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Palken, Daniel A. (Ph.D., Physics)

Enhancing the scan rate for axion dark matter:

Quantum noise evasion and maximally informative analysis

Thesis directed by Prof. Konrad Lehnert

Dark matter axions, particles whose hypothesized existence could resolve two of the largest

outstanding mysteries in physics, are made difficult to detect by their extremely feeble coupling

to ordinary matter. The axion haloscope, first realized experimentally three decades ago, remains

among the most viable detection platforms, but even today’s leading technology would optimisti-

cally require many millennia to scan commonly targeted portions of axion parameter space. Today’s

axion direct detection community is searching therefore not just for the elusive particles, but for

technologies and innovations that will permit more efficient searches. In this thesis, I present two

such innovations. First, the resource of quantum squeezing sequesters the noise of a haloscope

measurement into unmeasured observables, improving the sensitivity bandwidth and hence the

scan rate of the detector, its primary figure of merit. Second, valuable information pertinent to

the existence of the axion is discarded by the standard hypothesis testing framework used to look

for axions. An alternative, Bayesian analysis utilizes the full information content of the haloscope

measurement, yielding a tangible speedup at zero operational or hardware cost. Together, these

innovations are used improve threefold the scan rate of a dark matter search performed by the

Haloscope At Yale Sensitive To Axion Cold dark matter (HAYSTAC) experiment.
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Chapter 1

Thesis structure

We do not know what constitutes the cosmos, and it may take us a very long time to find

out. The problem is that of dark matter, and the difficulty of directly detecting it. This thesis sets

out to speed up the search for dark matter axions through the use of quantum measurement and

statistical analysis.

I begin in Ch. 2 with a motivating discussion of the problem of dark matter, the axion as a

potential solution, and the axion haloscope as the primary device used in efforts to detect it. In

Sec. 2.1, I overview some of the most prominent evidence for dark matter. Section 2.2 discusses the

weakly interacting massive particle (WIMP),1 a once highly promising dark matter candidate now

somewhat disfavored by experimental null results. Section 2.3 then turns to the candidate most

central to this thesis, the axion of quantum chromodynamics. This section and the ensuing Sec. 2.4

discuss those properties that qualify axions as dark matter candidates, and those pertinent to

detecting their signature experimentally, respectively. In Sec. 2.5, I introduce the axion haloscope.

The chapter concludes with a quantitative discussion of what limits the performance of axion

haloscopes, as parametrized by their scan rates — the speeds at which they can move through

parameter space in search of dark matter axions.

Chapter 3 introduces Josephson parametric amplifiers (JPAs), devices that can create and

process squeezed states of microwave light, which will ultimately enable me to enhance the scan

rate of an axion haloscope. This chapter beings in Sec. 3.1 with a discussion of the Josephson

1 A full list of acronyms and other abbreviations appearing in this thesis can be found in Appx. D.
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junction, whose special properties will be used to enable the noiseless amplification and squeezing

later in this thesis. I derive in Sec. 3.2 key properties of pairs of Josephson junctions known as

superconducting quantum interference devices (SQUIDs). After Sec. 3.3 provides the language of

circuit quantization, Sec. 3.4 combines the building blocks developed thus far into a JPA. I derive

how JPAs achieve gain and squeezing, before turning in Sec. 3.5 to a discussion of the validity of the

Duffing approximation, a key simplification made in the JPA gain derivation. The implications of

this discussion are important for understanding the physics of array-based JPAs as a partial remedy

to the problem of limited power handling. Finally, turning our attention to the devices themselves,

Secs. 3.6 and 3.7 discuss the design and characterization of JPAs intended to be operated with

different types of pump tones. The current-pumped JPAs of Sec. 3.6 will be central to Ch. 4, while

the flux-pumped JPAs of Sec. 3.7 will feature in Chs. 5 and 8. The fabrication process, performed

at NIST Boulder, is discussed in Appx. A, and the resolution to a flux-tuning problem that plagued

our flux-pumped JPAs is discussed in Appx. B.

Chapter 4 presents a technique to improve the power handling of current-pumped JPAs used

for squeezing. I begin in Sec. 4.1 with a theoretical treatment of how a JPA transforms a signal

in phase space, drawing on results from Ch. 3. Section 4.2 details an experiment performed with

coherent states of the microwave field whose amplitudes are comparable to vacuum fluctuations.

The results of this experiment suggest that fragility to fluctuations in the power of a JPA’s pump

tone can be traded off for improved squeezing. In Sec 4.3, I show in a second experiment performed

on vacuum states that this result indeed improves the squeezing that can be delivered to a physical

system such as an axion haloscope. Section 4.4 describes experimental details and calibration

measurements for the transmission losses and added noise in the setup used throughout this section.

The improvement achieved in this chapter, summarized in Sec. 4.5, is limited by presently achievable

degrees of squeezing (in turn limited by transmission losses within the system), suggesting that the

superior options for parametric amplification are the flux-pumped JPAs used in ensuing chapters.

Chapter 5 modifies the experimental architecture of Ch. 4 from one for testing squeezing, to

one for using it: the integration of two JPAs into an axion haloscope-like setup forms a squeezed
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state receiver (SSR) apparatus capable of exploiting the uncertainty principle of quantum mechanics

to enhance the search rate for an axion-like signal. Section 5.1 uses input-output theory to show that

the SSR works by eliciting a favorable tradeoff between peak haloscope sensitivity and bandwidth,

and includes a detailed theoretical calculation with experimental parameters used throughout the

chapter. Section 5.2 mathematically models how the axion field interacts with a haloscope. Sections

5.3 and 5.4 report on a pair of experiments to demonstrate the efficacy of the SSR. In Sec. 5.3, a

probe tone much larger than an axion is used to characterize the squeezing over the bandwidth of

the SSR. Section 5.4 describes a complete mock-haloscope experiment, injecting and detecting an

axion-like tone of unknown frequency with and without the assistance of squeezing. Section 5.5

discusses protocols and calibrations common to the two experiments in this chapter. Section 5.6

then discusses complementary measurements to those taken in Sec. 5.3, and Sec. 5.7 describes the

data processing used in Sec. 5.4. The chapter concludes in Sec. 5.8. Discussion then shifts from

quantum to classical information processing, before ultimately returning to a real axion search, in

which both tools are used advantageously.

Chapter 6 presents data processing and statistical analysis techniques commonly used in

axion haloscopes. Section 6.1 overviews the processing protocol of the Haloscope At Yale Sensitive

To Axion Cold dark matter (HAYSTAC) experiment, and Sec. 6.2 introduces some considerations

pertinent to axion search analyses. Sections 6.3 and 6.4 describe frequentist frameworks commonly

used to test for axions. In relation to these frameworks and that introduced in the next chapter,

Sec. 6.5 discusses the role of the look-elsewhere effect in axion searches.

In Ch. 7, I introduce the Bayesian power-measured (BPM) statistical framework, a novel

analysis designed for the particulars of axion direct detection, and demonstrate its utility on existing

HAYSTAC data. Section 7.1 introduces the framework and describes key features pertinent to axion

detection. Section 7.2 then evaluates the existing haloscope data processing protocols, and Sec. 7.3

contextualizes the BPM framework alongside the frequentist framework of Sec. 6.3, showing in what

limits the two may be compared. Section 7.4 then applies the framework to the HAYSTAC Phase

I dataset, achieving deeper reach into axion parameter space at zero hardware or operation cost.
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The discussion of statistical frameworks for axion detection concludes in Sec. 7.5.

Chapter 8 combines the innovations of Chs. 5 and 7 to deliver a threefold combined speedup

to the scan rate of Phase II of the HAYSTAC experiment. Section 8.1 describes the setup and

basic operation of the experiment, Sec. 8.2 presents the data processing and analysis of the Phase

II dataset, and Sec. 8.3 discusses squeezed state receiver operation and presents the data process-

ing and results. We observe no signature of the axion, reporting exclusion results obtained at

roughly three times the scan rate achievable without the innovations presented in this thesis. Sec-

tion 8.4 discusses calibration measurements and protocols, and an issue with improper tuning rod

thermalization during the data run is explored in Appx. C.

Lastly, Ch. 9 uses the BPM framework of Ch. 7 for a separate application, searching for the

signature of axion-like particles (ALPs) in data from the JILA electron electric dipole moment

(eEDM) experiment as much as 17 orders of magnitude lower in mass than the axions targeted in

Ch. 8. Section 9.1 discusses how the JILA eEDM experiment may be sensitive to ALPs. Section 9.2

then uses a lease-squares spectral analysis to extract spectral content of the measurement. Section

9.3 formulates and refines the competing ALP and no-ALP hypotheses, which are tested subject

to the measured data, with results reported in Sec. 9.4 and prospects for futures searches discussed

in Sec. 9.5.

Chapter 10 concludes in Sec. 10.1, and in Sec. 10.2 discuss future prospects for speeding up

dark matter axion searches both by using quantum measurement and by taking full advantage of

the analysis framework presented in this thesis.



Chapter 2

Dark matter, axions, and haloscopes

Arguments pointing to the presence of more gravitationally interacting mass out in space

than is indicated by visible light date back to Lord Kelvin in the late 19th century [1]. The

ensuing hundred-plus years produced ever more compelling data points in support of the dark

matter hypothesis: that a substantial fraction of the universe’s matter density, presently estimated

at 85% [2], does not strongly interact with electromagnetism (or else we would see it, and it would

not be “dark”), and is not made of particles from within the Standard Model of particle physics.

Theoretical predictions and experimental evidence have each played integral roles in the history of

dark matter, motivating promising theories and ruling some of them out. A dark matter candidate

is viable insofar as it is well motivated by known physical phenomena, and not strongly disfavored by

existing experimental evidence. Perhaps the dark matter candidate that best fits this description

is the axion particle predicted to resolve an outstanding mystery in quantum chromodynamics

(QCD), the study of the strong nuclear force.

This chapter presents an overview of the history of our understanding of dark matter. Starting

with a broad focus, I address some of the key pieces of evidence for dark matter. Zooming in, I

touch upon some of the most historically popular candidates to constitute the dark matter, and

in particular the QCD axion. This chapter ends with a discussion of axion haloscopes, detectors

designed to observe dark matter axions in the galactic halo by first converting them to microwave

photons, and the present limitations upon their performance.
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2.1 Evidence of dark matter

The case for dark matter has been built over the past century from sources ranging from the

behavior of bodies within galaxies, to the interaction of galaxies, to measurements of the cosmos.

This section discusses a few prominent examples: observations of the velocity dispersion of galaxies

within clusters and of the speed of orbiting bodies within galaxies, which each provided some of

the most compelling early evidence of dark matter. Evidence from the collision of two galactic

clusters has strengthened the case for dark matter over competing theories, and, to date, the most

precise measurements of dark matter density come from the cosmic microwave background (CMB)

radiation [3]. The broader history of dark matter is a rich and fascinating topic, and the interested

reader is encouraged to consult Ref. [4] for a more comprehensive overview or Ref. [5] for a nuanced

examination of some of the sociological forces that drove physicists to the problem.

2.1.1 Galactic velocity dispersion in the Coma Cluster

Fritz Zwicky had one of the most impactful early insights into the composition of our universe

when in the 1930’s he first applied the virial theorem to the motion of luminous bodies within the

Coma Cluster of galaxies [6, 7]. The virial theorem,

2〈T 〉 = −n〈V 〉, (2.1)

relates the total time-averaged kinetic (T ) and potential (V ) energies of a system bound by a

potential of the form V ∝ r−n. For the gravitational potential energy

VG = −Gm1m2

r
(2.2)

between point masses m1 and m2 a distance r apart, n = 1. Zwicky estimated 〈T 〉 based on

the observed amount of luminous matter within the cluster. He found an order-of-magnitude

discrepancy between the velocity dispersion of galaxies implied by Eq. (2.1) and the actual, observed

values.
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Zwicky’s results implied a total abundance of matter ∼ 500 times greater than just its lumi-

nous component. This result turns out to be incorrect in magnitude, but still remarkable for its

prescience.2 It would be decades before dark matter became fully recognized as one of the central,

unexplained riddles of modern physics.

2.1.2 Galactic rotation curves

Fritz Zwicky’s early estimates of the dark matter density of the Coma Cluster had relied

upon the velocity dispersion of galaxies, pointedly eschewing the possibility of inferring the mass

of individual galaxies from their rotation curves: how fast luminous matter orbits the galactic

center as a function of radial distance. Zwicky wrote: “It is not possible to derive the masses of

[galaxies] from observed rotations, without the use of additional information” [4,7]. The additional

information Zwicky was referring to included the internal damping of motion within galaxies from

the interaction of massive bodies. A few years later, however, Subrahmanyan Chandrasekhar

showed that these viscous interactions were effectively negligible [9], opening up another window

into gauging dark matter density.

Galactic rotation curves provide a very straightforward test of whether the matter distribution

of a galaxy is as it appears — that is, proportional to the luminous matter. A simple Newtonian

calculation (see e.g. Example 5.2 of Ref. [10]) shows that for a typical galaxy where the galactic

mass M appears to be clumped tightly at the center, the orbital velocity vorb should rise initially

within the galaxy, and then fall off outside of it with radial distance r as

vorb =

√
GM

r
. (2.3)

The dashed line in Fig. 2.1a shows what this would look like for the Andromeda galaxy. Spec-

trographic measurements (solid line) such as those taken by Vera Rubin and Kent Ford proved

inconsistent with this, revealing a much flatter curve [11]. Measurements obtained using the 21

2 In particular, Zwicky was using a now-obsolete value [8] for the Hubble constant, describing the rate at which
the universe is expanding, to calculate the velocities of galaxies at a distance. An updated value [2] returns a more
reasonable answer, and one still in line with the Zwicky’s basic conclusion.
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cm line of hydrogen [12], Fig. 2.1b (left column), provided a proxy for the amount of luminous

matter out at larger radii, where there are not many stars. While the luminous matter was indeed

clumped towards the center across several observed galaxies, the rotation curves (right column)

stayed remarkably flat past the point where most of the matter was contained. The flat rotation

curves were suggestive of a dark matter halo around galaxies, much broader in extent than the

directly observable cores of luminous matter [13].

Figure 2.1: (a) Measurements of the orbital speed of the Andromeda galaxy (solid line) versus
distance away from the galactic center shown against a simple model assuming only luminous
matter, Eq. (2.3). (b) 21 cm line measurements (left column) of the hydrogen density within
galaxies with flat rotation curves (right column). 80% of the hydrogen lies within R80. Panel (a)
reproduced from Ref. [10]. Panel (b) reproduced from Ref. [12].

2.1.3 Further arguments for and against dark matter

Arguments for dark matter have proliferated since the 1970’s, and have disfavored many

otherwise plausible alternatives. For instance, it turns out that more matter exists as ionized

hydrogen between galaxies than as stars within them [14]. Ionized hydrogen does not emit at

the 21 cm line used in Sec. 2.1.2, instead emitting X-rays. This opens up the possibility that the

“missing” matter revealed by galactic velocities could simply be made up of baryonic matter3 not

3 Baryonic matter is the name given to normal (i.e. non-dark) matter. It is understood to also include matter not
composed of baryons (but still described by the Standard Model). While baryons are not the only type of “baryonic”
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luminous at the frequencies being observed.

However, precise measurements of the anisotropy of the CMB weigh in heavily against this

and other alternative explanations. The CMB radiation spectrum still contains the imprint of early

universe physics, including the ratio between normal and dark matter. In essence, the galactic

structure formation that we observe imprinted upon the anisotropy of the CMB could only have

arisen from a very precise ratio of dark-to-normal matter, and is completely incompatible with the

nonexistence of non-baryonic matter. These calculations come from a ΛCDM model accounting

for normal matter, cold dark matter (CDM), and the cosmological constant (Λ) governing the

universe’s expansion [15].

One further popular class of alternatives to the dark matter hypothesis deserves remarking

upon; these are theories of modified Newtonian dynamics (MOND), or modified gravity. First

posited by Mordehai Milgrom in 1983 [16, 17], MOND posits that the gravitational force FG may

actually behave differently than the simple

FG =
Gm1m2

r2
(2.4)

corresponding to Eq. (2.2). Of course, where local gravitational forces are strong, the modified force

must reduce to Eq. (2.4). It is not hard to write down a functional form, such as

FG,MOND =
Gm1m2

µ
(
a
a0

)
r2

(2.5)

with this property. Here, thinking of m1 as the mass of a galaxy and m2 as the mass of a star at some

radius r from its center, µ is a function of m2’s acceleration a relative to some new fundamental

constant a0 such that µ(a/a0 � 1) → 1. Accounting for the flat rotation curves of Fig. 2.1 is as

simple as positing that µ(a/a0 � 1)→ a/a0.

One of several strong cases against MOND and for dark matter (in addition to the CMB)

comes from observations taken in the early 2000’s of a colliding pair of galaxy clusters [18,19]. The

Bullet Cluster is remarkable for being observed post-collision with a larger cluster of galaxies. An

matter, they do account for the vast majority of the baryonic matter density in the universe.
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image of this collision is shown in Fig. 2.2. The figure highlights two regions of interest. First,

X-ray emission from the galaxy clusters is shown in pink overlay. The X-rays are sourced from the

large quantities of inter-galactic gases which account for the majority of the baryonic matter. The

galaxy clusters also bend the path of light sourced from behind them, in a phenomenon known

as gravitational lensing. The lensing effect reveals the location of the gravitationally attracting

matter, shown in blue overlay. The key feature of Fig. 2.2 is that for both clusters the blue and

pink regions are spatially separated. This is easy to account for with dark matter: the hot, ionized

gas between galaxies is slowed as it interacts electromagnetically with that of the other cluster,

while the dark matter sails through unimpeded. Though there remain a few voices of dissent [20],

the weight of evidence from the Bullet Cluster seems to favor the dark matter explanation over

theories of modified gravity [21].

Figure 2.2: Optical image of the Bullet Cluster collision with overlaid X-ray and lensing map.
Sources of X-ray emission within the clusters indicate the location of baryonic matter (pink). The
collision slowed down the intra-cluster gasses, spatially separating them from the dark matter
region (blue), which has been reconstructed from gravitational lensing studies. The separation
of the luminous matter from the center of gravity is strong evidence for dark matter. Figure
reproduced from Ref. [22].

The evidence discussed above represents just a small sampling of some of the most historically
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important advances in our understanding of the dark matter problem, and are by no means a

comprehensive survey thereof. Moving forward, we will ask what dark could be composed of, and

what its essential properties are.

2.2 The not-so-miraculous WIMP

The fields of particle physics and astrophysics motivate (or in some cases merely allow)

particles or objects that interact only weakly (or strongly, but from our perspective occasionally)

with normal matter, and could plausibly populate much of space. Some of the most popular early

candidates such as massive astrophysical compact halo objects (MACHOs) have been ruled out

by observational studies [23,24]. Others, including weakly4 interacting massive particles (WIMPs)

[25] have had meaningful fractions of formerly favored parameter space excluded by laboratory

experiments.

WIMPs are the lightest stable particles predicted by supersymmetry (SUSY) theories, and are

well motivated from both theoretical and experimental perspectives [26]. Their popularity traces

to two sources. First is the “WIMP miracle,” the fact that the number of WIMPs expected to

have survived until the present day should decrease with their self-annihilation cross-section 〈σv〉,

predicted to be of order 3×10−26cm3/s to account the present dark matter density5 — and this cross

section is the right scale for a weakly interacting particle with mass mχ ∼ 100 GeV/c2. Second,

we know how to detect them. WIMPs are predicted to scatter off of baryonic matter, producing

sound [28], light, and/or charge signals in physical detectors, which often seek to correlate events

in two of these three categories to veto backgrounds.

These experiments have been successful in sweeping out much of the WIMP parameter space

shown in Fig. 2.3 [30–32]. The WIMP-baryon scattering cross-sections originally predicted by the

WIMP miracle have been ruled out, weakening the case for WIMPs. Additionally, as detectors

become more and more sensitive, they approach the “neutrino floor” (orange shaded region in

4 “Weakly” in this acronym refers to the weak nuclear force, and not the feeble coupling to normal matter, though
neither meaning would be a mischaracterization.

5 So long as mχ >∼ 10 GeV/c2, the predicted value for 〈σv〉 is not strongly dependent on mχ [27].
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Figure 2.3: Weakly interacting massive particle (WIMP) parameter space showing spin-independent
(SI) WIMP-nucleon cross section vs. WIMP mass. Experimental exclusion results are rapidly clos-
ing in on the neutrino floor (orange shaded region), where coherent scattering of neutrinos will
make it difficult to detect a WIMP dark matter signal. See Ref. [29] for references to experimental
results. Figure reproduced from Ref. [29].

Fig. 2.3), where ubiquitous neutrino scattering events will provide a formidable background [33].

WIMP direct detection in the presence of neutrino-scattering may still be achievable [34], but

will prove more difficult. The theoretical and experimental cases for WIMPs, while by no means

inviable [35], are thus each less compelling than they seemed in the 1970’s and 1980’s, and, as such,

the case for competing hypotheses is strengthened.

2.3 The QCD axion solution to dark matter

A particularly compelling candidate for dark matter is the QCD axion. We will see that

the QCD axion, like the WIMP, solves an outstanding mystery of modern physics and possesses

key attributes of dark matter. Unlike the WIMP, experimental evidence has not yet weighed in

strongly on the most plausible parameter space.
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2.3.1 The strong CP problem

The QCD axion was “invented” to resolve a mystery seemingly unrelated to that of dark

matter: why the strong nuclear force seems to obey charge-parity (CP ) symmetry [36, 37].6 The

problem was vexing because CP symmetry is known not to be a good symmetry of nature. CP

violation was first observed in neutral kaon decays [39], and it took almost four decades before it

was observed outside of kaon physics, in B mesons [40]. Recently, long-baseline measurements of

neutrino oscillations observed CP violation in elementary particles for the first time [41]. But what

all of these occurrences have in common is that they are governed by the electroweak interaction.

In the strong sector, CP violation has never been observed, and not for a lack of sensitivity

to it. CP violation in the strong interaction would be directly observable via the measurement

of a nonzero neutron electric dipole moment (nEDM) dn. In particular, dn scales as a parameter

θ̄ arising in part from QCD.7 However, the most precise nEDM measurement to date of dn =

(0.0±1.1)×10−26ecm [43] accommodates θ̄ < 10−10, whereas its being an otherwise unconstrained

angle suggests it should be O(1).

This part-in-1010 fine-tuning problem has several physically allowed explanations, the most

plausible of which predicts QCD axion particles as a byproduct. First, it could truly just be

random chance. But this is, by construction, unlikely, and there is no anthropic necessity for θ̄

to be zero [42]. Second, CP symmetry could actually be an exact symmetry of nature that is

spontaneously broken [42]. But explanations of this sort tend to either be ruled out by existing

measurement [29] or require fine-tuning of their own atop elaborate theoretical mechanisms [44–46].

Third, one of the quarks being massless would make dn independent of θ̄, but current measurements

of the up quark (the lightest quark) place its bare mass at 2.2+0.5
−0.4 MeV/c2 [29], inconsistent with

6 CP symmetry exists if, upon flipping the signs of all the charges in the universe and inverting the positions of
all particles in space about some point, a careful observer cannot tell the difference between the flipped universe and
the original. Charge-parity-time (CPT ) symmetry, which is symmetry under a CP operation plus a reversal of the
arrow of time, is believed to be a good symmetry of nature [38]. Therefore, CP violation implies T violation: the
universe does not obey the same laws of physics with the tape run backwards.

7 Another contribution to θ̄ actually comes from a Yukawa term in the electroweak interaction, making the so-
called “strong” CP problem a problem for the whole Standard Model: θ̄ = θQCD + θYukawa. For a far more detailed
explanation of the attendant physics, see Ref. [42].
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zero. Finally, there is the Peccei-Quinn (PQ) solution to the strong CP problem.

2.3.2 The Peccei-Quinn mechanism

In 1977, Roberto Peccei and Helen Quinn proposed a theory in which θ̄ is promoted from a

static parameter to a dynamical field, causing it to naturally relax to 0 and elegantly cleaning up

the strong CP problem [36,37].8 This cleanliness-promoting feature gave rise to the name “axion,”

after the dish detergent [48]. Axions are pseudo-Goldstone bosons9 that arise as an immediate

consequence of the PQ mechanism [49, 50]. It was not long before particle physicists realized that

sufficiently light axions have key features resembling dark matter. This main results of this thesis

will pertain to axions of mass ma ∼ 10 µeV/c2.

2.3.3 Axions as dark matter candidates

The light axions we will focus on are bosonic, stable on cosmological timescales, and weakly

interacting. They also may have a production mechanism capable of making up in numbers what

the individual particles lack in mass, while allowing for them to be nonrelativistic. We will see that

all of these features together make axions a promising dark matter candidate.

Any sufficiently light dark matter candidate must be bosonic. This is because fitting enough

fermions into a galaxy to account for observed dark matter densities gives the highest energy

particles a Fermi velocity greater than galactic escape velocities. Their low masses [29] are one

way we know that neutrinos, for example, do not constitute dark matter [42]. Axions are indeed

bosons, meeting this criterion.

To be viable, a dark matter candidate must also have been cold — that is, nonrelativistic

— at the time of galactic structure formation. In particular, baryonic matter only begins to form

large-scale structure after the decoupling of radiation from protons and electrons, which occurs

8 For a delightful analogy illustrating the PQ solution to the strong CP problem, see Ref. [47].
9 While Goldstone bosons are the massless excitations of a flat potential resembling the circular mode of travel at

the bottom of a wine-bottle, axions are pseudo-Goldstone bosons because their wine bottle-potential is tilted. The
mass of a particle scales with the square root of the curvature of this potential, so axions have nonzero, but still
relatively low, masses.
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when the universe is ∼ 380, 000 years old. In a universe with only baryonic matter, this would

not allow enough time for the structure we observe to have formed [42]. Dark matter, meanwhile,

can in principle begin clumping once the universe become matter dominated, at ∼ 50, 000 years.

However, lighter particles usually have a higher velocity. The equipartition theorem gives the

root-mean-square (RMS) velocity of particles of mass m in an ideal gas at temperature T as

vRMS =

√
3kBT

m
, (2.6)

where kB is the Boltzmann constant. The faster velocity gives rise to a longer free-streaming

length, the characteristic distance that the particles travel before being slowed by cosmic expansion.

Structure in matter density fluctuations in the early universe at smaller spatial scales than this free

streaming length is wiped out. Dark matter with primordial RMS velocities comparable to the speed

of light, vRMS ∼ c, precludes the structure needed to form galaxies through the local clumping of

matter beginning at ∼ 50, 000 years. “Hot,” or relativistic, dark matter has accordingly been shown

through simulations to form galaxies very slowly, producing a universe different than the one we

find ourselves in [51]. If the dark matter were baryonic, it would be in equilibrium with radiation

and thus hot.

Axions, despite likely being even lighter than neutrinos, can be cold if they were produced

athermally, that is: not in thermal equilibrium with their early-universe surroundings. The T in

Eq. (2.6) is no longer required to be the universe’s temperature at the time of structure formation,

and light dark matter is allowed provided it is sufficiently abundant. In 1983, several independent

groups of theorists [52–54] showed how PQ mechanism may account for dark matter by athermally

producing axions. Furthermore, this mechanism produces disproportionately more axions the lighter

ma is.10

We have seen that axions could have been produced in large quantities as cold bosons in

10 A key determinant of the number of axions produced derives from whether a spontaneous symmetry breaking at
the heart of the PQ mechanism occurred before or after the early universe underwent inflation. If symmetry breaking
occurs before inflation, the quantity of axions produced is in a sense much more random: it scales as the absolute
value of random angle going from −π to π. If symmetry breaking occurs afterwards, many independently chosen
values are averaged over, eliminating that source of uncertainty. Sufficiently low-mass QCD axions (ma <∼ 10µeV/c2)
require symmetry breaking before inflation, plus some fine-tuning for the angle.
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the early universe; what remains to qualify them as a dark matter candidate is their interaction

with normal matter. Axions are predicted to interact weakly with most forms of normal matter.

Though they have no electromagnetic charge, their dominant interaction is with electromagnetism

via a two-photon coupling in the universe’s Lagrangian,

L ⊃ gaγγ |E ·B|a, (2.7)

where E and B are the local electric and magnetic field vectors, respectively, and a is the axion

field amplitude. We will henceforth reparametrize the axion-photon coupling gaγγ as an order-unity

dimensionless number

gγ =
gaγγ
mac2

(
πΛ2

α

)
, (2.8)

where α ≈ 1/137 is the fine structure constant and Λ = 77.6 MeV encodes the dependence of

the axion mass on hadronic physics. We have normalized out the linear scaling with rest energy

mac
2, because QCD axion couplings to normal matter are proportionate to ma.

11 The value

that gγ takes is model-dependent, with the benchmark Kim-Shifman-Vainshtein-Zakharov (KSVZ;

gKSVZ
γ = −0.97) [55, 56] and Dine-Fischler-Srednicki-Zhitnitsky (DFSZ; gDSFZ

γ = 0.36) couplings

[57,58] serving as more and less optimistic targets, respectively, for detection experiments.12 These

values for gγ imply an extremely long lifetime for the axion with respect to its two-photon decay

channel: axions below the ∼ 10 eV mass scale are stable on cosmological timescales [42]. Moreover,

for any axion in the QCD band [59] containing both KSVZ and DFSZ models, gγ is sufficiently

small that our nonobservance of axions thus far is not meaningful evidence against their existence.

Rather, if QCD axions — which have all the essential properties of dark matter — in fact constitute

dark matter, it will take a concerted effort to find them.

11 More precisely, gaγγ and ma both scale inversely as the energy scale fa at which PQ symmetry-breaking occurs.
This energy scale dwarfs those achieved by physicists in high energy experiments, including the 13 TeV record at the
Large Hadron Collider. The largeness of fa is why the axion is predicted to be both so light and so weakly coupled.

12 Physically, gγ can take positive or negative values, but since only g2
γ contributes to the axion signal power, I will

henceforth use gγ to stand in for |gγ | throughout this thesis.
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2.4 Detectable features of axionic dark matter

The properties discussed above qualify axions as dark matter candidates; now I will discuss

properties pertinent to their detection. A simple yet well motivated and actionable view of axions

holds that they exist in a bounded, “1.1-dimensional” parameter space of mass ma and coupling

gγ with known velocity distribution and density throughout the cosmos. To start, let us consider

the axion-photon parameter space in which this thesis will primarily work.

2.4.1 Axion parameter space

Figure 2.4 shows a portion of axion-photon parameter space which has attracted attention

in recent years for its experimental accessibility [60]. Most of the plot (white and yellow regions)

has not been experimentally probed. The diagonal yellow region represents the QCD axion band,13

with the KSVZ line having unit slope in the space of gaγγ and ma. While non-QCD axions, also

known as axion-like (ALPs),14 of very high couplings would have imprinted a signal in devices

such as helioscopes (excluded blue region) [61], the only demonstrated method for reaching QCD

couplings is with axion haloscopes (excluded green regions), discussed below.

The parameter space between the dashed, black lines at 10 µeV/c2 and 1 meV/c2 in Fig. 2.4

is theoretically favored by a cosmological and an astrophysical argument. Axions below the

mOC ∼ 10 µeV/c2 scale in models in which PQ symmetry-breaking occurs after inflation tend

to be overproduced to the point of “overclosing” the universe: that is, more dark matter is pre-

dicted than is observed, disfavoring lower masses [52]. In the event that inflation did occur first,

QCD axions are allowed both below and above mOC, making it a somewhat soft bound.

The upper bound of mSN ∼ 1 meV/c2 is set by the ∼ 10 s temporal duration of the observed

neutrino burst of supernova 1987A [63]. The production of axions in the exploding star should

scale with their coupling to normal matter, which in turn scales as ma. Sufficiently heavy axions

13 Different physicists draw the boundary of the QCD band slightly differently, though everyone agrees it encom-
passes both the KSVZ and DFSZ lines.

14 ALPs, which will feature in Ch. 9, do not solve the strong CP problem. Since there are no strong bounds on
the ALP-photon coupling, it is also possible that ALPs could lie below the QCD band, which would make them very
difficult to detect.
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Figure 2.4: A portion of dark matter axion-photon parameter space prior to the work discussed in
this thesis. The white and diagonal yellow regions are unprobed, with the diagonal yellow region
highlighting the theoretically favored QCD band. Haloscope exclusion is shown in green, with
other excluded regions shaded different colors. For a thorough discussion of the existing constraints
within axion parameter space, see Ref. [60]. The black, dashed lines show the 10 µeV/c2–1 meV/c2

range of axion masses favored by overclosure arguments and supernova 1987A bounds discussed in
the text. The orange, dashed lines enclose the 1–10 GHz range of axion mass-converted frequencies
νa, Eq. (2.9), of particular interest to this thesis. See Ref. [29] for references to experimental results.
Figure adapted from Ref. [62].

would have made off with much of the star’s energy, leaving fewer neutrinos to lengthen the burst

duration by colliding with each other. This is considered by many a more concrete bound than that

of overclosure, but it is conceivable that modelers have misunderstood the origin of the observed

neutrinos, which would undo the argument [64]. But even if one is equally drawn to the adjacent

regions, the two decade window of roughly 10 µeV/c2–1 meV/c2 remains well-motivated parameter

space.

Zooming farther into the 10 µeV/c2–1 meV/c2 meV window, arguments abound for specific fa-

vored or disfavored mass ranges [65–68]. Of particular relevance to the work presented in this thesis,

Klaer and Moore (26.2±3.4 µeV/c2) [69] and Buschmann, Foster, and Safdi (25.2±11.0 µeV/c2) [70]

have independently predicted the axion to lie in overlapping regions around 25 µeV/c2. Near and
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below these masses, the axion acts more like an oscillating field at with axion rest-mass converted

frequency (henceforth “axion frequency”)

νa =
mac

2

h
. (2.9)

It is beyond the scope of this work to adjudicate between theoretical models, except by contributing

to the experimental toolkit and the body of axion direct detection data that will enable us to answer

the question directly.

2.4.2 Local axion dark matter density

In order to discuss how axions may be detected, two final features of cold dark matter bear

examining; the first is the local dark matter density ρDM. In this work and throughout the axion

exclusion literature, experimental constraints such as those in Fig. 2.4 are typically placed on the

quantity gγ , or equivalently gaγγ via Eq. (2.8). Implicit in these constraints are two assumptions:

that axions saturate 100% of the local dark matter density (ρa = ρDM) and that the local dark

matter density takes a specific value, typically quoted as ρDM = 0.45 GeV/cm3. The observable

combination that shows up in experiments is generally ρag
2
γ , so it is a trivial matter to scale any

constraint placed on gγ to assume a different value of ρa. For consistency with the literature, in

this thesis we will use ρa = 0.45 GeV/cm3 unless otherwise stated.15

2.4.3 Axion lineshape

The other feature of axionic dark matter that will prove relevant to axion detection is the

total energy (Etot), or equivalently frequency ν = Etot/h, of the axion particles.16 Here, we will

not want to think of ν as a constant, but rather a random variable: a quantity that can take a

range of values specified by a probability density function fν(ν), or equivalently its integral, the

15 WIMP dark matter experiments have used the more conservative value ρDM = 0.3 GeV/cm3, also consistent
with measurement [71]. Though the primary goal is to detect dark matter, the secondary goal of certifying that it
does not exist in a specified coupling range does seem more naturally served by the more conservative value. In Ch. 9,
for consistency with the ALP literature, we will use 0.40 GeV/cm3.

16 Thinking of axions as particles will be helpful here. The results will work just as well for measurements that
take advantage of the wave-like properties of axions.
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cumulative distribution function Fν(ν) =
∫ ν
−∞ fν(ν ′)dν ′. The frequency distribution is obtained

through approximating the total energy as the rest energy plus the nonrelativistic kinetic correction:

Etot ≈ mac
2 +

1

2
mav

2. (2.10)

For cold dark matter, the dimensionless velocity β = v/c is O(10−3), meaning the nonrelativistic

term is of order 106 times greater than the first relativistic correction 3mav
4/8c2 to Eq. (2.10),

making this an excellent approximation. Determining the frequency distribution then amounts to

determining the axion frequency νa and the velocity distribution fv(v) of axion particles. The axion

frequency is a free parameter of our search, and assumed to have a single, constant value, hence

fν(ν) → fν(ν|νa). The velocity distribution is model-dependent, and in this thesis we will stick

to the standard halo model (SHM), which describes virialized axions as observed from the moving

laboratory frame of our solar system.17

The virial theorem, Eq. (2.1), relates the mean kinetic energy 〈T 〉 = ma〈v2〉/2 and gravi-

tational potential energy 〈VG〉 of axionic dark matter in the Milky Way Galaxy, allowing us to

write down fv(v) and ultimately fν(ν) in the galactic rest frame. The galactic rest frame is defined

as the frame in which our galaxy has no net angular momentum. In it, the velocity components

{vx, vy, vz} of axions are independent, identically distributed Gaussian random variables with mean

zero and variance σ2
vx = 〈v2〉/3: {vx, vy, vz} ∼ N (0, σ2

vx). Summing the velocity component ran-

dom variables in quadrature yields the Maxwell-Boltzmann (MB, or Maxwellian) distribution for

the velocity amplitude of particles in an ideal gas:

fv,MB(v) =
4√
π

v2

v3
c

exp

[
−
(
v

vc

)2
]
, (2.11)

where vc = σvx/
√

2 ≈ 220 km/s is the modal velocity of the distribution. The corresponding MB

frequency distribution obtained using Eq. (2.10) is

fν,MB(ν|νa) = 4

√
2

π

(
c

vc

)3 1

νa

√
ν − νa
νa

exp

[
−2

(
c2

v2
c

)(
ν − νa
νa

)]
(2.12)

17 The techniques discussed in this work are applicable independent of axion lineshape, and may be readily adapted
as new evidence refines our knowledge of the dark matter halo [72,73], or to test alternative lineshapes [74,75].
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for νa ≥ ν and 0 otherwise. The axion frequencies would be MB-distributed according to Eq. (2.12)

if our solar system were stationary with respect to the galactic rest frame. Instead, we move at

vs ≈ 232 km/s through a sea of axions in the galactic rest frame. The resulting SHM velocity and

frequency distributions, results which will be of direct use to us in Chs. 8 and 9, are

fv,SHM(v) =
v√
πvcvs

exp

[
−
(
v + vs
vc

)2
](

exp

[
4vvs
v2
c

]
− 1

)
(2.13)

and

fν,SHM(ν|νa) =
2√
π

(
c2

vcvs

)
1

νa
sinh

(
vsc

v2
c

√
8
ν − νa
νa

)
exp

[
−2

(
c

vc

)2 ν − νa
νa

−
(
vs
vc

)2
]
, (2.14)

again only for ν ≥ νa [75, 76]. The lineshapes, Eqs. (2.12) and (2.14), are plotted in Fig. 2.5. The

primary effect of vs > 0 is to broaden18 fν,SHM (blue) relative to fν,MB (green), but in either case

the fractional linewidth ∆a ∼ νa10−6 (equivalently, the quality factor of the axion is of order a

million: Qa ∼ 106).19

This concludes our brief overview of axion theory. For a far more thorough discussion of

much of what was covered here, the interested reader is encouraged to consult Ref. [42]. We are

now ready to discuss how it is that QCD axions may be detected.

2.5 The axion haloscope

The axion haloscope was first proposed by Pierre Sikivie in the 1980’s to detect dark matter

axions in the galactic halo by converting them to photons20 in a microwave cavity using the inverse

Primakoff effect and a large static magnetic field B = B0ẑ [85–87]. The cavity delivers a Q-factor

enhancement so long as the electric field E of at least one of its modes overlaps with ẑ so as to

align with B, Eq. (2.7). The prototypical haloscope uses a right circular cylindrical cavity with

18 Narrower lineshapes such as those given by Eq. (2.12) or Ref. [74] are in principle easier to detect because of
their higher signal-to-noise ratios [77].

19 Further corrections come from the orbital and rotation motion of the earth around the sun and its axis, respec-
tively. For virialized axions these corrections are negligible [76,78].

20 What is more precisely meant by “photons” unless otherwise indicated is “electromagnetic energy.” While the
energy could in principle be measured in the number basis [79–82], at the frequencies where this thesis focuses, it
is more efficient to measure the continuous quadrature observables [83, 84]. It is nonetheless common to refer to
axion-induced excesses in a haloscope cavity as photons.
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Figure 2.5: Virialized axion lineshapes fν(ν|νa) for νa = 4 GHz. The Maxwell-Boltzmann (MB)
spectral distribution, Eq. (2.12) (green), is narrower than the standard halo model (SHM) dis-
tribution, Eq. (2.14) (blue), which accounts for the motion of the sun in the galactic rest frame.
The means µ and standard deviations σ of the two distributions are indicated by dots and bars,
respectively.

mode indices m, n, and l21 for which the spatial overlap associated with a given cavity mode is

parametrized as the form factor

Cmnl =

(∫
V E(x) · ẑ d3x

)2∫
V ε(x)|E(x)|2d3x

, (2.15)

where V is the volume of the cavity and ε(x) is the position (x)-dependent permittivity.22 Figure

2.6a shows the field directions (ignoring amplitude) of transverse magnetic (TM), transverse electric

(TE) and transverse electromagnetic (TEM) modes for simple cylindrical cavities. For a cylindrical

cavity, the only modes that produce a nonvanishing form factor are the TM0n0 modes [88, 92].

However, an unperturbed cylindrical cavity is of limited use for axion detection because its TM010

mode — the one with the highest form factor and lowest density of “intruder” modes insensitive to

21 These correspond respectively to the m, n, and p indices in Sec. 8.7 of Ref. [88].
22 For the haloscope central to this thesis, ε(x) = ε0, the vacuum permittivity, everywhere. Some haloscope

experiments have taken advantage of the dielectric properties of liquid helium [89] or dielectric rods [90, 91] to tune
their cavity frequencies.
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the axion — can only probe around a fixed resonant frequency,23 and broadening its resonance to

achieve a larger bandwidth incurs disproportionate losses in sensitivity [95]. The usual solution is

to insert a metal and/or dielectric tuning rod coaligned with the vertical axis ẑ of the cavity. For

a metal rod, rotation away from the center of the cavity, shown in Fig. 2.6b, tunes the TM0n0-like

modes to lower frequencies.24

2.5.1 Previous haloscope results

Axion haloscopes have been successfully running since the late 1987, but have as yet seen

no evidence of the axion. Figure 2.7 shows in greater detail than Fig. 2.4 the region of parameter

space that has been partially excluded by haloscopes.25 The earliest experiments were carried

out at Brookhaven National Laboratory in collaboration with the University of Rochester and

Fermilab [97], and at the University of Florida [98]. The Axion Dark Matter Experiment (ADMX)

came online in 1998 [89], and between then and 2016 [99] was the only operational haloscope,

primarily probing parameter space at KSVZ sensitivity.

In 2017, the Haloscope At Yale Sensitive To Axion CDM (HAYSTAC) became the second

active haloscope [90,106], sensitive to higher couplings gγ and and operating at higher frequencies

νa than ADMX. We will see in Sec. 2.5.2 that going deep in coupling and high in frequencies are

comparably difficult propositions. As of early 2020, the division of labor in the axion detection

field featured one experiment actively pursuing each of these objectives, with ADMX sensitive to

∼DFSZ axions around 660 MHz [91], and HAYSTAC searching for ∼ 3-KSVZ axions around 5.7

23 While most axion haloscopes have only used the TM010 mode, the ADMX Sidecar and ORGAN experiments
recently demonstrated use of the TM020 mode to collect axion-sensitive data [93,94]. Using the TM020 mode (or even
higher modes) affords sensitivity to higher frequencies with a much higher cavity volume V than would be achievable
with the TM010 mode of a smaller cavity. However, the tradeoff is not as favorable as it may appear: the electric
field undergoes 1 1/2 oscillations over the height of the cylinder, and the form factor integral, Eq. (2.15), ensures that
the positive and negative half of the first oscillation cancel out, reducing the form factor roughly threefold as the
volume grows by the same amount. Furthermore, around higher TM0n0 mode frequencies there is a higher number
of unwanted crossings with axion-insensitive cavity modes. The real utility of higher modes is that in principle they
can be read out simultaneously, opening up parallel data streams at no cost to the first.

24 The metal rod has the side effect of reducing the available cavity volume used for axion conversion. The effect
is not always a small one: in HAYSTAC, the rod occupies roughly 1/4 of the cavity volume [96], reducing the
experiment’s main figure of merit, its scan-rate, roughly twofold.

25 Excluding with a haloscope at a given frequency and coupling entails excluding all stronger couplings at the
same frequency.
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Figure 2.6: (a) Electric and magnetic field directions for simple cylindrical cavity geometries. Only
the subset of transverse magnetic (TM) modes whose electric fields integrate to a nonzero value
along the vertical direction (aligned with the magnetic field) are useful for axion detection. (b)
Simulated electric field magnitudes for the TM010-like mode of a cylindrical cavity with a metal
tuning rod at different angles. The changing mode structure tunes the resonance frequency and
alters the form factor C010, Eq. (2.15). Figure adapted from Ref. [62].

GHz [107].

Additionally, the CAPP-8TB experiment has reported its first results at 1.6 GHz [108], the

ADMX Sidecar experiment has probed parameter space above the QCD band at a range of higher

frequencies [93], and the QUAX-aγ [109] and ORGAN [94] experiments have reported early results

at much higher frequencies, but with limited sensitivity. Concurrent with these developments, other

haloscope-like platforms have been [110–115] coming online or are poised to do so [116,117].26

26 These experiments all look for axions on the assumption that they constitute dark matter. However, axions could
very well exist and not constitute any meaningful portion of dark matter. In that event, “light shining through walls”
(LSW) experiments that attempt to first create and then detect axions [118–120] (upper yellow region in Fig. 2.4),
axion helioscopes which look for axions produced in the sun [61, 121, 122] (blue region in Fig. 2.4), or searches for



25

Figure 2.7: Axion-photon exclusion obtained using haloscopes prior to the main work of this thesis.
The regions labeled RBF (pink) and UF (blue) represent early results insensitive to the QCD axion
(yellow band) obtained at Brookhaven National Laboratory [97, 100] and University of Florida
[98,101], respectively. ADMX (light red) [89,91,93,99,102–105], HAYSTAC (green) [106,107], and
CAPP (red) [108] have all reached the QCD band.

The collective null result of Fig. 2.7 only extends over a minute fraction of the parameter

space axions could plausibly inhabit. Nevertheless, there is real cause for optimism: haloscope

searches have sped up roughly one millionfold between the first search carried in 1987 [97] and the

major results of the past few years [91, 105–107]. Such comparisons are made between the scan

rates of axion haloscopes.

2.5.2 Haloscope scan rate

Scan rate R is the primary figure merit for axion haloscopes:27 it quantifies how rapidly a

haloscope can scan through parameter space at some fixed gγ . It has the curious dimensions of

axion-mediated spin forces [123,124] may be the best hopes to resolve the strong CP problem.
27 This is admittedly a somewhat subjective assessment, as it is hard to compare the more objective scan rate with

other important haloscope traits, such as affordability, ease of operation, density of intruder modes, and accessible
parameter space. Furthermore, because haloscopes spend nonnegligible amounts of time rescanning potential signals
at individual frequencies, the maximum single-frequency sensitivity, which can be different for two haloscopes of the
same scan rate, is an important secondary figure of merit. For the purpose of this thesis, I will treat improving scan
rate as the ultimate goal, paying attention where appropriate to other important objectives. This simple framing is
very useful, and can be made to encompass some of the others figures of merit mentioned above.
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frequency per time, and is proportionate to several key parameters [42]:

R ∝

(
g4
γ

SNR′2

)(
ρ2
aQa
Λ8

)(
B4

0V
2C2

mnlQ0

N2
sys

)
, (2.16)

The first set of parentheses consists of scan properties chosen by the experimentalist: what signal-

to-noise power ratio (SNR) is desired at what coupling gγ for the experiment. The prime on the

SNR is to denote a modification that owes to the look-elsewhere effect, and is derived in Sec. 6.5.

We will see that as a rough approximation, the denominator of the first term can be thought of as

being

SNR2 ∼ SNR′2 + 2 log(NI), (2.17)

where NI is the number of “independent” frequencies being probed for the axion. The second set

of parentheses comprises several physical parameters of axion dark matter. The final set contains

experimental parameters: the magnetic field B0, cavity volume V , form factor Cmnl, and unloaded

cavity quality factor Q0
28 should be maximized,29 while the total system noise Nsys (in units of

photons, or quanta) should me minimized. Improving a haloscope’s scan rate through hardware is

typically synonymous with improving one of these parameters.30

2.5.3 Improving the scan rate

The millionfold improvement in scan rate accrued over the last three decades owes predom-

inately to dramatic advances in just one of the experimental parameters in the final parenthetical

of Eq. (2.16): namely, the total system noise Nsys. Cylindrical cavity volumes change as

V ∝ ν−ζ (2.18)

28 Equation (2.16) assumes Q0 to be smaller than Qa, as has been the case for all haloscopes to date. Improving
Q0 beyond Qa while operating in the standard manner does not improve scan rate farther, as the coherence time of
the axion becomes the limiting factor.

29 We will see in Ch. 5 that another parameter of importance to the scan rate is how strongly the cavity is coupled
to its readout chain. This parameter is in practice easy to adjust to its optimal value, so for now we leave it out of
Eq. (2.16), which only includes quantities which pose fundamental or practical limitations to scan rate.

30 Scan rate can be improved in other ways as well. Advances in analysis techniques [75,78,125,126] that allow for
more efficient use of information will be a central focus of this thesis. Additionally, improvements to acquisition live
time can come through either improved software or hardware. Optimizing scan strategy remains a largely unexplored
avenue by which total scan time might be reduced [95,126].
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to accommodate one half-wavelength at the frequency of interest, where ζ ∈ [2, 3] can be as low as

2 if experimentalists are able to tolerate the linear growth in TE mode density with cavity aspect

ratio (cavity length/radius). There has been no significant innovation that has broken this linkage

without a commensurate sacrifice to the form factor (Footnote 23). The unloaded quality factor,

which is limited by the anomalous skin effect [127] for normal metals, changes as

Q0 ∝ ν−2/3. (2.19)

It could be improved substantially by switching to partially superconducting cavities, but the

presence of the large magnetic field makes benefiting from this approach extremely difficult [109].

The magnetic field itself, despite the promising R ∝ B4
0 dependence of Eq. (2.16), is today still

within 25–50% of its 1987 value of 6 T [91,107,108]. The system noise Nsys, however, has improved

a few hundredfold between 1987 [97] and 2018 [107].

The improvement to system noise owes to two separate innovations: the use of colder ther-

mal environments culminating in dilution refrigerators to house the haloscopes, and the continued

improvement of amplifier technology [104], culminating in Josephson parametric amplifiers capable

of adding near the 1/2-photon required by the uncertainty principle [128]. In 2017, HAYSTAC

arrived at both of these termini [90,106] suggesting that a new approach would be needed if noise

performance is to continue to improve. This thesis sets out in part to deliver that approach, which

will involve circumventing the “quantum limit” on system noise.31

Continuing to improve haloscope scan rates is essential in light of the daunting amount of

parameter space that remains unscanned. Scan rate optimistically scales with frequency as

R ∝ ν−14/3 (2.20)

for single-mode haloscopes.32 This scaling comes from the cancellation of several frequency-

31 There is an analogy to make to Moore’s law, the observation that the number of transistors on computer
chips has tended to grow exponentially over time. As transistors approach atomic size scales, the trend cannot
possibly continue without a transition to quantum computation. Similarly, it is the neighboring subfield of quantum
measurement that may carry axion haloscopes beyond their version of tiny transistors: the uncertainty principle (in
reality, most computational tasks do not benefit from quantum computing, so the outlook for axion haloscopes —
which only exist to do one task — is in a sense brighter).

32 Haloscopes are furthermore known to achieve 75% of the limit on integrated axion sensitivity set by the Bode-Fano
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dependencies of the signal and noise in axion haloscopes, leaving just the dependence of the cavity

volume and quality factor on frequency, Eqs.(2.18) and (2.19) [42]. It optimistically assumes ζ = 2

in Eq. (2.18), and neglects the look-elsewhere effect correction to Eq. (2.16) discussed in Sec. 6.5.

Equation (2.20) implies that today’s leading haloscopes [91, 107] would take 20 millennia to scan

only the 1–10 GHz frequency decade at DFSZ sensitivity, generously assuming noise at the quan-

tum limit and 100% live time. To emphasize just how optimistic even this 20 millennia figure

is, consider a more pessimistic assessment: using only noise levels achieved before this work, a

more realistic live time of 10%, and ζ = 3 in Eq. (2.18), a less optimistic dark matter density of

ρa = 0.3 GeV/cm3 (Footnote 15), and aiming for roughly gDFSZ
γ /10 to probe the entire QCD band

(yellow region in Fig. 2.4) yields ∼ 200 trillion years for the 1–10 GHz decade!

This thesis focuses on two distinct but compatible innovations to speed up detection efforts.

One is the first use of the quantum measurement techniques to enhance a search for new particle

phenomena. In particular, I use squeezed states of microwave light to avoid the standard quantum

limit on noise in an axion haloscope, and speed up the scan rate of the HAYSTAC experiment nearly

twofold. The second innovation is the development of a novel Bayesian analysis framework tailored

to the problem of dark matter axion detection. I apply this technique to both axion haloscope data

and to data in a search for ALPs as much as 17 orders of magnitude lower in mass. Together, these

two innovations deliver a roughly threefold scan rate enhancement to the HAYSTAC experiment.33

criterion [129, 130], making them near-optimal vehicles for single-mode, linear measurements of the axion field [95].
For an abridged discussion of the results in Ref. [95], see Ref. [131].

33 On its own, a threefold scan rate enhancement is insufficient to solve a 20,000+ year problem. The real utility
of the advances discussed in this work is that they naturally invite further innovation in both quantum measurement
and scan strategy. The threefold scan rate enhancement achieved herein can additionally be combined with future
improvements to live times, magnets [132], and cavities [92, 109, 133]. While 20,000 is a large number of years,
log3(20000) is not so large a number of comparable scan rate enhancements needed to make the problem quite
tractable.



Chapter 3

Josephson parametric amplifiers

Two superconductors sandwiching a thin layer of insulator form a Josephson junction [134,

135], the only dissipationless, nonlinear circuit element available at microwave frequencies [136].

Those three properties have enabled physicists to build nearly lossless parametric amplifiers, such as

the Josephson parametric amplifier (JPA), capable of manipulating quantum states of microwave

light [137–153]. JPAs and related devices have received particular attention in recent years for

their usefulness across a range of quantum optics and quantum information processing applications

using superconducting circuits [154–170]. In this thesis we will ultimately use them to improve

axion haloscopes beyond the quantum limit [128]. This chapter will explore the physics of JPAs,

how they achieve amplification and squeezing, and their relevant design considerations. We will also

shed light on one of the core approximations used to model JPAs, a discussion with implications

for improving power handling in future designs. We will end by examining the specific JPAs used

throughout this thesis.

3.1 The Josephson junction

The Josephson junction, shown schematically in Fig. 3.1 is the element at the heart of many

superconducting circuits. It consists of two superconductors separated by an insulating layer

(Fig. 3.1a) which Cooper pairs of electrons may tunnel through, forming a current. It is char-

acterized by a critical current Ic, equal to the maximum superconducting current that can flow

through it. The critical current that a junction will have when superconducting can be determined
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from its room temperature resistance Rs via the Ambegaokar-Baratoff relation [171],

Ic =
π∆(T )

2eRn
tanh

(
∆(T )

2kBT

)
, (3.1)

where ∆(T ) is the temperature (T )-dependent superconducting energy gap of the material. The

dynamics of the junction are determined by the phase drop

δ = θ1 − θ2 (3.2)

of the macroscopic superconducting wavefunction across it. For a more complete introduction to

Josephson physics, see Refs. [136,172].

We will take as a starting point the two equations34 relating this phase drop to the voltage

V across and the current I through the junction:

I(t) = Ic sin δ(t) (3.3)

V (t) =
Φ0

2π
δ̇(t), (3.4)

where Φ0 = h/2e ≈ 2.07× 10−15 Wb is the magnetic flux quantum, h is Planck’s constant, e is the

positron charge, and the dot denotes a time (t) derivative. Instead of working primarily with the

voltage and current, we will often find it more useful to refer to their time integrals, the flux and

charge variables

Φ(t) =

∫ t

−∞
V (t′)dt′ (3.5)

Q(t) =

∫ t

−∞
I(t′)dt′. (3.6)

Equivalently,

V (t) = Φ̇(t) (3.7)

I(t) = Q̇(t). (3.8)

We see from Eqs. (3.4) and (3.7) that the Φ = φ0δ, where the reduced flux quantum35 φ0 = Φ0/2π =

~/2e.
34 These are known as the Josephson relations.
35 In superconductivity, the flux through a closed superconducting loop is quantized in units of Φ0.
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Figure 3.1: (a) A superconductor-insulator-superconductor (SIS) junction forms a Josephson junc-
tion. We will treat the Josephson junction as a two-node electrical object. (b) Circuit representation
of and conventions used for the Josephson junction. The junction is symbolically represented as an
‘X.’ It is specified by its critical current Ic, which relates the current I flowing through it to the
phase drop δ across the junction. The voltage V across the junction is proportional to the time
derivative of the phase drop.

3.1.1 Josephson inductance

The Josephson junction behaves as a nonlinear inductor.36 To understand the junction as an

inductor, we begin by combining Eqs. (3.3) and (3.4) to relate the voltage to the time derivative of

the current:,

V =
LJ0

cos δ
İ, (3.9)

where

LJ0 =
φ0

Ic
(3.10)

is a constant describing the junction with dimensions of inductance.

The Josephson inductance can be defined in two different ways: either as the absolute value

36 The Josephson junction can also be modeled as having a self-capacitance, giving rise to a resonance frequency
known as the plasma frequency of the junction, and nonzero loss [136]. For our applications, these two effects can be
neglected.
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of the flux-to-current ratio37

LJ =
Φ

I
= LJ0

|arcsin(I/Ic)|
I/Ic

, (3.11)

or through Eq. (3.9) as the voltage-to-time derivative of current ratio,

LJ2 =
V

İ
=

LJ0√
1− (I/Ic)2

. (3.12)

Both definitions are valid, and which we use will depend on the context [173].

3.1.2 Josephson energy

An energy can also be associated with the Josephson junction. This is the energy that it

takes to build up a certain amount of current flowing through the junction, or equivalently, a certain

phase drop across the junction. We know from Eq. (3.3) that applying a current to the junction

sets a phase drop across it and from Eq. (3.4) that phase drop’s temporal behavior sets a voltage

across the junction. Taking energy to be the time integral of power, we have

EJ(t) =

∫
I(t′)V (t′)dt′ = EJ0(1− cos δ), (3.13)

where

EJ0 = φ0Ic (3.14)

has dimensions of energy. We have taken advantage of the fact that energy is only defined up to

an additive constant to ensure a minimum value of 0 when no current is flowing.

3.2 The DC SQUID

We have now seen how the Josephson junction acts as a dissipationless, nonlinear inductance.

In this section, we will see that a pair of Josephson junctions in parallel maintains all of these

essential features, while making the inductance tunable with an externally applied magnetic flux.

37 I will leave out the explicit time dependence in contexts where it is less important to emphasize.
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The DC superconducting quantum interference device (SQUID) consists of two Josephson

junctions Ic1 and Ic2 in parallel, shown schematically in Fig. 3.2.38 In order to derive key properties

of the SQUID, it will be useful to work with

I = I1 + I2 (3.15)

Icirc =
I1 − I2

2
, (3.16)

respectively the total and circulating combinations of the currents I1 and I2 through the junctions.

The voltage across the SQUID is V , and a magnetic field Btot may penetrate the plane of the loop

as a magnetic flux

Φtot =

∫
a
Btot · da, (3.17)

where a is the area of the loop and da is the orthogonal-pointing surface element.

To understand how this object functions as an effective tunable junction, it is necessary to

delve into its internal structure. I will treat just the case of two identical junctions

Ic1 = Ic2 = Ic (3.18)

in a symmetrical loop with geometrical inductance Lg, which will be used throughout this work.

