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Changala, P. Bryan (Ph.D., Physics)

High Resolution Infrared Spectroscopy of Complex Polyatomic Molecules

Thesis directed by Prof. Jun Ye

Infrared spectroscopy is an essential tool for probing molecular structure and dynamics. Over

the last decade, cavity-enhanced direct frequency comb spectroscopy (CE-DFCS) has emerged as

a powerful technique for molecular spectroscopy in the mid-infrared region (3− 15 µm). CE-DFCS

combines the broad spectral bandwidth and high frequency resolution of frequency combs with

the improved detection sensivity provided by high-finesse optical cavities. At room temperature,

however, all but the simplest molecules suffer from severe spectral congestion, which obscures the

detailed dynamics encoded in spectroscopic fine structure. To overcome this challenge, we demon-

strate the integration of CE-DFCS with cryogenic buffer gas cooling, which provides continuous,

cold samples of gas-phase molecules at rotational and translational temperatures as low as 10 K. By

significantly reducing internal partition functions and Doppler broadening, we take full advantage

of CE-DFCS to reveal the intricate rovibrational structure of complex polyatomic molecules.

The systems investigated in this thesis range from extremely anharmonic molecules to un-

precedentedly large carbon cages, illustrating the diverse ways in which a molecule can be complex.

One case study is free internal rotation in nitromethane, a model system for large amplitude nu-

clear motion. This work has motivated our development of new theoretical tools to predict the

high resolution spectra of nitromethane and several other floppy molecules. We have also focused

on large molecules outside the domain of traditional high resolution spectroscopy. The culmination

of these efforts is the rotationally resolved spectrum of the C60 fullerene. C60 is now both the

largest molecule and the first example of icosahedral symmetry for which rovibrational quantum

state resolution has been achieved. In addition to CE-DFCS, we have constructed a cw-QCL-based

spectrometer to probe and manipulate the quantum states of C60. This work opens new avenues

for fullerene research and for exploiting large molecules as platforms for quantum science.
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Chapter 1

Introduction

Spectroscopy is the primary tool with which we study, probe, and manipulate matter at the

molecular scale. The unique spectroscopic signatures of molecules permit detection and monitoring

with a high degree of sensitivity and specificity. The patterns encoded in the spectrum itself reveal

precise details of molecular structure and dynamics. By understanding the nature of this structure,

we can harness molecules as highly controllable complex quantum systems. Advances in our ability

to measure and interpret complex molecular spectra thus open new avenues for a wide range of

problems in chemical and molecular physics.

The focus of this thesis is high resolution frequency domain spectroscopy of polyatomic

molecules in the mid-infrared (MIR) spectral region (ca. 3 to 10 µm). MIR photons carry sufficient

energy to excite one or more quanta of nuclear vibrational motion. As all polyatomic molecules

possess at least one infrared (IR) active vibrational mode, IR spectroscopy is a universal and essen-

tial tool for probing molecular structure and dynamics. “High resolution,” in this context, means

resolving spectroscopic fine structure associated with changes in rotational, and even spin and hy-

perfine, quantum numbers that occur simultaneously with the primary vibrational transition. By

reaching this level of resolution, it is possible to observe all internal molecular degrees of freedom

in specific, well defined quantum states. The individual transition frequencies between these states

can then be used to determine effective Hamiltonians that connect spectroscopic observations to

molecular scale details, such as geometry, electronic structure, and potential energy surfaces.

Such precise insights have made high resolution infrared spectroscopy an important tool for
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studying molecular structure and dynamics. However, its applications have usually been restricted

to small, light molecules. This is because at room temperature systems with even a few heavy

atoms can already occupy millions of rotation-vibration quantum states, leading to severe spec-

tral congestion. Targeting larger, more complex systems requires a high resolution and sensitive

spectrometer coupled with a source of cold, dense molecular gases. This thesis discusses overcom-

ing these experimental challenges by combining two powerful techniques: cavity-enhanced direct

frequency comb spectroscopy (CE-DFCS) and cryogenic buffer gas cooling (CBGC). CE-DFCS ex-

ploits the simultaneous broadband and narrow-linewidth properties of infrared frequency combs by

coupling them to high finesse optical cavities to yield high resolution and high sensitivity absorp-

tion spectra in a massively parallel fashion. CBGC efficiently quenches translational and internal

motion in molecules to temperatures as low as a few kelvin, drastically reducing spectral congestion

and linewidths, and enhancing absorption signal strengths. This thesis demonstrates harnessing

these tools to obtain high resolution infrared spectra of unprecedentedly complex molecules. The

culmination of this work is the first rotationally resolved spectrum of the C60 fullerene, now by far

the largest molecule for which such measurements have been obtained.

The remaining chapters are organized as follows. Chapter 2 provides an introduction to

CE-DFCS, the frequency comb sources and detection methods used in these studies, and the de-

tails of the frequency comb-buffer gas cooling apparatus. One of the first non-trivial molecules

studied with the instrument was nitromethane, CH3NO2, which represents a unique example of

completely unhindered internal rotation. Chapter 3 analyzes the spectroscopy of this system as a

case study in large-amplitude nuclear motion. It also introduces theoretical tools developed to treat

its unusual nuclear motion dynamics. Chapter 4 explores the limits of high resolution spectroscopy

of large molecules near 3 µm. We examine the intrinsic challenges to rotationally resolved in-

frared spectroscopy in the CH stretch region of several large hydrocarbons, including naphthalene,

adamantane, and diamantane. Shifting to the long wavelength infrared region, Chapter 5 presents

the first rotationally resolved frequency comb spectra of C60 near 8.5 µm and discusses the changes

in CBGC conditions required to successfully realize vibrational ground state cooling. The first
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C60 experiments pose as many new spectroscopic puzzles as they solve, and Chapter 6 discusses

on-going C60 experiments to address these questions using continuous wave quantum cascade laser

spectroscopy. Finally, Chapter 7 provides a more comprehensive overview of the theoretical tools

introduced in Chapter 3 and discusses several more of their recent applications for understanding

the spectroscopy of complex polyatomic molecules.



Chapter 2

Cavity-enhanced direct frequency comb spectroscopy of buffer gas cooled

molecules

All spectroscopic experiments consist of three primary components: a light source, a sample

of matter that interacts with the radiation from the light source, and a detector that measures

this interaction in some way. The many realizations and combinations of such components com-

prise the large, diverse set of modern spectroscopic techniques [1]. The nature of the physics one

wishes to probe and its underlying spectroscopic signatures dictate the required parameters of a

given spectroscopic experiment: wavelength coverage, frequency resolution and stability, detection

bandwidth and sensitivity, sample density, temperature, pressure, amongst many others.

This chapter details the techniques employed in this thesis for high resolution rovibrational

infrared spectroscopy of gas-phase polyatomic molecules. To appreciate the specific challenges of

this goal, consider the simulated spectrum in Fig. 2.1 of vinyl bromide (C2H3Br), which in many

ways represents a relatively simple “textbook” example of a molecule of its size (6 atoms) and

mass (106 or 108 u, depending on the isotopologue). Figure 2.1a shows the three fundamental

CH stretching vibrational bands, which span a 100 cm−1 window near 3050 cm−1 (3.3 µm), at a

temperature of 15 K. The peak absorption cross sections are approximately 10−17 cm2 per molecule.

Even at this low temperature, each vibrational band exhibits considerable fine structure, as seen in

Fig. 2.1b for the ν3 band. Taking yet a closer look, Fig. 2.1c shows a small 1-cm−1-wide portion of

the ν3 band with dense patterns associated with Ka sub-band structure, nuclear hyperfine effects,

and isotopic mass splittings.
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Figure 2.1: Simulated absorption spectrum of vinyl bromide in the CH stretch region. (a) The three
fundamental CH stretch bands, conventionally labeled ν1, ν2, and ν3, span a 100 cm−1 window.
The spectrum is calculated for T = 15 K. (b) A zoom-in of the rotational fine structure of the ν3

band. (c) A small 1 cm−1-wide portion of the ν3 band.
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This example illustrates the general reality of high resolution rovibrational spectroscopy.

Strong fundamental vibrational bands occur over the entire MIR region, with hydride stretching

vibrations (e.g. CH and OH) at the short wavelength end (ca. 2.7 µm to 3.3 µm) and bend-

ing, twisting, and heavy atom streching vibrations at the long wavelength end (5 µm to 15 µm)

and extending into the far-IR/terahertz regions (> 15 µm). Efficiently probing a wide variety of

molecules and multiple vibrational bands requires a light source with broad wavelength tunability

and bandwidth. At the same time, each vibrational band can consist of thousands of individual

rovibrational transitions, with line densities easily surpassing 10 to 100 per cm−1, demanding high

spectral resolution. Minimizing spectral congestion and line widths requires preparing cold, low

pressure molecular gases. Furthermore, for linear absorption measurements, which are the focus

here, high detection sensitivity is needed to overcome intrinsically small cross sections.

The general experimental challenges identified for “simple” polyatomic systems like C2H3Br

become even more important for the complex polyatomic molecules that are the subject of this

work. As we will see in later chapters, this complexity occurs as a matter of both kind and degree.

An example of the former is large amplitude motion in nitromethane, CH3NO2 (Chapter 3). Here,

unhindered internal rotation leads to a breakdown of the semi-rigid framework usually employed to

model rovibrational spectra. Examples of the latter are the large hydrocarbon cages adamantane

(C10H16) and diamantane (C14H20), as well as the C60 fullerene (Chapters 4-6). Despite being

relatively rigid molecules, the sheer number of atoms and total mass of these systems leads to

densities of internal states that are at the very frontier of what high resolution infrared spectroscopy

can probe.

Returning to the three primary components of spectroscopic experiments, this chapter intro-

duces the techniques of cavity-enhanced direct frequency comb spectroscopy and cryogenic buffer

gas cooling, which provide the necessary light source, detection methods, and sample conditions to

address the challenges of high resolution rovibrational spectroscopy of large, complex polyatomic

molecules. Infrared frequency combs offer simultaneous high spectral resolution and wide spectral

coverage, while cavity-enhanced detection coupled to broad bandwidth interferometric and disper-
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sive readout provide high detection sensitivity. These spectrometer capabilities are fully realized

with the cold, dense samples of gas-phase molecules provided by cryogenic buffer gas cooling. The

remainder of this chapter discusses in detail each of these experimental components.

2.1 Mid-infrared frequency combs

The development of the optical frequency comb has dramatically advanced the fields of pre-

cision metrology and spectroscopy [2,3]. While combs are now a common tool for frequency refer-

encing, they can also be used to interact directly with samples under study, giving rise to a family

of techniques known as direct frequency comb spectroscopy [4]. By coupling frequency combs

to high-finesse optical cavities, cavity-enhanced direct frequency comb spectroscopy (CE-DFCS)

provides simultaneously broad spectral bandwidth, high spectral resolution, and high detection

sensitivity [5, 6]. The extension of CE-DFCS to the mid-infrared spectral region over the last ten

years has enabled these advantages to be exploited for molecular rovibrational spectroscopy [7].

Frequency combs are commonly generated by mode-locked lasers that emit a train of ultrafast

pulses of light with a regular period τ of the order of a few nanoseconds (Fig. 2.2a) [3]. Dispersion

inside the laser oscillator cavity causes a pulse-to-pulse phase slip ∆φce of the carrier field relative

to the pulse intensity envelope. This regular time domain structure leads to the characteristic

comb-like structure in the frequency domain (Fig. 2.2b). Each phase-coherent frequency comb

mode is separated in optical frequency by the repetition rate frep = 1/τ . The spectral bandwidth

of the comb is proportional to the inverse of the ultrafast pulse length, typically spanning at least 1

THz. The carrier-envelope phase slip ∆φce shifts the entire comb spectrum by an offset frequency

f0 = frep×∆φce/2π. The optical frequency of each comb mode is thus νn = n× frep + f0, where n

is the integer comb mode index. Measuring the RF frequencies frep and f0 determines the absolute

frequency position of each optical mode in a calibration-free manner. Active feedback on these two

comb parameters can be used to suppress frequency noise, yielding narrow-line-width comb modes.

MIR frequency combs are typically generated by non-linear wavelength conversion of near-IR

(NIR) combs [8–16]. The latter are currently most commonly produced with fiber oscillators doped
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Figure 2.2: Time and frequency domain structure of an optical frequency comb. (a) Mode-locked
fiber lasers produce ultrafast pulse trains with a repetition period of τ . The pulse-to-pulse carrier-
envelope phase slip is ∆φce. (b) In the frequency domain, the comb contains many optical modes,
or “teeth,” at frequencies separated by the repetition rate frep with a uniform frequency offset f0.

with ytterbium, erbium, or thulium, which provide robust, passive mode-locked operation near 1.0,

1.5, or 2.0 µm, respectively, with repetition rates typically of the order of 100 MHz. Subsequent

fiber amplification can deliver average optical powers of several watts. The correspondingly high

peak intensity of the femtosecond pulses enables efficient non-linear frequency conversion. We use

two MIR comb sources in this work: a 3-5 µm optical parametric oscillator (OPO) [11] (Fig. 2.3a)

and a 6-11 µm difference frequency generation (DFG) comb [15] (Fig. 2.3b).
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Figure 2.3: Mid-infrared frequency comb sources. (a) A high power OPO [11] is synchronously
pumped by a 1 µm Yb:fiber comb. Idler light (i) from 3 µm to 5 µm is generated by tuning the
poling period of a fan-out PPLN crystal. frep is monitored by an oscillator pick-off detector and
actively stabilized by feedback onto oscillator cavity PZT elements. A portion of the pump light
(p) is broadened in a highly nonlinear fiber. The supercontinuum output (SC-p) is co-aligned with
parasitic pump-idler sum frequency light (p+ i) and detected on a photodiode. The beat signal at
the idler f0 frequency is used to feed back onto PZT-actuated mirrors (M1, M2) in the OPO cavity.
(b) The DFG comb [15] is generated by a single 1.6 µm Er:fiber oscillator. The oscillator output
is split into two arms, broadened, amplified, and recombined in an OP-GaP crystal to generate
MIR idler light. Adjusting the quasi-phase matching period in the OP-GaP crystal provides idler
tuning from 6 µm to 11 µm. The idler f0 is controlled by the AOM driver frequency. Frequency
sidebands and frep feedback are generated by PZT-actuated mirrors and an EOM in the fiber
oscillator. The time delay between the two DFG pump pulses is actively stabilized by monitoring
parasitic nonlinear signals. (Inset) The broad idler spectrum is narrowed with a bandpass (BP)
filter centered on C60 absorption band origin near 1185 cm−1.
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2.1.1 3–5 µm OPO comb

The high power MIR OPO was originally designed and built in the Ye lab a decade ago by

Adler et al. [11]. The OPO is synchronously pumped by a 1 µm ytterbium (Yb) fiber comb that

has a repetition rate frep = 136.6 MHz and a maximum output power of 10 W. The OPO is based

on a fan-out MgO-doped periodically poled lithium niobate (PPLN) crystal, which sits at the waist

of a cavity that is singly resonant at the signal wavelength. By adjusting the quasi-phase matching

period of the crystal, idler output is generated with a center wavelength tunable from 2.8 µm to

4.8 µm, a maximum average power of 1.5 W, and a simultaneous bandwidth up to 0.3 µm. We

typically operate the OPO with idler light from 3.0 µm to 3.3 µm with an average power of 100 mW

to 300 mW.

Stabilization of the optical frequencies of the idler comb requires active locking of the both

the carrier-envelope offset frequency f0 and the repetition rate frep. We lock frep by picking off

a small portion of the 1 µm Yb:fiber comb and measuring its repetition rate directly on a fast

photodiode. The seventh harmonic of the repetition rate 7frep ≈ 956 MHz is mixed with a stable

1 GHz Wenzel quartz oscillator, slowly slaved to a 10 MHz cesium (Cs) clock. The resulting beat

note is used to generate a phase error signal with respect to the RF output of a direct digital

synthesizer (DDS), which is phase locked to the same RF oscillator. This error signal is then used

to feed back simultaneously on a fast piezo (PZT)-actuated cavity mirror and a slower PZT fiber

stretcher in the fiber laser oscillator.

The f0 frequency of the MIR idler comb is measured by performing an optical beat note

between the 1 µm pump light (p) and the parasitic sum frequency of the pump and idler (p + i)

generated by the OPO crystal. A 150- to 200-mW portion of the pump light is picked off and coupled

into a 15-cm-long piece of highly nonlinear supercontinuum fiber to broaden it to ∼ 780 nm in order

to be spectrally overlapped with the p + i light. The output of the supercontinuum fiber and the

p + i light are then spatially and temporally overlapped onto a single photodiode to measure the

p − (p + i) optical beat note, which is equal to f0 of the idler comb. This RF signal is used to
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generate a phase error signal with another DDS set to the desired f0 value. The error signal is

filtered and fed back onto PZT-actuated mirrors in the OPO cavity.

2.1.2 6–11 µm DFG comb

The DFG frequency comb system [15] was designed and built by our collaborators Kevin Lee

and Martin Fermann. It is based on a 1.5 µm Er-doped fiber oscillator with a 93.4 MHz repetition

rate. frep control is achieved with a fast piezo oscillator end mirror and a slow oscillator fiber

stretcher. An intracavity electro-optic modulator (EOM) provides additional fast-bandwidth frep

control. Oscillator light is split into two arms. The first is amplified in Er fiber to 1.6 W with 110 fs

pulse duration. The second is pre-amplified with Er fiber, recompressed, broadened to 2 µm in a

highly nonlinear fiber, and finally seeded into a Tm fiber amplifier generating 0.6 W with 60 fs pulse

duration. The two arms are spatially and temporally overlapped and focused into an orientation

patterned gallium phosphide (OP-GaP) crystal, which has several quasi-phase matching grating

periods available to tune the spectrum of the DFG from 6 µm to 11 µm, with up to 60 mW of

average power. A delay stage in the 2 µm drive arm is actively servoed by monitoring nonlinear

parasitic output of the OP-GaP crystal. This feedback maintains optimal temporal overlap of the

two driving pulses in the presence of slow thermal drifts.

The f0 of the DFG frequency comb is equal to the difference of the f0 of the two driving

arms. In this design, both arms originate from the same oscillator and therefore cancel, yielding

a DFG f0 = 0 identically. To shift the f0 to non-zero values, an acousto-optic modulator (AOM)

is placed in one of the arms. By driving the AOM with a stable RF source, the desired f0 can be

simply dialed in and is passively stable. A small portion of the oscillator light is picked off and

measured on a fast photodiode for frep monitoring. The eleventh harmonic at 11frep ≈ 1027 MHz

is mixed with a stable 1 GHz oscillator, and the beat note is used to generate an frep phase error

with respect to a reference RF signal generated by a DDS (slaved to the same 1 GHz oscillator).

This phase error can be fed back onto the oscillator cavity length piezos to lock frep.
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2.2 Absorption spectroscopy with frequency combs

An infrared spectrum is obtained by directing comb light through a molecular sample and

measuring how much each individual comb mode is absorbed. The transmitted intensity I of a

given comb mode is determined by the standard linear absorption (Beer’s Law) expression,

I = I0 exp(−Nσ`), (2.1)

where I0 is the incident intensity, N is the number density of the absorbing species, σ is the absorp-

tion cross section, and ` is the sample path length. The cross section σ is frequency, temperature,

and pressure dependent.

Obtaining the highest signal-to-noise ratio for the absorbed fraction of light A = 1 − I/I0

requires increasing N , σ, or `. For volatile species that are gaseous at room temperature, it is

usually easy to reach large number densities N by using high pressure samples. However, collisional

broadening will eventually dominate other contributions to the absorption line width, setting a

practical upper limit. The collisionally broadened line width ∆νcol is approximately linear with

pressure, ∆νcol = γp, where the broadening coefficient γ is typically 1 − 10 MHz/Torr. At low

pressures, the absorption line width is dominated by Doppler broadening, which has a contribution

∆νD

ν0
=

√
8kBT ln 2

mc2
= 7.16× 10−7

√
T/K

m/amu
(2.2)

where ∆νD is the full width half maximum (FWHM) of the line, ν0 is the center frequency, kB is

Boltzmann’s constant, T is temperature, m is the molecular mass, and c is the speed of the light.

For example, at 300 K methane has a Doppler line width of about 280 MHz in its strong 3 µm

CH stretch region and a self-broadening coefficient γ ≈ 2 MHz/Torr [17]. At this temperature, the

useful upper density limit is about 1018 cm−3. Heavier molecules and lower temperatures will result

in smaller Doppler line widths, decreasing the useful density limit. Often, technical considerations

of the absorption cell or a low sample vapor pressure will limit the achievable densities to even

smaller values. The typical molecule density in our experiments is about 1012 cm−3 (see below).

The absorption cross section σ of a rovibrational transition is proportional to the intrinsic
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strength of the transition (i.e. the squared magnitude of the transition dipole moment), the lower

state population, and the inverse of the line width [18]. The intrinsic line strength is strongest for

vibrational transitions for which ∆v = 1, where v is a vibrational quantum number. Therefore,

most of the work here is focused on fundamental vibrational bands (v = 1← v = 0), though we will

see some examples of relatively strong combination bands (involving a change in quantum number

of more than one vibrational mode). The lower state population can be concentrated into fewer

quantum states by minimizing the rovibrational partition function Qrot-vib. Both Qrot-vib and the

line width, which we assume to be Doppler-limited, increase with temperature. Thus achieving low

temperatures, without unduly compromising number density, is a critical requirement for sensitive

absorption spectroscopy. For the experimental conditions we typically use, we achieve peak cross

sections of approximately 10−17 cm2 (see also Fig. 2.1).

The last factor in absorption strength is the path length ` over which the frequency comb

light interacts with the sample. Physical considerations often limit practical table-top cells to

dimensions less than 1 m. The cell in our experiment has a sample path length of only 6 cm.

Taking the typical values for N and σ discussed above, we can estimate an expected maximum

single pass absorption loss of Nσ` = (1012 cm−3)(10−17 cm2)(6 cm) = 60 ppm. Such a small

fractional absorption requires stringently low noise baselines to achieve useful signal-to-noise ratios

over practical acquisition times.

2.3 Cavity-enhanced frequency comb spectroscopy

Making significant improvements in N and σ is challenging. The most efficient way to increase

the absorption sensitivity is thus to extend the effective path length of the sample. A simple way

of implementing this is with a multipass cell, such as a White [19] or Herriott [20] configuration,

where light is repeatedly reflected through the absorbing sample. Although the number of passes

can in principle be quite large, technical difficulties often limit it to < 100. Moreover, cumulative

losses from each reflection (e.g. about 1% per reflection on gold mirrors) severely attenuate the

total power throughput.
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Large path length enhancement factors and more efficient throughput can instead be achieved

with high-finesse optical cavities [21]. In contrast to multipass cells, optical cavities rely on interfer-

ence between reflected light to provide long effective path lengths with much less attenuation. Here

we consider the simple case of a symmetric Fabry-Pérot cavity, formed by two identical, parallel

mirrors separated by length ` (Fig. 2.4). Each mirror has a reflectivity R, transmission T , and loss

L (including both absorptive and scattering losses), with R + T + L = 1. Light incident on the

cavity is transmitted through the first mirror and reflects back and forth interfering with itself.

If the cavity length ` and the wavelength λ are such that this interference is constructive, then

the light will resonantly build up and transmit through the cavity. Longitudinal resonances occur

at regularly spaced optical frequencies separated by the free spectral range, FSR = c/2n`, where

n is the index of refraction of the intracavity medium.1 The regularly spaced mode structure of

frequency combs is well suited to coupling into the similarly periodic resonance structure of optical

cavities.

The line width of each cavity resonance is ∆ν = FSR/F , where F is the cavity finesse.

Assuming we have high reflectivity mirrors (1 − R = T + L � 1), then the finesse is to a good

approximation

F ≈ π
√
R

1−R
≈ π

T + L
. (2.3)

When incident laser light is at a frequency several or more line widths away from a resonance, it is

almost completely reflected back from the cavity. If tuned to a resonance, then it will couple into

the cavity and be transmitted with a power throughput of

τcav =

(
T

T + L

)2

. (2.4)

The transmitted light experiences many round trips inside the cavity as it gradually leaks out

through the end mirrors. The effective number of passes for light resonant with the cavity is 2F/π.

To illustrate the magnitude of these various cavity parameters, consider a typical MIR-

1 Our cavities are typically in vacuum or filled with a low density of non-refractive gas such that n = 1 for all
relevant wavelengths. An exception to this is near molecular absorption resonances where dispersive effects can be
readily seen for sufficiently strong transitions.
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coated dielectric mirror with T = L = 250 ppm, yielding a finesse of F ≈ 6300 and a transmission

coefficient of τcav = 25%. Our cavity design, discussed in more detail below, has a mirror separation

of about 54 cm, and therefore an FSR of 280 MHz and a line width of ∆ν = FSR/F = 44 kHz.

Most importantly, the effective path length enhancement factor is 2F/π = 4000. This provides a

significant and crucial boost in absorption sensitivity.

Cavity resonance

cavity length, ℓ

FSR

frep
=

FSR

optical frequency

incident
light

ν

ν

Δν = 
FSR / F

transmission
τcav

a

b 3frep= 2FSR

Figure 2.4: Cavity-comb coupling. (a) Frequency comb light is incident on a symmetric Fabry-
Pérot cavity of length `. When resonant, a fraction τcav of the light (Eq. 2.4) is transmitted through
the cavity, making F/π round trips, where F is the cavity finesse. (b) The cavity transmission
resonances (black trace) are spaced by the free spectral range, FSR = c/2`, with a line width (full
width-half maximum) of ∆ν = FSR/F . In one case, a frequency comb (red trace) has frep = FSR,
such that each comb mode is resonant with the cavity. In a second case, a frequency comb (blue
trace) with 3frep = 2FSR allows only every third comb mode to be resonant with the cavity,
resulting in a larger effective frep for the transmitted light.
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2.3.1 Cavity-comb coupling

Efficient cavity-comb coupling requires simultaneously matching the optical frequency of each

comb mode with that of a cavity resonance [6]. This implies that frep and the cavity FSR must be

related by some integer ratio, m × frep = n × FSR. In the simplest case where m = n = 1, each

comb mode and cavity resonance are simultaneously coupled in a one-to-one fashion. For other

integer ratios with m, n, or both greater than 1, only a subset of comb modes will be resonantly

coupled to the cavity (Fig. 2.4b). The obvious disadvantage in this case is that not all the comb

modes can be used for spectroscopy. However, this type of cavity filtering can also be useful.

The transmitted comb has a higher effective frep, and it is therefore easier to individually resolve

transmitted comb modes with a given detection apparatus. This idea is also used for frequency

comb Vernier spectroscopy, where the cavity itself disperses comb modes one-by-one [22]. Details

of our cavity filtering are discussed further in Section 2.4.

Just as dispersion in the comb laser oscillator cavity induces a non-zero f0 offset frequency,

dispersion from the enhancement cavity mirrors shifts the cavity resonances uniformly by fcav.

Therefore we also require that f0 = fcav. In a typical setup, the fcav value can be measured by

tuning the comb f0 until optimal coupling is observed. In the case of the MIR OPO discussed above,

this value is then used as the reference frequency for the f0 phase lock. For the DFG comb, the

AO shifter drive frequency is simply set to fcav. The value of fcav depends on the static dispersive

material properties of the mirror coatings, so that for a given wavelength, it is effectively fixed.

The optical frequencies of the comb modes and cavity resonances are equal to large integer

multiples of the comb frep and cavity FSR, respectively. Therefore, fast relative fluctuations between

frep and the FSR make active feedback necessary. A common tool to achieve tight comb-cavity

locking is the Pound-Drever-Hall (PDH) technique [23]. Here, frequency sidebands are placed on

the comb laser at a modulation frequency fmod larger than the reference cavity line width. A fast

photodiode is used to measure the reflected cavity light intensity signal, which is demodulated at

fmod to generate the PDH error signal. This error signal is linearly proportional to the comb-cavity
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frequency detuning over a frequency range approximately equal to the cavity line width. After

passing the error signal through a proportional-integral (PI) filter, it is fed back onto the comb frep

value. The error signal can also be further slowly integrated and fed back onto the cavity length

via piezo actuators to compensate for long term drifts.

For the OPO comb, we generate frequency sidebands by driving a fast piezo actuated mirror

in the fiber oscillator near its 760 kHz mechanical resonance frequency. The error signal is fed back

onto the same fast piezo, as well as a tube piezo on the enhancement cavity that servoes its FSR.

For the DFG comb, we use an intracavity EOM in the fiber oscillator for the frequency

sideband generation. In order to induce sufficient phase modulation in the EOM, a passive resonator

is formed with a 100 µH inductor in series with the EOM electrode plates. The intrinsic capacitance

of the EOM crystal (CEOM ≈ 43 pF) together with additional parasitics result in a resonance

frequency of fLC = 1/2π
√
LC = 2.65 MHz, with a Q of about 14. At frequencies below fLC , the

resonator passes feedback signals with unity gain. The PDH error signal is fed back onto both

a fast piezo actuated oscillator mirror and a slow fiber stretcher. Additional feedback is placed

on the oscillator EOM to achieve higher locking bandwidth. The PDH lock only ensures that the

difference between frep and the cavity FSR (or suitable integer multiples) is zero. Once the PDH

lock is actively slaving the comb to the cavity, the comb frep is measured using the 11th harmonic as

discussed above. Its phase error relative to a stable RF reference is fed back onto the enhancement

cavity length to stabilize the absolute value of frep.

