X̂c

1 and Ŷc
1 are squeezed

and antisqueezed in the steady state, respectively, with
ðΔXc

1Þ2 ¼ ðcos θ0=2Þ and ðΔYc
1Þ2 ¼ ð1=2 cos θ0Þ as shown

in Fig. 1(c). The squeezing (antisqueezing) approaches
0 (∞) as θ0 approaches the critical point, θc ¼ �ðπ=2Þ.
Multilevel systems.—When both ground levels are ini-

tially populated, the system hosts four nontrivial Schwinger
bosons ĉμ and thus three Bogoliubov bosons b̂μ. We define
ĉμ such that the jump operator is [53]

D̂−
þ1 ≈

ffiffiffiffi
N

p �
xX̂c

1 þ iyðcosϕŶc
1 þ sinϕŶc

2Þ
�
; ð4Þ

where ðx; y;ϕÞ are parameters that depend on ðθ0; βÞ.
Specifically, all the critical points, ½∂2VβðθÞ=∂θ2�jθ¼θ0

¼0,

correspond toϕ ¼ ðπ=2Þ. As before, we define b̂1 via D̂−
þ1 ≈ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nxy cosϕ
p

b̂1. We define the other two Bogoliubov oper-
ators as b̂2 ¼ f½ðX̂c

2 − tanϕX̂c
1Þ þ iŶc

2�=
ffiffiffi
2

p g and b̂3 ¼ ĉ3.
These modes commute with D̂�

þ1ð∝ b̂1; b̂
†
1Þ, and therefore

their quadratures are conserved during dynamics. b̂2 and b̂3
are said to be generators of strong symmetries [56–59].
The evolution relaxes the system to the vacuum of b̂1,

which leads to dynamics in ĉ1 and ĉ2 only. The b̂3 boson
thus plays no role in the dynamics. However, since b̂2 is
conserved, the dynamics in ĉ1 and ĉ2 is such that the noise
distributions shear perpendicular to X̂b

2 and Ŷ
b
2 , as shown in

Fig. 1(d). This shearing leads to squeezing in two distinct
modes in the ĉ basis, one in the Xc

1-X
c
2 plane and one in the

Yc
1-Y

c
2 plane, as opposed to the single squeezed mode of the

two-level system above. The shearing is reminiscent of spin
squeezing via, e.g., one-axis twisting (OAT). Unlike OAT,
however, the dissipative dynamics does not preserve the
area of the noise distribution, and also the shearing rate is
time dependent and stops when ðΔXb

1Þ2 ¼ ðΔYb
1Þ2 ¼ 1

2
.

Figure 2(b) plots the squeezing in the two squeezed
modes. The squeezing in both modes approaches 0 at the
critical lines (ϕ ¼ π=2), but finite-N effects limit the best
squeezing achievable. Near the critical point, the squeezed
quadratures approach X̂c

1, which is ∝ D̂x
þ1, and Ŷ

c
2, which is

∝D̂y
þ1 − hD̂y

þ1i [53].
Squeezing in a dark state.—The simplest way to generate

scalable squeezing in a dark state is to initially prepare the
system in a mean-field dark state that is close to a critical
point, and let the system evolve with Ω ¼ 0. We achieve
this by choosing β and θ0 appropriately. Figure 2(a) shows
that the dark manifold (black dashed line) intersects the
critical manifold (red dashed line) at a saddle point (black
dot) given by ðθc;dark; βc;darkÞ ≈ ð2.45π; 0.41πÞ [53]. To
avoid finite-N effects, we can work at a slightly larger
β, e.g., β ¼ 0.411π, whose superradiance potential is
shown in Fig. 3(a) and as a pink line in Fig. 2(a). The
potential has a dark state at ðθ0; βÞ ¼ ð2.41π; 0.411πÞ,
which is close to the critical point at θc ¼ 2.45π. Preparing

the system at this value of ðθ0; βÞwill yield ξ2 ∼ 0.05without
any driving. This squeezing gets better as the critical point
ðθc;dark; βc;darkÞ ≈ ð2.45π; 0.41πÞ is approached.
Transferring the squeezing to the dark state.—Scalable

squeezing can also be generated withΩ ≠ 0 in a bright state
close to other critical points. This squeezing can still be
transferred to a dark state, θdark, where it will be immune to
superradiance after switching off the drive. This idea works
regardless of how the squeezing was generated as long as
the HP approximation is valid.
As an example, we consider spin squeezing generated at