3.2.1 Critical current and inductance

The junction phase drops δ1 and δ2 are related by the flux penetrating the SQUID loop. To

prove this, consider the integration path illustrated in Fig. 3.3 and the four labelled points — one

above and below each junction. The magnetic vector potential A is obtained from the gradient of

the phase of the superconducting wave function via the relation [172]

A = −φ0∇θ. (3.19)

Therefore, ∫ B

A
∇θ · dl +

∫ D

C
∇θ · dl = − 1

φ0

[∫ B

A
A · dl +

∫ D

C
A · dl

]
. (3.20)

38 The radio frequency (RF) SQUID is the other popular SQUID configuration. It consists of a superconducting
loop with a junction in just one arm [172]. This thesis only relies upon the DC SQUID, so henceforth I will drop the
DC prefix.
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Figure 3.2: Circuit representation of and conventions used for the direct current (DC) supercon-
ducting quantum interference device (SQUID). The SQUID consists of two Josephson junctions
with critical currents Ic1 and Ic2 on opposing arms of a superconducting loop. The direction of
positive current flow is given by the arrows. The total current (I, green) and circulating cur-
rent (Icirc, blue) are defined from the currents I1 (orange) and I2 (purple) through the junctions,
Eq. (3.3). The voltage across the SQUID is V . The magnetic flux Φtot penetrating the loop arises
from any externally applied flux and from Icirc in conjunction with the geometrical inductance Lg
of the loop.

Figure 3.3: A useful integration path (orange dashed line) for the magnetic vector potential around
a SQUID loop. Labels above and below each junction show the integration limits used in Sec. 3.2.1.
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Recognizing the sums of integrals on both sides of the equation as the full loop integrals minus the

other segments, we have∮
∇θ · dl−

∫ C

B
∇θ · dl−

∫ A

D
∇θ · dl = − 1

φ0

∮
A · dl +

1

φ0

[∫ C

B
A · dl +

∫ A

D
A · dl

]
. (3.21)

The phase at any point on the circuit must be single-valued, so we label the first integral −2πn,

where n is an integer. The next two integrals, by the fundamental theorem of calculus, reduce to

the differences of the integration bounds. The first term on the right, using B = ∇ ×A with B

being the magnetic field local to the loop, is −Φtot/φ0. Equation (3.21) now reduces to

− (θC − θB)− (θA − θD)− 1

φ0

[∫ C

B
A · dl +

∫ A

D
A · dl

]
= 2πn− Φtot

φ0
. (3.22)

In gauge-invariant form, the phase drops are expressed as

δ1 = θA − θD +
1

φ0

∫ A

D
A · dl (3.23)

δ2 = θB − θC +
1

φ0

∫ B

C
A · dl, (3.24)

reducing Eq. (3.22) to

δ2 = δ1 −
Φtot

φ0
+ 2πn. (3.25)

This relation will allow us to eliminate δ2 and work with the enclosed flux Φtot, a quantity we can

influence more readily in the lab.

Using Eq. (3.4) for either junction, we can calculate the inductance of the SQUID. Assuming

Φtot is time-independent, we see that

V = İ
φ0/

(
2Ic cos

[
πΦtot

Φ0

])
√

1−
(

2Ic cos
[
πΦtot

Φ0

])2
(3.26)

Comparing to Eq. (3.12), we see that the SQUID behaves exactly as a Josephson junction with

flux-dependent critical current

IS(Φtot) = 2Ic

∣∣∣∣cos

[
πΦtot

Φ0

]∣∣∣∣ , (3.27)
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where the absolute value ensures positivity. This result makes intuitive sense: the factor of two

owes to having two paths in parallel for the current to take. The effect of an applied flux is to

create a circulating current, reducing the amount of total current that can flow through the SQUID

before one of the junctions reaches its critical current. The SQUID inductance and energy39 are

analogous to Eqs. (3.11) and (3.13), respectively:

LSQ(Φtot) = LS(Φtot)
arcsin[I/IS(Φtot)]

I/IS(Φtot)
(3.28)

ESQ(t) = ES(Φtot)

(
1− cos

Φ

φ0

)
, (3.29)

where Φ is the flux drop40 across the SQUID, Eq. (3.5), and

LS(Φtot) =
φ0

IS(Φtot)
(3.30)

ES(Φtot) = φ0IS(Φtot). (3.31)

We also define

IS0 = 2Ic (3.32)

LS0 =
φ0

IS0
(3.33)

ES0 = φ0IS0 (3.34)

as the maximum value for the SQUID critical current, and linear terms for inductance and energy

when no flux threads the loop, respectively. Before we proceed to treat the SQUID as a Joseph-

son junction with a flux-tunable critical current, we must consider the effect of a nonnegligible

geometrical inductance.

39 This is the energy associated with the total current flowing through the SQUID, and does not include any energy
stored in the junctions by a circulating current.

40 Though they have the same dimensions, the flux drop across (Φ) and penetrating (Φtot) the SQUID loop are
distinct physical quantities. The former is defined as the time integral of the voltage across the SQUID, whereas the
latter is a flux in the more familiar sense of a field penetrating an area.
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3.2.2 Geometrical inductance and flux-trapping

The effect of nonzero geometrical inductance Lg in the SQUID loop, Fig. 3.2, is to modify

the amount of flux threading the loop from the externally applied value Φext to a new value41

Φtot = Φext + LgIcirc. (3.35)

The modification to the external flux will be expressed as a transcendental equation, and give

rise to a design rule for SQUIDs whose Φtot we wish to keep as a single-valued function of Φext.

Combining Eqs. (3.16) and (3.25), we obtain

Icirc =
Ic
2

[
sin

(
δ1 −

Φtot

φ0

)
− sin δ1

]
= −Ic sin

(
π

Φtot

Φ0

)
cos

(
δ1 − π

Φtot

Φ0

)
. (3.36)

Eliminating δ1 in favor of the total current I, a quantity we can impose experimentally, yields

Icirc = −Ic sin

(
π

Φtot

Φ0

)√
1−

[
I

IS(Φtot)

]2

. (3.37)

Substituting Eq. (3.37) into Eq. (3.35) gives us an expression relating the applied and total fluxes:

Φtot = Φext − LgIc sin

(
π

Φtot

Φ0

)√
1−

[
I

IS(Φtot)

]2

. (3.38)

This is our transcendental equation.

When

∂Φext

∂Φtot
< 0, (3.39)

Φtot takes on multiple values for a given Φext, as illustrated in Fig. 3.4. Here, the SQUID becomes

hysteretic, and enters the “flux-trapping” regime, which is undesirable for controlling it. To quantify

at what value of Lg flux-trapping sets in, we will consider the simple case where I = 042 so that

Φext = Φtot + LgIc sin

(
π

Φtot

Φ0

)
, (3.40)

41 For the symmetric SQUID loop, Eq. (3.18), total current I will not directly produce any additional magnetic
flux, as the two branches of the SQUID will contribute flux equally and oppositely.

42 Without this assumption the math gets considerably more opaque. The condition we derive with I = 0 will
suffice for us as a design rule.
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Figure 3.4: Total versus externally applied flux for a SQUID with different geometrical inductances,
Eq. (3.42). When βL > 2 (purple and brown curves) some values of Φext become associated with
multiple values of Φtot, and the SQUID becomes hysteretic.

which differentiates to

∂Φext

∂Φtot
= 1 +

βL
2

cos

(
πΦtot

Φ0

)
, (3.41)

where

βL =
Lg
LJ0

(3.42)

dimensionlessly parametrizes the geometrical inductance. To avoid flux-trapping, Eq. (3.39), we

require

βL ≤ 2. (3.43)

So long as we adhere to Eq. (3.43), a SQUID functions as a flux-tunable Josephson junction,

which in turn acts like a nonlinear inductor. In order to build circuits out of SQUIDs that can pro-

cess quantum mechanical signals, we will next need to develop the language of circuit quantization.
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3.3 Circuit quantization

The simple harmonic oscillator (SHO) is a canonical introductory example for students new

to quantum mechanics [174]. Though it is often introduced in a mechanical context — as a mass on

a spring or hanging from a pendulum — the physics applies just as well to electrical oscillators. We

will first study the instructive example of a simple resonant circuit, and then apply the technique to

a circuit which incorporates the SQUIDs of Sec. 3.2 in order to perform parametric amplification.

3.3.1 LC circuit

The circuit of Fig. 3.5 consists of an inductor L and capacitor C, which alternatingly store

magnetic and electric energy, respectively, as

EL =
1

2

Φ2

L
(3.44)

EC =
1

2
CΦ̇2. (3.45)

We have written everything in terms of a single generalized coordinate: the flux across the elements

Φ, Eq. (3.5), and its time derivative. The inductively and capacitively stored energies will be

analogous to the potential and kinetic energies of a mechanical oscillator.43

Figure 3.5: Simple LC circuit. The inductor L stores magnetic energy and the capacitor C stores
electric energy. Together, they form a resonator as the energy sloshes from one circuit element to
the other.

43 In the analogy to a mass m on a spring k, the capacitance C corresponds to m, and the inductance L corresponds
to 1/k.
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3.3.2 Lagrangian and Hamiltonian

By writing down the Lagrangian of the system, we will be able to obtain the Hamiltonian,

which compactly stores the information on the time evolution of the system. From Eqs. (3.44) and

(3.45), we can write down the Lagrangian of the circuit in Fig. 3.5:

L =
1

2
CΦ̇2 − 1

2

Φ2

L
. (3.46)

The momentum conjugate to Φ is obtained as

∂L
∂Φ̇

= CΦ̇ = Q. (3.47)

Physically, it is the charge on one capacitor plate, Eq. (3.6). To obtain the Hamiltonian from the

Lagrangian, we perform a Legendre transformation:

H(Φ, Q) = Φ̇
∂L
∂Φ̇
− L =

1

2

Q2

C
+

1

2

Φ2

L
, (3.48)

which is the sum of the circuit element energies.

3.3.3 Classical equations of motion

Before quantizing the system, we can check our understanding by writing down the Hamilton’s

equations of motion from Eq. (3.48):

dΦ

dt
=
∂H

∂Q
=
Q

C
(3.49)

dQ

dt
= −∂H

∂Φ
= −Φ

L
(3.50)

The first equation, using Eq. (3.5), is simply the constitutive equation for the capacitor, commonly

written

C =
Q

V
. (3.51)

Using the definition for the conjugate momentum, Eq. (3.47), the second equation yields the equa-

tion of motion for a SHO,

CΦ̈ = −Φ

L
, (3.52)
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which resonates at

ωLC =
1√
LC

. (3.53)

3.3.4 Quantization and ladder operators

By analogy with the position and momentum of a mechanical oscillator, we promote Φ and

Q to Hermitian operators Φ̂ and Q̂, giving a Hamiltonian operator

Ĥ =
1

2

Q̂2

C
+

1

2

Φ̂2

L
. (3.54)

These new operators satisfy the canonical commutation relationship

[Φ̂, Q̂] = i~, (3.55)

and can be expressed in terms of the ladder operators44

Â =
1√

2~ZLC

(
Φ̂ + iZLCQ̂

)
(3.56)

Â† =
1√

2~ZLC

(
Φ̂− iZLCQ̂

)
, (3.57)

where

ZLC =

√
L

C
(3.58)

is the impedance of the resonator and

[Â, Â†] = 1 (3.59)

follows from Eq. (3.55). The inverse relationships to Eqs. (3.56) and (3.57) are

Φ̂ =

√
~ZLC

2
(Â† + Â) (3.60)

Q̂ = i

√
~

2ZLC
(Â† − Â). (3.61)

In terms of the ladder operators, the Hamiltonian operator, Eq. (3.54), takes the familiar form

Ĥ = ~ωLC
(
Â†Â+

1

2

)
= ~ωLC

(
n̂+

1

2

)
, (3.62)

44 The ladder operators are commonly referred to as the creation, or raising, operator A†, and the annihilation, or
lowering, operator A for how they act upon energy eigenstates of the Hamiltonian [174].
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where n̂ = Â†Â is the number operator, which acts on an energy eigenstate |n〉 as

n̂ |n〉 = n |n〉 (3.63)

to return the number n of photons with energy ~ωLC occupying the resonator. The +1/2-photon

term in Eq. (3.62) is the ground state energy of the oscillator.45

3.3.5 Heisenberg equation of motion

The Hamiltonian, Eq. (3.54) or Eq. (3.62), is nothing more than a suitcase for compactly

carrying around the time-evolution behavior of a nondissipative system such as our LC circuit. To

unpack the time dependence, we use the Heisenberg equation of motion for the time evolution of

an operator Ô [175]:46

dÔ

dt
=
i

~
[Ĥ, Ô]. (3.64)

For the example of our simple LC circuit, this yields

dÂ

dt
= −iωLCÂ. (3.65)

If Â were a complex field amplitude, Eq. (3.65) says that it would simply evolve in phase without

changing amplitude, as is expected for an undriven, undamped resonator.

This concludes our introductory discussion of circuit quantization. We will take the language

of this section and apply it to more complex devices made out of the components of this and

previous sections to model their behavior.

3.4 Lumped-element Josephson parametric amplifier

Parametric amplification is a process that will allow us to both amplify (as the name suggests)

and also deamplify quantum observables [137, 176]. It is achieved by modulating a resonator such

as that modeled in Fig. 3.6 at approximately twice its resonance frequency. Equation (3.28), which

45 The +1/2 will correspond to the quantum noise in systems we are interested in measuring.
46 This equation works in the Heisenberg picture of quantum mechanics, in which operators evolve. It assumes

that Ô contains no explicit time dependence in the Schrödinger picture.
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Taylor expands in the I/IS � 1 limit to

LSQ(Φtot) = LS(Φtot)

[
1 +

1

6

(
I

IS(Φtot)

)2

+O

([
I

IS(Φtot)

]4
)]

(3.66)

suggests two possible ways of doing this with a microwave resonator containing SQUIDs. First,

the leading I2-dependence of the inductance provides a natural frequency-doubling: a current

oscillating at frequency ω will vary the inductance at 2ω. Second, the flux-dependent SQUID

inductance LS(Φtot) can be directly modulated at 2ω. These two options correspond to apply-

ing a single, monochromatic current-pump tone (henceforth, current pumping)47 [180, 181] or a

single, monochromatic magnetic flux-pump tone (henceforth, flux pumping) [141, 182–186] to the

SQUID(s) in the resonator.

The resonators we will work with exist in the lumped-element regime [187], wherein their

spatial extent is much smaller than a wavelength of light at any frequency of interest.48 In particular,

the 4 GHz < ν < 15 GHz frequency window that this thesis operates within corresponds to

wavelengths

λ =
vTL

ν
(3.67)

of 1.3–5.0 cm, where vTL ≈ 2c/3 is the approximate speed of light in our transmission line geome-

tries. Our devices, for comparison, will be sub-mm in length.

Figure 3.6a shows the resonator we will be working with: a lumped-element tunable Kerr

circuit (TKC), which lies at the heart of our JPAs [188]. In this thesis, “JPA” refers to a two-port

device that consists of a TKC plus (at least) one microwave circulator to separate incoming and

outgoing signals, as shown in Fig. 3.7. It is common in the literature, however, to refer to the

JPA as the one-port reflection device. At the center of the TKC is a resonator formed out of

a capacitor C and an inductive series array of N identical, balanced SQUIDs each with critical

47 There is a second way to pump using current: by applying two pump tones roughly equally detuned about
the central frequency of the resonator [177, 178]. Both of these current-pumping methods correspond to a four-wave
mixing process, whereas flux pumping uses three-wave mixing. In this thesis, current pumping will just refer to the
use of a single tone. For a comparison of some aspects of all three pumping schemes, see Ref. [179].

48 It is common for JPAs to use both lumped-element [143, 145, 147, 188] and distributed [139, 141, 148] resonator
designs.
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Figure 3.6: (a) Circuit schematic for a tunable Kerr circuit (TKC). The TKC (within the dashed
orange box) consists of a series array of N SQUIDs with critical currents IS in series with a
geometrical inductance LG, all shunted by a capacitance C and coupled to the external environment
via a smaller coupling capacitor Cc. The TKC is here shown biased by a Thévenin equivalent
voltage source V e−iωt with impedance Z0. (b) Circuit symbol used to represent the TKC in larger
schematics. The TKC will be used as an amplifier in reflection. (c) Input-output theory model of
the TKC as a resonant mode Â (blue) with a resonance ωTKC and Kerr nonlinearity K. The mode
couples at power decay rate γe to input and output propagating modes Âin and Âout, which are
decomposed into classical pump (α) and quantum signal (â) components.

current IS(Φtot).
49 The SQUIDs are modeled in series with any geometrical inductance LG.50

Finally, the TKC includes a smaller coupling capacitor Cc in order to control the coupling rate to

the external environment. Here, that environment is represented as a Thévenin equivalent voltage

source applying a stimulus at some frequency ω through an impedance Z0. For us, Z0 = 50 Ω,

standard for microwave equipment. Starting in Sec. 3.4.1, we will first derive some basic properties

of the TKC by analyzing the circuit diagram. In Sec. 3.4.2 we will obtain the Hamiltonian, which

we approximate as that of a Duffing (or Kerr) oscillator in Sec. 3.4.3. Finally, in Secs. 3.4.4–3.4.7

we will use input-output theory (IOT) [189, 190] to understand its capabilities for amplification,

deamplification, and squeezing.

49 We are assumed not to be in the flux-trapping regime of Sec. 3.2.2, such that a magnetic field Φext applied
uniformly across the SQUIDs gives rise to the same field Φtot in each loop via Eq. (3.35).

50 The SQUID loop geometrical inductance Lg of Eq. (3.35) contributes to the TKC series inductance LG.
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Figure 3.7: Relationship between TKC (Fig. 3.6b) and Josephson parametric amplifier (JPA; tri-
angle). The JPA is represented with the usual triangular symbol for amplifiers with input (output)
port on the left (right). Inside (in gray), it consists of a microwave circulator, which routes propagat-
ing waves in the sense indicated by the arrow on it, and the TKC, Fig. 3.6b, which processes signals
that reflect off of it. Not shown is the line used to provide the pump tone, as the implementation
differs between current- and flux-pumped designs.

3.4.1 Basic TKC circuit analysis

Basic properties of the circuit — its resonance frequency and external quality factor — can

be obtained from considering the impedances of and energies stored or dissipated within the circuit

elements. Here, we will treat the series array of SQUIDs, whose linear inductance components add

like simple linear inductors, as a single inductance

La = NLS , (3.68)

where LS comes from Eq. (3.28) and I have dropped the dependence on Φtot for notational conve-

nience. We further combine the inductive array with the geometrical inductance as

LaG = La + LG. (3.69)

Since the coupling capacitor is in series with a reactive combination of circuit elements

(Fig. 3.6a), resonance will occur when the series impedance51

Zseries = ZCc + ZLaGC (3.70)

51 Throughout this section, we assume a weakly coupled resonator Cc � C, with the absolute values of the
impedances of L and C near resonance roughly equal to Z0. This is necessary to use the condition for a series
resonance.



46

vanishes, where

ZLaGC =
LaG/C

iωLaG + 1
iωC

(3.71)

ZCc =
1

iωCc
. (3.72)

This occurs at

ωTKC =
1√

LaGCΣ
, (3.73)

where

CΣ = C + Cc. (3.74)

The external quality factor52 Qe quantifies what amount of the energy stored in the resonator

decays out to the external environment Z0 with each period of oscillation as

Qe = ωTKC
Estored

Pout
, (3.75)

where Estored and Pout are the energy stored in and power decaying out of the resonator on reso-

nance. For the TKC, using Eqs. (3.44) and (3.45) for the energy stored in inductors and capacitors,

Qe ≈
√
L/C

Z0

(
C

Cc

)2

≈
(
C

Cc

)2

. (3.76)

To obtain the first equality, we have used the approximation C � Cc, which is valid for the JPAs

discussed in this thesis. In practice, we will design ZLC ≈ Z0, as trying to push the inductor or ca-

pacitor impedance magnitude far from this value can give rise to parasitic reactances, causing them

to no longer act as intended. The second equality therefore provides a reasonable approximation

for the external quality factor.

Finally, the external power decay rate of the resonator

γe =
ωTKC

Qe
≈ Z0

L

(
Cc
C

)2

, (3.77)

corresponds to the 2π times the width (in Hz) of the Lorentzian response profile of the resonator.

With these useful quantities in hand, we will now obtain the Hamiltonian in order to study the

nonlinearity and the dynamics of the system.

52 For our purposes, it will be a reasonable approximation to model the TKC as having no internal loss, so the
internal quality factor is treated as infinite. A simple way to model internal loss would be with a resistor in parallel
with the capacitor and array-plus-inductor.
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3.4.2 TKC Lagrangian and Hamiltonian

The quantization procedure of Sec. 3.3 requires us to write down the energies of the elements

in Fig. 3.6a in terms of a generalized coordinate and its derivative. For simplicity, we will set

LG = 0 and return to its significance in Sec. 3.5 in relation to SQUID arrays. We will also neglect

the voltage source and its impedance, and add in the external coupling rate of Sec. 3.4.1 by hand

in Sec. 3.4.4. Our coordinate will be the flux drop Φa across the array, which is the sum of the N

identical flux drops ΦSQ across the individual SQUIDs:53

Φa = NΦSQ. (3.78)

The magnetic energy Em associated with the array, using Eq. (3.29), is therefore

Em = Ea

(
1− cos

Φa

Nφ0

)
, (3.79)

where

Ea = NES (3.80)

via Eq. (3.31).

The electric energy Ee associated with the capacitors is given for each capacitor by Eq. (3.45).

Kirchhoff’s voltage law requires that voltage across Cc be equal and opposite to that across C,

making Φ̇2
Cc

= Φ̇2
C = Φ̇2

a and

Ee =
1

2
CΣΦ̇2

a. (3.81)

We can now obtain the Hamiltonian of the TKC by first obtaining the Lagrangian:

LTKC(Φa, Φ̇a) =
1

2
CΣΦ̇2

a − Ea
(

1− cos
Φa

Nφ0

)
. (3.82)

The momentum conjugate to Φa is given by

∂LTKC

∂Φ̇a

= CΣΦ̇a = CVC − CcVCc = Q∆, (3.83)

53 We are here assuming that the SQUID array has no internal dynamics of interest. If the SQUIDs are nearly
identical, are embedded in similar surroundings to one another, are not in the flux-trapping regime, and begin with
the same initial conditions, this is a reasonable assumption.
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where the second equality uses Eq. (3.7) and the last equality interprets the quantity via Eq. (3.51) as

the difference in charge on the “positive” plates of the capacitors as denoted in Fig. 3.6a. Performing

the Legendre transformation of Eq. (3.48) yields the classical Hamiltonian,

HTKC(Φa, Q∆) =
1

2

Q2
∆

CΣ
+ Ea

(
1− cos

Φa

Nφ0

)
. (3.84)

3.4.3 Kerr Hamiltonian

Rather than dealing with the full cosine dependence of the Hamiltonian, Eq. (3.84), we can

Taylor expand for Φa/Nφ0 � 1, equivalent to ΦSQ � φ0 for the flux drop across each SQUID or

I � Ic for the current through each junction. Performing this expansion, we obtain

HTKC(Φa, Q∆) ≈
Q2

∆

2CΣ
+
Ea
2

([
Φa

Nφ0

]2

− 1

12

[
Φa

Nφ0

]4
)
, (3.85)

where we have kept only the first term beyond the bare Hamiltonian:

H0(Φa, Q∆) =
Q2

∆

2CΣ
+
Ea
2

[
Φa

Nφ0

]2

. (3.86)

Quadratic terms (Φ2
a, Q

2
∆) in the Hamiltonian become linear in the equations of motion, and

comparing to Eq. (3.48) shows that H0 is indeed the Hamiltonian for a linear LC resonator, with

C → CΣ and

L→ La = N
φ0

Is
, (3.87)

exactly as we would expect for N linear inductances given by Eq, (3.30) in series.

Equation (3.85) will prove to be a Kerr Hamiltonian [191–194] of the form

HK = ~ω0A
∗A+ ~

K

2
A∗A∗AA, (3.88)

where A and its complex conjugate A∗ are the classical analogues54 of the ladder operators A and

A† such that the number of photons worth of energy in the resonator is

n = |A|2. (3.89)

54 By this point, we could have quantized the system as in Sec. 3.3, but the Kerr constant can be calculated
classically, with quantum mechanics providing an obvious motivation for factors of ~ that appear.
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The Kerr Hamiltonian encodes the dynamics of the Duffing oscillator [195–197], with quartic terms

in the Hamiltonian corresponding to cubic terms in the equation of motion. The Kerr constant

K effectively shifts the resonance of a Duffing oscillator by K/2 for every quantum of energy

in the resonator. If K is positive (negative), the resonance shifts up (down), and in a mechanical

system the effect can be thought of as a nonlinear “hardening” (“softening”) of the spring constant.

Following Sec. 3.3.4, we can write down the expressions for A and A∗:

A =
1√

2~ZTKC
(Φa + iZTKCQ∆) (3.90)

A∗ =
1√

2~ZTKC
(Φa − iZTKCQ∆) , (3.91)

where

ZTKC =

√
Nφ0

CΣIS
(3.92)

has dimensions of impedance and the inverse relations are

Φa =

√
~ZTKC

2
(A∗ +A) (3.93)

Q∆ = i

√
~

2ZTKC
(A∗ −A). (3.94)

Plugging Eqs. (3.93) and (3.94) into Eq. (3.85),

HTKC ≈ ~ωTKCn−
1

16

~2

N2φ2
0CΣ

[
n2 +

2

3
n(A2 +A∗2) +

1

6
(A4 +A∗4)

]
. (3.95)

The rotating wave approximation (RWA) allows us to ignore terms with unequal factors of A and

A∗ on the grounds that for dynamics about resonance, they will oscillate rapidly, averaging to zero.

We identify our resonator’s Kerr constant from Eqs. (3.88) and (3.95) as

K = − ~
8N2φ2

0CΣ
= −

~ω2
TKC

8Nφ0IS
. (3.96)

The negative sign indicates that the array nonlinearity acts as a soft spring, pulling resonance

down. The second expression is more useful from a design standpoint. It illustrates how K may be

changed while keeping ωTKC constant. For example, we could increase both N and Ic (and hence

IS) by some factor m, which would decrease K as m2 without changing ωTKC. Evidently, adding
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more SQUIDs decreases the nonlinearity: physically, the flux drop across each individual SQUID

gets linearly smaller with N while the array energy, Eq. (3.79), does not depend on the flux drop

to linear order [198].

We have seen that the TKC circuit of Fig. 3.6a can behave as a Duffing oscillator, or equiva-

lently, a resonator with a Kerr nonlinearity. In doing so, we have connected the parameters ωTKC,

Qe, γe, and K, which determine the behavior of the device, to the design parameters Ic, N , C,

Cc, and LG and the experimental knob Φtot. Next, we will see one way in which such a device can

deliver parametric gain.

3.4.4 Input-output theory derivation of gain

JPAs amplify small signals at their input by “stealing” some of the power from a much larger55

pump tone. Here, we will derive the gain, deamplification, and squeezing of a current-pumped JPA

using IOT. The goal of IOT, as the name suggests, is to write down equations for the output fields

in terms of the input fields which do not include the internal degrees of freedom of the system.

This derivation closely follows that of Ref. [148]. For a more detailed derivation, see Ref. [180].

We take as our starting point the IOT model of Fig. 3.6c. The cavity is modelled with the

quantized Kerr Hamiltonian

ĤK = ~ω0Â
∗Â+ ~

K

2
Â†Â†ÂÂ, (3.97)

whose classical counterpart is Eq. (3.88). Input and output fields56

Âin = (αin + âin)e−iωpt (3.98)

Âout = (αout + âout)e
−iωpt, (3.99)

where αin and αout are respectively the incoming and outgoing strengths of a classical pump field at

frequency ωp and âin and âout are the corresponding quantum signals,57 are coupled to the cavity

55 As a rule of thumb for maintaining a sufficiently “stiff” pump tone for current pumping in practice, that pump
tone should be at least 20 dB larger than the amplified signal [188].

56 All fields are for now functions of time t, where I will leave the functional dependence out for notational
convenience where it is not needed.

57 The pump can be treated as classical because the effect of its quantum fluctuations within the resonator can be
made much smaller than those of the signal by weakly coupling in a large tone to the shared signal/pump line.
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at power decay rate58 γe, Eq. (3.77). Factoring out the trivial time dependence e−iωpt allows us to

work in the rotating frame of the pump. The input and output fields obey the boundary condition

√
γeÂ = Âin − Âout, (3.100)

and standard bosonic commutation relations subject to a Markov approximation [137, 189]. The

cavity mode Â is decomposed into pump (α) and signal (â) components as in Eqs. (3.98) and (3.99):

Â = (α+ â)e−iωpt. (3.101)

We follow the standard IOT approach [189, 190]. Using Eq. (3.64), we will write down the

Heisenberg equation of motion for Â in Eq. (3.97). The Heisenberg equation of motion only models

the closed system, however. To model the interaction with the incoming and outgoing fields,

we must add on the terms modeling dissipation and associated fluctuation by hand, forming the

Heisenberg-Langevin equation of motion. The Heisenberg-Langevin equation is then solved in the

steady state for large, classical input and output fields αin and αout corresponding to our pump

tone. We use the solution to linearize around the small input and output fields âin and âout, ending

with an equation for âout in terms of only input fields.

Applying Eq. (3.64) to Eq. (3.97) gives the Heisenberg equation for the internal dynamics of

the system:

dÂ

dt
= −iωTKCÂ− iKÂ†ÂÂ. (3.102)

Inserting the coupling terms by hand gives the Heisenberg-Langevin equation

dÂ

dt
= −iωTKCÂ− iKÂ†ÂÂ−

γe
2
Â+
√
γeÂin, (3.103)

which, together with Eq. (3.100), governs the full open system.

We first solve for the response to a large, classical tone

Âin → αine
−iωpt. (3.104)

58 The power decay rate is the inverse of the characteristic time for the energy in the resonator to deplete. Since
coupling is reciprocal, it also parametrizes how quickly an external drive adds energy to the cavity. It is equal to
twice the field decay rate, and corresponds to the full-width at half-max of the Lorentzian response profile of the
cavity. The field decay rate therefore corresponds to the half-width at half-max.
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We are interested in the steady-state solution, where

dα

dt
= 0. (3.105)

Plugging Eq. (3.104) and its analogues for α and αout into Eq. (3.102) subject to Eq. (3.105) yields

√
γeαin = i(ωTKC − ωp)α+ iK|α|2α+

γe
2
α. (3.106)

Multiplying Eq. (3.106) by its complex conjugate gives

κn2
α,in =

(
∆2 +

γe
2

)
nα − 2∆Kn2

α +K2n3
α, (3.107)

where

∆ = ωp − ωTKC (3.108)

nα,in = |αin|2 (3.109)

nα = |α|2 (3.110)

are respectively the detuning of of the pump from the bare resonance, the incoming number of

pump photons, and the number of photons from the pump in the resonator. Equation (3.106)

will be of considerable use to us in Ch. 4, without need to even directly incorporate the quantum

mechanical signal operators.

For now, we recast Eq. (3.107) in terms of the dimensionless quantities

δ =
∆

γe
(3.111)

ξ =
|α̃in|2K
γe

(3.112)

ñ =
nα
|α̃in|2

(3.113)

as

ξ2ñ3 − 2δξñ2 +

(
δ2 +

1

4

)
ñ− 1 = 0, (3.114)

where

α̃in =
αin√
γ
e

(3.115)
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In Eqs. (3.111), (3.112), (3.113), and (3.115), δ is the dimensionless drive detuning from reso-

nance,59 ξ is the dimensionless nonlinearity (or dimensionless drive power, depending on what one

is interested in), ñ is the dimensionless resonator occupancy, and α̃in is the dimensionless drive

amplitude.

The cubic Eq. (3.114) specifies a critical point {δc, ξc} where

∂δ

∂ñ
=
∂2δ

∂ñ2
= 0. (3.116)

The critical drive detuning and power are given by

δc = −
√

3

2
(3.117)

ξc = − 1

3
√

3
, (3.118)

and the value of ñ at the critical point is

ñc = 3. (3.119)

For a portion of operation space below δc and above ξc there are three real solutions to ñ. Two

of these — the highest and lowest values for ñ — will be stable solutions, and the third unstable.

Figure 3.8 shows the response of the Duffing oscillator to sub- and super-critical drives. While

the bifurcation physics (magenta and black curves in Fig. 3.8) can also be used to read out feeble

signals by, for example, correlating the state of a qubit with the high/low amplitude stable states

of the oscillator [138], we will not be interested in it here.60 Instead, we will work just short of the

critical point (typically between the green and light blue curves in Fig. 3.8), where the nonlinear

response of the JPA is sharp but single-valued.

With the response to a large pump tone in hand, we now solve for the response to the full

input field Eq. (3.101). Equation (3.102) gives

dâ

dt
=
(
i∆− 2iKnα +

γe
2

)
â− iKnαâ† +

√
γeâin, (3.120)

59 This is an entirely separate quantity from the phase drop δ defined in Eq. (3.2) at the beginning of this chapter.
60 The flux-pumped JPAs of Sec. 3.7 likewise have useful bifurcation physics. Reference [170] uses a closely-related

design to measure a superconducting qubit without the need for a ferrite circulator prior to amplification.
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Figure 3.8: Duffing oscillator response showing internal amplitude α relative to its value at the
critical point αc versus pump frequency ωp (absent any signal tone) relative to TKC resonant
frequency ωTKC. The different curves correspond to different drive powers linearly spaced from
ξ = 0.25ξc (blue) to ξ = 1.5ξc (black). Beyond the critical point, the response becomes multi-
valued. Figure adapted from Ref. [173].

where we have thrown out terms higher than linear order in â. Using the convention

b(t) =

√
γe
2π

∫ ∞
−∞

d∆̃e−i∆̃γetb(∆̃) (3.121)

to examine the Fourier domain behavior in terms of the dimensionless detuning

∆̃ =
ω − ωp
γe

, (3.122)

Eq. (3.120) becomes âin(∆̃)

â†in(−∆̃)

 =
√
γe

i(−δ + 2ξñ− ∆̃) + 1
2 ξñe2iφ

−iξñe−2iφ i(δ − 2ξñ− ∆̃) + 1
2


 â(∆̃)

â†(−∆̃)

 , (3.123)

where φ is the phase of the pump-induced field α = |α|eiφ inside the cavity. If we choose to regard

∆̃ as the signal frequency, −∆̃ is referred to as the idler frequency. Inverting Eq. (3.123) and using

the boundary condition, Eq. (3.100), we end up with our final Fourier domain relationship between

the incoming and outgoing signal fields:

âout(∆̃) = gs(∆̃)âin(∆̃) + gi(∆̃)â†in(−∆̃), (3.124)
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where

gs(∆̃) = 1− i(δ − 2ξñ− ∆̃) + 1/2

(i∆̃− λ−)(i∆̃− λ+)
(3.125)

gi(∆̃) =
ξñe2iφ

(i∆̃− λ−)(i∆̃− λ+)
(3.126)

and

λ± =
1

2
±
√

(ξñ)2 − (δ − 2ξñ)2. (3.127)

The frequency-dependent signal and idler amplitude gains gs(∆̃) and gi(∆̃) relate the output field

to the input field at ∆̃ and to it’s conjugate at −∆̃. The signal and idler power gains61 are

Gs(∆̃) = |gs(∆̃)|2 (3.128)

Gi(∆̃) = |gi(∆̃)|2 = Gs(∆̃)− 1 (3.129)

The Kerr nonlinearity has mapped the behavior of tones input at both ±∆̃, equally spaced above

and below the pump, to a single output frequency. In other words, the JPA’s output at a given

signal frequency ω cares not only about the signal input at ω, but about the input at the idler

frequency, 2ωp−ω. Since the reverse is true for the output at 2ωp−ω, there is a spectral ambiguity in

the output:62 a signal at a given frequency could have originated at either relevant input frequency.

3.4.5 Gain-bandwidth product

Another important property of the JPA is its preservation of the amplitude gain-bandwidth

product (GBP). The signal and idler gains are both symmetric about the pump frequency,

Gs(∆̃) = Gs(−∆̃) (3.130)

Gi(∆̃) = Gi(−∆̃) (3.131)

61 Both the signal and idler gains are phase-insensitive, though not phase-preserving, as the idler gain is phase-
conjugating. The signal gain is also referred to as the “direct gain.” It amplifies both quadratures of the microwave
field equally, so where that property is important to distinguish from single-quadrature gain, (which is a linear
combination of signal and idler gains, Sec. 3.4.6), I will refer to it as the “two-quadrature gain.” Additionally, though
the signal/direct/two-quadrature gain is a frequency-dependent quantity per Eq. (3.128), in some contexts it will be
convenient to refer to the maximum value Gs(0) as simply the signal/direct/two-quadrature gain.

62 The −1 in Eq. (3.129) means the contributions are not strictly identical, but for typical Gs >∼ 100, the difference
is quite negligible to amplification. For squeezing, however, it is important: without it, squeezing would be infinite
at any gain.
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with full-width at half-max JPA bandwidth

B = 2λ+. (3.132)

Near the critical point, Eqs. (3.117)–(3.119),√
Gs(0)B ≈ 2√

3
γe. (3.133)

The quality factor of the resonant circuit in Fig. 3.6a therefore sets the bandwidth (for a given gain)

of the Kerr resonator in Fig. 3.6c, independent of nonlinearity.

3.4.6 Single-quadrature amplification, deamplification, and squeezing

We can readily see that Eq. (3.124) gives rise to squeezing. Identifying

gs(∆̃) = cosh r (3.134)

gi(∆̃) = eiθ sinh r, (3.135)

Eq. (3.124) can be recast as

âout(∆̃) = Ŝ†(reiθ)âin(∆̃)Ŝ(reiθ) = âin(∆̃) cosh r − â†in(−∆̃)eiθ sinh r, (3.136)

whereupon we see Ŝ(reiθ) to be the unitary squeezing operator [193, 194]. If we define the Fourier

domain quadrature operators for the signal as

X̂(∆̃) =
1√
2

(
â(∆̃) + â†(−∆̃)

)
(3.137)

Ŷ (∆̃) =
1√
2i

(
â(∆̃)− â†(−∆̃)

)
, (3.138)

and set θ = 0, the squeezing operator reduces the variance of X̂(∆̃) for an input vacuum state |0〉

below its vacuum level by e−2r and amplifies that of Ŷ (∆̃) by e2r. For general θ, the same applies

to a pair of generalized (i.e. rotated) quadratures.

The two-quadrature gainGs and the single-quadrature gain or deamplification63 G1Q parametrized

by θ are related by the equation

G1Q(Gs, θ) = (2Gs − 1) + 2
√
Gs(Gs − 1) cos(2θ), (3.139)

63 Deamplification is a more general term than squeezing for what the JPA does to the quadrature out of phase
with the pump. When the input state has its variance deamplified below vacuum, it is said to be squeezed.
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Figure 3.9: (a) Single-quadrature gain G1Q plotted as a function of pump-probe phase difference
for a two-quadrature gain Gs = 20. (b) Closeup of (a) for G1Q < 1, where deamplification occurs.

plotted in Fig. 3.9a. Figure 3.9b shows the region below G1Q = 1, where deamplification occurs.

Maximum single-quadrature amplification (deamplification) is achieved at θ = {0, π} ({π/2, 3π/2}),

where in the high signal gain (Gs � 1) limit

G1Q (Gs →∞, 0)→ 4Gs (3.140)

G1Q

(
Gs →∞,

π

2

)
→ 1

4Gs
. (3.141)

Because of the phase-dependent behavior of single-quadrature gain, this mode of operation is also

referred to as phase-sensitive, and conversely two-quadrature gain occurs with phase-insensitive

operation.

When performing phase-insensitive amplification, the JPA must add at least one half quan-

tum of noise spectral density distributed equally over both quadratures, the minimum allowed
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by quantum mechanics for two-quadrature measurement. [128, 199, 200]. This noise traces to the

vacuum fluctuations of the idler mode,64 now mapped to the signal output. In phase-sensitive

operation, the amplifier in principle does not have to add any noise along the amplified quadrature,

making the JPA an excellent tool for measuring feeble signals.

This concludes our discussion of current-pumped JPA amplification, deamplification, and

squeezing. In Sec. 3.4.7, we will see that flux pumping can give rise to the same phenomena,

without explicit reliance on the Kerr nonlinearity.

3.4.7 Derivation of flux-pumped JPA gain

Relative to current-pumped JPAs, flux-pumped JPAs perform a more idealized operation

wherein the inductance of the SQUID(s) can be thought of as simply varying at the pump frequency.

When that frequency is twice the resonant frequency, parametric amplification is realized [141,182],

as in the current-pumped case treated in Sec. 3.4.4. This section closely follows the derivation in

Appx. A of Ref. [201], with the goal of obtaining the signal and idler gains equivalent to Eqs. (3.128)

and (3.129).

We begin with the Hamiltonian of Eq. (3.86), which we recast in terms of the TKC resonant

frequency ωTKC, Eq. (3.73), as

H0(Φa, Q∆) =
Q2

∆

2CΣ
+
CΣ

2
ω2

TKCΦ2
a. (3.142)

We will modulate the resonance as

ωTKC → ωTKC [1 + Λ cos(ωpt)] , (3.143)

where Λ � 1 and ωp are the pump amplitude and frequency, respectively.65 Neglecting the Λ2

term, Eq. (3.143) modifies the Hamiltonian as

H0(Φa, Q∆) =
Q2

∆

2CΣ
+
CΣ

2
ω2

TKC [1 + ε cos(ωpt)] Φ2
a, (3.144)

64 That is, it corresponds to the +1/2 in the idler mode’s harmonic oscillator Hamiltonian (Footnote 45).
65 In practice, Eq. (3.143) is the dominant contribution from varying the array inductance, Eq (3.87), at ωp. In

particular, a time-varying Φext gives rise to a time-varying Φtot via Eq. (3.38), which varies the SQUID critical
currents, Eq. (3.27), in order to vary the array inductance and with it ωTKC.
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where

ε = 2Λ. (3.145)

The corresponding equation of motion of the resonator field operator Â, where we have

promoted the canonical variables to operators as in Sec. 3.3.4, is given by

dÂ

dt
=
(
−iωTKC −

γe
2

)
Â− 2iωTKCε cos(ωpt)(Â+ Â†) +

√
γeÂin, (3.146)

where we have ignored the ground state energy term and used the operator-equivalents of Eqs. (3.90)

and (3.91) for the field operator and its conjugate. We rewrite Eq. (3.146) as

dÂ

dt
+WÂ+ V Â† + F̂ , (3.147)

where

W (t) = iωTKC +
γe
2

+ 2iωTKCε cos(ωpt) (3.148)

V (t) = 2iωTKCε cos(ωpt) (3.149)

F̂ (t) =
√
γeÂin(t) (3.150)

show the time dependencies of each term explicitly. From Eq. (3.147), we obtain the three equations

dÂ†

dt
= −W ∗Â† − V ∗Â+ F̂ † (3.151)

Â† =
1

V

(
F̂ − dÂ

dt
−WÂ

)
(3.152)

d2Â

dt2
+
dW

dt
Â+W

dÂ

dt
+
dv

dt
Â† + V

dÂ†

dt
=
dF̂

dt
. (3.153)

Together Eqs. (3.151)–(3.153) yield

d2Â

dt2
+

(
W +W ∗ − 1

V

dV

dt

)
dÂ

dt
+

(
dW

dt
− W

V

dV

dt
+ |W |2 − |V |2

)
Â

=
dF̂

dt
+

(
W ∗ − 1

V

dV

dt

)
F̂ − V F̂ †.

(3.154)

We now specify to the case of a classical resonator field and signal input

Â→ α (3.155)

Âin → Eeiωst, (3.156)
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which will be sufficient to derive the amplification properties of the flux-pumped JPAs. In Eq. (3.156),

E and ωs are the signal amplitude and frequency, respectively. Performing an RWA by letting terms

rotating rapidly relative to ωp ≈ 2ωTKC and ωs ≈ ωTKC average away, Eq. (3.154) becomes

d2α

dt2
+ [κ+ iωp]

dα

dt
+

[
γ2
e

4
+ ω2

TKC(1− ε2 − ωp
ωTKC

) + iωp
γe
2

]
α

=
√
γeE

[γe
2

+ i(ωp − ωs − ωTKC)
]
e−iωst − iωTKCε

√
γeE

∗e−i(ωp−ωs)t.

(3.157)

To solve Eq. (3.157), we write down the homogeneous solution, obtained by setting the right-

hand side to zero, and the particular solution. The homogeneous solution takes the form

αh = C+e
η+t + C−e

η−t, (3.158)

where

η± = −γe + iωp
2

± ωTKC

√
ε2 −

(
ωp

2ωTKC
− 1

)2

. (3.159)

The particular solution is

αp = −y+

∫
fy−
D

dt+ y−

∫
fy+

D
dt, (3.160)

where

y± = eη±t (3.161)

D = (η− − η+)e(η−+η+)t (3.162)

f = γeE
[γe

2
+ i(ωp − ωs − ωTKC)

]
e−iωst − iωTKCε

√
γeE

∗e−i(ωp−ωs)t. (3.163)

Hence

αp = Ase
−iωst +Aie

−i(ωp−ωs)t, (3.164)

where

As =

√
γeE

[γe
2 + i(ωp − ωs − ωTKC)

][γe
2 + i(ωTKC − ωs)

] [γe
2 + i(ωp − ωs − ωTKC)

]
− ε2ω2

TKC

(3.165)

Ai =
iωTKCε

√
γeE

∗[γe
2 + i(ωTKC − ωs)

] [γe
2 + i(ωp − ωs − ωTKC)

]
− ε2ω2

TKC

. (3.166)

The full solution to Eq. (3.157) is

α = αh + αp. (3.167)
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For the homogeneous solution αh to die out, the real parts of both η+ and η− need to be

negative. While Re(η−) < 0 always, Re(η+) < 0 occurs when

γe
2
> ωTKC

√
ε2 −

(
ωp

2ωTKC
− 1

)2

. (3.168)

We define the critical value

εc =
γe

2ωTKC
=

1

2Qe
, (3.169)

where the last equality uses Eq. (3.77). For pumping at twice the resonant frequency, ωp = 2ωTKC,

εc is is seen via Eq. (3.145) to be twice the modulation amplitude of the resonance frequency where

the flux-pumped JPA response diverges. This corresponds to modulating the TKC resonance,

Eq. (3.143), by a fractional amount

Λ ≈ 1

4Qe
(3.170)

in order to achieve high gain.

Operating below the critical point,66 the steady state solution to Eq. (3.157) is αp, Eq. (3.164).

Using our boundary condition, Eq. (3.100), the classical output signal is given by

Aout = (E −√γeAs) e−iωst −
√
γeAie

−(ωp−ωs)t. (3.171)

For the non-degenerate case where ωp 6= 2ωs, Eq. (3.171) corresponds to signal and idler power

gains

Gs =

∣∣∣∣1− √γeAsE

∣∣∣∣2 =

∣∣∣∣∣1− γe
[γe

2 + i(ωp − ωs − ωTKC)
][γe

2 + i(ωTKC − ωs)
] [γe

2 + i(ωp − ωs − ωTKC)
]
− ε2ω2

TKC

∣∣∣∣∣
2

(3.172)

Gi =

∣∣∣∣√γeAiE∗

∣∣∣∣2 =

∣∣∣∣∣ γeωTKCε[γe
2 + i(ωTKC − ωs)

] [γe
2 + i(ωp − ωs − ωTKC)

]
− ε2ω2

TKC

∣∣∣∣∣
2

. (3.173)

These gains are the analogues of Eqs. (3.128) and (3.129) for the current-pumped Gs and Gi in

Sec. 3.4.4. As in Secs. 3.4.5 and 3.4.6, the flux-pumped JPA is has a GBP set by its external

coupling rate γe, and can be used to amplify or deamplify one quadrature of an input signal. In

66 For a derivation of the bifucatory properties of the flux-pumped JPA operated above its critical point, see the
Supplemental Material of Ref. [170].
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Chs. 5 and 8, we will see them used experimentally to squeeze and amplify vacuum in the service

of speeding up dark matter axion detection efforts.

Having now derived the key amplification properties of both current- and flux-pumped JPAs,

we will return in Sec. 3.5 to the current-pumped case in order to examine the role of stray inductance

and the use of SQUID arrays (Fig. 3.6a) in the TKC design. The ensuing discussion will inform

our design of current- as well as flux-pumped JPAs in Secs. 3.6 and 3.7, respectively.

3.5 Validity of the Duffing approximation

There is cause to question the validity of the Duffing approximation [195–197] for describing

the physics of array-based, current-pumped JPAs (Henceforth, array-based JPAs).67 Recall that

in the Duffing (or Kerr) approximation shortened the full Hamiltonian, Eq. (3.84), to that of a

linear LC resonator plus the first nonlinear correction due to the SQUID array, Eq. (3.85). That

assumption was predicated on small excitations (in terms of flux relative to a flux-quantum, or

equivalently current relative to critical current) of the SQUIDs. In their 2007 paper, Manucharyan

et al. [181] derive the requirements on circuits used to embed Josephson junctions in order to create

parametric amplifiers. Their central requirement for the validity of the Duffing approximation is

violated by our array-based JPAs. At stake is not whether array-based JPAs really work: theoretical

and experimental evidence indicate strongly that they do [148,163,188,198]. Rather, the question

is whether they work in spite of violating the Duffing approximation, or subject to it. This section

presents the requirement of Ref. [181], which applies directly to single-junction68 JPAs in the

presence of geometrical inductances, extends it to array-based JPAs, and finally shows that it is

incorrect, even for single-junction JPAs. In its place, we will be left with a modified version of the

violated condition of Ref. [181] which our array-based JPAs are seen not to violate.

67 The key point here is we are assuming the oscillator is operated near the critical point, as JPAs typically are
(Sec. 3.4.4), in order to inquire if the Duffing approximation adequately describes them in that limit. The Duffing
approximation is of course perfectly valid for low-amplitude drives.

68 The difference between series arrays of junctions and series arrays of SQUIDs is immaterial to this section. For
both simplicity and proximity to Ref. [181], this section works with junctions and arrays thereof.
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3.5.1 The Qp condition for a single-junction JPA

Manucharyan et al. [181] analyze a single Josephson junction embedded in an arbitrary linear

microwave network, shown in a parallel and series configuration in Fig. 3.10. For a junction with

critical current Ic, the constitutive equation, Eq. (3.3), expands as

I = Ic sin
Φ

φ0
= Ic

Φ

φ0

[
1− 1

6

(
Φ

φ0

)2

+ · · ·

]
, (3.174)

where the first nonlinear term is the Duffing term.

Figure 3.10: (a) The Josephson junction is represented up through its first nonlinear term as an
ideal inductor in parallel with a parallel nonlinear element (PNL) governed by Eq. (3.175). (b)
The embedding environment for the PNL is modeled by an admittance Y (ω) with drive and noise
current sources represented by their Norton equivalents. (c), (d), and Eq. (3.176) are the series
nonlinear element (SNL)/Thévenin equivalent versions of (a), (b), and Eq. (3.175), respectively.
Panels (b) and (d) reproduced from Ref. [181].

The relevant procedure is as follows: first, a decision is made regarding the use of the parallel

nonlinear element (PNL) versus the series nonlinear element (SNL), shown in Fig. 3.10a and c,

respectively. Using the PNL (SNL) requires modeling the drive as its Norton (Thévenin) equivalent

circuit, as in Fig. 3.10b(d). The linear portion of Josephson inductance LJ0, Eq. (3.10), is folded

into the equivalent admittance Y (ω) (impedance Z(ω)). The cubic constitutive equations for the
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PNL and SNL follow directly from Eq. (3.174):

IPNL(t) = − 1

6LJ0φ2
0

Φ3
PNL(t) (3.175)

ΦSNL(t) =
L3
J0

6φ2
0

I3
SNL(t). (3.176)

With a model chosen, the next step is to define a participation ratio69 p ∈ [0, 1], which char-

acterizes the amount of Josephson inductance relative to total linear inductance in the embedding

circuit (in which LJ0 is now included). In Fig. 3.6a, additional linear inductance is represented by

LG. Reference [181] gives simple examples for the cases of a parallel and a series RLC circuit,

shown in Fig. 3.11a and b, respectively. Calling the linear inductance Lp for the parallel case or

Ls for the series case, pp = Lp/LJ0 for the parallel case and ps = LJ0/Ls for the series case. The

other relevant parameter to the analysis is the embedding circuit quality factor Q.

Figure 3.11: (a) Current-driven parallel RLC circuit with a PNL. (b) Voltage-driven series RLC
circuit with an SNL. (a) and (b) correspond to simple cases of Fig. 3.10b and d, respectively. Figure
reproduced from Ref. [181].

Reference [181] analyzes the simple and general cases, and concludes that

Qp� 1, (3.177)

69 The subscript-less p is used to denote the participation ratio for statements that refer to both the series and
parallel cases.
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is the necessary condition to keep the maximum current through the junction well below Ic, and

hence to satisfy the Duffing approximation.

3.5.2 Significance of the participation ratio

The embedding circuit machinery relies upon the notion that the linear portion of the Joseph-

son inductance can be wrapped up into a linear inductance apart from the junction itself without

any change to the physics. The Josephson inductance as it appears in the participation ratio is there

not merely as a quantification of the linear inductance that the junction carries with it, but as a

proxy for the nonlinear inductance that is always associated with that particular linear inductance.

This, then, is the significance of the ratio of Josephson linear inductance-to-non-Josephson linear

inductance: the Josephson inductance always carries with it, in fixed ratio, a nonlinear inductance,

while any stray linear inductance does not.

3.5.3 From junction to array

The ratio of nonlinear-to-linear inductance changes when the junction is swapped out for a

series junction array. In order to faithfully map the participation ratio from a single junction to

an equivalent array (meaning one with the same linear inductance, which will therefore give the

same bare resonance), we must first determine the composition of that equivalent array. Then we

will use the fact that we can change what linear inductance we choose to call Josephson or stray70

in order to restore the nonlinear-to-linear inductance ratio of the single-junction case, whence the

participation ratio is immediately obtained. We will follow this procedure for two cases: the series

RLC case (which generalizes to the general Thévenin/impedance case, Fig. 3.10b) and the parallel

RLC case (likewise the general Norton/admittance case, Fig. 3.10d). The result is the same in both

cases: the participation ratio decreases quadratically with N .

The constitutive equation of a series array of N junctions (each of critical current I ′c and

linear Josephson inductance L′J = φ0/I
′
c) differs fundamentally from that of a single junction or

70 The non-Josephson embedding inductance need not be undesirable, as the word “stray” might imply.
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parallel array, as N infiltrates the sine:71

I = I ′c sin
Φa

Nφ0
= I ′c

Φa

Nφ0

[
1− 1

6

(
Φa

Nφ0

)2

+ · · ·

]
, (3.178)

where I is the current through and Φa the flux across the array. The nonlinearity has been reduced

relative to the linear Josephson inductance by a factor of N2.

3.5.4 Series RLC and general Thévenin case

In the case of a series RLC embedding circuit, we are concerned with the stray inductance

Ls,stray together with the linear and nonlinear inductances of the array.72 We begin by solving

Eq. (3.178) for Φa to third order in I, obtaining

Φa = Nφ0 arcsin
I

I ′c
= NL′J0I +

1

6
NL′J0

(
I

I ′c

)2

I + · · · (3.179)

Dividing by I gives the linear (La0) and first nonlinear (Ls,nl) inductance terms:

La0 = NL′J0 (3.180)

Ls,nl =
1

6
NL′J0

(
I

I ′c

)2

. (3.181)

As discussed in Sec. 3.5.2, in order for the participation ratio to be a meaningful proxy for the

nonlinear inductance, we need to ensure that the linear and nonlinear array inductances maintain

a fixed ratio rs:

rs =
Ls,nl

La0
=

1

6

(
I

I ′c

)2

. (3.182)

For the array and junction to be equivalent, they must have the same linear inductance. We

therefore require

La0 = NL′J0 = LJ0. (3.183)

71 In the case of a parallel array, such as the simple case of a SQUID, adding junctions in parallel increases the
critical current, Eq. (3.32), something that in principle can be done with a different physical junction, Eq. (3.1).
Adding junctions in series, conversely, is like changing the flux quantum: the constitutive equation of a series array
cannot be achieved with any single junction; as we will see, however, it can be mimicked by a single junction plus
some linear inductance.

72 If we take there to be an inductive term, which we label Ls,stray, somewhere in the general Thévenin case,
Fig. 3.10d, the following analysis will apply equally to the more general case.
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Since φ0 is a constant of nature, the only way to satisfy Eq. (3.183) is with I ′c = NIc. Written in

terms of Ic, Eq. (3.182) becomes

rs =
1

6N2

(
I

Ic

)2

. (3.184)

We see that I ′c’s dependence on N , brought about to ensure equal array and single-junction linear

inductances, implies an N -dependent inductance ratio. The Josephson inductance is now no longer

the proxy for nonlinear inductance it was in the single-junction case, causing the participation ratio

to no longer carry the same meaning. We will restore the constancy of this ratio for the series and

then the parallel embedding circuit case with some algebra incorporating stray linear inductances.

Figure 3.12: Series inductor algebra showing the equivalence between stray and array linear induc-
tances. The total series inductance of an N -Josephson junction array and a stray series inductance
Ls,stray (top left) is represented to first nonlinear order by writing the array’s inductance in terms of
its linear and first nonlinear contributions (top right). An equivalent configuration (bottom right),
consisting of the same total linear inductance and nonlinear-to-linear array inductance ratio rs, is
achieved when going from array to single-junction by increasing the value of the stray inductance.

To do so, we start by equating the array of junctions with a linear and nonlinear inductor, as

shown in Fig. 3.12. Then we use the physical indistinguishability of the array’s linear inductance

and the stray linear inductance to move some of the former over to the latter such that the total

linear inductance is preserved and the ratio of nonlinear-to-Josephson inductance is modified to

match the N = 1 case. The two effective linear inductances become:

La0 → Leff
s,a =

1

N2
La0 (3.185)

Ls,stray → Leff
s,stray = Ls,stray +

N2 − 1

N2
La0. (3.186)
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The sum of linear inductances is preserved, and the ratio

rs → reff
s =

Ls,nl

Leff
s,a0

=
1

6

(
I

Ic

)2

(3.187)

is N -independent, as desired.

The array inductance is now a proxy for the nonlinear inductance in just the manner that

the single-junction inductance is in the simpler case. Hence, Ref. [181]’s conclusions pertaining to

p will hold exactly if we redefine ps:

ps =
LJ0

Ls
=

LJ0

LJ0 + Ls,stray
→ peff

s =
Leff
s,a0

Leff
s

=
Leff
s,a0

Leff
s,a0 + Leff

s,stray

=
ps
N2

, (3.188)

where Ls and Ls,eff are the total linear series inductance and are equal to one another. We conclude

that replacing a single junction with an equally linearly inductive array of N junctions reduces the

participation ratio by a factor of N2 in the series embedding case.

3.5.5 Parallel RLC and general Norton case

Figure 3.13: Parallel inductor algebra showing the equivalence between stray and array linear
inductances. The parallel case reasons analogously to the series case of Fig. 3.12: the array (left) is
expressed as a linear inductor La0 and a nonlinear inductor Lp,nl (center). The linear inductance
is increased to restore the ratio rp to its N = 1 value when going from array to single-junction.
Doing so necessitates altering the stray inductance (right).

The reasoning for the parallel case, shown in Fig. 3.13, is analogous to the series case. To

first nonlinear order, the array is represented by a linear inductance La0 = NL′J0 (where, as before,
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NL′J0 = LJ0 → I ′c = NIc) in parallel with a nonlinear inductance Lp,nl = rpLa0, with the ratio rp

given by

rp = 6N2

(
φ0

Φa

)2

. (3.189)

As such, La0 needs to be increased by N2:

La0 → Leff
p,a0 = N2La0, (3.190)

in order to restore the N = 1 ratio and give the participation ratio its original meaning of Sec. 3.5.2.

To preserve the parallel linear inductance, we also require

Lp,stray → Leff
p,stray =

N2La0Lp,stray

(N2 − 1)Lp,stray +N2La0
, (3.191)

yielding

pp =
Lp
LJ0

=

(
1
La0

+ 1
Lp,stray

)−1

Lp,a0
→ peff

p =
Leff
p

Leff
a0

=

(
1

Leff
p,a0

+ 1
Leff
p,stray

)−1

Leff
p,a0

=
pp
N2

, (3.192)

the same result as in the series embedding case.