The PDH technique continuously locks the comb mode frequencies to their respective cavity

resonances. However, the narrow line width and steep slope of the cavity transmission resonances

can convert residual frequency noise into amplitude noise of the transmitted light. This FM-to-AM

noise conversion can limit the absorption sensitivity. An alternative cavity locking scheme to PDH

locking, called swept cavity locking [6], is relatively immune to FM-to-AM noise conversion and

can provide significant sensitivity improvements. We implement a swept cavity lock by modulating

the enhancement cavity length at 10 kHz via the cavity tube piezo. As the cavity length is swept,

it passes through resonance with the comb light, permitting a transient buildup of power and
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transmission burst for each comb mode simultaneously. These transmission bursts occur at twice the

cavity length modulation frequency, once for the forward sweep and once for the backward sweep.

The relative time spacing between the transmission bursts when the cavity is being scanned forward

versus backward determines the mean frequency offset of the cavity relative to the comb light. A

small fraction of cavity transmission is picked off, measured on a photodiode, and demodulated at

the cavity sweep frequency with a lock-in amplifier to generate an error signal that is fed back onto

the cavity length piezo. The comb frep only needs to remain within the range of the cavity length

sweep. Therefore the slow feedback bandwidth of the cavity piezo (∼ 1 kHz) is sufficient to maintain

the lock. In the swept cavity method, the amplitude of the transmission burst is determined by

the relatively constant optical slew rate of the swept cavity resonance and insensitive to the cavity-

comb optical detuning. Therefore it can provide cavity transmission with relatively low intensity

noise at the cost of reduced duty cycle.

2.4 Comb detection

Two detection methods are used to acquire broadband comb spectra in these experiments.

The first is the familiar technique of Fourier transfrom spectroscoscopy (FTS) and the second

is based on spatial dispersion with a virtually image phased array (VIPA) etalon. This section

discusses the details of each detector and their relative advantages and performance.

2.4.1 FTS detection

We perform FT spectroscopy using a home-built fast scanning interferometer [24] (Fig. 2.5a).

Each arm of the interferometer is double-passed on a translating corner-cube reflector with a phys-

ical travel range of 0.7 m. This geometry provides ` = 4 × 0.7 = 2.8 m of optical path length

difference and an instrument resolution of ∆νFT = c/` = 110 MHz (Fig. 2.5b,c). A complete cart

scan (and return) takes 5−10 s. If the input to the FTS were a continuous white light source, then

∆νFT would determine the ultimate spectral resolution. In the case of a frequency comb, however,

the FTS instrument line width is sufficiently narrow to resolve individual comb modes so long as
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the effective frep < ∆νFT. Once this limit is reached, the effective spectral resolution is determined

only by the line width of the frequency comb (∼ 1 − 10 kHz), thereby providing high resolution

measurements spaced by frep [25]. To fill in the “spectral gap” between the narrow comb modes,

multiple measurements with different frep values are acquired and interleaved. For FTS experi-

ments, we use enhancement cavity filtering that produces an effective frep in the 250 − 300 MHz

range, well into the comb-mode-resolved limit.

An important technical consideration is the instrument line shape of the FTS. We use a

rectangular interferogram window, resulting in a sinc line shape function in the frequency domain.

The outer lobes of the sinc function centered at a given comb mode in general overlap with the

centers of neighboring comb modes, resulting in unwanted cross-talk [25]. We use an automated

rewindowing process to relocate nodes of the instrument line shape function to coincide with the

positions of neighboring comb modes, thereby eliminating cross-talk.

Given our typical FTS cart scanning velocity (5 − 15 cm/s) and optical wavelengths (3 −

10 µm), the interferogram signal carrier frequencies are in the 20 − 200 kHz range. The noise

baseline of the FTS in this region is dominated by the intensity noise of the incident comb light.

We perform differential detection to suppress this noise. Each output port of the FTS beamsplitter

is measured on a photodiode. The intensity noise is an in-phase common-mode signal on each

photodiode, while the interferogram signal from one output port is 180◦ out-of-phase relative to

the other port. By subtracting the signal of the two photodiodes, the interferogram signal is doubled

and the common-mode intensity noise is canceled.2 Effective common-mode noise rejection requires

that the relative gain of the photodiode pair be tuned optimally. This is impractical to do manually

because the average relative power incident on the photodiodes varies over the course of an FTS

cart scan. (As the cart position changes, there are unavoidable drifts in the beam direction and

size.) Therefore, we use a JILA-made autobalancing subtraction circuit that adjusts the gain of

each photodiode to match their DC levels throughout a cart scan. We typically achieve 20 dB to

2 Uncorrelated noise between the two detectors, such as shot and dark noise, are of course not canceled. They
do benefit, however, from a 1/

√
2 reduction in their relative amplitude because of the 2× enhancement factor of the

interferogram signal.
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Figure 2.5: FTS detection of frequency combs. (a) MIR comb light and a 1 µm reference cw
Nd:YAG NPRO laser are co-propagated in the FTS interferometer. A quadrant beam splitter
(QBS) splits both inputs into two arms that are incident on a scanning corner-cube reflector (CC).
The cw interferogram is measured on a photodiode (PDref) for optical path length calibration.
The two MIR QBS outputs are each measured on photodiodes (PDA, PDB). The difference signal
from an autobalanced subtraction (ABS) circuit is acquired with a fast digitizer (DAQ). (b) An
example comb interferogram shows a center burst at zero optical path length difference due to
interference between one ultrafast pulse and itself. Two additional bursts on either side arise from
interference between sequential pulses in time. The zoomed-in window shows the carrier wave of
the MIR light in the center burst region. (c) A narrow portion of the Fourier-transformed spectrum
from the comb interferogram in (b) shows individually resolved comb modes. The spacing between
the peaks (0.009 cm−1) is equal to the inverse of the optical path length difference between the
interferogram center bursts (110 cm).

30 dB of common-mode noise rejection, which in some cases is sufficient to reach the shot-noise

limit [26], though we are usually limited by residual non-shot-noise intensity fluctuations. For the

3-5 µm OPO system, we achieve a detection sensitivity of 4.4×10−8 cm−1 Hz−1/2 for a single comb
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mode. Given that the typical bandwidth of the FTS spectrum contains 3300 resolved comb lines,

this corresponds to 7.6× 10−10 cm−1 Hz−1/2 per spectral element (PSE) [27]. For the DFG system

operating near 8.5 µm, we achieve a sensitity of 2.2 × 10−7 cm−1 Hz−1/2 for a single comb mode.

The spectral bandwidth contains about 5000 resolved comb modes, corresponding to 3.1 × 10−9

cm−1 Hz−1/2 PSE [28].

A conventional absorption measurement requires detecting the light intensity with (I) and

without (I0) the absorber to determine the absorption A = 1− I/I0. We typically forego acquiring

two separate interferograms for such a measurement as the cavity-transmitted intensity of the comb

light gradually drifts over the relatively long FTS acquisition time of 5 − 10 s per interferogram.

The absorption spectra for cold species are usually rather sparse with only a minor fraction of

the comb modes being absorbed for a given frep value. Therefore, we can take the comb intensity

envelope as a proxy for the reference intensity I0. One approach could be to fit this envelope with a

slowly varying polynomial or spline function. We take the even simpler route of high-pass filtering

the cavity-transmitted spectrum. This processing is performed for the acquired comb spectrum for

each frep value before interleaving them in the final composite spectrum.

2.4.2 VIPA spectrometer

Two important disadvantages of FTS detection are the relatively long acquisition times (up

to ten seconds per interferogram) and the requirement of continuous incident light. The latter

necessitates PDH comb-cavity locking, which as discussed above suffers from FM-to-AM noise

conversion. An alternative to interferometric detection is to use a dispersive element to spatially

separate comb modes and subsequently image the broadband spectrum on an infrared camera [6].

This general approach has the advantage of permitting fast, time-resolved, transient detection [29–

32] (typically limited by the minimum camera integration time and maximum frame rate) and

being compatible with the intermittent transmission of the swept-cavity locking scheme.

The primary challenge is constructing a dispersive spectrometer with sufficient resolution to

spatially separate neighboring comb modes. The required resolving power for a diffraction grating
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is R = mN = λ/∆λ ≈ ν/frep ∼ 105− 106, where m is the diffraction order and N is the number of

illuminated grooves. Standard MIR ruled gratings have groove densities on the order of 102/mm

and operate at low diffraction order (often m = 1). A grating of this type would need to be about

10 m long to provide sufficient resolving power, which is obviously impractical for a table-top

laboratory instrument. Recent advances in high-diffraction-order, high-refractive-index immersion

gratings, however, have made this approach viable [33].

An optical element called a virtually imaged phased array (VIPA) etalon provides the high

angular dispersion and resolution necessary for spatial separation of individual comb modes [34–36]

(Fig. 2.6a). The setup consists of a thin glass parallel plate etalon. The back (output) surface has

a high reflection coating (∼ 95% or more), while the front (input) surface has a ∼ 100% coating.

Input light is cylindrically focused and coupled into the etalon at a gap in the coating on the front

face with a small incidence angle θ. The light bounces back and forth in the etalon, leaking through

the output face at each bounce. The interference of the reflected beams forms collimated output

light, where the output propagation angle is determined by the optical wavelength. (The angular

dispersion is proportional to n cot θ, where n is the index of refraction of the etalon material.) The

angular resolution is determined by the total loss per round trip in the etalon, and is therefore

limited by the bulk material absorption and scattering. With our MIR etalons, VIPA line widths

of 0.5 − 1.0 GHz are achievable, corresponding to a resolving power of ∼ 105 [29, 30, 37]. This

represents a significant improvement over standard diffraction gratings. However, as our comb

frep values are ∼ 100 MHz, some modest cavity filtering is still necessary for comb mode resolved

spectroscopy [27,38]

At a given output angle, light containing optical frequencies separated by the etalon FSR is

overlapped. Our etalons have FSRs of about 50 GHz, and therefore the overlapping components

are easily separated by placing a low-resolution reflective grating after the etalon at an orthogonal

orientation. This creates a two-dimensional pattern of comb modes, which are then imaged onto

a sensitive infrared camera (Fig. 2.6b). As with FTS spectroscopy, once the comb mode-resolved

limit is reached, the effective resolution is no longer limited by the spectrometer (in this case, the
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Figure 2.6: Frequency comb spectroscopy with a VIPA etalon. (a) Incident comb light is cylin-
drically focused into the VIPA etalon, which disperses light in the vertical direction. A low res-
olution reflection grating disperses overlapping etalon FSRs in the horizontal direction. The two-
dimensional pattern of comb light is then imaged onto an infrared camera. (Figure reused by
permission from Springer Nature: Applied Physics B: Lasers and Optics,“Cavity-enhanced direct
frequency comb spectroscopy”, M. J. Thorpe and J. Ye. [5]) (b) An example VIPA image showing
resolved comb modes as individual bright spots. The vertical axis corresponds to VIPA dispersion,
and the horizontal axis to grating dispersion. Each column fringe is a distinct VIPA order, sep-
arated from an adjacent fringe by the VIPA free spectral range (50 GHz). Along a given fringe,
each comb mode spot is separated from its vertical neighbors by 1 GHz via cavity filtering. The
two dark spots (indicated by arrows) correspond to the same absorbed comb mode appearing in
the image in sequential VIPA orders. (c) Fast frame-to-frame subtraction of VIPA images improves
the absorption noise baseline by removing incident comb light intensity fluctuations. At a ∆t = 10
ms subtraction time, we observe a 30× improvement in sensitivity relative to FTS detection for
the same total acquisition time. At shorter times, the noise baseline plateaus, indicating that the
camera dark noise limit has been reached. The cell diffusion time of about 10 ms corresponds to the
fastest rate at which the molecular absorber density in the cold cell can be efficiently modulated.
(d) A comparision of FTS and VIPA spectra for a small region of the MIR absorption spectrum of
cold CH3NO2.
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VIPA etalon line width) and instead set by the frequency comb itself.

The VIPA spectrometer detection sensitivity is usually limited by the incident light intensity

noise. Simultaneous differential detection to suppress comb mode intensity noise, as is performed

with the FTS setup above, is in general difficult. While swept-cavity locking improves the baseline

intensity noise by eliminating FM-to-AM noise conversion from the enhancement cavity [6], intrinsic

(i.e. pre-cavity) intensity noise of the frequency comb light is not suppressed. To combat residual

intensity noise, we take advantage of the fast frame rate (up to 500 Hz) of the detector camera,

which permits a lock-in type measurement to be performed. Sequential camera frames are acquired,

one with molecular absorption signal present and another without, and subtracted. This eliminates

intensity noise contributions slower than the subraction rate, as shown in Fig. 2.6c. We modulate

the molecular absorption signal by a fast mechanical shutter between the molecule source and

the sample cell (see Section 2.5 below). The modulation rate is ultimately limited by the 10 ms

diffusion time in the cell. At this diffusion-limited modulation rate, we are still able to reach

the camera dark noise limit. For the 3 − 5 µm OPO system, the combination of fast camera

acquisition times and frame-to-frame intensity noise subtraction yield a 30-fold improvement in the

cavity transmission noise floor relative to FTS detection normalized to equal acquisition time. It

is important to realize, however, that the swept-cavity locking method reduces the effective path

length of the light by a factor of 1/2 relative PDH locking due to differences in continous versus

impulsive light-cavity coupling [6]. Therefore, the net absorption sensitivity of the VIPA setup is

only about 15× higher than the PDH/FTS detection system (Fig. 2.6d), which is nonetheless a

significant improvement [27].

2.5 Cryogenic buffer gas cooling

The MIR frequency comb techniques discussed in the previous sections provide powerful

tools for probing molecular structure and dynamics. Taking full advantage of the high resolution

capabilities of combs for molecular spectroscopy requires preparing molecules in a physical state

such that the complex structure of their rovibrational spectra is fully revealed. For this reason, room
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temperature experiments have been largely limited to relatively small systems because molecules

with even, say, half a dozen heavy atoms already occupy millions of rovibrational quantum states,

yielding intractably congested and unassignable spectra. The ability to produce cold, dense samples

of neutral molecules is therefore crucial to extending high resolution spectroscopy to more complex

molecules.

We address this issue by combining CE-DFCS with cryogenic buffer gas cooling (CBGC) [39–

42]. With this technique, a cryogenic cell with a wall temperature Twall ranging from 10 K o 150 K is

filled with an inert buffer gas, usually a noble gas such as helium, neon, or argon, which thermalizes

to Twall. Warm (room temperature or hotter) molecules are injected into the cell where they

collide with the cold buffer gas atoms, approximately thermalizing their rotational and translational

temperatures to Twall. At these low temperatures, molecular spectra are drastically simplified

relative to room temperature conditions, exhibiting reduced congestion, narrow Doppler line widths,

and larger absorption cross sections. CBGC provides a continuous source of cold molecules with

slow lab frame velocities and long interaction times with only modest pumping requirements. These

represent distinct advantages over supersonic expansion cooling, which exhibits fast lab frame jet

velocities and limited interaction times and poses a compromise between low duty cycle pulsed

operation or managing non-trivially large gas loads. As will be discussed in later chapters, efficiently

cooling complex polyatomic molecules with CBGC has permitted the measurement of rotationally

resolved infrared spectra of unprecedentedly large molecules including adamantane (C10H16) in the

3 µm CH stretch region [27,38] and buckminsterfullerene (C60) near 8.5 µm [28].

2.5.1 Low-temperature CBGC system

We use one of two CBGC systems depending on the required cooling capacity and buffer gas

load for the experiment. The low-temperature (10 − 30 K) device [27, 38] is based on a closed-

cycle liquid-helium two-stage pulse tube cryostat (Cryomech PT410/CP2800), as diagrammed in

Fig. 2.7a. The first stage has 40 W of cooling capacity at 40 K, and the second stage has 1 W of

cooling capacity at 4 K. The pulse tube head is placed in a room temperature vacuum dewar with
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a base pressure of 1× 10−6 Torr (when cold). A copper radiation shield mounted to the first stage

reduces the blackbody radiative heat load on the second stage cooler. A hollow aluminum cold

cell, shown in Fig. 2.8, with an interior volume of 6 × 6 × 6 cm3 is mounted to the second stage.

Sensor diodes mounted to the cold cell, second stage, and radiation shield provide temperature

monitoring. With no gas load, the cold cell reaches a baseline temperature of 3 − 4 K. A small

continuous flow (ca. 10 sccm) of helium buffer gas is pre-cooled to the 4 K stage before entering

the cold cell through an annular slit inlet, resulting in a helium density of 1014 cm−3 to 1015 cm−3

inside the cell.

Helium leaking out of the cell is efficiently cryopumped by charcoal sorbs mounted to the 4 K

stage. The details of the sorb design have a significant impact on their pumping performance [43,44],

and it is worthwhile discussing these particulars here. Our “secret formula” comes from John

Doyle’s group [45, 46] via Dave Patterson, who collaborated with us on the construction of the

CBGC system. We adhere activated coconut charcoal (Spectrum C1221, 8-30 mesh) to 1/8”-thick

super-conductive OFHC (101) copper using Stycast 2850FT epoxy with catalyst 23LV (7.5% by

weight).3 Typically, three 3”×6” plates (both sides coated with charcoal) are installed, giving a

total pumping area of about 700 cm2. With a 10 sccm helium load, the background dewar pressure

(measured outside the radiation shield) is about 2× 10−5 Torr. Using this as an approximation for

the helium pressure near the sorbs, we roughly estimate a pumping speed of 6000 L/s. The sorbs

can run for 3 to 4 hours continuously, from which we also estimate a capacity of about 1500 L·Torr.

Both of these estimates are consistent with the expected performance of coconut charcoal [43,44].

Once saturated, the pumping speed drops and the background pressure gradually increases

until it reaches about 1 × 10−4 Torr. At pressures higher than this, thermal contact to the room

temperature dewar wall warms the sorbs, releasing helium and causing a runaway “crash”. Usually,

the helium is turned off before a crash is allowed to occur. To regenerate the sorbs, the pump out

valve is opened and the refrigerator is turned off. Once the sorbs are above ca. 40 K almost all of

3 For unknown reasons, the Ye group historically has used catalyst 23LV, while the Doyle group reports using
catalyst 24LV [45,46]. The two catalysts appear to have very similar physical properties [47].
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the helium has been released, and they can be re-cooled for further use.

In the absence of contamination, we have successfully re-used the same sorbs continuously for

over a year. Temporary “clogging” can occur from a vent or leak of atmosphere into the vacuum

dewar. The sorbs can be restored by pumping on them at room temperature for several hours.

(We suspect it helps that the air in Boulder, CO has a relatively low concentration of water vapor.)

The chemical species we introduce into the cold cell are the most potentially problematic source of

contamination. When the system is cold, these molecules are efficiently cryopumped by the metal

surfaces of the cold cell and radiation shield, and it is likely only a very small fraction reaches the

sorbs. However, when the system is eventually warmed up, these molecules are released and can

come into contact with the sorbs. We have found that species that are gas-phase or have a high

vapor pressure (at least tens of torr) at room temperature do not cause any observable degradation

to the sorb. Conversely, highly non-volatile solids, such as C60, remain solid after warming to room

temperature and cause no problems (except for requiring frequent clean-up of the cold cell where the

solid collects). The only permanent degradation we have observed is from certain sublimating solid

and non-volatile liquid samples, such as hexamethylenetetramine and indole. After introducing

these species into the cold cell and then warming up, the pumping speed of the sorbs was severely

reduced. Attempts to revive poisoned sorbs by a 150◦C bakeout overnight recovered only a small

fraction of the peak pumping speed and helium capacity and were ultimately unsuccessful. Finally,

it is important to note that only oil-free turbo and scroll pumps are used for the vacuum dewar,

eliminating another potential source of sorb contamination.

Warm gas-phase molecules enter the cold cell (Fig 2.8) through a 1 cm aperture in the cell

wall and quasi-thermalize to Twall with a density of about 1012 cm−3 [27, 38]. For most small

molecules, 10s to 100s of collisions are necessary to cool the internal and translational degrees of

freedom. Buffer gas atom-molecule collisions occur with a mean collision period of 10 − 100 µs,

thereby requiring ca. 1 ms for thermalization. The molecules diffuse in the cell for 10 − 20 ms

before freezing out on the cell walls. Measured rotational and translational temperatures in this

low-temperature cell are typically 10−20 K (see Section 2.6). For volatile molecules with sufficient
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Figure 2.7: Cryogenic buffer gas cooling. (a) The low temperature CBGC apparatus is based on
a two-stage liquid helium pulse tube refrigerator. The 35 K radiation shield is mounted to the first
stage heat exchanger, while the 10 K cold cell is mounted to the second stage. Charcoal sorbs are also
mounted to the second stage to provide high helium pumping speeds. A cavity spacer surrounding
the dewar supports two high reflectivity mirrors that form the MIR enhancement cavity. Precision
screws and a cavity tube piezo provide fine adjustment of the cavity alignment and length. The
cavity optics are vibrationally isolated from the dewar by thin edge-welded bellows. (b) The high
temperature system replaces the helium cold finger with an open liquid nitrogen dewar, and the
blackbody radiation shield is removed. The cavity optics and hardware (not shown) are identical
to those in (a).

.

vapor pressure at room temperature, a flow of 1− 10 sccm is introduced into the cell via a 1/4”-in

stainless steel tube that terminates 1 − 2 cm in front of the outer surface of the cell wall. For

non-volatile molecules, a small copper oven (2 cm × 2 cm × 4 cm) is used to heat samples to

produce sufficiently high vapor pressures. The oven, with an interior volume of 3 cm3, is located in

vacuo just outside the 35 K radiation shield, with a small tube outlet passing through the shield

to guide molecules into the cold cell. The inner diameter (2 mm) and length (3 cm) of the outlet

determine the output conductance of the oven and therefore what vapor pressure is necessary for
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Figure 2.8: A detailed view of the cold cell. The cell is mounted to a either the liquid helium
or liquid nitrogen cold finger. Pre-cooled buffer gas enters the cell through the annular slit inlet
plate. Warm molecules from an oven source or tube inlet enter the cell and quasi-thermalize to the
wall temperature via collisions with buffer gas atoms. Two high reflectivity mirrors (position not
to scale) form a path length enhancement cavity that passes through two side apertures in the cold
cell.

sufficient molecule output flow. The output conductance is high enough to require only modest

oven temperatures (100 ◦C to 200 ◦C), but small enough to allow sufficient oven pressure buildup to

provide stable vaporization/sublimation and prevent violent boiling. A small glass window permits

visual monitoring of the interior of the oven while in use. The oven is resistively heated by two

embedded cartridge heaters (50 W, 1/8” OD × 1.25”) and temperature monitored by a type-K

thermocouple.

A “molecule shutter” consisting of a thin aluminum paddle is placed between the molecule

tube or oven outlet and the cold cell aperture in order to quickly turn on or off the molecule flow

into the cold cell. The shutter is rotated into and out of the molecule flow with a small DC electric

motor mounted to the 35 K shield. Short current pulses from a home-made driver circuit switch
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the shutter with an open/close time of 1 ms and a delay of 10 ms.

2.5.2 High-temperature CBGC system

In the high-temperature (80 − 150 K) setup (Fig. 2.7b), the helium cold finger is replaced

with a liquid nitrogen (LN2) dewar without a blackbody radiation shield [28]. LN2 sets a minimum

77 K temperature limit for the cold cell, but is able to provide significantly higher cooling capacity,

which permits using higher buffer gas flows and pressures relative to the low-temperature system

(up to 100 sccm and 1 Torr background in the dewar). Charcoal cryopumping is replaced with a

small turbo-molecular pump (300 L/s) that is typically choked to an effective pumping speed of less

than 10 L/s. The high cooling capacity can handle commensurately high radiative heating, thus

increasing the maximum operating temperature of the oven vaporization source. We constructed a

second compact oven source capable of heating solid samples up to 1000 K. It consists of cylindrical

copper body with a detachable heating collar clamped around it. The heating collar has two silicon

nitride ignitors that each deliver a maximum heating power of ca. 1 kW, though they are typically

operated at only 60 − 70% of their maximum power to achieve 1000 K oven temperatures. This

is consistent with the estimated cooling power of the LN2 dewar based on the LN2 boil-off rate of

5− 10 L/hr, from which we estimate a cooling power about 1 kW.

2.5.3 Absorption enhancement cavity

The absorption enhancement cavity consists of two parallel mirrors with high reflectivity (HR)

coatings surrounding the cold cell [27]. Four 1”-thick stainless steel rods spanning either side of

the cryostat dewar fix the gross cavity length (see Fig. 2.7a). The cavity mirrors are mechanically

isolated from the dewar by a system of edge-welded bellows that form the vacuum connection

between the cavity mirrors and the dewar. The position and alignment of each mirror are adjusted

macroscopically by a set of fine precision screws. One of the cavity mirrors is fitted with a tube piezo

for fine length adjustment and feedback control. The HR mirrors have broadband coatings with

peak finesses of F ≈ 3000− 6000. We typically achieve on-resonance cavity transmission efficiency
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of a few percent up to 25%, depending on the mirror losses, over a simultaneous transmission

bandwidth of 50 − 100 cm−1, limited by the HR mirror dispersion. The cavity spacers limit the

practical range of mirror separations to be ` = 50 − 70 cm, yielding cavity FSRs in the range of

215 to 300 MHz. Cavity filtering is thus unavoidable given the frep values of our two frequency

comb sources (136 MHz for the OPO system and 93.4 MHz for the DFG system). A small gas

inlet is placed near each mirror to provide an optional purge flow that protects the mirrors from

degradation. This was found necessary with the high-temperature CBGC setup to prevent deposits

of C60 grains from forming on the mirror surface. The output of the enhancement cavity is routed to

the detector systems for transmission read-out. Cavity reflection and transmission photodiodes are

placed before and after the cavity to collect PDH and swept-cavity lock error signals, respectively.

2.6 CE-DFCS/CBGC system performance

This final section summarizes the technical performance of the combined CE-DFCS and

CBGC apparatus. Returning to the example introduced at the beginning of the chapter, Fig. 2.9a

shows the measured FTS absorption spectrum the ν3 band of vinyl bromide acquired with the

low-temperature CBGC cell. This spectrum can be compared to the simulation in Fig. 2.1b. (The

negative-going signal in the measured absorption spectrum is an artifact of the filtering process

applied to FTS spectra as described in Section 2.4.1.) The dense rotational structure is well resolved,

as can be seen by the observation of hyperfine splittings (Fig. 2.9b) and Ka sub-band structure

(Fig. 2.9c). The vibrational band contains well over a 1000 transitions from each isotopologue above

the absorption noise baseline, essentially all of which have been successfully assigned. (Bromine

occurs naturally as 79Br and 81Br in approximately 50:50 relative abundance. The results of a full

effective Hamiltonian fit are available in Appendix B.)

The extracted rotational and translational temperature profiles from the vinyl bromide spec-

trum are shown in Fig. 2.10a,b. A small subset of rotational transitions was used to determine

a rotational temperature of Trot = 17(3) K, while the Doppler-broadened line width indicates a

translational temperature of Ttrans = 18(4) K. Similar measurements for nitromethane (CH3NO2)



32

3023 3024 3025 3026 3027 3028 3029 3030 3031 3032

0

0.05

0.10

0.15

0.20

Wavenumber (cm-1)

A
bs

or
pt

io
n

a

3027.66 3027.67 3027.68 3027.69

0

0.05

0.10

0.15 b

3030.00 3030.05 3030.10
0

0.10

0.20

0.30

0.40 c

b

c

Figure 2.9: CE-DFCS absorption spectrum of the ν3 band of vinyl bromide. (a) A survey of
the entire ν3 band, which spans about 10 cm−1 and contains over 1000 transitions above the noise
baseline. Detailed views of the R(0) and R(9) transitions (marked with arrows) are shown in (b) and
(c). (b) The measured R(0) transitions are shown in black (offset for clarity) and the simulations
for C2H3

79Br and C2H3
81Br are shown in blue and red, respectively. The R(0) transition for each

isotopologue is split by nuclear quadrupole effects into three hyperfine components corresponding
to transitions from the F ′′ = 3/2 rovibrational ground state to F ′ = 1/2, 5/2, and 3/2 upper
states, in order of increasing transition frequency. (c) The R(9) region shows clusters of transitions
belonging to different Ka ≤ 4 sub-bands.

yield Trot = 11(1) K and Ttrans = 16(1) K (Fig. 2.10c,d). These results are representative of almost

all molecules we have cooled with the low-temperature CBGC cell. The translational and rotational

temperatures do not always completely equilibrate, but they are reliably in the 10 K to 20 K range.