ðθ0; βÞ ¼ ð4.46π; 0.5πÞ [green circle in Fig. 3(b)], where θ0
is close to a critical point, θc ¼ 4.47π [Fig. 3(b) and gray
cut in Fig. 2(a)]. The basic idea, after acquiring squeezing
in a bright state, is to first rotate the Bloch vector to a mean-
field dark state and switch off the continuous drive Ω. This
can be accomplished by a rotation exp½iðθ0 − θdarkÞD̂x

þ1� to
the dark state at θdark ¼ 3.87π. Then, to avoid losing the
squeezing due to further evolution towards the new steady
state at θdark and Ω ¼ 0, one needs to perform additional
single-particle rotations that transfer the squeezed quad-
ratures to the conserved quadratures X̂b

2 , X̂
b
3, Ŷ

b
2 , or Ŷb

3.
Explicit forms of these rotations are given in [53]. Single-
particle rotations for multilevel atoms can be implemented
using, e.g., quantum optimal control [60]. Note that all
rotations should be fast compared to NΓ.
We numerically simulate this protocol using a cumulant

expansion [53] in Fig. 3(c), which shows the evolution of

(a) (b)

(c) (d)

FIG. 3. (a),(b) Superradiance potential VβðθÞ at (a) β ¼ 0.41π
and (b) β ¼ 0.5π. Blue triangles and red stars indicate dark states
and critical points respectively. (c) The six leading eigenvalues of
the spins’ covariance matrix Σ̃ during the storage protocol at
ðθ0; βÞ ¼ ð4.46π; 0.5πÞ, calculated using a cumulant expansion
truncated at second order [53]. These eigenvalues correspond to
the six normalized variances, 4ðΔS2⊥;γÞ=N, of the spin variables
perpendicular to the Bloch vector. The two squeezed modes
preserve the noise after rotating to the dark state at
t ¼ 1000=ðNΓÞ. Lines are guides to the eye. (d) Finite-size scaling
of the best squeezing in the X̂ and Ŷ quadratures near the critical
points ðθc; βÞ ¼ ð4.47π; 0.5πÞ (dots) and ðθc;dark; βc;darkÞ ¼
ð2.45π; 0.41πÞ (squares).
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the noise (variances of spin variables) for ðθ0; βÞ ¼
ð4.46π; 0.5πÞ. At t ¼ ð1000=NΓÞ we implement the above
rotations and let the system evolve freely with Ω ¼ 0.
Clearly, the two most squeezed quadratures are preserved.
Best squeezing achievable.—The best squeezing achieved

is limited by higher-order terms in theHPapproximation, and
single-particle decoherence set fundamentally by the single-
particle linewidth γ. In Fig. 3(d), we use the cumulant
expansion, which includes the higher-order HP corrections,
to find the best squeezing in the twomodes for the two above
protocols: squeezing at a dark state or a bright state.
Specifically, we scan θ0 between 2π and 2.45π along the
darkmanifold [dashedblack line inFig. 2(b)], andθ0 between
3.87π and 4.47π at β ¼ 0.5π [Fig. 3(b)].We numerically find
in all cases that the squeezing ξ2 scales as N−0.25, and derive
this scaling in [53]. We show in [53] that free-space
spontaneous emission yields squeezing which scales with
N as 1=

ffiffiffiffiffiffiffi
NC

p
whereC ¼ Γ=γ is the cavity cooperativity. For

NC2 ≫ 1, finite-size effects limit the squeezing more than
spontaneous emission. Our protocol has the advantage that
squeezing is generated in more than one quadrature and is
thus useful for more general metrological tasks [61].
Outlook.—While we have focused on the case with only

one relevant polarization, the ideas presented can be
generalized to situations with two relevant polarizations,
where up to four quadratures can be squeezed [53]. The
presented ideas open unique opportunities for the gener-
ation and storage of squeezing in generic multilevel
systems even beyond the cavity setting discussed here.
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