3.5.6 The Qp condition for an array-based JPA

For both the series and parallel embedding circuits, Eqs. (3.188) and (3.192) indicate that

Eq. (3.177) becomes

Qp� N2, (3.193)

where p is the original participation ratio defined between the linear Josephson (more generally,

array) and total series or parallel linear inductance. Typical JPAs with N ∼ 10 junctions (or

SQUIDs) and Q ∼ 50 fail to meet this condition, yet remain functional.

We will see that array-based JPAs work because the participation ratio in fact has no place

in what would otherwise be the Qp-condition. In concert with the findings above, this implies that

stray inductance can, like SQUID arrays, be used to increase power handling [148], but potentially

without the adverse consequences of nonuniform junction or SQUID loop fabrication [173].
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3.5.7 Independence of the validity of the Duffing approximation from the nonlin-

earity

The Duffing approximation analysis in Ref. [181] maps back to the equation for a damped,

driven Duffing oscillator,

Ẍ +
ω0

Q
Ẋ + ω2

0X(1− νX2) = A cosωdt, (3.194)

with X the coordinate, ω0 the bare resonance frequency, ν the strength of the nonlinearity, and

the right-hand side a drive tone of amplitude A and frequency ωd. For an electrical system, the

participation ratio p maps directly onto the nonlinearity. For example, in the case of the parallel

RLC circuit with a single junction, ν corresponds to p/6.

Let us consider the effect of changing ν (equivalently p) on the solution of Eq. (3.194) and on

that of the fully nonlinear equation from which it comes,

Ẍ +
ω0

Q
Ẋ +

ω2
0√
6ν

sin
(
X
√

6ν
)

= A cosωdt. (3.195)

The sine in Eq. (3.195) can be expanded, and an arbitrary number n of nonlinear terms kept:

Ẍ +
ω0

Q
Ẋ + ω2

0X

n∑
m=0

(−6)m

(2m+ 1)!
(X2ν)m = A cosωdt. (3.196)

Equation (3.194) corresponds to n = 1, and Eq. (3.195) to n =∞.

Inspection reveals that, if Eq. (3.196) for arbitrary n and ν has solution Xν
n(t), then the

equation for n and ν ′ will be solved by
√
ν/ν ′Xν

n(t), provided that the drive amplitude is likewise

adjusted, A →
√
ν/ν ′A. This corresponds to driving the JPA at a fixed percentage of its critical

power.73

Therefore, the ratio of any two solutions for arbitrary n1 and n2 and a given nonlinearity ν,

Zνn1,n2
(t) ≡

Xν
n1

(t)

Xν
n2

(t)
, (3.197)

remains unaffected if the nonlinearity is changed to ν ′. The significance of this statement stems

from the fact that Zν1,∞(t) directly quantifies the divergence of the Duffing approximation from the

73 This can also be seen in Eq. (3.114), wherein the Kerr constant only enters alongside the drive strength [148].
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full solution: it other words, it is measures how valid the Duffing approximation is. The fact that

Zν1,∞(t) is independent of ν tells us that the nonlinearity does not affect the validity of the Duffing

approximation for JPAs.74 So the Duffing approximation may be however bad or good it is, but

its correctness does not depend on changes to the nonlinearity.

3.5.8 Modified condition for the Duffing approximation

Since Q does not ultimately affect the dynamics of the system, Eq. (3.195) or Eq. (3.196), in

the same fashion as ν does (its situation alongside p in the Qp product, Eq. (3.177) or (3.193), being

therefore somewhat incidental in this sense), there is no reason that the Duffing approximation’s

validity for JPA operation should be independent ofQ. Numerical tests which confirm the prediction

of independence of Duffing validity from ν reveal that the Duffing approximation does break down

as Q approaches unity from above. The phase response of a reflected tone bout is shown near the

critical point in Fig. 3.14 for different orders of approximation n = {1, 2,∞} and values of Q off of a

lossless, array-based JPA. The array of N = 20 junctions easily violates the modified Qp condition,

Eq. (3.193), for all values of Q shown. Nevertheless, the agreement between the Duffing system

(n = 1) and the full sinusoidal solution (n = ∞) is quite good at high Q. This confirms that the

participation ratio plays no role in determining the validity of the Duffing approximation for JPA

operation, but that Q still does. Thus,

Q� 1, (3.198)

independent of geometrical inductance or number of junctions, is the relevant predictor of Duff-

ing approximation validity for JPA operation. The presence of stray inductance or of Josephson

junction arrays have no bearing.

This concludes our detour into the theory of the Duffing oscillator. The independence of the

validity of the Duffing approximation for JPAs from the degree of nonlinearity in the system explains

why no divergence from the Duffing results has been noted for array-based JPAs in the literature.

74 More generally, it does not affect the agreement of any two levels of approximation, parametrized by different
values for n1 and n2.
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Figure 3.14: Duffing (n = 1) and higher-order (n = {2,∞}) oscillator responses for different
quality factors Q. The system modeled is an array-based Josephson parametric amplifier with
N = 20 Josephson junctions in series. The phase response of a reflected output tone arg(bout) near
the critical frequency and amplitude (bin = 0.98bin,c) contains all of the meaningful information,
as there is no internal loss in the system. The agreement within a trio of curves (darker shade
indicates higher n) of a given color (corresponding to a given Q) indicates how accurate the Duffing
approximation is. The Duffing approximation is more accurate at high Q. Trios of curves are
vertically offset for visual clarity. Note that with the horizontal axis expanded, all curves are seen
to undergo a full 2π phase drop as expected for a tone reflected off of an internally lossless resonance.

Array-based JPAs that meet Eq. (3.198) can thus confidently take advantage of Duffing oscillator

physics in their design and operation [148]. In addition, geometric inductance, LG in Fig. 3.6a, can

be used to achieve higher dynamic range without violating the Duffing approximation.75

75 The work of thesis takes advantage of the equivalence between stray inductance and arrays in order to use the
Duffing approximation, but not to install additional geometrical inductance. Nevertheless, the tradeoff between the
compactness (and broader tunability, when SQUIDs are used) of arrays, and the more idealized behavior of single
junctions with linear inductances, is of potential value for future work.
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3.6 Current-pumped JPA implementation

Key results in this thesis rely on the use of current-pumped as well as flux-pumped JPAs.76

This section discusses important design considerations and basic characterization measurements for

the current-pumped JPAs used in Ch. 4, and the next section does the same for the flux-pumped

JPAs used in Chs. 5 and 8. The specifications of our SQUIDs, common to both current- and flux-

pumped JPAs, is included in this section. The JPAs used in this thesis were designed using Xic

Graphical Input Editor from Whiteley Research, Inc and KLayout open source software.

3.6.1 SQUID array specifications

Our JPAs were fabricated at NIST Boulder using the Nb-AlOx-Nb trilayer process [202,203]

discussed in Appx. A. The parameters that define our SQUIDs are the junction critical currents Ic,

the geometric inductance Lg of the SQUID loops, and the area a of the SQUID loops for magnetic

flux to penetrate.

The 2.5 µm× 2.5 µm junctions were designed with a nominal critical current density of 0.8

µA/µm2, for a critical current of 5 µA. In practice, our junctions tended to come out within

40% of this value across all fabrication runs.77 A typical set of measurements taken on one of

our flux-pumped JPA chips is shown in Fig. 3.15. The room temperature resistance measurements

of Fig. 3.15a were performed on individual junctions situated within test structures. The layout

for a test structure, which contains four leads in order to cancel out non-junction resistances, is

shown in the inset of Fig. 3.15a. The critical currents for the same five junctions, Fig. 3.15b, are

obtained from the room temperature resistances via the Ambegaokar-Baratoff relation, Eq. (3.1),

with 2∆/e = 3.0 mV. For the five junctions on this chip, Ic = 5.99 ± 0.12 µA. The ≈ 20%

absolute error from the nominal value corresponds to a ≈ 10% change in the same direction in

the resonance frequency, Eq. (3.73). This imprecision is tolerable given the frequency-tunability

76 In addition to their uses in the work presented this thesis, the JPAs discussed in this thesis have helped enable
a range of experiments performed in the Lehnert Lab at JILA [165,168–170].

77 The most variation occurred between different fabrications (and hence wafers). The next most variation in Ic
occurred between chips within the same wafer, and the least within a single chip.
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of the devices. The much smaller 2% intra-chip variation is important for achieving good device

performance [173].78

Figure 3.16 shows the geometry of one of our SQUIDs, from which the geometrical inductance

and SQUID area can be estimated. The circumference of the region ringed in by the superconductor

is 20 µm. Using the rule of thumb that a 1 µm length of line corresponds to a 1.2 pH inductance,

Lg ∼ 24 pH. The nominal Ic = 5 µA critical currents imply LJ0 = 66 pH and LS0 = 33 pH by

Eqs. (3.10) and (3.33), respectively. Thus, βL ∼ 0.36 via Eq. (3.42), better than a factor of five

clear of being in the flux-trapping regime, Eq. (3.43).

The area a of the SQUID loop should really be thought of as an effective area consisting of

the 19 µm2 superconductor-enclosed region, plus a fraction of order 1/2 of the cell’s superconduct-

ing surface area. This is because an externally applied flux that would otherwise penetrate the

superconductor will be moved off of it by the Meissner effect [172]. Knowing a very precisely is not

essential, because we can within reason compensate for lower a with higher bias currents and/or

mutual inductances between the SQUID loop and whatever we are using to couple flux into it. So

a rough estimate of a ∼ 50 µm2 will suffice.

3.6.2 TKC specifications and simulations

Our current-pumped TKCs consist of a capacitor C-shunted N -SQUID array capacitively

coupled (Cc) to an external environment. We do not deliberately add any stray inductance LG,

and what little is there is of secondary importance to the Josephson inductance. Figure 3.17

shows two scanning electron microscope (SEM) images of a device. The capacitors C and Cc

are implemented with interdigitated-finger geometries, which avoid some of the dielectric loss of

parallel plate geometries at the cost of compactness. The main capacitor C actually consists of two

capacitors C/2 in a symmetric, parallel configuration.

To ensure broad frequency coverage, we designed eight different JPAs with bare resonance

78 In light of the observation that Ic variation grew with the physical separation of the junctions (Footnote 77),
the fact that the junctions in the test structure are much farther apart than those in a given array suggests that the
variation within an array will be less than or equal to the variation measured for different test structures on a single
chip.
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Figure 3.15: (a) Room temperature Josephson junction resistance measurements for five different
junctions on a typical chip. The inset shows the layout for the five test structure used to perform
the measurements. The four leads allow us to cancel out lead resistances when measuring the
junction’s resistance. Different patterns indicate different electrical layers, discussed in Appx. A
(solid = base electrode, striped = counter electrode). The 2.5 µm× 2.5 µm junctions are too small
to see at this scale, but are situated where the two thin lines at the center of each test structure
cross. (b) Critical currents for the same five junctions. The critical currents are obtained from the
room temperature resistances using the Ambegaokar-Baratoff relation, Eq. (3.1).

frequencies logarithmically spaced between 4 and 12 GHz. The layouts and the target resonance

frequencies are shown in Fig. 3.18. The downward-frequency tunability of each device was designed

to overlap with at least one device below it. Parameter values were chosen in accordance with
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Figure 3.16: Superconducting niobium wiring layout for a pair of SQUIDs. The cell shown here
corresponds to Fig. A.1e. Dimensions useful for estimating the effective area of the SQUID loop
and its geometrical inductance are provided. Blue (pink) corresponds to base electrode (wiring 1)
layer discussed in Appx. A.

Figure 3.17: Scanning electron microscope images of a TKC with false-color highlighting the circuit
elements. The capacitor C (blue) is implemented as a pair of interdigitated finger capacitors C/2
in parallel. The inductance L consists primarily of N SQUIDs, where N varies across different
TKC designs. The waffling pattern covering the niobium ground plane pins magnetic flux trapped
in the superconductor in place. A closeup view of part of the SQUID array shows four Josephson
junctions, located at the ends of the bright ‘H’ shape. With the base niobium electrode (dark gray),
they form two SQUID loops, as illustrated in Fig. A.1e. Figured reproduced from Ref. [204].

Eqs. (3.73), (3.76), and (3.58), targeting Qe = 50 and ZLC = 50 Ω.

Electromagnetic simulations of the resonators shown in Fig. 3.18 are shown in Fig. 3.19.79

Figure 3.19a shows the behavior the phase of S11, the reflection coefficient off of the JPA’s only

port, with frequency. The resonance frequency lies at the center of the 2π phase drop. It and the

79 These simulations treat the SQUID arrays as linear inductors.
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Figure 3.18: Layouts and design parameters for a suite of eight current-pumped TKCs. The
frequencies listed are the targeted values, logarithmically spaced between 4 and 12 GHz. The
number N of SQUIDs, and the design values for resonator and coupling capacitances C and Cc are
listed for each device.

external coupling γe (Fig. 3.19c) were fitted for each device using the equation

arg(S11) = atan2

(
γe(ω − ωTKC)

(ω − ωTKC)− γ2
e/4

)
, (3.199)

where atan2 is the two-argument arctangent function. Equation (3.77) then gives the external

quality factor Qe (Fig. 3.19b). The resonator impedance ZLC was determined from the individual

resonator components and Eq. (3.58).

3.6.3 Characterization measurements

A basic set of measurements is performed to confirm proper JPA functionality and character-

ize the device properties, including the bare resonance frequency, tunability, gain, and bandwidth.

The basic configuration of the TKC together with other microwave elements that realizes the

current-pumped JPA is shown in Fig. 3.20. Here, a directional coupler [187] is added in order to

apply a pump tone.

These measurements, as well as those in Sec. 3.7.2, require combinations of three key in-

struments: a microwave generator for producing pump tones, a vector network analyzer (VNA)

for sending and receiving probe tones, and a DC current source for sourcing a DC magnetic flux

through a superconducting coil. Most commonly, we used a E8257D PSG Analog Signal Generator
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Figure 3.19: (a) Simulated responses for the current-pumped JPAs of Fig. 3.18 at their maximum
resonance frequencies. The resonance frequencies νTKC = ωTKC/2π fitted from reflected scattering
parameter phase arg(S11) versus probe frequency ν are indicated, along with the number N of
SQUIDs for each device. (b) Simulated external quality factors Qe for each device. (c) Simulated
external coupling rates γe. Coupling rates increase with νTKC as a consequence of holding Qe fixed.
(d) Resonator impedances ZLC obtained from simulated circuit element values. Simulations were
performed using the Sonnet Software’s electromagnetic simulator.

and a E5071C ENA Vector Network Analyzer, both from Keysight Technologies, for the microwave

generator and VNA, respectively, and a Yokogawa GS200 DC Voltage/Current Source to provide

our DC current.
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Figure 3.20: JPA configuration for current pumping. The TKC (Fig. 3.6b) is shown within the JPA
(large triangle) as in Fig. 3.7. Here, details specific to biasing the JPA for current pumping are
included. A directional coupler (rectangle) couples a large pump tone into the signal path. The
cylinders represented segments of transmission line. Both pump and signal emerge from the output
port of the current-pumped JPA.

Figure 3.21 shows measurements of the resonant frequencies for the eight different JPAs.

In this measurement, only a weak signal tone is sent into the JPA to probe its linear properties

(Fig. 3.21a). The results, Fig. 3.21b, are seen to match up reasonably well to the simulated values

from Fig. 3.19a.

Using the same setup, we look in in Fig. 3.22 at the flux tunability of one of the JPAs. Here, a

current is varied through a superconducting magnetic coil placed a few cm from the SQUID loops.

The mutual inductance between the SQUID loops and the coil allows an applied DC current to

source an external flux Φext which together with the loop inductance gives rise to the total flux

Φtot penetrating the loop, Eq. (3.38). The total flux tunes the SQUID inductance up according

to Eq. (3.28), and hence the resonance down from its peak value according to Eq. (3.73). Ideally,

the peak value should occur at zero DC bias current, but it is often offset, as shown in the figure.

The offset indicates the presence of some trapped flux80 that is reasonably homogeneous over the

spatial extent of the array, and is therefore not a large problem, as it can be compensated for with

80 This is distinct from entering the flux-trapping regime of Sec. 3.2.2.
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Figure 3.21: (a) State of pump and probe for measurement of resonance frequency. No pump is
applied, and a probe tone is applied in the low-power limit to measure the resonance frequency of the
current-pumped JPAs. (b) Reflection measurements of phase versus frequency alongside simulations
for eight different current-pumped JPAs with nominal resonances spaced logarithmically between
4 and 12 GHz.

the coil. Other nonidealities include the presence of standing waves (faint horizontal streaks), and

small structure81 off of the main lobes. But overall, this is a healthy JPA, and these effects did not

interfere significantly with operation.

In Fig. 3.23, a current-pumped JPA is operated for two-quadrature gain. This time, we

do apply the pump tone (Fig. 3.23a). Figure 3.23b shows three gain curves, with higher gains

being achieved closer to the critical point, beyond which bifurcation sets in. Here we observe the

preservation of the GBP, Eq. (3.133).

This concludes our introduction to the specific current-pumped TKC/JPA devices used in

this thesis. We will return to them in Ch. 4.

81 An earlier fabrication produced JPAs with much more structure off of the main lobes. This turned out to be a
consequence of placing the SQUID array too close to the ground plane of the TKC, causing an inhomogeneous flux
environment across the SQUIDs. These JPAs were more difficult to tune, but still operable. We fixed this error on
a subsequent fabrication by simply adding 50 µm of line on either side of the array. The JPA in Fig. 3.17 is a device
from the problem batch: observe that it’s SQUID array runs right up to the ground plane on either side. This issue
was distinct from the flux-tuning problem experienced by our flux-pumped JPAs, Fig. 3.32 and Appx. B.
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Figure 3.22: Flux tuning of a nominal-7.5 GHz current-pumped JPA resonance with a DC current.
No pump tone is applied, as in Fig. 3.21a. When overcoupled, resonance occurs at the probe
frequency ν where the reflection coefficient phase arg(S11) drops 2π, and tunes with a DC current
applied to a superconducting coil which threads a magnetic flux through the SQUID loops. The
resonance is ideally periodic in current, and the two lobes closest to 0 current are displayed here,
The faint horizontal streaks are standing waves in the experimental setup. The small features off to
the side of the main lobes reveal slight nonidealities either in the array fabrication or the uniformity
of the magnetic flux penetrating the SQUID loops.

3.7 Flux-pumped JPA implementation

Recall from Sec. 3.4.7 that flux pumping works, in an idealized picture, by creating a time-

varying inductance (and thus resonance) at pump frequency ωp in order to amplify (or deamplify)

tones about ωp/2 [141, 182]. With flux pumping, this is achieved without a strong current tone

near the amplification band. The flux-pump tone modulates the resonance frequency along one of

the lobes in Fig. 3.22. In order to vary the resonance at ωp, the variation, whose scale is set by the

linewidth of the resonator according to Eq. (3.170), should not cross the peak, otherwise the reso-

nance will go up then down and then up and down again over one period of pump-tone oscillation.

Even adjacent to the peak, the lobe’s slope is often too shallow to achieve good performance. In

practice, our flux-pumped JPAs perform best when operated at least ∼ 100 MHz below the top.
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Figure 3.23: (a) State of pump and probe for measurement gain and bandwidth. A large pump tone
is applied in order to amplify a small signal. (b) Gain and bandwidth measurements performed
on a nominal-8.8 GHz JPA. Three different Lorentzian gain profiles show the two-quadrature JPA
power gain Gs for different operating points on the same device. The bandwidth B is the full-width
at half-max of the Lorentzian, and in the inset its product with the amplitude gain is seen to be a
fixed quantity.

The flux- and current-pumped JPA exist to perform similar measurements, but each have

distinct advantages and disadvantages. The current-pumped JPAs of the previous section are

simpler, smaller82 devices, and easier to fabricate. They have a slightly broader tunability, as flux-

pumped JPAs cannot operate all the way up to the top of the flux-tuning curve. They also do

not require operation in a second frequency band a factor of two away from the band of interest.

For the most part, these advantages concern the design of and hardware used to operate the

JPAs. If one is willing to pay the overhead cost, flux-pumped JPAs confer significant operational

advantages [141,183–186]. First, though they require a second port on the TKC for pumping, they

no longer require the lossy directional coupler of Fig. 3.20 in the signal path.83 Second, the pump

tone is not routed to the JPA output, and is furthermore not within the band of interest. Third, an

equivalent flux-pumped JPA will have higher power handling than its current-pumped counterpart,

82 Smaller here refers to the TKC footprints on a given chip. Designs used in this thesis include four (two)
current-pumped (flux-pumped) devices per chip.

83 Current-pumped JPAs can also avoid this, but doing so requires adding on a second, weakly coupled port to the
device [140] not so different than the one used for flux pumping.
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and will not have the sizable Kerr-induced frequency shift of the resonance.84 And, as a bonus, a

flux-pumped JPA, if desired, can even be current pumped (see e.g. Fig. 3.35).

3.7.1 Flux-pumped JPA design

We optimized several constraints in the design of our flux-pumped JPAs.85 First, we took

care to ensure uniform coupling between the pump line and each of the SQUIDs that collectively

constitute the tunable inductor. Uniform coupling guarantees that the JPA’s dynamics are spatially

homogeneous, resulting in improved power handling. Second, we placed the pump line close to the

SQUID array, in order to minimize the pump power required to drive the LC resonator. At the

same time, the coupling of the LC circuit to the pump line is kept much lower than the coupling

to the line carrying the signal near the amplification band, in order to avoid losing part of the

signal through the pump port: the transmission between the two ports is kept to nearly -30 dB.

Finally, we shaped the flux line as a ‘U’ around the SQUID array. With this configuration, the

pump couples to the differential-mode current circulating inside each SQUID loop and is isolated

from the common-mode current, unidirectional across the SQUID array.

We considered and simulated many designs, including those shown in Fig. 3.24, for flux-

pumped JPAs, before settling on the relatively simple layout of Fig. 3.25a. The TKC, shown up

close in Fig. 3.25b, is laid out the same as in our current-pumped JPAs of Sec. 3.6. New to the

flux-pumped designs, an AC bias line runs across the length of the chip. The line tapers and

goes through a small interdigitated finger capacitor Cf � Cc acting as a choke filter to suppress

low-frequency noise before wrapping around the SQUID array, crossing over the line containing the

SQUIDs as it reverses direction. As shown in Fig. 3.25c, the current flowing both left and right

contributes to an AC flux within the SQUID region. The bias line ends back at the ground plane

to the right of the array.

84 It is not that the Kerr nonlinearity is gone; it is just that there is no large current tone that causes the resonance
to shift downward because of it. Small Kerr-induced shifts can still occur because of signals and nonideal flux-pump
tones.

85 For flux-pumped JPAs, we will frequently refer to the chip containing the TKC and flux-bias line, which is in
truth neither the TKC or nor the entire JPA, as simply the “JPA.”
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Figure 3.24: Discarded designs for TKCs with flux-bias lines. Six different concepts for laying out
the SQUID array and and flux-bias line for our flux-pumped JPAs are shown here. The shaded
region indicates superconductor, and the white region dielectric.

Figure 3.26 shows simulations performed in AWR Software’s Microwave Office of important

circuit behaviors which were used to guide the design of the flux-pumped JPAs. The layout and

port numberings used throughout the rest of the figure are shown in Fig. 3.26a. Ports 3–5 are used

to sense current along the flux bias line. Ports 6–11 are used to detect current within the SQUIDs.

As discussed in Sec. 3.2, the current within the two SQUID arms can be considered in the basis

of total and circulating currents. As illustrated in Fig. 3.26b, we here refer to I from Eq. (3.15) as

the common-mode current, Icom, and recast Icirc as the differential current, Idiff = 2Icirc. It is the

differential current that is essential to flux pumping, while any common current is an undesired

side-effect. The AC pump current Ip flows along the bias line as in Fig. 3.25c.

The first design consideration is the uniformity of current on the bias line. Figure 3.26c

shows the amplitude of the scattering parameter from port 2 to each of three internal ports spaced

along the bias line.86 The positive and negative numberings on the ports act as the positive and

negative nodes of a port for the purpose of simulating the scattering matrix. The response to the

86 For a discussion of internal ports in AWR, see Ref. [205].
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Figure 3.25: (a) Design for the full TKC connected to the flux-bias line, which extends across the
entire chip (length 6.3 mm). Bridges of superconductor cross the flux-bias line to ensure that the
ground plane is not interrupted. (b) Closeup on the TKC, with capacitor C (blue) and coupling
capacitor Cc (green) indicated. The capacitively coupled flux-bias line enters from the right. (c)
Further closeup on the flux-bias line and SQUID array. The flux-bias line meanders around the
SQUID array such that the contributions from the left- and right-moving current Ip cos(ωpt) add
according to the right-hand rule within the SQUID loops, producing an AC flux ΦAC at the same
frequency.

stimulus from port 2 is shown to differ from one extreme end of the array to the other by about 5

dB (difference of green and black lines; less than a factor of two in current amplitude) independent

of frequency. Since the device in Fig. 3.26 is meant to operate around ωTKC ≈ 6 GHz, we care

about the behavior of currents on the flux-pump line at 2ωTKC ≈ 12 GHz. Here, we see that the

even for port 3 (black curve), farthest from the flux-pump port (port 2), the transmission is greater

than -10 dB. Whether this is sufficient to bias the SQUIDs for flux pumping depends on the mutual

inductance between the bias line and the SQUID loops.

The second design consideration concerns this mutual inductance: in particular, we need a
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sufficiently large differential current to modulate the SQUIDs with ∼ 1/Qe flux quanta in order

to flux pump. For Qe ≈ 50, Eq. (3.37) implies that we need Idiff ∼ 0.6 µA. However, the fact

that we wish to operate these devices in a cryogenic environment around Tbase <∼ 30 mK limits

how much current Ip we can supply along the pump line. In order to reduce Johnson-Nyquist

noise [206,207] along the flux-pump port, we will couple the pump tone in with a 10 dB directional

coupler (Fig. 3.29).87 We measured the cooling power of our Oxford Triton 200 dilution refrigerator

to be roughly 10 µW at 30 mK. This is the maximum power we can send to the mixing chamber

plate of the dilution refrigerator, and the 10 dB coupler implies that only 10% of the power, 1 µW,

can make it through to port 2 of the flux-pumped JPA. For a 50 Ω characteristic impedance, 1 µW

corresponds to ≈ 140 µA. We therefore conclude that we require enough inductance coupling to

achieve ∣∣∣∣Idiff

Ip

∣∣∣∣ > 0.004, (3.200)

the ratio between 0.6 and 140 µA.

Figure 3.26d shows that our flux-pumped JPA meets the criterion of Eq. (3.200). By simu-

lating the admittance matrix Yij [187] of the system, we identify

Idiff

Ip
=
Y63 − Y73

Y33
(3.201)

for port 3 and the adjacent SQUID. The result of Eq. (3.201) (black curve), along with analogous

curves for the ports 4 (red) and 5 (green) and their neighboring SQUID loops, indicates that

Idiff/Ip ∼ 0.025, independent of frequency. As a confirmation on our understanding that the power

that makes it to each port 3–5 is sourcing the differential current in the neighboring SQUIDs, we

observe that the curves maintain the same hierarchy in Fig. 3.26d as in Fig. 3.26c.

The third and final design consideration, plotted in Fig. 3.26e, is that the common-mode

current be much smaller than the differential-mode current,∣∣∣∣Icom

Idiff

∣∣∣∣� 1, (3.202)

87 Unlike the directional couplers used for current pumping, this one does not go in the signal path, and will
therefore not be harmful to squeezing.
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Figure 3.26: (a) Design layout for the SQUID array region of the flux-pumped JPA shown in
Fig. 3.25c. Green (red) shaded region indicates the location of base electrode (wiring) supercon-
ductor. Josephson junctions are modeled with lumped element nonlinear inductances. Numbered
internal ports are used to detect the current flowing at different physical locations. Ports 1 and 2
(not shown) are the input ports for signal and flux pump, respectively. Ports 3–5 measure current
along the bias line. Ports 6–11 measure currents on individual arms of SQUIDs. Not all of the
current sent in the 50 Ω coplanar waveguide (CPW) pump line from port 2 makes it to the bias
line because of an impedance mismatch at the entry to the SQUID region. (b) Definitions of the
common (Icom)- and differential (Idiff)-mode currents within a SQUID, as well as the pump current
Ip along the AC bias line. (c) Probe frequency ν-dependent scattering parameter magnitude from
port 2 to ports 3, 4, and 5, corresponding respectively to locations on the bias line near the left,
center, and right of the SQUID array. (d) Ratio of differential-to-pump currents for ports 3–5
and the adjacent SQUIDs versus ν. (e) Ratio of common-to-differential currents for the SQUIDs
adjacent to ports 3–5 versus ν. For (c)–(e), we are chiefly interested in the behavior around 12
GHz for this flux-pumped JPA, designed to work near 6 GHz.
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when port 2 is excited. Failing to meet Eq. (3.202) would mean a substantial fraction of our pump

tone would be wasted creating a common-mode current, useless for flux pumping and able to

partially escape out the signal port of the TKC. For port 3,

Icom

Idiff
=
Y63 + Y73

Y63 − Y73
. (3.203)

Equation (3.203) (black curve) and its analogues for ports 4 (red) and 5 (green) with neighboring

SQUIDs show that the differential current for ωp = 12 GHz is at least threefold larger than the

common current across the array.88

Figure 3.27: (a) Simulated reflection coefficient phase arg(S11) versus probe frequency ν for the
signal port (port 1) of the flux-pumped JPA of Fig. 3.26. (b) Simulated transmission coefficient
magnitude |S21| = |S12| versus ν between the signal and pump port (port 2) of the same JPA.

Satisfied that the flux-bias line behaves as desired, we now turn our attention to the behavior

of the entire, two-port TKC. Figure 3.27a shows the reflection coefficient phase arg(S11) off of the

signal port, indicating Qe ≈ 50, as desired. Figure 3.27b shows transmission between the signal

and pump ports. We are concerned both with the behavior at the signal ∼ 6 GHz and pump ∼ 12

GHz frequency. Near the pump frequency, transmission is below -40 dB, which is practically ideal

behavior. On resonance, transmission reaches -28 dB, indicating that only 0.15% of a tone sent

into the signal port will be lost out of the flux-pump port.

Finally, using the harmonic balance functionality in Microwave Office, we verify in Fig. 3.28

that the device can achieve gain if the SQUIDs are properly biased with both DC and AC currents.

88 Since Microwave Office does not account for the Meissner effect, we might expect the precise values in these
plots to change slightly when the environment seen by the magnetic flux is partially superconducting.
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Figure 3.28: Simulated gain Gs versus probe frequency ν curves for different AC bias strengths
using harmonic balance. Pump powers used range from -55 to -48 dBm input to the flux-pump
port. Probe power is set to -120 dBm.

Figure 3.29: JPA configuration for flux pumping. This figure is the specification of Fig. 3.7 and
analogue of Fig. 3.20 for flux pumping. The directional coupler is now outside of the signal path
(and is not considered part of the JPA), and the pump tone no longer emerges with the signal.

We do not apply the DC currents through the port 2 bias line (which would not work in any case

due to its capacitive coupling), but rather manually by equipping each of the SQUIDs with a DC

current bias that creates a circulating current.

We designed six flux-pumped JPA chips with bare resonances logarithmically spaced between
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port 1:
signal

port 2:
pump

(a)

(c)

(b)

I(ωp)

100 µm

Figure 3.30: (a) False-color scanning electron microscope image showing the main elements in one
of our flux-pumped JPAs. Elements include a 550 fF interdigitated finger capacitor (purple), an
inductance comprising a SQUID array of 6 µA Josephson junctions (red), and a flux line, shorted
to ground (blue). (b) A closeup view shows several SQUID loops (red), surrounded by the flux line
(blue). The pump current I(ωp) sources a differential-mode current around the SQUID loops. (c)
The JPA equivalent circuit is shown with the same color-coding used in the images of (a) and (b).
Figure reproduced from Ref. [208].

4.6 and 10.3 GHz.89 Next, we will characterize their performance with some basic tests, as we did

for the current-pumped JPAs in Sec. 3.6.3.

3.7.2 Characterization measurements

The configuration of the TKC with other microwave components to realize a flux-pumped

JPA is shown in Fig. 3.29. Two of the advantages of flux-pumped JPAs — the removal of the

directional coupler from the signal path and the absence of the flux-pump tone at the output — are

visible here. False-color, SEM images are shown in Fig. 3.30 together with the equivalent circuit for

comparison. The JPA is pictured mounted and wire-bonded to a printed circuit board in Fig. 3.31.

89 This is essentially the same set of frequencies as for the current-pumped JPAs of Sec. 3.6.2, but leaving off the
lowest (4 GHz) and highest (12 GHz) frequency chips.
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Figure 3.31: Photo of a mounted flux-pumped JPA. The JPA is wire-bonded to a printed circuit
board and attached with Elmer’s rubber cement to a gold-plated copper mount. The assembly is
shown next to a penny for scale. It is later in a light-tight box, the bottom of which is formed by
the mount, and interfaced with via SMP connectors.

Figure 3.32 shows a two-dimensional (bias current, frequency) sweep of the bare JPA phase-

response with a weak probe tone and no pump. This measurement is identical to that of Fig. 3.22

for a current-pumped JPA. The immediate difference between the two is obvious: the flux-pump

tuning curve is substantially more structured. This structure is undesirable, and should not be

present in flux- or current-pumped designs. Its source remained a mystery over the course of the

experiments carried out with flux-pumped JPAs in Chs. 5 and 8, but was ultimately discovered

to be trapped flux in the “dummy SQUID” loops placed at the ends of the SQUID array. The

problem, and its resolution, are discussed in Appx. B. While the additional structure made tuning

somewhat more difficult, it generally did not limit performance once a satisfactory tuning location

was found.

In Fig. 3.33, we apply a flux-pump tone and successfully realize gain. We can modestly (∼ 50

MHz) tune the device’s amplification band at a given DC flux bias by changing the half-pump

frequency ωp/2. To achieve more dramatic tuning, the coil bias current is tuned.

The broader tuning landscape in the space of half-pump frequency and pump power is shown

in Fig. 3.34a for a given flux-bias. For linear amplification, the JPA should be operated below the
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Figure 3.32: Flux tuning of a nominal-7.5 GHz flux-pumped JPA resonance. This figure shows the
same measurement of reflection phase arg(S11) versus probe frequency ν and DC bias current that
Fig. 3.22 shows for a current-pumped JPA. The tuning landscape is here significantly more messy,
because dummy SQUIDs placed on the end of the SQUID arrays to create a more homogeneous
superconducting environment around each SQUID had the unintended effect of trapping flux near
the arrays.

point where gain diverges (or would diverge, in the small-signal limit) at a given frequency — that

is, below the center of the bright red feature in Fig. 3.34a. Figure 3.34b–d show gain curves taken

at various powers along the three dashed lines in Fig. 3.34a. Better operation tends to occur closer

to the line of 3.34b, where the high-gain region bottoms out in pump power.

Finally, Fig. 3.35 shows the 1-dB compression point for the flux-pumped JPA as a characteri-

zation of the power handling, and compares it to that for current pumping on the same device. The

1-dB compression is defined as the signal power where the gain falls off by 1-dB from its low-power

value. For higher gains, we observe that it takes smaller signals to saturate the power handling of

the device. However, we see that flux pumping outperforms current pumping on the same device



93

Figure 3.33: Flux-pumped JPA gain Gs versus probe frequency ν curves showing tunability between
and within different coil tunings. Within two DC flux tunings ∼ 300 MHz apart in resonance
frequency, Gs curves with maximum gain over 30 dB are achievable across ∼ 50 MHz.

for all gains.

With a knowledge of both current- and flux-pumped JPAs in hand, we are now ready to

move onto several key experimental results of this thesis. We will begin in the next chapter with an

experimental technique to improve the power handling for current-pumped JPAs used for squeezing.
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Figure 3.34: (a) Color map showing flux-pumped JPA two-quadrature gain Gs in the two-
dimensional parameter space of pump power and half-pump frequency νp/2 = 2πωp/2. Pump
powers are estimated at the input of the JPA flux-pump port from. (b)–(d) Gain versus probe
frequency ν curves taken along the linecuts indicated in (a). Some curves taken higher in power
than the main feature in (a) at a given frequency sometimes show a self-oscillation spike at the
half-pump frequency.

Figure 3.35: Power-handling measurements for flux- and current-pumped JPA operation. The 1-dB
compression point input signal power decreases with gain Gs for both flux- and current-pumped
operation of the same nominal 7.5 GHz flux-pumped JPA. Flux-pumped operation typically achieves
∼ 5 dB higher power handling for this device.



Chapter 4

Optimal current-pumped Josephson parametric amplifier operation for vacuum

squeezing

When operated in a phase-sensitive mode, the Josephson parametric amplifiers (JPAs) dis-

cussed in the previous chapter were seen to amplify one quadrature of the electromagnetic field while

deamplifying the other, enabling the squeezing of vacuum states below the standard quantum limit.

Such squeezed states can improve qubit readout fidelity in dispersive measurements [209–212], help

to better measure the motion of a mechanical oscillator [213], and enhance the signal-to-noise ratio

of spin-echo detection in a magnetic resonance experiment [214]. Relevant to this thesis, squeezing

can also accelerate haloscope-based searches for axionic dark matter. Where we left off in Ch. 2,

JPAs had already been successfully deployed in haloscopes, albeit only in a phase-insensitive mode

of operation [90,91,106,107].

In the idealized picture of Sec. 3.4.6, a JPA squeezes one quadrature of vacuum while ampli-

fying the other by the same amount [140, 215, 216]. Unfortunately, in practice vacuum squeezing

is limited by microwave losses and distortion due to amplifier saturation, or finite pump stiff-

ness [179,217]. Minimizing loss through improved, low-loss elements or via fewer microwave connec-

tions remains an important challenge, and, to that end, on-chip circulators [218–222], flux-pumped

JPAs (Sec. 3.7), and directional amplifiers [149, 151, 218] are promising. In this chapter, we will

focus on the complimentary challenge challenge: distortion.

In Ch. 3, we saw that a JPA is essentially a nonlinear LC resonator whose nonlinearity

comes from the Josephson junctions comprising its inductance. Parametric oscillation of the circuit



96

converts a pair of pump photons at frequency ωp into a signal photon at ωs and a complementary

idler photon at ωi in a four-wave process: 2ωp = ωs + ωi. In the degenerate case, the pump is

centered about the amplification band and ωp ≈ ωs ≈ ωi.

Different combinations of pump power and frequency will produce the same gain, and one

commonly operates at points first order-insensitive to pump power fluctuations, i.e. on the line of

maximum gain (LMG) [181]. Here a typical JPA can achieve more than 20 dB of gain and maintain a

linear relationship between input and output signal powers. Squeezing, however, is more susceptible

to nonlinearities that distort the output, arising when signal photons in the resonator greatly affect

the pump’s amplitude. These nonlinear effects impact the squeezed quadrature at gains much lower

than those where they affect the amplified quadrature. Pump stiffness can nonetheless be improved

by double pumping or flux pumping at the cost of increased design and control complexity.

In this chapter, which presents the work of Ref. [204] adapted to the language, conventions,

and context of this thesis, we will see how a current-pumped JPA can be optimized for squeezing.

In particular, pumping it with a power greater than that which maximizes gain at a given pump

frequency improves pump stiffness and minimizes signal distortion. We will first experimentally

study this effect on a coherent tone whose power is comparable to vacuum, and measure how it is

transformed by a JPA operated at constant gain, for various pump powers and frequencies. Then,

we will determine the optimal operating point for which the distortion is minimized. Finally, using

a second JPA as a phase-sensitive preamplifier to measure a vacuum squeezed state prepared by

the first JPA, we will see that squeezing follows the same dependence on operating point. With

optimized pump power and frequency, and while keeping microwave losses low, this technique will

allow for the generation, transportation, and readout of a state 3.87± 0.03 dB below vacuum, over

a bandwidth of 30 MHz, in an experimental setup designed to be equipped to an axion haloscope.

We will see that we are able to improve further on these numbers in the next chapter by

switching to flux-pumped JPAs. Nonetheless, the technique for optimizing current-pumped JPAs

for squeezing presented in this chapter may be of use to some axion haloscopes, as current-pumped

JPAs are often easier to design and/or acquire.
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4.1 Signal transformation in phase space

In Sec. 3.4.4, we derived the input-output relation between small input signal and output

signals âin and âout reflecting off of a tunable Kerr circuit (TKC; Fig. 3.6). Here, we will consider

just the classical behavior of the system.

A classical limit of the input-output theory derivation in Sec. 3.4.4 gives the complex field

amplitude, or phasor, αout, at the TKC output from the incoming field amplitude αin as

αout = αin

(
1− γe

i(Knα −∆) + γe/2

)
. (4.1)

Equation (4.1) follows as an immediate consequence of Eq. (3.106) given the boundary condition

Eq. (3.100). The average photon number nα, detuning ∆, Kerr constant K, and power decay rate

γe are given in earlier sections by Eqs. (3.110), (3.108), (3.96), and (3.77), respectively. This semi-

classical model does not properly treat the quantum noise at the JPA’s input, but it nonetheless

makes useful predictions of its behavior on a qualitative level.

In Sec. 3.4.4 we treated the JPA as losslessly amplifying an infinitesimally weak signal aine
iθ

in the presence of a large pump tone αin (here taken as phase reference), such that

Ain = αin + aine
iθ, (4.2)

where we are treating both pump and signal classically. Equation (4.1) provides a mapping between

input and output within the bandwidth of the JPA, and remains valid even without the stiff pump

approximation (Footnote 55). This transformation being unitary below bifurcation, the gain derives

from the sharp dependence of the output phase on the input amplitude. The photon number nα is

determined by the cubic Eq. (3.107). Figure 4.1a shows how a family of real input pump tones with

varying amplitude αin maps onto complex outputs αout. They are calculated from Eqs. (4.1) and

(3.107), with ∆ constant. A particular input phasor and its corresponding output are indicated

with black arrows, illustrating the JPA’s behavior at the greatest phase sensitivity, i.e. at maximum

gain.
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Figure 4.1: (a) Input-output mapping. A family of input pump phasors of different amplitudes
describes the horizontal, colored line. These inputs map onto output phasors distributed along the
correspondingly colored curve in the complex plane. They are normalized by the critical amplitude

αin,c = γe/
√

3
√

3|K|. Two black arrows indicate the pair of input and output phasors at maximum
gain. At this operating point, a zoom-in shows how a circular input signal phasor distribution maps
onto a banana at the output. Two other operating points (red and blue) are indicated. (b) Signal
distortion in phase space. The input phasor, simulated with 360 different angles θ (dashed circle,
deformed due to the unequal axis scaling), is processed by the Josephson parametric amplifier
(JPA) for three different pump powers corresponding to the operating points from (a). The lower
panel shows the distribution of points NX

p of these phasors, when projected onto the deamplified
X-axis. (c) JPA direct gain and (d) deamplified quadrature variance plotted as a function of pump
amplitude. All calculations are for γe = 2π × 109 MHz, ∆/γe = −0.77, K/γe = −4.2 × 10−4, and
a quality factor Q = ω0/γe = 65, typical values for our array-based JPAs. Figure adapted from
Ref. [204].

When adding a signal aine
iθ, the total input phasor Ain undergoes a θ-dependent transforma-

tion. One quadrature of the output signal aout is amplified while the orthogonal one is deamplified.
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At low JPA gain or infinitesimal input signal, aout exhibits an elliptic shape. However, as the input

signal or gain increases, it distorts into a “banana,” indicating that the pump is no longer stiff.

Figure 4.1b represents such distortions, or deviations from the elliptical output of an ideal degen-

erate parametric amplifier [179, 214], at three different JPA gains obtained by varying the pump’s

amplitude, for a probe tone whose power is equivalent to half a photon over the JPA’s bandwidth.

They are rotated to share their amplified and deamplified quadratures, respectively aYout and aXout.

At the point of maximum gain, aout actually has a larger projection on the deamplified axis X than

at intermediate gain, where the projection onto this axis is minimal. When a signal is detuned from

the pump, it creates output rotating phasors such as these, and the direct, or signal (see Footnote

61), gain is expressed as [176]

Gs =
〈Gθ〉+ 1

2
, (4.3)

with 〈Gθ〉 the average ratio of output to input rotating phasor power. Figure 4.1c shows the direct

gain as a function of pump amplitude αin.

A vacuum state, considered semi-classically as a statistical ensemble of phasors, should un-

dergo similar distortion when squeezed by a JPA. This effect degrades the maximal achievable

squeezing, because it increases the noise variance along the deamplified quadrature axis. To make

a qualitative estimate of the attainable degree of squeezing, we first project the distributions of

input and output points onto the deamplified quadrature axis (Fig. 4.1b), and then compare the

variances, (σ2
in) and (σ2

out), of these projections. Figure 4.1d shows the ratio σ2
out/σ

2
in, as a func-

tion of pump power, for a given pump frequency. Deamplification is maximized when this ratio

is minimized. Strikingly, the pump amplitude that produces maximum gain fails to yield maxi-

mum deamplification due to phasor-distortion of the vacuum-sized input. Instead, deamplification

reaches a global maximum at an amplitude greater than that at maximum gain, i.e. above the

LMG, where phasor distortion is better mitigated. We will examine this behavior experimentally

in Sec. 4.2, enabling the optimization of vacuum squeezing discussed in Sec. 4.3.
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4.2 Coherent state deamplification

The first experiment discussed in this chapter investigates the distortion of a vacuum-sized

coherent tone when varying the JPA operating point by changing the pump power and frequency. A

single cryogenic experimental setup is used for studying distortion and vacuum squeezing, discussed

in Sec. 4.3. It comprises two identical JPAs (Sec. 4.4.1) connected to each other, as shown in

Fig. 4.2. The first we label the squeezer (SQ), and the second the amplifier (AMP). Each can be

independently tuned via its own superconducting coil, and a variable temperature stage (VTS)

is used to inject known thermal noise into the amplifier chain and measure the SQ added noise

(Sec. 4.4.3). Microwave generators are used both to pump the two JPAs and to send coherent tones

to the input of the chain. An in-phase/quadrature (IQ) mixer demodulates the output quadratures

with respect to a local oscillator (LO). In this first experiment, the AMP is not used; tuned more

than 1 GHz below the SQ band, it acts as a passive element of unit gain.

pump
AMP

pump
SQ

VTS

coherent
tone

LO

20 mK

SQ AMP

I Q

HEMT

L

R

coil coil

ADC

4 K

Figure 4.2: Experimental setup for coherent tone distortion and vacuum squeezing. The squeezer
(SQ) and (AMP) are mounted in series. When studying distortion, the AMP is detuned and not
pumped, while a microwave generator sends a known coherent tone at the chain’s input (dashed
circle), then processed by the SQ. Microwave losses between SQ and AMP are parametrized by η.
After subsequent amplification by a cryogenic high-electron-mobility transistor (HEMT) amplifier
the tone is mapped to low frequency using an in-phase/quadrature (IQ) mixer and a local oscillator
(LO). An analog-to-digital converter (ADC) records the output signal’s I and Q quadratures. Figure
reproduced from Ref. [204].

In order to compare distortion and SQ direct gain GS at particular operating points, we find
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GS (measured with a vector network analyzer, see Sec. 4.4.1) as a function of pump power Pp and

frequency νp. We identify the critical point, Eqs. (3.117)–(3.119), at which the gain diverges, and

describe the pump power and frequency as fractions of these critical values (Fig. 4.3a). The dashed

black line shows the LMG. We compare deamplification when operating the SQ at points with

equal gains below, above, and on this line. From the weaker dependence of gain on incident power

above relative to below the LMG, visible in Fig. 4.3a, we anticipate more linear behavior above the

LMG.

To characterize the nonlinear behavior and visualize phasor distortion, we now input a

vacuum-sized coherent tone aine
iθ whose phase θ slowly rotates in the SQ pump’s frame (Sec. 4.4.1).

With LO and SQ pumps at the same frequency, the tone describes traces at the output in the IQ-

plane such as those in Fig. 4.3b. They are obtained with the SQ operated above the LMG. Thus,

decreasing the pump power, GS increases from 6 to 13 dB, as the output transitions from ellipse

to banana.

Figure 4.3: (a) SQ gain map, with critical frequency νc = 7.0032 GHz and input critical power
Pc = −93.1 dBm. The different symbols N, ‚, and • correspond to those in Fig. 4.4. (b) Output
tone in the IQ-plane (input is a circle of unit radius, not shown). The SQ direct gain is varied
between 6 (blue) and 13 dB (green), and operated above the line of maximum gain (LMG) at
νp/νc = 1.0015, a frequency indicated by arrows in (a). The asymmetric axis scales mean all
output tones are longer along the Y dimension. Figure adapted from Ref. [204].
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Upon repeating the measurement with the SQ off, we characterize deamplification as a func-

tion of the SQ operating point by forming the ratio σ2
out/σ

2
in, as seen in Sec. 4.1. Figure 4.4a shows

these ratios, calculated from the points in Fig. 4.3b. When operating above (relative to on or be-

low) the LMG, we observe the highest deamplification at fixed gain. Above GS = 9 dB, however,

deamplification decreases due to phasor distortion.

Finally, we study deamplification along a contour of constant direct gain, encircling the

critical point, to look for an optimal operating point at which distortion is minimized. Figure

4.4b characterizes the tone’s deamplification along the GS = 8 dB contour, at operating points

away from bifurcation (i.e. for νp > νc), indicated in black in Fig. 4.3a. Below the LMG σ2
out/σ

2
in is

about -7 dB, whereas above it decreases to about -10 dB, as a result of reduced distortion. Thus,

operating the SQ above the LMG and with a gain of about 9 dB maximizes deamplification. We

will leverage these findings in Sec. 4.3 to optimally bias the SQ.

Figure 4.4: (a) Deamplification shown as a function of SQ direct gain. The SQ is operated below
(N) and above (‚) the LMG (at νp/νc = 1.0015), as well as on (•) the LMG (where the pump
frequency has been varied). (b) Deamplification shown for the black points in Fig. 4.3a, where
GS = 8 dB. Figure adapted from Ref. [204].
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4.3 Optimizing vacuum squeezing with a current-pumped JPA

Most applications of microwave squeezed light require the ability to both generate and ef-

ficiently detect a squeezed state. These dual capabilities can be demonstrated with the AMP

cascaded after the SQ. Upon transport from SQ to AMP, the state suffers from microwave loss η

(Fig. 4.2), which replaces part of the state with unsqueezed vacuum [223], diminishing the mea-

surable degree of squeezing. These losses were reduced to η = 1.2 ± 0.2 dB (Sec. 4.4.2) using

superconducting cables and a narrowband triple-junction circulator with insertion loss < 0.5 dB.

To make a homodyne measurement of vacuum squeezing (see full setup in Fig. 4.7, Sec. 4.4.1),

one power generator provides the AMP pump and LO tones, while another, 20 kHz detuned,

provides the SQ pump tone. These spectrally adjacent pump tones must be cancelled to avoid AMP

saturation and preserve the squeezing of the pure vacuum state generated by the VTS at TVTS =

55 mK� ~ωS/kB. These cancellations are performed by combining π-phase-shifted pump tones at

the output of each JPA. The AMP acts as a nearly noiseless (Sec. 4.4.3) phase-sensitive amplifier

with roughly 30 dB of single-quadrature gain so as to overwhelm the rest of the amplification chain’s

added noise. After amplification, the squeezed vacuum is then digitized. A full 2π phase difference

θ between SQ and AMP pumps is swept every 1/20 kHz = 50 µs, and the phase for which the

digitized voltage signal is periodically minimized is taken to be the SQ squeezed quadrature. The

variance of the voltage fluctuations in this quadrature is thus computed with the SQ on, and then

again with it off. The reduction in variance when the SQ is on is taken to be the squeezing,

S =
σ2

on

σ2
off

. (4.4)

Optimal squeezing occurs at νp/νc = 1.0015, with direct gain GS = 8 dB, and above the

LMG, as expected from Sec. 4.2. Figure 4.5a shows a histogram of the voltage fluctuations Vθ

retrieved along the AMP amplified quadrature as a function of θ. Compared to panel (b), where

the SQ is off, vacuum has been squeezed for θ = π/2 and 3π/2. Figure 4.5c presents a cut in the

histograms at θ = π/2, demonstrating a clear reduction in the Gaussian’s standard deviation, and

Fig. 4.5d displays the squeezing S as a function of θ, with a minimum of -3.87 ± 0.03 dB. This
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reduction in variance, which is measured over a full 30 MHz band centered on the AMP’s pump,

is not a value inferred at the output of the squeezer, but rather one directly measured90 at the

terminus of the measurement chain without any losses or added noises calibrated away.

Figure 4.5: (a) Histogram of output voltage fluctuations Vθ along the AMP amplified quadrature
with SQ on as a function of the phase difference θ between SQ and AMP pumps. (b) Histogram
with SQ off. (c) Profile of the fluctuations and Gaussian fits (solid lines) along the dashed lines
drawn in panels (a) and (b), at θ = π/2. (d) Squeezing, Eq. (4.4), as a function of θ. The SQ is
operated with direct gain GS = 8 dB, obtained with a pump frequency νp/νc = 1.0015 and pump
power Pp/Pc = 0.5045 dB. Figure adapted from Ref. [204].

Moving the SQ operating point, it was verified that squeezing decreases as we approach the

90 This directly measured value should not be compared straightforwardly to inferred values of squeezing such as
those cited in e.g. Refs. [224,225]. The directly measured reduction in variance suffers from loss and added noise that
comes after the creation of the squeezed state. To see the consequences of our choice, consider Ref. [215]. There, the
directly measured squeezing of -1.7 dB corresponds to -9.2 dB inferred squeezing upon correcting for microwave losses
and detection efficiencies. The directly measured value most closely tracks the realizable benefit of using squeezed
states in the presence of loss and added noise.
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Figure 4.6: (a) Squeezing plotted as a function of pump power for νp/νc = 1.0015. The points in
red, black, and blue are, respectively, below, on, and above the LMG. (b) Squeezing plotted as a
function of SQ direct gain. The red and blue points are those used in (a). For the black points, νp
has been varied to obtain gains between 6 and 14 dB. Figure adapted from Ref. [204].

LMG, due to increasing gain. Adjusting the pump’s power while keeping the frequency constant,

we can move the operating point from below to above the LMG, describing a line cut in the gain

map, indicated by arrows in Fig. 4.3a. Figure 4.6a shows the squeezing along this cut, in qualitative

agreement with the theoretical and experimental results on coherent tones seen in Secs. 4.1 and 4.2.

Furthermore, a slightly better squeezing is obtained above the LMG than below, as expected. This

feature is displayed in Fig. 4.6b, where squeezing is reported as a function of SQ gain.

4.4 Experimental details and calibration

This section describes additional experimental details and calibration measurements rele-

vant to the experiments of Secs. 4.2 and 4.3. Section 4.4.1 overviews the experimental setup, and

Secs. 4.4.2 and 4.4.3 respectively detail measurements to determine the loss in the lines between

the JPAs and the noise added by the amplification chain.
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4.4.1 Experimental setup

The full experimental setup used throughout this chapter is represented in Fig. 4.7. SQ and

AMP TKCs like that of Fig. 3.17 are individually magnetically shielded. They can be tuned via

coils biased by current sources. The generator which provides the AMP pump and cancellation

tones also sources the LO. A switch may be used to turn off the AMP pump without interrupting

the LO. A third generator (far left in Fig. 4.7) is used to create the probe tone. Output signals

are demodulated with an IQ mixer, then digitized. A vector network analyzer (VNA) is used to

determine the direct gains and a spectrum analyzer (SA) monitors pump cancellation. Each cancel

line consists of a variable attenuator and a phase shifter. Several isolators and 3 dB attenuators

are placed in the setup to minimize harmful reflections.

At base temperature, a triple-junction circulator links the SQ and AMP TKCs. It provides

> 50 dB isolation between SQ and AMP, and has low insertion loss (< 0.5 dB). A VTS, weakly

coupled to the base temperature plate and composed of a 50 Ω load, a heater, and a thermometer,

generates the chain’s input noise and allows for measurement of SQ added noise. Superconducting

Nb/Ti lines are placed between TKCs and directional couplers to further reduce microwave loss,

and the directional couplers are directly connected to the circulator with swept elbows.

To measure the distortion of a coherent tone (Sec. 4.2), its power is adjusted to PPR = 1
2~ωB

in order to keep it comparable to vacuum, with B the SQ bandwidth. With the LO generator

at the same frequency as the SQ pump, the tone is detuned by νPR − νp = 20 kHz, so that its

phasor slowly rotates in the LO’s frame, enabling the measurement of 360 independent phasors

within the 15 MHz intermediate frequency (IF) bandwidth of the readout chain. Due to the feeble

input signal, the two output quadratures must be heavily averaged in order to describe traces in

the IQ-plane such as those in Fig. 4.3b.
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Figure 4.7: Full experimental setup used for both coherent tone deamplification and squeezing.
The input and output coaxial cables are colored in black and purple, respectively. The green lines
are superconducting. Figure reproduced from Ref. [204].
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4.4.2 Inter-JPA loss calibration

Calibrating the lines relies on measuring the overall input attenuation AI from the probe

tone’s microwave generator to the SQ input, and also the overall (single-quadrature) amplifications

GOA,1Q and GOS,1Q from the TKC outputs to the analog-to-digital converter (ADC). Knowing AI

allows for calibration of the probe power incident on the SQ TKC, and the ratio

η = GOA,1Q/G
O
S,1Q (4.5)

provides, ceteris paribus, an estimate of the loss experienced by the squeezed state when travelling

between SQ and AMP.

Operating one JPA at a time (without pump cancellation), GOA,1Q and GOS,1Q are calculated by

integrating the power spectral density of vacuum fluctuations recorded by the ADC over a window

W = 500 kHz within the JPA’s bandwidth. A heterodyne measurement, with LO and JPA pump

detuned by 5 MHz, and W ending 400 kHz below the pump, is performed to avoid DC offsets.

Thus, when measuring GOA,1Q, the generator used for pumping is the one connected to the SQ,

itself detuned. The SQ TKC then simply acts as a mirror, and the pump tone reaches the AMP

after reflection. Given a quantum at the SQ or AMP input, the integrated power for both cases is

POS/A = ~ωWGOS/AGS/A, (4.6)

with GS/A the SQ or AMP gain, measured with the VNA. Operating the JPAs at various gains

between 20 and 30 dB in order to ensure that the output spectral density linearly tracked the JPA

gain yielded

GOS,1Q = 75.3± 0.1 dB (4.7)

GOA,1Q = 76.5± 0.1 dB. (4.8)

Therefore, we estimate that η = 1.2 ± 0.2 dB. In principle this value should enable us to observe

about 5.6 dB of squeezing, a bit more than what was measured. But in practice, we are limited

by a combination of squeezed state distortion and the contribution from the high-electron-mobility
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transistor (HEMT) amplifier added noise, which becomes harder to overwhelm when squeezing

because the HEMT added noise is larger relative to the squeezed state than to vacuum.

To estimate AI , we use a similar protocol. Turning off both JPAs, a probe tone with input

power P IP travelling in the lines creates an output power POP on the ADC as

POP = P IPG
O
S,1QA

I , (4.9)

leading to an estimate of AI = −81.4± 0.2 dB.

4.4.3 Added noise calibration

Any resistor at temperature T generates noise of known variance, whose spectral density in

units of quanta at angular frequency ω is

Sin =
1

2
+

1

e~ω/kBT − 1
. (4.10)

The VTS therefore allows us to generate a known thermal state at the chain’s input, which is then

amplified by the SQ, giving at its output:

SS,out = GS,1Q(Sin +NS), (4.11)

where GS,1Q is the SQ gain and NS its added noise (in this experiment only the SQ is used; the

AMP is detuned). Since we are operating the SQ in a phase-sensitive mode, NS ≥ 0.