Based on the integrated band strengths, we estimate the molecule densities to be in the range of

1− 5× 1012 cm−3.

The only molecule we could definitively not cool with the low-temperature CBGC system

was buckminsterfullerene, C60. The modest cooling power of the low-temperature system turns

out to be no match for the high atom count (60 nuclei), molecular mass (720 u), and oven source

temperature (950 K) of C60, forcing us to rely on the much higher cooling capacity of the high-
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Figure 2.10: Rotational and translational temperatures of molecules in the low-temperature CBGC
cell. (a) The natural logarithm of the inferred Boltzmann factors for the lower states of the
C2H3

79Br ν3
K′′

a =0R-branch with J ′′ = 3 − 13. The Boltzmann factors are normalized relative
to the J ′′ = 3 level. The fitted slope versus lower state energy indicates a rotational temperature
of 17(3) K. (b) The R(9) transition of the same branch shows a Doppler line width of 27(3) MHz,
corresponding to a translational temperature of 18(4) K. (All uncertainties are 2σ.) (c,d) Same as
(a,b) for the ν3 + ν6 band of nitromethane, CH3NO2.

temperature LN2 cold finger. A full discussion of the challenges associated with C60 and the efforts

to successfully cool it are deferred until Chapter 5. For now, Fig. 2.11 simply presents the final

performance we achieved with the high-temperature CBGC system. The relative rotational state

populations in Fig. 2.11a exhibit a Boltzmann distribution with an effective rotational temperature

of 150(2) K. This is only slightly warmer than the measured wall temperature of 135 K, which

is limited by the radiative heat load from the 950 K oven. (Subsequent tests with heat shields
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Figure 2.11: Cooling of C60 in the high-temperature CBGC cell. (a) The relative populations of
the rotational sub-levels exhibit a Boltzmann distribution with Trot = 150(2) K (with a measured
cell wall temperature of 135 K). (b) The R(180) transition centered at 1186.2620 cm−1 has a line
width of 16.0(6) MHz. This is slightly larger than the expected Doppler line width of 12 MHz –
possible evidence of collisional broadening.

between the oven and cold cell suggest that the rotational temperatures as low as 100 K might be

achievable.)

The absorption peak for the R(180) transition has a measured line width of 16.0(6) MHz,

which is representative of the 15− 20 MHz range we observe over the entire vibrational band. This

range is somewhat higher than the expected Doppler line width of 12 MHz (assuming that Ttrans

is equal to the measured Trot value). We find it unlikely that the translational temperature could

be so much higher than both the rotational and cell wall temperatures. Given the relatively high

pressures in the cold cell (> 1 Torr), it is entirely plausible this excess line width is instead due to

collisional broadening. Unfortunately, the observed signal-to-noise is insufficient to deconvolve the

homogeneous versus inhomogeneous contributions to the line shape.

We conclude this section with a note on the frequency calibration and accuracy of the CE-

DFCS spectra. For the 3 µm OPO system, both the FTS and VIPA frequency axes are calibrated by

measuring CH4 transitions whose precise frequencies are readily available [17]. The FTS calibration

amounts simply to a uniform scaling of the FFT frequency axis, or equivalently, calibrating the
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wavelength of the reference cw laser that is copropagating with the MIR light in the interferometer.

The VIPA calibration is more complex [27]. The reference CH4 transitions are used to parameterize

the 2D mapping of the comb modes in the camera image. Both the VIPA etalon FSR and effective

vertical dispersion are determined in this fashion, and the calibration must be repeated each time

the etalon or grating is re-aligned. The CH4 calibration provides absolute optical frequency accuracy

of about 30 MHz. Relative line center frequencies are accurate to within 10 MHz, limited by the

frep scan step size and detection signal-to-noise.

Instead of relying on reference molecules, the frequency comb can also be calibrated by

assigning the integer comb mode index and using the fundamental relationship between the comb

optical frequencies and the frep and f0 frequencies in the RF domain,

νn = n× frep + f0. (2.5)

This is the procedure we use for the 8.5 µm DFG comb. In this case, f0 is simply equal to the AOM

shifting frequency, while the frep value is fixed by the RF phase lock described in Section 2.1.2. A

preliminary calibration is performed that takes advantage of absorption lines from trace intracavity

H2O [48]. These measurements provide sufficient accuracy to constrain the integer mode index n,

at which point the final absolute optical frequency is determined by Eq. 2.5. The values of frep and

f0 are ultimately locked to an atomic time standard with a relative frequency offset error below

10−12. The absolute frequencies determined in this fashion are verified by checking N2O and D2O

line positions [49, 50] obtained in separate measurements. Of course, the actual uncertainty of our

measured absorption line centers is dominated not by the absolute frequency calibration, but by

the measured line width and signal-to-noise. For the DFG comb experiments, this (1σ) statistical

uncertainty is 2.5× 10−5 cm−1 or 0.75 MHz.



Chapter 3

Spectroscopic signatures of unhindered internal rotation in nitromethane

The traditional view of molecular structure is that of a quasi-static arrangement of atoms

undergoing small amplitude fluctuations from a fixed reference geometry. This geometry is deter-

mined by the equilibrium configuration of the nuclei on the Born-Oppenheimer potential energy

surface (PES). The equilibrium geometry is typically at the bottom of a deep, isolated well on the

PES, which establishes a physical basis for the quasi-static picture. High resolution spectroscopy

provides precise characterization of molecular structure by connecting spectroscopic observables to

detailed properties of the PES in the vicinity of the equilibrium geometry.

Non-rigid molecules exhibiting large amplitude nuclear motion break this structural paradigm.

They experience a relatively flat or shallow PES along one or more internal degrees of freedom.

Even at 0 K, zero-point motion causes significant delocalization of the nuclear wavefunction. Such

floppy, anharmonic systems lead to a breakdown of traditional spectroscopic models, posing prac-

tical difficulties for the analysis and interpretation of spectra. More fundamentally, they challenge

the very notion of static molecular structure. Without the basis of a well defined equilibrium

geometry, one is forced to take a step back and view a molecule as an intrinsically dynamic system.

This chapter explores large amplitude motion (LAM) of the unhindered methyl rotor in

nitromethane, CH3NO2. Section 3.1 introduces the basic rovibrational models for such an internal

rotor. We then report the first high resolution spectra of the CH stretch region near 3 µm in

Section 3.2, including DC Stark measurements that reveal internal-rotation-induced “intramolecular

alignment.” The CH stretch vibrations are particularly complex as they couple small amplitude
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vibrational angular momentum with both total and internal rotation. Section 3.3 presents reduced

dimension rovibrational calculations to better understand this intricate network of coupling. These

calculations provide a useful, but still qualitative, physical picture of the internal rotation dynamics.

Motivated by the lack of accurate and efficient quantitative methods for predicting the rovibrational

structure of non-rigid molecules like CH3NO2, we have developed an ab initio method based on

curvilinear vibrational Møller-Plesset perturbation theory [51]. This technique and its successful

treatment of CH3NO2 are discussed in 3.4. This approach has proved to be a powerful tool for ab

initio high resolution spectroscopy of non-rigid molecules in general, and we discuss several of its

other recent applications later in Chapter 7.

3.1 Internal rotation in CH3NO2

Nitromethane contains a −CH3 methyl group centrally bonded to an −NO2 nitro group,

making it the simplest organic nitro compound. With seven atoms, nitromethane has fifteen internal

degrees of freedom, including fourteen small amplitude vibrations and one internal rotation angle,

ρ (see Fig. 3.1a). The MIR frequency comb spectrum probes a subset of the small amplitude

vibrations. Before considering these high energy excitations, we first review the structure of the

low energy torsional and rotational degrees of freedom.

3.1.1 Pure torsion level structure

The simplest effective Hamiltonian describing the internal rotation, or torsion, motion is

Ht = FJ2
ρ + V (ρ). (3.1)

The kinetic energy term FJ2
ρ contains the torsional angular momentum operator Jρ = −i∂ρ and

the inverse moment of inertia constant F = ~2/2Iρ. Iρ is the reduced moment of inertia of the

two coupled CH3 and NO2 rotors about the internal rotation axis, which is coincident with the

principal a axis. Given ICH3/INO2 < 0.1, we expect Iρ ≈ ICH3 , and therefore F to be similar to the

B constant of CH4. Indeed, microwave spectroscopy has measured F = 5.56 cm−1 [52, 53], while
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Figure 3.1: Internal rotation in CH3NO2. (a) The CH3 methyl group rotates about the CN
bond by the internal rotation angle ρ. The a and b principal axes, which lie in the plane of the
CNO2 frame, are shown. (b) The internal rotation potential energy curve has six-fold symmetry
and a small barrier height of about 2 cm−1. The energy levels are described approximately by the
particle-on-a-ring expression Em = Fm2, where m = 0,±1,±2, . . . is the internal rotation quantum
number. The rotor F constant is about 5 cm−1. The degeneracy of the |m| = 3n (n > 0) levels is
broken by the six-fold internal rotation barrier.

the B constant of CH4 is 5.24 cm−1 [54].

In the completely unhindered limit, the torsional potential V (ρ) = 0. Ht then becomes

equivalent to a particle-on-a-ring model containing only the kinetic energy term. Requiring 2π-

periodicity in ρ, the eigenfunctions of the J2
ρ operator are the simple exponentials,

|m〉 =

√
1

2π
eimρ, (3.2)

where the m is the torsion quantum number with m = 0,±1,±2, . . .. The eigenenergies are

Em = Fm2, (3.3)

such that states with |m| > 0 are doubly degenerate, reflecting the equivalence of clockwise and

counter-clockwise torsion (Fig. 3.1b). In reality, the torsion potential is non-zero. Symmetry
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considerations [18] require that it have six-fold symmetry in ρ,

V (ρ) =
V6

2
cos(6ρ) +

V12

2
cos(12ρ) + . . . , (3.4)

where lowest order coefficient V6 is dominant, and the remaining terms can be ignored. The cos(6ρ)

operator serves to couple torsional levels with ∆m = ±6, breaking the degeneracy of |m| = 3n

pairs. The m = ±3 states, in particular, split into non-degenerate (|m = +3〉 + |m = −3〉) and

(|m = +3〉−|m = −3〉) linear combinations separated in energy by 2×〈m = +3|V |m = −3〉 = V6/2.

Measurement of this energy difference yields an effective barrier height of V6 = 2.10 cm−1 [53].

Except for the m = ±3 case, the ∆m = ±6 energy level differences are large relative to the small

V6 barrier height. Thus, the energy structure still closely resembles a free unhindered rotor, and m

remains an approximately good quantum number. Fig. 3.1b shows the V6 potential to scale with

the particle-on-a-ring energy levels.

3.1.2 Rotation-torsion level structure

Rotation of the entire molecular frame leads to a combined rotation-torsion effective Hamil-

tonian,

H = Hr +Ht +Hrt, (3.5)

where Hr is the asymmetric top rigid rotor Hamiltonian,

Hr = AJ2
a +BJ2

b + CJ2
c , (3.6)

Ht is as above, and the rotation-torsion coupling term is

Hrt = −2A′JρJa. (3.7)

The A, B, and C constants are equal to the inverse of the effective moments of inertia about

the principal a, b, and c axes (see Fig. 3.1a) with one modification: the effective A constant only

includes the a-axis moment of inertia of the CNO2 frame and ignores that of the methyl hydrogen

atoms. This arises because the methyl top and the heavy atom frame rotate freely with respect
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to each other [52, 55]. The rotation-torsion term Hrt accounts for Coriolis coupling between the

a-axis component of the total angular momentum, Ja, and the torsion angular momentum, Jρ.

The coupling coefficient A′ is equal to A in the rigid top limit (i.e. when all vibrations other than

the torsion are frozen). In the actual non-rigid case, perturbative contributions from the small

amplitude vibrations lead to a small difference between A and A′ [53].

A convenient zeroth order basis for describing the combined rotation-torsion motion is a direct

product of symmetric top rotational wavefunctions, |J, ka〉, and the torsional wavefunctions, |m〉

(Eq. 3.2). J is the total angular momentum quantum number, and ka = −J, . . . ,+J is its projection

on the body-fixed a axis. The symmetric top rotational factor obeys the usual eigenvalue relations,

J2|J, ka〉 = J(J + 1)|J, ka〉, (3.8)

Ja|J, ka〉 = ka|J, ka〉, (3.9)

where J2 = J2
a + J2

b + J2
c . Ignoring the small torsional potential V (ρ), we can rewrite the rotation-

torsion Hamiltonian (Eq. 3.5) as

H = FJ2
ρ − 2A′JaJρ +

(
A− B + C

2

)
J2
a +

B + C

2
J2 +

B − C
2

(
J2
b − J2

c

)
. (3.10)

These five terms are written in order of approximately decreasing magnitude (F ∼ 5 cm−1, A′, A ∼

0.4 cm−1, B ∼ 0.35 cm−1, C ∼ 0.2 cm−1). The zeroth order rotation-torsion wavefunctions

|J, ka〉|m〉 are eigenfunctions of each term in H except for the last term proportional to
(
J2
b − J2

c

)
.

If we neglect this so-called asymmetry term, then the eigenenergies are

E(J, ka,m) = Fm2 − 2A′kam+

(
A− B + C

2

)
k2
a +

B + C

2
J(J + 1). (3.11)

Note that in this limit there is a two-fold degeneracy between levels with (ka,m)↔ (−ka,−m).

Torsional levels of a given value of |m| can be treated approximately separately from each

other, with each supporting an independent manifold of rotational sub-levels. The ground torsional

state, m = 0, behaves like a normal asymmetric top (albeit with a larger than expected A constant

as discussed above) because the terms involving Jρ are zero. Its low-J energy patterns are illustrated
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in Fig. 3.2a. The asymmetry term mixes states with ∆ka = ±2 and splits the two-fold degeneracy

for states with |ka| > 0.
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Figure 3.2: Rotational energy levels for the m = 0,±1 torsional states. (a) In the m = 0 torsional
ground state, nitromethane behaves like a normal asymmetric top. For low J values, the energy
manifold is organized by the magnitude of the ka quantum number. The asymmetry term splits the
two-fold ±ka degeneracy. (For clarity, the figure shows the total energy minus J(J+1)×(B+C)/2.)
(b) In the m = ±1 torsional states, Coriolis coupling organizes the rotational manifold by the
product m × ka. Each energy level here is two-fold degenerate. Spin statistics of the two 16O
atoms mandate that only levels with ka +m = even exist when all small amplitude vibrations are
in their ground state. Therefore, in (a) only |ka| = 0, 2, 4, . . . states are shown, and in (b) only
|ka| = 1, 3, 5, . . . states are shown.

Excited torsional states, which have |m| > 0, have non-zero torsional angular momentum.

Their energies are largely organized by the product of m and ka because of the Coriolis coupling

term ∝ JaJρ. An example for the |m| = 1 manifold is shown in Fig. 3.2b. Here, the asymmetry

term does not split the two-fold degeneracy. This qualitative physical difference between the m = 0

and |m| > 0 manifolds, i.e. that the former is dominated by asymmetry splittings and the latter by
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Coriolis splittings, has important effects on fundamental observables such as the lab frame dipole

moment. We will examine this effect more closely in Section 3.2.

3.1.3 Symmetry, spin statistics, and selection rules

Characterizing the symmetry properies of the vibration-rotation-torsion states is necessary to

predict nuclear spin degeneracy factors and infrared selection rules. Standard point group analysis

is inadequate for treating the non-rigid molecules such as nitromethane, and we must use the more

general molecular symmetry (MS) group, or Longuet-Higgins group, based on nuclear permutation-

inversion operations [18]. Let the three hydrogen nuclei be labeled as H1, H2, and H3, and the two

oxygen nuclei as O4 and O5. The MS group appropriate for nitromethane is generated by three

symmetry operations:

• (123), the cylic permutation of H1, H2, and H3

• (23)∗, the permutation of H2 and H3, followed by inversion of all coordinates (nuclear and

electronic) through a space-fixed origin

• (45), the permutation of O4 and O5

The group formed by products of these generators is called G12. (It contains a total of twelve

operations.) The group character table can be found in Table A-24 of Ref. [18]. G12 is isomorphic

to the D3h point group, and the same labels are used for their irreducible representations (irreps).

There are four non-degenerate irreps: A′1, A′′1, A′2, and A′′2. The 1/2 label gives the character under

(23)∗ (+1 and −1, respectively), while the ′/′′ label gives the character under (45). The two doubly

degenerate irreps are E′ and E′′, which have a similar meaning for the ′/′′ labels.

Using standard group theory procedures [18], one can show that the symmetric top rotational

wavefunctions, |J, ka〉, with ka = even span the A′1 ⊕ A′2 irreps, while those with ka = odd span

A′′1 ⊕ A′′2. The symmetries of the torsional wavefunctions are determined by the transformation
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properties of the torsion angle ρ, which are

(123)ρ = ρ− 2π/3,

(23)∗ρ = 2π − ρ, (3.12)

(45)ρ = ρ+ π.

The irreps of the |m〉 wavefunctions, Eq. 3.2, are summarized in Table 3.1. The combined torsion-

rotation symmetry species is determined by the direct product of the individual torsion and rotation

irreps.

Table 3.1: Symmetry species of torsional wavefunctions of nitromethane in the G12 MS group. (n
is a non-negative integer.)

|m| |m〉 irrep.

0 A′1
6n± 1 E′′

6n± 2 E′

6n+ 3 A′′1 ⊕A′′2
6n+ 6 A′1 ⊕A′2

We can now examine the nuclear spin weights of the normal isotopologue 12CH3
14N16O2.

Following section 8.4.1 of Ref. [18], the nuclear spin degeneracy ratios are 1 : 1 : 1 : 0 : 0 : 0 for

rovibronic symmetries A′1 : A′2 : E′ : A′′1 : A′′2 : E′′. The exclusion of ′′ species occurs because

these are antisymmetric with respect to the (45) operation (permutation of the two 16O nuclei,

which are spin-0 bosons). Given that the ground states of the electronic and small amplitude

vibrational degrees of freedom are all totally symmetry (A′1), the net result is that ka +m must be

even (see Fig. 3.2). In vibrationally excited states that transform as A′′1, A′′2, or E′′, we must have

ka +m = odd.

Using a suitable choice of internal coordinates (see section 15.4.2 of Ref. [18]), the fourteen

small amplitude vibrations have symmetry species

Γvib = 5A′1 ⊕ 5A′′1 ⊕ 4A′′2. (3.13)

Each of these three irreps is IR active. A′1, A′′1, and A′′2 modes have a-, b-, and c-type rotational
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selection rules, respectively, as well as a strong ∆m = 0 selection rule. A summary of the small

amplitude vibrational modes is provided in Table 3.2. The infrared spectra of the ν2, ν6, and ν7

bands have been previously studied at high resolution [56–60].

Table 3.2: Small amplitude vibrations of nitromethane. The mode labeling follows the convention
of Ref. [18].

Mode Description Symmetry Frequency (cm−1)

ν1 Sym. CH stretch A′1 2974a

ν2 CN stretch A′1 918a

ν3 Sym. NO stretch A′1 1397a

ν4 Sym. CNO bend A′1 657a

ν5 Sym. NCH bend A′1 1380a

ν6 Asym. NO stretch A′′1 1584a

ν7 In-plane NO2 rock A′′1 475a

ν9 Out-of-plane NO2 wag A′′2 605a

ν10i,o In-plane and out-of-plane CH stretches A′′1 ⊕A′′2 3042, 3076b

ν11i,o In-plane and out-of-plane HCH bends A′′1 ⊕A′′2 1100, 1131c

ν12i,o In-plane and out-of-plane NCH bends A′′1 ⊕A′′2 1423c

a Ref. [61]
b Ref. [62]
c Ref. [63]

3.2 High resolution spectra of CH3NO2 in the 3.3 µm region

3.2.1 Experimental setup and survey spectrum

We acquired CE-DFCS absorption spectra of nitromethane using the MIR OPO comb with

FTS and VIPA detection (see Sections 2.1.1, 2.4.1, and 2.4.2). Cold gas-phase nitromethane sam-

ples were prepared with the low-temperature CBGC refrigerator, which provided rotational and

translational temperatures of 11(1) K and 16(1) K, respectively (Fig. 2.10c,d). Two copper elec-

trodes were installed in the cold cell for Stark effect measurements (Fig. 3.3) with DC electric fields

up to 400 V/cm parallel to the cavity axis.

Figure 3.4 shows a 150-cm−1 wide survey spectrum of nitromethane from 2940 cm−1 to

3090 cm−1 (3.2 µm to 3.4 µm). This region is dominated by the strong ν3 + ν6 combination

band near 2950 cm−1. The symmetric CH stretching mode occurs near 2975 cm−1, while the
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Figure 3.3: DC electrode geometry in the cold cell. A copper electrode is placed on each of the two
cold cell walls perpendicular to the cavity axis. Sapphire discs electrically insulate the electrodes
from the cell wall. A thin piece of indium is placed on either side of each sapphire disc to improve
the thermal contact. Ceramic screws (not shown) are used to mount the electrodes, which generate
a DC electric field up to 400 V/cm parallel to the cavity axis. The apertures in the electrode
plates (ca. 1 cm diameter) and the finite extent of the plates themselves lead to a ∼ 10% field
non-uniformity along the cavity axis.

two components of the asymmetric CH stretching mode, out-of-plane and in-plane, appear near

3055 cm−1 and 3085 cm−1, respectively. Even at low rotational temperatures, this region contains

thousands of individual rovibrational transitions above the noise baseline. The following sections

discuss each vibrational band in more detail.

3.2.2 The ν3 + ν6 combination band

The ν3 + ν6 combination band involves simultaneous excitation of the symmetric and anti-

symmetric NO stretching modes. The excited state has A′′1 vibrational symmetry leading to b-type

transitions with ∆Ka = ±1,±3, · · · , ∆Kc = ±1,±3, · · · , and ∆m = 0 rotation-torsion selection

rules. Using ground state combination differences derived from microwave data [52, 55], we have

assigned several hundred transitions with |m| ≤ 1. A full line list is included in Appendix A.
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Figure 3.4: Absorption spectrum of nitromethane near 3.3 µm. This region is includes the ν3 + ν6

(sym. NO + asym. NO stretch) combination band as well as the ν1 (sym. CH stretch) and ν10 (in-
plane and out-of-plane asym. CH stretch) fundamental transitions. The inset shows well resolved
rotational fine structure of a small portion of the ν1 band.

The m = 0 transitions are the simplest to analyze as the associated energy levels are struc-

tured like a semi-rigid asymmetric top. Upper state term values (energies) were calculated using

the measured transition frequencies and lower state rotation-torsion energies derived from previous

studies [52,55]. A reduced term value plot is shown in Fig. 3.5, where a number of perturbations can

be observed. For the JKaKc = 313, 312, 413, 514, and 616 states, the transition is split into a doublet,

with two components of similar IR intensity. This indicates that there is complete mixing of each

zeroth order bright state with a perturbing dark state. The magnitudes of the splittings range from

0.14 cm−1 to 0.18 cm−1, which correspond to the value of the interaction matrix element. Given

the high density of background dark states in this region of the spectrum, it is difficult to identify

the character of the perturbing dark state.

Excluding the perturbed doublets, the remaining upper state term values were fitted to the
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standard Watson A-reduced Hamiltonian (Ir representation) [64]:

Ĥ = ν0 +AJ2
a +

B + C

2

(
J2 − J2

a

)
+
B − C

4

(
J2

+ + J2
−
)
−∆JJ4 −∆JKJ2J2

a

−∆KJ
4
a −

1

2

[
δJJ2 + δKJ

2
a , J

2
+ + J2

−
]
+
, (3.14)
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where J± = Jb ± iJc and [· · · , · · · ]+ is an anti-commutator. This m = 0 Hamiltonian contains the

non-torsion-dependent terms of the full torsion-rotation Hamiltonian, Eq. 3.10, along with the usual

quartic centrifugal distortion terms [64]. The results of the least-squares fit for this Hamiltonian

are shown in Table 3.3, with the corresponding energy eigenvalues shown as solid curves in Fig. 3.5.

Due to the relatively low J values (J ≤ 8) accessed in the cold spectrum, only the principal

rotational constants (A, B, C) were fitted, with the quartic centrifugal distortion constants held

fixed to their ground state values. Table 3.3 lists the rotational constants for the ground state [55]

and ν6 fundamental [58] for comparison with the ν3 + ν6 values measured in this work. The fit

error for the ν3 + ν6 band is about 5× worse than for the ν6 fundamental, suggestive of residual

perturbations. There is a significant negative shift of the A, B, and C constants of ν3 + ν6 relative

to both the ground state and the ν6 fundamental. This effect can also be quantified by the inertial

defect ∆i = Ic − Ia − Ib, where Iα is the effective moment of inertia about the α = a, b, c principal

axis. ∆i changes from +0.203 uÅ2 in the ground state to −0.330 uÅ2 in the ν3 + ν6 level. Such

a large negative shift is consistent with an increase in the effective torsional barrier [65], as the

methyl group becomes “locked-in” with respect to the C–NO2 plane.

Table 3.3: Effective Hamiltonian fit for m = 0 levels of ν3 + ν6. All parameters are given in cm−1.
Those in brackets [· · · ] are held fixed to their ground state values. RMSE is the root-mean-square
fit residual. The inertial defect, ∆i = Ic − Ia − Ib, is given in uÅ2.

Parameter Ground statea ν3 + ν6
b ν6

c

ν0 0 2952.6854(45) 1583.81163(20)
A 0.445037 0.43990(18) 0.4449620(33)
B 0.351722 0.34772(30) 0.3516825(26)
C 0.195994 0.19495(14) 0.1960255(9)
∆J × 106 0.2048 [0.2048] 0.2431(23)
∆JK × 106 0.5921 [0.5921] 0.6822(103)
∆K × 106 −0.2515 [−0.2515] −1.5701(93)
δJ × 106 0.08229 [0.08229] 0.0717(11)
δK × 106 0.52536 [0.52536] 0.4573(34)
RMSE — 0.0110 0.0023

∆i +0.203 −0.330 +0.177
a Ref. [55]
b This work
c Ref. [58]
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We identified several |m| = 1 transitions in addition to those with m = 0. These assignments

were facilitated by observation of their characteristic DC Stark effects. Fig. 3.6 shows an example

of the different patterns for m = 0 vs. m = ±1 states. In the m = 0 case, the states involved

are non-degenerate and have a vanishing dipole expectation value, 〈~̂µ〉 = 0. Their DC Stark shifts

rely on dipole coupling to other non-degenerate states, leading to a quadratic effect. The m = ±1

states are doubly degenerate, and each pair can be chosen to have non-zero 〈~̂µ〉 of opposite sign,

leading to a linear effect that splits each transition symmetrically into two components.

This effect can be understood in detail by considering the relative sizes of the asymmetry term

∝ (J2
b −J2

c ) and the Coriolis coupling term ∝ JaJρ in the rotation-torsion Hamiltonian, Eq. 3.10, for

different rotation-torsion states. Consider, for example, the six rotation-torsion basis states |m, k〉

for m = 0,±1 and k = ±1, which we abbreviate as |0,+〉, |+,+〉, |−,+〉, etc. Neglecting both the

asymmetry term and the Coriolis coupling term, these states separate into two groups according

to the value of |m|: a doubly degenerate set for m = 0 and a quadruply degenerate set for m = ±1

(Fig. 3.6c). The Coriolis term, −2A′JaJρ, splits the m = ±1 quartet into two degenerate pairs

according to the relative sign of m and ka: |+,−〉 with |−,+〉 and |+,+〉 with |−,−〉. It has no

effect on the m = 0 pair because the eigenvalue of Jρ is zero. On the other hand, the asymmetry

term, B−C2 (J2
b −J2

c ), has a ∆ka = ±2 selection rule and mixes states with ka = +1↔ −1 leading to

non-degenerate linear combinations 1√
2

(|m,+〉+ |m,−〉) and 1√
2

(|m,+〉 − |m,−〉) for each value

of m.

In the total Hamiltonian, competition between the Coriolis and asymmetry terms leads to

the different character of the m = 0 and m = ±1 eigenstates. For m = 0, the Coriolis term is

“turned off,” so the final eigenstates have the asymmetry doublet structure with equal mixtures

of ka = +1 and ka = −1 character. For m = 1, both Coriolis and asymmetry effects are present,

but the former is dominant. (2A′ is an order of magnitude larger than (B − C)/2.) The m = ±1

eigenstates therefore have largely pure ka character of either +1 or −1. The Stark effect operator

~̂µ · ~E has matrix elements (for ∆J = 0) of the form 〈m′, k′a|~̂µ · ~E|m, ka〉 ∝ µakaδkak′aδmm′ [66],

where µa is the permanent body-frame a-axis dipole moment. The diagonal matrix element of
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Figure 3.6: DC Stark effect patterns in nitromethane. (a) The JKa = 55 ← 44 (m = 0) parity
doublet transitions in zero field (black) and 250 V/cm (red). The simulated spectrum is based on
the experimental effective Hamiltonians and a permanent body-frame dipole moment of µa = 3.46
Debye [66]. (b) The Jτ = 21 ← 31 (m = 1) transition splits symmetrically and linearly under an
applied field. (c) Competition between Coriolis coupling and asymmetry splitting leads to different
DC Stark effects for m = 0 and m = ±1 torsion-rotation states, |m, ka〉. See text for details.
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the asymmetry doublet states for m = 0 have contributions that cancel exactly, leading to zero

first-order effect. The diagonal matrix elements of the Coriolis-split states for m = ±1 are non-zero,

leading to a linear DC Stark shift.