In practice there are inefficiencies along the thermal state’s path from VTS to SQ. We can

model these with a simple beamsplitter picture, such that a fraction λ of Sin is replaced with noise

Sf at the fridge’s temperature. Considering the system added noise as

Nadd = NS +
NH

GS,1Q
, (4.12)

where NH is the HEMT added noise, we have

Sout = GOSGS(λSin + (1− λ)Sf +Nadd) (4.13)

= GOSGSS
in
out
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Figure 4.8: Noise spectral density as a function of variable temperature stage temperature. The
noise is referred to the SQ input. Points in black, blue, and red are for fridge’s temperatures
Tf = 50, 300, and 500 mK, respectively. The statistical error is smaller than the point size. The
solid lines are obtained from fitting the parameters Nadd, λ and the overall gain of the chain
GOS,1QGS . Figure reproduced from Ref. [204].

at the output of the chain, where GOS,1Q is the chain’s gain, and Sin
out is the output noise spectral

density referred to the SQ input. Varying Sin and Sf , we thus can deduce Nadd and λ.

With a homodyne configuration (LO and SQ pump at the same frequency), we integrate the

output noise spectral density Sout over the SQ bandwidth B for various VTS temperatures. The

fridge’s base temperature Tf is fixed and GS,1Q ≥ 25 dB is tracked by amplifying and measuring

a small pilot tone. Figure 4.8 shows Sin
out as a function of the VTS temperature for three different

fridge temperatures. A fit gives Nadd = 0.045 ± 0.001 and λ = 0.79 ± 0.01, where the quoted

uncertainties correspond to statistical errors in the measurements.

4.5 Concluding remarks on current-pumped JPAs optimized for squeezing

Pump stiffness is crucial when generating a microwave squeezed state with a JPA, because

any deviation from the stiff-pump regime strongly affects the squeezed quadrature. A lack of
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stiffness distorts output signals, thereby limiting the maximum degree of squeezing. We have seen

that operating above the LMG therefore constitutes a partial solution to the problem of finite

pump stiffness by means of choosing the operating point to lie above the LMG. The coherent tone

deamplification measurements of Sec. 4.2 confirm the efficacy of this approach, with less phasor

distortion above the LMG. When squeezing vacuum, we see the same trend. Maintaining low

microwave loss, it was thus possible to generate and deliver a 3.87±0.03 dB vacuum squeezed state

from one JPA to another over a band of 30 MHz.91

The benefits of optimizing JPA operation explored in this chapter will grow as losses shrink.

With relatively high losses, it does little good to create a minimally deformed squeezed state, only to

have most of it replaced by unsqueezed vacuum. However, as losses come down for experimentalists,

preventing squeezed state deformation will have impact beyond the few percent level achieved in

this chapter, as observed in Sec. 4.2 for the deamplification of a coherent tone.

For the purposes of axion detection with present-day technology, however, the gains achieved

in this chapter are insufficient to recommend current-pumped JPAs in light of their two key dis-

advantages for axion detection. First, the losses introduced by the directional couplers in Fig. 4.7

degrade the itinerant squeezed state more than is absolutely necessary.92 Second, the pump can-

cellation of Sec. 4.3 poses a significant experimental challenge for an active haloscope which must

be automatically tuned through frequency space. This difficulty is further compounded by the

Kerr shift of current-pumped JPAs. Unlike with flux-pumped JPAs, changing the drive power

changes the resonant frequency, making it harder still to stabilize both pump and cancellation

tones for two JPAs simultaneously. In light of this conclusion, subsequent work in this thesis uses

the flux-pumped JPAs of Sec. 3.7.

91 This 30 MHz is more than enough for axion haloscope purposes: as we will see in Chs. 5 and 8, the usable
bandwidth for an axion haloscope at these frequencies is closer to 1–2 MHz.

92 While switching to flux-pumped JPAs will get rid of these directional couplers, the introduction of the second,
flux-pump port on the TKCs does allow for signal loss. In practice, however, the amount of loss out this port
(Fig. 3.27b) is far less than that from the reflection off and transmission through a directional coupler.



Chapter 5

Squeezed vacuum used to accelerate the search for a weak classical tone

In Ch. 2, we saw that the present generation of axion haloscope experiments [91, 107, 108] is

or soon will be limited by vacuum fluctuations in the microwave field. The quadrature operators

X̂ and Ŷ of a resonant cavity’s electromagnetic (EM) field, Eqs. (3.137) and Eqs. (3.138), carry

the imprint of the dark matter signal as a slight excess in their power spectra. Problematically,

the quantum noise [128] intrinsic to a measurement of these observables overpowers the signal by

roughly three orders of magnitude,93 and the signal frequency is a priori unknown [226]. Among

the most promising advances are those which allow access to a fundamentally distinct parameter

regime in which axion searches are no longer limited by quantum noise.

In detectors measuring the quadratures of a resonant mode, quantum noise can be circum-

vented by preparing the mode in a squeezed state. Squeezing unbalances the uncertainties in the

two quadrature observables, thereby permitting precise knowledge of one at the expense of the

other. Leveraging quantum squeezing to enhance measurement sensitivity has been a longstanding

goal [227–230] in the optical domain, now realized for the sensing of gravitational waves [231].

At microwave frequencies, squeezing had, prior to the work described in Ch. 8 of this thesis, been

demonstrated in principle [209,213,214], without yet aiding in a search for new physical phenomena.

Microwave squeezing can be used to aid in an axion dark matter search subject to current

experimental constraints. This chapter presents the work of Ref. [208] in order to substantiate that

93 A three order-of-magnitude discrepancy between signal and noise spectral densities requires six orders of mag-
nitude worth of independent realizations of the axion field merely to achieve an SNR of 1 [77], itself insufficient to
detect or exclude the axion.
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claim, first theoretically and then experimentally, before the conclusive experiment is performed in

Ch. 8. In particular, we will see in this chapter that squeezing increases the scan rate in a search

for a weak, axion-like signal of unknown frequency. This improvement exists in spite of the fact

that squeezing does not improve the sensitivity of a haloscope to a tone of known frequency. This

speed-up is demonstrated in an apparatus designed to mimic the behavior of existing haloscopes.

With a maximum of 4.5±0.1 dB of squeezing delivered from one flux-pumped Josephson parametric

amplifier (JPA; Sec. 3.7) to another in a squeezed state receiver (SSR) configuration, we will see

implemented a realistic acquisition and processing protocol both with and without squeezing en-

abled. The SSR presented in this chapter accelerates the scan rate to axion-like signals by a factor

of 2.12 ± 0.08 over 200 independent experimental trials. In Ch. 8, we will equip the HAYSTAC

experiment with the SSR developed in this chapter to speed it up by very nearly that amount.

5.1 Theory of the squeezed state receiver

Figure 5.1 shows a representative experimental apparatus in which a resonant cavity is cou-

pled to an SSR comprising a pair of JPAs. We start by considering the cavity, whose internal mode

(frequency ωc) has Hamiltonian

Ĥ = ~ωc
X̂2 + Ŷ 2

2
, (5.1)

equivalent to that of Eq. (3.62) subject to the definitions of Eqs. (3.137) and (3.138). The quadra-

tures of the cavity field obey

[X̂, Ŷ ] = i, (5.2)

a direct consequence of their definitions and Eq. (3.59). This cavity is modeled as exchanging

energy with three ports. First, a measurement port couples the cavity mode to the propagating

modes of a transmission line with power decay rate κm. Along this line, a microwave circulator

spatially separates incoming and outgoing propagating modes. Second, a loss port, connected to

a fictitious transmission line, models the cavity’s internal energy dissipation at rate κl. Third,

the cavity’s coupling to the signal of interest at rate κa is modeled as occurring through another
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fictitious transmission line; the signal itself is modeled as a microwave generator characterized by

its frequency ωa, spectral width94 ∆a, and amplitude Ea. We assume Ea � 1, implying that the

displacement of the cavity mode by the signal is classical (i.e., the contribution of the signal to

the cavity’s quantum fluctuations can be neglected in comparison to those coming from the loss

and measurement ports). We also assume a narrowband signal (∆a � {κl, κm}) so weakly coupled

(E2
aκa � κl) that the time required to resolve the displacement is much longer than the signal’s

phase coherence time. Therefore, on average, this displacement yields a small excess power above

the vacuum fluctuations, isotropic in quadrature space (bottom panel of Fig. 5.1). These inequalities

are very well satisfied in the case of the axion field (Sec. 5.2).

The SSR itself comprises two JPAs coupled respectively to incoming and outgoing modes at

the cavity’s measurement port. This configuration exploits the fact that a portion of the vacuum

noise exiting the measurement port arises from vacuum noise incident on that same port. The first

JPA (called SQ, as in Ch. 4) squeezes these input fluctuations along the X̂ quadrature, reducing

the observable’s variance below vacuum levels:

σ2
X <

1

2
. (5.3)

To satisfy the uncertainty principle, the opposing quadrature’s fluctuations exceed vacuum

σ2
Y >

1

2
, (5.4)

but are not measured. The squeezed input field subsequently enters the cavity, where a small dis-

placement by the signal would yield a small excess power in both quadratures. At the measurement

port output, the second JPA (again called AMP) noiselessly amplifies only the X̂ quadrature with

sufficient gain to overwhelm the noise added by following amplifiers and mixers.

The benefit of squeezing can be understood by analyzing the microwave network formed by

the combination of SSR and cavity using input-output theory (Sec. 3.4.4). We will here qualitatively

overview the results of more detailed calculations that we will perform first in the lossless case in

94 A closely related quantity is the standard deviation of the axion lineshape, σSHM in Fig. 2.5. The numbers
used the quote the axion spectral width traditionally encompass a bit more of the axion lineshape than the standard
deviation does.
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Figure 5.1: Top panel: schematic of the SSR and cavity. Two Josephson parametric amplifiers,
squeezer (SQ) and amplifier (AMP), respectively squeeze and read out a microwave field interacting
with a cavity at rate κm. An axion-like field Ea, coupled to the cavity at rate κa, displaces the cavity
state. Energy leaves the cavity through internal absorption at a rate κl. Bottom panel: quadrature
representation of a vacuum state detuned from the cavity resonant frequency, travelling through
the SSR. At the SQ’s input (a) it is Gaussian, azimuthally equiprobable in the (X̂, Ŷ ) plane (red
disk). The state is squeezed along X̂ by the SQ (b), displaced along a random phase within the
cavity (c), and amplified along X̂ by the AMP (d). Comparing to what happens without squeezing
(e, f and g), the size of the signal-plus-noise (green) relative to the noise (red) in this quadrature is
larger with (d) than without (g) squeezing. Figure reproduced from Ref. [208].

Sec. 5.1.1, and then with experimental transmission losses modelled in Sec. 5.1.2. These calculations

show the benefit of squeezing against unsqueezed, single-quadrature axion detection. The picture

is completed in Sec. 5.1.3, where we will see that, in the absence of squeezing, there is neither a

benefit nor a penalty associated with measuring only one quadrature compared to the usual two-

quadrature case. Before describing experimental results in the rest of the chapter, in Sec. 5.2 we will

will map parameters of the model shown in Fig. 5.1 onto the physical parameters of e.g. Eq. (2.16),

which are conventionally quoted when searching for dark matter axions.
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The behavior of the apparatus shown in Fig. 5.1 is characterized by its signal and noise

spectral densities. The signal spectral density at the measurement port output is equal to the signal

spectral density at the measurement port input, weighted by the susceptibility of the measurement

port output to the signal port input. Similarly, the noise density at the measurement port output

is a susceptibility-weighted sum of squeezed and unsqueezed noise from the measurement and loss

ports, respectively. In the absence of transmission losses between the JPAs and the cavity, we will

see that the ratio of output signal spectral density to total output noise spectral density (hereafter

called the signal visibility) is

α(ω) ≈ nAκaκm(
nT + 1

2

) (
κlκm + β(ω)

GS,1Q

) . (5.5)

Here, ω is the frequency relative to cavity resonance,

nT =
1

e~ωc/kBT − 1
(5.6)

is the mean thermal photon number incident on the cavity from the measurement and loss ports,

nA = E2
a is the mean photon number sourced by the fictitious generator,

β(ω) =

(
κm − κl

2

)2

+ ω2, (5.7)

and GS,1Q is the single-quadrature power gain of the SQ, Eq. (3.139), along its amplified quadrature

(ideally equal to the reduction of the squeezed state variance below the vacuum value).

When optimizing α(ω) in Eq. (5.5), we assume that κm and GS,1Q can be freely varied,

whereas nT , nA, κl, and κa are fixed by the physics of the signal source or technical constraints of

the detector. On cavity resonance (ω = 0), α is maximized at critical coupling (κm = κl). Because

β(0) = 0 at critical coupling, α(0) is independent of GS,1Q and there is no benefit from squeezing;

physically, the squeezed state injected into the cavity is completely absorbed in it, while all the

unsqueezed noise from the loss port reaches the AMP. For ω 6= 0, squeezing increases α(ω) for any

value of κm, as GS,1Q reduces the amount of measurement port noise reaching the output. In the

limit where GS,1Q →∞, the β(ω) term in the denominator can be neglected, and α(ω) approaches
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the critically coupled resonant value α(ω = 0, κm = κl) for any κm and all ω. This illustrates an

important point of principle: squeezing cannot improve the peak sensitivity of a haloscope, but

it can almost without limit95 enhance the detector bandwidth over which this peak sensitivity is

achieved. When GS,1Q is finite, overcoupling (κm > κl) increases the cavity bandwidth at the cost

of reducing α(0). This can be a favorable tradeoff (even in the absence of squeezing) because the

signal’s frequency ωa is a priori unknown [60, 95], and broader bandwidth enables larger cavity

tuning steps. Moreover, squeezing mitigates the reduction of α(0) from overcoupling, thus enabling

faster tuning without significant degradation of sensitivity.

To quantify this speed-up, we will also calculate the scan rate R, Eq. (2.16), at which we

can tune the cavity resonance through frequency space in search for a signal. This scan rate is

inversely proportional to the measurement time at each tuning step, which in turn scales with α−2

as a consequence of Gaussian noise statistics (Sec. 5.1.1). Hence

R ∝ ∆a

∫ ∞
−∞

α2(ω)dω; (5.8)

carrying out the integral we obtain

R ∝
∆a

√
GS,1Qn

2
Aκ

2
aκ

2
m(

nT + 1
2

)2 [
κlκm + 1

GS,1Q

(
κl−κm

2

)2]3/2
. (5.9)

Without squeezing (GS,1Q = 1), R is maximized when the cavity is twice-overcoupled (κm = 2κl),

and at this optimal coupling the scan rate scales as Rmax
u ∝ κ2

a/κl, a known result [90].96 When

GS,1Q � 1, the optimal coupling is κm = 2GS,1Qκl and the scan rate scales as Rmax
s ∝ GS,1Qκ

2
a/κl.

Comparing the two situations, the scan rate is improved by GS,1Q, which shows that an ideal SSR

greatly accelerates the search for a weak classical signal when squeezing and overcoupling.

In practice, however, we will see in Sec. 5.1.2 how losses in microwave components reduce

the SQ-to-AMP transmission efficiency η and hence the benefit of squeezing, because part of the

95 Presumably, once the receiver bandwidth approaches the frequency of the cavity, it would become inviable to
measure the cavity state faster than its own oscillations. However, this limit is over three orders of magnitude away
from the performance achieved here and in Ch. 8.

96 In particular, a twice-overcoupled haloscope (without squeezing) scans 32/27 ≈ 1.19× faster than the same
haloscope in its critically coupled configuration, despite losing a little sensitivity at the cavity resonance frequency.
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squeezed state is replaced with unsqueezed vacuum. Figure 5.2 compares the theoretical scan

rate enhancement Et = Rs/R
max
u (a) when η = 1 (perfect transmission), and (b) when η = 0.69

(efficiency observed in practice), as a function of GS,1Q and κm/κl. In the first case, Et improves

arbitrarily as squeezing and coupling are together increased. In the second case, it plateaus at

Emax
t ≈ 2.2 for GS,1Q > 20 when optimally coupled. In Secs. 5.3 and 5.4, we will see experimental

results for the scan rate enhancement consistent with this theory.

Figure 5.2: (a) Theoretical scan rate enhancement Et, calculated as a function of SQ single-
quadrature power gain GS,1Q and coupling ratio κm/κl. With perfect efficiency, i.e. η = 1, scan
rate improves steadily with GS,1Q and κm. (b) Same as (a) for η = 0.69. Scan rate plateaus at 2.2
for κm/κl = 5 and GS,1Q > 20. The color scales for (a) and (b) differ by close to a factor of 10.
Figure adapted from Ref. [208] to correct an error whereby the lowest value on the color axes were
labeled “1.” The other axis labels have been verified.

5.1.1 Lossless calculation

In this section, we track the propagating EM fields through the SSR and cavity, so as to

derive the susceptibility matrix of the entire system. We then calculate the signal visibility α(ω)

and the scan rate R. We first consider the case where the propagating fields experience no loss

(the cavity mode still decays partially out its loss port), which nonetheless faithfully illustrates the

utility of the SSR, then treat the full system in the presence of transmission losses in Sec. 5.1.2.

We model the energy exchange between the cavity’s ports in its own rotating frame. The
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time evolution of the cavity is governed by the Heisenberg-Langevin equation

dÂ

dt
= −κT

2
Â(t) +

∑
j

√
κj âin,j(t), (5.10)

where Â is the cavity ladder operator,

κT = κm + κl + κa, (5.11)

and âin,j (j = m, l, a) are the annihilation field operators of the input modes incident on ports

indexed by m, l, and a. At the measurement port, we physically separate input (âin,m) and output

(âout,m) fields with a circulator. Given the input-output (or boundary conditions) relations

√
κjÂ(t) = âin,j(t)− âout,j(t), (5.12)

analogous to those of Eq. (3.100), the input and output field operators are related in the Fourier

domain by

âout,j(ω) =
∑
k

χjk(ω)âin,k(ω), (5.13)

where

χjk(ω) =
−√κjκk + (κT /2 + iω)δjk

κT /2 + iω
(5.14)

are the elements of a 3× 3 susceptibility matrix fully describing the behavior of the cavity [200].

By cascading the input-output relations for each element presented in Fig. 5.1, we can calcu-

late the benefit from squeezing. We work in the quadrature basis and consider the vector of input

quadratures

~xin = [X̂in,m, X̂in,l, X̂in,a]
T (5.15)

aligned with our squeezing. We will calculate the SSR/cavity susceptibility matrix ΞX , in terms

of which the vector of output quadratures is

~xout = ΞX~xin. (5.16)
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The first element in the system is the SQ, which performs a one-mode squeezing (OMS)

operation on the measurement port’s input quadrature:

~xS = SX~xin =


1√
GS,1Q

0 0

0 1 0

0 0 1

 ~xin, (5.17)

where the subscript S refers to the SQ output port and GS,1Q is the SQ single-quadrature power

gain. The OMS operation also amplifies the other quadrature of the measurement port mode, Ŷin,m

by
√
GS,1Q in order to preserve the Heisenberg uncertainty relation. We do not track the evolution

of the Ŷ quadrature here, as it is irrelevant for SSR performance.

Next, the cavity transforms the quadrature operators. In the cavity rotating frame, the

vectors of quadrature operators are obtained from the vectors of ladder operators by~x
~y

 =
1√
2

 I3 I3

−iI3 iI3


 ~a(ω)

~a†(−ω)

 , (5.18)

or

[~x, ~y]T = P [~a(ω),~a†(−ω)]T (5.19)

Here I3 is the 3× 3 identity matrix, and the mode ordering in each vector is m, l, a: for example,

~a(ω) = [âm(ω), âl(ω), âa(ω)]T. (5.20)

Thus, the cavity susceptibility matrix in the quadrature basis χ̃ is:

χ̃ = P

χ(ω) 03

03 χ∗(−ω)

P−1 =

χ(ω) 03

03 χ(ω)

 , (5.21)

where 03 is the null matrix. We see that the cavity’s effect on field and quadrature operators is

identical, which leads to

~xo = χ(ω)~xS , (5.22)

where o refers to the cavity output port.
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Finally the AMP performs a second OMS operation so as to amplify the quadrature that the

SQ originally squeezed:

~xout = AX~xo =


√
GA,1Q 0 0

0 1 0

0 0 1

 ~xo, (5.23)

where GA,1Q is the AMP power gain. The SSR and cavity thus transform input to output quadra-

tures according to

~xout = AXχ(ω)SX~xin = ΞX~xin. (5.24)

We can then calculate the single-quadrature output spectral density matrix

Σout,X =
〈[~xout]

†[~xout]
T〉

2π
, (5.25)

where the Hermitian conjugation here does not transpose the vector, in order to determine the

total output signal and noise powers. Substituting for ~xout yields

Σout,X = Ξ∗XΣin,XΞT
X , (5.26)

where

Σin,X =
〈[~xin]†[~xin]T〉

2π
(5.27)

is the input noise spectral density matrix. Since the SSR is connected to three incoherent and

uncorrelated modes (Fig. 5.1),

〈X̂in,jX̂in,k〉
2π

= δjk

(
nin,j +

1

2

)
, (5.28)

where nin,j is the input mean photon number per unit time per unit bandwidth (henceforth simply

mean photon number) of mode j. Thus,

Σin,X =


nT + 1

2 0 0

0 nT + 1
2 0

0 0 nA + 1
2

 . (5.29)
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Taking the first entry in the matrix Σout,X we obtain the single-quadrature output spectral density

at the measurement port:

Σout,X,m ≈
GA,1Q

B(ω)

[
nAκaκm +

(
nT +

1

2

)(
κlκm +

β(ω)

GS,1Q

)]
, (5.30)

where

B(ω) =

(
κm + κl

2

)2

+ ω2, (5.31)

β(ω) is given by Eq. (5.7), and we used κa � {κl, κm} and nA � 1/2.

The visibility α(ω) can be directly extracted from Σout,X,m, since the signal is the term

proportional to nA and the noise is Σout,X,m(nA = 0). The result is exactly that quoted in Eq. (5.5).

We now consider a search protocol comprising many measurements of Σout,X,m, as the cavity

frequency is tuned by discrete steps δc. The spectral scan rate R is obtained by taking the limit:

R = lim
δc→0
τ→0

δc
τ
, (5.32)

where τ is the duration of each measurement. In the rest of this section we will derive Eq. (5.9) for

the scan rate. We begin by defining the signal-to-noise ratio (SNR) at a single tuning step as

α(ω) =
√
τ∆a

α(ω)

2
, (5.33)

which scales as the square root of the number of independent measurements of the power contained

in the bandwidth ∆a, centered on a frequency detuned from cavity resonance by ω/2π [77, 106].

The factor of 2 is a consequence of our single-quadrature measurement scheme, which is discussed

in Sec. 5.1.3. The SNR is a useful quantity, as it relates the visibility to how much time is actually

needed to resolve an axion signal.

For δc <∼ κT /2π, multiple tuning steps will contribute to the SNR at each frequency. Without

loss of generality, we evaluate the net SNR for some putative signal frequency ωa which coincides

exactly with the cavity resonance at a particular step. We then consider the contributions to the

SNR of the surrounding 2n+ 1 tuning steps, where

2πδc = 2κT /(2n+ 1). (5.34)
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Contributions to the SNR add in quadrature, so the net squared SNR is

α2
2n+1 =

τ∆a

4

1

δc

k=n∑
k=−n

α2(k2πδc)δc. (5.35)

In the limit n→∞, τ → 0, we obtain the integrated squared SNR

α2
I =

∆a

4

1

R

∫ ∞
−∞

α2(ω)
dω

2π
, (5.36)

where we have extended the limits of integration to ±∞: the contributions from tuning steps where

the cavity is detuned by more than κT are negligible.

Note that our arbitrary choice of ωa appears nowhere explicitly on the right-hand side of

Eq. (5.36); thus the integrated SNR will be frequency-independent, insofar as the quantities con-

tributing to α(ω) remain constant as we tune the cavity. In practice, we set a certain target value

of αI for which a real signal would appear as a sufficiently prominent peak in the grand spectrum

(see e.g., Fig, 5.7b); this choice determines the required spectral scan rate R. Solving for R, we

obtain

R =
∆a

4α2
I

∫ ∞
−∞

α2(ω)
dω

2π

=
∆a

√
GS,1Qn

2
Aκ

2
aκ

2
m

16α2
I

(
nT + 1

2

)2 [
κlκm + 1

GS,1Q

(
κl−κm

2

)2]3/2
,

(5.37)

in agreement with Eq. (5.9). In a comparison of squeezed and unsqueezed scan rates, the ∆a/4α
2
I

factor drops out; thus, we need only compare the integral in Eq. (5.9) for the two cases.

5.1.2 Calculation with transmission losses

Here we generalize the calculations of Sec. 5.1.1 to account for imperfect power transmission

efficiency η between SQ and AMP. Integrating the squared SNR over all frequencies, we obtain the

scan rate as a function of η, used in Fig. 5.2. For simplicity, we treat the transmission efficiency λ

between the SQ and the cavity as identical to that between the cavity and the AMP, hence η = λ2.

Note that in principle, loss between SQ and cavity is slightly less harmful than loss between cavity

and AMP, as loss that occurs after the cavity degrades the signal along with the squeezing.
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As in Sec. 5.1.1, we track the vector of input quadratures ~xin throughout the SSR and cavity

system, neglecting the orthogonal quadratures. First, the SQ performs the OMS operation defined

by Eq. (5.17): ~xS = SX~xin. Next we must account for transmission losses between the SQ and the

cavity, modeled as a beamsplitter interaction between the quadrature operators of the measurement

line at the SQ output {X̂s,m, Ŷs,m}, and those of another, uncontrolled mode {X̂s,λ, Ŷs,λ}. We could

define generalized quadrature vectors ~xS and ~yS to include X̂s,λ and Ŷs,λ respectively, but we do

not need to keep track of the EM field’s evolution in loss modes. Among the modes we do keep

track of, only the mode entering and exiting the measurement port experiences the loss:

~xi =


√
λ 0 0

0 1 0

0 0 1

 ~xS , (5.38)

or ~xi = LX~xS . Here i refers to the cavity’s input, and 0 ≤ λ ≤ 1 is the single-sided transmission

efficiency.

Since we are not keeping explicit track of the propagating loss mode between the SQ and

cavity in this calculation, we account for the unsqueezed vacuum that it introduces as an added

noise term,

NX =


(nT + 1

2)(1− λ) 0 0

0 0 0

0 0 0

 . (5.39)

We thus have the single-quadrature noise spectral density at the cavity input:

Σi,X = [LXSX ]∗Σin,X [LXSX ]T +NX , (5.40)

where Σin,X is given by Eq. (5.29). This expression yields

Σi,X =


(
nT + 1

2

) (
λ

GS,1Q
+ 1− λ

)
0 0

0 nT + 1
2 0

0 0 nA + 1
2

 , (5.41)
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where both the partially attenuated squeezed vacuum term (∝ λ/GS,1Q), and the unsqueezed

contribution from the loss mode (∝ 1− λ) appear clearly. Note that in the absence of loss,

Σi,X = S∗XΣin,XS
T
X , (5.42)

in agreement with Eq. (5.26).

We can now calculate Σout,X , the output spectral density matrix along ~x. Given Eq. (5.21)

for the cavity’s susceptibility in the quadrature basis we may write

Σo,X = χ∗(ω)Σi,Xχ(ω)T. (5.43)

Then losses between cavity and AMP are accounted for in the same manner as before, and finally

the AMP performs another OMS operation, amplifying the SQ squeezed quadrature. We thus

obtain

Σout,X = A∗X [L∗XΣo,XL
T
X +NX ]AT

X

= A∗X [L∗Xχ
∗(ω)Σi,Xχ(ω)TLT

X +NX ]AT
X

(5.44)

as the analog of Eq. (5.26) in the presence of loss.

The first entry in the matrix Σout,X is the output spectral density at the measurement port

along X̂:

Σout,X,m =

(
nT +

1

2

)
GA,1Q(1− λ) +

GA,1Qλ

B(ω)

[(
nA +

1

2

)
κaκm

+

(
nT +

1

2

)(
κlκm +

(
1− λ+

λ

GS,1Q

)
β(ω)

)]
,

(5.45)

where B(ω) and β(ω) are defined as in Eq. (5.30), and the same approximations have been made.

From Σout,X,m we can extract the signal visibility α(ω) in the presence of loss:

α(ω) =
λnA(
nT + 1

2

) × κaκm

B(ω) (1− λ) + λ
[
κlκm +

(
1− λ+ λ

GS,1Q

)
β(ω)

] . (5.46)

When λ = 1, Eq. (5.46) reduces to Eq. (5.5).

Finally, the scan rate enhancement Et in the presence of loss, presented in Fig. 5.2b, is∫∞
−∞ α

2(ω)dω, normalized by the same integral with GS,1Q = 1 and κm = 2κl.
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5.1.3 Equivalence between single- and double-quadrature amplification

Single-mode squeezing can only enhance sensitivity to displacements along a single quadrature

of the cavity field. In a situation such as an axion search, the signal distributes its excess power

equally between the two quadratures. Thus switching to single-quadrature measurement from

double-quadrature measurement, currently the operational mode of choice of axion haloscopes

[105, 106], seems detrimental. In this section, we will see that in the absence of squeezing, neither

measurement scheme has an advantage over the other.97

If we neglect amplifier added noise, the signal visibility α is independent of whether we

measure one quadrature or both. Specifically, an axion signal characterized by its spectral density

Sa at the amplifier input divides itself equally as Sa/2 between the two quadratures. Similarly, the

vacuum noise spectral density ~ωa/2 divides its power equally as ~ωa/4 between the quadratures.

However, we must account for the quantum limits on two-quadrature measurements. Any

linear amplifier that measures both quadratures adds at least a second half-quantum of input-

referred noise, evenly distributed between the two quadratures [128]. An ideal double-quadrature

measurement thus yields

α2Q =
Sa
~ωa

(5.47)

in each quadrature. By comparison, there is no quantum limit on single-quadrature amplification,

so an ideal single-quadrature measurement yields

α1Q =
2Sa
~ωa

= 2α2Q (5.48)

in the amplified quadrature.

To make a fair comparison between the single-quadrature and double-quadrature cases, we

must consider the improvement in the SNR (defined in Sec. 5.1.1). Because all pertinent differences

between the two cases enter when considering a single tuning step, we neglect tuning in the following

97 This will be true insofar as there is negligible added noise at all frequencies, and no bandwidth limitations in either
case. Johnson-Nyquist noise from an identical source is assumed in order to make an apples-to-apple comparison.
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discussion. The SNR α is given in terms of the spectral density ratio α by

α =

√
N

2

∆a

∆
α, (5.49)

where ∆a/∆ is the ratio of signal to noise bandwidths, and N is the number of independent

measurements of the voltage contained in the noise bandwidth ∆. In considering the appropriate

values of N and ∆ for the two cases of interest, we will find two independent effects, each reducing

α1Q by a factor of
√

2 relative to α2Q. Together, these effects cancel the apparent benefit stemming

from the absence of quantum noise limits in the single-quadrature case.

First, the Nyquist theorem guarantees that there are

N2Q = 2τ∆2Q (5.50)

independent measurements of the noise voltage in a double-quadrature measurement of duration τ

and bandwidth ∆2Q, where the factor of 2 counts the two independent quadrature amplitudes for

each resolved Fourier component. Thus there are

N1Q = τ∆1Q (5.51)

measurements of the noise voltage in a single-quadrature measurement of bandwidth ∆1Q.

Second, noiseless single-quadrature measurement with a parametric amplifier creates an ir-

reversible ambiguity between the output signal and idler frequencies, equally spaced about the

amplifier band-center. This ambiguity necessitates mapping amplifier outputs at a given detuning

from band-center to the input signal and idler frequencies (Sec. 5.7). The consequent addition of

spectral densities, half of which are guaranteed not to have an axion-induced excess power, effec-

tively increases the noise bandwidth in a single-quadrature measurement by a factor of 2 relative

to the signal bandwidth: ∆1Q = 2∆a. In the standard double-quadrature measurement scheme,

the signal and noise bandwidths are equal: ∆2Q = ∆a.
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Putting this all together, the two measurement schemes are seen to be equivalent:

α1Q =

√
τ∆1Q

2

∆a

∆1Q
α1Q

=

√
2τ∆2Q

2

∆a

2∆2Q
2α2Q

= α2Q.

(5.52)

The first line agrees with Eq. (5.33) for the single-quadrature SNR. The advantage of squeezed over

unsqueezed single-quadrature haloscope operation can thus be taken as the true advantage that

squeezing confers over current haloscopes that amplify both quadratures.

5.2 Model for the axion field

Figure 5.1 models the axion field as a fictitious generator that drives the cavity through

a weakly coupled port. In this section, we relate the fictitious port coupling κa and the power

spectral density nA at the generator output to physical parameters normally found in the haloscope

literature, and show that for representative values, the axion field acts as a classical force.

The measurable axion-sourced power is obtained from the first term in the output spectral

density, Eq. (5.30). Referring to the cavity output and multiplying by the axion linewidth ∆a, the

on-resonance (ωa = ωc) signal power is

Psig = 4~ωanA∆a
κaκm

(κm + κl)2
. (5.53)

The two model parameters κa and nA can readily be related to physical parameters by comparing

Eq. (5.53), to e.g. Eq. (1) of Ref. [90] evaluated on resonance. In our notation this expression takes

the form

Psig =

(
g2
aγγ

~c3ρa
µ0ω2

a

)(
B2

0V Cmn`
ω2
cκm

(κm + κl)2

)
, (5.54)

where µ0 is the vacuum permeability and other parameters are as defined in Eqs. (2.8) and (2.16).

Equating Eqs. (5.53) and (5.54), we obtain

nAκa =
g2
aγγρac

3

4ωaµ0∆a
B2

0CmnlV. (5.55)
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To derive a second expression relating κa to nA, we observe that the fictitious generator in

our haloscope model may equivalently be represented as a second harmonic oscillator mode with

very high occupancy but very weak coupling to the haloscope cavity. This equivalence is illustrated

in Fig. 5.3. The axion field in any laboratory-scale volume constitutes such an oscillator mode, with

resonant frequency ωa. Specifically, we model the oscillations of the axion field as a fictitious cavity

occupying the same volume as the real haloscope cavity. The quanta of this fictitious cavity are

axion particles, so its total occupancy is

NA =
V ρa
~ωa

; (5.56)

it is coupled to the haloscope cavity with interaction Hamiltonian

Ĥint = ~g(Â+ Â†)(B̂ + B̂†), (5.57)

where g is the interaction strength and Â (B̂) is the annihilation operator of the haloscope (fictitious)

cavity. The Hamiltonian of the closed system is

Ĥ = Ĥ0 + Ĥint, (5.58)

where

Ĥ0 = ~ωc
(
Â†Â+

1

2

)
+ ~ωa

(
B̂†B̂ +

1

2

)
. (5.59)

Coupling the haloscope cavity to measurement and loss ports at rates κm and κl, respectively, we

write down the Heisenberg-Langevin equations of motion for the open system:

dÂ

dt
= −iωcÂ(t)− ig[B̂(t) + B̂†(t)]− κm + κl

2
Â+
√
κmâin,m(t) +

√
κlâin,l(t) (5.60)

dB̂

dt
= −iωaB̂(t)− ig[Â(t) + Â†(t)], (5.61)

where we describe the input bath associated with the measurement (loss) port with the annihilation

operator âin,m (âin,l).

We restrict ourselves to the classical limit of the system, with operators demoted to complex

amplitudes, and the case where the resonances coincide, ωa = ωc, with no power entering via the
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Figure 5.3: (a) Model for the haloscope cavity (with mode Â) corresponding to Fig. 5.1, wherein an
axion signal is modeled as a microwave generator sourcing mean photon number nA and coupled
to the haloscope cavity at power decay rate κa. (b) Equivalent representation of the axion signal
as a second, fictitious cavity (mode B̂) filled with NA axions coupled to the haloscope cavity with
field exchange rate g. The other couplings of the haloscope cavity remain unmodified.

quantity value

ρa 0.45 GeV/cm3

B0 9 T

gaγγ -7.7× 10−24 eV−1

∆a 5 kHz

ωa/2π 5 GHz

V 1.5 L

Cmnl 0.5

Table 5.1: Representative physical values used to estimate axion port parameters.

measurement and loss ports,

ain,m = ain,l = 0. (5.62)

Transforming into the rotating frame of the haloscope cavity,

A(t)→ A(t)e−iωct (5.63)

B(t)→ B(t)e−iωct (5.64)

and making a rotating wave approximation, Eqs. (5.60) and (5.61) reduce to

dA

dt
= −igB(t)− κm + κl

2
A(t) (5.65)

dB

dt
= −igA(t), (5.66)
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where g plays the role of the field exchange rate corresponding to the power decay rate out of the

axion cavity,

g =
κa
2
. (5.67)

These equations of motion describe an exchange of energy between the two cavities and a decay of

that energy out from the haloscope cavity via the measurement and loss ports. We are interested

in the steady-state (dA/dt = 0) output field

Aout,m = −
√
κmA (5.68)

when the occupancy of the axion cavity is

|B|2 = NA. (5.69)

We find a steady-state occupancy of the haloscope cavity

|A|2 =

(
κa

κm + κl

)2

NA, (5.70)

implying an output signal power of

Psig = ~ωa|Aout,m|2 =
~ωaNAκ

2
aκm

(κm + κl)2
. (5.71)

Eqs. (5.53) and (5.71) for the output power must agree, implying

nA
κa

=
NA

4∆a
=

V ρa
4~ωa∆a

. (5.72)

In terms of physical parameters, Eqs. (5.55) and (5.72) yield

nA =
|gaγγ |ρaB0V

4ωa∆a

√
Cmnlc3

~µ0
(5.73)

κa = |gaγγ |B0

√
Cmnl~c3

µ0
. (5.74)

Using representative values for the HAYSTAC experiment [90] in the presence of a 5 GHz

KSVZ axion shown in Table 5.1, we obtain the values for our model parameters shown in Table

5.2. We see that the fictitious generator is well into the classical regime,

nA �
1

2
, (5.75)

while its extremely feeble coupling κa nonetheless makes its presence a challenge to detect.
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parameter value

NA 3.3× 1016

κa/2π 2.3 µHz

nA 2.4× 107

Table 5.2: Model parameter values calculated using the physical values from Table 5.1.

5.3 Enhanced signal visibility with squeezing

In practice, the scan rate of Eq. (5.37) can be degraded not only by transmission losses,

but also by distortions in the squeezed state (Ch. 4) and added noise in the amplifier chain. In

order to investigate how accurately Eq. (5.37) predicts the performance of a squeezing-enhanced

haloscope, we work with an apparatus that mimics its microwave network, but without some of

the cumbersome features. Specifically, in an axion haloscope the mechanically tunable cavity must

reside in a large static magnetic field to enhance κa and nA. In our apparatus, the cavity has a fixed

frequency ωc = 2π × 7.146 GHz and there is no applied field. Consequently the cavity, constructed

from superconducting aluminum and shown in Fig. 5.4, has much lower intrinsic loss than a copper

haloscope cavity. Additional loss is added through an explicit port that extracts energy from the

cavity at a rate κl = 2π × 100 kHz, a typical value for a haloscope cavity. An axion-like signal is

coupled into the cavity through a microwave generator connected to a second port weakly coupled

at rate κa = 2π × 100 Hz. Finally, a third port couples the cavity mode to an SSR with a rate

chosen to be close to the optimum value for the case with (κm = 10κl) or without (κm = 1.5κl)

squeezing, creating a physical realization of the model in Fig 5.1.

For the largest increase in scan rate, the SSR should be attached to the cavity measurement

port with as little transmission loss as possible. To investigate the transmission loss independent

of the cavity loss, we use the fact that the JPAs are narrowband (∼ 5 MHz), tunable amplifiers

and detune both the SQ and AMP far off cavity resonance (∼ 10 MHz) so that the squeezed

state is promptly reflected from the cavity. Figure 5.5 illustrates the ability to efficiently generate,

transport, and amplify a squeezed state in this off-resonance configuration. It shows histograms

of the measured voltage in the AMP’s amplified quadrature X̂out,m as a function of θ, the phase
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Figure 5.4: (a) Photo of the aluminum cavity (closed up) used for the experiments in Secs. 5.3 and
5.4. The three SMA ports are for measurement, loss, and signal injection. A penny is shown for
scale. (b) Same cavity, opened up. The 7.146 GHz resonant mode lives in the slot visible in both
halves of the cavity.

between the amplified quadrature of the SQ and the amplified quadrature of the AMP. When

θ = π/2 or 3π/2, one quadrature is first squeezed and then amplified. At these points, comparing

the output noise variances σ2
on and σ2

off measured with SQ on and off (not pumped), respectively,

the squeezing S = −4.5± 0.1 dB using the definition of Eq. (4.4). As in the last chapter (Footnote

90), this is not an inferred squeezing; rather, it is a direct measurement of an overall 4.5 dB

reduction in the noise floor of X̂out,m over the whole bandwidth of the quadrature measurement.

This amount of squeezing (consistent with the estimate of η = 0.69 ± 0.01, Sec. 5.5.3) required

particular care in reducing the transmission losses between the two JPAs, which was facilitated by

using the flux-pumped JPAs of Sec. 3.7.

This large amount of delivered squeezing implies that the SSR should improve our ability to

resolve a weakly coupled signal detuned from cavity resonance. To demonstrate this improvement,

the SQ and AMP bands are centered on cavity resonance with the cavity’s measurement port

overcoupled (κm = 10κl), and the phase θ set to π/2 or 3π/2 (Fig. 5.5). To perform the single-

quadrature measurement, the output X̂out,m is mixed down with a local oscillator (LO) at the

cavity resonant frequency its power spectral density is computed. As for any such measurement,

the frequency component at ω in the down-mixed output is a linear combination of two frequency

components at the mixer’s high frequency input, ±ω detuned from the LO frequency. Figure 5.6a

shows the spectral density when the tone is 1 MHz detuned from the cavity’s resonance. Comparing
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Figure 5.5: (a) Histograms of voltage fluctuations VX measured along X̂out,m, as a function of the
SQ-AMP relative phase θ. (b) Corresponding vacuum squeezing S = σ2

on/σ
2
off . Data taken off of

cavity resonance. Figure reproduced from Ref. [208].

two situations, SQ on and SQ off, the signal visibility improves by roughly 4 dB in the presence of

squeezing, with 0.5 dB degradation from cavity loss.

To estimate the associated increase in scan rate from the SSR, the tone is stepped across

the cavity’s resonance and the visibility α(ω) measured at each detuning ω. In order to compare

the optimal squeezed and unsqueezed cases, Fig. 5.6b shows measured values of α(ω) for two cases:

for κm = 10κl with squeezing, and for κm = 1.5κl without squeezing (see Sec. 5.6 for two other

complementary cases). Without squeezing, α(0) is greater but the bandwidth is poor. With

squeezing, α remains relatively high as ω increases. Extracting R ∝
∫∞
−∞ α(ω)2dω for the two

cases, the estimated scan rate enhancement is Ee = 2.05 ± 0.04. Independently measured values

for η, κm, and GS,1Q, yield expected values for α(ω), shown as solid lines, in excellent agreement

with the measured values in Fig. 5.6b. Finally, from the expected α(ω), Et = 2.11 ± 0.07, also in

quantitative agreement with the data-based estimate Ee.
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Figure 5.6: (a) Improvement in microwave tone visibility due to squeezing. Power spectra nor-
malized to the unsqueezed vacuum power, with (red) and without (purple) squeezing are shown
in for a tone 1 MHz detuned from the resonant frequency of the overcoupled cavity (κm = 10κl).
The x-axis has been shifted between the two situations for visual clarity. (b) Visibility α(ω)
measured as a function of the tone’s detuning from cavity resonance (ω = 0) for two cases: no
squeezing while near critical coupling (κm = 1.5κl, blue circles), and squeezing while strongly over-
coupled (κm = 10κl, red circles). In both cases α(ω) is normalized to the expected maximum value
αmax = α(0) evaluated at κm = κl. The theoretical expectation for each case is superimposed as a
black curve, calculated using κl = 2π × 100 kHz, η = 0.69 and GS,1Q = 13 dB. Figure reproduced
from Ref. [208].

5.4 Mock-haloscope experiment: accelerated search for a weak classical tone

In a real axion search, the aim is to detect a signal many orders of magnitude smaller than that

in Fig. 5.6. Inferring the presence or absence of an axion at each frequency requires combining the

measured powers from many adjacent cavity tunings [78,125]. Furthermore, over a long integration

time the benefit inferred from Fig. 5.6 is vulnerable to practical non-idealities. Drifts of either JPA’s

gain, drifts of the SQ-AMP relative phase θ, non-Gaussian noise processes, and interfering radio

frequency (RF) or intermediate frequency (IF) tones are of particular concern. In this section,

we will see that the SSR indeed matches the performance presented in the previous section when

searching for a feeble tone over a wide frequency range.98

In order to fully validate the enhancement gained from the SSR, a fake axion, or “faxion,”

98 This experiment was informally given the name “the Dummy Experiment for Axionic Dark Matter Active
Upwards of 5 GHz,” or DEADMAU5.
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tone is sent through the cavity weakly coupled port in order to be detected. The tone is synthesized

from a randomly modulated microwave tone, whose power is adjusted such that the faxion spectral

density emerging from the cavity is roughly 1% of vacuum, and whose width is broadened to

roughly ∆a ≈ 9 kHz, comparable to expectations for a realistic axion at frequency ωa ≈ 2π × 7

GHz (Sec. 2.4.3). Stepping the faxion tone frequency “backwards” past a stationary cavity simulates

a realistic axion search without the hardware demands imposed by a tunable cavity. The faxion’s

initial frequency is chosen randomly within a 2 MHz window around the cavity resonance, and

is then tuned in discrete -10 kHz steps over a 4 MHz window. At each tuning step, an output

power spectral density is recorded as in Sec. 5.3. These spectra are mixed down and referred to the

mixer’s input by symmetrizing about ω = 0. Spectra are artificially shifted in steps of +10 kHz to

simulate cavity tuning. The spectra are then rescaled by α(ω) such that frequency bins with higher

sensitivity to the faxion are weighted more. These rescaled, shifted spectra are then added into a

grand spectrum (Sec. 5.7 and Ref. [78]). With this procedure, the faxion’s contributions in each

individual spectrum add at its initial frequency as if the cavity had been tuned, creating a clear

excess of power in the grand spectrum. Figure 5.7a presents some symmetrized spectra, obtained

while squeezing with an overcoupled cavity (κm = 10κl), in which the faxion excess power is too

small to rise above vacuum fluctuations. The spectra were obtained at different fictitious cavity

tunings, normalized to their measured standard deviations, and vertically offset from one another

for visual clarity. In the resulting grand spectrum (Fig. 5.7b), a prominent faxion peak emerges 6σ

above the noise.

Extracting a scan rate enhancement from such a realistic signal search requires two distribu-

tions of faxion powers: one when squeezing and one when not squeezing, with near-optimal κm for

each case. Each distribution is obtained by repeating the faxion injection and detection protocol

200 times. Over the course of the measurement, which takes roughly 9 hours per configuration,

the relative phase θ between SQ and AMP quadratures is stabilized at π/2 via a feedback loop

(Sec. 5.5.2). Figure 5.7c displays the two faxion power distributions, as well as the noise power
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Figure 5.7: (a) Processed spectra. The acquired power spectra are symmetrized, rescaled and then
shifted in frequency to align all the frequency bins containing the faxion with each other (red dots),
thereby effectively tuning the cavity. The power excess of the processed spectra is plotted in units
of their standard deviation σγ . (b) Grand spectrum constructed from all processed spectra. The
grand spectrum excess power is plotted in units of its standard deviation ση. A large power excess
is observed at the frequency of the faxion. (c) Distributions of faxion powers for many separate
experiments each culminating in a grand spectrum. When squeezing with κm = 10κl, the powers
(red points) are drawn from a Gaussian distribution N (µs, (σ

η)2) (solid line), with µs = 6.05±0.07.
When not squeezing with κm = 1.5κl, the powers (blue points) are drawn from N (µu, (σ

η)2) (solid
line), with µu = 4.15±0.07. The powers (black points) drawn from the faxion-less noise distribution
N (0, (ση)2) (solid line) are also represented for comparison. Figure adapted from Ref. [208].

distribution. The no-faxion distribution of mean zero and variance (ση)2,99 Eq. (6.12), is guaran-

teed by the central limit theorem to be Gaussian distributed, N (0, (ση)2). The faxion adds a small

mean excess of power µ insufficient to enlarge the variance. The faxion distribution is therefore

N (µ, (ση)2). The signal and noise distributions separate as the total measurement time squared,

99 For consistency with future chapters, the superscript η borrow from the notation of Sec. 6.1.
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and thus the speed-up due to squeezing is equal to

Em =

(
µs
µu

)2

, (5.76)

where µs (µu) is the mean of the faxion power distribution obtained when squeezing (not squeezing).

The two distributions of faxion powers are characterized by µs = 6.05± 0.07 and µu = 4.15± 0.07,

leading to a measured scan rate enhancement of Em = 2.12± 0.08, in quantitative agreement with

the estimate Ee obtained from visibility measurements in Sec. 5.3.

This measurement provides the strongest proof out of all the arguments presented in this

chapter that quantum squeezing not only can in principle be used to accelerate dark matter searches,

but that it can do so subject to realistic transmission losses in a haloscope-like system. The

following sections describe some of the auxiliary measurements and protocols necessary to perform

the experiments in this chapter.

5.5 Experimental details and calibration

This section presents the experimental setup used for the experiments in Secs. 5.3 and 5.4,

describes the phase-locking protocol used to ensure θ = π/2 or 3π/2 between SQ and AMP pump

tones, and discussed the calibration measurement used to infer the intra-SSR transmission losses.

5.5.1 Experimental setup

The full experimental setup is represented in Fig. 5.8. The SQ-cavity-AMP ensemble is

attached to the bottom plate of a dilution refrigerator. For each JPA, the pump tone is routed

though a 10 dB directional coupler connected to the pump port. The placement and configuration

of these directional couplers ensures that the large pump tone required for flux pumping primarily

heats up a 50 Ω termination whose Johnson-Nyquist noise [206,207] propagates back up the pump

line, away from the JPA. A coil around each chip, connected to a DC current source at room

temperature, generates a DC magnetic field, and the chip-coil ensemble is magnetically shielded

with aluminum and cryoperm. Each JPA is connected to a circulator through superconducting
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Nb/Ti cables in order to minimize transmission losses.

An ensemble of four circulators route the squeezed state and provide microwave isolation

between the SSR elements. Two circulators between the SQ and the cavity protect the SQ from

power reflected back from the cavity. These circulators provide sufficient isolation when the SQ is

operated with 13 dB of signal gain. Similarly, three circulators separate the AMP and the cavity, as

the AMP is operated with higher signal gain, around 25 dB. Experimentally, it was observed that

with only two circulators, undesirable feedback between the cavity and AMP perturbs the AMP’s

gain by effectively changing its pump’s power.

At the chain’s input, either vacuum noise or a probe tone can be injected via a 20 dB

directional coupler. This probe tone is useful when characterizing the JPA gain profiles or when

characterizing the cavity. Finally, at the output, a double-junction isolator protects the AMP from

signals reflected from the next amplifier, a high-electron-mobility transistor (HEMT) amplifier at

4 K.

At room temperature, a single microwave generator (Keysight E8257D) drives both JPAs and

also serves as LO for the in-phase/quadrature (IQ) mixer in the readout line. On the path leading

to the SQ pump’s input, a voltage-controlled variable attenuator and phase shifter provide control

of both the SQ pump amplitude and phase. On the path leading to the IQ mixer, a frequency

divider converts ωp to ω0, the bare resonant frequency of both JPAs and the cavity. This divider

(Pasternack PE88D2000) can input a wide range of powers (from -20 to 5 dBm) while always

outputting the same power (roughly -4 dBm). Thus, the AMP gain can be tuned freely with the

microwave generator’s output power. A second generator injects a tone through the weakly coupled

port of the axion cavity. This tone can be shaped into a 9 kHz wide Lorentzian with an arbitrary

waveform generator (AWG).

At the output, a 6 dB directional coupler routes a fraction of the power to a vector network

analyzer (VNA), which monitors signals either from the SSR chain’s input or from the cavity’s

weakly coupled port. The VNA is used to measure in situ the couplings κm and κl+κa. The other

portion of the output power reaches the IQ mixer’s RF port. After being mixed down, the in-phase
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and quadrature signals are amplified and directed onto 1.9 MHz anti-aliasing low-pass filters, then

finally digitized by an analog-to-digital converter (ADC).

5.5.2 Phase-locking of SQ and AMP pumps

Enhancing the scan rate with squeezing is only beneficial if the AMP amplifies the SQ

squeezed quadrature. To this end, as suggested by Fig. 5.5, the phase θ between SQ and AMP

pumps must be maintained at π/2 (or 3π/2) to a high precision, given the sharp dependence of the

degree of squeezing S on θ. When S > 0 dB, the output is noisier with the SQ on than off, and

the SSR is therefore detrimental to the axion search. Furthermore S also depends on the SQ gain

GS,1Q, i.e. on the SQ pump power, and there is an optimal GS,1Q for which S reaches its minimum

value Smin. In fact, as the gain increases, S first improves as the squeezed state elongates in phase

space, but then saturates due to distortion effects (Ch. 4). For this type of JPA, S = Smin at

GS,1Q ≈ 13 dB is determined experimentally.

A feedback loop that uses the output variance σ2
on as its control parameter on the voltage-

controlled variable attenuator and phase shifter is used in order to achieve S = Smin throughout

a data run. When initializing a 9 hour acquisition, a two-dimensional sweep of the variable at-

tenuation As and phase shift θ is used to estimate the global minimum of σ2
on. Then, periodically

throughout the data run, a fast gradient descent-type algorithm corrects for small drifts of σ2
on.

Note that this approach is robust to possible phase shifts due to changes in the variable attenuation

and vice versa. Empirically, S can be maintained at Smin ± 0.1 dB, over the course of the entire

experiment.

The AMP pump power remained stable around 25 dB without adjustment. However, when

implementing the SSR in HAYSTAC (Ch. 8), it has to be adjusted because the frequency of the

JPAs is also stepped in time. Note that in a practical haloscope run, sizable fluctuations of the net

receiver gain in a SSR-integrated setup on timescales shorter than the raw spectrum acquisition

time can be detrimental to axion detection. This is true even if all sources of added noise are

overwhelmed. For our raw spectra acquisition times of 0.32 s, the receiver gain fluctuations are
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Figure 5.8: Full experimental setup used for the mock-haloscope experiment. The SSR is shown
together with its room temperature control electronics. The input (black) and output (red) coaxial
cables are in bold. At the 20 mK stage, Nb/Ti superconducting coaxial cables are shown in green,
and the three adjacent circulators form a triple-junction circulator fabricated by QuinStar (QCE-
070100CM30). The thinner (orange) lines represent DC cables. Figure reproduced from Ref. [208].
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negligibly small.

5.5.3 Intra-SSR loss measurement

The presence of four circulators and several microwave connectors, including adapters from

SMP (used on the JPAs chips) to SMA standards, inevitably reduces the transmission efficiency

η between SQ and AMP. A triple-junction circulator100 and superconducting SMA cables between

the two JPAs and the circulators are used to minimize η. However, η still provides the primary

limitation on the efficacy of the SSR in accelerating axionic dark-matter searches.

Measuring the output power spectral density POS/A of vacuum fluctuations in a single quadra-

ture amplified by the SQ with the AMP off then repeating this measurement with the role of

the JPAs interchanged yields an estimate of η. Performing the exact measurement described in

Sec. 4.4.2 gives η = GOSQ/G
O
AMP = 0.69±0.01. Figure 5.9 shows 4POS/A/(~ωW ), when varying either

the SQ or the AMP gain. We extract η = GOSQ/G
O
AMP = 0.69± 0.01.

The efficiency η observed in the mock-haloscope setup should not be significantly degraded by

the large magnetic fields required in a real haloscope experiment such as HAYSTAC or ADMX, as is

borne out in Ch. 8. This is because the primary constraint imposed by the large field is an increased

spatial separation between the axion cavity and the circulators and amplifiers that process the

signal. This ∼ 1 m distance is bridged with superconducting coaxial cables, whose attenuation [232]

is far subdominant to other sources of transmission loss, such as the microwave circulators in the

setup. At sufficiently high fields, the cables would eventually experience significantly increased

transmission losses. However, empirically, at the fields we operate in, the performance remains

unaffected [90].

From η we can estimate the squeezing S that we should obtain far off cavity resonance (∼ 10

MHz detuned). Considering the ideal case where the reduction of the squeezed state variance is

100 Perhaps the most obvious upgrade available to this setup would be an L-shaped, cryogenic, quadruple-junction
circulator to replace the combination of single- and triple-junction devices in Fig. 5.8. This option was not pursed
here or in Ch. 8 purely on grounds of financial cost.
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Figure 5.9: Intra-SSR transmission loss calibration measurement. The normalized single-
quadrature output power spectral density POS/A is plotted as a function of the SQ or AMP gain

GA/S,1Q. Two configurations are represented: when operating only the SQ (red circles) and when
operating only the AMP (blue circles). A linear fit (solid lines) to these linear responses allows
yields η. Figure adapted from Ref. [208].

equal to the SQ single-quadrature power gain GS,1Q, we obtain:

S =
η

GS,1Q
+ 1− η, (5.77)

which, for GS,1Q = 13 dB leads to S = −4.6 dB, in quantitative agreement with what was measure

in practice.

5.6 Complementary measurements of the microwave tone’s improvement in

resolution

We saw in Fig. 5.6b the visibility α(ω) of a microwave tone as a function of ω, the detuning

between the tone’s frequency and the cavity bare resonance. We compared α(ω) between the two

relevant cases: squeezing with a strongly overcoupled cavity versus not squeezing with a near-

critically coupled cavity. Figure 5.10 presents these, along with measurements of α(ω) for the two
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Figure 5.10: Complementary measurements of signal visibility in the SS. Signal visibility α(ω) is
plotted as a function of the signal’s detuning from cavity resonance. It is normalized by αmax,
obtained at zero detuning for κm = κl. Four cases have been measured, with the corresponding
theoretical predictions represented as solid lines: overcoupling (κm = 10κl) with squeezing (red
circles), near-critically coupling (κm = 1.5κl) without squeezing (blue circles), overcoupling without
squeezing (purple triangles), and near-critically coupling with squeezing (green triangles). The
theory lines have been calculated for κl = 100 kHz, η = 0.69, and GS,1Q = 13 dB. Figure reproduced
from Ref. [208].

complementary cases: strongly overcoupling without squeezing, and near-critically coupling with

squeezing. In all four cases, there is excellent agreement with predictions from the theory, developed

in Sec. 5.1.2 and shown in solid lines. The theory curves are not fits; they use parameter values

for κl, η, and GS,1Q measured independently. Furthermore, the values are the same across all four

cases.

Squeezing is beneficial, even when not overcoupling the cavity’s measurement port, as it

enhances α off cavity resonance while having no effect on resonance. Experimentally, the com-

plementary estimate Ec1e = 1.72 ± 0.03 is obtained when squeezing and near-critically coupling,

compared to the same situation without squeezing, in agreement with the theoretical prediction,

Ec1t = 1.77±0.03. Conversely, the scan rate is worse when strongly overcoupling without squeezing,

compared to near-critically coupling with squeezing: from the data, Ec2e = 0.57±0.01, not far from
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the theoretical value of Ec2t = 0.52.

5.7 Processing of the SSR spectra

In order to detect the small cavity displacement of Sec. 5.4, 401 “raw” spectra are acquired,

processed, and combined into one “grand” spectrum. The injected faxion tone is sufficiently small

relative to the size of the vacuum fluctuations that in any one raw spectrum it typically does not

stand out. However, after processing the spectra, the faxion emerges often well above the level of

vacuum noise, as in Fig. 5.7b. This section provides a brief overview of the steps in the processing

of the spectra and provides the specific numerical values used throughout the processing in order

to produce Fig. 5.7.101 The processing procedure is based closely on the work of Ref. [78], which is

described quantitatively in Sec. 6.1. This section borrows the terminology used for the intermediate

processing stages set forth in Ref. [78], and also omits many details and rationales which are there

covered extensively.

Using the setup of Fig. 5.1, fluctuations emerging from the cavity, possibly in the presence of

squeezed vacuum noise, are directed into a chain of amplifiers led by the AMP. The fluctuations

are mixed down to DC, further amplified, low-pass filtered up to 1.9 MHz, and sampled with an

Alazar ATS9462 digitizer at 6 MS/s. Each raw spectrum, distinguished as the least processed

data saved to a hard disk, itself actually comprises the frequency-averaged power spectral densities

of 32 “subspectra,” each acquired over 10 ms and fast Fourier transformed to provide a spectral

resolution of ∆b = 100 Hz. Since 401 raw spectra are acquired for each of the 200 squeezed and

200 unsqueezed data runs, the live acquisition time of all the spectra totals just over 14 hours, not

counting the dead time. In practice it took roughly 18 hours.

Once the raw spectra are in hand, they are symmetrized. That is, the measured output at

each signal frequency is processed as if it came equally from the signal and idler inputs. Since the

output of a JPA at a given detuning from the center of its amplification band is nearly identical to

the output at the opposite detuning from band center, Eqs. (3.128) and (3.129), the best one can

101 Some of these values differ than those used to process the HAYSTAC data.
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do is to infer the spectral density measured in the homodyne configuration as coming equally from

both sides of the pump.

The symmetrized spectra are then averaged according to their real frequencies (i.e. not ac-

counting for the fictitious stepping of the cavity used to simulate a haloscope search) in order to

detect excess power in either the pertinent RF or IF band.102 This mean spectrum is then high-pass

filtered by the profile of a Savitsky-Golay (SG) filter [233, 234] applied to the average spectrum.

A SG filter is simply a computationally quick means of applying the dth-degree polynomial gen-

eralization of a moving average within a window of 2W + 1 bins. If the width W is much larger

than the size of interesting spectral features, those features will be minimally attenuated when the

spectrum is divided by the filter response, whereas features extending over wide bandwidths will

be effectively removed. Following Ref. [78], d = 10, W = 500 for this first filtering.

The resulting real-frequency-averaged spectrum is used to detect and remove excesses of

power which do not act like our faxion. Bins that exhibit power fluctuations more than 4 standard

deviations above the mean at their real frequencies are discarded along with their close neighbors

as contaminated for all spectra. In practice, over 99% of bins are preserved, with only extreme

outliers eliminated. Note that since in the real frequency space the faxion tone is being stepped,

its 400 tunings do not combine over any one narrow block of bins, and this bin rejection procedure

will therefore not eliminate a faxion signal. Once contaminated bins are removed, the SG filter is

recalculated, as it will be slightly different without the presence of outlier bins, and reapplied to

each spectrum individually.

This baseline removal leaves a set of nearly-flat “normalized” spectra, each centered near 1.

Residual structure left from fluctuations in the overall receiver gain or its profile is then removed

by dividing out the SG profile (d = 4, W = 500) of each individual spectrum. The mean value of 1

is then subtracted from each spectrum to form the “processed” spectra, several of which are shown

in Fig. 5.7a.103

102 In a real haloscope search, since the LO being used for homodyne measurement would be stepped along with
the cavity, non-axion-induced power excesses in the RF are trickier to reject than their IF counterparts [78].

103 For visual clarify, only a fraction of the bins are kept in Fig. 5.7a and b.
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Next we must rescale the spectra to account for the varying sensitivity to a faxion tone as

a function of its detuning from cavity resonance in any given spectrum. To form these “rescaled”

spectra, the processed spectra are divided by the relative visibility profile of the squeezed state

receiver: Eq. (5.46) with an additional term accounting for the small contribution of the HEMT’s

added noise referred to the input of the AMP, as the weak frequency dependence of AMP gain

over the bandwidth of the cavity in the presence of spectrally flat HEMT added noise contributes a

correspondingly weak frequency-dependence to the noise. The rescaled spectra have the important

property that a given power excess from the weakly coupled port of the cavity produces a constant

expectation value of rescaled spectrum power excess, regardless of detuning from the center of the

cavity. As a consequence, the variance of the power distribution for each bin grows with detuning

from cavity resonance.

Aligning bins along the fictitious frequencies for which the stepped faxion tone would appear

stationary, it is then possible to construct the maximum likelihood (ML) estimate of the power

excess in each bin. Doing so yields the “combined” spectrum, a single spectrum whose bins contain

as few as one (at the extreme edges) and as many as hundreds of contributions from individual

rescaled spectra. The combined spectra bins each have a resolution of ∆b, far below the linewidth

∆a of the faxion. The power within non-overlapping sets of nc = 10 � ∆a/∆b bins are thus

averaged, to form the “rebinned” spectrum, which has nc∆b = 1 kHz spectral resolution.

Finally, overlapping sets of nr = 41 � ∆a/nc∆b rebinned spectrum bins are combined,

accounting for the independently experimentally determined lineshape of the faxion, in order to

produce the ML estimate of the faxion-shaped power centered on each bin. The resulting spectrum

of estimated powers is the grand spectrum, shown renormalized to have mean power excess 0 and

standard deviation 1 in Fig. 5.7b. In the grand spectrum, the faxion typically stands out well above

the surrounding noise.

The acquisition and processing of sets of 401 raw spectra are repeated 200 times apiece for

the optimal squeezed and unsqueezed cases. The two data sets require slightly different processing,

chiefly because the visibility profile of the unsqueezed case does not include the frequency-dependent
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contribution from the squeezing. This results not from finite bandwidth effects of the SQ, but from

the fact that squeezed noise is preferentially absorbed near cavity resonance by the cavity’s loss

port, wherefrom it is replaced with unsqueezed vacuum.

Each of the 400 total acquisitions provides one measured faxion power. The powers are

histogrammed for the optimal squeezed and unsqueezed cases, along with the far larger number

of grand spectrum powers of bins not containing a faxion, in Fig. 5.7c. While the absolute mean

values of the squeezed and unsqueezed faxion distributions carry little meaning, as they scale with

the somewhat arbitrary choice of faxion power, their squared ratio, which would be preserved for

a faxion of any power, gives the scan rate enhancement obtained from squeezing, as discussed in

Sec. 5.4.

5.8 Concluding remarks on the SSR for enhancing the scan rate of real

haloscope searches

In this chapter, we have seen both in theory and in practice that partially replacing the vac-

uum noise in an axion haloscope-like experiment with squeezed vacuum circumvents the standard

quantum limit on the noise of the measurement apparatus, enabling high sensitivity over a broader

bandwidth and a more rapid search for a weak classical tone. Squeezing moreover promises to move

haloscopes into a qualitatively distinct design parameter space: whereas a quantum limited halo-

scope’s scan rate plateaus with improving microwave transmission efficiencies η, a sub-quantum

limited haloscope will benefit almost arbitrarily as microwave losses are further reduced. Thus,

haloscopes can reap larger benefits from increased efficiency (for example, a tenfold scan rate en-

hancement at η = 0.91) as low-loss quantum technologies such as on-chip circulators and directional

amplifiers mature [149,218,222].

In the following two chapters, we will turn our attention to the secondary focus of this thesis:

the statistics of axion searches. We will return in Ch. 8 to the technique of this chapter, and combine

it along with that of Ch. 7 to the HAYSTAC experiment.



Chapter 6

Axion haloscope processing and analysis

For this chapter and the next, we will turn our attention from quantum to classical in-

formation processing. This chapter details the processing protocol104 and statistical analysis105

framework used by HAYSTAC and other axion haloscopes prior to the work of this thesis. In

the following chapter, I will present a Bayesian analysis framework tailored to axion dark matter

searches. We will see that this framework improves significantly upon the standard analysis frame-

work presented in Sec. 6.2 of this chapter, and validates the standard processing protocol presented

in Sec. 6.1 as already near-optimal. Both this chapter and the next present the work of Ref. [126].

6.1 Haloscope processing overview

This section provides a quantitative overview of the steps of the processing protocol described

in much greater detail in Ref. [78].106 In Sec. 7.2 of the next chapter, we will evaluate the protocol

for how well it preserves information content pertinent to the existence of the axion. This section

104 This processing protocol was partially previewed in Sec. 5.7 for the specifics of the mock-haloscope experiment.
It did not include an accounting for correlations necessary to accurately predict the power delivered by an axion, and
did not cast the steps in terms of their mathematical operations. The description in this section is intended to be
more general, more complete, more quantitative, and directly applicable to a full haloscope experiment.

105 This thesis draws a distinction between what is meant by “processing” and “analysis.” “Processing” refers to
any manipulation of a measured quantity from the haloscope in order to obtain a final pair of numbers quantifying
the measured power excess and sensitivity at each frequency. The “analysis” comes after the processing, and refers
to steps that intake that pair of numbers in order to perform a statistical inference about the presence or absence of
the axion at each frequency.

106 The HAYSTAC processing protocol in Ref. [78] grew out of that developed by ADMX [125]. In practice, active
haloscopes all use similar data processing protocols, and the overview given in this section extends beyond what is
done by HAYSTAC, though for other experiments specifics such as the use of the Savitsky-Golay filter to remove
backgrounds may vary. At the time of writing this thesis, HAYSTAC is the only haloscope to have recently published
a full description of its processing and analysis. The ABRACADABRA experiment [111], similar in some respects to
a haloscope, has recently published its processing and analysis practices [75] as well.
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focuses on the steps that transform each individual Fourier bin on its way to becoming part of the

final, or grand, spectrum. The processing of real haloscope data also involves steps for dealing with

practical nonidealities that are out of the scope of this section. We do not address issues such as

the identification and removal of persistent but nonaxionic spectral features, or the details of the

digital high-pass filtering of the data (see Sec. 5.7 or Ref. [78]).

The data from an axion haloscope arrives as a pair (one for each quadrature)107 of discretely

sampled, identically distributed time streams of measured voltages. The time streams are broken

up into separate pieces of duration 1/∆b and discretely Fourier transformed into so-called subspec-

tra,108 with frequency bin spacing ∆b roughly two orders of magnitude narrower than the axion

linewidth ∆a. The subspectra are acquired in batches of Nb at each of Nt distinct haloscope tuning

steps. The Fourier frequencies in each subspectrum can be mapped faithfully back to the Nf radio

frequency (RF) frequencies109 of the fluctuations within the haloscope cavity. Ultimately, each RF

frequency is associated with a single bin in each of a large number of distinct subspectra. Therefore,

the complex subspectrum voltages are denoted vαQ,ijk, where Q = X or Y denotes the quadrature,

i = 1, . . . , Nf indexes the RF frequency, j = 1, . . . , Nt the haloscope tuning step (chronologically

ordered), and k = 1, . . . , Nb the subspectrum (also chronologically ordered) at a given tuning step.

The Greek superscript (here α) will advance through the processing steps detailed below, with

letters farther down the alphabet being used to represent spectra obtained later at later stages of

data handling.

At each tuning step, sensitivity data are acquired (or borrowed from a nearby tuning) as

well. The sensitivity data, in a simplified picture, fully specify the expected noise and possible

axion signal power at each frequency bin i. At each tuning step and for each frequency, the

sensitivity parameters ηγij , defined as the ratio of signal power to noise power for an axion with

gγ = 1 that delivers 100% of its power at the ith RF frequency, can then be calculated.

107 It is theoretically equally efficient to perform single-quadrature measurement (Sec. 5.1.3), in which case there is
only one quadrature time stream, but none of the conclusions of this section are altered.

108 Really, the subspectra come when we compute the power spectral density, but we will refer to the voltages before
that step as the subspectrum voltages.

109 The number of RF frequencies in earlier processing steps Nf is traditionally larger than N , the number of
frequencies in the grand spectrum, as a later data processing step will average sets of spectrally adjacent bins.
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Using the terminology of Ref. [78], the subspectrum data are processed ultimately into grand

spectrum data through the following steps:

(1) The real and imaginary parts of each subspectrum quadrature voltage are summed in

quadrature so as to obtain the quadrature powers xαQ,ijk within each bin:110

xαQ,ijk = (Im[vαQ,ijk])
2 + (Re[vαQ,ijk])

2. (6.1)

(2) The quadrature powers are summed to obtain the total power xαijk in each subspectrum

bin:

xαijk = xαX,ijk + xαY,ijk. (6.2)

(3) All subspectrum powers at each tuning step and frequency are averaged to obtain the raw

spectrum powers:

xβij =
1

Nb

Nb∑
k=1

xαijk. (6.3)

(4) The expected noise power 〈xβij〉, obtained from the application of one or more Savitzky-

Golay (SG) filter (or more generally a low-pass digital filter) at each frequency, is divided

from each raw spectrum to obtain the processed spectra as:111

xγij =
xβij

〈xβij〉
− 1. (6.4)

The processed spectra (and subsequent spectra) are power excesses: that is, departures of

measured powers from the values expected absent an axion.

(5) The processed spectra are divided by the independently obtained sensitivities to obtain the

rescaled spectra:

xδij =
xγij
ηγij

. (6.5)

110 Equation (6.1) is for each quadrature individually. In the case of a heterodyne measurement such as that
performed in Phase I of HAYSTAC [90, 106], which uses an in-phase/quadrature (IQ) mixer to move tones to the
intermediate frequency (IF) band, image rejection is first performed in software in order to separate components
coming from within the analysis band from those coming from outside of it. In practice, HAYSTAC Phase I achieved
better than 20 dB rejection of the unwanted sideband [42].

111 Dividing out a low-pass filter profile realizes a high-pass filter, which is what we ultimately want in order to
preserve the (narrow) signature of the axion.
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The rescaled spectra have the property that an axion with gγ = 1 unrealistically depositing

all of its power entirely within any one bin shifts the mean power excess for that bin up

from 0 to 1. Less axion-sensitive bins are therefore drawn from distributions with larger

variances var(xδij) = (σδij)
2.

(6) In each RF frequency bin i, the combined spectrum power excess xεi is taken as the maxi-

mum likelihood (ML)-weighted sum of all rescaled spectra power excesses:

xεi
(σεi )

2 =

Nt∑
j=1

xδij(
σδij

)2 . (6.6)

The variance of the ith combined spectrum bin is obtained from the variance of all con-

tributing rescaled spectrum bins as

(σεi )
2 =

 Nt∑
j=1

1(
σδij

)2


−1

, (6.7)

where (σδij)
2 =∞ at tuning steps that do not contribute to a given frequency bin i.

(7) Sets of nc � ∆a/∆b adjacent combined spectrum power excesses are scaled by ncnr, defined

below, and the rebinned spectrum power excesses xζi are formed from their ML-weighted

sums:

xζi

(σζi )
2

=
1

ncnr

nc∑
l=1

xεnc(i−1)+l(
σεnc(i−1)+l

)2 , (6.8)

where only every nth
c rebinned power excess is calculated and nr is the number of rebinned

bins that contribute to each grand spectrum bin (Step 8). The rebinned variances are

the analogously scaled, ML-estimated variances given by their combined spectrum coun-

terparts:

(σζi )
2 =

1

(ncnr)2

 nc∑
l=1

1(
σεnc(i−1)+l

)2


−1

, (6.9)

The rebinned bin frequencies are taken as the average of the contributing combined bin

frequencies. For the rebinned spectrum and the subsequent grand spectrum, i now indexes

frequency in the more sparsely populated space.



153

(8) In order to construct the grand spectrum, which contains both information about the

haloscope sensitivity (Step 5) and the axion velocity distribution, the axion lineshape,

Eq. (2.14), is calculated given an axion with rest frequency νa. The axion lineshape is

the probability density function (PDF) of axion particle energies given their Maxwellian

velocity distribution in the galactic rest frame, and our planet’s velocity through that rest

frame (Sec. 2.4.3). This PDF is then discretized into a probability mass function (PMF)112

p̄a(νj |νa,i) by integration over rebinned spectrum bins.113

The grand spectrum is then constructed. The grand spectrum has the same frequency

spacing as the rebinned spectrum, but each grand spectrum bin i includes contributions

from the

nr =
∆a

nc∆b
(6.10)

rebinned spectrum bins beginning at i. Sets of 2nr +1 grand spectrum bins hereby become

correlated.114 Specifically, the grand spectrum power excesses xηi are constructed from the

sets of nr adjacent rebinned power excesses as

xηi
(σηi )2

=

nr∑
l=1

p̄a(νi+l−1|νa,i)xζi+l−1(
σζi+l−1

)2 , (6.11)

where νi+l−1 denote the rebinned frequencies. Equation (6.11) provides the ML estimate

of the power delivered by an axion to the ith grand spectrum bin, which has variance given

by

(σηi )2 =

 nr∑
l=1

[
p̄a(νi+l−1|νa,i)

σζi+l−1

]2
−1

. (6.12)

(9) If the combined spectrum bins did not contain correlations from the SG filtering (Step 4),

then the division by the independently obtained sensitivities (Step 5) would ensure that

xηi /σ
η
i is drawn from a standard normal distribution (no axion) or a normal distribution with

112 This PMF is interpretable as the probability of an individual axion particle being contained in bin j given that
the axion rest mass-converted frequency, Eq. (2.9) lies in bin i.

113 This conversion is made difficult by the fact that the axion frequency will in general not align perfectly with any
bin frequency, an effect that matters less the smaller the rebinned bin spacing nc∆b is. Reference [78] accounts for
this uncertainty.

114 The implications of these correlations are addressed in Sec. 7.1.4.
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unit mean and standard deviation (axion with gγ = 1). The negative correlations imprinted

by the SG filter (Sec. 7.1.4), however, reduce the grand spectrum standard deviations σηi by

a spectrally uniform factor ξ, which can be extracted directly from the data and validated

through simulation.

Scaling the grand spectrum standard deviations down to

σ̃ηi = ξσηi (6.13)

makes the corrected grand spectrum excesses

x
(1)
i =

xηi
σ̃ηi

(6.14)

standard normal random variables absent an axion. The superscript (1) denotes that Steps

1–9 have applied for the initial scan, and must be repeated for rescans. Equation (6.14)

represents the grand spectrum excesses referred to in the main text.

The SG filter has the additional effect of attenuating the visibility of a potentially present

axion. The frequency-independent magnitude of this attenuation can be simulated as well,

and is captured along with other, frequency-dependent effects, in Eq. (6.16)’s sensitivity

parameters η
(1)
i (for now, it suffices to say that η

(1)
i quantifies the mean value of 〈x(1)

i 〉

imparted by a KSVZ axion).

(10) Steps 1–9 are repeated, possibly multiple times, at frequencies where rescans are deemed

appropriate. The corrected grand spectrum excesses and sensitivity parameters are labeled

x
(j)
i and η

(j)
i , respectively.

In Sec. 7.2, we will evaluate the consequences of each data processing step on our ability to

sense an axionic signal in the data.

6.2 Axion search analysis considerations

The analysis starts where the data processing of Sec. 6.1 ends: with a grand spectrum of

normalized power excesses x
(1)
i measured at frequencies νi. The superscript (1) denotes data taken
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on an initial scan. Bins displaying large excesses on an initial scan are rescanned, potentially

multiple times, yielding rescan spectra x
(j)
i indexed as j = 2, · · · ,M , where many frequency bins i

will not be measured in rescans.

For bins not containing an axion, acquisitions of order a millionfold times longer than the

inverse bin bandwidth yield, via the central limit theorem, normalized power excesses drawn from

the standard Gaussian PDF, obtained by setting µ = 0, σ = 1 in

fx(x;µ, σ) =
1√
2πσ

exp

[
−(x− µ)2

2σ2

]
. (6.15)

This distribution is shaded green in Fig. 6.1. For a discussion of the consequences of practical

departures from the Gaussian idealization, see Sec. 7.1.5.

Figure 6.1: Gaussian probability density functions fx(x) for a single-bin normalized power excess x
owing to noise alone (green) and noise plus-axion signal for a particular value of the axion-photon
coupling gγ and haloscope sensitivity (blue). In threshold-based inference frameworks (Secs. 6.3,
7.3.1, and 7.3.2), an excess power threshold (black dashed line) is predetermined, and the only
information analyzed is whether the measurement is above threshold. The light green (blue) region
denotes to a true negative (positive), while the dark green (blue) denotes a false positive (negative).
In the Bayesian power-measured (BPM) analysis of Sec. 7.1, the single-scan prior update u(x) (red)
is simply the ratio of the two distributions. The exponential dependence of u upon x captures the
information content of the measurement. Figure reproduced from Ref. [126].

A bin νi that falls at the axion frequency νa will have its power excess drawn from what we

term the axion distribution. There is in fact a family of such distributions parametrized by the

axion-photon coupling gγ , but it will suffice to consider just one. The axion distribution’s standard

deviation in the limit of weak axion signal power is approximately that of the no-axion distribution
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(i.e. 1) but its mean is offset to

µ
(j)
a,i = g2

γ,iη
(j)
i . (6.16)

The sensitivity parameter η
(j)
i is the independently calibrated SNR for an axion with coupling

strength gγ = 1 in the ith bin of the jth spectrum.115 The PDF of the axion distribution for the

ith bin (blue in Fig. 6.1) is thus Eq. (6.15) with µ = µ
(j)
a,i , σ = 1.

The purpose of the statistical analysis for an axion haloscope is to convert the corrected116

grand spectrum excesses x
(j)
i and sensitivity parameters η

(j)
i into probabilistic statements distin-

guishing between the axion and no-axion hypotheses for a given bin or frequency window. The

particle physics community does not lack for statistical methods [235], but the challenge is not in

coming up with a mathematically correct framework; rather, it is in finding one which deals well

with the particulars of axion searches.

6.2.1 Distinguishing features of axion and haloscope searches

A given analysis framework can be evaluated in large part by how well it accommodates

each of the key, defining features of axion searches. Below is a list of some of the most prominent

distinguishing traits of axion — and axion-like particle (ALP; see Ch. 9) — dark matter searches.

This list is not meant to be comprehensive, nor to perfectly describe every such dark matter search.

Each item includes reference to the section of Ch. 7 which addresses it for the statistical framework

presented there.

(1) There is (by assumption) at most one frequency bin containing the axion rest mass among a

sea of many bins not containing it. Of interest to the experimentalist is both the probability

that the axion lies in any given bin, and in any range of bins. Evaluating the single- and

multi-bin hypotheses is covered in Secs. 7.1.1 and 7.1.2, respectively.

115 The parameters η
(j)
i account for the scaling of the haloscope sensitivity with integration time, experimental

parameters, and the dark matter density ρa. By normalizing the SNR to gγ = 1 and treating the multiplicative
coupling factor g2

γ as a parameter of the axion distribution, we are following the convention in the axion search
literature of assuming a fixed value of ρa and setting limits on gγ (Sec. 2.4.2). The i index on the coupling factor
indicates that we need not consider the same axion distribution in each bin.

116 Henceforth we will drop the word “corrected” for brevity.
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(2) Close to the bin containing the axion, there may be bins containing axion-induced power

excesses. These and other correlations are handled in Sec. 7.1.4.

(3) The axion is a persistent signal117 with lineshape that is assumed to be known, at least

approximately (Sec. 2.4.3). The persistent availability of the signal contrasts sharply with

some other prominent searches for new physical phenomena. For example, in gravitational

wave searches, a given astrophysical event [236, 237] must be observed during its one and

only occurrence: both false negatives and positives carry important negative consequences.

The persistence of the signal is leveraged in all axion haloscope searches through the incor-

poration of rescan data. See Item 8.

(4) It is a priori unlikely that the axion will reside within the window (mass and coupling)

in parameter space to which a given scan is sensitive. It is more unlikely still that the

axion will reside within any given bin. These small a priori probabilities are dealt with in

Sec. 7.1.3.

(5) Since the axion could (at least in principle) reside over many mass decades (Sec. 2.4.1),

linearly spaced Fourier domain bins do not on their own reflect the unstated belief which

clearly underlies the current fleet of axion direct detection experiments: that the axion

detection community’s belief in axions is nonuniform over frequency. Spectral weighting of

the performed hypothesis tests is covered in Sec. 7.1.3. Though the HAYSTAC results of

Chs. 7 and 8 are too spectrally narrow for this effect to be of much consequence, the ALP

search in Ch. 9 relies heavily upon these considerations.

(6) The hypotheses for there not being an axion and for there being an axion of any given

coupling are generally both quantifiable as probability distributions in terms of the measured

data. The quantifiability of all hypotheses of interest recommends Bayesian statistics, or at

least a reformulation of the null hypothesis that takes into account both distributions.118

117 As mentioned in Footnote 19, sufficiently narrowband axions may actually move noticeably (in the context of a
haloscope search) in frequency due to the orbit and rotation of the Earth.
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The axion and no-axion hypotheses are directly incorporated in the formulation of Sec. 7.1.1.

(7) To the extent that the previous item is not true, it is typically primarily because of excess

noise power coupled into the detector at discrete frequencies (or ranges thereof). Practical

departures from the idealized behavior of the axion and no-axion hypotheses are covered

in Sec. 7.1.5.

Additionally, some features more specific to haloscopes and other tuned, narrowband searches

(these do not apply, for example, to the ALP search in Ch. 9) in particular are:

(8) Frequency bins are scanned in groups that are small compared to the total number of

bins scanned during an entire data run.119 As such, targeted, narrowband rescans can be

performed with relative ease on power excesses that appear in an initial scan. Section 7.3

showcases key advantages of the framework in Ch. 7 pertaining to how rescan data may be

incorporated.

(9) For a QCD axion (assuming it does exist, and has the characteristics put forth in Ch. 2)

singled out by a fully operational haloscope, nature has designed the expected signal be-

havior to be almost fool proof.120 Specifically, its particular scaling with applied magnetic

field and the cavity transmission profile, together with its lineshape and persistence, makes

it hard for spurious RF excesses to masquerade as axionic. This last point creates a funda-

mental asymmetry between exclusion and discovery. It has important implications for how

false positives and negatives should be guarded against in the analysis. Those implications

are discussed in the context of accounting for the look-elsewhere effect, Secs. 6.5 and 7.1.2.

118 Sharon Bertsch McGrayne traces the history of the development of Bayesian statistics in Ref. [238]. A quote
from her work is pertinent to our discussion: “Egon Pearson’s idea was that the only correct reason for rejecting a
statistical hypothesis was to accept a more probable one.”

119 While broadband searches are possible [110], it has been shown that a narrowband/resonant (quality factor Q)
approach is a Q-fold more effective strategy in terms of scan rate than using a broadband receiver [95].

120 However, as Edward Teller purportedly once said, “if you think you have made something fool proof, the fool is
always bigger than the proof” [239].
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6.3 Frequentist threshold framework

The majority of existing axion exclusion has been obtained using either of two frequentist

methods. The haloscope exclusion literature [78, 89, 91, 93, 94, 97–109, 115] often does not do a

good job distinguishing which framework is being used in which publication. As will be made clear

below, the two methods mean substantively different things by “exclusion,” so this ambiguity is a

rather unfortunate one. The first of the two, described in this section, uses a (typically) multi-step

threshold-based test to either exclude the axion or perform more advanced tests on a persistent

signal. The purpose of this section is twofold: first, along with the next section, it aims to lay

out for readers exactly how frequentist exclusion is and has been obtained for haloscopes. Second,

the framework in this section can be compared directly to one presented in the next chapter. The

remainder of this chapter, together with the next, constitute an argument that the frequentist

threshold framework considered in this section is on balance better suited to the task of axion

haloscope detection than that in Sec. 6.4, yet worse than that in Ch. 7.

6.3.1 Framework details

In order to perform an axion search subject to the FT framework, a power excess threshold

x
(j)
T is set for each scan j and this threshold is used to determine firstly whether or not to proceed

with rescans, and secondly whether or not to exclude the axion hypothesis at each frequency.

The logic of this exclusion is prescribed as follows. First, the experimentalist establishes a null

hypothesis. In this case, the null hypothesis for each bin is that there is an axion at the bin’s

frequency.121 Second, the experimentalist establishes and follows a procedure for acquiring data.

This procedure may include conditional steps: e.g. “acquire more data in a given bin via a rescan

if and only if the initial scan power exceeds the threshold set for that bin.” All possible paths of

action eventually terminate either in a rejection of the null or a failure to reject the null, forming a

decision tree. Figure 6.2 shows how a realistic grand spectrum of frequency bins might be scanned

121 The axion hypothesis is chosen as the null so that it might be rejected, or excluded, later. Because of the
unconventional choice to make the interesting (i.e. axion) hypothesis the null, the language of false negatives and
positives will adopt the unconventional usage where a positive (negative) refers to the null being true (false).
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Figure 6.2: Illustrative, fictitious grand spectrum data for a standard haloscope subject to a fre-
quentist threshold (FT) analysis allowing M = 4 scans. The initial scan data from a typical
haloscope [105, 107] consists of a normalized power excess in each of N ∼ 105–106 frequency bins,
represented above by the boxes in the first row. At frequencies where the excess is above a predeter-
mined threshold (red boxes), additional scans are conducted until a measurement below threshold
is recorded. Only if all M scans exceed threshold is failure to reject the axion hypothesis reported.
If any scan comes in below threshold (black boxes), the axion hypothesis is rejected for the bin in
accordance with Eq. (6.20) and further scanning need not be conducted (empty boxes). For the FT
framework of Sec. 6.3, both the threshold and the number of scans M must be predetermined, and
the exclusion therefore may take into account scans that were not performed. Here, Scan 4 was
not performed for any bins, but still impacts the final reported exclusion. Because the haloscope
bandwidth is typically larger than the expected axion linewidth, bins adjacent to those exceeding
threshold are automatically rescanned (gray boxes). However, the FT framework discards these
data regardless of the power measured. Conversely, the BPM method discussed in Ch. 7 is able to
use the information. Figure reproduced from Ref. [126].

according to the powers measured relative to threshold. Exclusion is set for all bins i where the

null is rejected at a confidence level of

E = 1− Fn, (6.17)

where Fn is the bin-i false-negative rate of the entire procedure: the total probability that the null

would have been rejected, were it true.122 We refer to this class of methods as frequentist threshold

122 This approach is equivalent to defining a test statistic

ts =

{
1 x(j) ≥ x(j)

T ∀ j
Fn(gγ) otherwise

(6.18)

from the total false-negative rate treated as an explicit function of gγ . Couplings where ts goes below some predeter-
mined target rate Fn,target are rejected at 1− Fn,target confidence level via Eq. (6.17). The piecewise definition of ts,

Eq. (6.18), yields exclusion only when at least one scan’s power excess x(j) comes in below its threshold x
(j)
T . When

all scans exceed threshold, ts = 1 indicates the presence of (possibly axionic) excess power.
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(FT) frameworks. FT frameworks answer the question, “assuming the axion exists, what is the

probability of failing to observe it?”

An FT search procedure [107] is prepared to perform as many as M scans at each frequency

νi, reporting exclusion subject to its predetermined false-negative rate. At a given νi, no additional

scans are performed once any scan’s measured power excess x
(j)
i fails to exceed its predetermined

threshold x
(j)
T , the vertical, dashed line in Fig. 6.1. For the general case where each scan may use

a different false-negative rate (dark blue region of Fig. 6.1), given from integrating Eq. (6.15) by

f (j)
n =

∫ x
(j)
T

−∞
fx

(
x;µ(j)

a , 1
)
dx, (6.19)

the total false-negative rate is

Fn =
M∑
j=1

f (j)
n

j−1∏
k=1

(
1− f (k)

n

)
. (6.20)

This total false-negative rate is what sets the confidence level of the reported exclusion E as in

Eq. (6.17). For the special case where all M scans have equal false-negative rates, f
(j)
n = fn0,

Eq. (6.20) reduces to

Fn0 = 1− (1− fn0)M . (6.21)

In practice, the false-negative rates f
(j)
n and power thresholds x

(j)
T are set to convenient values, re-

moving the frequency-dependence of µ
(j)
a in Eq. (6.16) by forcing gγ to compensate for the frequency-

dependence of the sensitivity. The initial scan sensitivities η
(1)
i therefore determine the minimum

coupling gγ,i that is excluded (or not) at each frequency. Subsequent (j > 1) scans, conversely,

integrate to a sensitivity η
(j)
i determined by the coupling gγ,i reached on the initial scan. The

result, in the case where the axion hypothesis is rejected for all bins where it can be tested, is an

exclusion plot [107] whose spectral structure reflects that of η
(1)
i .

The procedure for collecting data and reporting exclusion in these FT frameworks must be

rigidly defined and laid out in advance. If, instead, the experimentalist is allowed to alter the

decision tree that leads to negative or positive results while navigating that decision tree, the result

becomes susceptible to bias. To this point, the total false-negative rate Fn, Eq. (6.20), directly

responsible for setting the exclusion E, grows with the total numberM of scans in the predetermined
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experimental procedure. Suppose, then, that the experimentalist was willing to perform as many

as M scans at each frequency bin i before failing to reject the axion hypothesis, but that in practice

some number m < M was all that was required to get at least one negative result in every bin.

The correct exclusion to report, perhaps unintuitively, is that which takes into account all M

allowed scans, including even the M − m unperformed scans. The number of such unperformed

scans and their individual false-negative rates f
(j)
n , Eq. (6.19), must be known to properly report

exclusion. If not written down in advance, these numbers are difficult to estimate without inserting

bias. In practice it is extremely difficult to rigorously adhere to FT logic. For example, one would

expect that some exclusion would be reported for a total number of scans M surpassing m, the exact

number performed, yet this never appears in the literature [89,94,97–104,106–108].123 Furthermore,

exclusion has been reported for a number of scans less than the number performed [78]!

Though the preceding logic and inference is frequentist in nature, an axion haloscope analysis

can alternatively be carried out using the language of Bayesian statistics. In Sec. 7.3.2, I present a

threshold-based Bayesian analysis (denoted BT2) which is equivalent to the FT framework, given

simple assumptions applicable to all dark matter axion experiments. That is, the two frameworks

share operational procedures, and they ultimately output identical conditional probabilities. This

correspondence implies that we can quantitatively interpret FT axion exclusion as decreased belief

in, or probability of, the axion hypothesis.

6.3.2 Aggregate exclusion

The aggregate exclusion E(gγ) will serve as our means of applying the logic of the FT frame-

work to an entire scanned window (or portion thereof). We will see that E(gγ) provides a more

conservative, yet more faithful assessment of the exclusion achieved by a haloscope than does the

standard practice of averaging the couplings at which a given exclusion E is achieved.

The aggregate exclusion E(gγ) answers the same question that the exclusion E(gγ) (written

123 The references cited here are those which either definitely use the FT framework or might plausibly do so. A
few publications which are not clear on framework usage have been determined to be using the framework of Sec. 6.4
with specific modifications discussed therein via private correspondences with the authors.
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explicitly as a function of coupling gγ) does, but for the entire frequency range. The exclusion

E(gγ) answers the question: “supposing an axion of coupling gγ occupies a given bin, what is the

probability of having observed a predefined positive result (i.e. detection of the axion) there?” We

therefore define the aggregate exclusion E(gγ) as the chance of having observed a predefined, global

positive result (since it is not known which bin the axion is in, the global positive result is defined

to mean at least one positive result across the N frequency bins.), assuming the axion rest mass

to occupy exactly one bin within the range. In keeping with the uniform-priors assumption of

Sec. 7.1.3, the likelihood of an axion to be at any given bin is equal for all bins, and for simplicity

the powers in bins are assumed otherwise uncorrelated (see Sec. 7.1.4). In Sec. 6.3.1, the known

sensitivities η
(j)
i are thought of as combining with predetermined power thresholds x

(j)
T to preselect

couplings gγ,i to test at a uniform, desired false-negative rate Fn. This logic can be partially

inverted: assuming the same η
(j)
i and x

(j)
T , now use a frequency-independent coupling gγ to preselect

frequency-dependent total false-negative rates Fn,i(gγ) at which to test. This framing allows for

the testing of a uniform coupling gγ across the entire range to a confidence level of

E(gγ) ≈ 1

N

N∑
i=1

[1− Fn,i(gγ)] , (6.22)

where the approximation is valid in the low total false-positive rate limit of Sec. 7.3.2, Fp � 1. The

confidence to test at will increase monotonically with the coupling gγ being tested. The coupling

coincident with a desired percentile (e.g. 90%) can be determined from the sensitivity profile η
(j)
i

alone, and a standard confidence test performed by comparing the measured power excesses x
(j)
i

against the predetermined thresholds x
(j)
T , with a positive result defined as a click on all M scans

in at least one bin.124

The aggregate exclusion, by answering the question of threshold-based frequentist confidence

testing, proves a more natural figure of merit for FT exclusion over a given scan window than

the standard practice [107] of quoting the average coupling gmean
γ excluded to a given confidence

124 The aggregate exclusion E(gγ) bears exactly the same relationship to the aggregate prior update U(gγ) of
Eq. (7.7) that E(gγ) bears to U(gγ) of Eq. (7.6), making it central to comparing the Bayesian framework of Ch. 7 to
the frequentist framework of this section.
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E. If the coupling gagg
γ is defined as that for which identical aggregate exclusion E(gagg

γ ) = E is

achieved, then a comparison will reliably reveal gagg
γ > gmean

γ . The standard metric, gmean
γ , is not

somehow achieving deeper sensitivity, it is averaging in a space inconvenient to the natural logic

of frequentism, and biased relative to it. More directly, an experiment that achieves 90% exclusion

at a frequency-averaged coupling of gKSVZ
γ has not rejected the hypothesis that a KSVZ axion lies

within its scan window with 90% confidence.

6.4 p-value framework

The second commonly used framework for excluding axions is a standard frequentist method

in particle physics [235] that relies on p-values, which I will argue is ill-suited to the particulars

of axion direct detection. To distinguish it from the frequentist framework of Sec. 6.3, I will refer

to it simply as the “p-value framework.” The p-value, or probability value, answers the question:

“what is the probability that an event at least as extreme as the one observed would have occurred,

subject to the null hypothesis?” The event in question is the measurement of a grand spectrum

power x
(j)
i (or, more generally, a ML-weighted average of such powers over multiple scans). For the

p-value method in its simplest form, exclusion at confidence level Ep is reported for the axion gγ

which satisfies

Fx

(
x

(1)
i ;µ

(1)
a,i , 1

)
= 1− Ep, (6.23)

where

Fx(x;µ, σ) =

∫ x

−∞
fx
(
x′;µ, σ

)
dx′ (6.24)

is the cumulative distribution function (CDF) obtained from integrating Eq. (6.15), here evaluated

at the measured power excess x
(j)
i with µ = µ

(1)
a,i and σ = 1. The coupling gγ enters through µ

(1)
a,i

via Eq. (6.16).

The coupling excluded at each frequency is therefore the one for which the measured power

or a more extreme (that is, lower, for the inverted use of the axion hypothesis as the null hypothesis

for frequentist exclusion; Footnote 121) power would have been measured only 1−Ep of the time,
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were the axion really at that coupling. Intuitively, this sounds fine. However, p-values are famously

misleading quantities. The American Statistical Association in 2016 issued a statement cautioning

strongly against the widespread reliance on p-values found throughout the sciences [240]. They

are particularly dangerous when many independent hypotheses are being tested, giving rise to the

phenomenon of p-hacking. If not used with care in the context of axion direct detection, we will

see in Sec. 6.5.1 that this danger applies here as well, in a modified form.

To be sure, there is nothing logically incoherent about a p-value. It is simply a mathematical

object; any error is always on the user end. Let us consider two simple pitfalls associated with the

use of p-values in the axion exclusion context. We will consider a third pitfall associated with the

testing of many independent hypotheses in the next section.

First, a p-value essentially treats the measured power as itself-plus-a-probability-weighted-

sum-of-all-more-extreme-values, for the purpose of excluding. While there is nothing logically

wrong with this, an elementary, intuitive understanding of (say) 90% frequentist exclusion might

be that an axion at the excluded coupling would have been identified 90% of the time, were it

there. This is precisely the quantitative meaning of the FT exclusion of Sec. 6.3. However, by

grouping the measured power only with that subset of unmeasured powers which are more extreme

(i.e. more favorable to more aggressive exclusion) than it, the p-value exclusion reliably rules out

axions which would not have set off even a single rescan with anything close to 90% probability,

were they present.

This pitfall is greatly exacerbated by a second feature of the p-value method: that it still

often uses a threshold to test for discovery, and that that threshold takes into account the look-

elsewhere effect only with respect to discovery, yet not exclusion (Sec. 6.5). To give an example,

a single-scan threshold may be set at 3.5σ (equivalently, x
(1)
T = 3.5). A typical bin will come in

around 0σ, causing the axion at 1.28σ to be excluded at Ep = 90% confidence level via Eq. (6.23).

The probability that such an axion (mean at 1.28σ) would have actually set off the detector for

even a single rescan is, from Eq. (6.19), 1.3%. This can be made worse if, as is common, rescans are

performed. That is to say, when the FT framework reports 90% exclusion at a given gγ , it means
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that an axion would have been identified 90% of the time. Indeed, we saw in Sec. 6.3.1 that the

FT framework takes care to ensure that the exclusion is the complement of the false-negative rate

for an arbitrary M -scan protocol. But when the p-value framework reports 90% exclusion for an

axion a given gγ , the most typical result is that such an axion would have been identified 1.3% of

the time for the initial scan, and subsequent scans may add additional opportunities to miss the

signal.125 What would have in fact typically happened if an axion existed at 1.28σ is that an axion

at a typical value of 2.56σ, still well short of 3.5σ, would have been excluded. In a context where

of order 100,000 bins might be tested in a single scan, and there are not nearly that many pixels

displayed in a typical exclusion plot, this result could very well do nothing to modify even a single

pixel of the exclusion as displayed. In spite of all of this, there is nothing logically wrong with the

p-value framework: it is simply that most readers are not conditioned to look at an exclusion line

and understand that it might imply a typical false-negative rate of nearly 99%.

The second pitfall of the p-value framework is that it tends to exclude nonsensical couplings

if left unaltered. Simply put, any measured power below -1.28σ will require excluding an axion

with mean below 0σ at 90% confidence level. Of course, there is no axion with subzero mean, so

all axions are excluded. This is true independent of sensitivity. So in principle, an axion search

could be carried out not in the typical ∼ 8 T fields of modern haloscopes, but in the Earth’s field of

∼ 50 µT, and 10% of the (say) 100,000 frequency bins would be excluded at all couplings down to

gγ = 0. Again, there is nothing logically wrong here. The 10% of bins that achieve this nonsensical

result of perfect exclusion are what the quoted confidence level of 90% warns about, but the result

is highly inconvenient. One remedy is to artificially modify the axion distributions in a manner such

that these results never happen, but it seems a strange price to pay when alternative frameworks

exist which allow for the use of the actual axion PDF.

The third pitfall, which we will see in the next section, is that the exclusion reported over the

125 This story is complicated by the fact that adjacent bins tend to be scanned during rescans (Fig. 6.2). The
possibility that a bin with an axion might have been missed on the first scan, but showed up on the rescan of
a neighboring bin which did exceed threshold, can partially mitigate the extremely high effective false-negative
rate. Both the exacerbating and mitigating effects of rescans depends on the particulars of the rescan criteria and
parameters, as well as the strength of correlations in nearby bins.
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entire frequency range for any properly functioning framework ought to get reliably worse as more

independent frequencies are probed. The p-value method or close variants of it [75] as typically

implemented in axion searches [91, 93, 105, 109, 115] appear to not fully account for this effect,

whereas the other frameworks discussed in this thesis all do. For all of these reasons, the p-value

method should only be used with expert handling, or better yet not at all, given the availability of

more intuitive alternatives (Secs. 6.3, 7.3.1. 7.3.2, and especially 7.1).

6.5 Look-elsewhere effect: implications for detection and exclusion

The look-elsewhere effect is the name for the phenomenon whereby rare events become com-

monplace when many independent hypothesis tests are performed. It must commonly be dealt with

in particle physics searches [235] which entail testing many independent parameter values simul-

taneously. Typically, accounting for the look-elsewhere effect means shifting from a notion of how

locally unlikely an event is to how globally unlikely it is. Here, local refers to what occurs in any

given bin, and global refers to what happens in all the bins taken as a collective.126 For example, an

event that has a 0.01% chance of occurring locally, for example, will occur globally roughly 1% of

the time that 100 independent tests are performed.127 In a rare event search, therefore, a 5σ global

result is a typical scientific standard for discovery. However, in an axion haloscope context, ac-

counting for the look-elsewhere effect is the conventional sense — that is, with respect to discovery

(a modifier that will help us is distinguishing from its implications for exclusion, discussed below)

— is somewhat trivial. In principle, a total unawareness that rare events occur more frequently over

many trials could lead a näıve experimentalist to set a much-too-low rescan threshold and therefore

have to perform an over-abundance of rescans; in practice, that mistake does not appear to be

being made in narrowband, tuned experiments. Conversely, in broadband experiments without

targeted rescan capabilities, it is prudent to explicitly account for the look-elsewhere effect when

126 The quantities in this thesis defined with “aggregate” in the name, Eqs. (6.22) and (7.7), answer questions about
global events.

127 A global occurrence is here taken to mean one or more local occurrence over a set of tests. This definition is
harmonious with the hypothesis that an axion may lie in at most one bin, Item 1 in Sec. 6.2.1.
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reporting discovery [75,241]. Even in such contexts, however, the availability of simple and robust

manual tests can render the notion of reporting discovery based on a limited number of identical

scans overly simplistic. In searches for hidden photon dark matter [242] where the magnetic field

plays no role [243, 244], accounting for the look-elsewhere effect with respect to discovery is also

important, and doubly so if those searches are also broadband.128 This might lead us to believe

that accounting for the look-elsewhere effect is unimportant for axion haloscope searches. In fact,

the opposite is true.

In the context of an axion search, haloscopic or otherwise, the look-elsewhere effect worsens

the exclusion that is achievable across a scanned frequency window. The coupling excluded will

move upwards129 as more independent tests are conducted, reflective of the increasing difficulty in

ruling out a special frequency when it has more imposters to hide among.130 This effect is not fully

accounted for in the exclusion of some axion searches [75, 91, 105, 111]. If accounted for, it would

have the effect of scaling back existing exclusion results.131

We can be quantitative about the role the look-elsewhere effect plays in slowing down a scan.

Scan rate is traditionally calculated [42] as in Eq. (2.16), without the SNR2 → SNR′2 correction to

the denominator of the first term. As promised in Sec. 2.5.2, we will here estimate that correction

term. This is not a rigorous derivation, but just a quantitative means of seeing what the look-

elsewhere effect very roughly does to scan rate.

Without any involved calculations of the sort performed in Sec. 7.3.3, we can anticipate that

a very rough criterion to be sensitive to an axion of some coupling gγ across an entire scan is that

128 Another, less common example, but one relevant to this thesis (Sec. 7.4), is a haloscope that takes some data
and promptly stops working, because of, for example, a magnet quench [42,90].

129 This effect can be observed in the numerical simulations of Sec. 7.3.3.
130 This fact is analogous to flipping N coins M times apiece and looking to rule out the existence of one special,

anonymous coin with heads probability ph > 0.5 hidden among the whole set. The more coins you flip, the weaker
the overall ph you should be able to rule out. It is a question of semantics whether to call this the look-elsewhere
effect, which could be thought of as only applying to discovery by construction. This thesis takes the perspective that
because the effects on discovery and exclusion both originate directly from the tendency of rare events to occur more
when there are multiple trials, it is appropriate to view them both as manifestations of the look-elsewhere effect.

131 More accurately, there is nothing wrong with the existing exclusion results from a purely logical perspective.
Rather, it is that, overlooked for sufficiently many independent tests, the logic itself ceases to imply that (frequentist)
one would have detected the axion, were it in the scan window, or that (Bayesian) the probability of its being there
actually went down in light of the data. Subject to any reasonable definition of “exclusion,” this functionally means
that the reported exclusion should be scaled back (i.e. upwards in coupling).
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the expected number of background fluctuations 〈NB〉 that look like that axion obeys

〈NB〉 � 1. (6.25)

This is because there can (by assumption) be at most one axion, and in any realistic scan of NI � 1

independent bins,132 NB will be Poisson-distributed, with standard deviation equal to the square

root of its mean

σNB =
√
〈NB〉. (6.26)

Therefore, once 〈NB〉 gets close to unity, so does σNB , and it becomes impossible to reliably tell a

whether a single additional axion-like excess is due to an axion, or due to the fluctuations expected

from the noise statistics.

To a rough approximation, what it means for a fluctuation to be axion-like (i.e. to count

towards NB) is for it to achieve a grand spectrum power excess x of at least some significant

fraction of the SNR of the axion distribution.133 To put a number on it for the purposes of this

calculation, we will say that a fluctuation in axion-like if it has134

x ≥ SNR. (6.27)

Therefore,

〈NB〉 = NI [1− Fx(SNR; 0, 1)], (6.28)

where Fx(SNR; 0, 1) is the no-axion CDF, Eq. (6.24), here evaluated at the SNR per our criterion,

Eq. (6.27). To proceed further, we must understand the role of the SNR as it appears in the equation

for scan rate, Eq. (2.16).

When Eq. (2.16) is written in its uncorrected form (with SNR and not SNR′), a high SNR

(e.g. of around 5, perhaps inspired by the common 5σ standard for discovery) is usually assumed.

However, as discussed above, in haloscope searches it is not necessary to build one’s fortifications

132 We will here think of the number of bins as some effective number NI of independent bins, to keep the math
simple.

133 in Sec. 6.3, we labeled this scan- and bin-dependent quantity µ
(j)
i , here we simply recognize it as the SNR, since

we are not working at a level of detail where we care about scan- or bin-dependencies.
134 One could argue for the use of a multiplicative constant in this equation, or perhaps even for a different criterion

entirely. The point here is largely just to show in what form NI enters the scan rate.
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against accidental discovery into the statistical framework alone, when there are robust tests with

vanishingly low error rates that can be performed on persistent signals. Rather, the high values of

the SNR usually chosen are, consciously or not, set to avoid paying the overhead of performing these

time-expensive tests in a context where many independent tests are performed. In other words, the

look-elsewhere effect with respect to exclusion is already to zeroth order built into most estimates

of the scan rate by choosing a value for the SNR that only makes sense in a global context. But

either for a region of interest much smaller or (more practically, when considering the ambitions of

the field as a whole) larger than a typical scan, we can anticipate how the SNR term should change

to accommodate the different number of bins, while obeying Eq. (6.25).

Subject to the logic of the previous paragraph, a cleaner interpretation of SNR and SNR′ is

to temporarily think of SNR as the mean axion power one would desire if one were just scanning

(unrealistically) a single bin. The desired value will depend on the overhead cost of performing

time-expensive tests off cavity resonance or with the magnet ramped down, or, if in a situation

(perhaps an ALP search) where such tests are less fool proof, the (much scarier) risk of accidentally

reporting a false discovery. In any case, if we now go from 1 to NI independent bins, we may

ask how much higher the local SNR, which we now relabel SNR′, must get in order to keep 〈NB〉

constant: that is, how far we have to back off in coupling to maintain our global SNR given a fixed

scan time.

To compare the two cases ({1 bin, SNR} versus {NI bins, SNR′}), where

SNR′ = β(NI) SNR (6.29)

is parametrized by a quantity β(NI) ≥ 1 to be determined, we write out Eq. (6.28) for each:

〈NB〉case1 =
1

2
erfc

(
SNR√

2

)
(6.30)

〈NB〉case2 =
NI

2
erfc

(
β SNR√

2

)
, (6.31)

where erfc is the complimentary error function. Equating Eqs. (6.30) and (6.31) to preserve the
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expected number of background, axion-like fluctuations, we find

β(NI) =

√
2

SNR
erfc−1

[
1

NI
erfc

(
SNR√

2

)]
, (6.32)

where erfc−1 is the inverse complimentary error function. According to Eq. (6.29),

SNR′ ∼
√

2 erfc−1

[
1

NI
erfc

(
SNR√

2

)]
≈
√

SNR2 + 2 logNI ,

(6.33)

where the last approximation, equivalent to Eq. (2.17), is seen in Fig. 6.3 to be valid at low NI and

high SNR. The ∼ sign is a reminder that this is only a rough calculation of the effect of NI . When

NI → 1, SNR′ → SNR, as expected.

Figure 6.3: Effective correction to the required SNR from the look-elsewhere effect. Curves for
different global values of SNR showing how the local value SNR′ must increase to accommodate
higher numbers NI of independent bins and maintain sensitivity to a fixed axion. The solid curves
correspond to the exact form (first line) of Eq. (6.33) and the dashed curves to the approximate
form (second line).

The interpretation of Eq. (6.33) is that going to a higher number of independent frequency

bins NI entails searching for more strongly coupled (equivalently, higher local SNR′) axions. Figure
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6.3 shows the effective look-elsewhere correction to the local SNR′ for several different global values

of SNR. For example, for a scan like Phase I, Run I of HAYSTAC [78, 106] containing of order

105 independent bins and integrating to a local SNR′ of ≈ 5,135 we first determine that the global

SNR = 2 curve intersects SNR′ = 5 at NI ≈ 105. The same curve passes through 106 around

SNR′ ≈ 5.5. Therefore, for a HAYSTAC Phase I, Run I-like scan to exclude the same couplings

over a scan of 10× as many bins, it would take an additional (5.5/5)2 − 1 ≈ 20% longer according

to Eq. (2.16) than naively expected from the tenfold increase in number of bins alone. This is a

somewhat reassuring result: it means that for most scans of practical sizes, scaling up even by an

order of magnitude does not incur much further penalty. However, a ∼ 20% effect is not so small

as to be totally negligible. And, as we saw in Sec. 6.4 and will discuss further momentarily, when

frameworks do not account for the look-elsewhere effect with respect to exclusion at all, the effect

is considerably more dramatic.

6.5.1 Frequentist frameworks and the look-elsewhere effect

Now we can ask, do the frequentist frameworks discussed in this chapter account for the

look-elsewhere effect? The FT framework does, albeit in a somewhat clunky way. In order to avoid

an over-abundance of false positives, the threshold x
(j)
T must be moved up as more and more bins

are tested. Since the same axion that is tested for rescanning (in the case of a multi-scan protocol)

is also tested for exclusion, this necessarily implies testing more strongly coupled axions at fixed

confidence level. Hence, while the choice of exactly what (local) false-positive rate to set is left

somewhat subjectively up to the experimentalist, that rate must eventually get lower as more and

more bins are tested. The result is a worse exclusion line and worse aggregate exclusion, Eq. (6.22),

as required by the look-elsewhere effect.

The p-value framework in its simplest form (Sec. 6.4) accounts for the look-elsewhere effect

only with respect to discovery. The threshold used to test for rescans (in a multi-scan protocol)

has nothing directly to do with what coupling is excluded, as discussed in Sec. 6.4. While this

135 The actual value used was 5.1.
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threshold moves up for the same reason that the threshold in the FT framework does as more

bins are scanned, the couplings excluded do not move up with it. The basic version of the p-value

framework therefore does not account for look-elsewhere with respect to exclusion, which explains

why the reported confidence level largely loses its intuitive meaning.136

The look-elsewhere effect can be accounted for in the p-value method numerically. Over a

given subset of Ns frequency bins, the coupling that would have produced the highest measured

power or more extreme 90% of the time (assuming all the other bins had no axion, and still generate

powers from the no-axion distribution), can be excluded over the subset of bins at 90% confidence.

If that subset is made identical with the entire set of bins for the data run,137 the resulting exclusion

properly accounts for the look-elsewhere effect with respect to exclusion: that is, it typically gets

worse as more bins are probed. In practice, this does not appear to be being done for exclusion

using the p-value framework. Though in at least some cases [91,105] it is being done in some form

for subsets of bins at the pixel scale (i.e. over however many bins fit into a single frequency-axis

pixel in the exclusion plot as displayed in a publication). There, the look-elsewhere effect is being

accounted for properly at that spectral scale, but not beyond it. To the degree that the exclusion

plot consists of more than one independent pixel, the reported exclusion becomes progressively

more untethered from the notion that an axion, if present, would have been observed. In short, the

physics of the early universe did not know about the size of a printed page on which results about

it would one day be displayed.

In the next chapter, we will discuss a Bayesian analysis framework that is well suited to

deal with all of the distinguishing features of axion searches listed in Sec. 6.2.1, including the look-

elsewhere effect with respect to both discovery and exclusion.

136 This is closely related, but not identical, to the first p-value pitfall discussed in Sec. 6.4. In particular, the notion
that the exclusion should be getting worse is an alternate framing of the exacerbation of the first pitfall whereby, if it
doesn’t, the reported exclusion loses its intuitive meaning. However, the p-value’s effective grouping of the measured
power with only the subset of unmeasured powers which are more extreme than it is a distinct and separable facet
of the problem. Both facets conspire to produce the particularly egregious 98.7% effective false-negative rate in the
example in Sec. 6.4.

137 In fact, there is no reason other than convenience to box in just the data run in this fashion. The look-elsewhere
effect with respect to exclusion should properly be accounted for between different data runs and experiments.
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A maximally informative axion dark matter analysis

In Ch. 5, we saw how quantum measurement may be used to speed up axion searches, albeit at

a tangible hardware and complexity cost to the experiments. While the ultimate means of bringing

total haloscope scan times down from the formidable (millennia-plus) timescales of Sec. 2.5.3 will

have to involve hardware advances, the lowest hanging fruit for improving axion detection lies

within the data processing and analysis. Subject to the distinguishing features of axion searches

(Sec. 6.2.1), a statistical framework can be more or less efficient with the information content of the

measurement, and allow for more or less operational freedom on the part of the experimentalist.

This chapter, together with the preceding one, presents the work of Ref. [126]. In it, I argue that

an optimization of the statistical analyses that haloscopes have historically used is readily available.

The standard threshold-based confidence tests used in the frequentist threshold (FT) analysis of

Sec. 6.3 transform continuous measurements of power into binary outcomes, discarding knowledge

of what power was measured, and, with it, sensitivity to the axion. Because haloscopes are in

practice statistics-limited experiments, for which additional data continues to enhance sensitivity,

a more informative analysis will translate into tangible time savings during operation.

In Sec. 7.1, I will introduce the Bayesian power-measured (BPM) framework, a statistical

analysis framework for axion searches that makes intuitive use of all of the information at the

output of the data processing. We will see in Sec. 7.2 that the processing itself is nearly information-

optimal. Other sections exist to show how BPM accommodates the unique features of axion searches

put forth in Sec. 6.2.1 and to provide useful insight into BPM through comparison with competing
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frameworks. Section 7.3 shows that BPM permits operational freedoms not available in its strongest

competitors. These freedoms can be leveraged in future work to determine more optimal scan

strategy [95], the other hardware-free advance which to date still has not been rigorously explored.

The BPM framework is put to the test in Sec. 7.4 by reanalyzing the HAYSTAC Phase I dataset

[107]. The framework provides improved constraints on the axion-photon coupling gγ while also

identifying the most promising regions of parameter space within the 23.15–24.0 µeV mass range.

A comparison with the standard threshold analysis suggests a 36% improvement in scan rate from

this analysis. In addition, it spotlights within the dataset the group of frequencies “least unlikely”

to contain the axion. The most prominent among these, though still unlikely to contain an axion,

nonetheless stands out relative to any other frequency within the scan range.

7.1 Bayesian power-measured framework

This section introduces the BPM analysis framework, which simplifies the operational con-

straints placed on experimentalists while making use of all of the information content of coherent

axion detection data. This framework builds on the existing HAYSTAC processing procedure [78]

and may be readily adapted to other experiments.

Adopting a Bayesian perspective, we can ask whether a more informative analysis than the

FT framework of Sec. 6.3 is possible, without the downsides of p-values (Sec. 6.4). We consider

frameworks which operate by applying Bayes’ theorem,

P (Y |Z) =
P (Z|Y )P (Y )

P (Z)
, (7.1)

to an axion search data set. Notationally, P (B) denotes the probability of event B being true,

while P (B|C) denotes the same, conditional upon event C being true. In Eq. (7.1), P (Y ) is the

Bayesian prior probability of event Y being true, and it is updated by the occurrence of event Z

to the posterior probability P (Y |Z). Section 7.3 describes two distinct Bayesian threshold (BT)

frameworks in which Z is taken to be a binary outcome, or set thereof. We will see there that a

more informative analysis is indeed possible, and that thresholding always imposes some operational
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restrictions and needlessly discards valuable information. Nonetheless, the BT logic exemplifies

how Bayes’ theorem may be applied to axion detection. In doing so, it builds an important bridge

between the FT and BPM frameworks.

7.1.1 Updated belief

Bayes’ theorem, Eq. (7.1), may be applied to haloscope data so as to preserve the full infor-

mation content of the measurement. The information at each frequency may then be aggregated

(Sec. 7.1.2) into a statement about the change in probability of an axion of arbitrary coupling

strength gγ,i existing anywhere within the haloscope’s scan range.138 In the common case where

the data indicates the absence of an axion, the Bayesian language of updated belief maps onto the

language of frequentist exclusion (Ref. [235] and Secs. 7.3.2 and 6.3.2).