The essential physics is that Coriolis coupling between the internal torsion motion and the

total-body rotation leads to an internal alignment of angular momentum in the body-fixed frame,

analogous to rotational motion of a symmetric top. In the absence of Coriolis coupling, the asym-

metry term quenches this alignment, as in any ordinary semi-rigid asymmetric top. This is an

example of the unique effects associated with large amplitude motion in polyatomic molecules.

The number of observed |m| = 1 transitions is too small to perform a complete rotational

fit due to the cold experimental temperatures. The subset of observed levels, however, already

indicates there is significant disruption of the rotation-torsion structure in the excited ν3 + ν6

state compared to the ground state. For example, Fig. 3.7 compares the observed m = 0 and

|m| = 1 upper state energies with calculated predictions based on the ground state rotation-torsion

parameters, including the kinetic energy parameter F , the Coriolis coupling constant A′, and the

six-fold torsion barrier height V6. The m = 0 levels are the same as in Fig. 3.5 and show good

agreement with the empirical effective Hamiltonian. This is not the case for the observed |m| = 1

levels, which all belong to the mka ≈ +2 branch. These energies exhibit a downward shift relative

to the predictions, with an average difference of about 0.7 cm−1 for the higher J values. This is

evidence of one of several possibilities in the excited vibrational state: (i) it has a higher barrier to

internal rotation, which lowers all |m| = 1 energies; (ii) it has a significantly larger Coriolis constant

A′, which pushes ±mka branches further apart; or (iii) there is some interloping dark state repelling

the observed states downward. Reduced dimension torsion-rotation calculations, discussed below

in Sec. 3.3, providing compelling quantitative evidence for case (i).
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weight.) The observed |m| = 1 levels show a substantial discrepancy with the predictions calculated
using ground state rotation-torsion parameters.
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3.2.3 CH stretching modes

All three CH stretching modes of CH3NO2 are IR active. The totally symmetric A′1 mode ν1 is

the strongest and has the lowest frequency, with a band origin near 2975 cm−1. The two asymmetric

modes are the out-of-plane component ν10o near 3055 cm−1 and the in-plane component ν10i near

3085 cm−1. The identification of out-of-plane vs. in-plane can be made by the spectroscopic

signatures of the two resulting vibrational symmetries [62]. The out-of-plane mode hasA′′2 symmetry

and therefore c-type rotational selection rules, resulting in dense Q-branch transitions near the band

origin (clearly visible in the survey spectrum, Fig. 3.4). The in-plane mode has A′′1 symmetry with

b-type rotational selection rules and lacks such a strong Q-branch feature.

In total, we have identified nearly a thousand individual rovibrational transitions in the

three bands. Less than 10% of these, however, have been successfully rotationally assigned via

ground state combination differences. Complex zeroth order structure and seemingly widespread

perturbations are reponsible for this low fraction of assignments, line lists for which are provided

in Tables A.3–A.4 (see Appendices).

For the ν1 band, we identified P and R branches accessing the upper state K ′a = 0e manifold

and P, Q, and R branches accessing the K ′a = 2f manifold (Fig. 3.8). These transitions provide

sufficient data to fit the band origin and the rotational constants A and (B+C) for the ν1 state (for

m = 0). The results of this fit are summarized in Table 3.4. There is a substantial (6%) decrease

in the effective A parameter. As with ν3 + ν6, this may be evidence of a corresponding increase in

the effective torsional barrier height. However, given that only two K ′a manifolds are being fitted

to, it is unclear how significant this value is. Moreover, the relatively high fit residuals (RMSE

= 0.066 cm−1) suggest there are important interactions unaccounted for, likely involving |m| > 0

states. Although the DC Stark spectra have revealed many |m| > 0 transitions, their assignment

has thus far remained elusive.

The m = 0 transitions of the out-of-plane CH stretch band ν10o proved easier to assign

than those for ν1. Upper state energies were obtained for K ′a ≤ 5 (both parity components) and
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Figure 3.8: Assigned transitions of the ν1 (m = 0) band of CH3NO2. The P/Q/R branches are
labeled with tie lines, where the superscript denotes the upper state Ka quantum number and the
usual e/f parity label. (All transitions follow an a-type ∆Ka = 0 selection rule.)

Table 3.4: Rotational parameters of the ν1 and ν10o (m = 0) bands of CH3NO2. All values are
given in cm−1. The difference B − C was constrained to the corresponding ground state value for
the ν1 fit. Quartic centrifugal distortion terms were included for all states, but held fixed to their
ground state values (see Table 3.3).

Parameter Ground statea ν1
b ν10o

b

ν0 0 2973.35(3) 3053.08(2)
A 0.445037 0.4187(71) 0.4602(19)
B 0.351722 0.3521(7) 0.3520(17)
C 0.195994 0.1963(7) 0.1944(13)
RMSE — 0.066 0.055
a Ref. [55]
b This work.

J ′ ≤ 6, permitting a fit of all three effective rotational constants (Table 3.4). The fit residuals

for this state are large (RMSE = 0.055 cm−1) and similar to those of ν1. As above, this suggests

that certain interactions are unaccounted for in the effective Hamiltonian. For the ν10 modes,
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in particular, torsionally mediated interactions are expected to be important because the torsion

motion transforms the in-plane and out-of-plane coordinates into each other, resulting in strong

Coriolis-like coupling [62,65].

The in-plane CH stretch band ν10i exhibits the most complicated spectrum of all those con-

sidered in this chapter. Using ground state combination differences, we have assigned transitions to

several m = 0 upper states. The resulting upper state energies, however, bear little resemblance to

the expected rigid asymmetric top zeroth order structure and no attempt at fitting them has been

successful. We speculate that the rotation-torsion structure here is even more severely perturbed

by torsion-vibration interactions than for the lower-energy out-of-plane band. This is because the

in-plane component is near-resonant with |m| > 0 states (and excited rotational states) of the out-

of-plane component, leading to a severe reorganization of the zeroth order structure. We examine

these dynamics further with model calculations in the next section.

3.3 Reduced-dimension calculations of the rotation-torsion structure and

CH stretching vibrations

Under the Born-Oppenheimer approximation, rotation-vibration energies correspond to the

eigenvalues of the nuclear motion Hamiltonian Hnuc. Calculating the eigenvalues (and eigenfunc-

tions) of Hnuc is a highly non-trivial task as the computational expense in general grows exponen-

tially with the number of degrees of freedom. One way to address this problem is to consider a

simpler, reduced-dimension Hamiltonian Hred obtained by “freezing” a subset of degrees of free-

dom, i.e. constraining certain nuclear coordinates to fixed values. The spectrum of Hred can be

computed efficiently and accurately at the cost of approximating the dynamics of the full molecular

system. For cases in which the active and constrained degrees of freedom are approximately sep-

arable, reduced dimension approaches are a useful means for understanding zeroth order nuclear

motion dynamics. In this section, we take advantage of reduced-dimension models to interpret the

observed spectroscopic signatures of internal rotation and CH stretching vibrational dynamics in

CH3NO2.
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3.3.1 Method overview

The first step of a reduced-dimension calculation is to construct the appropriate Hamiltonian,

Hred = T + V (q), (3.15)

where T is the reduced-dimension kinetic energy operator (KEO) and V (q) is the nuclear potential

energy surface (PES). We defer a detailed discussion of calculating the KEO for Chapter 7. For

now, we simply assert that we can obtain a numerically exact KEO for arbitrary reduced-dimension

models with general curvilinear coordinates including all vibration, rotation, and Coriolis contri-

butions. The PES V (q) is a scalar function of the coordinates included in the reduced-dimension

calculation. It can be obtained by fitting a surface to a set of energies obtained by a some electronic

structure method or by constructing a simple model potential.

Once Hred is specified, its eigenvalues and eigenfunctions are computed variationally by diag-

onalizing its matrix representation in a suitably large basis set. We accomplish this with large-scale

iterative eigensolver methods [67] in combination with direct-product grid discrete variable repre-

sentation basis sets [68]. Again, the details of these methods can be found in Chapter 7. For the

problem sizes considered here, these techniques provide numerically exact energies and wavefunc-

tions for the Hred models of interest.

3.3.2 Effect of the torsion barrier height on torsion-rotation energies

The rotational analysis of the ν3 + ν6 combination band (Section 3.2.2) revealed two related

facts. First, the effective A constant of the excited vibrational state is 1.2% smaller than that of

the ground state (a relatively large shift). Second, the (|m| = 1)− (m = 0) energy difference in the

excited vibrational state is about 0.7 cm−1 smaller than in the ground state. Both of these effects

can be explained by an increase in the effective torsional barrier height in the excited vibrational

state. Are the effective barrier heights inferred from these shifts mutually consistent? Reduced-

dimension calculations can help us answer this question.

We consider a (1+3)-dimensional model that includes the torsion angle ρ (see Fig. 3.1) and
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the three body-frame rotations. The remaining fourteen small amplitude internal coordinates are

held fixed to their (ρ-averaged) equilibrium values. The PES V (ρ) is only dependent on the torsion

angle ρ and is represented with a single six-fold term (see discussion above):

V (ρ) =
V6

2
cos(6ρ), (3.16)

where V6 is the internal rotation barrier height. For a given value of V6, we calculate the reduced-

dimension torsion-rotation energies and extract the lowest torsion excitation energy E(1− 0) and

the effective rotational A constant. Figure 3.9 shows the barrier height dependence of these two

observables from a series of such calculations. The plots are normalized to their free internal

rotation limit (V6 = 0). Each curve shows a similar sigmoidal transition. The torsion excitation

energy E(1 − 0) starts at the free value determined by the torsion F constant (5.6 cm−1) and

becomes exponentially small as the rotor moves into the high-barrier tunneling limit. The effective

rotational A constant starts as the inverse moment of inertia of the NO2 frame and changes to that

of the entire CH3NO2 molecule as the torsion becomes locked in the high-barrier limit. The ratio

of these two moments of inertias is equal to the limiting value of A/Afree ≈ 0.92. The turnover

of both curves occurs when the barrier height becomes equal to the energy difference between the

m = 0 ground state and the m = ±6 excited states, which are the first that the six-fold potential

can couple to the m = 0 state. Thus, we expect the turnover at V6 ∼ F × 62 ≈ 200 cm−1.

The two barrier-dependence curves allow us to correlate changes in the torsional excitation

energy with changes in the rotational A constant. In the ground vibrational state, the effective V6

parameter equals 2.10 cm−1 [53], such that the torsion energy and A are approximately equal to

their free-rotor-limit values. In the excited ν3 + ν6 vibrational state, A decreases to a relative value

of

Aν3+ν6

Afree
≈ Aν3+ν6

A0
=

0.43990 cm−1

0.44504 cm−1
≈ 0.988

(see Table 3.3). This value is marked as a horizontal dashed line in the bottom plot of Fig. 3.9.

The corresponding effective barrier height is V6 ≈ 117 cm−1, marked as vertical dashed line in
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Figure 3.9: Torsion excitation energy and rotational A constant as a function of the effective
barrier height V6. The dependence of each observable is shown normalized to its value in the free
rotor limit (V6 = 0). The observed value of A/Afree = 0.988 for the ν3 + ν6 vibrational state is
marked with a horizontal dashed line (bottom plot). The corresponding effective barrier height is
V6 = 117 cm−1. This implies a decrease of the torsion excitation energy to 0.84 times its free rotor
value (top plot).

the same plot. Given this V6 value, we expect the torsional excitation energy to decrease to 0.84

times its free rotor (ground state) value, i.e. to shift down by (1− 0.84)× F0 ≈ 0.89 cm−1, where

F0 ≈ 5.56 cm−1 is the ground state internal rotor constant [53]. This value is in reasonably good

agreement with the experimental |m| = 1 energy shift of 0.7 cm−1 in the ν3 + ν6 vibrational state.

One can conclude that the observed torsion-rotation parameters for ν3 + ν6 are roughly consistent
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with an increase in the effective barrier height V6 to slightly more than 100 cm−1, placing it within

the intermediate region between the low- and high-barrier limits.

3.3.3 Torsion-mediated coupling of the CH stretch vibrations

We can extend the (1+3)-D torsion-rotation calculation by adding the three CH bond length

coordinates, r1, r2, and r3, to model the CH stretching vibrations (see Fig. 3.10) and to understand

the torsion-mediated interactions between them. The PES is now a function of ρ and the three

bond lengths. To ensure the PES has proper permutational symmetry, it is convenient to introduce

symmetrized bond length coordinates,

q1 =
1√
3

(r1 + r2 + r3) ,

q10a =
1√
6

(2r1 − r2 − r3) , (3.17)

q10b =
1√
2

(r2 − r3) .

The q1 coordinate is totally symmetric (A′1) and corresponds to the ν1 mode. q10a and q10b transform

as a degenerate E′ pair. They describe asymmetric CH stretching motions that have a fixed

orientation relative to the local CH3 frame. We must perform a ρ-dependent transformation to

generate “in-plane” and “out-of-plane” coordinates [18],

q10i = q10a cos ρ− q10b sin ρ,

q10o = q10a sin ρ− q10b cos ρ. (3.18)

The in-plane coordinate q10i transforms as A′′1, and the out-of-plane coordinate q10o transforms as

A′′2. These correspond to the ν10i and ν10o vibrational modes, respectively. Using these coordinates,

we define a model 4-D torsion-vibration PES as

V =
V6

2
cos(6ρ) +

1

2
k1q

2
1 +

1

2
k10iq

2
10i +

1

2
k10oq

2
10o. (3.19)

The V6 parameter is chosen to equal the ground state value of 2.1 cm−1. The three force constants

k1, k10i, k10o are tuned to match the reduced-dimension vibrational frequencies to the experimental

anharmonic frequencies.
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Figure 3.10: CH bond length coordinates for nitromethane. The three stretching coordinates r1,
r2, and r3 are defined as the respective C−Hi internuclear distances. ρ = 0 is defined as the C−H1

bond being parallel to the O−N−O plane. (The N atom is eclipsed by the C atom in the drawing.)

The calculated vibration-torsion manifolds for the three CH stretching modes are shown

in Fig. 3.11a. The m = 0 levels are the pure vibrational energies of the three modes: symmetric

stretch (black), out-of-plane stretch (blue), and in-plane stretch (red) in increasing energy order. For

each vibrational state there is a progression of excited torsional sub-levels whose energies increase

quadratically with m. This quadratic dependence is nearly perfect for the symmetric stretch, while

the two asymmetric stretches show deviations. These are more clearly seen in Fig. 3.11b, where the

nominal Fm2 torsion energy contribution has been subtracted (with F ∼ 5.6 cm−1 as expected).

The repulsive pattern between the in-plane and out-of-plane manifolds can be modeled with a

simple Hamiltonian in the vibrational angular momentum basis. Define the |+〉 and |−〉 vibrational

states as

|±〉 =
1√
2

(|ν10i〉 ± i|ν10o〉) , (3.20)

and the vibrational angular momentum operator Λ̂ such that

Λ̂|±〉 = ±|±〉. (3.21)
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Figure 3.11: Reduced-dimension torsion-vibration energies of the CH stretching modes of ni-
tromethane. (a) The absolute torsion-vibration energies are plotted for the symmetric stretch
(black), out-of-plane asymmetric stretch (blue), and in-plane asymmetric stretch (red) vibrational
modes as a function of the torsion quantum number m. The dashed curves are the fitted model
Hamiltonian eigenenergies, Eq. 3.24. (b) The same as (a) with the pure torsion energy contribution
Fm2 subtracted away.

This vibrational angular momentum is a result of small orbital motions of the H atoms about

their local equilibrium positions. It is distinct from the angular momentum associated with large

amplitude motion of the entire methyl rotor unit. Now consider the following Hamiltonian,

H = ω +
δω

2

(
|+〉〈−|+ |+〉〈−|

)
+ F Ĵ2

ρ + ζρΛ̂Ĵρ. (3.22)

ω is the mean vibrational frequency of the two asymmetric modes. δω describes the static interaction

of the methyl top with the NO2 group, which breaks the degeneracy of the in-plane vs. out-of-plane

frequencies. The F Ĵ2
ρ term is the usual kinetic energy contribution of the methyl rotor. The last

term ζρΛ̂Ĵρ accounts for coupling between the small-amplitude vibrational angular momentum and

the large amplitude torsional angular momentum. This is similar to standard Coriolis coupling,

except that in this case the two angular momenta are both internal motions and the body-frame
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angular momentum does not appear.

The model H is block diagonal in the torsion quantum number. For each value of m, there

is a 2× 2 block of the form

Hm =

 ω + Fm2 + ζρm δω/2

δω/2 ω + Fm2 − ζρm

 , (3.23)

with energy eigenvalues

E±(m) = ω + Fm2 ±

√(
δω

2

)2

+ (ζρm)2. (3.24)

For example, for m = 0 the diagonal elements become equal. The resulting eigenvalues are the

pure vibrational energies ω ± δω and the eigenvectors revert to the expected in-plane |ν10i〉 and

out-of-plane |ν10o〉 vibrational states. As m increases such that the ζρΛ̂Ĵρ interaction is dominant

over the static δω splitting, the vibrational states have approximately pure |±〉 angular momentum

character. This is analogous to the rotation-torsion Coriolis interaction that results in pure ka

character states (Fig. 3.6), but on a larger energy scale.

Fitting Eq. 3.24 to the reduced-dimension torsion-vibration energies yields

ω = 3067 cm−1,

|δω| = 26.5 cm−1,

F = 5.6 cm−1,

|ζρ| = 12.2 cm−1.

The corresponding E±(m) curves are plotted as red and blue dashed lines in Fig. 3.11. This

simple model shows excellent agreement with the torsion-vibration energies. The parameter of most

interest is the torsion-vibration angular momentum coupling constant ζρ. Its relatively large value

of 12.2 cm−1 indicates that this interaction must be taken into account to understand the rotation-

torsion fine structure of the asymmetric CH stretch bands. The reduced-dimension estimate of its

magnitude should prove useful for making progress with this analysis.
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3.4 Torsion-rotation Hamiltonians via curvilinear vibrational Møller–Plesset

perturbation theory

The calculations presented in the previous section are useful tools for understanding the

zeroth order structure, dynamics, and interactions at play in nitromethane. The reduced-dimension

approximation, however, is simply too severe to make predictions of spectroscopic accuracy. This

is especially true of rotational parameters (e.g. A, B, C constants and centrifugal distortion

parameters) measured by microwave and millimeter-wave spectroscopy to high degrees of precision.

In this context, accurate full-dimensional ab initio calculations are necessary both to facilitate

interpretation of experimental results and to provide usefully predictive spectroscopic constants [69].

Direct variational rovibrational calculations of the type employed above became intractably

expensive for molecules the size of nitromethane, which has only seven atoms, due to the exponential

scaling of the computational complexity. Therefore, we must turn to non-variational perturbative

methods that decrease the cost of the calculation without unduly compromising its accuracy. The

standard approach to rovibrational perturbation theory (VPT) is based on a harmonic zeroth order

approximation to the rectilinear Watson Hamiltonian [70, 71]. VPT fails in two ways for floppy

molecules that undergo large amplitude motion. First, such systems are highly anharmonic. (The

torsional motion in nitromethane has zeroth order dynamics that are nothing like a harmonic oscil-

lator.) Second, rectilinear (Cartesian) coordinates poorly describe the motion of floppy molecules.

(Torsion in nitromethane is best described by the curvilinear rotation angle of the methyl group,

not by fixed rectilinear displacement vectors required by VPT.) The inadequacy of a second-order

VPT (VPT2) treatment of nitromethane is demonstrated by the wildly inaccurate predictions of

some of its ground state torsion-rotation parameters, summarized in Table 3.5.

Motivated by the failure of VPT to treat floppy molecules exhibiting large amplitude mo-

tion, we have developed an alternative approach based on second order vibrational Møller-Plesset

perturbation theory (VMP2). The key concept is to use a more flexible zeroth order picture that

properly accounts for anharmonic, curvilinear dynamics. This zeroth order wavefunction |Ψ0〉 is a
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Hartree product of anharmonic 1-D wavefunctions for each vibrational coordinate,

|Ψ0〉 = φ1(q1)φ2(q2)φ3(q3) · · · . (3.25)

The qi are general curvilinear coordinates, chosen to maximize the separability of the total vibra-

tional Hamiltonian. The anharmonic 1-D functions φi are optimized variationally by minimizing

the expectation value 〈Ψ0|H|Ψ0〉. This leads to a set of mean-field equations, which are solved

iteratively until self-consistency is reached, hence the term vibrational self-consistent-field theory

(VSCF) [72–74]. The zeroth-order VSCF wavefunction can be refined by applying second-order

Rayleigh-Schrödinger perturbation theory to account for vibrational correlation effects beyond the

mean-field description. In analogy with electronic structure theory [75], this method is termed

vibrational Møller–Plesset perturbation theory (VMP2) [76]. We have extended curvilinear VMP2

to include rotational and rovibrational terms in the nuclear motion Hamiltonian, thereby gener-

ating effective rotational Hamiltonians in addition to anharmonic vibrational frequencies [51] (see

Chapter 7).

The two main inputs into a VMP2 calculation are the PES and the choice of curvilinear co-

ordinate system. We employ the full-dimensional CCSD(T)-F12b/HaDZ PES recently constructed

by Wang, Carter and Bowman [77]. A minimum energy isomerization path coordinate system

suitable for large amplitude torsion is used as the internal coordinate system. (More details can

be found in Ref. [51]). The primary results of the application to the ground state rotation-torsion

structure of nitromethane are shown in Table 3.5. The curvilinear VMP2 results show uniformly

excellent agreement with the experimental rotation-torsion parameters, including the principal

rotational constants (A, B, and C), the internal rotor constants (A′ and F ), and the quartic cen-

trifugal distortion parameters (∆J , ∆JK , ∆K , δJ , δK). (These constants are defined in the effective

Hamiltonians in Eqs. 3.10 and 3.14.) This is in striking contrast to VPT2, which is particularly

problematic for quantities involving the a-axis (A, ∆JK , ∆K , and δK) because it is coincident with

the internal rotation axis. Moreover, VPT2 cannot provide predictions at all for the internal rotor

constants F and A′. These issues can be traced back to the use of rectilinear coordinates and a
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harmonic zeroth-order description, which are physically inappropriate for large amplitude motion.

Table 3.5: Ab initio torsion-rotation parameters of nitromethane. Predictions based on curvilinear
VMP2 and standard rectilinear second-order VPT (VPT2) are compared to experimental values.
VPT2 entries marked * are especially unphysical. All values are given in GHz.

Parameter VMP2 VPT2 Expt.

A 13.33 12.19* 13.34a

B 10.51 10.46 10.54a

C 5.86 5.85 5.88a

F 166.9 — 166.7b

A′ 13.25 — 13.28a

∆J ×106 5.50 5.67 6.14a

∆JK ×106 17.84 952.73* 17.75a

∆K ×106 -10.66 -949.39* -7.54a

δJ ×106 2.24 2.30 2.47a

δK ×106 15.77 -268.95* 15.75a

a Ref. [55]
b Ref. [52, 53]

The success of curvilinear VMP2 for providing accurate ground state constants for nitromethane

is encouraging. Similar calculations can be performed for excited vibrational states. Effects such

as torsion-vibration angular momentum coupling, as discussed in the previous section, are fully

captured with this approach. These predictions will aid in the continued analysis of the complex

rotation-torsion structure of the CH stretching vibrations.

3.5 Conclusions

The combination of comb spectroscopy and cold molecules results in a remarkable quantity of

detailed spectroscopic information. Analysis of this data distills a “phonebook” of line positions into

specific structural and dynamical insights, as demonstrated in this chapter for nitromethane. Al-

though many conclusions are to a greater or lesser degree particular to this example, they also reveal

patterns and general physical concepts that can be applied to related molecular systems. Similarly,

analytical and computational tools developed to understand the spectroscopy of nitromethane, such

as the curvilinear VMP2 methods introduced in this chapter, can be applied to a variety of other

problems. (Examples of such applications are presented in Chapter 7.) As large amplitude motion
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remains an incompletely understood phenomenon, high resolution infrared spectroscopy continues

to contribute to our understanding of its consequences on molecular structure and dynamics.



Chapter 4

Limits to rotationally resolved MIR spectroscopy of large hydrocarbons

High resolution gas-phase spectroscopy is an essential tool for molecular detection and iden-

tification. This is especially true for applications in extraterrestrial and astronomical chemistry,

where spectroscopic detection is the primary, and often only, means of identification [78]. Most

astronomical observations of molecules are made via pure rotational transitions in the microwave

and millimeter-wave regime [79], but this requires the presence of a permanent dipole moment.

Many molecules of potential astrochemical importance, such as large polyaromatic hydrocarbons

(PAHs) [80] or fullerenes (see Chapter 5), lack a permanent dipole moment by symmetry. One

must instead turn to optical techniques, i.e. vibrational or electronic spectroscopy.

Rotationally resolved infrared studies of large molecules are relatively few in number com-

pared to those of small- to medium-sized molecules of less than about a dozen atoms. One con-

tributing factor is the difficulty of producing gas-phase samples of large, heavy molecules that are

rotationally and vibrationally cold. Even if this can be achieved in the laboratory, the spectra

are often intrinsically congested and complex due to the high density of rovibrational states at the

internal energies excited by infrared photons. These systems are thus an ideal challenge for the

combined capabilities of cryogenic buffer gas cooling and cavity-enhanced direct frequency comb

absorption spectroscopy.

This brief chapter contains several studies of large hydrocarbon molecules of increasing size

and mass. We present rotationally resolved infrared spectra in the CH stretching region (ca. 3 µm)

of naphthalene (C10H8), adamantane (C10H16), and hexamethylenetetramine (HMT, C6N4H12,
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not strictly a hydrocarbon). We also report our inability to observe rotational structure in the

spectrum of cold diamantane (C14H20), and discuss the general implications of these results for

rotationally resolved spectroscopy of large molecules in the context of intramolecular vibrational

energy redistribution (IVR) [81].

4.1 Experimental details

All spectra discussed in this chapter were recorded using the 3 µm OPO comb with FTS and

VIPA-based detection. Cold (10 to 20 K) samples of each molecular species were prepared with

the low-temperature CBGC cell with He buffer gas. Details of these apparatus are provided in

Sections 2.1.1, 2.4, and 2.5.1 and will not be repeated here.

The target species are crystalline solids at room temperature, requiring an oven source to

produce a sufficient flux of gas-phase molecules. The oven temperature range used in each case

is listed in Table 4.1. For each species, the temperature is below its respective melting point.

Sublimation is sufficiently rapid to produce the necessary flux.

Table 4.1: Oven temperatures used to introduce solid samples into CBGC cell.

Species Oven Temperature (◦C)

Naphthalene 60− 70
Adamantane 45− 65

HMT 120− 125
Diamantane 110− 120

4.2 Results

Naphthalene, C10H8, contains two fused benzene rings making it the simplest PAH. As such,

it has received significant spectroscopic attention in both the infrared [82–84] and ultraviolet [85,86]

regions. The ν29 CH stretch band, which has previously been studied with skimmed-molecular-

beam optothermal experiments [84], is shown in Fig. 4.1. This CE-DFCS measurement is the

first rotationally resolved spectroscopy in this wavelength region for naphthalene via direct absorp-

tion. We assigned over 150 rovibrational transitions (Table A.5) and used these to determine the
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asymmetric-top rotational parameters of the ν29 state (Table 4.2). The upper state energies and

fitted curves are shown in the inset of Fig. 4.1. Fitting just the three principal rotational constants

A, B, and C results in small residuals (RMSE = 4.3× 10−4 cm−1 ≈ 14 MHz) on the order of the

line position uncertainty.1 The band intensity profiles are consistent with a rotational temperature

of 10(3) K.
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Figure 4.1: The ν29 band of cold naphthalene. Extensive rotational fine structure is resolved in the
buffer-gas-cooled CE-DFCS spectrum. (Inset) Reduced term energies of ν29 rotational sub-levels
plotted versus J . The fitted effective rotational Hamiltonian (Table 4.2) shows excellent agreement
with the measured rovibrational energies.

Adamantane, C10H16, is the simplest member of the diamonoid family of molecules, so-

named for their tetrahedral carbon-cage structure that forms the building block of bulk diamond.

Figure 4.2 shows a 100-cm−1-wide portion of its spectrum centered around 3.4 µm. This region

contains five strong vibrational bands: the three IR active CH stretch modes (ν20, ν21, and ν22) as

well as two unassigned bands near 2853.1 cm−1 and 2904.6 cm−1. Each of these bands contains

1 Although we achieve similar residuals as the fit based on skimmed-beam data by Hewett et al. [84], our rotational
constants disagree by several σ. After comparing combination differences of both sets of data with accurate ground
state energies [82], we speculate that the line positions reported by Hewett et al. suffer from a calibration error.



70

Table 4.2: Rotational fit of the ν29 band of naphthalene. The quartic centrifugal distortion
constants for the upper state were held fixed to the ground state values of Ref. [82]. All values are
given in cm−1.

Parameter Ground statea ν29
b ν29

c

ν0 0 3064.5942(5) 3064.58(2)
A 0.104051836(124) 0.104198(30) 0.104013(17)
B 0.04112733(37) 0.0411173(38) 0.0411023(45)
C 0.029483552(140) 0.02942455(9) 0.0294062(20)
∆J ×109 0.528(49) [0.528] —
∆JK ×109 1.206(145) [1.206] —
∆K ×109 5.648(112) [5.648] —
δJ ×109 0.1752d [0.1752] —
δK ×109 1.951d [1.951] —

RMSE ×104 3.1 4.3 6.3

a. Ref. [82]. δJ and δK are calculated values.
b. This work
c. Ref. [84]

extensive rotational fine structure. The Doppler-broadened rovibrational transitions have a line

width of 23(2) MHz, indicating a translational temperature of 17(1) K (Fig. 4.2b). The narrow line

width provides sufficient resolution to reveal intricate tetrahedral centrifugal distortion splittings of

this heavy spherical top (Fig. 4.2c). HMT, C6N4H16, is a heterocycle cage formed from adamantane

by replacing the four carbon atoms at the vertices of a tetrahedron with nitrogen atoms. Figure 4.3

shows a small portion of its cold absorption spectrum centered near the ν17 CH stretch band. We

observe similarly well resolved and narrow rovibrational transitions as for adamantane.

The next largest diamonoid after adamantane is diamantane, C14H20. Its absorption spec-

trum is shown in Fig. 4.4. Although acquired under nearly identical conditions to the previous

examples, this spectrum shows a quasi-continuous absorption profile with 5-cm−1-wide vibrational

bands centered around the CH stretch fundamental frequencies. Upon close examination, a lim-

ited number of narrow absorption features can be detected that appear at approximately regular

intervals of 0.04 − 0.05 cm−1 (Fig. 4.4 inset). This spacing is about equal to 2B, suggesting that

these features are vestiges of some underlying rotational structure. These transitions have line

widths of 20 − 30 MHz. Assuming this to be a Doppler-broadened feature, that corresponds to
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Figure 4.2: Survey absorption spectrum of cold adamantane, C10H16. (a) The region spanning
2850−2950 cm−1 contains three very bright IR active CH stretch bands (ν20, ν21, ν22) as well as two
unassigned bands near 2853.1 cm−1 and 2904.6 cm−1. (b) The narrow Doppler profiles demonstrate
translational cooling to a temperature of Ttrans = 17(1) K. (c) Rovibrational transitions of this
spherical top appear in dense clusters due to tetrahedral fine structure splittings.
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band. This spectrum has a similar appearance to that of adamantane (Fig. 4.2) due to the related
structure and identical symmetry of the two molecules.

translational temperatures of 20 K. The width of the rotational contours is also consistent with a
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rotational temperature of 10− 30 K. This indicates that diamantane is approximately thermalized

with the He buffer gas bath, and that the continuous absorption profile is an intrinsic feature of its

spectrum.
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Figure 4.4: Absorption profile of diamantane, C14H20. In lieu of the rotational fine structure
observed for other examples, diamantane exhibits a quasi-continuous absorption profile in the CH
stretch region. The strongest vibrational bands are each about 5 cm−1 wide. (Inset) Small por-
tions of the spectrum contain narrow, regularly spaced features suggestive of underlying rotational
structure. These features are only 20− 30 MHz wide.

4.3 Discussion and conclusion

The observations above represent the largest molecules for which rotationally resolved spectra

in 3 µm region have been reported [87, 88], demonstrating the effectiveness of the combined cold

molecule-frequency comb spectrometer. From a practical perspective, the system provides very high

data throughput, collecting millions of individual frequency elements in a short amount of time.

(Altogether, the spectra above required a total of only three hours of data collection.) Gas-phase

infrared measurements of comparable bandwidth and resolution are otherwise possible only with

ultra-long FTIR instruments, which typically require the use of synchrotron facilities [82,83,87,89,



73

90] and are not suited to table-top experiments.

While our results show just how far high resolution infrared spectroscopy of large molecules

can be taken, they also suggest intrinsic limits to such experiments, as evidenced by the CH

stretch spectrum of diamantane. We interpret its quasi-continuous absorption profile as evidence

of intramolecular vibrational energy redistribution (IVR) between the zeroth-order CH stretch

bright states and the manifold of background dark states [81]. The density of vibrational states at

the ∼3000 cm−1 internal energies probed by the infrared photon is about 10× larger for diamantane

than for molecules for which well resolved rotational fine structure is observed, such as adamantane

and naphthalene (see Fig. 4.5). Various studies on IVR rates in hydrocarbons [91–96] suggest

an approximate background state density threshold of ρ ∼ 102/cm−1 before the onset of severe

spectral fractionation [81]. Diamantane, with ρ ≈ 103/cm−1 at 3000 cm−1, is well above this

limit. Based on this rule of thumb, one might expect that adamantane and naphthalene should

also suffer from IVR effects. However, it is important to take into account the ameliorating role

of symmetry [97–99], which reduces the extent of IVR coupling, especially in highly symmetric

molecules like adamantane.

IVR presents a general obstacle for high resolution spectroscopy of large molecules. Continued

progress mandates a shift away from the 3 µm CH stretch region. At the lower internal energies

probed by longer wavelength IR photons, the density of background vibrational states decreases

exponentially. This motivates the development of LWIR frequency comb sources, such as the

6− 11 µm DFG system described in Section 2.1.2. These tools will enable the exploration of even

larger and more complex molecular systems with rotationally resolved spectroscopy.
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Chapter 5

Rovibrational quantum state resolution of the C60 fullerene

The previous chapter provided specific examples of the general limitations placed on high

resolution infrared spectroscopy by large, heavy polyatomic molecules. Some problems are of a

purely technical and, some might say, shallow variety: having sufficiently narrow lasers and molec-

ular line widths can eventually reveal even the most congested of spectra. Congestion, however, is

merely a symptom of a deeper and more essential obstacle. The inseparability of the ever multiply-

ing degrees of freedom in large molecules (i.e. IVR) suggests that frequency domain spectroscopy

and an eigenstate-by-eigenstate perspective will have diminishing usefulness in understanding the

dynamics and structure of such complex many-body systems.

This chapter provides a counter-example to this trend in the form of buckminsterfullerene,

C60 (Fig. 5.1). As we will see, the remarkable symmetry and rigidity of C60 make a description of

its rovibrational spectrum and structure at the level of individual quantum states possible. To the

best of the author’s knowledge, C60 represents not only the largest molecule for which a rotationally

resolved spectrum has been obtained, but also the most symmetric, C60 being an example of the

relatively rare icosahedral (Ih) point group. Section 5.1 provides an overview of the structure and

thermodynamics of C60, illustrating why its size and mass make rotationally resolved spectroscopy

so formidable. As demonstrated in prior chapters, these challenges are overcome with a combination

of CBGC and CE-DFCS. However, unlike previous experiments, the particularly difficult task of

cooling C60 requires the high-temperature, high cooling power CBGC setup introduced in Chapter 2.

Section 5.2 describes in more detail the production of cold, dense samples of gas-phase C60 with
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this device and the DFG frequency comb used to measure its infrared spectrum. An effective

rovibrational Hamiltonian model is introduced in Section 5.3. We use this to extract detailed

molecular scale insights into C60. Finally, the chapter concludes with a discussion of some remaining

spectroscopic puzzles presented by these first frequency comb experiments.

Figure 5.1: The structure of buckminsterfullerene, C60. Sixty carbon atoms lie at the vertices of
a truncated icosahedron (a soccer ball shape), making C60 an example of the icosahedral Ih point
group. Each carbon atom site is chemically indistinguishable to all others.

5.1 An introduction to C60

The existence of a stable, hollow cage of sixty carbon atoms was first postulated and studied

theoretically in the 1970s and early 1980s by several groups independently [107–110]. However,

it was not until 1985 that the seminal mass spectrometry experiments of Kroto et al. provided

clear evidence for C60 [111]. The apparent stability of the molecule quickly led to the conjecture

that it formed a closed spherical cage with 20 hexagonal faces and 12 isolated pentagonal faces,
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i.e. the truncated icosahedral structure shown in Fig. 5.1, which inspired the name “buckminster-

fullerene,” and soon thereafter “buckyball,” in honor of the geodesic structures of the architect

Buckminster Fuller [112]. Subsequent infrared and 13C-NMR studies of isolated C60 in the early

1990s confirmed its highly symmetric Ih structure [113–118]. Since then, a wide variety of spectro-

scopic and analytical techniques, including x-ray and electron diffraction [119,120], optical Raman

and neutron scattering [121–127], matrix and helium droplet isolation spectroscopy [128–133], and

photoelectron spectroscopy [134–136], have greatly contributed to our understanding of this unique

molecule. Spectroscopy in particular has played an essential role in the astronomical identification

of C60 and its derivatives [132, 137–141], and high resolution laboratory data may help resolve

current uncertainty regarding its astrophysical state [132]. However, despite intense interest, no

rotationally resolved spectrum of gas-phase C60 has been reported to date.

The high degree of symmetry exhibited by C60 makes it relatively difficult to probe with

electromagnetic radiation. Like all spherical tops, C60 possesses no permanent dipole moment,1

and therefore has no pure rotational microwave spectrum. Although centrifugal distortion effects

in some spherical tops, like tetrahedral CH4, permit very weak pure rotational transitions [143],

even these are strictly electric dipole forbidden in icosahedral tops such as C60 due to the pres-

ence of a center of symmetry. We must therefore turn to the optical regime, i.e. electronic or

vibrational spectroscopy. The first strong electronic absorption features only appear relatively high

in the singlet excitation manifold [144]. Vibronic coupling within the singlet manifold and fast

intersystem crossing to triplet states [145,146] will potentially obscure spectroscopic fine structure,

but nonetheless would be very interesting to explore. Lower lying states have either orbital- or

spin-forbidden (or both) transitions from the ground electronic state and have very weak oscillator

strengths [144].

This leaves IR spectroscopy as the most viable approach to make the first observations of

rovibrational quantum state-resolved structure in C60. With N = 60 atoms, each molecule has

3N−6 = 174 vibrational modes. Under the Ih point group (the character table for which is provided

1 In fact, the lowest rank multipole moment allowed for C60 is the 64-pole (a hexacontatetrapole) [142].
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in Appendix C), only those modes that transform as the T1u irreducible representation are IR active.

There are four such sets of T1u vibrations, each comprised of three triply degenerate modes. These

four T1u bands are readily observed in low resolution condensed- or gas-phase experiments and

occur at 7.0, 8.5, 17.4, and 19.1 µm [131]. We choose to focus on the 8.5 µm band, which has a

modest integrated band intensity of 9.4 km mol−1 [131] and is conveniently located in the center

of the operating range of our DFG frequency comb.

The remaining obstacle to obtaining rotationally resolved spectra of C60 is its formidable ther-

modynamics. The vibrational and rotational degrees of freedom pose complementary challenges.

Although the rigidity of the C60 carbon frame leads to relatively high vibrational frequencies for

a molecule of its size (spanning 260 to 1600 cm−1 [106]), the sheer number of vibrational modes

results in a steep rise in the density of states with increasing internal energy. Conversely, while

there are only 3 rotational degrees of freedom, the large moment of inertia, ca. 6× 103 uÅ2, results

in a very small rotational energy level spacing. (The fundamental J = 0−1 spacing is approxiately

h×170 MHz.) Both of these contribute to a large internal partition function, particularly the vi-

brational contribution Zvib, which is shown in Fig. 5.2. At the temperature of our C60 oven, which

approaches 1000 K, there are Zvib ≈ 1029 thermally occupied vibrational states! Even at 300 K,

Zvib is greater than 103. It is necessary that most of the population is cooled to the vibrational

ground state, i.e. Zvib ∼ 1, to avoid spectral congestion from hot band transitions. This requires

internal temperatures of 150 K or lower. Concomitant with the rapidly increasing partition function

is the large internal energy stored in the vibrational modes. At 1000 K, each C60 molecule contains

60000 cm−1 (7.5 eV) of vibrational energy. To achieve vibrational ground state cooling, all of this

energy must be efficiently removed.

5.2 Generating cold C60

We turn once again to CBGC to generate cold samples of gas-phase C60. The reader is

referred back to Fig. 2.8, which shows the geometry of the C60 oven source and cryogenic cold cell.

A 1 − 10 mg min−1 flow of C60 molecules thermalized to the source temperature of 950 K exits
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Figure 5.2: Thermodynamical functions for C60 vibrations. The vibrational partition function (blue
dashed line, left vertical axis) increases super-exponentially with temperature as more and more
vibrational modes “unfreeze.” The corresponding average vibrational energy (red solid line, right
vertical axis) reaches several tens of thousands of cm−1 by 1000 K, reflecting the large heat capacity
per molecule.

the oven into cold cell. The cell intersects the axis of the optical enhancement cavity, which has a

finesse of 6000 and a FSR of 280 MHz. DFG comb light tuned to cover the 8.5 µm absorption band

of C60 is continously coupled into the optical cavity and monitored with the FTS spectrometer.

Our first attempts to cool vibrationally hot C60 molecules used the low-temperature helium

CBGC setup (see Section 2.5.1), which successfully cooled all attempted species in the past. Al-

though deposits of vaporized material from the oven clearly indicated that material was entering

the cell, there was no detectable absorption signal from C60, or any other absorber, above a 1 ppm

single pass loss baseline. While a variety of explanations could account for the absence of signal,

including thermal degradation of C60 into amorphous carbon, the primary suspect was insufficiently

high buffer gas density, which leads to inadequate cooling for both translational and internal states.

With poor translational cooling, C60 molecules ballistically travel from the oven to the cold cell

walls and freeze out, instead of slowly diffusing throughout the cell, thereby inhibiting a build-up
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of C60 density. With poor internal state cooling, too many excited vibrational states are occupied,

leading to broadening, congestion, and dilution of the absorption cross-section. Indeed, in recently

attempted supersonic jet absorption spectroscopy experiments, inefficient vibrational cooling was

also speculated to be the reason for the lack of detectable C60 absorption [147]. The large mass

difference between C60 and the buffer gas helium atoms likely further reduces the collisional cooling

efficiency in our experiment.

A serendipitous accident in lab provided support for the “collisionally starved” explanation

and a path forward for C60 cooling. One afternoon, an undetected short of a thermocouple lead

on the C60 oven resulted in a temperature reading that was about one-half of the actual oven

temperature. This led us to signficiantly overheat the oven, and the resulting radiative heat load

warmed the cryo-sorbs responsible for pumping helium buffer gas. They quickly experienced a hard

crash, releasing a significant amount of desorbed helium. In a few seconds, the dewar background

pressure increased from less than 10−4 Torr to about 10−1 Torr, and a strong, broad absorption

signal immediately appeared in the FTS comb spectrum, as shown in Fig. 5.3. This signal was

strongly dependent on the oven temperature and located at the expected band origin position [131],

indicating C60 – in some form – was almost certainly the carrier. Using different buffer gas species,

we were able to reproduce the signal, with the band center being unaffected by the buffer gas species,

while the shape and width did exhibit some slight dependence. The optimal dewar pressure was

between 80 and 500 mTorr, depending on buffer gas. In order to run the low-temperature CBGC

cell at these high background pressures, the helium refrigerator had to be turned off and we relied

on mechanical vacuum pumps. The traces in Fig. 5.3b were collected after the cold cell had warmed

to a temperature of 100 K.

The physical state of C60 giving rise to the broad absorption feature is still uncertain. One

hypothesis is that it is from a C60-buffer gas van der Waals complex or even a (C60)n “super-

cluster” [148,149]. Although we cannot entirely rule out these possibilities, we believe the simplest

and most likely case is that it is simply from “warm” C60, i.e. partially cooled from the initial oven

temperature, but not completely thermalized to the buffer gas bath (ca. 100 K). This reasoning
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Figure 5.3: Absorption from the 8.5 µm band of C60. (a) The raw comb spectral intensity envelope
shows a clear absorption dip from C60 centered near 1185 cm−1. The periodic fringes are due
to etalons, while the handful of sharp absorption peaks are from ambient water vapor. (b) The
normalized absorption profiles in “warm” conditions for several buffer gas species including helium,
argon, and molecular nitrogen. The buffer gas temperature is 100 K.

suggests that increasing not only the number of buffer gas-C60 collisions but also the average energy

transfer per collision will help drive the hot C60 molecules to thermalization with the cold buffer

gas.

After extensively exploring a variety of buffer gas parameters, including the input flow rate,

the background dewar pressure (controlled independently of input flow rate by adjusting the pump-

ing speed), the position of the oven relative to the annular slit inlet plate (see Fig. 2.8), and the

buffer gas species, we were eventually able to observe narrow absorption resonances in place of the

broad absorption envelope. Figure 5.4 illustrates these signatures for several different buffer gas

species. The strongest signal was obtained with argon buffer gas, suggesting it is the most efficient

collisional cooling partner for C60. (Note that the spectra in Fig. 5.4 were acquired with a single

frep position, and only a fraction of the C60 absorption resonances overlap with the 280 MHz-spaced

cavity resonances.)

As indicated above, the small cooling capacity of the helium refrigerator is insufficient to

operate at such high buffer gas pressures for any extended period of time. We addressed this
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Figure 5.4: The first cold C60 signals. The broad, continuous absorption observed with helium
buffer gas is compared to optimized signals obtained with neon, nitrogen, and argon buffer gas.
The traces are offset for clarity. With the last three buffer gas species, narrow, well resolved
absorption resonances were observed. The strong peak near 1185 cm−1 is the Q branch of the C60

vibrational band. The broad line near 1187 cm−1 is from ambient water. The remaining “weeds”
are transitions from the C60 R and P branches. These spectra were all obtained at a single comb
frep value, such that the absorption spectrum is only sampled at the 280 MHz spacing provided by
the enhancement cavity. (The negative over-shoot is an artifact of the filtering process applied to
the FTS comb spectra.)

issue by constructing the high-temperature CBGC system described in Section 2.5.2. The primary

difference is the replacement of the helium refrigerator with an LN2 cold finger, which provides

sufficient cooling capacity to run indefinitely at the required buffer gas pressures, enabling repeated

frep scans and averaging. Of course, this also restricts the minimum achievable temperature to the

77 K boiling point of LN2.

A survey spectrum of the full C60 band acquired with the high-temperature CBGC cell is

shown in Fig. 5.5. The cold spectrum contains data acquired over 20 hours of total averaging
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time. The 280 MHz comb mode spacing set by the cavity FSR was split into 89 subdivisions

such that the final optical frequency step size in the spectrum was about 3 MHz. The optimum

cooling conditions were found to be an argon buffer gas flow rate of 50−100 sccm and a 250 mTorr

background dewar pressure. The oven was placed 0.5 − 1.0 cm from the cold cell inlet aperture.

The extracted rotational temperature is 150(2) K, only slightly warmer than the measured cell wall

temperature of 135 K (see Fig. 2.11). A comparison of the warm and cold spectra in Fig. 5.5 shows

a clear red shift of the warm spectrum relative to the band origin of the cold spectrum (located at

the strong Q branch). This is consistent with the warm spectrum being assigned to vibrationally

hot C60, as hot bands are usually red shifted due to vibrational anharmonicity [131]. The strongest

absorption in the cold spectrum (the peak of the Q branch) corresponds to a single-pass absorption

of 25 ppm.
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Figure 5.5: Survey spectrum of cold C60 near 8.5 µm (1185 cm−1). Under optimized conditions
(see text), the broad, continuous absorption from warm C60 (red, top trace) collapses to a narrow,
well-resolved vibrational band from cold C60 in its vibrational ground state (blue, middle trace). A
zeroth order simulation (black, bottom trace) shows the extended rotational fine structure of the
P, Q, and R branches. (The simulation temperature is 150 K.)
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5.3 Rotationally resolved C60 spectroscopy

5.3.1 Rovibrational wavefunctions

The rotational fine structure observed in the cold spectrum encodes a wealth of details about

the quantum structure of C60. To lowest order, the rotations of C60 are those of a spherical top with

total angular momentum operator J. These can be described with the symmetric top wavefunctions

|J, k,m〉, which obey the standard eigenvalue relations

J2|J, k,m〉 = J(J + 1)|J, k,m〉, (5.1)

Jz|J, k,m〉 = k|J, k,m〉, (5.2)

JZ |J, k,m〉 = m|J, k,m〉, (5.3)

where factors of ~ have been suppressed. J = 0, 1, 2, . . . is the total angular momentum quantum

number. Jz is the body-fixed z-axis projection operator of J, and k = −J, . . . ,+J is the body-fixed

projection quantum number. Similarly, JZ is the lab-frame Z-axis projection operator of J, and

m = −J, . . . ,+J is the corresponding lab-frame projection quantum number.

The triply degenerate T1u vibrational mode that gives rise to the 1185 cm−1 absorption

band can be described with the vibrational normal coordinates qx, qy, and qz. To lowest order,

these three vibrational modes are equivalent to a 3D isotropic harmonic oscillator with vibrational

angular momentum `. The components of ` are defined as

`x = qypz − qzpy, (5.4)

with cyclic permutations for `y and `z. px,y,z are the conjugate vibrational momenta of the coor-

dinates qx,y,z. The vibrational quantum states describing this triplet of T1u modes are |n, `, k`〉,

where n is the total number of vibrational quanta, ` = n, n− 2, n− 4, . . . is the vibrational angular

momentum quantum number, and k` = −`, . . . ,+` is the body-fixed projection quantum number
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for `. The vibrational angular momentum operator obeys the expected eigenvalue relations

`2|n, `, k`〉 = `(`+ 1)|n, `, k`〉, (5.5)

`z|n, `, k`〉 = k`|n, `, k`〉. (5.6)

Combined rovibrational wavefunctions can be written in an uncoupled representation by

taking the direct product |J, k,m〉|n, `, k`〉. These functions are simultaneously eigenfunctions of

J2, Jz, JZ , `2, and `z. As might be expected when encountering multiple angular momenta, it is

useful to define a composite vector, the so-called “pure rotational” angular momentum,

R ≡ J− `. (5.7)

Eigenfunctions of R can be constructed from the uncoupled basis |J, k,m〉|n, `, k`〉 using standard

angular momentum coupling relations [150]. The coupled functions are |R, kR, J, `, n,m〉, where R is

the angular momentum quantum number for R and kR = −R, . . . ,+R is its body-fixed projection.

The allowed values of R satisfy the usual triangle inequality, |J − `| ≤ R ≤ J + `. The lower state

of the observed infrared band is the vibrational ground state with n = ` = 0. Thus, in the ground

state, R = J . The upper state of the infrared band is the first excited state of the T1u mode, with

n = ` = 1. Here, R takes the values J and |J ± 1|.

5.3.2 Zeroth order effective Hamiltonians and energies

The rotational energy levels of each vibrational state are determined by an effective rotational

Hamiltonian. For the ground vibrational state, the simplest zeroth order Hamiltonian is that of

rigid spherical top,

Ĥgr = B′′J2, (5.8)

whereB′′ is the ground state rotational constant. The ground state wavefunctions |R = J, kR, J, 0, 0,m〉

are eigenfunctions of this Hamiltonian,

Ĥgr|R = J, kR, J, 0, 0,m〉 = Egr(J)|R = J, kR, J, 0, 0,m〉, (5.9)
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where

Egr(J) = B′′J(J + 1). (5.10)

At first glance, this may appear similar to the rotational level structure of a diatomic or linear

molecule, which also has the simple J(J + 1) dependence. However, it is important to note that

a spherical top contains an extra rotational degree of freedom and associated degeneracy relative

to a linear rotor. In addition to the usual gJ = (2J + 1) degeneracy of the lab-frame projection

quantum number m, there is an additional gR = (2R + 1) degeneracy factor of the body-fixed

projection quantum number kR. For the ground state with J = R, the total degeneracy factor is

gJgR = (2J + 1)2.

In the vibrationally excited state, the presence of non-zero vibrational angular momentum

leads to a slightly more complicated effective Hamiltonian,

Ĥex = ν0 +B′J2 − 2B′ζ(J · `), (5.11)

where ν0 is the vibrational band origin and B′ is the excited state rotational constant. B′ differs

very slightly from B′′ due to changes in the molecule’s effective moments of inertia upon vibrational

excitation. The last term in Eq. 5.11 accounts for Coriolis coupling between the total angular

momentum J and the vibrational angular momentum `. The strength of this coupling is determined

by the Coriolis constant ζ, which encodes the geometric details of the vibrational mode and can

take values −1 ≤ ζ ≤ 1 [150]. By making use of the definition Eq. 5.7, we can rewrite the coupling

term as

−2J · ` = (J− `)2 − J2 − `2

= R2 − J2 − `2. (5.12)

(Note that J and ` commute with each other.) The coupled wavefunctions for the upper state

|R = {J, |J ± 1|}, kR, J, 1, 1,m〉 are now clearly eigenfunctions of Ĥex with eigenvalues

Eex(R, J) = ν0 +B′J(J + 1) +B′ζ [R(R+ 1)− J(J + 1)− `(`+ 1)] . (5.13)
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The three possible values of R = J, J ± 1 sort the excited state energies naturally into three

manifolds with distinct J-dependencies

E
(+)
ex (J) = EJ + 2B′ζJ, R = J + 1

E
(0)
ex (J) = EJ − 2B′ζ, R = J

E
(−)
ex (J) = EJ − 2B′ζ(J + 1), R = J − 1,

(5.14)

where EJ = ν0 + B′J(J + 1) is the pure vibrational and rigid rotor contribution to the total

energy. Physically, these three manifolds, which we label T
(+)
1u , T

(0)
1u , and T

(−)
1u , correspond to states

where J and ` are mutually antiparallel, perpendicular, and parallel, respectively. As in the ground

vibrational state, each excited state level has a total degeneracy of gJgR = (2J + 1)(2R+ 1).

5.3.3 Spherical top rovibrational selection rules

We now examine the rovibrational selection rules for C60 to predict the expected transitions

between the energy levels derived in the previous section. As with all atoms and molecules there

is the usual ∆J = 0,±1 total angular momentum selection rule for electric dipole transitions (the

only type we consider here). The high symmetry of spherical tops leads to another approximate,

but typically quite strong, selection rule for the R and kR quantum numbers. If we assume that

the body-fixed dipole moment can be expanded only linearly in the T1u vibrational coordinates, i.e.

~µbf ∝ ~q, (5.15)

where ~q = (qx, qy, qz)
T , then it can be shown (see Appendix D) that the following commutation

equalities hold between any body-frame component of ` or J and any lab-frame component of the

dipole moment operator ~µL:

[`α, µi] = [Jα, µi], (5.16)

where α = x, y, z is a body-frame axis, and i = X,Y, Z is a lab-frame axis. We therefore have

[Rα, µi] = 0, (5.17)
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and in particular

[R2, µi] = 0, (5.18)

[Rz, µi] = 0. (5.19)

These final two commutation relations mean that in T1u fundamental vibrational bands in spherical

tops, the eigenvalues of R2 and Rz cannot change, yielding the spherical top IR selection rules

∆R = ∆kR = 0. (5.20)

Combined, the R- and J-selection rules result in a highly constrained set of transitions between

the ground state and excited T1u state. For a given lower state |R = J, kR, J, n = ` = 0〉 (omitting

the m quantum number) there are at most three allowed transitions, one P-type (∆J = −1), one

Q-type (∆J = 0), and one R-type (∆J = +1),

|R = J, kR, J, n = ` = 0〉 → |R = J, kR, J − 1, n = ` = 1〉,

|R = J, kR, J, n = ` = 0〉 → |R = J, kR, J, n = ` = 1〉,

|R = J, kR, J, n = ` = 0〉 → |R = J, kR, J + 1, n = ` = 1〉.

For the edge case of the lower state |R = J = 0〉, there is only a single (R-type) transition to the

|R = 0, J = 1〉 upper state.

These transitions are summarized in the level diagram shown in Fig. 5.6. Note that a given

rotational level of the excited vibrational state is accessed via an IR transition from only a single ro-

tational level of the ground vibrational state. This restriction is due to the spherical top R-selection

rule. In most molecules, which are less symmetrical, the situation is different: a given upper state

is accessed by transitions from multiple lower states. This means that we are unable to determine

ground state combination differences via the zeroth order allowed transitions in spherical tops. This

in turn reduces the number of parameters in the effective Hamiltonians that are determinable from

the measured spectrum.