The BPM framework is readily motivated by the fact that both the FT (Sec. 6.3) and BT

(Sec. 7.3) frameworks discard valuable information. Each power excess, measured on a continuum,

is reduced to a simple “click” or “no-click” response of an effective binary detector. A measurement

that comes in just below threshold on a higher-order rescan after already exceeding threshold on

previous scans is orders of magnitude more likely to indicate the presence of an axion than is a

typical, 0σ power excess. Yet the threshold frameworks treat these events identically.

The BPM framework uses Bayes’ theorem to account for the precise effect of any initial

measured power x
(1)
i on the prior probability P

(0)
a,i that an axion resides in bin i. After measurement,

the prior is updated to the posterior,

P
(1)
a,i = u

(1)
i P

(0)
a,i , (7.2)

where u
(1)
i denotes the first scan’s prior update. If subsequent scans j > 1 are performed, P

(j−1)
a,i

will be further updated to

P
(j)
a,i = u

(j)
i P

(j−1)
a,i , (7.3)

and so forth. In the appropriate limit of infinitesimal priors (Sec. 7.1.3), the single-scan prior update

138 In the language of Bayesian statistics, a change in probability is synonymous with a change in “belief.”
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for bin i and scan j follows from Eq. (7.1), independent of one’s choice of prior:

u
(j)
i ≈

P
(
x

(j)
i |Ai

)
P
(
x

(j)
i |Ni

) = exp

−
(
µ

(j)
a,i

)2

2
+ µ

(j)
a,ix

(j)
i

 . (7.4)

The second equality uses the Gaussian probability densities of Eq. (6.15), and Ai or Ni denotes

the event that an axion does or does not reside in bin i, respectively. The approximation in

Eq. (7.4) identifies the prior update with the Bayes factor, which compares the likelihood of two

hypotheses; it applies when the axion and other sources of excess power are sufficiently unlikely.139

The assumption underlying the validity of this approximation is made quantitative in Sec. 7.1.3, and

in Sec. 7.1.5 we show that this assumption is conservative with respect to axion exclusion. The BPM

analysis can therefore alternatively be viewed as a Bayes factor analysis, but the interpretation of

the Bayes factor as a conservative approximation to the prior update makes for a more intuitive

and immediately useful end result. Equation (7.4) also indicates that the update to the probability

of an axion’s existence, plotted in red in Fig. 6.1, scales exponentially with the measured power

excess x
(j)
i . Rather than assume a particular axion distribution, we now consider the prior update

u
(j)
i as a function of µ

(j)
a,i . Formally, u

(j)
i is maximized at µ

(j)
a,i = x

(j)
i . Thus at each frequency

where a positive excess x
(j)
i > 0 is measured, we can single out a maximum likelihood (ML) axion

distribution parametrized by µ
(j)
a,i = x

(j)
i .140 The update to the prior probability in the ML axion

scales sharply with µ
(j)
a,i ∝ g2

γ as

u
(j)
i,ML = exp

[
(µ

(j)
a,i)

2

2

]
. (7.5)

Since the updates u
(j)
i can be mapped back to their measured power excesses x

(j)
i and sensitivities

η
(j)
i , this use of Bayes’ theorem preserves the information content of each individual measurement.

Applying Eq. (7.4) to all bins x
(j)
i across all scans yields a spectrum of total updates Ui,

defined as

Ui =
P

(Mi)
a,i

P
(0)
a,i

=

Mi∏
j=1

u
(j)
i , (7.6)

139 For a discussion of how Bayes factors relate to some other measures of evidence against a probabilistic hypothesis,
see Ref. [245]. For discussion of the properties of related quantities in rejecting hypotheses, see Refs. [246–248].

140 Conversely, measurement of a negative excess x
(j)
i < 0 reduces the probability of any axion relative to the

no-axion hypothesis.
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where Mi is the total number of scans performed on bin i. Unlike in the FT framework of Sec. 6.3,

scans that are not performed do not enter into the equation, and the number of scans need not

be specified in advance. Subject to its equivalence to the Bayes factor (Secs. 7.1.3 and 7.1.5), each

total update Ui is the change in probability that an axion of a specified coupling gγ resides in the

bin. For example, Ui = 0.1 implies that it is 10% as probable that an axion resides in the bin after

all Mi scans were performed than it was prior to the experiment. A total prior update of Ui = 0.1

carries exactly the same meaning as 90% exclusion (E = 0.9) in the standard analysis framework,

in the limit of vanishing false-positive rates (Sec. 7.3.2). Therefore the equivalent 90% exclusion

region consists of the (frequency-dependent) couplings above those where Ui = 0.1.141

7.1.2 Aggregation and the look-elsewhere effect

The individual P
(j)
a,i , or Ui, regarded as functions of gγ , can be spectrally combined into an

aggregate prior update142 function:

U(gγ) =
P ′a(gγ)

Pa(gγ)
=

∑N
i=1 P

(Mi)
a,i (gγ)∑N

i=1 P
(0)
a,i (gγ)

≈ 1

N

N∑
i=1

Ui(gγ), (7.7)

where P ′a(gγ) and Pa(gγ) are the aggregate posterior and prior probabilities, respectively, of that

axion existing. The aggregate update U(gγ) does for the entire haloscope run what the total update

Ui(gγ) does for each bin: it expresses the update to the probability that an axion of coupling gγ

resides anywhere within the scanned frequency window. The final equality of Eq. (7.7) holds in the

limit of approximately uniform priors,

P
(0)
a,i ≈

Pa
N
, (7.8)

141 As discussed at length in Sec. 6.5, care should be taken in interpreting this region on an exclusion plot. A region
which accounts for the look-elsewhere effect with respect to exclusion can be generated above where the aggregate
prior update U of Sec. 7.1.2 is 0.1. However, even this region should, by the logic of the previous chapter, be aggregated
with other such regions in order to properly gauge what parameter space has been excluded.

142 In this text, we refer to four kinds of prior update. The single-scan updates u
(j)
i of Eq. (7.4) are multiplicatively

combined into the total updates of Eq. (7.6) at each frequency. The total updates are subsequently aggregated via
Eq. (7.7) into the aggregate update. The subaggregated updates of Fig. 7.3a are likewise aggregated, but over 1% of the
HAYSTAC search window apiece. All updates are functions of axion-photon coupling gγ , and are written explicitly
as such where relevant. The quantities as calculated are Bayes factors, identifiable as updates subject to Secs. 7.1.3
and 7.1.5.



179

applicable when the total frequency scan range is small compared to the lowest scanned frequency,

νN − ν1 � ν1, as is the case for HAYSTAC or ADMX. For low-frequency experiments such as

ABRACADABRA [110] or DM Radio [244], or the axion-like particle (ALP) search of Ch. 9, loga-

rithmically uniform priors, Eq. (7.14), should be used [95].

Regardless of the measured excess powers x
(j)
i and sensitivities η

(j)
i , there will exist a coupling

gγ,low below which virtually nothing is learned about the presence or absence of an axion,

U(gγ ≤ gγ,low) ≈ 1. (7.9)

Likewise, there will exist another coupling gγ,high above which the probability of an axion existing

vanishes

U(gγ ≥ gγ,high) ≈ 0. (7.10)

Between these two extremes, U(gγ) will depend strongly on the measured power spectra. In the

context of a realistic search, for which the experimental overhead is high, U > 1 suggests that at

least some bins within the range should be rescanned until either a cause of excess power is found

or U regresses to a lower value.

The aggregate prior update has several features that account for the look-elsewhere effect —

the linear growth in expected number of locally significant excesses with the number of independent

hypotheses tested discussed in Sec. 6.5 (for dependent hypotheses, see Sec. 7.1.4). Because the

denominator of Eq. (7.7) also grows linearly with tests performed, these two linear factors cancel

out. Secondly, the typical coupling excluded will move upwards (Sec. 7.3.3) as more independent

tests are conducted, reflective of the increasing difficulty in ruling out a special frequency when it has

more imposters to hide among (Footnote 130). Finally, the ability to incorporate nonuniform priors

is a key feature for experiments sensitive over fractionally large spectral windows. Since 90% of all

independent axion tests in such an experiment will occur in the highest decade (assuming equal bin

widths), a standard frequentist trials factor approach [235] would set an artificially higher bar for

discovery in lower decades than it would have if the highest decade were not scanned; logarithmic

priors scale the height of that bar with the number of tests performed.
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7.1.3 Choice of priors

For any choice of prior belief P
(0)
a,i in axionic dark matter, Bayes’ theorem can be applied

and updates Ui calculated and reported. However, the utility of the BPM framework rests on the

fact that its prior updates Ui can be treated as independent of the priors chosen for the axion and

competing hypotheses, i.e. as reasonably approximated by Bayes factors. Additionally, as argued

in Sec. 7.3.2, it is highly convenient that in the appropriate limit the prior updates of the BT2

framework, itself directly comparable to the BPM framework, become the conditional probabilities

quoted in frequentist exclusion. These conveniences hold only so long as one’s priors are infinitesimal

but nonzero.143 In this section, we will justify the assumption of infinitesimal priors, and consider a

toy estimate of a prior for illustrative purposes. Additionally, we will discuss how the prior update

can be used to directly inform scan strategy in the presence of nonaxionic radio frequency (RF)

power excesses.

The constraint that the prior be infinitesimal is only used in simplifying the denominator of

Bayes’ theorem, Eq. (7.1), according to the law of total probability:

P
(
x

(j)
i

)
=

∫ ∞
0

P
(
x

(j)
i |Ai(gγ)

)
P (Ai(gγ)) dgγ + P

(
x

(j)
i |Ni

)
P (Ni)

≈ P
(
x

(j)
i |Ni

)
,

(7.11)

where the axion hypothesis Ai(gγ) is here written explicitly as a family of hypotheses parametrized

by gγ > 0. The case of gγ = 0 is indistinguishable from the no-axion hypothesis Ni from the

perspective of an axion haloscope.144 The approximation in Eq. (7.11) is justified so long as the

total probability of there being an axion in any bin i,

P (Ai,tot) =

∫ ∞
0

P (Ai(gγ)) dgγ , (7.12)

is considerably smaller than any prior update that would be applied according to Eqs. (7.4) and

(7.6).

143 The fact that the prior must be nonzero is justified by Cromwell’s rule, which states that priors of exactly 0 or
1 should be avoided generally. More directly, there would be no sense in performing a haloscope search if the chance
of success was truly zero.

144 The possibility that dark matter more generally might not couple to electromagnetism, or any of the non-
gravitational forces, is a distinct and disquieting one.
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To make a coarse estimate of P (Ai,tot), we can write down a Drake-like equation for axionic

dark matter to which a typical haloscope searching for QCD axions such as HAYSTAC or ADMX

might be sensitive:

P (Ai,tot) = P (PQ)× P (DM)× P (ma ≈ hνi/c2), (7.13)

where PQ denotes the event of the Peccei-Quinn hypothesis (Sec. 2.3.2) being correct and the QCD

axion field existing, DM denotes the event of that axion field actually accounting for an appreciable

fraction of the galaxy’s dark matter (Sec. 2.4.2), ma ≈ hνi/c
2 denotes the event that the axion is

within roughly a linewidth of the bin of interest, i, and the probability of each event in parentheses

is implicitly conditional upon all leftward events. In practice several other propositions must be

true for an axion to be detectable. For instance, the axion must not be coincident with any other

RF spikes and its lineshape should roughly match that used in the data processing (Sec. 2.4.3).

It is beyond the scope of this thesis to attempt serious estimates of these probabilities, but

for the sake of justifying the infinitesimal prior approximation, we only need to consider the sample

optimistic set of probabilities shown in Table 7.1. For logarithmically uniform distributed prior

belief [95]

Pa,i ∝
1

νi
(7.14)

in a Qa ∼ 106 axion between mSN ∼ 10 µeV and mOC ∼ 1 meV, the approximate mass range

not disfavored by evidence from the SN1987A neutrino burst or overclosure arguments (Sec. 2.4.1)

[52–54],

P (ma ≈ hνi/c2) =
log(1 +Qa)

log(mSN/mOC)
= 2.1× 10−7. (7.15)

If overclosure arguments do not apply [249], then a QCD axion could be far lighter than mOC.

Moreover, in practice, the prior probability for an axion to be in any given narrow coupling window

must be less than P (Ai,tot). Hence, the rough estimate of

P (Ai,tot) ∼ 9× 10−8 (7.16)

should be considered a generous upper bound on the prior probability as the term is used in this

thesis.
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event optimistic probability

PQ 0.8

DM 0.5

ma ≈ hνi/c2 2.1× 10−7

Ai,tot 9× 10−8

Table 7.1: Sample set of probabilities used to estimate prior axion hypothesis probability according
to Eq. (7.13). The probabilities P (PQ) and P (DM) are set to high (optimistic) values, where it
is clear that raising them would not qualitatively change the conclusion that the priors are in
the appropriate infinitesimal limit. The probability of the axion mass coinciding with a given bin
assumes logarithmic priors [95], and is itself perhaps optimistic in assuming that the axion exists
within a three-mass decade window in which the haloscope operates.

In practice, one should not wait for a prior update of order 1/P (Ai,tot) to manually interrogate

a bin;145 instead, an approximate prior estimate of the prevalence of spurious RF tones (Sec. 7.1.5)

should inform decision making. The prevalence of these RF spikes is a priori unknown, but the

fact that in practice [78, 105,107] the number of rescans required agrees with the predictions from

Gaussian statistics (i.e. the measured distribution of excess powers looks Gaussian even in its right

tail) indicates that only a few RF spikes large enough to push a bin above threshold are expected

in a scan. For an initial scan with NI independent bins, therefore, a prior update of U ∼ NI/NRF

should be sufficient cause to manually interrogate the bin. Here, NRF is the experimentalist’s

best guess for the expected number of real RF spikes in the scan window. Insofar as this guess is

incorrect, the haloscope search will take longer than would be optimal. Rescanning and eliminating

spurious RF tones ensures that the bias in the updates remains small, as well as conservative.146

The prior probability P (Ai,tot) estimated in this section makes our approximation of in-

finitesimal priors valid for any single-bin updates U � 1/P (Ai,tot). Since the prior update at

which manual interrogation ought to begin, NI/NRF, is generally orders of magnitude less than

1/P (Ai,tot), the approximation of infinitesimal priors will always be valid.

145 Manual interrogation means performing tests that would discriminate between most spurious RF excesses and
an axion: for example tuning the spike well off cavity resonance and/or ramping down the magnet and seeing if the
signal persists. See Item 9 in Sec. 6.2.1.

146 The conservative bias discussed in Sec. 7.1.5 results from interpreting the no-axion hypothesis, Ni in Eq. (7.11),

to incorporate spurious RF tones. This makes P (x
(j)
i |Ni) larger in reality than as calculated from Eq. (6.15). Using

a slightly undersized denominator in Eq. (7.4) results in a slight anti-exclusion bias.
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7.1.4 Correlations between grand spectrum bins

In this section, we will see that correlations between grand spectrum powers147 at different

frequencies do not bias the BPM framework’s outputs, and are furthermore desirable. The majority

of Sec. 7.1 treats the grand spectrum power excesses as uncorrelated for simplicity. In practice, this

assumption is violated, as grand spectrum bin spacings are intentionally made spectrally smaller

than the axion linewidth and the frequency window of the digital Savitzky-Golay (SG) filter applied

to the data. The effect of estimating power excesses based on the axion lineshape (Step 8 in Sec. 6.1)

is to positively correlate nearby bins, whereas the effect of the SG filtering (Step 4) is to negatively

correlate bins over a somewhat longer frequency scale [78]. These are the only two processing steps

that will correlate adjacent bins.148 The data processing introduces no interscan correlations, as

it handles separate scans independently. The single-scan prior updates u
(j)
i (gγ) can therefore be

treated as unconditionally unbiased (〈u(j)
i 〉 = 1), scan-independent, frequency-dependent random

variables.

Given these properties of the single-scan prior updates u
(j)
i (gγ), the result that the aggregate

prior update U(gγ) is unbiased then follows from the fact that aggregation entails multiplying

across scans and summing across bins. The total prior updates Ui(gγ) are defined in Eq. (7.6) as

the product of grand spectrum prior updates from Mi scans. Using the fact that the expectation

value of the product of independent random variables is the product of the expectation values, here

〈Ui(gγ)〉 =

〈
M∏
j=1

u
(j)
i (gγ)

〉
=

M∏
j=1

〈
u

(j)
i (gγ)

〉
= 1, (7.17)

the total prior updates are seen to be unbiased, i.e. have unit expectation. Aggregation then occurs

through summation of the posteriors and priors via Eq. (7.7). The expectation value of the sum of

147 Recall from Sec. 6.1 that the grand spectrum is the final spectrum resulting from the data processing, accounting
for noise level, signal strength, and axion lineshape.

148 Systematic effects in the measurement will also correlate grand spectrum power excesses. The identification
and removal of nonaxionic power excesses and the SG filtering exist largely to undo such experimentally-induced
correlations. We do not consider the effect of such correlations on the grounds that these processing steps appear
largely successful [78].
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dependent random variables is the sum of the expectation values, here

〈U(gγ)〉 =

〈
N∑
i=1

Ui(gγ)

〉
=

N∑
i=1

〈Ui(gγ)〉 = 1, (7.18)

where the last equality uses the result of Eq. (7.17) to demonstrate that U(gγ) is also unbiased.

As we relax assumptions of uniform or even low priors, the relevant updates, treated as random

variables, can be shown to have unit expectation independent of grand spectrum correlations, but

the formulae used to compute and combine the updates become less elegant.

The primary effect of grand spectrum correlations on the prior updates is not to bias the

analysis, but only to alter the higher moments of the distribution that aggregate prior updates are

drawn from. In particular, the number NI of independent grand spectrum bins is smaller than the

number N of grand spectrum excesses calculated. This increases the spread of the distribution

that aggregate prior updates will be drawn from for a given haloscope scan window. However,

since the dominant correlations are produced by the axion lineshape (Step 8, Sec. 6.1), the number

of independent bins has as a rough lower bound the number of axion linewidths ∆a in the scan

window ∆W , and as an upper bound the number of bins used: ∆W /∆a <∼ NI ≤ N . The fact that

NI ≤ N broadens the probability distributions of the aggregate outcomes (Sec. 7.3.3), but does not

otherwise impact the analysis.

To see that correlations are indeed desirable, note that their absence would imply a grand

spectrum bin spacing larger than the axion linewidth. As discussed in Ref. [78], such a coarse bin

spacing would effectively leave unprobed a large fraction of the scan window. Since the correlations

produce no deleterious effects upon the BPM framework, there is no reason not to oversample the

space of possible axion masses, and the correlations should be considered a feature, not a bug.

7.1.5 Practical departures from Gaussianity

The formula for updating priors using the BPM framework, Eq. (7.4), assumes that the axion

and no-axion distributions are Gaussian, Eq. (6.15). In particular, measured distributions often

rise in their extreme tails over what is ideally expected [250]. In the case of haloscopic axion
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detection, the presence of spurious RF tones increases the probability density of the high-power

tail of the probability density functions (PDFs) of Fig. 6.1. In this section, we will see that the

interpretation of the exclusion achieved with the BPM framework is robust to the resultant bias

towards discovery. Conversely, there is little to be gained from Bayesian inference in the context of

manually interrogating a persistent signal with the goal of reporting discovery. Efficiency is a far

less important consideration in this context, and test statistics such as those of Refs. [75, 241], in

conjunction with manual interrogation (Item 9 of Sec. 6.2.1 and Footnote 145) are well suited to

the task of claiming discovery, once all manual interrogation tests are passed.

Sources of RF noise in the haloscope’s physical environment can couple into the receiver

chain. Real haloscopes go to significant effort to discriminate such artificial excesses from real

axion signals, but excesses sufficiently similar in spectral profile to an axion necessarily contribute

to the measured power distributions, leading to an effective increase in the high power probability

density of both the axion and no-axion distribution PDFs.

The effect of increased probability density in the high-power tail in either distribution in

Fig. 6.1 is to bias the BPM analysis towards discovery of an axion. In any one frequency bin, this

effect is very unlikely because it only affects the distribution tails. Indeed, for existing haloscopes,

the measured power excesses seem very well approximated out to several standard deviations by

Gaussian distributions [78, 125], indicating that the consequences of non-Gaussian features will be

modest. However, with tens or hundreds of thousands of independent frequency bins measured,

there may be a small augmentation of the BPM framework’s aggregate prior update, Eq. (7.7).

In the context of reporting exclusion over axion parameter space — the only context in which

data from haloscope searches has appeared to date — a bias towards discovery is conservative, and

hence acceptable. In the context of an FT framework (Sec. 6.3), the effect of a discovery bias is not

to change the reported exclusion, but rather to increase expected rescan time and the chance of a

false positive. Since, as we will see in Fig. 7.3b, the BPM framework still achieves a 36% scan rate

enhancement relative to thresholding for the HAYSTAC Phase I dataset, the conservative bias is

manifestly not large enough (at least for this dataset, and also the Phase II dataset of Ch. 8) to
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overwhelm the improved exclusion over the whole scan range.

In the context of reporting the discovery of axionic dark matter, conversely, a bias towards

discovery would appear to be harmful. However, the nature of axion detection guards against

adverse outcomes in practice. A power excess presenting as an axion, once identified, is fairly

straightforwardly shown to persist or not by manual interrogation. The role of the statistical

analysis frameworks discussed in this thesis is not to firmly identify the axion as such once a

persistent signal is found, but rather to indicate with the highest fidelity where such a signal is

likely to lie. While a BPM analysis may bias the experimentalist towards believing that a few

nonaxionic excesses might be axionic, the real certification of an axion signal would look like that

for other discoveries in fundamental physics: a series of careful measurements precluding beyond

doubt that no other known physical phenomena could account for the signal. In other words, the

asymmetry between the criteria for exclusion and discovery ensure that BPM’s discovery-bias would

almost never149 lead to accidental discovery.

7.2 Effects of data processing on information content

This chapter takes as its motivation the unacceptably long scan times that will likely be

required to verify or falsify the axionic dark matter hypothesis over any meaningful fraction of the

plausible parameter space. However, the BPM framework optimizes only the statistical analysis

of the already-processed data of a specific measurement, raising two complementary questions:

is the measurement optimal, and is the data processing optimal? The first question, of whether

the measurement itself is optimal — i.e. is the haloscope as typically operated the most efficient

tool for evaluating the axionic dark matter hypothesis? — is beyond the scope of this thesis,

and the reader is referred to Ref. [95]. Subject to a haloscope or haloscope-like search platform,

however, this section addresses the effect of the data processing — the intermediate set of steps

149 It is possible to construct scenarios where nature is sufficiently cruel as to source a tone with the distinguishing
properties of the axion. For example, imagine a microwave tone generated by the magnetic field itself which manages
to vibrate a piezoelectric object attached to the outside of the cavity, which in turn creates eddy currents inside it.
The result is a B2

0 -proportional microwave tone inside the cavity. Even still, however, it is unlikely (thought not
impossible) that such a tone would mimic the expected axion lineshape, Eq. (2.14).
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between measurement and statistical analysis detailed in Sec. 6.1 — on the information content of

the haloscope data. We will see that the current data processing protocol of the leading haloscope

experiments [91,107] are already highly optimized, with very little room for further improvements,

though this has not historically been the case.

This section evaluates the consequences of each data processing step enumerated in Sec. 6.1

on the axion-pertinent (AP) information content of the data, where AP is understood to mean

“potentially bearing on the probability of the axion hypothesis being true.” Information pertinent

to the existence of the axion can only be generated during the measurement, and may be degraded

by the subsequent data processing. Our aim is to determine where in Steps 1–10, if at all, AP

information could be lost. A guaranteed way to make use of all of the AP information content

would therefore be to express the predictions of the axion and no-axion hypotheses, AQ,ijk and

NQ,ijk, respectively, in the space of the quadrature voltages vαQ,ijk and apply Bayes’ theorem as

uα,Re
Q,ijk =

P (Re[vαQ,ijk]|AQ,ijk)
P (Re[vαQ,ijk]|NQ,ijk)

, (7.19)

where the standard infinitesimal prior limit has been assumed and the same update applies for the

imaginary components Im[vαQ,ijk].
150 While this approach is impractical, it nonetheless serves as

an excellent baseline to compare the effects of the data processing protocol against.

Step 1 includes two operations: squaring the real and imaginary parts of each quadrature

voltage, and then adding them. The real and imaginary parts of each quadrature voltage can be

approximated as the same independent, identically distributed Gaussian random variables with

mean zero [75, 200]. Absent an axion, we label the variances of these random variables σ2
v,ij . An

axion, assumed to be of a given coupling and at a given frequency, increases the variance to λijσ
2
v,ij ,

where λij is extremely close to but greater than unity. The prior update, Eq. (7.19), is the ratio of

Gaussian PDFs given by Eq. (6.15):

uα,Re
Q,ijk =

1√
λij

exp

[
1− λ−1

ij

2σ2
v,ij

(
Re[vαQ,ijk]

)2]
. (7.20)

150 While in principle it is possible to evaluate the axionic dark matter hypothesis in the time domain, we do not
expect that this would provide any benefit, given the reversibility of the Fourier transform and the fact that the phase
of the axion field at any moment is unknown.



188

Since Re[vQ,ijk] only occurs squared in this prior update (likewise Im[vQ,ijk] in its identical equa-

tion), no AP information is lost by squaring the real and imaginary quadrature voltage components.

Furthermore, since Bayesian updates are by their nature combined multiplicatively, the update ac-

counting for both components of the quadrature voltage is

uα,vQ,ijk =
1

λij
exp

[
1− λ−1

ij

2σ2
v,ij

((
Re[vαQ,ijk]

)2
+
(
Im[vαQ,ijk]

)2)]
. (7.21)

Because the voltage quadrature components appear in the prior update only in their Eq. (6.1)

combination, Step 1 preserves AP information content.

The same argument applies to Steps 2 and 3. Multiplicative prior updates have their powers

add in the exponent, hence Steps 2 and 3 do not degrade AP information content. For Step 2,

this argument assumes that the axion and the thermal noise fluctuations distribute power evenly

between the X and Y quadratures. For a two-quadrature measurement where the phase of the

axion is unknown, that assumption is valid.

Step 4 is among the more vulnerable steps to meaningful information loss. If 〈xβij〉 in Eq. (6.4)

is treated as a number, then Eq. (6.4) amounts merely to the division and subtraction of constants

from the raw spectrum random variables xβij , which will not degrade the information content.

In practice, however, 〈xβij〉 must itself be estimated, making it in effect a random variable. The

estimation used by HAYSTAC and ADMX is performed via SG filters, which estimate 〈xβij〉 at each

frequency bin i via the polynomial generalization of a moving average. If a wide spectral window

for the generalized moving average is used, then 〈xβij〉 is estimated with low variance, and acts

like a constant. However, the SG filtering creates undesired correlations between bins up to two

window-lengths apart, while also slightly attenuating an axion’s visibility, an effect accounted for

in Step 9. The trade-off between the desired filtering effects and the undesired correlations and

attenuation is beyond the scope of this thesis, but is discussed at length in Ref. [78]. So far, no

proof exists that SG is the optimal choice of digital filter151 for the data, so Step 4 may admit of

151 Recall that the SG is itself a low pass filter, which the spectra are divided by so as to preserve high frequency
structure. See Ref. [78] for numerical tests performed to quantify the effects on synthetic data with real haloscope
spectral structure.
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meaningful optimization.

Calculating the processed spectrum sensitivity parameters ηγij of Step 5 relies on independent

measurements of the thermal and added noise, magnetic field, and cavity quality factor and mode-

structure properties of the haloscope, as well as calculations of the power that a dark matter

axion would deliver. Subject to the accuracy of these measurements and calculations, Step 5

simply divides the processed spectra power excess random variables xγij by constants, preserving

information content.

The ML-weighting of Step 6 is the information-preserving generalization of the straightfor-

ward addition of Steps 1–3, for the case where the random variables being added have different

variances. By the central limit theorem, the rescaled power excesses xδij are Gaussian-distributed

with known variances σδij well approximated as independent of the presence of any axion which

delivers power far less than vacuum. The pertinent effect of an axion is to shift the mean of the

rescaled power excess from 0 to µδ, which has no bin- or tuning step-dependence by construction.

The appropriate prior update delivered by each rescaled power excess xδij is thus

uδij = exp

[
−(µδ)2/2 + µδxδij

(σδij)
2

]
. (7.22)

When the updates of all Nt tuning steps are multiplied, the result is

Nt∏
j=1

uδij = exp

 Nt∑
j=1

(
−(µδ)2/2 + µδxδij

(σδij)
2

)
= exp

[
−(µδ)2/2 + µδxεi

(σεi )
2

]
.

(7.23)

Because the updates from all bin-i rescaled spectra power excesses xδij and variances (σδij)
2 can thus

be obtained using the single bin-i combined spectrum power excess xεi and variance (σεi )
2, given by

Eqs. (6.6) and (6.7), respectively, the ML estimation of Step 6 preserves AP information content.

The same argument about ML estimation guarantees that Steps 7 and 8 preserve AP infor-

mation as well, in the limit where the axion lineshape is truly approximately constant over spectral

scales of nc∆b. Step 9 is in effect properly accounting for the information loss suffered during Step

4, but is itself simply multiplication by a scalar, and causes no additional information loss.
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7.3 Comparison of analysis frameworks

One of the central claims of this chapter is that in a haloscope analysis an apples-to-apples

comparison may be made between the widely quoted frequentist exclusion E of Sec. 6.3 and the

Bayesian prior update Ui of Sec. 7.1.1. In general, these two are in fact not equivalent. The equiv-

alence holds only between FT analyses with low false-positive rates and Bayesian analyses using

low priors. In this section, I introduce two Bayesian threshold analyses. The first framework, BT1

(Sec. 7.3.1), is more informative than the second, BT2 (Sec. 7.3.2). In the dual limit of infinitesimal

priors/low false-positive rates, BT2 reveals the Bayesian prior update to be completely equivalent

to the frequentist exclusion. In Sec. 7.3.3, we will quantitatively examine the outcomes of all three

Bayesian frameworks (BT1, BT2, and BPM) discussed in this thesis. Together, BT1 and BT2 mo-

tivate the BPM framework as the maximally informative, minimally constrained limit of haloscope

analyses.

7.3.1 Bayesian threshold 1 framework

The first of the threshold-based Bayesian analyses we consider, BT1, updates its priors after

each successive scan. We are interested in the conditional probability that there is an axion in

the ith bin, given that the measured power in the jth scan either did (x
(j)
i ≥ x

(j)
T ) or did not

(x
(j)
i < x

(j)
T ) exceed threshold. For simplicity of notation, we will drop all frequency indices i for

the remainder of this and other sections where not necessary, with it understood that results can

ultimately be aggregated via Eq. (7.7). We denote the event of a measured power exceeding (not

exceeding) threshold as a binary detector going “click” (“no-click”), and we denote the event that

the measured power excess came from the axion distribution (no-axion distribution) as A (N ). The

posterior probability of an axion given a click is

P (A|click) =
P (click|A)P (A)

P (click|A)P (A) + P (click|N )P (N )
, (7.24)

where the denominator is equivalent to P (click). Identifying P (click|A) as the single-scan true-

positive rate 1− f (j)
n (Fig. 6.1, light blue) and P (click|N ) as the single-scan false-positive rate f

(j)
p
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(Fig. 6.1, dark green), abbreviating the prior (posterior) probability that there is an axion in the

bin as P
(0)
a = P (A) [P

(1)
a,cl = P (A|click)], and noting that P (N ) = 1− P (0)

a , Eq. (7.24) simplifies to

u
(1)
cl =

P
(1)
a,cl

P
(0)
a

≈ 1− f (1)
n

f
(1)
p

≈ 1

f
(1)
p

. (7.25)

The first approximation holds in the appropriate limit of infinitesimal priors, here P
(0)
a � f

(1)
p , and

the second holds in the limit of low single-scan false-negative rates, f
(1)
n � 1.

In the event of a no-click, the posterior probability P
(1)
a,no = P (A|no-click) is given by an

expression analogous to Eq. (7.24) containing the true- (1 − f (j)
p ; Fig. 6.1, light green) and false-

(f
(j)
n ; Fig. 6.1, dark blue) negative rates. The expression simplifies as

u(1)
no =

P
(1)
a,no

P
(0)
a

≈ f
(1)
n

1− f (1)
p

≈ f (1)
n , (7.26)

where the first approximation holds for low priors P
(0)
a � 1, and the second holds for low single-

scan false-positive rates, f
(1)
p � 1. Whereas single-scan false-negative rates in haloscope searches

using an FT framework are typically close to 5%, false-positive rates are often kept much lower, to

minimize the need for time-expensive rescans.

Applied to a sequence of M scans, the BT1 analysis provides a crucial operational freedom,

shared by the BPM framework, to the experimentalist. Since the ordering of multiple updates is

inconsequential, a series of M identical (f
(j)
n = fn0, f

(j)
p = fp0) scans has M + 1 possible outcomes,

corresponding to observing c ∈ {0, 1, . . . ,M} clicks and M − c no-clicks. Using the simplest forms

of Eqs. (7.25) and (7.26), the final prior update, obtained from Eq. (7.6), is

UBT1
c ≈ (fn0)M−c

(fp0)c
. (7.27)

The prior is upgraded by 1/fp0 for every positive result, and downgraded by fn0 for every negative

result.

In the BT1 framework, the threshold and false-negative rate for each scan must be set in

advance, but the number of scans M need not be. This operational freedom is a consequence of

the fact that the expected value of the prior update before performing a given scan is unity, and so
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the decision to perform another scan or not can be made on the fly, without biasing the outcome.

In contrast, in the FT framework of Sec. 6.3, adding another scan midway through a multiscan

protocol and recalculating the false-negative rate for the entire protocol, the experimentalist can

manipulate the expected value of the exclusion. This freedom has nothing to do with the use

of frequentist versus Bayesian inference. We will see that Bayesian frameworks can be equally

restrictive.

Figure 7.1: The four possible outcomes of an M = 2-identical scan threshold protocol. The condi-
tional probabilities of each outcome (1)–(4) subject to the axion (A) and no-axion (N ) hypotheses
are given in terms of true- and false-positive and -negative rates (Fig. 6.1). In both the frequentist
threshold (FT) framework of Sec. 6.3 and the Bayesian threshold 2 (BT2) framework of Sec. 7.3.2,
outcomes (2)–(4) (gray) are all treated identically as the negative result: in the FT (BT2) frame-
work, the null is rejected (the prior is reduced). In this case, the exclusion E, Eq. (6.17), is trivially

equivalent to the prior update U
(BT2)
neg ≈ Fn in the dual limit of low false-positive rates and priors.

Only region (1) (red) fails to reject the null (FT), or increases the prior (BT2). Figure reproduced
from Ref. [126].

7.3.2 Bayesian threshold 2 framework

Whereas the BT1 framework offers M + 1 possible outcomes for M scans and provides

interscan operational freedom to the experimentalist, the second BT framework (BT2) that we

consider is designed to be uninformative and restrictive by comparison; its outcomes, tellingly, will
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map precisely onto those of the FT framework of Sec. 6.3. The standard FT analysis permits two

possible results at each frequency, illustrated for a simple case in Fig. 7.1: a rejection of the null

(negative result) or a failure to reject it (positive result). For an M -scan protocol, the negative

result is defined as the case where at least one scan no-clicks; the positive result occurs only when

all M scans click. The multiscan false-negative rate, Fn from Eq. (6.20), sets the exclusion via

Eq. (6.17). False-positive rates do not enter directly into the FT framework’s reported exclusion.152

The BT2 framework applies Bayes’ theorem, Eq. (7.1), to this binary result landscape, ob-

taining a posterior either for a positive result of P
(1)
a,pos or for a negative result of P

(1)
a,neg. For the

positive case,

P (A|pos) =
P (pos|A)P (A)

P (pos|A)P (A) + P (pos|N )P (N )
(7.28)

yields

UBT2
pos =

P
(1)
a,pos

P
(0)
a

≈ 1− Fn
Fp

≈ 1

Fp
, (7.29)

where the total false-negative rate Fn is that of Eq. (6.20) and

Fp =
M∏
j=1

f (j)
p (7.30)

is the total false-positive rate for the M scans. The first (second) approximation in Eq. (7.29) is

valid for infinitesimal priors, P
(0)
a � Fp (low total false-negative rate, Fn � 1). Note that BT2’s

positive prior update agrees in the case of identical scans (the general cases agree as well) precisely

with the c = M case of Eq. (7.27) for BT1. The agreement is due to the fact that they derive from

the same event — a series of M clicks. Since false-positive rates are very small, UBT2
pos is a very

large number, corresponding to just how unlikely a positive result would be to observe, without an

axion present.

The negative result yields an update that will agree precisely with the standard FT exclusion

152 More completely, false-positive rates only enter indirectly, as the global false-positive rate — the chance of at
least one bin achieving a positive result (i.e. a click on all M scans) — must be set sufficiently low to account for the
look-elsewhere effect, as discussed in Sec. 6.5.1. Choosing a higher false-positive rate will achieve a deeper exclusion
if no positive results are recorded, but will increase the probability of such an event.
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E. From the equation for P (A|neg) analogous to Eq. (7.28), we obtain:

UBT2
neg =

P
(1)
a,neg

P
(0)
a

≈ Fn
1− Fp

≈ Fn, (7.31)

where the two approximations assume low priors P
(0)
a � 1 and low M -scan false-positive rates

Fp � 1. With these conditions met, the BT2 negative prior update is the complement of the

frequentist exclusion, UBT2
neg ≈ 1 − E. In the limit relevant for haloscope searches, the frequentist

exclusion is therefore equivalent to the Bayesian prior update, an equivalence used in the context

of other searches for new physics [235]. Whether this update is obtained through one of the BT

frameworks or the BPM framework is immaterial.

Finally, a pair of differences between the two BT frameworks discussed in this section hints

at two important operational advantages of the BPM framework. The BT1 framework, by allowing

M + 1 possible results with differing outcomes (or up to 2M for scans with nonidentical false-

negative and -positive rates), has an informational advantage over the BT2 framework. The BT2

framework deliberately blinds the experimentalist to which scan(s) no-clicked, combining M of the

M + 1 possible outcomes into a single negative result. For an experimentalist intent on discovering

or excluding the axion, there can be no benefit to discarding this information. Taking the next

logical step, the power-measured information from each scan need not be discarded. The BPM

framework, unlike the BT frameworks, uses this information.

p-value BT2/FT BT1 BPM

possible outcomes per bin ∞ 2 2M ∞
interscan freedom yes no yes yes

intrascan freedom yes no no yes

Table 7.2: Comparison of the Bayesian threshold frameworks (BT1 and BT2) of Sec. 7.3 with
the Bayesian power-measured (BPM) framework of Sec. 7.1 and the p-value framework of Sec. 6.4
for a protocol with M possibly nonidentical scans performed. More informative frameworks map
the continuum of possible measurements onto a larger number of reported outcomes. The more
informative frameworks also permit the experimentalist greater freedom to alter the scan protocol
without biasing the outcome. Interscan changes to upcoming scans are allowed within all but
the BT2 framework (equivalently, the FT framework of Sec. 6.3), while the BPM framework even
permits intrascan adjustments as information compiles. The p-value framework has the same
properties as the BPM framework, but comes with a number of downsides discussed in Sec. 6.4.
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The BT1 framework also proves operationally superior to BT2. Whereas the BT2 framework

locks in a commitment to M scans, if necessary, BT1 allows the experimentalist to reinsert himself

into the decision-making between scans without biasing the outcome. This interscan freedom is

improved to intrascan freedom for BPM, as indicated in Table 7.2, which summarizes the informa-

tiveness and operational constraints imposed by each framework. Under BPM, the expected prior

update for the next iota of power measured always being unity protects the experimentalist from

inserting bias. To the degree that the data processing allows it, probability can be tracked in real

time and used to inform scan-protocol decisions on the fly. This capability provides an opportunity

for optimizing a BPM haloscope search algorithm, a promising direction for future analysis beyond

the scope of this thesis.

7.3.3 Outcome distributions for Bayesian analyses

The reanalysis of the HAYSTAC Phase I dataset that we will consider in Sec. 7.4 indicates

that the BPM framework achieves superior exclusion to thresholding in the case of one real dataset

(with a second added in Ch. 8). In this section, we demonstrate that this result is typical by

treating the prior updates in the BPM framework and the BT1 and BT2 frameworks discussed

in Sec. 7.3 as random variables. We make an apples-to-apples comparison between the aggregate

prior update probability distributions obtained from an M = 2-identical scan protocol in these

three frameworks. In particular, while the mean aggregate prior update 〈U〉 = 1 for any unbiased

analysis, we will see that the median aggregate prior update in the BPM framework is a factor

of two smaller than in either threshold framework. From this reduction in the median aggregate

prior update we predict a typical scan rate enhancement of 30% for BPM relative to thresholding,

consistent with the enhancement observed in the HAYSTAC Phase I dataset. En route to this final

result, we obtain analytic expressions for the total prior update probability distributions in each

framework. Comparing the three frameworks at this level likewise elucidates the difference between

the BPM and threshold exclusion lines plotted in Fig. 7.3a.

Throughout this section, we assume an ideal, axionless haloscope dataset: the grand spectrum
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excesses are independent, identically distributed random variables x
(j)
i ∼ N(0, 1). We compare prior

update probability distributions for an M = 2-identical scan protocol in which an initial scan is

performed, followed by a rescan in each bin whose measured power excess exceeds a predetermined

threshold.153 For definiteness, we assume scan parameters similar to those used in HAYSTAC

Phase I. For the BT1 and BT2 frameworks, we will first derive analytic expressions for the prior

updates in a more general M -identical scan protocol, and then specify to M = 2.

Starting with the least informative BT2 framework, the total prior update in a single bin has

probability mass function (PMF):

P (UBT2 = UBT2
pos ) = (fp0)M

P (UBT2 = UBT2
neg ) = 1− (fp0)M .

(7.32)

In any scan of N independent frequency bins, k = 0, . . . , N of those will realize a positive result,

where k is binomial distributed k ∼ B(N, (fp0)M ). The PMF for the aggregate prior update is then

P

(
UBT2 =

UBT2
pos − UBT2

neg

N
k + UBT2

neg

)
=

(
N

k

)[
(fp0)M

]k [
1− (fp0)M

]N−k
. (7.33)

Next we consider the BT1 framework, whose total prior update UBT1
c , Eq. (7.25), is written

in terms of the single-scan updates ucl and uno for a click, Eq. (7.25), and for a no-click, Eq. (7.26),

respectively. Each click occurs with probability fp0, hence the probability of obtaining exactly

c = {0, 1, . . . ,M} clicks is

Pc = (fp0)c(1− fp0)1−δMc , (7.34)

where δab is the Kronecker delta function. The total prior update PDF is therefore

P
(
UBT1 = [ucl]

c[uno]1−δMc

)
= Pc. (7.35)

For the M -identical scan protocol over N independent bins, the aggregate prior update, Eq. (7.7),

is parametrized by the numbers nc of bins that click c times, which are multinomial distributed

153 As discussed in Sec. 7.3, BPM provides freedoms to deviate from such a rigid protocol, and can therefore
outperform the projections here. In Ch. 8, we take advantage of the enhanced operational freedoms of the BPM
framework.
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with probabilities Pc given by Eq. (7.34). The aggregate prior update is

P

(
UBT1 =

1

N

M∑
c=0

nc
(ucl)

c

(uno)δMc−1

)
=

N !∏M
c′=0 nc′ !

M∏
c′′=0

(Pc′′)
nc′′ (7.36)

if
M∑
c=0

nc = N, (7.37)

and 0 otherwise.

Figure 7.2: (a) Histograms of simulated total prior updates U (dots), Eq. (7.6), for the BPM (blue),
BT1 (green), and BT2 (red) frameworks. 225 independent bins were simulated for an axion that
would produce a mean excess µa = 5.1, assuming there is in reality no axion present and using
a standard M = 2-identical scan protocol with scan parameters similar to those of HAYSTAC:
threshold xT = 3.455 (fn0 = 5%, fp0 = 0.03%). The error bars were estimated from binomial
statistics and are smaller than the data points. The simulated probability distributions are in
excellent agreement with the analytic predictions of Eqs. (7.44), (7.35), and (7.32) (blue, green,
and red lines). The total updates described in (a) are combined via Eq. (7.7) to form the aggregate
prior updates U described in (b). The aggregate prior updates are numerically generated over 221

independent trials of N = 215 independent bins for each of the three analysis frameworks. For
the frameworks for which we derive analytic predictions (green and red lines for BT1, Eq. (7.36),
and BT2, Eq. (7.33), respectively), the agreement with the simulations within binomial error bars
confirms our expectations. For all three frameworks, the (relatively few) bins which fall outside of
the plotted windows do indeed balance the scales so as to produce the unbiased expectation values
〈U〉 = 〈U〉 = 1 (Sec. 7.1.4). The BPM framework displays by far the lowest median outcomes in all
cases, indicating that it will typically achieve superior exclusion when no axion is present. Figure
reproduced from Ref. [126].

For the BPM framework, we restrict ourselves to M = 2 identical scans, where the second

occurs conditionally on the first exceeding threshold, and derive only the expression for the total
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prior update. To derive the PDF for the two-scan BPM prior update, we consider two mutually

exclusive cases.

First, with probability 1 − fp0, the initial scan does not exceed threshold (x < xT ; a true

negative). In that case, the prior update PDF is

fu,tn(utn) = fx(x)

(
du

dx

)−1

=


(1− fp0)−1fu(u) 0 ≤ utn < uT

0 otherwise,

(7.38)

where

fu(u) =


(

exp[−µ2
a/8]

µa
√

2π

)(
exp[−(log u)2/2µ2

a]
u3/2

)
0 ≤ u

0 u < 0

(7.39)

and

uT = exp

[
−µ

2
a

2
+ µaxT

]
(7.40)

is the single-scan prior update achieved at threshold (x = xT ). The second line of Eq. (7.38) follows

from Eqs. (6.15) and (7.4). The normalization factor (1− fp0) accounts for the nonunit probability

of drawing from this distribution in the initial scan.

Next we consider the case where the first scan exceeds threshold, (x ≥ xT ; a false positive),

which occurs with probability fp0. The total prior update for the initial false-positive is the product

of two single-scan prior updates Ufp = ufpu. The PDF for the first scan prior update ufp is

fu,fp(ufp) =


(fp0)−1fu(ufp) uT ≤ ufp

0 ufp < uT ,

(7.41)

and that for the second scan prior update u, which is not restricted to being above or below

threshold, is given by Eq. (7.39).
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The PDF for Ufp is then

fU,fp(Ufp) =

∫ ∞
−∞

fu(u)fu,fp

(
Ufp

u

)
du

|u|

=


exp

[
−(µa/2)2−(log[Ufp/2µa])

2
]

fp0µaU
3/2
fp 4
√
π

erfc

(
log[u2

T /Ufp]
2µa

)
0 ≤ U

0 U < 0.

(7.42)

The total prior update U for the procedure is a probability-weighted sum of PDFs:

fU (U) = (1− fp0)fu,tn(U) + fp0fU,fp(U). (7.43)

Written out fully,

fU (U) =



exp[−(µa/2)2−(log[U/2µa])2]
µaU3/24

√
π

erfc

(
log[u2

T /U]
2µa

)
+

exp[−µ2
a/8−(logU)2/2µ2

a]
µaU3/2

√
2π

0 ≤ U < uT

exp[−(µa/2)2−(log[U/2µa])2]
µaU3/24

√
π

erfc

(
log[u2

T /U]
2µa

)
uT ≤ U

0 U < 0

(7.44)

is the two-identical scan BPM total prior update PDF: that is, the probability density for obtaining a

prior update U in a single axionless bin using the standard initial and conditional-rescan procedure.

The total updates for larger numbers of scans and the aggregate updates for multiple bins are too

cumbersome to write out in closed form, but may readily be simulated.

Equations (7.44), (7.35), and (7.32) are respectively the total prior update probability dis-

tributions for the BPM framework and the two BT frameworks discussed in Sec. 7.3. These three

equations are plotted as blue, green, and red lines, respectively, alongside simulated total prior

updates for the three frameworks (blue, green, and red dots) for a two-scan protocol without an

axion present in Fig. 7.2a.

The simulations are performed by drawing Gaussian random variables according to Eq. (6.15),

with µ = 0, σ = 1, and performing a second draw as well if x ≥ xT . Prior updates are then

applied according to Eqs. (7.4), (7.6), (7.27), (7.29), and (7.31). The simulations match the analytic

expressions, and together reveal that the vast majority of bins will receive a downward update under

all three frameworks. In particular, the total prior updates for BT1 and BT2 almost always take
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the precise values fn and 1− (1− fn)2, respectively. The price we pay for these reliably low typical

updates are rare false positives with U � 1 (far off the right side of the plot). The common U < 1

and rare U � 1 outcomes together ensure 〈U〉 = 1, the condition for an unbiased analysis. In

contrast, moderate positive and negative prior updates occur much more frequently in the BPM

framework, and 〈U〉 = 1 is enforced by a long tail of positive prior updates. The fact that the

median of the BPM distribution is lower than that of either threshold distribution is noteworthy,

as we will see presently in our discussion of the aggregate prior update.

Figure 7.2b shows the aggregate prior updates U for the identical two-scan protocol when

there are 215 independent bins, not far from the actual number in HAYSTAC [78]. In all cases,

the total updates from all bins are averaged according to Eq. (7.7) to obtain the aggregate prior

update. All three methods deliver an unbiased aggregate prior update with mean 〈U〉 = 1, yet the

BPM framework typically delivers a stronger exclusion in the absence of an axion, i.e. its median

aggregate prior update is smaller than in either threshold framework by a factor of two. The

improvement is a consequence of the informational advantage of the BPM framework.

The factor-of-two typical improvement in aggregate exclusion illustrated for typical HAYSTAC

parameters in Fig. 7.2b yields a scan rate enhancement consistent with the 36% speedup inferred

from real data in Fig. 7.3b, absent an axion.154 If the time for the BT2 framework to achieve the

targeted 90% exclusion across the scan window (factor-of-ten reduction in aggregate probability) is

T90, the additional factor of two should take approximately T95 = T90 log10(2), roughly 30% longer.

7.4 Test using HAYSTAC Phase I dataset

In order to test the BPM framework, it was used to reanalyze the full dataset from Phase

I of the HAYSTAC experiment, which includes at several frequencies as many as m = 3 scans.

Features specific to this dataset are discussed in Ref. [107]. Notably, several frequency bins in the

original analysis were discarded for having excess RF power that could with certainty be identified

154 With an axion present, additional simulations (not shown) reveal its presence in a manner consistent with the
interpretation of the global false-positive rate used in frequentist hypothesis testing.
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as at least partially nonaxionic in nature. In the BPM reanalysis, we set Ui = 1 for these bins.

Otherwise, straightforward application of Eqs. (7.6) and (7.7) yield the results in Figs. 7.3a and b,

respectively.

Figure 7.3: (a) Reanalysis of HAYSTAC Phase I data as a test of the BPM framework. The
standard 90% exclusion line (red) achieved with the FT framework [107] is equivalent to the 10%
prior update contour of the BT2 framework discussed in Sec. 7.3.2. The 10% prior update contour
(blue) achieved with the BPM analysis constrains more aggressive couplings at nearly all frequen-
cies. The logarithmic color scale indicates the subaggregated prior updates Us throughout the full
two-dimensional parameter space. Darker (lighter) shading corresponds to increased (decreased)
probability of an axion of given frequency ν and axion-photon coupling gγ existing. Frequencies
where rescans were performed are marked with a black dot on the threshold exclusion line. The
five least unlikely (LU) axion candidates — those whose priors increased most — are marked at
their maximum likelihood couplings with orange circles. In the lower panel, corresponding orange

bars indicate on the orange logarithmic axis the total posterior probability P
(1)
LU within the BPM

framework that an axion exists at each of the LU points normalized to the aggregate prior prob-
ability Pa that an axion resides anywhere in the window at that coupling. The LU candidate at
ν?LU = 5.66417255 GHz, marked in pink, is more than two times higher than the remainder of the
top five combined. (b) Aggregate prior update U (equivalently, exclusion E) taken as a function of
coupling gγ over the entire HAYSTAC Phase I frequency window for the FT and BT2 frameworks
(solid red line), BPM framework (solid blue line), and BPM framework with several adjustments
made for a clean comparison with the performance of the thresholding (dashed blue line; see main
text). The dashed, gray line, zoomed in upon in the inset, indicates relative U = 10% (E = 90%)
scan time normalized to that achieved with the FT and BT2 frameworks [107]. Under typical ex-
perimental conditions, the exclusion achievable with the BPM framework would take an estimated
36% longer to attain using thresholding. Figure reproduced from Ref. [126].
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7.4.1 Main results

The heat-map of Fig. 7.3a shows the updates to the probability of the axion existing through-

out the two-dimensional parameter space. At high couplings (gγ ≥ gγ,high ≈ 3gKSVZ
γ ), the proba-

bility of an axion is greatly diminished from what it was prior to collecting data. At low couplings

(gγ ≤ gγ,low ≈ gKSVZ
γ ), virtually no information can been gleaned from the data about the presence

or absence of an axion. At intermediate couplings, gγ,low < gγ < gγ,high, updates to the probability

of an axion being present depend sharply on the specific measured powers x
(j)
i , and also on the

somewhat smoother haloscope sensitivity profile η
(j)
i .

The FT framework has its 90% exclusion line plotted in red in Fig. 7.3a. This corresponds

directly155 to the exclusion plotted in Ref. [107], and equivalently to the 10% prior update contour

of the BT2 framework of Sec. 7.3.2. The solid, blue line is the BPM framework’s equivalent 10%

prior update contour. At almost all frequencies, it constrains more pessimistic couplings than do

the threshold frameworks.

The frequency-dependent update (or exclusion) data of Fig. 7.3a has been aggregated in ac-

cordance with Eq. (7.7) and Eq. (6.22) for the BPM and FT frameworks, respectively, in Fig. 7.3b.

The solid, red line indicates aggregate updated probability (left axis) or exclusion of (right axis)

an axion anywhere within the HAYSTAC Phase I frequency window as a function of coupling.

The solid, blue line is the updated probability for the BPM framework. Its upward bulge around

2.5gKSVZ
γ is largely due to the least unlikely (LU) candidate discussed in Sec. 7.4.2. Had the knowl-

edge from the BPM framework been in hand before the HAYSTAC Phase I decommissioning [42],

little additional scan time would have been required to either identify or promptly rule out an axion

signal. Therefore, an exclusion curve more representative of the BPM framework for comparison

purposes is given by the dashed, blue curve, where the prior update of the foremost LU candidate

is reset to unity. Other more minor differences between the dashed and solid blue curves due to

particular features of the HAYSTAC Phase I dataset not representative of typical haloscope data

155 The correspondence comes with the caveat that the data here has been subaggregated into bins of width ≈ 2
MHz, narrower than would be of practical concern to any experimentalist considering a haloscope run at nearby
frequencies.
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are discussed in Sec. 7.4.3.

The figure of merit of an axion haloscope is the rate R at which it can scan a given frequency

window to a specified sensitivity (Sec. 2.5.2). The appropriate comparison to make between two

analysis frameworks is therefore the relative amount of time τrel taken to perform a given scan.

The dashed, gray line in Fig. 7.3b represents the time that would have been required to scan any

coupling gγ to the standard 90% exclusion (10% prior update) level using the FT (BT2) framework.

The line derives from the

τrel ∝ g−4
γ (7.45)

relation from Eq. (2.16) of scan times to couplings, and is normalized to the run time of HAYSTAC

Phase I. The inset of Fig. 7.3b shows all three curves in the vicinity of this line. Had the BPM

framework been in place to recommend further scanning at ν?LU, its U = 10% aggregate prior

update would have taken ≈ 36% longer to achieve with a threshold analysis. In the context of

detection efforts that take years to cover unsatisfactorily little parameter space, this is a significant

enhancement available at no hardware or operational expense across a broad array of platforms.

7.4.2 Least-unlikely candidates

At the few frequencies where the BPM framework indicates weaker exclusion than the thresh-

old frameworks, it does so with good reason. Most of these LU axion candidate frequencies had

excess power above threshold on an initial scan and not far below threshold on a rescan. This can

be seen from the spectral coincidence of several of these LU candidates, marked with orange dots

at their ML couplings, with the black dots indicating the performance of at least one rescan. The

LU candidates that were not rescanned corresponded to initial scan powers coming in just below

threshold.

In the bottom panel of Fig. 7.3a, the prior updates for the five LU candidates are plotted

normalized to the aggregate prior probability that an axion resides in the HAYSTAC Phase I

window. As discussed in Ref. [95], it is not obvious how to distribute one’s prior probability

of an axion’s existence with respect to coupling gγ . However all five LU candidates have ML
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coupling strengths within a factor-of-1.5 range, wherein priors should not differ greatly. Therefore,

the relative significance of the highest of these LU candidate prior updates (frequency ν?LU =

5.66417255 GHz) is noteworthy: it is more than two times higher than the remaining LU candidates

combined.

It should be emphasized that despite its exceptionally high prior update relative to the

rest of the dataset, it is overwhelmingly unlikely that this LU candidate is an axion. A rough

attempt at estimating priors (Sec. 7.1.3) puts an optimistic probability of an axion in this bin

still below part-in-1,000, with more realistic estimates well below that. Secondly, as discussed in

Sec. 7.1.5, the BPM framework is inherently conservative with respect to exclusion in a real dataset,

and consequently liberal in its identification of candidates. In particular, nonaxionic RF power

excesses caused other spikes in the HAYSTAC Phase I power spectra. Many of these were manually

removed from the dataset on the grounds of supplementary evidence (e.g. failure to persist when

the auxiliary, weakly-coupled antenna was pulled out of the cavity) [107]. Since this LU candidate

came in under threshold on a third and final scan, it was rejected subject to the FT framework.

However, the more informative BPM framework suggests that significantly more than any of the

other HAYSTAC Phase I frequencies, it merits further interrogation. Generously precluding the

possibility of nonaxionic excess power contamination, its probability of containing an axion at

its ML coupling is roughly the probability of 40 MHz of nearby, unscanned parameter space, or

P
(1)
LU/Pa = 20% of the 200 MHz scan window, containing an axion at that coupling.

7.4.3 Additional features of the Phase I dataset

In addition to the LU candidate at ν?LU discussed in Sec. 7.4, the dashed, blue curve of Fig. 7.3b

also neglects two other features of the HAYSTAC Phase I dataset that appear in Fig. 7.3a. First,

the BPM reanalysis includes data from rescans over the upper 100 MHz of the scan window that

were performed during Phase I, Run I of HAYSTAC [90, 106]. These rescans were discarded, and

new ones performed over some of the same frequencies, because an error in estimating the expected

axion lineshape lowered their sensitivities below the levels required by the predetermined confidence
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levels and initial scan sensitivities [78]. The extra rescan data itself is valid, however, and is thus

included in Fig. 7.3a and b, showcasing the flexibility of BPM to integrate all available information.

This extra data is not inlcuded in the comparison (dashed blue) curve, as the existence of extraneous

rescan data is not ordinary in haloscope analyses.

Secondly, a 3.94σ grand spectrum excess at grand spectrum bin 550 (ν550 = 5.59886155)

GHz was recorded in the initial scan. This excess occurs 0.3% of the way into the scan window,

where the number of contributing raw spectra (Sec. 6.1) was 14, considerably less than the typical

40. The lower number of spectra implies at once an increased susceptibility to systematic error

and a reduced axion sensitivity η
(1)
550 = 0.23. The reduced sensitivity implies that an axion here

has its prior update, Eq. (7.4), maximized at gγ ≈ 4.1. This excess ought to have been rescanned

during Phase I of HAYSTAC, but was not. As such, its positive prior update is included in the

BPM reanalysis. Its presence is indicated by the dark column at the left of Fig. 7.3a, and is solely

responsible for the failure of the aggregate prior update (solid blue line, Fig. 7.3) to vanish at high

couplings >∼ 3.2gKSVZ
γ . Had the required rescans been performed, a source of excess would likely

have been discovered or rejected in short order, as in the case of the LU candidate at ν?LU . As such,

it is removed from the comparison (dashed blue) aggregate update curve.

7.5 Concluding remarks on statistical analysis frameworks for axion searches

Haloscopes belong to a class of experiments that are limited by the amount of time practically

available to acquire data. As such, optimizing the extraction of the information content of their data

is a high priority. Analyzing haloscope data with threshold frameworks (Secs. 6.3, 7.3.1, and 7.3.2),

however, discards information pertinent to the presence or absence of an axion, and the alternative

frequentist approach of using p-values (Sec. 6.4) is even more problematic. The BPM analysis

framework straightforwardly applies Bayes’ theorem to incorporate the relevant information content

of haloscope power spectra into a posterior probability of an axion existing. Taken in ratio with the

prior probability of that axion, the updated probability is seen to be completely equivalent to the

standard exclusion quoted in the literature for FT frameworks. Upon applying the BPM framework
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to the Phase I data of the HAYSTAC experiment, we observe exclusion improved commensurate

with what under typical experimental conditions would translate to a 36% improvement in scan

time — within the sensitivity error bounds for the HAYSTAC Phase I dataset, though independent

of the contributing sources of error [106]. Additionally, the BPM framework better spotlights those

regions of parameter space where the probability of an axion increases. For HAYSTAC’s data, a

single such frequency worthy of (but not demanding) further attention stands out.

The BPM framework may be straightforwardly applied to data from ADMX [91], HAYSTAC

[107], and other haloscopes and similar dark matter searches [75,94,95,108–111,113,116,244,251].

BPM will typically probe deeper couplings at no experimental cost while permitting experimental-

ists to operate nimbly, without the stricter constraints of preordained scan protocols. This latter

advantage is especially important for narrowband, tunable searches, in which the question of how to

optimize a scan protocol by responding in real-time to acquired data is of paramount importance.

Enhancements gained through operational efficiency will readily compound with those intrinsically

available from BPM’s informational advantage over threshold-based analyses.

In the following chapter, the BPM framework will be used not in the context of a reanalysis,

but on new data from the HAYSTAC experiment. Not only will it increase scan efficiency over FT

as predicted in this chapter, but its enhanced operational freedoms (Sec. 7.3), not available in the

context of a reanalysis of already existing data, will compound that increase. In Ch. 9, we will see

the versatility of BPM as it is applied to a broadband search for ALPs extending as much as 17

orders of magnitude lower in mass than the QCD axions of this chapter and the next.



Chapter 8

A quantum-enhanced search for dark matter axions

In Sec. 2.5.3, we saw the strong need for improving haloscope scan rates in order to sweep

out meaningful portions of parameter space on acceptable timescales. I have argued that the most

promising advances are those that either (1) can be iteratively improved upon in order to continue

the decades-long trend of steadily increasing scan rates or (2) are easily and broadly applicable at

little or no cost to the rest of the experiment.

In Ch. 5, we saw a direct demonstration of the squeezed state receiver (SSR) concept [208],

which achieved a factor-of-two scan rate enhancement in a realistic mock-haloscope experiment. In

line with objective (1) above, the SSR and quantum technologies for axion searches more generally

also promise scalability as transmission losses continue to come down [149, 218, 222] or reciprocal

elements are eliminated [252]. The history of improvements to haloscopic scan rate, wherein the

vast majority of improvement over the past three decades has come from reducing noise as opposed

to increasing signal, further recommend the SSR approach.

In Ch. 7, we discussed an entirely separate and complimentary advance in the spirit of objec-

tive (2). There, the Bayesian power measured (BPM) analysis framework [126] improved the scan

efficiency of the HAYSTAC Phase I analysis (Sec. 7.4) by what would have been, under normal

operating conditions, ≈ 36%. While improved data handling and related scan strategy consider-

ations are of secondary importance to fundamentally altering the noise regime in which modern

haloscopes operate, the advantage of improved data analysis is that it comes at zero hardware and

negative operational cost (Sec. 7.3).
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This chapter, which presents the work of [253], combines the advances of Chs. 5 and 7 to

present the most important result of this thesis: a live haloscope run directly improved by the SSR

apparatus and the BPM framework. We begin in Sec. 8.1 with the experimental setup and operation

of the haloscope. Section 8.2 takes a detailed look into the data processing for the experiment,

and Sec. 8.3 presents analysis and results. Finally, Sec. 8.4 covers calibration measurements taken

periodically throughout the run to determine the noise level of the experiment. The combined

benefit of SSR and BPM amounts to a tripling of the scan rate for dark matter axions in Phase II156

of the HAYSTAC experiment over a mass range favored by recent theoretical projections [69, 70].

The data run reveals no signature of dark matter axions in the combined 16.96–17.12 and 17.14–

17.28µeV/c2 mass window for axion-photon couplings above gγ = 1.38gKSVZ
γ , reporting exclusion

at the 90% level. The use of quantum measurement in particular in an axion search marks the first

time quantum squeezing has been harnessed to improve the sensitivity of a search for fundamental

particles, inviting a new era of quantum-enhanced searches for physical phenomena.

8.1 Setup and operation

Phase II of the HAYSTAC experiment is shown schematically in Fig. 8.1. The axion cavity

shown in Fig. 8.2 resides in an LD250 BlueFors dilution refrigerator operated at a base temperature

of 61 mK and shown in Fig. 8.3. A solenoidal, superconducting magnet sources a spatially homo-

geneous B0 = 8 T field. The cavity sits at the center of the high magnetic field region, Fig. 8.4,

and has volume VC = 1.545 L (not counting space occupied by the tuning rod)157 and typical

Q0 = 47000± 5000 [96].

Two Josephson parametric amplifiers (JPAs; SQ and AMP, as in Chs. 4 and 5) hang from a

lower plate thermalized to the mixing chamber plate (Fig. 8.5a) approximately 1 m above the cavity

in a “field-free” region engineered by a counterwound bucking coil integrated into the magnet. The

156 The HAYSTAC data run discussed in this thesis is more properly Run I of Phase II. For brevity, I will leave off
the run designation herein, though at least one future Phase II run is planned.

157 Alternatively, the cavity could be treated as a 2 L volume with a commensurate decrease to the form factor,
Eq. (2.15).
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Figure 8.1: Simplified HAYSTAC Phase II experimental schematic. A single signal generator
provides the local oscillator (LO) tone as well as the tones for pumping both JPAs. Each Josephson
parametric amplifier (JPA) has two ports: one for the input of probe tones and one where the signal
is input/output. The LO is set at half the pump frequencies via a frequency divider, and the relative
phase and amplitude of the pump tones are set using a variable phase shifter and attenuator on
the squeezer (SQ) pump line. Switches in the SQ and amplifier (AMP) pump lines (not shown) are
used to toggle the JPAs on and off. Microwave circulators route signals nonreciprocally in order
to realize the time sequence of operations used to benefit from squeezing (Sec. 5.4). Circulators
with a 50 Ω termination on one port act as isolators, shielding upstream circuit elements from
unwanted noise coming from further down the measurement chain. During data acquisition and
calibration measurements, signal and noise emitted from and reflected off the cavity are amplified
by a high-electron-mobility transistor (HEMT) amplifier at 4 K, fed into the radio frequency (RF)
port of an in-phase/quadrature (IQ) mixer and mixed down to an intermediate frequency (IF),
digitized (analog-to-digital converter; ADC), and recorded (personal computer; PC) where the
power spectral density is calculated. The cavity’s Lorentzian profile is monitored with reflection
and transmission measurements taken using a vector network analyzer (VNA), for which a portion
of the output is split off before the IQ mixer. A switch that toggles between a hot (333 mK)
and cold (61 mK) 50 Ω loads is used for calibration measurements described in the text. Figure
reproduced from Ref. [253].

JPAs are further shielded by a 4-layer shielding can (niobium, Amumetal 4K, aluminum, Amumetal

4K), surrounded by three superconducting bucking coils (Fig. 8.5b). As demonstrated in Fig. 8.6,

this shielding is sufficient to reduce the solenoid-sourced flux through the JPAs’ SQUID loops to

much less than one magnetic flux quantum, a roughly millionfold decrease in field strength from

the nearby high-field region. The cavity is tuned by rotating the copper-plated tuning rod off-axis

(Figs. 2.6b and 8.2).

At each operating point, The TM010-like mode is stepped using an ANR240 piezoelectric
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Figure 8.2: HAYSTAC cavity photo. The copper-coated stainless steel cylindrical cavity [96] has
height 10 in and radius 4 in. The axion-sensitive TM010-like mode is tuned by rotating the 1 in
tuning rod off-axis. The empty cavity has volume 2 L, which reduces to V = 1.545 L with the rod
present.

Figure 8.3: (a) Photo of the LD250 BlueFors dilution refrigerator housed at Yale before cabling and
haloscope components were installed. (b), (c) Side- and angled-view photos where key elements
labeled in (b) have been installed.

motor to rotate the tuning rod, whereupon a vector network analyzer is used to extract the cavity

resonance νc, loaded cavity quality factor158

QL =
2πνc

κm + κl
, (8.1)

158 The coupling rates κ are as defined in Ch. 5.



211

Figure 8.4: (a)–(d) Radial (Br), axial (Bz), and total (Btot) magnetic field specified values at
maximum field strength and R = 0 (a), 2 (b), 4 (c), and 6 (d) cm distances from cavity axis as a
function of distance along the cavity axis for the solenoid used in HAYSTAC Phases I and II. A
change in field component sign indicates a reversal of direction. The dominant contribution over
the entire region of the cavity of height 10 in and radius 4 in comes from Bz, the component useful
for axion detection. The maximum field had to be lowered from 9 to 8 T for Phase II due to damage
sustained in magnetic quenches during Phase I operation [42,90].

and coupling factor

β =
κm
κl

(8.2)

via pairs of transmission and reflection measurements. In order to center the amplification and

analysis bands on cavity resonance, a single microwave generator sets the two JPA pump frequen-

cies to νp = 2νc and the same tone is further split off and frequency-divided to become the local

oscillator (LO) used for homodyne measurement about νc. The relative pump phase θ and ampli-



212

Figure 8.5: (a) Mixing chamber stage layout shown in SolidWorks. The gold-plated mixing chamber
plate is thermalized to a gold-plated lower plate from which hangs the JPA housing and below that
(not shown) the cavity. The JPAs are placed in the nominally “field-free” region, and the three
gray rings show the locations of static superconducting bucking coils which are used to cancel the
remaining field through Lenz’s law. The four circulators required to implement the SSR in practice
(Fig. 5.8) are housed in magnetic shielding above the lower plate. (b) Photo of the JPA magnetic
shielding. The static bucking coils sit outside a four-layer magnetic shield; from inside-out: niobium,
Amumetal 4K, aluminum, and Amumetal 4K (visible layer). The Amumetal 4K, from Amuneal
Manufacturing Corp., is a high permeability material around the temperatures where the aluminum
and niobium undergo their superconducting phase transitions, so as to minimize flux vorticies in
the superconducting layers when at base temperature. The whole configuration reduces the 8 T
magnetic field 1 m below to less than one part in 106 of its peak value (Fig. 8.6).

tude are optimized to maximize squeezing using an electronically actuated variable phase shifter

and attenuator. Axion-sensitive voltage fluctuations VX(t) are collected for τ = 3600 s before being

Fourier transformed and having their power spectral densities (PSDs) computed.

As in Ch. 5, the SQ and AMP are coupled to the axion cavity in an SSR configuration via

a microwave circulator. The SQ prepares a squeezed vacuum state, which is coupled into the

axion cavity and subsequently measured noiselessly using the AMP. The setup delivers 4.0 dB of

off-resonant vacuum squeezing after the state is degraded by transmission losses and added noise

(Footnote 90), yielding a 1.9-fold159 scan rate enhancement beyond what could be achieved at the

159 This improvement comes relative to the optimal unsqueezed case for the system accounting for improper tuning
rod thermalization (Appx. C) in both cases. It also accounts for our measured added noise and the fact that the
homodyne measurement leaves a small range of frequencies near DC too noisy to use in both cases. In theory, these
lost frequencies imply a higher overcoupling for optimal performance both with and without squeezing, though the
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Figure 8.6: Measurement of JPA tunability with magnetic field on and off. One of the flux-pumped
JPAs is tuned by a DC current source with the large magnetic field used to search for axions at 0
and 8.4 T. Tuning the magnetic field on causes only a very minimal shift in the tuning structure
of the JPA, confirming the proper functioning of the magnetic shielding.

Figure 8.7: (a)–(b) Voltage fluctuation (VX) histograms as a function of the phase θ between the
SQ and AMP pumps first with the SQ off (a) so that it acts like a mirror and there is no preferred
phase. With SQ on (b), the variance is minimized for θ = π/2 and 3π/2. Figure reproduced from
Ref. [253].

effect is slight, and neglected here for both cases. The calculation assumes an analysis band set to a fixed number of
(overcoupling-dependent) cavity linewidths.
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quantum limit. This measured squeezing,160 shown in Fig. 8.7, is consistent with the loss and added

noise measurements discussed in Sec. 8.4.

Figure 8.8: Illustration of the squeezed state receiver-equipped haloscope showing the transfor-
mation of the vacuum state in quadrature space. A vacuum state, whose Wigner function (color
surface) [254] is symmetric in quadratures X̂ and Ŷ , is sourced as Johnson-Nyquist noise from a
50 Ω microwave termination (black box) at 61 mK. It is routed by a nonreciprocal element (Circ)
to the SQ JPA which squeezes the X̂ quadrature. The squeezed state may then be displaced by a
hypothetical axion field a (red lines) in the axion cavity (Cav). It is subsequently unsqueezed by the
AMP JPA, in the process amplifying the axion-induced displacement. The resulting state is read
out by a conventional readout chain led by a HEMT amplifier and digitized (spectrum analyzer;
SA). Figure reproduced from Ref. [253].

The data acquisition procedure at each tuning step in the initial scan161 is essentially that

of the mock-haloscope experiment discussed in Sec. 5.4, except here the cavity really is tuned in

search of the hypothesized axion signal, and the live acquisition time is brought up from 0.32 s to

τ = 3600 s as in Sec. 8.1. Figure 8.8 illustrates the journey of the squeezed state in quadrature space

as it propagates through the SSR-equipped haloscope. The JPAs in this picture transform phase

space, turning the vacuum state into a squeezed state and then back into a vacuum state.162 An

160 The measurement protocol is the same as that for Fig. 5.5, here showing SQ off in addition to SQ on data.
161 Because squeezing does not improve the maximum single-frequency sensitivity of the haloscope, it is not used

during rescans. In theory, a marginal benefit could have been achieved for adjacent bins by squeezing even while
critically coupled (Sec. 5.6).

162 In practice, the gain of the AMP is turned up higher than that of the SQ, so the final state is really elliptical
along the opposing axis to the initial squeezed state. For illustrative purposes, however, it is helpful to think of the
AMP as simply undoing the transformation of the SQ.
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axion, if present, imparts a displacement, and the portion of that displacement along the squeezed

quadrature stands out more strongly from the noise than in the case without squeezing.163

Figure 8.9: Advantage conferred by squeezing calculated with parameters used in HAYSTAC. Blue
curves show Johnson-Nyquist noise Sr reflected off of the cavity as a function of detuning δν from
cavity resonance. Red curves show cavity Johnson-Nyquist noise Sc which originates in the cavity.
Solid (dashed) lines indicate HAYSTAC Phase II (Phase I) operation. The combination of squeezing
and higher cavity coupling increases the bandwidth over which the haloscope is sensitive to axions.
Figure reproduced from Ref. [253].

As we saw in Ch. 5, squeezing improves the bandwidth over which the apparatus is sensitive

to an axion, rather than the peak sensitivity obtained at cavity resonance. In the setup of Fig. 8.1,

the reflected noise is sourced from a 50 Ω termination held at base temperature 61 mK, which

dominates away from cavity resonance. The ratio of the signal power that would be delivered by

an axion at any given frequency to cavity Johnson-Nyquist noise Sc at that frequency is spectrally

constant. Because squeezing selectively removes reflected noise Sr, it is beneficial to overcouple the

cavity’s measurement port by setting β, Eq. (8.2), to twice the deliverable squeezing S, Eq. (4.4), as

in Ch. 5. In Fig. 8.9, the dashed lines show cavity thermal Johnson-Nyquist in red and reflected noise

in blue with β = 2, the ideal value for a quantum-limited haloscope. Cavity noise, and therefore

a hypothetical axion signal, is only dominant over the narrow band shown by the upper black

163 This coherent picture of the axion displacement does a good job showing what each individual realization of
the axion field does. Figure 5.1 presents a complimentary picture: there, many coherent displacements of the sort
shown in Fig. 8.8 average together to add variance to the squeezed or vacuum state over the course of a measurement.
In both pictures, the essential conclusion is that the axion is disproportionately more visible along the squeezed
quadrature.
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arrow. The solid lines show the operating conditions for this work, where squeezing is employed

and the cavity is overcoupled at β = 7.1.164 Squeezing reduces the reflected noise by 4.0 dB, and

increasing β to 7.1 increases the cavity bandwidth. Without squeezing, β = 7.1 would make cavity

reflected noise dominant at all frequencies. Squeezing this noise below the quantum limit yields

near-maximal visibility extended far off resonance.

8.2 Data processing and analysis

The HAYSTAC Phase II data run used the SSR apparatus of Sec. 8.1 to probe over 70

MHz of well-motivated parameter space [69,70] in half the time that would have been required for

unsqueezed operation, saving approximately 100 days of scanning. Initial data acquisition occurred

from September 3 to December 17, 2019, covering 4.100–4.178 GHz and skipping a crossing with

a transverse electric (TE) mode at 4.140–4.145 GHz which does not couple to the axion [96].

A total of 861 spectra were collected as part of the initial scan, of which 33 were cut due to

cavity frequency drift, poor JPA performance, or an anomalous power measurement in a probe

tone injected near cavity resonance. The cuts made on the initial spectra are shown in Fig. 8.10.

Analysis of the initial scan data yielded 32 power excesses that merited further scanning, consistent

with statistical expectations. 508 rescan spectra were collected from February 25 to April 11, 2020,

with 3 cut. None of the power excesses from the initial scan persisted in the analysis of rescan

data. Calibration measurements taken at each tuning step are described in Sec. 8.4.

The data processing for an axion haloscope, described in Sec. 6.1 and based upon Ref. [78], is a

complicated procedure prone to human error and confirmation bias. Furthermore, it requires modi-

fications (Sec. 5.7) before being applied to a system performing single quadrature measurement and

using squeezing. To mitigate human error, HAYSTAC used two separate and semi-independent165

processing and analysis teams, led by Kelly Backes at Yale and myself at JILA, respectively. The

164 The overcoupling here is slightly higher than twice the delivered squeezing S because the cavity noise is higher
than the temperature of the fridge (Sec. 8.4). When not squeezing, the optimal overcoupling is actually β ≈ 2.8,
slightly higher than the value β = 2 plotted in Fig. 8.9. Fully accounted for, the cavity noise has negligible affect on
the scan rate enhancement achieved via squeezing. For a quantitative discussion, see Appx. C.

165 Each team was never allowed to look at the other’s processing and analysis code, but other communication was
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Figure 8.10: Raw spectrum cuts represented by black, vertical lines for the 861 raw spectra (hor-
izontal axis, in chronological order) in the HAYSTAC Phase II initial scan. Spectrum cuts were
applied for spectra with unsuccessful squeezing (“noSQ”), cavity resonance drift as measured in
reflection (“∆νrfl”) or transmission (“∆νtx”), anomalous average subspectrum power (“Pspec”), or
anomalous average (“Ptone”) or standard deviation (“σPtone”) of heights of a probe tone situated
alongside the spectra and measured throughout their acquisition. Any one cut condition being met
(“any”) was deemed sufficient to cut a spectrum. In total, 33 cuts were made on the initial spectra,
and 3 on the rescan spectra (not shown).

two teams ultimately agreed in the final prior updates Ui(gγ) (Sec. 7.1.1) to better than 1%, with

the official results reported in Sec. 8.2 being the update-space average of the analyses.

This section follows the JILA processing and analysis from data acquisition to exclusion,

presenting a comparison to the frequentist threshold (FT) analysis used in Phase I, Run I [106].

The improved informational efficiency and greater operational freedom of the BPM framework

together improve scan rate by 52%. Unlike for the Phase I data of Sec. 7.4, the final results are

remarkably clean, with no prominent least unlikely (LU) candidates of note.

permitted.
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8.2.1 Subspectra and raw spectra

The 861 initial scan plus 508 rescan raw spectra166 are each acquired at a sample rate of 10

MS/s in 5 s acquisitions. These 5 s acquisitions are divided in code into 500 separate 10 ms chunks,

which are Fourier transformed at ∆b = 1/(10 ms) = 100 Hz Fourier bin resolution and rotated into

the AMP’s amplified quadrature prior to having their PSDs computed per Step 3 of Sec. 6.1.167 A

1 hr raw spectrum acquisition therefore collects and averages 360,000 subspectra.168 To save disk

space, only the raw spectra themselves are recorded.169

Figure 8.11 shows raw spectra acquired in the initial scan. The representative spectrum

in 8.11a was randomly chosen as spectrum no. 702. In order to follow the processing of a single

spectrum, the same spectrum is in several subsequent plots throughout this section. The irreversible

ambiguity between the AMP’s signal and idler inputs means that this and subsequent individual

spectra are mapped symmetrically about the LO (Sec. 5.7). The gap in the middle of this and

all other spectra comes from low-frequency noise present in our homodyne measurement.170 The

predominant feature in the raw spectra is the large-scale structure owing primarily to frequency-

dependent gains in the amplification chain and the low-pass filtering of the data before digitization.

This broad spectral structure must be filtered out per Step 4 of Sec. 6.1.

In order to filter out large-scale structure, the raw spectra are grouped into three batches.

This is necessary because, over the course of the months-long acquisition, room temperature elec-

tronics were reconfigured to improve performance. These reconfigurations in turn changed the

166 Some of these occurred to fill in small gaps in the initial scan, and therefore could alternatively be thought of
as belonging instead to that group. Since they were acquired with the rescan data, we tally them there.

167 For phase-sensitive measurement, Step 2 of Sec. 6.1 is replaced with the rotation of the measured quadratures
into the amplified and deamplified quadratures, the latter of which is discarded. Step 1 is discussed in Footnote 168.

168 The Fourier domain quadrature voltages are complex, so in practice the real and imaginary parts have their
PSDs separately computed and summed per Step 1 of Sec. 6.1. There are thus 720,000 independently measured
powers being averaged at each 100 Hz Fourier bin.

169 If the full timestream dataset for the above procedure were saved, it would occupy roughly 800 TB: not an
impossible number, but an inconvenient one, especially given that the raw spectra in principle contain the full
axion-pertinent information content of the measurement per Sec. 7.2.

170 The lost low-frequency data is a practical disadvantage of the phase-sensitive measurement relative to the phase-
insensitive one. It is counterbalanced by the fact that phase-insensitive measurement operates off resonance, where
lower JPA gain gives rise to higher added noise. Unlike for the phase-sensitive versus -insensitive effects considered in
Sec. 5.1.3, there is no fundamental reason for these two effects to cancel out. In practice, it is reassuring that neither
rises to the level of even the smaller (

√
2) impacts on scan rate discussed in Sec. 5.1.3, and that they work in opposite

directions.
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Figure 8.11: (a) Individual raw spectrum no. 702 plotted in the RF band along with the Savitzky-
Golay (SG) filter for its batch of spectra (batch 3). The SG filter shown is for removing structure
common to all spectra within the batch. A subsequent filtering step, shown in Fig. 8.12a for this
spectrum, will remove the remaining structure. The spectrum is symmetric about its center as a
consequence of the phase-sensitive amplification. (b) All raw spectra shown together in the IF band.
Batches are determined by changes made to the measurement chain throughout the months-long
initial scan data acquisition. IF/RF subscripts are applied to frequency axes in these and other
plots for emphasis.

large-scale spectral structure (or “spectral baselines”) of the raw spectra.171 All 861 raw spectra

are shown together in Fig. 8.11, where the differences between batch 1 and batches 2 and 3, which

have similar baselines, are evident. Each baseline is divided by a Savitzky-Golay (SG) filter (d = 10,

W = 500) applied to its entire batch in the intermediate frequency (IF) band. After the filter is

applied, bins which average in the IF (where an axion signal will not line up between different

spectra) to a power excess above 4.5σ are cut along with their close neighbors for all spectra within

a batch.

8.2.2 Processed spectra

A second SG filter (d = 4, W = 500)172 is applied to each spectrum individually in the

radio frequency (RF) band to remove the remaining large-scale structure which remains dominant

171 The three batches are each chronologically contiguous. The first contains 201 spectra, the second 74, and the
third 586.).

172 For rescans, the second SG filter has d = 6, following Ref. [78].
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Figure 8.12: (a)–(d) Individualized SG filtering. The raw spectra PRF, normalized by the collective
IF SG filters for their respective batches P̄ filt

IF and with 1 subtracted out, are plotted for four different
raw spectra. Also plotted are their their individualized SG filters. The structure of the individual
spectra all look different from one another because common structure was removed in the first SG
filtering stage. The individualized SG filters will be divided out to obtain the processed spectra of
Sec. 8.2.2.

over the statistical fluctuations (plus possible axion-induced structure). These SG filters, shown

alongside four IF SG-filtered raw spectra in Fig. 8.12, look very different for each individual spec-

trum even within a batch (compare Fig. 8.12a and Fig. 8.12d, both in batch 3). The dissimilarities

among individual spectra indicate that the IF SG filtering of Sec. 8.2.1 successfully removed shared

structure.

Upon dividing out the individualized SG filters, we are left with the processed spectra. Figure

8.13a shows processed spectrum no. 702, which we have been following through the data processing.
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Figure 8.13: (a) Individual processed spectrum no. 702 together with histogram of normalized
power excesses. The frequency-averaged inter-processed spectrum standard deviation 〈σmeas〉ν
(pink line) agrees well with the expected standard deviation 1/

√
τ∆b (black, dashed line), and

the histogrammed power excess counts for spectrum no. 702 are seen to follow the corresponding
expected normal (N ) distribution. (b) Histogram of all renormalized processed spectra obtained by
dividing the normalized power excesses of (a) by 〈σmeas〉ν . The distribution of all processed spectra
is well approximated by the expected Gaussian distribution, and has mean 0, standard deviation 1
as expected. (c) Waterfall plot of many processed spectra near spectrum no. 702 (red) lined up in
the RF band. The black spectrum was one of the 33 spectra cut from the initial scan (Fig. 8.10).

It agrees very well with the expected mean 0, standard deviation 1/
√
τ∆b = 0.0017 Gaussian,173

as does the collection of all processed spectra excesses shown in Fig. 8.13b. If noise were not aver-

aging down properly in the experiment, the Gaussians would have larger-than-expected standard

deviations. In Fig. 8.13c, many processed spectra are shown together, with no. 702 highlighted in

173 There are several subtle factors of two that go into Fig. 8.13. First, the standard deviation of 1/
√
τ∆b could

really be written as (1/
√
τ∆b)×

√
2/
√

2, where the multiplicative
√

2 comes from the standard deviation of the first
χ2 distribution and the divisive factor of two comes from the hidden factor of two in the number of independent
contributions to each raw spectrum (Footnote 168). Separately, the error bars in the histograms in Fig. 8.13a and b
are
√

2× counts, where the
√

2 multiplies the Poisson standard deviation because of the duplication of all measured
powers about the LO by the AMP (Sec. 8.2.1).
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red and a cut spectrum in black. Observe that the spectral step size between processed spectra

is substantially smaller than the spectra themselves are, which ensures smooth coverage of the

scanned frequency window (Sec. 7.1.4). Bins exceeding 6σ are cut from the processed spectra per

the procedure in Ref. [78].

8.2.3 Rescaled spectra

Figure 8.14: (a) Rescaling visibility (red line) for spectrum no. 702. Also shown are what the
rescaling would be if the AMP gain GA(ν) maintained its maximum value of GA(νp/2) across the
entire analysis band (black, dashed line) and if in addition the cavity did not replace any reflected,
squeezed noise with internal, unsqueezed noise (|χml(ν)|2 = 0, black, dotted line). (b) Rescaled
spectrum no. 702, obtained from dividing processed spectrum no. 702, Fig. 8.13a, by the rescaling
visibility in (a). The rescaled spectra have the special property that bin containing 100% of the
power of a KSVZ axion would have mean 1.

The processed spectra are next each rescaled to account for their sensitivity to the axion.

Specifically, the single-bin KSVZ axion visibilities αKSVZ
1-bin , shown in red in Fig. 8.14a for spectrum

no. 702, are divided out from the processed spectra to produced the rescaled spectra. The rescaling

that would have been applied if the AMP maintained its maximum gain across the entire analysis

band is shown as a black, dashed line. The fact that the black, dashed line and the red line

nearly coincide indicates that JPA bandwidth is not at present a limiting factor, even with the

cavity being strongly overcoupled to improve bandwidth upon squeezing. The black, dotted line,



223

shows the rescaling that would be applied if the cavity still sourced the same axion signal, but

without dissipating any of the external noise and replacing it with unsqueezed vacuum. As such,

its deviation from the red line, largest towards the center, indicates how much of the squeezed state

is being replaced with cavity fluctuations. It shows that we are accounting for the fact that not all

of the squeezed state (independent of transmission losses) makes it to the AMP.

Rescaled spectrum no. 702 is shown in Fig. 8.14b. Recall from Step 5 of Sec. 6.1 that the

rescaled spectra have the special property that a KSVZ axion whose power falls entirely into a

given 100 Hz bin would shift the bin’s expectation value from 0 to 1. Thus, bins closer to the center

of each raw spectrum, where axion transmission through the cavity is strongest, should be the most

sensitive (lowest rescaled standard deviation), as is the case in Fig. 8.14b. The reason for rescaling

the spectra to have uniform mean in the presence of an axion, with the sensitivity of each bin now

encoded in its standard deviation, is to facilitate the maximum likelihood (ML) estimation used to

combine individual spectra.

8.2.4 Combined spectrum

The rescaled spectra are summed with ML weights in order to form the combined spectrum

as in Step 6 of Sec. 6.1. The combined spectrum, shown in Fig. 8.15a, has the same property as the

rescaled spectrum: a single-bin, KSVZ axion has mean 1. Near the edges of the scan, the expected

standard deviation obtained from Eq. (6.7) grows very large, indicating insensitivity to the axion.

This is also true around the TE mode crossing near the center of the scan window. Mainly, the

sensitivity profile is determined by the number of contributing raw spectra (shown in gray on the

right axis) to each combined spectrum bin.

The combined spectrum can alternatively be viewed as in Fig. 8.15b, such that each bin has

standard deviation 1 regardless of the axion-sensitivity (and whether or not there is an axion).

The sensitivity to the axion is then encoded in the mean of the axion distribution for each bin

(not shown). The representation of Fig. 8.15b is better for examining the statistics of the combined

spectrum. We find that its measured standard deviation matches the expected value, and it is well
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described by the expected Gaussian distribution plotted in the right panel.

Figure 8.15: (a) HAYSTAC Phase II initial scan combined spectrum, obtained by summing the
rescaled spectra with maximum likelihood (ML) weights such that a single-bin KSVZ axion has
mean 1. The standard deviation σε (orange line) therefore encodes sensitivity to the axion. Gray
line/right axis shows the number of raw spectra that contribute to each combined spectrum bin, with
higher axion sensitivity typically occurring where more spectra contribute. Small gaps in the initial
scan combined spectrum were due to spurious, nonaxionic excesses which did not appear during
rescans. The large gap beginning at 4.14 GHz is due to a transverse electric mode. (b) Alternate
representation of the combined spectrum together with histogram of powers. The expected standard
deviation σε has been normalized out to give all bins unit standard deviation. The measured
standard deviation σmeas for the combined spectrum (pink line) matches this expectation (black,
dashed line), and the data agrees well with the expected normal distribution.
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8.2.5 Grand spectrum

To account for the axion lineshape, we apply ML weights to overlapping sets of combined

spectrum bins as specified by Step 8 of Sec. 6.1.174 The resulting (normalized, as in Fig. 8.15b for

the combined spectrum) grand spectrum is shown in Fig. 8.16, where filter-induced correlations are

corrected for according to Step 9 of Sec. 6.1. As in Fig. 8.15b, the axion sensitivity is encoded in

the mean value µKSVZ that a KSVZ axion would impart to each bin, if its rest mass resided there.

Here, we use the standard halo model lineshape of Eq. (2.14).

Figure 8.16: HAYSTAC Phase II initial scan grand spectrum, which accounts for the axion line-
shape. The sensitivity to the axion is encoded by the mean µKSVZ (brown line) that a KSVZ
axion with rest mass in each grand spectrum bin would have. Of particular initial interest was the
spike far above µKSVZ at 4.11190395 GHz, which did not persist during rescanning. The standard
deviation of the grand spectrum (pink line) matches the expected value (black, dashed line).

174 The BPM framework makes it more natural to skip Step 7 of Sec. 6.1, and simply perform Step 8 on the combined
spectrum. This is equivalent to setting nc → 1 and nr → ncnr in Sec. 6.1, and enhances sensitivity to the axion very
slightly while reducing complexity.
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8.3 Results

The grand spectrum of Fig. 8.16 is combined with the rescan data (not shown) to report a

constraint on the existence of axions within the scanned window. We will first discuss in Sec. 8.3.1

the results of the JILA analysis, using the BPM framework to examine the prior updates in the

full two-dimensional space of frequency and coupling, the LU candidates, and the comparative

advantage over a frequentist analysis. The official results, combining the JILA and Yale analyses,

are presented and discussed in Sec. 8.3.2.

8.3.1 JILA analysis results

Figure 8.17: (a) Two-dimensional (axion frequency νa, axion-photon coupling gγ) map of subag-
gregate prior updates Us from the JILA analysis, with the 90% exclusion line (Us = 10% contour)
shown as the solid, blue line. The solid, red line shows the exclusion obtained using an frequentist
threshold (FT) framework, with rescans marked as black dots. The bottom inset shows the top five
least unlikely (LU) candidates with the ML couplings denoted by the corresponding orange circles

in the main plot. None of the LU candidates posterior probabilities P
(1)
LU occupy even 1% of the

total prior probability Pa of the window at their ML couplings. (b) The blue (red) solid line shows
the aggregate prior update U (exclusion E) for the > 70 MHz region included within the two sets of
dashed vertical lines spanned by dashed horizontal lines in (a). The dashed, blue horizontal lines
in (a) indicate 90% exclusion for the Bayesian power-measured (BPM) framework, and the dashed,
red line does so for the FT framework. The τrel axis (dashed, gray line at 90% exclusion) indicates
the relative amount of scan time (+52%) it would have taken to achieve the BPM exclusion with
the FT framework. The inset shows a closeup on the two frameworks’ aggregate exclusions near
90% exclusion.
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Applying the BPM framework of Ch. 7 to the HAYSTAC Phase II dataset produces the two-

dimensional prior update map of Fig. 8.17a. Comparing to the Phase I reanalysis of Fig. 7.3 reveals

a much cleaner result: there are no regions of very high subaggregated updates Us, and the LU

candidates, shown in the inset, never reach even P
(1)
LU/Pa = 1% (compare to 20% in Fig. 7.3). The

window quoted for aggregate exclusion in Fig. 8.17b is that spanned by the dashed horizontal lines

denoting 90% aggregate exclusion in Fig. 7.3a. In both figures, blue lines indicate BPM results and

red lines FT175 results.

The aggregate exclusion properly accounts for the look-elsewhere effect with respect to ex-

clusion for both Bayesian (Sec. 7.1.2) and frequentist (Sec. 6.3.2) analyses, and reveals a 52% more

efficient scan using BPM. In particular, the frameworks are compared at the conventionally used

90% mark, where the scaling of relative scan time with coupling, Eq. (7.45), converts the couplings

excluded at the 90% level over the whole range to relative scan times. The BPM framework’s ad-

vantage was aided by its operational flexibility (Sec. 7.3), which was used to rescan the 4.11190395

GHz initial scan excess (Fig. 8.16) multiple times.

The JILA results are not the official results of the Phase II HAYSTAC data run. Rather,

they were averaged with the prior updates of the semi-independent Yale analysis. The two analyses

agreed at better than the 1% level before averaging.

8.3.2 Official HAYSTAC Phase II results and conclusions

Averaging the JILA (Fig. 8.17) and Yale (not shown) analysis results, the final HAYSTAC

Phase II results constrain the existence of axions with ma between 16.96–17.12 and 17.14–17.28

µeV/c2. The final results exclude axions with gγ ≥ 1.38gKSVZ
γ . Figure 8.18a and b show the most

important quantities plotted in Fig. 8.17. The results from the HAYSTAC quantum-enhanced data

run are shown alongside other axion haloscope exclusion curves in Fig. 8.17c.

Quantum squeezing has allowed the HAYSTAC experiment to achieve a breakthrough in

sensitivity by conducting the first sub-quantum-limited search for new fundamental particles. The

175 The FT framework results shown here for comparison used the parameters of Ref. [106].
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Figure 8.18: (a) Subaggregated prior updates Us in the full two-dimensional parameter space of
axion frequency νa and coupling gγ achieved with the BPM analysis and shown in grayscale. The
10% prior update contour is shown in solid blue. The corresponding 90% aggregate exclusion
level of 1.38gKSVZ

γ is shown as a dashed blue line. (b) Aggregate prior update U , Eq. (7.7), as a
function of coupling over the entire window covered by the dashed blue line in (a). (c) Results
of this work shown in blue alongside previous exclusion results from other haloscopes shown in
red [89, 91, 93, 99, 102–105], orange [98, 101], purple [97, 100], and green [108]. Previous HAYSTAC
results [106, 107] are shown in faded blue. The QCD axion model band [59] is shown in yellow,
with the specific KSVZ and DFSZ model lines shown as black dashed lines. Figure adapted from
Ref. [253].

SSR, capable of delivering 4.0 dB of noise variance reduction relative to vacuum with the large

magnetic field turned on, has helped achieve world-leading sensitivity to axion dark matter in

the 10 µeV/c2 mass decade. As in Ch. 5, the current achievable squeezing is limited primarily

by microwave transmission losses between the two JPAs. As the development of superconducting

quantum technology [218, 222] continues to improve microwave transmission efficiency, the scan
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rate enhancement from squeezing will improve even without new experimental techniques [208],

and advances in measurement techniques that remove nonreciprocal elements [252] offer a means

of eliminating the majority of the transmission loss in the current SSR configuration.

8.4 Calibration measurements

Figure 8.19: Model used for HAYSTAC Phase II noise calibration measurements. The system is
modeled for the purpose of calibration measurements with a cascaded series of circuit elements
that perform discrete operations. A variable temperature stage (VTS) sources spectral density Sin.
Boxes with Greek letters model loss, amplifiers (triangles) have the gains listed within them, and
all added noise NA is referred to the AMP. The cavity has resonance νc and coupling rates κm and
κl, together giving rise to the susceptibility matrix elements χij(ν). The measured output spectral
density is Sout.

Characterization of the sensitivity to the axion requires in-depth measurements of the system

noise. To do this, we perform calibrations once every nine tuning steps. We use the model in

Fig. 8.19 to calculate all quantities of interest. The model is chosen to balance level of detail

against the number of independent measurements and reasonable assumption that can be made on

the setup of Fig. 8.1. All spectral densities and gains in this section are single-quadrature unless

otherwise specified.176 The model consists of a variable temperature stage (VTS) modeled after

that in Ch. 4 which sources Johnson-Nyquist noise with temperature-dependent spectral density Sin.

176 The “1Q” subscripts of previous chapters where there was cause for ambiguity have here accordingly been
dropped.
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This noise is routed through the SQ (inferred squeezing GS ≤ 1)177 to the cavity with susceptibility

matrix elements (Sec. 5.1.1) χij determined from its resonance νc, and measurement and (fictitious)

loss port coupling rates κm and κl, respectively. From the cavity, the state goes through the AMP

(gain GA) and commercial amplifier chain (gain GH′), led by a high-electron-mobility transistor

(HEMT) amplifier. The system added noise spectral density NA is referred to the input of the AMP,

and any transmission loss that the state passes through between circuit elements is modelled with

power transmissivities λ, ρ, and α as shown in the figure. The fluctuation-dissipation theorem [255]

ensures that whatever fraction of the state is dissipated in these partially transmissive elements is

replaced with Johnson-Nyquist noise at the fridge spectral density Sf . Single-quadrature spectral

densities S (or N , which is used to represent added noise) have dimensions of photon number per

unit bandwidth per unit time (i.e. dimensionless energy), corresponding to physical temperatures

T at frequency ν via

S =
1

2

(
1

2
+

1

ehν/kBT − 1

)
=

1

4
coth

(
hν

2kBT

)
, (8.3)

half the two-quadrature value. The Johnson-Nyquist noise spectral density of the cavity is Sc ≥ Sf ,

to account for nonideal thermalization of the tuning rod.178 Writing down the output spectral

density Sout is therefore a simple matter of cascading the multiplicative and additive effects of all

the elements:

Sout =GH′GA
{
NA + (1− α)Sf + α

( [
1− |χmm|2

]
Sc

+ |χmm|2 [(1− ρ)Sf + ρGS (Sinλ+ (1− λ)Sf )]
)}
.

(8.4)

This equation will enable the calibration calculations in Secs. 8.4.1 and 8.4.2.

177 In this chapter, GS is the “gain” along the squeezed quadrature, which is less than 1. It is ideally the inverse of
GS,1Q ≥ 1 of previous chapters, which represented the single quadrature gain in the amplified quadrature of the SQ,
but may be increased (i.e. worsened) due to distortion or added noise of the squeezer.

178 The cavity spectral density cannot be determined from simply knowing the temperature of the tuning rod, as
the tuning rod and cavity walls both participate in sourcing the “cavity” spectral density Sc. Therefore, though we
measure the tuning rod to be at Trod = 225 mK by slowly ramping up the fridge temperature and seeing where any
excess PSD due to the rod vanishes, we must still independently measure Sc.
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8.4.1 Squeezing and cavity spectral density measurements

The first step in the calibration protocol is a set of three power spectrum measurements

(Fig. 8.20) to determine two experimental parameters: the spectral density Sc emerging from the

cavity and the IF frequency (νIF)-dependent squeezing GS(νIF) inferred over the analysis band.

Measurement 1 is taken off cavity resonance with the squeezer turned off. Measurements 2 and 3 are

taken on cavity resonance with the squeezer turned on and off, respectively. All three measurements

are taken with Sin = Sf . From measurements 1 and 3 we calculate

Sc =

{([
G

(1)
A (NA + Sf )

S
(3)
out

S
(1)
out

]
/G

(3)
A −NA − (1− α)Sf

)
/α− |χmm|2Sf

}
/
(
1− |χmm|2

)
, (8.5)

from Eq. (8.4) with GS = 1, where numerical superscripts denote quantities that are expected to

vary between measurements 1–3. Other quantities are modeled as stable between measurements

and the AMP gain is measured independently. Averaged over all operating points,

Sc = 0.41± 0.02. (8.6)

For a cavity at the base temperature of 61 mK, we would expect Sc = Sf = 0.27 from Eq. (8.3),

close to the zero-temperature value of 1/4. For a quantitative treatment of how the increased cavity

spectral density affects the scan, see Appx. C. From measurements 2 and 3, with Sc determined,

we calculate

GS =

{[([
G

(1)
A (NA + Sf )

S
(2)
out

S
(1)
out

]
/G

(2)
A −NA − (1− α)Sf

)
/α

−
[
1− |χmm|2

]
Sc

]
/|χmm|2 − (1− ρ)Sf

}
/(ρSf )

(8.7)

from Eq. (8.4). Using Eq. (8.7), we infer a typical179

GS ≈ 0.1. (8.8)

179 In practice, states squeezed beyond the ideal deliverable squeezing set by the transmission loss do not differ
greatly at the output. This is essentially why the scan rate enhancement in Fig. 5.2b rapidly levels out with respect
to GS,1Q. Fluctuations in the calibrated quantities, Eqs. (8.5), (8.7), and (8.9), tend to correlate or anti-correlate in
such a way as to roughly preserve the total noise level.
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Figure 8.20: (a) Sample calibration measurements taken at a representative operating point with
(1, red) SQ off/off resonance, (2, green) SQ on/on resonance, and (3, blue) SQ on/off resonance.
Sets of 300 adjacent ∆b = 100 Hz frequency bins are averaged together. Some of the large-scale
structure owes to the spectral of the commercial amplification chain, and cancels out when ratioing
these measurements to obtain parameters of interest. (b) Calculated values of the cavity spectra
density Sc (in single-quadrature quanta) and squeezer gain GS ≤ 1 from the measurements in (a).
The squeezer gain is treated as frequency-dependent. The low-frequency rise in squeezer gain may
be due to an imperfect accounting of added noise by the added noise measurement, causing a slight
increase in inferred squeezing.

8.4.2 Added noise measurement

The second calibration measurement is a hot-cold load measurement with SQ off (GS = 1)

similar to the protocol used in previous HAYSTAC results [90],180 where the cold load is at the

dilution refrigerator base temperature and the hot load is maintained at 333 mK and monitored by

a Magnicon SQUID-based temperature sensor. Equation (8.4) gives us the IF frequency-dependent,

single-quadrature added noise NA(νIF) referred to the input of the AMP as

NA =
{([([

λShin + (1− λ)Sf

]
ρ+ (1− ρ)Sf

)
|χ̃mm|2 +

(
1− |χ̃mm|2

)
Sc

]
α+ (1− α)Sf

)
Gha

− Shout

Scout

([
Sf |χ̃mm|2 +

(
1− |χ̃mm|2

)
Sc
]
α+ (1− α)Sf

)
GcA

}
/

(
GcA

Shout

Scout

−GhA
)
,

(8.9)

180 The Y-factor measurement of Ref. [90], in which Y = Shout/S
c
out, is a simplified version of the VTS noise

calibration of Sec. 4.4.3, where the fridge temperature is not varied, and only two (one hot, one cold) VTS temperatures
are used.
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where λ = −1.04 dB is measured with a separate thermal sweep in which the fridge temperature is

varied and α = ρ is assumed at half the independently measured value for the total intra-SSR loss

of -2.0 dB.181 In Eq. (8.9), h and c superscripts denote quantities measured in the hot and cold load

configurations, and the cold-load VTS input is simply Sf . The tilde on |χ̃mm|2 denotes that we

correct for the fact that, though this is an off-resonant measurement, the cavity’s higher spectral

density Sc is still close enough to be felt slightly, but only on one side of the LO.182 In Phase I

of HAYSTAC [90], phase-insensitive JPA operation required the addition of at least a quarter of

a quantum of noise per quadrature, NA ≥ 1/4. Now operating in phase-sensitive mode, the AMP

adds an average

NA = 0.03± 0.02 (8.10)

over the analysis band. This calibration measurement, together with those of Sec. 8.4.1, provides

an accurate measurement of the total noise against which an axion signal must be measured.

In practice, due to the intrinsic limitations of any model with just a few discrete, cascaded

elements, some of the calibration measurements for Sc, GS , and NA initially produce unphysical

values. In order to still use these calibration data, we adopt a procedure whereby the AMP gains

input to Eqs. (8.5), (8.7), and (8.9) are varied slightly relative to their measured values. When

selecting a new value for the gains, we systematically bias towards values which produce lower

scan rates: that is, we systematically bias our measurements in the conservative direction. An

alternative approach to building in deliberate conservative bias in the face of imperfect calibration

measurements would have been to unbalance our assignment of the total measured intra-SSR loss

between ρ and α.183

181 The loss measurement protocol is exactly that of Sec. 5.5.3. Vacuum is amplified first by the SQ with AMP
off, and then by the AMP with SQ off at the same gain used for the SQ. The outputs for several different gains (to
verify linearity) are compared at the output to determine how much of the state is lost between them. In Sec. 5.5.3,
the intra-SSR loss was -1.6 dB. Here, the benefit from going to lower frequencies is outweighed by the disadvantages
of a much less compact setup, constrained by the need for key circuit elements to be in the field-free region of the
magnet, Figs. 8.4 and 8.5. Losses did not appear to increase when the magnet was ramped up.

182 Because Eqs. (8.5) and (8.9) are mutually dependent, the calibrations are in practice processed iteratively in
order to converge on values for Sc, GS , and NA. The contribution of Sc to NA is small, however, so a reasonable
simplifying assumption for future analyses would be to set Sc = Sf in Eq. (8.9), which would further eliminate the
distinction between |χ̃mm|2 and |χmm|2.

183 Recall from Sec. 5.1.2 that, all else equal, loss in α is more harmful than loss in ρ, as in addition to degrading
the squeezed state, it also attenuates the axion signal.



Chapter 9

Search for axion-like dark matter with the JILA eEDM experiment

Thus far, this thesis has focused on the QCD axion as a well-motivated resolution to the

dark matter problem; however, as we saw in Ch. 2, QCD axions are far from the only particulate

dark matter candidates, even among light particles. A popular and (as the name suggests) closely

related class of candidates are axion-like particles (ALPs) [256]. ALPs, like axions, are athermally

produced pseudo-goldstone bosons, but (by definition)184 do not resolve the strong CP problem

through the Peccei-Quinn mechanism of Sec. 2.3.2. For this reason, they are not as well motivated by

particle physics as QCD axions, but they nonetheless could address problems such as baryogenesis,

the cosmological constant, and small-scale structure formation [257]. Furthermore they are not

unallowed by the laws of physics as we understand them, and the importance of solving the dark

matter problem itself serves as motivation to look for any such particles within experimental reach.

As with QCD axions, ALPs are expected to couple to normal matter, and may in fact do so more

strongly than their namesakes. However, different models predict starkly different mass windows,

with ma plausibly ranging from 10−24–10−1 eV/c2 (10−10–1015 Hz) [257–260]. ALPs on the lower

end of this mass range in particular could resolve problems raised by astrophysics pertaining to

small scale structure [257,259,261,262]. Independent of mass, we will assume that ALPs, if present,

have the same standard halo model (SHM) lineshape as we have used for QCD axions, Eq. (2.14).

One way to detect ALPs is through their effects on measurements of the electric dipole

184 ALPs are somewhat loosely defined: they can alternatively be thought of as a super-class to QCD axions. This
thesis adopts the perspective that “axion-like particle” and “QCD axion” are nonoverlapping categories. In this
chapter, unlike in previous ones, the QCD modifier will be prepended to “axion” when there might otherwise be
ambiguity.
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moments (EDMs) of Standard Model particles.185 An ALP of mass ma may cause either a particle’s

EDM or its coupling to other particles to oscillate at frequency νa according to Eq. (2.9). The

practical case for such ALP searches is made especially salient by the fact that the precision

measurement of EDMs is a well-established field [263,264], with an abundance of already existing,

meticulously acquired, and potentially ALP-sensitive data [43, 265–270]. Inspired in large part by

ALPs, physicists have therefore recently begun to take seriously the possibility of time-varying

EDMs [271–275].

This chapter presents the work of Ref. [251], which uses the Bayesian power-measured (BPM)

framework of Ch. 7 to perform one such search for ALP dark matter by considering its effect on

the EDM of HfF+ ions. The EDM measurements were originally carried out to look for a static

electron EDM (eEDM) de in the JILA eEDM experiment [269, 276, 277]. A static eEDM above

the Standard Model prediction of |de| ≤ 10−38 e cm would constitute evidence of new physics

beyond the Standard Model [278–282], but as of yet none has been observed in either the JILA

eEDM experiment or the ACME experiment [270], currently the two most sensitive experimental

platforms dedicated to finding a nonzero eEDM. But the absence of a static signal does not preclude

the presence of an oscillating one, which could average to nearly zero over the long durations during

which data is collected.

The goal is to see if an oscillating signal fits to the existing, time-stamped JILA eEDM data;

the challenge is to properly identify and account for the myriad effects which shape an ALP signal

in that context. After discussing how the JILA eEDM experiment may be sensitive to ALPs in

Sec. 9.1, we will obtain the spectral content of its dataset in Sec. 9.2. Section 9.3 is the heart of this

chapter: in it, we will fully quantify the no-ALP and ALP hypotheses, which entails accounting

for not only the behavior of dark matter in an entirely different regime than that of haloscopes,

but also for particulars of the experiment at hand. Finally, Sec. 9.4 presents the results of the full

search, which spans frequencies over seven orders of magnitude, from 27 nHz to 400 mHz (10−22–

185 In Sec. 2.3.1, we already saw the direct role of one EDM — that of the neutron — to motivating the QCD axion.
This chapter will look at measurements of a different EDM — that of the electron — to search for ALPs.
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10−15 eV/c2 mass), and Sec. 9.5 discusses prospects for future searches. Observing no signature

of an oscillating EDM in this range allows us to place the first laboratory constraint on the ALP-

gluon coupling in the 10−17–10−15 eV/c2 mass range, as part of a total exclusion result spanning

seven mass decades.186 Moreover, the work presented here [251] is the first laboratory constraint

to account for the stochastic nature of the ALP field.

9.1 ALP sensitivity of the JILA eEDM dataset

The JILA eEDM experiment is a Ramsey spectroscopy measurement [283] of the stretched-

state splitting in both levels of a Stark doublet of mF = ±3/2 states in 180Hf19F+ ions in an radio

frequency quadrupole ion trap (or Paul trap) [284]. The ions are polarized in rotating magnetic

and electric fields, and a spin precession measurement yields the Ramsey fringe frequency

fR = 3gFµBBrot/h+ 3α′frotR̃B̃ − 2WSCSD̃B̃ + 2EeffdeD̃B̃ + · · · , (9.1)

which probes the mF = ±3/2 energy splitting directly. In Eq. (9.1), gF is the F = 3/2 state

Landé g-factor, µB is the Bohr Magneton, Brot and frot are the strength and frequency of the

rotating magnetic field bias, α′ is a parameter describing Berry’s phase [285], WS = 20.4 kHz is a

molecule-specific structure constant, Eeff is the effective electric field seen by the valence electron

in HfF+, and CS is scalar-pseudoscalar nucleon-electron coupling. Each measurement is performed

in one of 23 = 8 “switch states” determined by {B̃ = ±1, D̃ = ±1, R̃ = ±1}, where B̃ is the sign

of the magnetic field, D̃ is the populated Stark doublet, and R̃ is the sense of the electric bias

field rotation. A complete description of the experiment can be found in Ref. [269] and references

therein.

Measurements of the eight switch states can be linearly combined in order to isolate different

components of the measured frequency. Of particular interest from Eq. (9.1) is

fBD = |2Eeffde − 2WSCS |, (9.2)

186 For comparison, the Phase II HAYSTAC results of Ch. 8 spanned from 16.96–17.28 µeV/c2, or 0.008 mass
decades.
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used to probe the eEDM itself. While the first term in Eq. (9.2) may therefore seem conspicuous,

the known coupling mechanisms between de and ALPs are expected to be suppressed as ma [275,

286, 287], deleterious to direct detection at the low masses considered in this chapter. Another

candidate coupling is between an ALP field and the nuclear EDM, which would cause an oscillating

molecular EDM, but this is also ma-suppressed [288].

It is instead a putative ALP-gluon coupling interaction [289] that sources an ma-independent

effect on fBD. In particular, the interaction is hypothesized to cause an oscillating nucleon-electron

coupling CS . Therefore, for the rest of this chapter, we will assume

de = 0, (9.3)

consistent with the measurement of Ref. [269],187 and reducing Eq. (9.2) to

fCS = 2WSCS . (9.4)

Figure 9.1a shows the full time series, CS-sensitive dataset of the JILA eEDM experiment,

acquired in a T ∼ 1 yr window centered in August 2016. The data is far from temporally uniform,

having been taken in several discrete data runs culminating with the 11 day run in 2017 shown as

the rightmost clump in Fig. 9.1a and in closeup in Fig. 9.1b. The data in this final window are the

highest quality measurements, with typical variances of order one hundredfold lower than those of

the other data points. For shorter timescale oscillations such as that illustrated in red in Fig. 9.1b,

this obviates the need for using the remainder of the data in Fig. 9.1a. However, the full dataset is

helpful in obtaining sensitivity to long timescale oscillators such as that shown in red in Fig. 9.1a.

Figure 9.1c shows a histogram of the normalized fBD measurements originally taken in Ref. [269].

They appear to follow a Gaussian distribution about the mean, which is itself consistent with zero

(Footnote 187).

187 The actual result reported in Ref. [269] is de = (0.9± 7.7stat± 1.7syst)× 10−29 e cm (90% confidence), where the
“stat” and “syst” subscripts denote statistical and systematic errors, respectively.
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Figure 9.1: (a) Time-series data from the JILA electron electric dipole moment (eEDM) experiment,
cast as measurements of 2WSCS versus time from August 16, 2016 (temporal center of the dataset).
An example sine wave (red) is shown overlain with the data, illustrative of how the full dataset
could in principle contain an oscillatory signal, even while averaging to zero. The full dataset
shown in (a) is used for the low frequency analysis. (b) Closeup on the last clump of data in (a),
collected over 11 days in 2017 and used for the high frequency analysis. A higher frequency sine
wave (red) than in (a) is again imposed for illustrative purposes. (c) The full dataset in (a), cast as
measurements of fBD and histogrammed in normalized units relative to its mean. The data follows
a Gaussian distribution (black curve), and Ref. [269] shows it to be consistent with de = CS = 0.
Panels (a) and (b) adapted from Ref. [251]. Panel (c) adapted from Ref. [269].

9.2 Spectral content of the JILA eEDM dataset

The nonuniform time sampling in Fig. 9.1a and b necessitates a method other than the

Fourier transform for extracting the spectral content of the JILA eEDM dataset; least-squares

spectral analysis (LSSA) [290, 291] will serve us in this role. LSSA minimizes the least-squares fit

of a sine function of frequency ν = ω/2π and unknown phase to a dataset. We use this to extract

A0 and B0 as the values of the quadrature variables188 Ã and B̃ that uniquely minimize

χ2 =

N∑
i=1

1

σ2
i

[
Ã cos(ωTi) + B̃ sin(ωTi)− fCS (Ti)

]2
. (9.5)

In Eq. (9.5), Ti are the timestamps of the N data points fCS (Ti) with variance σ2
i shown in Fig. 9.1a

and b.

188 This chapter will use several variants of the symbols A and B to represent closely related quantities: Ã and B̃
are the variables as used for fits in Eqs. (9.5) and (9.8), A and B are the results of simulations to determine LSSA
results, A′ and B′ are the rotated results of those simulations (Sec. 9.3.1), A0 and B0 are the actual, measured values
for A and B, and A′0 and B′0 are the measured values for A′ and B′, obtained by rotating A0 and B0.
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The results of the LSSA performed on the JILA eEDM dataset are shown in Fig. 9.2. The

left portion of the plot comes from Eq. (9.5), and the right portion will be discussed below. The

even spacing of sample frequencies ν makes for a higher density of data points along the horizontal

axis (within left and right portions of the plot), hence the higher amplitudes
√
A2

0 +B2
0 on the

right half of the plot are a simple manifestation of the look-elsewhere effect (Sec. 6.5). We can

already observe that no oscillatory component stands out prominently from its peers. This is not

necessarily an indication that there is no signal hidden within the noise, but it does mean that

we should not expect to see any extremely obvious ALPs upon performing our BPM statistical

analysis. The BPM analysis will enable us to account conservatively (Sec. 7.1.5) for what spikes

are present, and put a constraint on ALPs over the seven frequency decades of Fig. 9.2.

Figure 9.2: Least-squares spectral analysis of the JILA eEDM dataset. The total magnitude
of oscillation

√
A2

0 +B2
0 corresponds to the full time-series dataset of Fig. 9.1a and b. The low

frequency analysis (< 126 µHz) is obtained from Eq. (9.5), and the high frequency analysis (>
126 µHz) from Eq. (9.11). Figure reproduced from Ref. [251].

In order to examine those seven frequency decades, the JILA eEDM dataset is broken up into

two analysis regions: low frequency (27 nHz–126 µHz) and high frequency (126 µHz–400 mHz).189

For the low frequency analysis, LSSA is performed directly on the fCS data. The high frequency

analysis, conversely, involves breaking the individual data points in the 11 day 2017 data run into

smaller measurements that compose them, in order to be sensitive to short timescale oscillations.