89

T1u
(−)T1u

(0)T1u
(+)

E(−) = νvib + BJ(J+1) − 2Bζ(J+1)E(0) = νvib + BJ(J+1) − 2BζE(+) = νvib + BJ(J+1) + 2BζJ

R = J − 1 R = JR = J + 1

Ag vibrational ground state

ΔJ = +1
ΔR = 0

RΔJ = 0
ΔR = 0

Q

0 0

0 1

1 1

1 2 1 1 1 0

2 2

2 3 2 2 2 1

3 3

3 4 3 3 3 2

4 4

4 5 4 4 4 3

5 5

5 6
5 5 5 4

6 6

6 7
6 6 6 5

7 7

7 8
7 7

7 6

8 8

8 9
8 8

8 7

9 9

9 10
9 9

9 8

10 10

10 11
10 10

10 9

11 11

11 12
11 11

11 10

12 12

12 13

12 12
12 11

13 13

13 14

13 13
13 12

J R

J R
J R

J R

ΔJ = -1 
ΔR = 0

P

Figure 5.6: Spherical top energy levels and IR transitions. The lower half of the diagram shows
rotational levels of the ground vibrational state. The upper half shows those for the excited vibra-

tional state, sorted into three Coriolis manifolds (T
(+)
1u , T

(0)
1u , and T

(−)
1u ) according to the relative

values of the R and J quantum numbers. Example P, Q, and R transitions are shown. Solid black
lines indicate rotational levels that have non-zero nuclear spin degeneracy factors, while gray lines
indicate rotational levels that have nuclear spin degeneracy factors of zero (for 12C60).
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5.3.4 Nuclear spin statistics

An unpurified sample of C60 contains many isotopologues due to the large number (i.e. sixty)

of possible carbon substitution sites. Taking only the 12C and 13C nuclear isotopes to have non-

negligible abundance, the 12C60−n
13Cn isotopologue fraction is

Pn = (1− p)60−npn
(

60

n

)
, (5.21)

where p = 1.1% is the natural abundance of 13C [151]. Therefore, only about 52% of natural C60

is pure 12C60, 34% is singly substituted 12C59
13C, and 11% is doubly substituted 12C58

13C2. The

remaining 3% is more highly substituted. Note that there is only a single isotopomer of 12C59
13C

(which has Cs symmetry) because each carbon site of the truncated icosahedron is structurally

equivalent. There are several 12C58
13C2 isotopomers owing to the different relative positions of two

substitution sites.

The nuclear spin statistics of each of these isotopologues have important effects on their

rovibrational structure and spectra by modifying the gR degeneracy factor. We consider first the

major 12C60 isotopologue, which contains sixty identical spin-0 12C nuclei. A permutation P of any

subset of these bosonic nuclei must leave the total molecular wavefunction |Ψtot〉 unchanged,

P |Ψtot〉 = +|Ψtot〉. (5.22)

Pure rotation point group elements, such as E (identity) and Cn (a rotation of 2π/n about some

axis), correspond to permutations of 12C nuclei and must follow Eq. 5.22. Point group elements

i (body-frame inversion), Sn (improper rotations), and σ (reflections) correspond to permutation-

inversion operations P ∗, i.e. they involve a pure permutation P combined with inversion of all

coordinates through some space-fixed origin. These operations must follow

P ∗|Ψtot〉 = ±|Ψtot〉 (5.23)

depending on whether |Ψtot〉 is a state of total + parity or total − parity, respectively. Inspection

of the Ih character table (Table C.1) shows that the only irreducible representations of Ih that meet
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these requirements are Ag (for + parity states) and Au (for − parity states). We therefore require

that |Ψtot〉 belong to one of these two irreducible representations.

The total molecular wavefunction can be factored into electronic, rotation-vibration, and

nuclear spin factors,

|Ψtot〉 = |ψel〉|ψrovib〉|ψnuc〉. (5.24)

We consider here only the electronic ground state, which is closed-shell and has Ag symmetry.

Each 12C nucleus is spin-0, and therefore the total nuclear spin wavefunction is trivially Ag as well.

This means that the symmetry of the total molecular wavefunction is determined by that of the

rovibrational factor, i.e. the |R, kR, J, `, n,m〉 wavefunctions.

To determine the rovibrational symmetry of the |R, kR, J, `, n,m〉 wavefunctions, let us review

some fundamental results from the interface of angular momentum theory and group theory. Recall

that the set of all rotations about lab-fixed axes forms a group isomorphic to SO(3) [18, 152]. We

label this particular version of the rotation group SO(3)L (‘L’ for ‘lab-fixed’). For a given value of

total angular momentum J , the 2J + 1 wavefunctions |R, kR, J, `, n,m〉 with m = −J, . . . , J span

the D(J) irreducible representation of SO(3)L. All the symmetry properties with respect to SO(3)L

are determined by the values of J and m.

In a similar fashion, we define a second group by the set of all rotations about molecule-fixed

axes and call it SO(3)M (‘M’ for ‘molecule-fixed’). For a fixed orientation of the molecular frame

in space, there is a one-to-one equivalency between the elements of SO(3)L and SO(3)M. However,

this mapping changes if the orientation of the molecule in space changes, and the two groups

have distinct meanings.2 Just as J and m determine the lab-frame symmetry properties, R and kR

determine the molecule-frame symmetry properties. In particular, for a given value of R, the 2R+1

wavefunctions |R, kR, J, `, n,m〉 with kR = −R, . . . , R span the D(R) irreducible representation of

SO(3)M.

2 For example, if the x, y, z molecule-fixed axes are aligned with the X,Y, Z lab-frame axes, respectively, then a
rotation of π/2 about z, say, which is an element of SO(3)M, is the same as a rotation of π/2 about Z, an element
of SO(3)L. If the molecule is reoriented in space such that the z-axis is parallel to lab frame X-axis, then that same
element of SO(3)M is equal to a different element of SO(3)L (i.e. π/2 about X).
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For a perfectly spherical molecule, SO(3)M would indeed be the true rotational symmetry

group. C60 is of course not a perfect sphere, and its rotation group is the icosahedral group I, which

is a sub-group of SO(3)M. (The full molecular symmetry group Ih is just a direct product of I with

the inversion group {E, i}.) We can determine the icosahedral symmetries of the |R, kR, J, `, n,m〉

wavefunctions by using the correlations of the irreducible representations of SO(3)M and I [153].

This procedure is carried out in Appendix C and the results summarized in Table C.2. The

additional g/u label for the full Ih group is determined by the character under the i operation,

which comes only from the electronic and vibrational factors (in this case, the parity of `). All

rotational levels of the groud vibrational state are g, and all rotational levels of the excited T1u

vibrational state are u.

We can now take all these results together. Bose-Einstein statistics imply that only rovibra-

tional states with Ag/u symmetry are allowed. Table C.2 tells us which |R, kR, J, `, n,m〉 wavefunc-

tions correlate to Ag/u. For R = 0, 6, 10, 12, 15, 16, 18, 20− 22, and 24− 28, we can construct only

a single linear combination of kR states that transform as Ag/u. All other values of R < 30 have

no linear combination of kR states that transforms as Ag/u and thus do not exist. For R > 30, we

can always find at least one linear combination of kR states that transform as Ag/u, but this is far

fewer than the original gR = 2R+ 1 degeneracy. In the high-R limit, only 1 in 60 states is allowed.

These extreme nuclear spin statistics are accounted for in Fig. 5.6, where levels that do not exist

in 12C60 are faded out. For low values of R, “holes” appear in the spectrum where missing lines

would be expected in the absence of spin statistics. For higher values of R, the degeneracy factors

result in characteristic integer-ratio intensity patterns.

A single 13C substitution destroys the indistinguishability of the remaining fifty-nine 12C

nuclei, as they can now be “labeled” by their position relative to the unique 13C nucleus. Therefore,

there are no spin-statistical effects expected in the 12C59
13C spectrum. Of the several 12C58

13C2

isotopomers, most are asymmetric and do not exhibit any statistical effects. Those in which the

two 13C nuclei are in symmetrical positions will have some non-trivial spin statistics (similar to

those of ortho/para H2O), though not as extreme as for the case of 12C60. We do not consider
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those here.

5.3.5 Rovibrational spectrum simulation

Taking the results of the last several sections, namely the zeroth order rovibrational energies,

selection rules, and spin statistics, leaves the simulated infrared spectrum plotted in black in Fig. 5.5.

The spectrum consists of a strong central Q branch, composed of many overlapped transitions,

surrounded by extended P and R branches containing transitions evenly spaced by approximately

(B′′+B′)(1−ζ) ≈ 0.0078 cm−1. Visual inspection of the survey spectrum shows that the simulated

Q and R branches qualitatively agree with the appearance of the observed spectrum, while the P

branch does not. The following sections will examine each region of the spectrum in more detail.

5.4 Rotational analysis of the 8.5 µm band

5.4.1 R branch

The observed R branch contains a highly uniformly spaced progression of well resolved rovi-

brational transitions. We observe about three hundred individual features above the absorption

noise baseline, a subset of which are illustrated in Fig. 5.7a. As discussed above, the R(J) tran-

sitions correspond to those from the ground vibrational state to the “R = J − 1” manifold of the

excited vibrational state (Fig. 5.6), with ∆J = +1,∆R = 0 selection rules. Using the zeroth order

energies, we expect these transitions to occur at frequencies

ν[R(J)] = E(−)
ex (J + 1)− Egr(J)

= ν0 +B′(J + 1)(J + 2)− 2B′ζ(J + 2)−B′′J(J + 1)

= ν0 + (2B̄ + ∆B)(1− 2ζ) +

J [2B̄(1− ζ) + ∆B(2− ζ)] +

J2∆B, (5.25)

where B̄ = (B′ + B′′)/2 is the mean of the ground and excited state rotational constants and

∆B = B′ − B′′ � B̄ is their difference. The primary J-dependence is through the linear term,
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Figure 5.7: Detailed views of the 8.5 µm band of C60. (a) The measured (blue, top) and simulated
(black, bottom) R(J) transitions are shown from J = 160 to 200. The characteristic intensity
alternation patterns are a signature of 12C60 nuclear spin statistics. (b) The band origin region
shows several features, including the 12C60 Q branch extending from 1184.845 to 1184.855 cm−1.
The inset shows a fit to Q branch contour using a quartic centrifugal distortion model (see text).
The remaining features are speculatively assigned to 12C59

13C. (c) The P branch region contains
weaker and more congested transitions that are in qualitatively disagreement with the zeroth order
simulation. This is possible evidence of icosahedral fine structure or dark state perturbers.

whose coefficient is dominated by the 2B̄(1 − ζ) contribution. The spacing between adjacent

R(J) transitions should be approximately equal to this quantity. There is also a small quadratic

dependence on J proportional to ∆B.

Approximately three hundred R(J) transitions with J ≈ 60 − 360 were assigned and fitted
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(see Fig. 2.11b) to determine their center frequencies. These frequency positions were then used to

fit the parameters in Eq. 5.25. The frequencies and fit residuals are shown in Fig. 5.8, and the fitted

spectroscopic constants are summarized in Table 5.1. The complete line list and raw spectrum is

available in a permanent online data repository [154].
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Figure 5.8: Fit of the C60 R branch. (a) The R(J) line positions are shown for J ≈ 60 − 360.
They exhibit a nearly linear dependence on J . (b) The residuals from fitting to Eq. 5.25 have a
root-mean-square value of 7.4 × 10−5 cm−1 and show at least two possible avoided crossings near
J = 220 and J = 270. The individual error bars are the 1σ line center uncertainties, which have a
mean value of 2.5× 10−5 cm−1.

We confirmed the correct J assignment in two ways. First, the fitted spectroscopic parameters

were used to extrapolate the R(J) line positions to the fictitious “R(−1)” transition. This should

occur at ν[R(−1)] = ν0 − (2B̄ + ∆B)ζ, which is coincident with the zeroth order Q(1) position
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Table 5.1: Fitted spectroscopic parameters of the C60 R branch with Eq. 5.25. The fit residuals
have a total root-mean-square error of 7.4×10−5 cm−1. The 1σ uncertainty in the fitted parameters
is shown in parentheses in units of the last digit.

Parameter Value (cm−1)

ν0 + (2B̄ + ∆B)(1− 2ζ) 1184.86196(3)
2B̄(1− ζ) + ∆B(2− ζ) 0.0078300(3)
∆B −2.876(6)× 10−7

up to small differences of O(∆B). This agreement is shown in Fig. 5.9. A second confirmation is

provided by the nuclear spin statistics intensity patterns, which have a very strict and characteristic

dependence on J . As can be seen in Fig. 5.7a, the observed intensity patterns are in agreement

with those predicted by the symmetry analysis described in Section 5.3.4. Based on both frequency

and intensity information, we can have confidence in the correct J assignment and therefore the

validity of the spectroscopic constants in Table 5.1.
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Figure 5.9: J assignment via R(J) extrapolation. The extrapolated position of the fictitious R(−1)
transition coincides with the onset of the Q branch near 1184.855 cm−1, confirming the correct R
branch J assignment.

The rotational fine structure of the R branch spectrum provides detailed structual information
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about isolated C60 molecules. Our initial analysis does not allow an indepenent determination of

B′′ and ζ due to the restrictive ∆R = 0 spherical top selection rule. However, if we assume a range

of ζ = −0.30 to −0.45 based on theoretical calculations [155], we can estimate B′′ = 1
hc

~2
2I ≈ 0.0027

to 0.0030 cm−1, where I is the effective moment of inertia of the ground vibrational state. For

a spherical shell of mass m and radius r, the moment of inertia is I = 2
3mr

2, yielding a C60

radius in the range of r = 3.4 to 3.6 Å. This is consistent with a previous gas-phase electron

diffraction measurement of 3.557(5) Å, which includes thermal averaging effects that lengthen the

measured radius relative to that of the vibrational ground state [119]. Further analysis of the

rotational fine structure of 12C60 (and eventually 12C59
13C) will be necessary to constrain B′′ and

ζ independently and completely determine the gas-phase structural parameters. High resolution

spectra in combination with the large range of observed J values provide highly precise spectroscopic

constants, which will ultimately provide an equally precise structure determination. Our measured

value of ∆B implies that the effective C60 radius increases by only 0.005% upon excitation of the

observed vibrational mode, which is primarily of a surface-tangent C−C bond stretching character.

Furthermore, the narrow IR transition linewidths (mostly Doppler-limited to about 20 MHz) to the

excited vibrational state provide a lower bound for its IVR lifetime of at least 8 ns, despite being

embedded in a dense manifold of dark vibrational states (see Fig. 4.5).

5.4.2 Q branch

The Q branch region of the 8.5 µm band is shown in Fig. 5.7b. This 0.1 cm−1-wide window

contains several features with complex rotational contours. We assign the blue-most feature, shown

in the inset Fig. 5.7b, to 12C60. The Q(J) transitions access the central Coriolis manifold of the

excited vibrational state, which consists of rotational states satisfying R = J (Fig. 5.6). According

to the zeroth order energy expressions (Eqs. 5.10,5.14), these Q(J) transitions should occur at
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frequencies

ν[Q(J)] = E(0)
ex (J)− Egr(J)

= ν0 +B′J(J + 1)− 2B′ζ −B′′J(J + 1)

= ν0 − (2B̄ + ∆B)ζ + ∆B J(J + 1). (5.26)

Due to the small quadratic J-dependence proportional to ∆B, these transitions lie close to one

another, resulting in an unresolved rotational branch contour. According to the zeroth order model,

the Q(J) frequencies should be monotonically red-degraded (as ∆B < 0). However, the observed

contour shows a clear band head associated with an initial red degradation towards lower frequencies

and then a reversal back towards higher frequencies, suggesting the presence of centrifugal distortion

(CD) effects, which arise from the flexibility of the carbon skeleton.

The simplest addition to the zeroth order effective Hamiltonians is a quartic scalar CD

operator, −DJ4, which contributes −DJ2(J + 1)2 to the total rovibrational energy. The quartic

CD constant can take different values for the ground and excited vibrational states, D′′ and D′

respectively, and their difference contributes a new quartic term to the Q(J) transition frequencies

ν[Q(J)] = ν0 − (2B̄ + ∆B)ζ + ∆B J(J + 1)−∆DJ2(J + 1)2, (5.27)

where ∆D = D′ −D′′. A rotational temperature Trot and a line width must also be included to fit

the intensity profile of the Q branch contour. Using such a model, a contour can be successfully

fitted to the measured profile (dashed line shown in the inset of Fig. 5.7b). Here, the values of the

band origin, ∆B, and the line width are fixed their values determined in the R branch fit, while

∆D and Trot are optimized by a non-linear least squares fit to −2.27(1)×10−12 cm−1 and 103(1) K,

respectively. However, it is unclear how meaningful the fitted value of Trot is. For example, the

rotational temperature from a fit to the R branch intensities yields Trot = 150(2) K (Fig. 2.11).

This latter value is expected to be more reliable as it is derived from the relative intensities of

many individually resolved transitions, rather than the total contour of the many unresolved Q(J)

transitions. If Trot is held fixed to the R branch-derived value, the fitted value of ∆D from the Q
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branch contour changes slightly to −2.10(3) × 10−12 cm−1. For a fixed value of ∆B, the value of

∆D is largely determined by the width of the Q branch contour, explaining why ∆D is relatively

insensitive to Trot in the fit. Therefore, a ∆D value in the range of −2.0 to −2.5 × 10−12 cm−1

seems like a reasonable conservative estimate.

Canonical rovibrational perturbation theory indicates that the quartic CD constant should

be of the order of magnitude of B3/ω2, where ω is a vibrational frequency [156]. Taking B ∼

0.003 cm−1 and ω ∼ 500 cm−1 yields D ∼ 10−13 cm−1. To confirm this order of magnitude

prediction, we computed the density functional theory (DFG) harmonic force constants of C60

using the B3LYP functional with a 6-31g basis set, as implemented in the NWChem package [157].

This calculation predicts D = 5.8× 10−13 cm−1. The R branch transition frequencies also provide

information on the magnitude of D. Here, the presence of quartic CD manifests in a J3 dependence

of the line positions. An attempt to include a cubic term in the R branch fit shows that there is

no statistically significant J3 dependence over the J = 60 − 360 range to within our frequency

measurement uncertainty, suggesting an upper bound of |D| < 1 × 10−11 cm−1, consistent with

the theoretical estimates. If we assume the DFG prediction to be correct for the ground state

constant D′′, then the Q branch contour implies that the upper state value D′ is several times

larger in magnitude than D′′ and of opposite sign. This situation is certainly plausible, but would

imply that local perturbations or higher order CD effects cause a significant change to the effective

Q branch D′ value. Unfortunately, it is difficult to explore these details with only the relatively

crude contour information of the unresolved Q branch. Nonetheless, it is clear from the observed

structure that effects beyond the simple zeroth order rigid spherical top are important.

As can be seen in Fig. 5.7b, there are three features red-shifted from the 12C60 Q branch

contour. While there are multiple explanations for them, including vibrational hot bands, we

believe the most likely possibility is that they belong to the 12C59
13C isotopologue, which occurs

at a 2:3 abundance relative to the pure 12C isotopologue. A single 13C substitution breaks the

triple degeneracy of the T1u vibrational mode, resulting in three closely spaced vibrational origins

of comparable intensity [158]. The lack of clear 12C59
13C signatures in the R branch region, on
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the other hand, can be explained by the spectroscopic splittings that result from the inequivalent

moments of inertia. This has a relatively smaller effect on the already unresolved Q branch contours.

We do not attempt a detailed analysis of the putative 12C59
13C features here due to the significantly

more complex rotational fine structure expected for this asymmetric isotopologue [158].

5.4.3 P branch

In contrast to the simple structure of the R branch, the P branch exhibits a less regular,

more congested pattern of transitions. Both the number and position of absorption features in the

observed spectrum disagree with the zeroth order simulation, which is based on the spectroscopic

parameters determined from the R branch fit. In the survey spectrum of this band (Fig. 5.5), there

is an obvious asymmetry in the absorption intensity envelope of the P branch relative to the R

branch. Beginning at the band origin near 1184.9 cm−1 and moving down in frequency, some low-J

features do begin to appear, though they are relatively weak and irregular as shown in the right

half of Fig. 5.7c. As one continues through the P branch, the absorption intensity vanishes before

re-emerging at the high-J tail (left half of Fig. 5.7c). In this last portion, the absorption lines have

approximately the same spacing as in the R-branch, but are offset from the positions expected

from the R branch fit. The apparent decrease in the integrated absorption cross section may in

fact just be an artifact of the high-pass filtering performed on the cold C60 FTS spectrum (see

Section 2.4.1), which removes any broad, quasi-continuous component. Therefore, one explanation

for the appearance of the P branch is that whatever mechanism is responsible for the splitting of

the low-J transitions continues to intensify in the middle of the branch. Here, the congestion is

so severe that the spectrum is continuous and unresolvable, and thus subtracted from the high-

pass filtered signal. As J increases into the tail of the branch, the splitting mechanism causes the

transitions to re-coalesce with their neighbors (a “rotational echo” of sorts), explaining why they

have a similar spacing as, but a systematic offset from, the zeroth order simulation.
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5.5 Discussion

One of the clearest results of our initial spectroscopic analysis is the confirmation of the

characteristic 12C60 rotational intensity patterns, representing the most extreme example of nuclear

spin statistical effects in a molecular system. This observation illustrates the consequences of

symmetry in C60 in a fundamentally different way than previous spectroscopic studies. In the latter

case, the icosahedral symmetry of C60 has been established based on observed selection rules and

energetics [113–118, 159]. However, these effects are classical in nature and boil down to certain

matrix element integrals being equivalent to each other or to zero at the level of experimental

sensitivity. In contrast, nuclear spin statistics effects are fundamentally quantum mechanical in

nature, deriving from the simultaneous indistinguishability of all sixty 12C nuclei and the perfect

icosahedral symmetry of their geometrical arrangement.

The most glaring spectroscopic puzzle uncovered so far is the qualitatively different behavior

of the R and P branches of the 8.5 µm band. The R branch exhibits no deviation from the simplest

possible zeroth order structure, except for what appear to be very weak, local avoided crossings.

This in and of itself is a remarkable fact given the very high values of angular momentum observed

in the spectrum, i.e. J ∼ 360. This “textbook” regularity of the R branch structure makes it

difficult to find a consistent explanation for the much more complex structure observed in the P

branch. As shown in Fig. 5.6, the spherical top IR selection rules imply that the P, Q, and R

branch transitions all access mutually exclusive sets of upper states. It is therefore possible that

some effect perturbs the P branch (connected to the T
(+)
1u manifold) while sparing the R branch

(connected to the T
(−)
1u manifold). Such a perturbation could fall into one of two cases: (i) a local

perturbation caused by resonant interactions with one or a few accidentally degenerate dark state(s)

or (ii) non-local perturbations with the entire rovibrational manifold that manifest as high order

Coriolis and centrifugal distortion terms in each vibrational state’s effective Hamiltonian. In case

(i), it is difficult to imagine that any state that interacts strongly enough to so thoroughly perturb

the T
(+)
1u manifold does not also do so to the T

(−)
1u manifold. The total spin-rovibronic symmetry of
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each excited state sub-level is Au, and therefore there is no rigorous symmetry selection rule that

protects one manifold, but not the other.

In case (ii), the icosahedral symmetry severely restricts the form that high order terms can

take in effective rovibrational Hamiltonians [18,160]. In the ground vibrational state, where ` = 0,

the rotational Hamiltonian only contains powers of the total angular momentum J and its body-

fixed components. The simplest high order contributions are of the form (J2)n, representing the

quartic (n = 2), sextic (n = 3), etc. spherical centrifugal distortion operators.3 These operators

have rank-0 tensor character under SO(3)M, and the Wigner-Eckart theorem prevents them from

breaking the degeneracy of the 2J + 1 body-fixed projections of J [152,161].

Splittings of rovibrational transitions must come from non-spherical operators (rank k > 0).

We still require that these transform as the totally symmetric representation Ag. The correlation

properties between SO(3)M and Ih (Table C.2) tell us that the first allowed non-spherical operator

has rank-6 character. It takes the form

Ω(6) =

√
11

5
Ω

(6)
0 +

√
7

5

(
Ω

(6)
5 − Ω

(6)
−5

)
, (5.28)

where Ω
(k)
q is the qth component of a spherical tensor operator of rank k [162,163]. The eigenvalues of

this operator, and therefore the expected first-order energy splittings caused by it, are independent

of the physical details of the molecule. They are determined only by the algebraic tensor structure

of Ω(6). Figure 5.10 illustrates the patterns of such icosahedral splittings for C60 rotational states.

The Ω(6) term is the simplest non-spherical tensor operator one can consider. In the vibra-

tionally excited state, the presence of non-zero vibrational angular momentum ` introduces many

additional operators resulting in a complicated menagerie of icosahedral splitting patterns. Nu-

merical exploration of the allowed possibilities, however, suggests that none affects the spectrum

in such a way that the R branch is left unperturbed over the entire observed J = 60 − 360 range

while simultaneously accounting for the P branch behavior. Observation of low-J lines, which are

below the comb spectrum noise baseline for J < 60, will undoubtedly assist in sorting out these

3 Only even powers of J can appear to preserve time-reversal symmetry [18].
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Figure 5.10: Icosahedral splitting patterns of C60 via the Ω(6) operator. (a) Under spherical
symmetry, the J = 8 rotational level would contain gR = 2J + 1 = 17 degenerate components,
corresponding to the different projections of J in the body-fixed frame. These split into multiplets of
reduced degeneracy according to the symmetry correlations between SO(3)M and Ih (see Table C.2).
(b) The complete eigenvalue structure of Ω(6) as a function of angular momentum quantum number
J . The characteristic clustering patterns are related to the semi-classical rotational energy surfaces
of a deformable icosahedral top [162,163].

complications.

5.6 Conclusions

The high resolution spectroscopy reported in this chapter provides a first glimpse at the

unique rovibrational structure and symmetry of C60. Beyond the detailed spectroscopic aspects

particular to C60, rovibrational quantum state resolved measurements establish the possiblity of

using fullerenes as platforms to explore quantum science. For example,

• Small fullerenes straddle the border between molecular-scale structure and bulk materi-

als [164]. What can the vibrational and electronic structure of C60 tell us about phonons

and electronic transport in extended systems?

• C60 in its rest frame and ground rovibrational state represents a perfect atomic lattice at
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absolute zero temperature. The pure 13C60 isotopologue is therefore a pristine instance of

a spherical spin-1/2 lattice [165, 166]. Can rovibrational quantum state control of single

13C60 molecules be used to study and manipulate the many-body dynamics of a large spin

network?

• Fullerenes present the unique capability of encapsulating atoms and small molecules within

their hollow core [167]. Can such endo-fullerenes be used to functionalize C60 in useful ways,

such as for cooling and trapping? Can such systems be used as models for understanding

the interactions, dynamics, and energy flow between small molecules and an extended bath

system?

Precision spectroscopy lays the ground work for these and other exciting new avenues in molecular

science.



Chapter 6

Quantum cascade laser spectroscopy of C60

6.1 Introduction

Frequency comb spectroscopy enables the rapid acquisition of high resolution, broadband

measurements with a high detection sensitivity. The large ratio between the comb bandwidth and

repetition rate (ca. 103–105:1), however, results in an average power per comb mode that is typically

quite small, even when accounting for intracavity build up. This often restricts low-power MIR

combs to act as passive spectroscopic probes. Single-frequency continous-wave (cw) lasers, on the

other hand, provide complementary capabilities to frequency combs. By concentrating intensity into

a single optical frequency, cw lasers can efficiently pump MIR transitions to transfer population

between rovibrational quantum states. Moreover, one can take advantage of a large variety of

cavity-enhanced cw-laser spectroscopy techniques for ultrasensitive detection [21] . These benefits,

of course, come at the cost of reduced spectral bandwidth.

This chapter summarizes our on-going exploration of C60 spectroscopy with the development

of a MIR quantum cascade laser (QCL)-based spectrometer operating near 8.5 µm. Section 6.2

describes the technical aspects of our QCL device and our initial attempts at frequency stabilization.

Cavity ring-down experiments are then discussed in Section 6.3. In Section 6.4, we move our

attention to true cw spectroscopy via optical feedback stabilization, resulting in the discovery of

saturation of C60 rovibrational transitions, described in Section 6.5. Finally, Section 6.6 presents

some concluding remarks on future experimental directions.
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6.2 MIR QCL frequency noise

QCLs are semi-conductor laser devices with a one-dimensional quantum well structure that

permits the lasing wavelength to be engineered over a wide range of the MIR region [168, 169].

We use a distributed feedback (DFB)-QCL [170] (Alpes Lasers) that provides stable single-mode

operation near 8.5 µm with an average output power of up to 30 mW. The laser output is tem-

perature/current tunable from 1183 to 1189 cm−1, which covers most of the C60 vibrational band

(Fig. 5.5). Unlike traditional diode lasers, frequency tuning of DFB-QCLs is performed by ther-

mal tuning of the refractive index of the active region, which ultimately limits the wavelength

modulation response bandwidth to less than 100 kHz (see below).