189 The “high frequency” label is strictly relative to the lower frequencies considered within this chapter. It is
roughly 10 orders of magnitude lower than the analyses of Chs. 7 and 8.
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The Ramsey fringe frequency measurements fR of Eq. (9.1) are composed of a set of asym-

metry measurements

A′i = ±Ni − 〈Hf+〉
〈Hf+〉

, (9.6)

which are treated as individual data points in the high frequency analysis. In Eq. (9.6), Ni is a

count of Hf+ ions generated by state-selective dissociation of the HfF+ ions in a single shot of

the experiment and 〈Hf+〉 is the mean Hf+ count for the set of shots containing the individual

shot in question. The +(−) sign corresponds to reading out the same (opposite) state as that

which was prepared. These asymmetry measurements, in the static case, already oscillate over the

free-evolution time tR (∼ 0.5–0.7 s).

The effect of an ALP is then to modulate that existing oscillation at νa. In practice, this

means fitting the asymmetry measurements to

Afit(tR) = −Ce−γtR cos(2πfRtR + φ) +O, (9.7)

where C is the fringe contrast, γ is the coherence decay rate, φ is the initial phase, and O is the

offset. We account for a potential ALP-induced time (t) dependence as a small perturbation term

δf(t) = fCS (t) = Ã cos(ωt) + B̃ sin(ωt) (9.8)

in

fR(t) = fR0 +M ′fCS (t), (9.9)

where fR0 is Eq. (9.1) with de = CS = 0 and M ′ are the matrix elements used to transform between

switch and parity bases [269]. Expanding Eq. (9.7) to second order in δf yields

Aosc(t) = −Ce−γtR cos
(
2π
[
fR0 +M ′fCS (t)

]
tR + φ

)
+O

∼ −Ce−γtR cos [2πfR0tR + φ] +O

+ Ce−γtR
[
2πtRM

′fCS (t)
]

sin (2πfR0tR + φ) + Ce−γtR2
[
πtRM

′fCS (t)
]2

cos (2πfR0tR + φ) .

(9.10)
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For the high frequency analysis, we perform LSSA on the deviation of the N measured asymmetries,

Eq. (9.6), from the modulated fit asymmetries, Eq. (9.10), minimizing

χ2 =
N∑
i=1

1

σ2
i

[
Aosc
i −A′i

]2
, (9.11)

where σ2
i are here the variances of A′i at acquisition times Ti. The results, cast as fCS quadrature

amplitudes A0 and B0 through Eq. (9.8), are plotted summed in quadrature in the right portion of

Fig. 9.2.

9.3 Quantifying the hypotheses

With the best-fit values from the LSSA in hand for a dense (relative to the scale on which

frequencies are independent, Sec. 7.1.4) set of frequencies, we now need to precisely quantify the

ALP and no-ALP hypotheses analogously to the axion and no-axion hypotheses shown in Fig. 6.1

in order to analyze the data with the BPM framework of Ch. 7. As in Sec. 6.2, it is helpful to think

of the ALP (there, QCD axion) as modifying the noise-only, or no-ALP distribution. Therefore,

we will first determine the no-ALP distribution in Sec. 9.3.1, and then account for the presence of

a hypothetical ALP in Sec. 9.3.2. Key stochastic properties of the ALP distribution are discussed

in Secs. 9.3.3 and 9.3.4, and an additional correction specific to the dataset is accounted for in

Sec. 9.3.5.

9.3.1 No-ALP hypothesis

The no-ALP distribution is obtained for the low-frequency analysis through simulations based

off of the timestamps Ti and noise of the real data shown in Fig. 9.1a. Assuming each of the data

points has mean zero [269], standard deviation σi, a simulated time series of data is generated

and LSSA performed to determine values of A and B for frequencies evenly spaced up to 126 µHz

according to Eq. (9.5). 1,000 such simulations are performed in order to acquire reliable statistics.

The distributions of the A and B quadrature observables are assumed to be Gaussian (Fig. 9.1c),

with mean zero and standard deviations σA and σB, which are determined separately for each
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frequency. The high frequency analysis is treated differently: a shuffling algorithm detailed in the

Supplemental Material to Ref. [251] is used, but the essential results are the same: distributions

for A and B characterized by σA and σB at each frequency.

Figure 9.3: Phase sensitivity of the JILA eEDM dataset. Simulated standard deviations σA′ and
σB′ for the rotated quadratures for all frequencies across both low and high frequency analyses.
The lower (higher) standard deviation, in pink (blue) belongs by construction to the more (less)
sensitive rotated quadrature B′ (A′). The difference between quadratures tends to diminish with
frequency, and small differences at high frequencies (where blue mostly resides behind pink) are
dominated by statistical precision, and not real phase sensitivity. Figure courtesy of Tanya Roussy.

The fact that (in the low frequency analysis) σA and σB are allowed to differ accounts for

any phase sensitivity in the joint sampling profile of Ti and σi. Phase sensitivity matters because

we do not know the phase of the ALP signal, if one exists, and a fluctuation along a quadrature

to which we are sensitive should be taken more seriously than a fluctuation along a quadrature to

which we are not. As a simple example of how phase sensitivity could manifest, imagine a dataset

like that of Fig. 9.1a which only had measurements taken exactly one month apart. A sine wave

— the B̃ term in Eq. (9.5) — of frequency ν = 1/(2 months) starting at the first measurement

would be perfectly insensitive to the data, whereas a cosine wave (Ã term) would contain all of

the measurement’s sensitivity to any possible ALP signal. Typically, this effect diminishes with

frequency (though there is no reason to expect it to be perfectly monotonic for a real sampling

profile), where an oscillating wave (red lines in Fig. 9.1a and b) with many periods is unlikely to
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behave in coordination with our very aperiodic Ti.

The simulated quadratures A and B are rotated into A′ and B′, the generalized quadra-

tures with the highest and lowest standard deviations, corresponding to the lowest and highest

ALP-sensitivities, respectively. The insensitive (A′) and sensitive (B′) quadrature standard de-

viations σA′ and σB′ are plotted in Fig. 9.3. As expected, the phase sensitivity matters most at

low frequencies. At high frequencies, the apparent small discrepancy between quadratures appears

(unsurprisingly) to be fully explained by the standard deviation owing to finite simulation statistics

(limited by computational time constraints). Therefore, in the high frequency analysis, the quadra-

ture standard deviations are averaged with one another and also smoothed in a 36-bin running

average. Aside from making evident the phase sensitivity of the data profile, rotation into A′ and

B′ allows us to treat the measured values A′0 and B′0 at each frequency as statistically indepen-

dent: as with phase-sensitive amplification (Sec. 3.4.6) of a vacuum state along the amplified versus

deamplified quadrature, knowing A′0 is useless for predicting B′0, and vice versa. The same is not

generally true for A0 and B0.

The no-ALP distribution is therefore the zero-mean two-dimensional Gaussian probability

function (PDF)

fx,y(x, y;σx, σy) =
1

2πσxσy
exp

[
−1

2

(
x2

σ2
x

+
y2

σ2
y

)]
. (9.12)

with {x, y, σx, σy} → {A′, B′, σA′ , σB′}. The probability density will be evaluated for each measured

pair {A′0, B′0} and compared to those of the ALP distribution, determined in Sec. 9.3.2.

9.3.2 ALP hypothesis

To quantify the ALP distribution, we first determine the effect an ALP would have on an

otherwise noiseless measurement, and then combine that effect with the no-ALP distribution of

Sec. 9.3.1. We begin by anticipating that the only effect of an ALP will be to increase the variances
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σ2
A′ and σ2

B′ by some amount ζσ2
X as

σ2
AX = σ2

A′ + ζσ2
X (9.13)

σ2
BX = σ2

B′ + ζσ2
X , (9.14)

where the ALP distribution will therefore be Eq. (9.12) with {x, y, σx, σy} → {A′, B′, σAX , σBX}.

To justify this statement, first note that our lack of knowledge of the ALP phase implies that the

ALP cannot displace the means of the distributions of the quadrature observables. Put another

way, the ALP will displace the mean for any one random realization of its phase, but averaged over

all phases the effect is simply to broaden the two-dimensional no-ALP distribution. Furthermore,

we know the distribution will remain Gaussian because the effect of the ALP on the quadratures

is built of many small contributions from individual, interfering parts of the ALP field: a point

derived in Ref. [75] which we will return to in Sec. 9.3.3. Finally, the ALP and the noise in the JILA

eEDM experiment are uncorrelated190 so their variances add straightforwardly as in Eqs. (9.13) and

(9.14). Lastly, as a further consequence of not knowing the ALP phase, σ2
X must be the same for

the two quadratures, even if the system noise, and thus σ2
AX and σ2

BX are not.

The construction of the ALP distribution is represented in Fig. 9.4 for the procedure discussed

thus far: the unrotated quadratures A and B (Fig. 9.4a) are rotated to A′ and B′ to obtain the

no-ALP distribution (Fig. 9.4b) before having their variances increased to account for the ALP

(Fig. 9.4c). Having made and justified our ansatz for the form of the ALP distribution, we now set

out to derive σ2
X , the variance of the ALP-only (i.e. noiseless) distribution, which we will arrive at

in Eq. (9.24). Subsequently, we account for the attenuation factor ζ from Eqs. (9.13) and (9.14) in

Secs. 9.3.4 and 9.3.5.

190 Strictly speaking, while an ALP would not know about the noise in the JILA eEDM experiment, the reverse is
not true. An ALP, if present, could have had the effect of very modestly increasing the standard deviations of the
data points in Fig. 9.1. However, the effect is negligible compared to the signal such an ALP would have imparted.
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Figure 9.4: (a) Two-dimensional Gaussian noise distribution at a frequency low enough to observe
phase-sensitive effects (ellipticity) along the unrotated quadratures A and B. (b) No-axion-like
particle (no-ALP) distribution, obtained from rotating the distribution in (a) into the independent,
insensitive (A′) and sensitive (B′) quadratures. (c) ALP distribution obtained by adding the same
variance to the no-ALP quadrature variances, reducing the ellipticity. The red dot marks a single
point in quadrature space as it is manipulated from (a)–(c). Figure courtesy of Tanya Roussy.

9.3.3 Coherent ALP

We first contextualize and consider the effect of a coherent, oscillating ALP signal. Many of

the ALP frequencies we wish to interrogate imply coherence times τc much longer than the duration

of the measurement T (∼ 1 yr for the low frequency analysis, ∼ 11 days for high frequency): τc � T .

Recall from Sec. 2.4.3 that Qa ∼ 106, which remains true for ALP dark matter. Therefore, we will

be in the regime of coherent ALPs so long an oscillating signal at the frequency of interest undergoes

much fewer than 106 oscillations during the measurement. The axion haloscopes discussed elsewhere

in this thesis are 10–17 orders of magnitude higher in frequency than the ALPs discussed in this

chapter, with total measurement duration at each frequency typically lasting ∼ 30 hrs. They are

therefore in the opposite regime, τc � T . The results reported on in this chapter [251] represent

the first new laboratory constraint in the τc � T regime to properly account for ALP behavior.191

In Sec. 9.3.4, I will show results [251] that occupy the intermediate regime τc ∼ T , not directly

addressed elsewhere.

If the ALP is coherent, then the displacement amplitude it imparts along the quadratures is

191 Reference [292] offers a rough correction to previous constraints of other publications based on the authors’
findings (Footnote 192), but not a new constraint.
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fixed for a given amplitude of its field ; however, as already alluded to in Sec. 9.3.2, the amplitude of

the ALP field is itself a stochastic quantity [292].192 Reference [75] provides an elegant derivation

of the ALP field amplitude, which can readily be translated into the quadrature picture.193 The

derivation, which I reproduce here, begins with an individual axion-like “particle”194

ai(vi, t) =

√
2ρA/Na

ma
cos

[
ma

(
1 +

v2
i

2

)
t+ φi

]
, (9.15)

where ρA is the local ALP dark matter density195 (Sec. 2.4.2), Na is the contributing number of

such particles (indexed by i), and vi is the speed of each one. The phases φi for each particle are

totally unknown: that is, distributed uniformly over [0, 2π). The particles are considered sufficiently

weakly interacting that we need not consider correlations between them.

In order to build up the local ALP dark matter field from the individual particles, Ref. [75]

next partitions the particles into subsets Ωj with practically indistinguishable speeds between vj

and vj + ∆v. There are amply many ALPs that there can simultaneously be a very large number

of subsets, with each still treated classically. The expression for the coherent combination of all N j
a

particles in subset Ωj is then

aj(vj , t) =
∑
i∈Ωj

√
2ρA/Na

ma
cos

[
ma

(
1 +

v2
j

2

)
t+ φi

]
. (9.16)

The only i-dependent term in the sum is φi, so the sum can be performed by recasting cosine as

the real part of a complex exponential, and noting that∑
i∈Ωj

eiφi = αj exp(iφj) (9.17)

is the result of a two-dimensional random walk in the complex plane, with αj describing the

Rayleigh-distributed distance traversed in N j
a steps. The phase φj ∈ [0, 2π) (as for φi) as there is

192 This fact has until recently been underappreciated in the ALP-exclusion literature. As a result, Ref. [292] points
out that at least seven published constraints [273,293–297] are overly aggressive by roughly an order of magnitude.

193 Reference [75] describes the analysis framework for ABRACADABRA [110–112], which occupies the same τc � T
regime as haloscopes, so the useful description of the coherent ALP therein is never directly used in the related work.

194 “Particle” here means something more akin to “building block,” and quite distinct from a quantum of the
ALP field. The ALP is still very much a wave in this derivation. More precisely, the particle-as-building-block is a
collection of (actual) particles of sufficiently high occupancy as to behave classically, but sufficiently low occupancy
as to make up an minute fraction of the total number of ALPs in a de Broglie volume.

195 In this chapter only, we treat the local dark matter density as 0.4 GeV/cm3, in keeping with other published
ALP exclusion results (Footnote 15). We again assume the ALP dark matter density ρA saturates the local dark
matter density: ρA = ρDM.
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no preferred direction for the random walk. Redefining αj → αj

√
N j
a/2 yields

aj(vj , t) = αj

√
ρAN

j
a/Na

ma
cos

[
ma

(
1 +

v2
j

2

)
t+ φj

]
(9.18)

where αj ≥ 0 now has PDF

fαj (αj) = αje
−α2

j/2. (9.19)

The final expression for the ALP dark matter field is the sum of all subsets Ωj :

a(t) =

√
ρA

ma

∑
j

αj

√
fv(vj)∆v cos

[
ma

(
1 +

v2
j

2

)
t+ φj

]
, (9.20)

and is of direct use to us in both the fully coherent (τc � T ) and intermediate (τc ∼ T , Sec. 9.3.4)

ALP regimes treated in this chapter. In Eq. (9.20), fv(vj) is the ALP velocity distribution for the jth

particle subset. Equation (9.20) therefore has three random variables within the sum. Fortunately,

we know all of their probability distributions: αj is distributed according to Eq. (9.19), fv(vj)

according to Eq. (2.13) for SHM ALPs, and φj is uniformly distributed as above.

For coherent ALPs (τc � T ), there is no sum in Eq. (9.20) (or rather j sums to 1), as there

are too few ALP oscillations throughout the measurement for it to be sensitive to the finite ALP

linewidth. This has two implications: first, we can safely set vj = 0 and fv(vj)∆v = 1 in Eq. (9.20).

Second, we can translate this expression into our two-dimensional Gaussian picture for the ALP

distribution (Sec. 9.3.2). This is because the two remaining random variables αj and φj describe a

Rayleigh distributed amplitude with random phase. One way to define a Rayleigh random variable

is as
√
X2 + Y 2, where X and Y are independent and identically distributed mean-zero, standard

deviation-σ Gaussian random variables. The Rayleigh PDF of Eq. (9.19) corresponds to σ = 1. We

can therefore directly relate σX of Eqs. (9.13) and (9.14) to the dark matter density.

The ALP-only variance σ2
X cares both about the local ALP dark matter density ρA and the

ALP-gluon coupling CG/fa (where the symmetry-breaking energy scale fa is factored out). Writing

the oscillatory CS term in the Ramsey fringe as

fCS (t) = 2Wsη
CG
fa
a(t), (9.21)
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where η ≈ 0.11 is a coefficient relating CS induced in a Hf nucleus to the QCD θ angle196 [289,298]

yields

A′ = 2WSη
CG
fa
α

√
ρA

ma
cos(φ) (9.22)

B′ = −2WSη
CG
fa
α

√
ρA

ma
sin(φ) (9.23)

for the quadrature amplitudes of a pure (no noise), coherent (only one j term, with subscript left

off) ALP signal. Equations (9.22) and (9.23) correspond to mean-zero Gaussians with

σ2
X =

(
2WSη

CG
fa

√
ρA

ma

)2

. (9.24)

We now have a simple expression relating physical parameters to the pure ALP distribution, absent

any attenuating effects captured by ζ in Eqs. (9.13) and (9.14).

The fact that we treat A′ and B′ as normally distributed even in the presence of an ALP fully

accounts for the stochastic nature of the ALP. As pointed out in Ref. [292], “an unlucky experi-

mentalist could even have near-zero field amplitudes during the course of their measurement.” This

fact is naturally handled by the Rayleigh amplitude σj which has standard deviation roughly equal

to its mean; however, it is better handled by the two independent Gaussian-distributed quadrature

amplitudes (Sec. 9.3.1), as they can very easily accommodate asymmetric phase sensitivity through

their noise-only variances σA′ and σB′ .
197 Therefore, we choose to work in the quadrature picture.

9.3.4 Partially coherent ALP

In the regime of intermediate ALP coherence (τc ∼ T ), the variance σ2
X added by the ALP

is attenuated by the interference of different velocity components vj in Eq. (9.20) over the du-

196 An ALP may couple to gluons through the QCD θ angle and yet still not solve the strong CP problem if the
gluon coupling does not generate the largest contribution to the ALP mass.

197 It is worth noting that the statement about unlucky experimentalists is in a sense misleading: the coherent
interference of all the velocity eigenmodes has the effect of almost always giving the ALP a far greater amplitude
than it would have, all else equal, in the incoherent regime (τc � T ) occupied by haloscopes and similar platforms.
We will see this effect partially manifest in the intermediate regime (τc ∼ T ) of the next section. It is only by
comparing to the unphysical case where the ALP deterministically (as in the incoherent case) assumes an amplitude
that it could only achieve in the coherent case, that past publications have managed to report overly aggressive
exclusion results (Footnote 192). In other words, while the experimentalist could in principle be unlucky in the sense
described by Ref. [292], the wider ALP linewidths that could undo this effect, would, at constant dark matter density
and coupling to baryonic matter, only make things worse.
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ration of the measurement. First we ask: will this affect our measurement at all? The answer

depends on both the ALP frequency (and by extension its coherence time, using Qa ∼ 106) and

the measurement duration T . In Table 9.1 I compute the phase slip

∆φ = 360◦ × Tν

Qa
(9.25)

between the frequency component at ν and that at ν(1+1/Qa) over the duration of the measurement

for the low and high ends of the low and high frequency analyses. There are frequency components

beyond ν(1 + 1/Qa), and the times used are approximate, so the values ∆φ just give a rough

indication of whether we are in the coherent, intermediate, or incoherent regime. Evidently, the

low ends of both analyses are safely in the coherent regime of Sec. 9.3.3, whereas the high end

of particularly the high frequency analysis should experience a significant interference effect198

between different velocity components of the ALP field. The high end of the low frequency analysis

undergoes a negligible phase slip for T ∼ 1 yr, but the effect may have to be accounted if, for

example, reanalyzing with another data run c. 2020 (and/or further in the future) incorporated.

The final row provides the approximate values for HAYSTAC Phase II (Ch. 8), which is emphatically

in the incoherent regime, for comparison.

The quantitative effect of interfering velocity components was obtained through simulations.

Using Eq. (9.20), along with Eq. (2.13) for the SHM velocity distribution and Eq. (9.19) for Rayleigh

amplitudes, and independently generating each φj , the ALP field was numerically constructed at

frequencies spaced across the entire range. The field is “fit” with LSSA to get (upon performing

hundreds of such simulations) distributions of A′ and B′ with (ALP-only) variances σ2
X,A′ and

σ2
X,B′ . We define the decoherence attenuations as

ζd,A =
σ2
X,A′

σ2
X,A′,narrow

(9.26)

ζd,B =
σ2
X,B′

σ2
X,B′,narrow

, (9.27)

198 We informally referred to this effect as “phase jarbling” while performing the analysis, and encourage future
analysis teams working in the intermediate coherence regime to do the same: we found reliably that while few people
had come across the word “jarble” (actual definition: “to wet; to bemire”; not listed in some dictionaries), most
everyone knew what we meant by it.
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ν T ∆φ (degrees) coherence regime

low freq analysis, lowest freq 27 nHz ∼ 1 yr 3× 10−4 coherent

low freq analysis, highest freq 126 µHz ∼ 1 yr 1.4 coherent*

high freq analysis, lowest freq 126 µHz ∼ 11 days 0.04 coherent

high freq analysis, highest freq 400 mHz ∼ 11 days 140 intermediate

HAYSTAC Phase II 4.14 GHz ∼ 30 hrs typ. 1.6× 1011 incoherent

Table 9.1: ALP coherence for high and low frequency ALP analyses and HAYSTAC Phase II. The
frequencies ν and approximate measurement durations T are listed for five different cases: the
lowest and highest frequencies of the low and high frequency analysis, and the HAYSTAC Phase II
search of Ch. 8. The phase slips ∆φ between frequency elements roughly one ALP (or QCD axion)
linewidth (Qa ∼ 106) apart, calculated according to Eq. (9.25), provide a proxy for the amount of
interference expected between different velocity components used to build up the dark matter field,
Eq. (9.20). The different cases are sorted into coherence regimes for organizational clarity. *Note
that the high end of the low frequency analysis is verging on the intermediate coherence regime.

Figure 9.5: Effect of ALP field decoherence on the ALP-only distribution variance for the high
frequency analysis. Dots with statistical error bars are decoherence-induced attenuations ζd from
simulations of partially versus fully coherent ALP variances. The blue line is a fit to a second-order
polynomial, whose values were used in performing the analysis. For the low frequency analysis (not
shown) ζ = 1 for all ν. Figure reproduced from Ref. [251].

where σ2
X,A′,narrow and σ2

X,B′,narrow are the resulting variances from identical simulations for an

infinitely narrowband ALP (Qa →∞). In practice,199

ζd,A ≈ ζd,B (9.28)

199 The symmetric attenuation is no surprise, but we considered the quadratures separately as a check on the
intuition that there should be no meaningful difference.
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so we define

ζd =
ζd,A + ζd,B

2
. (9.29)

The simulations confirm that decoherence is negligible (ζd = 1) throughout the low frequency

analysis. The distributions for A′ and B′ remain Gaussian, and the simulated attenuation of the

ALP-only distribution is plotted as a function of frequency in Fig. 9.5. The values used for the

analysis come from a second-order polynomial fit. The effect only becomes significant for ν >∼ 100

mHz.

9.3.5 Finite sample time correction

Figure 9.6: Effect of finite sample time on the ALP-only distribution variance. Dots with statistical
error bars are finite sample time-induced attenuations ζs from simulations of instantaneous sampling
versus real sampling durations. Blue lines are separate fits to the low and high frequency data,
whose values were used in the analysis. Figure reproduced from Ref. [251].

The total attenuation ζ of the ALP variance in Eqs. (9.13) and (9.14) receives a second

contribution from sampling over time periods tR comparable to an ALP oscillation period. The

effect is an averaging over a fraction of a period of the oscillation, causing a slight attenuation in

sensitivity at the high end of both low and high frequency analyses. A procedure analogous to that

used in Sec. 9.3.4 is sufficient to quantify the effect. In particular, we compare LSSA results on

simulated sinusoidal data sampled much more finely than the timestamps in our real data set, and
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on that same data averaged over the actual intervals of data collection (longer in the low frequency

analysis). This test, averaged over all signal phases, is performed at several frequencies with the

attenuations quantified for each rotated quadrature as

ζs,A =
σ2
X,A′,avg

σ2
X,A′

(9.30)

ζs,B =
σ2
X,B′,avg

σ2
X,B′

, (9.31)

where σ2
X,A′ and σ2

X,B′ (σ2
X,A′,avg and σ2

X,B′,avg) are the variances obtained without (with) averaging.

Results indicate

ζs,A ≈ ζs,B, (9.32)

prompting

ζs =
ζs,A + ζs,B

2
, (9.33)

analogous to Eq. (9.29). Figure 9.6 displays the results of these simulations, with separate fits used

for the low and high frequency analyses. The total attenuation

ζ = ζdζs (9.34)

is given as the product of the individual attenuations from the two effects, Eqs. (9.29) and (9.33),

neglecting any small interaction the two might have with one another. This is the term that goes

into Eqs. (9.13) and (9.14) to fully specify the ALP distribution.

9.4 ALP exclusion results

To obtain final results from the BPM framework, we simply calculate the total prior up-

dates200 as

Ui

(
νi,

CG
fama

)
=

fx,y [A′0(νi), B
′
0(νi);σA′(νi), σB′(νi)]

fx,y

[
A′0(νi), B′0(νi);σAX

(
νi,

CG
fama

)
, σBX

(
νi,

CG
fama

)] , (9.35)

200 As in Sec. 7.1.1, these reduce to the Bayes factors for our ALP dark matter. Unlike in Sec. 7.1.1, there is only
one scan, so we skip the individual scan updates ui and produce the total updates Ui.
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Figure 9.7: (a) Logarithmically subaggregated Bayesian power-measured analysis results for the
JILA eEDM data. Grayscale shows subaggregated prior updates Us in the full two-dimensional
space of ALP frequency νa and ALP-gluon coupling CG/(famac

2), with darker (lighter) colors
indicating increased (decreased) belief in the ALP. Strings of blue dots show subaggregated 95%
exclusion for each decade, and the dashed, blue line does the same for the entire frequency window.
(b) Aggregate prior update U versus coupling for the entire seven-decade frequency window. A
small (U ≈ 2.5) peak likely due to technical noise is not enough to indicate the presence of an ALP.
The dashed, blue line corresponding to that in (a) marks U = 5% (95% aggregate exclusion). The
dashed, black line shows the coupling at U = 5% occurs. Logarithmically uniform priors are used
throughout (a) and (b). Figure adapted from Ref. [251].

where dependencies on frequency and coupling have been made explicit in all terms, and the two-

dimensional Gaussian PDF is given in Eq. (9.12). Note that the coupling to ALPs only enters

through the ALP distribution variances. The total updates are then aggregated, Eq. (7.7), here

using

U
(
νi,

CG
fama

)
=

∑
i Uiε/νi∑
i ε/νi

, (9.36)

where ε/νi is our logarithmically uniform prior belief in the ALP, Eq. (7.14). The Ui are also

subaggregated (Us) using Eq. (9.36) into the 100 logarithmically spaced frequency bins shown in

Fig. 9.7a. The corresponding aggregated results U of Fig. 9.7b actually go upwards to U ≈ 2.5 at

intermediate couplings before plummeting downwards. As is apparent in Fig. 9.7a, the upward spike

in U comes from contributions at many frequencies. Even if one of these happens to be an ALP

(unlikely, given at most a 2.5-fold increase in our very low priors), the others are indicative of system

noise at sensitivities we would like to probe. Since the primary science goal of the JILA eEDM
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experiment is (as the name suggests) to detect a nonzero eEDM, such features (and their successors

in future datasets) may have to be tolerated. It is therefore important to keep in mind, per the

discussion in Sec. 7.1.5, that the prior updates should really be viewed as conservative with respect

to exclusion. Therefore, the final result, 95% BPM exclusion for CG/(fama) ≥ 4.79 × 1015GeV−2

from 10−22–10−15 eV, can be safely believed.

The exclusion of Fig. 9.7 is plotted alongside other laboratory and astrophysical constraints

in Fig. 9.8. The results of this chapter, shown in pink, include the first laboratory constraints on

the ALP-gluon coupling from 10−17–10−15 eV/c2.

Figure 9.8: Astrophysical and laboratory limits on the ALP-gluon interaction. The laboratory
constraints of this chapter (pink region) are shown alongside other constraints at 95% confidence
level. The purple region corresponds to ALPs with de Broglie wavelengths smaller than dwarf
galaxies [260]. The blue region is from laboratory results on neutron EDM (nEDM) measurements
[273]. The green region represents constrains from big bang nucleosynthesis [299]. The yellow
region represents constraints from supernova energy loss bounds [249, 300]. Figure adapted from
Ref. [251].

9.5 Prospects for future JILA eEDM ALP searches

Future ALP searches will be straightforward to perform with data from the next generation

eEDM experiment, expected to be an order of magnitude more sensitive; however, two items are

worth cataloguing at present for when those data arrive. First, the time duration T over which data

was taken will extend several years. Unlike for haloscope results, where prior updates should simply
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be multiplied between separate data runs, update-multiplication will not be the information-optimal

way to integrate new data at low frequencies. Rather, where the ALP field exhibits coherent effects

over the duration of data acquisition, a “very low frequency” analysis should be performed on the

entire combined dataset.201 At higher frequencies, updates may simply be multiplied, as there would

be no benefit, and significant computational cost, from a combined reanalysis. In the intermediate

case, as long as computational capabilities allow it, the coherent (“very low frequency”) approach is

superior. Second, the choice to stop at 27 nHz on the low end was not necessary. Though a coherent

ALP with oscillation period much longer than T could have its sinusoid be at a zero-crossing, the

argument is analogous to that of the stochastic ALP field being at a null (Sec. 9.3.3): it does not

prohibit us from accounting for the fact and conducting a search nonetheless. Acting on both of

these items should, in conjunction with more sensitive data, produce more stringent constraints

(or, preferably, a signal) at very low, low, and high frequencies. The techniques of this chapter may

also straightforwardly be applied to other existing, ultralight ALP-sensitive datasets.

201 In principle, the same could even be done between the datasets of multiple different ALP-sensitive experiments.
However, our experience with the JILA eEDM dataset recommends caution: often specific details of the measurement
(e.g. Sec. 9.3.5) are required in order to produce an accurate accounting.



Chapter 10

Conclusion and outlook

Figure 10.1: Axion namesake-inspired representation of the two Josephson parametric amplifiers
(JPAs; one performing the inverse gain operation of the other) and axion cavity comprising the
SSR-equipped haloscope.

The mysterious nature of dark matter remains among the largest and most prominent prob-

lems in all of modern scientific inquiry. The most popular hypotheses now point to a dark sector

of abundant particles, which Occam’s razor suggests may in fact all be copies of the same particle.

Among these, the QCD axion (Ch. 2) is well motivated, detectable, and as-yet not meaningfully

disfavored by the results of direct detection efforts. The foremost goal of this thesis, and of the ax-

ion detection community more broadly, is to change that status quo: either by making a successful

detection or by sweeping out the QCD band [59] accurately and thoroughly, and discovering its

absence.
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10.1 Conclusion

I have presented two separate but complimentary means for advancing towards that ambitious

but worthwhile goal. The first, demonstrated in Ch. 5, relies on the Josephson parametric amplifiers

(JPAs) of Ch. 3 and builds from the experimental techniques of Ch. 4 [204]. With it, I showed how

two JPAs in a squeezed state receiver (SSR) configuration202 [208] can prepare, deliver, and read

out a squeezed state of the microwave field in order to circumvent the standard quantum limit

on haloscope noise performance. Presently, the primary limitation on this method comes from

experimental losses in the system, 1.6 dB in the demonstration setup of Ch. 5. The second improves

upon the statistical analyses historically used for axion detection, which are discussed in Ch. 6. The

Bayesian power-measured (BPM) framework of Ch.. 7 makes full use of the information content of

the processed haloscope measurement to test the axion hypothesis. It provides a more intuitive and

flexible means of analyzing axion-sensitive data that what has traditionally been done. In Ch. 9 we

saw its versatility in accommodating axion-like particle (ALP)-sensitive data as much as 17 orders

of magnitude in mass below its original region of intended use [251], where the ALPs behave very

differently than the QCD axions searched for by haloscopes.

The primary result of this thesis, that of Ch. 8, is the combined use of these two innovations to

speed up a real haloscope search roughly threefold [253]. The application of squeezing in particular

delivers on the long-held promise of quantum meteorology towards improving fundamental mea-

surements [301], now in the microwave regime in addition to the optical [231]. The SSR-equipped

haloscope of Ch. 8 was limited by 2.0 dB of transmission losses, similar to in Ch. 5, allowing for a

nearly twofold speedup from squeezing alone.

The result of a quantum-enhanced axion dark matter search is of particular significance not

simply for the speedup itself, nor for the relatively small scientific contribution to our knowledge

of where in parameter space the axion is not (Fig. 8.18), but because it represents the first time a

search for new particles has benefited from a quantum-enhanced measurement. Axion haloscopes

202 For a representation of the SSR inspired by the dish detergent namesake of the axion [48], see Fig. 10.1.
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Figure 10.2: (a) Approximate decrease of haloscope total noise levels as compared to the quantum
limit over time. The figure shows the noise levels quoted in axion haloscope publications which
marked significant advances in the field: the first haloscope search (RBF 1987 [97]), the first
ADMX result (ADMX 1998 [89]), the first use of a SQUID-based amplifier in a haloscope (ADMX
2010 [104]), the first such use of a JPA (HAYSTAC 2017 [106]), and the work of Ch. 8 of this thesis
(HAYSTAC 2020 [253]). We cannot reduce noise below zero (gray region), but there is a nearly
unlimited amount to be won in the region between zero noise and the quantum limit (thin yellow
region between the gray and white regions). (b) Approximate noise contribution to scan rate for
the same publications marked in (a) and plotted along a logarithmic axis. Scan rate, Eq. (2.16)
improves quadratically with noise relative to the quantum limit, making the linear noise decrease
(1987–2017) of (a) a supralinear trend for the haloscope’s primary figure of merit. There is no
bound on scan rate past the quantum limit (yellow region).

are among a small class of experimental platforms which had become limited primarily by quantum
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noise fluctuations [91, 106, 229, 231]. Looking towards the future, it is unlikely that haloscopes

(and long-baseline gravitational wave detectors along with them) will remain the exception and

not the rule. Figure 10.2a illustrates this point starkly within the historical context of haloscope

development. For the past three decades, axion noise levels (in quanta) have fallen almost perfectly

linearly to the point where they were near-quantum-limited [106] prior to the work of this thesis.

The corresponding effect on scan rate, shown in Fig. 10.2b, is by contrast quite nonlinear. If the

improvement of haloscope noise levels, nearly the sole driver of scan rate enhancement (Sec. 2.5.3)

since 1987,203 were to stop at the quantum limit, the time to sweep out the axion parameter space

might well be prohibitive. The blue dots in Fig. 10.2 correspond to the work of this thesis, which

enters into the yellow region,204 beyond the quantum limit. As indicated in Fig. 10.2b, there is no

bound on scan rate in this new regime. Breaking through the quantum limit thus invites a new

era of fundamental physics searches in which noise reduction techniques yield unbounded benefit

rather than the diminishing returns of approaching the quantum limit. In Sec. 10.2, I discuss how

axion physicists might most efficaciously accept that invitation.

10.2 Outlook

The two innovations in this thesis have distinct virtues. As the title of Ch. 7 suggests, the

BPM framework is a terminal destination along the road to improving haloscope analyses, at least in

terms of the axion-pertinent information content they can extract from haloscope data. However, its

zero-cost applicability and tangible benefits recommend it strongly for rare event searches including

especially axion haloscope experiments, and its improved flexibility may facilitate advances in scan

strategy. Conversely, the SSR of Ch. 5 marks the beginning of an era of quantum enhanced searches

203 Notice that the left edge of Fig. 10.2 is 1983, the year the haloscope concept was first proposed by Pierre
Sikivie [54]. It took only four years to perform the first haloscope search [97]. The right edge of Fig. 10.2 is 2024,
four years after the writing of this thesis. In those four years, it is possible, but unlikely, that the axion may finally
be discovered. Perhaps a stronger possibility is that the technology which will one day lead to a detection will be
invented or advanced.

204 There are several ways one might perform the accounting in Fig. 10.2. I opt for a conservative one with respect
to the central result of this thesis, in which the contribution of poor tuning-rod thermalization (Appx. C) adds back
much of the noise which squeezing removes. Even with this conservative accounting, the noise remains under the
quantum limit.
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for new particle phenomena. While its delivered twofold scan rate enhancement (Ch. 8) is on its

own an important step forward, as discussed above, its real advantage is in demonstrating the

viability of sub-quantum-limited particle experiments.

Improving haloscope scan rates through improved scan strategy is a zero-cost advance enabled

by and related to the operationally flexible BPM framework. Scan strategy has received a small

amount of systematic treatment in the haloscope literature [95,126], but remains largely unexplored.

Meanwhile, the current protocol adopted by most haloscopes — perform an initial scan, rescan

peaks above a given threshold and/or below a certain sensitivity for roughly long enough to duplicate

the sensitivity of the initial scan, perform manual interrogation (Footnote 145) if some number of

rescans pass threshold — is not optimized. The discussion in Sec. 7.1.3 illuminates roughly how

one might use the prior update in a practical haloscope setting to decide when to transition from

rescans to manual interrogation. In addition, a more optimal scan strategy should account for

larger power excesses with (all else equal) longer rescans. A further consideration in determining

rescans could be the (cavity sensitivity profile-weighted) posterior belief that the axion is in any

frequency bin within a cavity linewidth. Real-time data processing and analysis could significantly

improve live times by informing the haloscope to simply wait longer near frequencies exhibiting

a power excess, rather than the time-expensive step of going back and rescanning them. These

and related considerations recommend constructing a value function based on posterior belief to

determine initial scan, rescan, and manual interrogation strategy. A value function-based approach

to scan strategy, enabled by the inter- and intrascan freedoms (Sec. 7.3) of the BPM framework,

would also need as inputs realistic time cost estimates for various haloscope operations, which would

differ between experiments. If implemented in software, it could passively improve scan rates for

existing haloscopes and other narrowband, tunable detectors.

The historical trend shown in Fig. 10.2 suggests that the strongest prospect for enhancing

haloscope scan rates is through continued improvement to noise performance. The SSR concept in

this paper suggests two avenues for doing this.205

205 These are not the only approaches available. At higher frequencies, for example, it would likely be advantageous
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The first way to improve upon the SSR is by simply waiting. While such a suggestion may

sound frivolous, it is in fact one of the strongest arguments for using quantum measurement to re-

duce noise, rather than, for example, developing multiplexed cavity readout technologies to improve

signal [302]. Put simply, there are very few technologists outside of the axion haloscope community

working on coordinating the tuning and efficient readout of TM0n0-like modes of multiple cryogenic

cavities immersed in large magnetic fields. Conversely, the technologies that are used to improve

noise and loss performance are the same ones that are constantly being developed and improved by

the superconducting qubit community in order to achieve ever more impressive results [303, 304].

As is shown in Sec. 5.5.3 and Fig. 5.2, the marginal benefit to scan rate from each 0.1 dB of reduced

transmission loss grows nonlinearly in the SSR setup. Specific technologies that could expedite

this progress include on-chip microwave circulators [222], wireless parametric amplifiers [305], and

directional amplifiers [218,306].

An alternative approach is to get rid of any nonreciprocal elements in the signal path al-

together. Reference [252] explores one way of doing this which is the natural dual to the SSR

approach, and has one considerable advantage over it. Rather than deamplifying (or squeezing)

the noise reflected off of the cavity, which creates a fragile quantum state which must be trans-

ported around the haloscope setup, the alternative is to amplify the noise coming out of the cavity,

and with it an axion signal. The concept is illustrated in Fig. 10.3. Figure 10.3a shows the noise

power spectral densities (PSDs) along a single quadrature in a standard haloscope configuration.

The cavity and reflected noise PSDs complement one another, and, neglecting any added noise

or thermalization problems (Appx. C), the total noise spectral density is flat. The SSR reduces

the reflected noise, leaving the cavity noise untouched (Fig. 10.3b). In an idealized picture, it is

equivalent to amplifying the cavity noise relative to the reflected noise (Fig. 10.3c). In practice, the

latter approach is far more robust to transmission losses, as the axion-imprinted state leaves the

apparatus itself amplified, along with the noise fluctuations which also originated within the cavity.

In practice, this approach can be implemented with a setup like that of Fig. 10.3d. The axion

to measure in the photon basis [83, 84,163].
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Figure 10.3: (a)–(c) Manipulations of vacuum noise within a single quadrature. (a) shows the noise
profile of a standard haloscope. The reflected Johnson-Nyquist noise (red oscillation) is the same
size as the Johnson-Nyquist noise coming from within the cavity (blue oscillation). Since a feeble
axion signal (green oscillation) comes in fixed ratio with the cavity noise, the goal is to maximize
the ratio of cavity-to-reflected power spectral densities (PSDs), illustrated below with with the
cavity’s Lorentzian transmission and reflection profiles about the resonance frequency ωA of its
mode (gray circle). The squeezed state receiver squeezed reflected noise without affecting cavity
noise as shown in (b) (compare to Fig. 8.9). An alternative, shown in (c), is to amplify cavity
noise relative to reflected noise, which has the advantage of making the resulting output state
more robust to transmission losses. (d) Schematic of a physical implementation of the concept in
(c). The axion cavity with loss rate κl and axion-coupling rate κa is coupled through a nonlinear
element (Nonlin) to a readout cavity with resonance ωB 6= ωA. The axion is modeled as a fictitious
microwave generator as in Sec. 5.3. By modulating at the sum and difference frequencies ωΣ and ω∆,
respectively, simultaneous two-mode entanglement (rate h) and state swapping (rate g) interactions
are generated between the cavity modes. The result is an amplification of the cavity noise emerging
from the readout cavity (external coupling rate κm), before it encounters a nonreciprocal element
and subsequent amplification. Figure adapted from Ref. [252].

cavity at ωA is coupled to a second, readout cavity at ωB. The states of the two are entangled at

rate h by pumping a nonlinear element (such as SQUID array) between them at their sum frequency

ωΣ = ωA + ωB, (10.1)

while a difference frequency

ω∆ = |ωA − ωB| (10.2)

pump simultaneously swaps the cavity states at rate g [307]. When the rates are equal, the system
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behaves as a phase-sensitive amplifier [308, 309]. Figure 10.3d models coupling rates κa and κl for

the fictitious axion and loss ports, and κm for the measurement port, analogous to Fig. 5.1. The

state decaying out of the measurement port encounters a circulator (followed by a JPA or other

leading amplifier) only after it has been amplified. This is essential, as the circulator has the effect

of routing reflected signals from imperfections in the microwave elements before and after it away.

Conversely, an imperfection between the two cavities just changes their coupling slightly, which

can be compensated for via their antenna couplings. The reader is referred to Ref. [252] for a

full input-output theory treatment of the system, alongside practical considerations for near-term

implementation.206 As a final note, this approach can itself be complementary to the SSR: there is

no reason one cannot both reduce off-resonant noise and increase on-resonant noise (and with it,

signal), all at the same time.

For now, the axion, if it exists, remains well cloaked in its vast parameter space. Quantum

measurement techniques, together with better classical information handling, has the potential to

change that.

206 We call this approach the Cavity Entanglement And Swapping Experiment For Improved Readout Efficiency,
or CEASEFIRE.
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Appendix A

NIST trilayer fabrication process

The Josephson parametric amplifiers (JPAs) used for the work in this thesis were fabricated

at NIST Boulder by Leila Vale using the NIST Nb-AlOx-Nb trilayer process [202], modified by

removing the shunt resistor layer and minimizing deposited oxides [203]. JPAs, which reside on

individual chips, are produced in bulk on wafers which are then diced. The fabrication process is

represented graphically in Fig. A.1.

Figure A.1a–d show the steps used to fabricate the Josephson junctions. First, Figure A.1a

shows the three layers207 deposited uniformly across the entire wafer, which is made of Si with

relative dielectric constant εr = 11.45 [310] plus a thin oxide layer. The layers are deposited within

a dedicated load-locked vacuum system. A Nb layer on the bottom forms the “base electrode”

(BE), which most of the superconducting circuit wiring will be made of. Atop this, a film of Al is

deposited and then oxidized. This AlO2 oxide is the insulating layer at the center of the Josephson

junction, Fig. 3.1. Finally, a second “counter electrode” (CE) layer of Nb sits atop the AlO2. The

circuitry is then formed subtractively, by etching away the CE, Al–AlO2, and finally BE layers.

What is left are just BE-connected pairs of Josephson junctions, Fig. A.1e, plus any BE wiring used

to from transmission lines, interdigitated finger capacitors, etc.

Fig. A.1f–h show the remaining steps performed to connect the junctions. An electron cy-

clotron resonance plasma enhanced chemical vapor deposition process adds an insulating layer of

207 The three layers in the “trilayer” name refer to the layers that comprise the superconductor, insulator, and
superconductor of the Josephson junction, Fig. 3.1. These are the two layers of Nb in Fig A.1a, and the aluminum
oxide between them. The Al exists here in order to accommodate its oxide; it is also a superconductor at the
temperatures at which we operate, so it can be thought of as part of the first superconductor.
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SiO2, which is selectively etched away to form vias above the junctions. Now, a wiring layer of

Nb (called the wiring 1, or W1 layer) is added, forming the superconducting connections between

pairs of junctions shown in Fig. A.1g, before etching excess SiO2 away from the junctions in order

to minimize dielectric loss.

The result, Fig. A.1h, is a pair of SQUIDs. Current entering from the left can flow easily

through the superconductor. It splits into two parallel paths, tunneling up through the junctions,

then left-to-right across the top layer of Nb, and finally down through the second pair of junctions.

Because our arrays always start and end with the BE layer in order to connect to the rest of the

circuitry, SQUIDs for us always come in pairs (junctions in fours): the cell shown in Fig. A.1h is

simply reproduced N/2 times to make an array of N SQUIDs. For a complete set of design rules

useful for laying out superconducting circuits to be fabricated with this process, see Ref. [310].
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Figure A.1: (a) Trilayer growth. The layers of base electrode (BE) Nb, AlO2 grown from Al, and
counter electrode (CE) Nb, sit atop a Si wafer with a thin layer of oxide. Typical thicknesses are
shown; for relevant lengths and widths, see Fig. 3.16. (b) CE etch. The CE is etched off away from
the junctions. (c) Al–AlO2 etch. The same process is used to remove the Al and its oxide. (d) BE
etch. BE is removed anywhere it is not needed for junctions or other circuit wiring. The junction
is marked with an “X” symbol. (e) Fabricated junctions. A cell of four junctions, which are not
yet connected, remains. (f) SiO2 deposition. A dielectric layer of SiO2 is deposited. (g) wiring
deposition. The SiO2 is etched away above the junctions, forming vias. A wiring layer of Nb is
then deposited on top, electrically connecting junctions to form pairs of SQUIDs. (h) SiO2 etch.
Undesired SiO2 is removed with a final etch. Figure not to scale. Graphics courtesy of Maxime
Malnou.



Appendix B

Resolution to the flux-tuning problem for flux-pumped JPAs

The flux-pumped Josephson parametric amplifiers (JPAs) used throughout this thesis worked

generally well, but for the problem with their flux tuning that is evident in Fig. 3.32, especially as

compared to the cleaner case of our current-pumped JPAs, Fig. 3.22. Every flux-pumped JPA we

cooled down had some variant of this problem, though the specific structure varied from device to

device, and sometimes upon thermally cycling the dilution refrigerator.

Figure B.1: Location of cuts made on dummy SQUIDs. The dummy SQUIDs are the blue-hashed
region at the end of the SQUID array in this design layout. The pink hashed region above and
below the SQUID array is the flux-bias line. In order to resolve the flux-tuning problem for our
flux-pumped Josephson parametric amplifiers (JPAs), we has the Nb base electrode layer cut with
a focused ion beam (FIB) at NIST. Any two of the three cuts that were made (red, dashed lines)
on each pair of dummy SQUIDs is sufficient to break superconducting loops while maintaining
electrical continuity to the SQUIDs.

The culprit turned out to be pairs of “dummy SQUIDs” that were placed at each end of the

array. The purpose of the dummy SQUIDs, shown in Fig. B.1, was to mimic the superconducting

metalization pattern of the actual SQUIDs. The aim was for SQUIDs at the end of the arrays not

to see a different magnetic flux from those towards the center. Instead, the dummy SQUIDs, which
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formed superconducting loops, readily trapped integer numbers of flux quanta when the devices

were cooled down.

The dummy SQUIDs were revealed to be the issue when cutting them solved the problem.

David Rudman at NIST Boulder performed the three cuts indicated in Fig. B.1 with a focused

ion beam (FIB) for the dummy SQUIDs on both ends of the array, for two nominal-4.6 GHz

devices. The cuts were performed so as to remove the superconducting loops but preserve electrical

continuity on both sides of the array.

Figure B.2: (a), (b) Bidirectional flux-tuning sweep of FIB-cut JPA showing fixed tuning problem.
Reflection coefficient phase arg(S11) is obtained via a flux-tuning sweep of DC bias current and
probe frequency ν such as that in Fig. 3.32, with the coil current being swept up (a) and down (b).
The flux-tuning curves no longer have the structure observed in Fig. 3.32. More than 1 GHz below
the bare resonance, the bidirectional sweep reveals some hysteresis.

Two flux-tuning curves taken on one of the FIB-cut flux-pumped JPAs are shown in Fig. B.2.

Figure B.2a shows the result of sweeping the coil current upward, and Fig. B.2b sweeping downward.

The flux tuning is much improved from that of the unmodified flux-pumped JPAs, Fig. 3.32, strongly

indicating that the superconducting loops formed by the dummy SQUIDs were causing the problem.

In particular, there is far less structure, the zero-current resonance sits closer to zero flux, and the

bare resonance frequency rose 0.5–1 GHz above the nominal value for the two chips measured. All
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three effects can be explained by flux not being trapped near the SQUIDs.208

There is, however, a sharp feature that appears in Fig. B.2a at close to 3.5 mA of DC bias

current. The same feature occurs at the mirrored location in Fig. B.2b. Operation near this

hysteretic feature proved unreliable, but operation anywhere above it in resonance frequency was

excellent.

Figure B.3: (a) Two-quadrature gain map in the two-dimensional parameter space of half-pump
frequency νp/2 and pump power estimated at JPA input. The white line shows the frequency of
maximum gain at each power up until the region where oscillation occurs. (b) Gain Gs versus
probe frequency ν traces taken at each point along the white line in (a), with colors matching those
on the gain map.

Figure B.3 shows operation of the second FIB-cut flux-pumped JPA for gain at a bare reso-

nance near 4.8 GHz. The gain map (Fig. B.3a) is clean, with traces shown up to 35 dB (Fig. B.3b),

before oscillation sets in.

The results shown in Fig. B.2 for the first FIB-cut JPA and Fig. B.3 for the second were

very similar across the two devices. The improved flux-tuning structure, zero-current behavior,

and bare resonance, along with the robust amplifier operation, and the hysteresis, were visible in

both. The only noticeable difference was in the specific value of the bare resonant frequency, 0.5

GHz higher for the second device. Despite the hysteresis, whose cause is as yet unknown, these

208 It is not surprising that the resonance actually moved above the nominal value absent trapped flux, as the critical
currents for most of our flux-pumped JPAs were observed to be ∼ 20% high.
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devices represent an improvement over the flux-pumped JPAs used in this thesis. As such, future

fabrication runs will not include dummy SQUIDs which form superconducting loops.



Appendix C

Effect of improper tuning rod thermalization on scan rate

The HAYSTAC Phase II measurement presented in Ch. 8 of this thesis is adversely affected

by an improperly thermalized tuning rod. During Phase I operation of HAYSTAC, the issue was

nicknamed the “hot rod” problem, for the tuning rod’s tendency to maintain a higher physical

temperature than the base temperature of the fridge [42]. Between Runs I [106] and II [107] of

Phase I, the hot rod problem was partially mitigated at some cost to cavity quality factor,209 but

did not go away entirely. In future runs of HAYSTAC, the thermalization problem will be addressed

further, but, in the context of the results presented in Sec. 8.3, it is important to understand the

effect of the hot rod on (1) the absolute scan rate and (2) the improvement available from squeezing.

We will find with respect to (1) that the hot rod reduces absolute scan rate by almost a factor of

two. With respect to (2), we will see that it has virtually no effect on the scan rate enhancement

available from squeezing. Indeed, since the reflected noise is still at the quantum limit, it is still

the quantum noise that is being squeezed.

To compare the effects of hot rod versus cold rod (i.e. rod at fridge temperature, Sc = Sf )

when squeezing versus not squeezing, we first compute the noise and signal power spectral densities

for all four cases using the model represented in Fig. 8.19. Where applicable, we use Sc = 0.41 and

GS = 0.05, close to the values of Eqs. (8.6) and (8.8), respectively. For simplicity, we approximate

NA = 0 from (8.10), and note that the results do not depend strongly on any of these parameters

in the vicinity of those measured in the HAYSTAC Phase II system (Sec. 8.4). The power spectral

209 The essential tension is that the most obvious ways of coupling heat out of the metal rod involve also coupling
microwaves out, as at low temperatures good thermal conductors tend to be good electrical conductors.
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Figure C.1: (a)–(d) Signal and noise spectral densities S for the four different combinations of
cold/hot rod and squeezing/no squeezing as a function of detuning ω from cavity resonance. The
power spectral densitites are normalized to the respective signal and noise values for the critically
coupled (β = 1), on-resonant, unsqueezed case. All plots are generated using the listed coupling
parameter β, obtained from the corresponding plots in Fig. C.3 so as to maximize scan rate. All
plots use ρ = α = −1.0 dB, Sf = 0.27, and NA = 0. When squeezing (not squeezing), GS = 0.05
(1). When the rod is hot (cold), Sc = 0.41 (Sf ). Note that κtot = κl(1 + β) differs for each
configuration.

densities (PSDs) are ratioed to obtain the visibilities, Fig. C.2, and the scan rate R is obtained

according to Eq. (5.8). By varying the coupling factor β, Eq. (8.2), we determine the scan rates for

all four cases relative to the optimal (β = 2) unsqueezed, cold rod case.

The relative scan rates for the four cases are plotted in Fig. C.3, from which, together with

Fig. C.1, we draw three important observations. First, a hot rod acts exactly like squeezing from

the perspective of optimal coupling strategy: rather than lowering the off-resonant (reflected) noise

(Fig. C.1c), it raises the on-resonant (transmitted) noise (Fig. C.1b). In both cases, overcoupling

takes advantage of the lower noise PSD off resonance. For HAYSTAC Phase II parameters, squeez-
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Figure C.2: (a)–(d) Normalized axion visibilities α obtained from the ratios of signal to noise
spectral density curves in Fig. C.1a–d. A value of 1 corresponds to the maximum achievable visibility
(critically coupled and on resonance).

optimal β maximum R/R0

(a) cold rod, no squeeze 2 1

(b) hot rod, no squeeze 2.8 0.64

(c) cold rod, squeeze 4.5 1.96

(d) hot rod, squeeze 7.1 1.32

Table C.1: Theoretical parameters for the HAYSTAC Phase II haloscope with and without a hot
rod and/or squeezing. Values are calculated using the parameters quoted in Fig. C.1 and the model
of Fig. 8.19. (a)–(d) correspond to the panels of Figs. C.1, C.2, and C.3.

ing with a cold rod (Fig. C.3c) is optimized for scan rate at β = 4.5, while not squeezing with a hot

rod (Fig. C.3b) is optimized at β = 2.8. When both squeezing and hot rod are present (Fig. C.3d),

an even higher β = 7.1 is required to optimize scan rate.210 Second, the hot rod has a little less than

210 In practice, the insertion of the antenna necessary to achieve high coupling seemed to slightly perturb the
TM010-like mode of the HAYSTAC cavity.
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Figure C.3: (a)–(d) Scan rate R as a function of coupling parameter β normalized to R0, the optimal
scan rate for a haloscope with neither squeezing nor hot rod, for each of the configurations shown
in Fig. C.1. Higher levels of overcoupling partially compensate for a hot rod at fixed squeezing,
making the scan rate enhancement due to squeezing only weakly dependent on cavity spectral
density. Parameters are same as those in Figs. C.1 and C.2.

a factor-of-two impact on scan rate without squeezing present. Third, Squeezing improves both hot

and cold rod configurations roughly twofold. These results are summarized in Table C.1.211 We

conclude that HAYSTAC’s hot rod, while a problem nearly of the same size as the benefit conferred

by squeezing, does not interfere with the ability of squeezing to improve scan rate, all else equal,

by reducing truly quantum fluctuations.

211 Note that the relative scan rates R/R0 predicted for squeezing are slightly inflated due to the NA = 0 simplifying
assumption used in this Appendix, which advantages squeezed over unsqueezed operation.



Appendix D

List of Abbreviations

This appendix provides an alphabetized list of acronyms and other abbreviations used in this

thesis.212 Most abbreviations that are used across multiple chapters are redefined the first time

they appear in the main text and figure captions of each chapter. Some exceptions are made where

it was judged to improve readability. For example, full names for the acronyms of some experiments

such as ABRACADABRA are listed only here.

ΛCDM Λ cold dark matter (Λ is associated with dark energy)

ABRACADABRA A Broadband/Resonant Approach to Cosmic Axion Detection with

an Amplifying B-field Ring Apparatus

AC alternating current

ACME Advanced Cold Molecule Electron electric dipole moment

ADC analog-to-digital converter

ADMX Axion Dark Matter Experiment

ALP axion-like particle

AMP amplifier Josephson parametric amplifier

AP axion-pertinent

AWG arbitrary waveform generator

AWR Applied Wave Research

212 Some abbreviations such as those which appear only within Figs. 2.3 and 2.4 are excepted.
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BE base electrode

BPM Bayesian power measured

BT Bayesian threshold

BT1 Bayesian threshold 1

BT2 Bayesian threshold 2

C4C Center for Community

CAPP Center for Axion and Precision Physics Research

CAPP-8TB Center for Axion and Precision Physics Research 8 tesla B-field

Cav cavity

CDF cumulative distribution function

CDM cold dark matter

CE counter electrode

CEASEFIRE Cavity Entanglement And Swapping Experiment For Improved

Readout Efficiency

Circ circulator

CMB cosmic microwave background

CU University of Colorado

DC direct current

DEADMAU5 Dummy Experiment for Axionic Dark Matter Active Upwards of 5

GHz

DFSZ Dine-Fischler-Srednicki-Zhitnitsky

DM Dark Matter

EDM electric dipole moment

eEDM electron electric dipole moment

EM electromagnetic

FIB focused ion beam

FT frequentist threshold
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FWHM full-width at half-maximum

GBP gain-bandwidth product

HAYSTAC Haloscope At Yale Sensitive To Axion Cold dark matter

HEMT high-electron-mobility transistor

IF intermediate frequency

IOT input-output theory

IQ in phase/quadrature

JILA (formerly) Joint Institute for Laboratory Astrophysics

JPA Josephson parametric amplifier

KSVZ Kim-Shifman-Vainshtein-Zakharov

LMG line of maximum gain

LO local oscillator

LSSA least-squares spectral analysis

LSW light shining through walls

LU least unlikely

MACHO massive astrophysical compact halo object

MB Maxwell-Boltzmann

ML maximum likelihood

MOND modified Newtonian dynamics

nEDM neutron electric dipole moment

NIST National Institute of Standards and Technology

OMS one-mode squeezing

ORGAN Oscillating Resonant Group Axion

PC personal computer

PDF probability density function

PMF probability mass function

PNL parallel nonlinear element
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PQ Peccei-Quinn

PSD power spectral density

QCD quantum chromodynamics

QUAX-aγ Quaerere Axion (aγ refers to an axion and a photon)

RBF Rochester-Brookhaven-Fermilab

RF radio frequency

RMS root-mean-square

RWA rotating wave approximation

SA spectrum analyzer

SEM scanning electron microscope

SG Savitzky-Golay

SHM standard halo model

SHO simple harmonic oscillator

SN1987A Supernova 1987A

SI spin-independent

SIS superconductor-insulator-superconductor

SMA sub-miniature version A

SMP sub-miniature push-on

SNL series nonlinear element

SQ squeezer Josephson parametric amplifier

SQUID superconducting quantum interference device

SSR squeezed state receiver

SUSY supersymmetry

TE transverse electric

TEM transverse electromagnetic

TKC tunable Kerr circuit

TM transverse magnetic
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UF University of Florida

VNA vector network analyzer

VTS variable temperature stage

W1 wiring 1

WIMP weakly interacting massive particle
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