Figure 6.1a shows the free-running frequency noise density of the QCL measured using the

side of an N2O absorption peak as a frequency discriminator. The derived optical line width is

about 1 MHz, which is significantly broader than the 50 kHz line width of the optical enhancement

cavity used for the absorption measurements. The effect of these frequency fluctuations as the laser

wavelength is scanned over a cavity resonance can be seen in both the cavity transmission and PDH

reflection signals shown in Fig. 6.1b.

The free-running laser frequency must be stabilized to avoid detrimental relative laser-cavity

noise. We initially attempted to feed back on the laser frequency via current modulation using a

PDH error signal from the spectroscopy cavity. This strategy proved unsuccessful due to the limited

frequency feedback bandwidth of the QCL. As shown in Figs. 6.2a and b, the QCL frequency

modulation response drops by 50% (relative to DC) by 100 kHz, where it has already acquired

30◦ of phase delay. This results in simply not enough feedback bandwidth to narrow a 1 MHz

free-running line width to a 50 kHz cavity. We also tried an intermediate approach using a short

pre-stabilization cavity with a line width of 1 MHz, comparable to that of the laser. The QCL could

be successfully locked to the pre-stabilization cavity, demonstrating a significant reduction in its

low-frequency wavelength jitter (Fig. 6.2c). Nevertheless, this feedback loop was still bandwidth-

limited to about 50 kHz due to the slow thermal frequency response of the laser. The remaining
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Figure 6.1: Frequency noise of the free-running QCL. (a) The frequency noise spectral density
(red) is measured using an N2O absorption line as a frequency discriminator. The blue horizontal
line indicates the expected frequency noise assuming that it is determined only by the current driver
noise (which, as can be seen, it is not). (b) Cavity transmission and reflected PDH signals during a
laser frequency scan. The PDH sidebands at ±3.5 MHz provide a horizontal frequency calibration
scale.

laser frequency noise above 50 kHz results in essentially no change to the short-time line width and

therefore no improvement in the laser-spectroscopy cavity coupling performance.

6.3 Cavity ring-down spectroscopy

Cavity ring-down spectroscopy (CRDS) [171] offers a way to work around QCL frequency

fluctuations. During the ring-down measurement, the laser does not interact with the cavity, and

the signal is therefore immune to relative laser-cavity frequency noise, as well as laser intensity noise.

We configured the QCL setup for CRDS operation as shown by the diagram in Fig. 6.3a. Laser

light is repeatedly injected into the cavity by sweeping either the cavity length or QCL current.

The average cavity-laser offset is stabilized by a swept-cavity lock feedback loop (see Section 2.3.1).

As laser light comes into resonance, it builds up in the cavity and is detected by a transmission

photodiode. A pulse detector circuit monitors when the cavity build-up reaches a given threshold

value. At this point, the laser is switched off resonance by a short current square pulse, and the
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Figure 6.2: QCL current modulation response and PDH frequency stabilization. (a) This plot
shows the amplitude response of the QCL current driver output, the QCL optical output intensity,
and the QCL optical frequency as a function of the current driver modulation input signal frequency.
All traces have been normalized to their respective DC response. The intensity response is flat out
to 1 MHz, while the frequency response begins to roll off steeply past 10 kHz. (b) The phase
response curves associated with (a). (c) The in-loop QCL frequency noise for the PDH lock to
the pre-stabilization cavity (∆νcav = 1 MHz). Several curves are shown for PI corner frequencies
ranging from 1 to 500 kHz. The feedback loop bandwidth is approximately 50 kHz, which is limited
by the frequency response function measured in (a).

free ring-down curve is acquired by a fast digitizer (Keysight LXI-L4532A) and transferred to a

PC.1 The ring-down signal is fitted to a single exponential to extract the cavity lifetime τ , which is

converted to the single-pass cavity loss. A slow current scan is applied to the QCL to acquire the

CRDS spectrum over a small frequency window.

The CRDS spectrum of the Q-branch region of 12C60 is shown in Fig. 6.3b. The maximum

additional loss above the empty cavity baseline is about 25 ppm, consistent with the previous direct

absorption CE-DFCS measurements. The CRDS Allan deviation, shown in Fig. 6.3c, exhibits an

optimal averaging time of 10–20 s before the onset of slow baseline drifts. The corresponding

single-pass absorption sensitivity is 2.5 × 10−8 Hz−1/2. By comparison, the DFG comb system

1 Ideally, instead of a current pulse, one would use an AOM acting as a fast shutter to block the laser from the
cavity. Our commercial 8.5 µm AOM, however, exhibits a shut-off time of > 1.5 µs, which is not short enough
compared to the 3 µs ring-down time of the cavity.
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Figure 6.3: QCL cavity ring-down spectroscopy (CRDS). (a) Diagram of the CRDS setup. QCL
light is routed through an optical isolator (ISO) and mode matching optics before being injected
into the enhancement cavity. The average laser-cavity frequency offset is stabilized with a swept-
cavity feedback lock. Ring-down events are triggered by a pulse detector monitoring the cavity
transmission. The detector circuit sends a square pulse to the QCL current to quickly move the
laser off resonsance with the cavity. The ring-down signals are acquired by a fast digitizer and
transferred to a PC for processing and fitting. A DAQ device controls the slow current scans and
resets the swept-cavity lock integrator when the scan needs to hop to the next cavity mode. (b) The
CRDS spectrum of the 12C60 Q branch. The strongest feature is the Q-branch head, corresponding
to an additional 25 ppm of intracavity loss. The plot spans an optical frequency window of about
1 GHz. (c) Allan deviation curve for the CRDS measurements. The optimal averaging time is
about 10–20 s, after which the measurement becomes sensitive to slow drifts in the cavity lifetime.
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achieves 3.1 × 10−9 cm−1 Hz−1/2 PSE (Section 2.4.1), which with a 6-cm cold cell translates to

1.9× 10−8 Hz−1/2 PSE, about 20% better than the CRDS measurement. One drawback of CRDS

is the low duty cycle. The cavity light has a lifetime of τ ≈ 3 − 4 µs and ring-downs can only be

acquired (in our setup) at a rate of about 1 kHz. Furthermore, the peak transmitted power during

the ring-down is only about 1% of the saturation limit of the photodiode, resulting in an integrated

power duty cycle of less than 0.01%. This limits the maximum achievable sensitivity. In principle,

one would hope to reach the shot noise limit, which at the saturation power of our photodiodes

(∼200 µW) and cavity finesse (F = 6000) translates to a single-pass absorption sensitivity of

4× 10−12 Hz−1/2, a full three orders of magnitude better than the CRDS performance. The point,

of course, is that one should not waste any photons, and this can only be achieved with a cw

measurement.

6.4 Optical feedback stabilization QCL spectroscopy

As demonstrated above, the limited frequency modulation bandwidth of the QCL renders

electronic feedback insufficient for a tight cw laser-cavity lock. An alternative solution is to use

optical feedback, which can provide significantly faster feedback bandwidth. Although optical feed-

back is usually detrimental to the performance and stability of semiconductor lasers, under certain

circumstances it can used advantageously to perform self-locking of the laser to an external cav-

ity [172–175]. A simplified diagram of the optical feedback stabilization (OFS) setup is illustrated

in Fig. 6.4a. The key requirements for successful self-locking to the cavity are to (i) minimize optical

feedback from light that is non-resonant with the cavity and (ii) control the optical phase of the

feedback. The first requirement is met by replacing our usual two-mirror cavity with a three-mirror

V-shaped cavity. QCL light is coupled into the cavity at the apex mirror. Because the incident

beam is not perperpendicular to the mirror, the non-resonant cavity reflections are deflected away,

while intracavity circulating light is able to retrace the optical path back to the laser. The optical

phase is optimized by controlling the physical distance between the QCL and the cavity at the

sub-λ scale. This is accomplished with a combination of a fast, short-throw, bullet-mount piezo
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Figure 6.4: QCL optical feedback stabilization (OFS) and self-locking. (a) A simplified diagram
of the QCL-OFS setup. The V-cavity geometry permits resonant cavity light to return to the laser,
while deflecting non-resonant reflections. The inset shows the custom V-shaped vacuum mount
that holds the two closer-spaced cavity mirrors. The feedback power ratio is controlled with a pair
of crossed polarizers, which act as a variable attenuator. A fast PZT-mounted mirror and a slow
delay stage together provide control of the optical feedback phase. When the OFS lock is active, a
frequency scan is performed by ramping the cavity length, with simultaneous feed-forward signals
sent to the QCL current and delay-length piezos. (b) The relationship between the free-running
laser-cavity detuning δνfree and the output frequency detuning ∆νfb in the presence of optical
feedback with a power ratio of β = 10−4. The OFS locking range extends between the two turning
points of the curve. The dashed line corresponds to the ∆νfb = δνfree turning curve without optical
feedback. The inset shows a zoomed-out view. (c) The measured cavity transmission during a
QCL current scan for several values of β in the range 3× 10−3 to 1× 10−2. The horizontal axis is
calibrated to the free-running frequency νfree, with each curve offset such that the capture-point is
at νfree = 0.
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mirror [176] and a slow, long-throw, piezo-actuated delay stage.

One of the key parameters controlling OFS is the ratio β = Pfb/Ptot between the power of

the feedback light Pfb recoupled into the QCL laser mode and the total laser output power Ptot.

Figure 6.4b shows the relationship between the free-running optical frequency of the laser νfree and

the actual output frequency νfb in the presence of optical feedback, simulated for β = 10−4 and

assuming that the QCL laser cavity has an optical length of n` = 5 mm and a finesse of 5 [173]. (We

do not know the actual parameters of the QCL laser cavity. These are simply reasonable guesses.)

Over the OFS locking range, which is ∝ β1/2, the laser frequency is pulled to center of the cavity

resonance and free-running frequency fluctuations are suppressed. The self-locking effect is easily

observed by scanning the QCL current (i.e. the free-running frequency) and monitoring the cavity

transmission signal. This is shown in Fig. 6.4c for several values of β (tuned by adjusting a pair

of crossed polarizers between the laser and external cavity). As νfree enters the capture range of

the OFS, it quickly locks to the cavity resonance with a sharp turn-on in the cavity transmission.

As νfree continues to scan through the lock range, it moves from one side of the cavity resonance

to the other, passing through a transmission maximum when the actual detuning ∆νfb relative to

the cavity resonance is zero. Once νfree reaches the end of the lock range, it quickly falls out of

resonance and the cavity transmission drops to zero. At our maximum achievable feedback power

ratio, which we estimate to be β = 10−2, the locking range is about 190 MHz, i.e. 95% of the

cavity FSR = 200 MHz. This performance is similar to other recent demonstrations of OFS with

QCLs [177–180].

We actively stabilize the optical feedback phase by applying a f = 20 − 35 kHz dither to

νfree via QCL current modulation. The cavity transmission signal is then demodulated to isolate

the 1f component, which is filtered and fed back onto the fast delay PZT, maintaining optimal

OFS conditions. The residual intensity noise (RIN) spectrum of the cavity transmission with an

active OFS lock is shown in Fig. 6.5a, along with the RIN spectrum of the incident cavity light

(“Reference”) with and without optical feedback. At frequencies below 1 kHz, residual laser-

cavity frequency fluctuations add intensity noise to the cavity transmission, but at frequencies
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between 1 kHz and the cavity half-width of 35 kHz, the incident and transmitted cavity light have

comparable amplitude noise. It is also evident that as the optical feedback corrects for free-running

frequency fluctuations, it imprints intensity noise onto the laser output. DC cavity transmission has

a baseline RIN of about 2 × 10−4 Hz−1/2, corresponding to a single-pass absorption sensitivity of

1×10−7 Hz−1/2 (the V-cavity has a finesse of about 3000). By adding another stage of modulation to

perform wavelength-modulation spectroscopy, the detection band could be moved to the 1–10 kHz

window, where the detection sensitivity would be as low as 5×10−10 Hz−1/2, about a factor of 40×

better than the CE-DFCS or QCL-CRDS sensitivities.
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Figure 6.5: OFS-locked intensity noise and frequency ramp. (a) RIN spectra are plotted for the
cavity transmission (blue), reference incident cavity light (red), and incident cavity light without
optical feedback (black). The cavity roll-off (half-width) frequency is 35 kHz. The narrow spikes
are from a 20 kHz current dither used for the delay-length stabilization servo. (b) An OFS-
lock frequency ramp containing an N2O absorption line. The cavity transmission (red) shows the
70 MHz-wide Doppler profile with a narrow 700 kHz Lamp dip (inset). The cavity length ramp
(blue) and delay-length feed-forward signal (black) are also plotted.

A slow ramp is applied to the optical cavity length to perform a frequency scan. The OFS-

lock forces the laser frequency to follow the moving cavity resonance, while the 1f dither lock

maintains the optimal feedback phase. Feed-forward signals are applied to both the QCL current

and delay-length piezos to keep their respective locks within their operation range. The maximum
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cavity ramp range is about 220 MHz (limited by the throw of the slow delay-length piezo). This

is larger than the 200 MHz FSR of the cavity, so by hopping the laser between sequential cavity

resonances, a wider spectral window can be continuously stitched together. Figure 6.5b shows a

single OFS-locked cavity ramp containing a strong N2O absorption peak. The cavity transmission

signal, the cavity length ramp, and the delay length feed-forward signal are plotted. The transition

is partially saturated revealing a narrow Lamb dip feature, which has a FWHM of 700 kHz, limited

by transit time and power broadening.

6.5 Saturation of C60 rovibrational transitions

Upon the demonstration of successful frequency ramps with N2O, we immediately searched for

C60 transitions. Spectrally broad absorption, observed as attenuation of the DC cavity transmission,

was detected and attributed to the warm C60 “blob” (see Fig. 5.5). However, there were no

detectable signatures of narrow transitions from cold C60, not even from the strong Q-branch

head. After the possibility of frequency calibration errors was quickly ruled out, we were left to

suspect that the C60 molecules were not being properly cooled, which could explain why only broad

background absorption was detected. We spent several weeks investigating this issue, focusing on

the C60 oven and buffer gas annular slit inlet. These components were modified and re-built multiple

times. The buffer gas flow rates and pumping speeds were also carefully recalibrated. None of these

actions resulted in any change in the observed signal.

After eliminating all other possibilities, we considered the prospect that cold C60 transitions

might be saturated, given that our typical OFS operating conditions result in an intracavity cir-

culating power of up to 700 mW. Indeed, by attenuating the QCL light incident on the cavity,

narrow absorption resonances were recovered. Figures 6.6a and b show an R(J) transition near

1186.2 cm−1. Increasing the intracavity circulating power from Pcav = 40 mW to 160 mW results

in the complete disappearance of the absorption signal. The C60 Q branch is shown in Figs. 6.6c

and d. At Pcav = 15 mW, the expected Q-branch contour begins to take shape, but this structure

already begins to wash out at Pcav = 30 mW. The effective single-pass loss for the Q-branch head
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Figure 6.6: Saturation of cold C60 rovibrational transitions. (a) An OFS-locked cavity scan with
Pcav = 40 mW shows absorption from an R(J ≈ 170) transition near 1186.2 cm−1. The two traces
are from the upward (red) and downward (blue) portions of the cavity length ramp. (b) Same as
(a) with Pcav = 160 mW. (c) A scan near 1184.85 cm−1 with Pcav = 15 mW shows the partially
resolved Q-branch head. (d) Same as (c) with Pcav = 30 mW, showing a washed out Q-branch
contour.

at Pcav = 15 mW is only about half the expected magnitude, suggesting that it is still partially

saturated.

Although the observation of C60 saturation came as a surprise, in hindsight it might have been

anticipated. The integrated intensity of the 8.5 µm band is about 9.4 km mol−1 [131], corresponding

to a vibrational transition dipole of 0.05 D. The CE-DFCS data suggests that the IR transitions

are collisionally broadened to about 20 MHz implying a saturation intensity of ∼102 W/cm2.

The maximum Pcav = 700 mW with a cavity waist of w0 = 1.5 mm2 yields a peak intensity
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of I = 2Pcav/πw
2
0 ≈ 20 W/cm2. This back-of-the-envelope calculation suggests that saturation

effects should not have been entirely unexpected with cw OFS-locking. On the other hand, the

peak intensities in the CRDS measurements are 25–50× lower, and in the CE-DFCS measurements

about 104× lower (per comb mode), explaining why no saturation effects are observed in those

experiments.

6.6 Conclusions and future directions

The discovery of C60 saturation ultimately opens up new experimental possibilities. For

example, efficient vibrational population transfer is a pre-requisite for hole-burning and double-

resonance techniques. In the near-term, however, it represents a significant experimental barrier

for intracavity absorption measurements. Engineering low intracavity powers with an OFS lock is

practically difficult. The OFS process fundamentally relies on laser power being coupled into the

external cavity and then back into the laser cavity. Attenuating light before it enters the external

cavity or decreasing the build-up factor of the cavity compromises OFS performance. One way

to overcome this challenge is to take advantage of sideband spectroscopy. The ideal technique

is probably NICE-OHMS [181], which requires frequency sidebands at a modulation frequency

equal to the cavity FSR (200 MHz). Unfortunately, the limited frequency response bandwidth of

QCLs makes this impractical to accomplish with direct current modulation, and external phase

modulators such as EOMs are not widely available at 8.5 µm. A compromise approach is to use

AM sidebands. While this strategy sacrifices various advantages of FM spectroscopy, it is relatively

straightforward to current modulate a QCL at 200 MHz. Only a small fraction of the total power

(probably < 1%) needs to be placed in the AM sidebands. The high intensity carrier interacts

with one cavity mode generating a stable OFS lock, while AM sidebands on either side couple to

adjacent cavity modes to perform a linear absorption measurement below the saturation intensity.

This approach is currently being implemented in the Ye lab and promises to help us take the next

step in C60 QCL spectroscopy.



Chapter 7

High accuracy rovibrational calculations of small molecules

7.1 Introduction

Gas-phase, frequency domain spectroscopy probes the molecular eigenstates associated with

electronic, vibrational, and rotational motion. The interpretation, assignment, and analysis of such

spectra, ranging from the microwave to optical regions, is aided enormously by accurate ab initio

calculations. Reliable predictions of anharmonic vibrational frequencies and rotational constants

are only the starting point: treatment of higher order effects such as centrifugal distortion, Coriolis

interactions, tunneling splittings, and various types of perturbations is often necessary to success-

fully describe a high resolution spectrum [182]. Certain quantities of interest are intractable or

impossible to extract directly from experimental spectra alone and require theoretical input. For

example, calculated nuclear zero-point motion effects are crucial to equilibrium structure determi-

nation [183,184] and high-level thermochemistry protocols [185–187].

Ab initio approaches are often based on solving the time-independent Schrödinger equation

(SE) for the total molecular Hamiltonian,

Hmol(re,Rn) = Helec(re; Rn) + [Tnuc(Rn) + Unuc(Rn)] .

Hmol contains an electronic part Helec(re; Rn), which depends on both the electronic re and nu-

clear Rn coordinates, and a nuclear part that includes the nuclear kinetic energy Tnuc(Rn) and

internuclear Coulomb repulsion Unuc(Rn). The Born-Oppenheimer approximation [188] splits the

molecular problem into two halves by adiabatically separating the electronic and nuclear degrees
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of freedom. In this framework, one first solves an electronic SE,

Helec(re; Rn)|ψe(re; Rn)〉 = Ee(Rn)|ψe(re; Rn)〉, (7.1)

which depends parametrically on Rn. The solution to this problem constitutes the extensive field

of electronic structure theory and quantum chemistry.

We focus here on the second step, namely the nuclear motion SE,

Hnuc|ψnuc(Rn)〉 = [Tnuc + V (Rn)] |ψnuc(Rn)〉 = Enuc|ψnuc(Rn)〉, (7.2)

which describes rovibrational dynamics occuring on an effective potential energy surface (PES)

V (Rn) = Ee(Rn) + Unuc(Rn). In polyatomic molecules, this is a high-dimensional, many-body

problem. Its solution is especially complex for non-rigid, floppy systems that exhibit extreme an-

harmonicity and large-amplitude nuclear motion. Many molecules of fundamental physical and

chemical interest, including reactive transients, radicals and ions, and exotic astrochemical species,

fall into this category.1 We have already encountered one example earlier in Chapter 3 on the

infrared spectrocopy of nitromethane. Automated “blackbox” tools, such as those based on stan-

dard vibrational perturbation theory [70, 191], fail – often catastrophically so – for these types of

systems [51]. The development of accurate and efficient alternative methods to tackle them remains

a challenge.

This chapter discusses the computational methods we use to understand and interpret the

rovibronic spectra of small- to medium-sized polyatomic molecules. Section 7.2 describes these

tools, which include implementations of relatively well established techniques along with newly

developed approaches and extensions. In Section 7.3, we explore several applications to floppy,

anharmonic molecules including the methide anion [192], disilicon carbide [193–195], hydrogen

peroxide [196, 197], and gauche-1,3-butadiene [198]. Each of these examples is framed by the goal

of interpreting and quantitatively understanding measured spectra. Indeed, most of these projects

are the result of close collaboration with experimental spectroscopists. Ultimately, we hope to

demonstrate the important benefits of close contact between experiment and theory [182].

1 An excellent survey of this topic can be found in two recent special issues of the Journal of Molecular Spectroscopy
organized in honor of the late Jon Hougen [189,190], who made numerous fundamental contributions to this field.
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7.2 Methods

In this section, we give an overview of the construction of nuclear motion Hamiltonians and

the determination of their energy eigenvalues and eigenfunctions. The Hamiltonian has two parts:

the kinetic energy operator (KEO) and the potential energy surface (PES). The KEO is determined

only by the choice of coordinates used to describe the nuclear degrees of freedom, while the PES is

built from fitting high-dimensional functions to data sets of quantum chemical electronic energies.

The strategies employed to determine the spectrum of the Hamiltonian include both variational and

perturbative techniques. The former involves iterative eigensolvers combined with sparse direct-

product grid representations of the Hamiltonian. For systems that are too large to treat with this

approach, we have developed a version of rovibrational perturbation theory based on curvilinear

vibrational mean-field theory. The software used to perform each of these various parts of a nuclear

motion calculation has been organized into a freely available package called Nitrogen [199].

7.2.1 Direct-product grid variational calculations with iterative eigensolvers

The most general way to compute the spectrum of a rovibrational Hamiltonian is via varia-

tional methods [200, 201]. In this approach, wavefunctions are represented as linear combinations

of a set of basis functions. The matrix representation of the Hamiltonian operator in this basis set

is diagonalized to compute its eigenvalues (energies) and eigenvectors (wavefunctions). By system-

atically increasing the size of the basis set, numerically exact energies and wavefunctions can be

converged. The calculation is limited only by the size of the Hamiltonian matrix one can build and

diagonalize.

The most straightforward basis set for multi-dimensional wavefunctions is a direct product of

one-dimensional basis functions for each degree of freedom [201,202]. These take the general form

Φi1i2···in(~q) = φ
(1)
i1

(q1)φ
(2)
i2

(q2) · · ·φ(n)
in

(qn), (7.3)

where each vibrational coordinate qk, k = 1 . . . n, has its own independent set of 1-D basis func-

tions φ
(k)
ik

(qk). (We consider rotational motion later.) The desired many-body wavefunctions are
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represented as an n-index sum over the direct product basis,

Ψ(~q) =
∑
i1

∑
i2

· · ·
∑
in

ci1i2···inΦi1i2···in(~q), (7.4)

where the coefficients ci1i2···in are equal to the components of the eigenvectors of the Hamiltonian

matrix. As the number of basis functions φ
(k)
ik

for each coordinate approaches completeness in 1-D,

so does the many-dimensional direct-product basis.

The challenge with this approach is that the number of direct-product basis functions grows

exponentially with the number of coordinates. For example, each 1-D basis set typically needs a

minimum of 10 functions for accurate results, yielding a total of 10n direct-product basis functions.

A five-atom molecule, such as CH4, has n = 3N − 6 = 9 internal coordinates, so its minimum

basis set contains 109 functions. Most importantly, the Hamiltonian operator in this basis is a

109 × 109 matrix, which would require about 1010 gigabytes of memory to store on a computer.

Even if this were possible, direct diagonalization methods of m × m matrices scale as O(m3)

and are impractical for such large matrices. Furthermore, only the lowest energy eigenvalues are

typically desired, which represent a very small fraction of the complete eigenvalue spectrum of the

Hamiltonian matrix. Calculating the entire set of eigenvalues is therefore a vast waste of resources.

The problem of calculating and storing the Hamiltonian matrix is avoided by using iterative

diagonalization methods [203–205], in particular the Lanczos algorithm [206], which is applicable

to Hermitian matrices. Iterative methods focus the computational effort on calculating the lowest

energy eigenvalues and not the entire unnecessary spectrum. They also require only that one

calculate the Hamiltonian matrix-vector product, w = Hv, where v is an arbitrary vector of basis

function coefficients. The key point is that matrix-vector products (MVPs) can be calculated

without the explicit construction of the matrix H itself. This drastically reduces the memory

requirements, making the direct-product basis approach viable. We forgo a detailed discussion of

iterative diagonalization algorithms here. We most often employ the so-called thick-restart Lanczos

method, details of which can be found in Ref. [67].

In general, the efficiency of iterative techniques is determined by the cost of MVPs with
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q

Figure 7.1: Discrete-variable representation (DVR) basis functions. The two DVR functions (red
solid line and blue dashed line) are associated with a one-dimensional grid of twenty-five points
(black dots). Each DVR function is highly localized about its respective grid point and has a node
at all other grid points.

the Hamiltonian. Discrete-variable representation (DVR) basis sets [68, 207–209] are an essential

tool for reducing the computational expense of this step. DVRs are coordinate-representation

basis functions that are highly localized about discrete values (i.e. grid points) of the coordinate

variable [68] (see Fig. 7.1). One definition of DVRs is the eigenfunctions of the coordinate operator

in a finite basis set of orthogonal polynomials, and therefore they may be thought of as finite basis

approximations of Dirac delta functions. Indeed, a fundamental property of DVRs is that matrix

representations of scalar functions are approximately diagonal,∫
dq φ∗i (q)f(q)φj(q) ≈ δijf(qi), (7.5)

where φi (φj) is the DVR basis function centered on grid point qi (qj). This diagonal approximation

is related to Gaussian quadrature of integrals, and the associated error rapidly decreases as the

number of DVR basis functions (i.e. the number of grid points) increases [68].

Using DVR basis sets with iterative diagonalization is advantageous for two reasons. First,

the diagonal property results in a highly sparse Hamiltonian matrix with a small fraction of non-zero

matrix elements. Second, these matrix elements can be calculated without performing expensive in-

tegrals. The only information needed is the values of the PES and KEO coefficients at the DVR grid
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points. These properties make MVPs and iterative diagonalization simple and efficient. Additional

techniques such as pre-conditioned spectral transformations [205, 210, 211] and symmetry-adapted

Lanczos [212] can further improve the computational efficiency.

The above discussion focuses on the pure vibrational problem (J = 0). Rotations are easily

included by attaching a set of symmetric top rotational basis functions to each DVR grid point.

Other than modifying the Hamiltonian MVP routine to account for rotational and rovibrational

terms in the KEO, the iterative diagonalization algorithm is essentially unchanged. Both the size of

the combined rovibrational direct-product basis and the cost of MVPs are proportional to 2J + 1,

the number of symmetric top functions for a given value of J .

7.2.2 Rovibrational perturbation theory based on curvilinear vibrational mean-

field theory

Although iterative techniques and DVRs make direct-product-basis variational calculations

orders of magnitude more efficient than direct matrix construction and diagonalization, their cost

still scales exponentially with the number of coordinates, limiting them to small molecules of

up to four or five atoms. (We note that recent advances [213–215] have substantially pushed

this dimensionality limit for some cases.) For medium-sized molecules, it it advantageous to use

approximate methods that are even more efficient while retaining enough accuracy to be useful for

spectroscopy.

One of the most popular approximate methods is second-order vibrational perturbation the-

ory (VPT2) [69, 70, 191]. The zeroth-order description in VPT2 is a set of uncoupled harmonic

oscillator vibrations and rigid-top rotations. Perturbative corrections from anharmonicity and

rotation-vibration coupling are used to generate anharmonic vibrational frequencies and effective

rotational parameters. Although VPT2 is based on the formally exact Watson Hamiltonian [71], it

relies on rectilinear normal coordinates and single-reference Eckart embedding [216]. This renders

it best suited for molecules that undergo small harmonic displacements from a single, well defined

equilibrium configuration. VPT2 thus fails for floppy or highly anharmonic molecules [51,191].
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This section introduces a more general rovibrational perturbative method that goes beyond

the Watson Hamiltonian/VPT2 framework. Non-rigid systems demand the use of curvilinear co-

ordinates, general representations of the PES and KEO beyond power series/Taylor expansions,

and more flexible quasi-Eckart frame embeddings not tied to a single reference geometry (which

in cases like nitromethane (Chapter 3) may not even be well defined). Prior work on perturba-

tive [217, 218] and hybrid variational-perturbative [219, 220] approaches have addressed some of

these issues. We base our approach on vibrational self-consistent field theory (VSCF) [72–74, 221]

and second-order vibrational Møller–Plesset perturbation theory (VMP2) [76,222]. VMP2 corrects

a zeroth-order VSCF mean-field wavefunction for vibrational correlation effects using Rayleigh-

Schrödinger perturbation theory, in analogy to electronic structure MP2 [75]. While VSCF-based

methods were originally developed for the rectilinear Watson Hamiltonian, they have since been

applied to a variety of curvilinear coordinate systems [223–230]. The contribution of the present

work is to extend the curvilinear VSCF/VMP2 approach by accounting for the rotational and

rotation-vibration coupling terms of the nuclear motion Hamiltonian [51]. Rotational and rovi-

brational effective Hamiltonians are calculated by applying a second-order contact, or Van Vleck,

transformation [231] to the zeroth order VSCF Hamiltonian.

The zeroth-order VSCF wavefunction ansatz is a Hartree product for the n vibrational coor-

dinates,

Ψ0(~q) = ψ1(q1)ψ2(q2) · · ·ψn(qn), (7.6)

or in ket notation,

|Ψ0〉 = |1〉|2〉 · · · |n〉 =
∏
k

|k〉. (7.7)

Variational optimization of |Ψ0〉 leads to a 1-D Schrödinger equation for each degree of freedom,

ĥk|k〉 = εk|k〉, (7.8)
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where

ĥk =

∏
l 6=k
〈l|

Hv

∏
l 6=k
|l〉

 (7.9)

is the one-body Hamiltonian for vibrational coordinate k, computed by averaging the full vibrational

Hamiltonian Hv over the other degrees of freedom l 6= k. As in other mean-field theories, this set

of equations is solved iteratively until self-consistency is reached. We use underlying DVR basis

sets for each of these 1-D problems.

Second-order vibrational Møller–Plesset perturbation theory (VMP2) is used to correct the

VSCF wavefunction |Ψ0〉. The VMP2 energy is computed using standard Rayleigh-Schrödinger

perturbative corrections,

EVMP2
0 = E

(0)
0 + E

(2)
0 , (7.10)

E
(0)
0 = 〈Ψ0|Hv|Ψ0〉, (7.11)

E
(2)
0 =

∑
|v〉6=|Ψ0〉

|〈Ψ0|Hv|v〉|2

E
(0)
0 − E(0)

v

, (7.12)

where the second-order sum is over virtual excitation wavefunctions |v〉 formed from higher-energy

eigenfunctions of the one-body problems, Eq. 7.8. (These form a direct-product basis set that com-

pletely spans the one-body functional space.) The zeroth order wavefunction |Ψ0〉 is not necessarily

the ground state. Excited vibrational states can be targeted equally as well.

This approach provides approximate wavefunctions and energies for the pure vibrational

Hamiltonian Hv = Tv +V , where Tv is the vibrational KEO and V is the PES. To calculate rovibra-

tional states with J > 0, one must consider the full nuclear motion Hamiltonian H = Hv +Tr +Trv,

which contains additional KEO terms for rotational motion (Tr) and rotation-vibration coupling

(Trv). These terms are typically several orders of magnitude smaller than the vibrational part of

the Hamiltonian and therefore may be folded into the perturbative treatment. This procedure is

formally carried out with a contact or Van Vleck transformation [231], with the final product being

a rotational or rovibrational effective Hamiltonian for the state(s) of interest [232,233].

We provide only a brief overview here of contact transformations. (Further details can be
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found, for example, in Appendix C of Ref. [234].) We first define the zeroth-order Hamiltonian

using the VSCF wavefunctions as

H(0) =
∑
v

E(0)
v |v〉〈v|, (7.13)

where E
(0)
v = 〈v|Hv|v〉 are the zeroth-order energies. Letting ∆H = Hv −H(0), we partition H as

H = H(0) + ∆H + Trv + Tr (7.14)

= H(0) + λH ′, (7.15)

where the perturbation term H ′ = ∆H+Trv +Tr appears with an order-sorting parameter λ, which

is formally equal to 1.

Consider the Hamiltonian matrix representation with zeroth-order rovibrational wavefunc-

tions |v〉|r〉. |v〉 is a VSCF wavefunction (|Ψ0〉 or an excited virtual state), while |r〉 is some

rotational basis function (usually a symmetric top wavefunction, but the actual choice does not

matter). A schematic drawing of H in this basis is shown in Fig. 7.2. The Hamiltonian is organized

into vibrational blocks 〈v|H|v〉 along the diagonal. Off-diagonal coupling from H ′ between different

vibrational blocks is of O(λ). A contact transformation is a unitary transformation of the original

Hamiltonian to form a modified Hamiltonian H̃ of the form,

H̃ = e−iλSHeiλS, (7.16)

where S is a Hermitian operator. S is chosen to make H̃ approximately block-diagonal by eliminat-

ing off-diagonal coupling up through some given order in λ. Here, we go to second-order such that

the off-diagonal coupling is reduced to O(λ2). The new diagonal block 〈v|H̃|v〉 is also modified

from the original 〈v|H|v〉 by changes of O(λ2). At this point, the remaining small off-diagonal

coupling is neglected, and the isolated block for the vibrational state of interest is numerically

diagonalized to generate rovibrational energy eigenvalues and wavefunctions. The size of each di-

agonal vibrational block is only (2J + 1) × (2J + 1), so its direct diagonalization is inexpensive.

In practice, the transformation operator S is never explicitly constructed. Simple equations relate
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the matrix elements of the effective Hamiltonian H̃ in terms of those of the original Hamiltonian

H (see Refs. [51, 233,234]).

a

b

Figure 7.2: Contact transformations of the rovibrational Hamiltonian. (a) A unitary transformation
with exp(iλS) eliminates off-diagonal coupling through λ and transforms the diagonal block (H)vv
into the effective Hamiltonian (H̃)vv. (b) Resonantly interacting vibrational states are grouped to-
gether into a multi-state block. The contact transformation generates a larger effective Hamiltonian
that accurately treats the non-perturbative interactions between the resonant states.

This basic procedure works well when individual vibrational states are well-separated in en-

ergy and only interact weakly with each other. Large-amplitude motion, however, often results in

low-lying vibrationally excited states that have energy differences on the same scale as rotational

excitations. This leads to non-perturbative, resonant rotation-vibration interactions. An excellent



127

example is the rotation-torsion manifold in nitromethane (Chapter 3). In this case, the reso-

nantly interacting vibrational states can be grouped together into a multi-state block. The contact

transformation eliminates coupling between this enlarged block and the rest of the rovibrational

manifold, resulting in a multi-state effective Hamiltonian (Fig. 7.2b). This effective Hamiltonian

accurately treats the non-perturbative interactions among the resonant vibrational states. We will

see another example of the need for multi-state effective Hamiltonians in the section below about

tunneling gauche-butadiene.

7.2.3 Kinetic energy operators

We now consider the detailed form of the curvilinear Hamiltonians used in the variational and

perturbative methods discussed above. Relative to rectilinear coordinates, which form the basis

of the Eckart-Watson Hamiltonian [71], curvilinear coordinates provide an improved treatment of

molecular vibrations and large-amplitude motion. These benefits come at the cost of a significantly

more complex analytical form of the nuclear motion KEO [235–238]. However, the use of DVR basis

functions, which require only numerical evaluation of the KEO instead of close-formed analytical

expressions, obviates these drawbacks [239–242].

We define a curvilinear coordinate system for an N -atom molecule by specifying the Cartesian

positions ~xi of each nucleus i = 1 . . . N in a body-fixed, center-of-mass frame as a function of n

internal vibrational coordinates qk, k = 1 . . . n. For full-dimensional problems, n = 3N − 6, though

one can also consider reduced-dimension models that use only a subset n < 3N − 6 of the available

degrees of freedom. The n internal coordinates are collectively denoted as ~q. The body-frame

Cartesian position functions ~xi(~q) generate an associated metric tensor g, an (n + 3) × (n + 3)
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symmetric matrix with elements given by

gkl =
N∑
i

mi∂k~xi · ∂l~xi, (7.17)

gαl =

N∑
i

mi(êα × ~xi) · ∂l~xi, (7.18)

gαβ =
N∑
i

mi(êα × ~xi) · (êβ × ~xi). (7.19)

Here and throughout, k, l, m, etc. are vibrational indices taking values 1 . . . n, and α, β, γ, etc.

are rotational indices, taking values x, y, and z (i.e. the three body-fixed axes). ∂k is shorthand

for ∂/∂qk, êα is a unit vector parallel to the body-fixed α axis, and mi is the mass of the ith atom.

We also define the determinant g = det(g) and inverse G = g−1 of the metric tensor.

Following Podolsky [243], the rovibrational KEO can then be written as

T = Tv + Tr + Trv, (7.20)

which includes a vibrational term,

Tv =
~2

2

∑
kl

g−1/4∂†kGklg
1/2∂lg

−1/4, (7.21)

a rotational term,

Tr =
−~2

4

∑
αβ

Gαβ

[
iJα
~
,
iJβ
~

]
+

, (7.22)

and a rotation-vibration coupling term,

Trv =
−~2

2

∑
kγ

(−∂†kGkγ +Gkγ∂k)
iJγ
~
, (7.23)

where the operator Jα is the body-frame projection of the total angular momentum J along the

α-axis. (The Hermitian conjugate derivatives ∂†k act to the left.) Matrix elements of this KEO are

calculated using the so-called Dirac volume element dq1dq2 · · · dqn [243, 244] instead of the usual

Euclidean volume element that includes the Jacobian determinant of the curvilinear coordinate

system, i.e. the normalization convention is∫
· · ·
∫
dq1 · · · dqnψ∗(~q)ψ(~q) = 1. (7.24)
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The above form of the KEO is convenient for the iterative direct-product DVR grid approach

(Section 7.2.1). Matrix elements of complicated expressions such as g−1/4∂†kGklg
1/2∂lg

−1/4 are

simple to evaluate by repeated insertion of the truncated identity operator and use of the diagonal-

DVR approximation [239].

For the VSCF-based methods, it turns out to be useful to push the derivative operators

appearing in Tv to the edges of each term (i.e. ∂k all the way to right and ∂†k to the left). Doing so

rearranges Tv into an equivalent form [229,230],

Tv =
~2

2

∑
kl

∂†kGkl∂l +
~2

2

∑
l

(
Ul∂l + ∂†l Ul

)
+ VT , (7.25)

where the single-derivative coefficients are

Ul = −1

4

∑
k

(
∂kg

g

)
Gkl, (7.26)

and the kinetic pseudo-potential is

VT =
~2

32

∑
kl

(
∂kg

g

)(
∂lg

g

)
Gkl. (7.27)

The determinant derivative is conveniently evaluated using the relation (∂kg)/g = tr(G∂kg).

The VSCF calculations require that matrix element integrals of the various functions in

the KEO, such as Gkl, Ul, and VT , as well as the PES, be computed between Hartree product

basis states. These KEO coefficients in general depend on all n internal coordinates, leading to

very high dimensional integrals. For example, molecules as large as butadiene, considered below,

would require 24-dimensional sums, which are simply impractical to compute. A common method

to address this problem is to expand the various high-dimensional functions in a many-body (or

“n-mode”) expansion [221,229]. For some scalar function F (q1, q2, . . . , qn), this exansion is

F (q1, . . . , qn) = f0 +
∑
k

fk(qk) +
∑
k<l

fkl(qk, ql) +
∑

k<l<m

fklm(qk, ql, qm) + · · · , (7.28)
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where

f0 = F (qref
1 , . . . , qref

n ),

fk = F (qref
1 , . . . , qk, . . . , q

ref
n )− f0,

fkl = F (qref
1 , . . . , qk, ql, . . . , q

ref
n )− fk − fl − f0,

fklm = F (qref
1 , . . . , qk, ql, qm. . . . , q

ref
n ),

− fkl − fkm − flm − fk − fl − fm − f0, (7.29)

and so on. (qref
1 , . . . , qref

n ) is a reference geometry about which the expansion is computed (usually

the equilibrium configuration). Many-body expansions break up a complicated high-dimensional

function into smaller parts of lower dimensionality. By taking the expansion to include all terms

up to n-body contributions, the exact original function F is recovered, but nothing is gained. It is

often accurate, however, to truncate the expansion at three- or four-body terms, which drastically

reduces the dimensionality of the matrix element integrals of F . The small errors introduced by

the many-body expansion can be systematically controlled by checking that computed energies are

converged with respect to the maximum number of n-body terms.

7.2.4 Coordinate systems and body-fixed frame embedding

The procedures above allow us to construct the numerically exact KEO for an arbitrary

set of internal coordinates ~q and body-fixed frame embedding (implicitly defined by the Cartesian

position functions ~xi(~q)). The question remains, how do we choose these coordinates optimally?

For iterative direct-product DVR grid calculations, we often use primitive valence coordinates

such as internuclear distances, bond angles, and dihedral angles [237]. Simple orthogonal coordinate

systems like Jacobi and Radau coordinates are also convenient [245, 246]. For reduced-dimension

calculations it is of course necessary to choose coordinates that accurately describe the dynamics

of the sub-system of interest. The computational efficiency and accuracy of full-dimensional direct-

product grid calculations, however, is not strongly dependent on the choice of coordinates as long

as they compactly span the energetically relevant regions of configuration space.
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On the other hand, the choice of coordinates is critically important for VSCF-based calcu-

lations. In general, one wants to find a coordinate system that minimizes coupling and leads to

an approximately separable vibrational Hamiltonian, Hv(~q) ≈ h1(q1) + h2(q2) + · · · . This ensures

that the VSCF Hartree product is an accurate zeroth-order wavefunction and that the various

many-body expansions will be accurate for low expansion orders. For molecules with a single equi-

librium configuration, the ground and lowest excited vibrational states are usually best described

with the normal coordinates associated with the PES minimum. These are found by a (curvilinear)

GF harmonic analysis [247]. Systems with more than one dynamically accessible minimum, which

describes most of the examples below, require a more elaborate treatment such as a reaction path

(RP) coordinate system [224, 248–252]. A RP coordinate system is based on the steepest descent

trajectory that connects neighboring minima through intermediate saddle points on the PES. At

each point along the steepest descent RP, a modified GF calculation is performed to determine the

“instantaneous” normal modes orthogonal to the RP at that position. In this way, the RP coordi-

nate system smoothly interpolates between the different normal mode coordinates associated with

each local minimum. It provides an approximately globally separable coordinate system, which is

crucial to making VSCF/VMP2 efficient and accurate.

In addition to choosing a coordinate system that minimizes the coupling between different

vibrations, VSCF/VMP2 requires that the body-fixed frame embedding results in small rotation-

vibration coupling terms Trv. This embedding is defined by how the molecular body-fixed frame is

rotated in space for a given value of the internal coordinates ~q. For most cases, the best choice of

embedding is the Eckart frame [216], which eliminates rotation-vibration coupling near the equi-

librium geometry. Implementing Eckart frame embedding for arbitrary curvilinear Hamiltonians is

in general a complicated, non-trivial problem [241, 242, 253–256]. The approach we take is based

on the elegant quaternion algebra method recently introduced by Krasnoshchekov et al. [257]. It

allows for the simple numerical evaluation of exact Eckart-frame KEOs. Further algorithmic details

can be found in Ref. [51].
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7.2.5 Potential energy surfaces

Last but not least, an accurate potential energy surface based on high-level quantum chemi-

cal methods is the foundation for any nuclear motion calculation. The techniques discussed above

require the PES to be evaluated over coordinate grids that can contain up to millions of points.

Performing an individual electronic structure calculation at each of these grid points is impracti-

cal, and the usual approach is to instead fit an analytical representation of the PES to a smaller

data set of pre-computed electronic energies, of which perhaps only thousands to tens of thou-

sands are necessary. We rely on single-reference coupled-cluster (CC) theory – in particular its

CCSD(T) variant [258] – in combination with the Dunning correlation-consistent basis sets [259]

or the atomic natural orbital (ANO) basis sets of Almlöf and Taylor [260], which perform well for

vibrational frequency calculations [261]. All electronic structure calculations for our in-house PES’s

are performed with the CFOUR package [262].

One advantage of DVR basis sets is that the PES only needs to be numerically evaluated

on grid points. The coordinates used to describe the PES are therefore entirely independent of

the “dynamical” coordinates used in the nuclear motion calculation itself, providing substantial

flexibility in the underlying analytical representation of the PES. A high-dimensional polynomial in

some set of internal coordinates is typically fit via linear-least-squares to a set of electronic energies.

The method of permutationally invariant polynomials (PIPs) is particularly useful for generating

surfaces that rigorously enforce nuclear permutation symmetry [263]. We make extensive use of

this approach and have developed a suite of tools for constructing, fitting, and coding PIP surfaces

combined with automated differentiation [199,264].

7.3 Applications

The first half of this chapter introduced methods for high accuracy ab initio rovibrational

calculations. In the second half, we apply these to several molecular systems. Most of these projects

were carried out in close coordination with experimental collaborators, as acknowledged in each
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section, as well as two essential theory collaborators, Josh Baraban (Ben-Gurion University) and

John Stanton (University of Florida).

7.3.1 Photoelectron spectroscopy of the methide anion, CH−3

The methide anion, CH−3 , is the simplest carbanion species [265]. As the conjugate base of

CH4, it plays an important role in constraining thermochemical cycles that determine the gas-phase

acidity of CH4, itself an important thermochemical reference [266]. CH−3 is isoelectronic to NH3 and

H3O+ and shares with them a non-planar, trigonal pyramidal structure with tunneling inversion

between the two equivalent enantiomers [267]. Characterizing this fundamental structural motif is,

however, challenging due to the difficulty in isolating this reactive species in the gas phase [268–270].

This section discusses the high-resolution photoelectron spectra of CH−3 (and CD−3 ) recently

measured in the Lineberger lab as part of an intra-JILA collaboration [192]. The experiment

measures the electron kinetic energy (eKE) of photo-detached electrons generated via CH−3 +hν →

CH3 + e−, where hν is represents a photon from a pulsed nanosecond laser source. The derived

electron binding energies (eBE = hν − eKE) provide a map of the vibrational energy levels of the

anion and neutral species. The experimental spectrum (Fig. 7.3a) exhibits an extended Franck–

Condon progression in the ν2 umbrella mode associated with the large change in geometry between

the pyramidal C3v anion and the planar D3h neutral. The goal of the calculations is to accurately

simulate this spectrum, particularly features associated with the inversion tunneling splitting in

the anion.

We used a reduced-dimension treatment to calculate the vibrational levels of CH−3 and CH3.

The umbrella inversion angle φ and the three C–H bond lengths were included, while the HCH

bond angles were constrained to be equal. A 4-D anion potential energy surface was constructed

initially at the CCSD(T)/d-aug-pVTZ level of theory. This surface was further refined with correc-

tions for a variety of higher order effects including triple augmentation, core correlation, triples and

non-iterative quadruples correlation, diagonal Born-Oppenheimer corrections, scalar relativistic

corrections, and zero-point motion in the neglected HCH bend angles (see supplementary infor-
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Figure 7.3: Photoelectron spectra and potential curves of CH−3 /CH3. (a) Upper panel: the pho-
toelectron spectra are shown for two photon energies, 1.165 eV (red) and 0.383 eV (black). The
inset shows a raw velocity-mapped photoelectron image (see Ref. [192] for details). Lower panel:
The simulated Franck–Condon spectrum. (b) The potential energy curves (not to scale) of CH−3
(black) and CH3 (green) as a function of the umbrella inversion angle φ. The vertical arrows indi-
cate Franck–Condon-allowed transitions from the v = 0+ (red) and v = 0− (blue) anion tunneling
states, which are split in energy by ∆inv. (Figures adapted with permission from A. Oliveira et al.,
J. Am. Chem. Soc. 137:12939 (2015). Copyright 2015 American Chemical Society.)

mation of Ref. [192] for details). For the neutral, we used the ab initio force field calculated by

Schwenke [271]. The reduced-dimension vibrational levels of the anion and neutral were calculated

on these surfaces using the iterative diagonalization direct-product DVR grid method.

Figure 7.3a demonstrates the excellent agreement between the experimental photoelectron

spectrum with a simulation using the Franck–Condon overlap factors between the calculated anion

and neutral vibrational wavefunctions. Peaks “A” through “I” correspond to transitions from the

v = 0+/0− ground state tunneling doublet of the anion to successively higher overtones of the ν2

umbrella inversion mode of the neutral. The calculated spectrum also confirms the assignment

of peak “a” as a hot band from the v = 1+ anion vibrational level. Figure 7.3b illustrates the

contrasting level structure of the double-well anion potential curve vs. the single-well neutral. The
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energy splitting ∆inv between the v = 0+ and v = 0− tunneling levels of the anion corresponds

to the frequency of interconversion between the two enantiomer wells. From the positions of the

experimental peaks, this tunneling splitting is determined to be ∆inv = 21(5) cm−1, consistent

with the calculated value of 25.0 cm−1. (Similar results are obtained for the deuterated CD−3

species [192].)

The inversion tunneling splitting for CH−3 is intermediate to those of NH3 (0.79 cm−1, the

famous ammonia maser transition [272, 273]) and H3O+ (55.34 cm−1 [274]). These only very

roughly correlate with the corresponding effective 1-D inversion barrier heights: 661 cm−1 for CH−3

as inferred from our 4-D surface vs. 650 cm−1 for H3O+ and 1782 cm−1 for NH3 [275]. This

illustrates why concepts such as 1-D effective barrier heights should be considered with a grain of

salt. Tunneling dynamics are sensitive to the complete multi-dimensional potential energy surface.

Vibrational motion calculations that account for such multi-dimensional dynamics, such as those

reported here, are ultimately necessary for spectroscopically accurate ab initio results.

7.3.2 Laboratory and astronomical discovery of disilicon carbide, Si2C

Small silicon- and carbon-containing molecules are key building blocks for the formation

of interstellar dust [276] and thought to be important intermediates in the generation of solid

SiC [277]. Of the four triatomics containing only silicon and carbon (SimCn, m + n = 3), the

least well-studied is disilicon carbide, Si2C, despite evidence of it being unusually stable [278] and

an abundant Si-bearing species in space [279]. Quantum chemical studies predict Si2C to have

a bent geometry with an Si–C–Si bond angle of about 115◦, but a low barrier to linearity of

only ∼ 800 cm−1 [280–282]. The highly anharmonic rovibrational structure of such “quasi-linear”

molecules is of considerable fundamental interest [283]. There has been no prior spectroscopic

characterization of Si2C, however, with the exception of limited matrix-IR [284, 285] and low-

resolution electronic excitation spectra [286].

This gap has recently been addressed by a series of spectroscopic studies carried out in the

McCarthy lab at the Harvard-Smithsonian Center for Astrophysics characterizing the rovibrational
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structure of the ground electronic state of Si2C [193,194]. As part of a joint theoretical-experimental

collaboration, we carried out extensive ab initio calculations to aid in the assignment, analysis, and

prediction of these spectra. The project originated with observations of the ground 1A1 electronic

state of Si2C acquired by laser-induced dispersed fluorescence (DF) from excited electronic states

in the 380–395 nm region. The DF spectra, shown in Fig 7.4, exhibit extended Franck–Condon

progressions in the ν2 bending mode consistent with the large change in geometry between the near-

linear excited state and the bent ground state (∠SiCSi = 115◦, see Fig. 7.5a). Weaker stretch-bend

combinations are also observed. We constructed an Si2C PES at the frozen-core CCSD(T)/PVQZ

level of theory and used this to compute the lowest 200 vibrational states, which extend up to

about 4000 cm−1 above the vibrational ground state, as well as rotational sub-levels up to J ≤ 3

for vibrational states below 2500 cm−1. With guidance from these calculations, essentially all

emission lines in the DF spectra could be assigned with excellent agreement between the observed

and calculated vibrational energies (see supplementary material of Ref. [193]).

The barrier to linearity reveals itself spectroscopically by the observed decrease and then

increase of the effective bending frequency as the barrier energy is approached and then exceeded.

This “Dixon-dip” behavior is readily seen in plots of the bending interval as a function of the vibra-

tional energy, where a minimum occurs in the vicinity of the linear saddle point [287] (Fig. 7.5b).

From the (v1 = 0, v2 = n, v3 = 0) bending progression, we extract an experimental effective bar-

rier height of 783(48) cm−1 [288], in good agreement with theory (802(9) cm−1). Excitation in

the symmetric Si–C stretching mode ν1 decreases the effective barrier by about 300 cm−1, while

excitation in the antisymmetric stretch ν3 increases it by about 360 cm−1. These changes are

consistent with the changes in the calculated harmonic frequencies at the saddle-point. The spec-

troscopic signatures of the barrier to linearity are also apparent in the experimental and calculated

eigenvalue lattices for the (Ka, ν2) levels, shown in Fig. 7.5c. (Ka is the usual a-axis rotational

quantum number.) As the ν2 bending mode is excited up to and beyond the barrier to linearity, the

Ka-dependence transitions from quadratic to linear. This is a quintessential example of quantum

monodromy, where a critical point in the Hamiltonian due to the linear saddle point prevents the
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Figure 7.4: Dispersed fluorescence (DF) spectra of Si2C. The main plot shows the DF spectrum
after excitation at 25515 cm−1 of a parallel transition within the Ka sub-level. Essentially all
features can be assigned with guidance from variational nuclear motion calculations. Vibrational
assignments are summarized in Table S1 of Ref. [193]. Inset: DF spectrum of Si2C at 26242 cm−1

excitation. This is a perpendicular transition with emission to Ka = 1 and 3 sub-levels, which
diverge as the barrier to linearity is approached. (Figure reproduced from N. Reilly et al., J. Chem.
Phys. 142:231101 (2015), with the permission of AIP Publishing.)
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Figure 7.5: Potential energy surface, energy levels, and structure of Si2C. (a) The potential energy
surface as a function of the Si–C–Si bending angle, with a minimum near 115◦ and a barrier to
linearity of ca. 800 cm−1. The 1-D bending wavefunctions for states below the barrier are shown.
(b) The bending energy level interval, representative of the effective bending frequency, is plotted
versus vibrational energy for the pure bending progression (v1, v2, v3) = (0, n, 0), as well as for
the symmetric stretch (1, n, 0) and antisymmetric stretch (0, n, 2) combinations. A characteristic
dip occurs at the energy of the barrier. (c) (v2,Ka) eigenvalue lattice for v2 ≤ 10 and Ka ≤ 3.
The transition from quadratric to linear Ka-dependence near v2 = 7 is a signature of quantum
monodromy. (d) The structures of Si2C (this work) and the three other silicon carbides SimCn

with m+ n = 3. (Figures b,c reproduced from N. Reilly et al., J. Chem. Phys. 142:231101 (2015),
with the permission of AIP Publishing; Figure d adapted with permission from M. McCarthy et
al., J. Phys. Chem. Lett. 6:2107 (2015). Copyright 2015 American Chemical Society.)
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existence of a uniquely defined set of global quantum numbers [289].

Guided by the accurate rovibrational variational calculations, a new search was conducted

by our collaborators for the pure rotational spectrum of Si2C using Fourier transform microwave

(FTMW) spectroscopy [194]. Detection of Si2C by FTMW has proven challenging because of

its sparse rotational spectrum (with half the levels missing from nuclear spin statistics) and the

sensitivity of its rotational constants to small changes in its geometry, especially the obtuse Si–C–Si

bending angle. Our calculations predicted a strong rotational transition (20,2 → 11,1) near 38 GHz

for the Si13CSi isotopologue, which was quickly found in the laboratory. Two additional lines were

detected at exactly the predicted frequencies for the 29Si and 30Si isotopic shifts, confirming the

carrier to be Si2C. Ultimately, between eight and twelve transitions from each of 28Si2
12C and

the 13C, 29Si, and 30Si singly substituted isotopologues were measured, permitting a fit of their

ground state rotational constants. The experimental rotational constants were then corrected with

calculated zero-point motion shifts to obtain semi-experimental equilibrium constants, which were

then used to derive the precise semi-experimental equilibrium structure shown in Fig. 7.5d. By

comparing this structure to other triatomic silicon carbides, it can be inferred that when silicon

is the central atom, it prefers a small bending angle (< 90◦), while a central carbon atom prefers

only slightly bent or linear geometries. These structural patterns illustrate the predominantly

single bonding nature of silicon via p orbitals vs. the multiple bonding of carbon via sp or sp2

hybridization [194].

The laboratory identification of Si2C immediately led to its astronomical discovery in the

carbon-rich star IRC+10216 [195]. These observations have shown that, along with SiC2, Si2C

is the most abundant species containing a Si–C bond in the dust formation region of this star,

indicating that it plays a key role in the formation of dust grains. Since this initial discovery,

additional astronomical and laboratory observations have been made [290], including rotational

satellite transitions from vibrationally excited Si2C, which greatly benefited from our variationally

calculated vibration-rotation constants [276]. Rapid progress continues to be made on the spec-

troscopy of Si2C, including the first rotationally resolved infrared measurements of the ν3 band
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recently reported by Witsch et al. [291].

7.3.3 The ionization energy and equilibrium structure of hydrogen peroxide, H2O2

In the past fifteen years, the advent of Active Thermochemical Tables (ATcT) [292,293] has

dramatically improved the accuracy of fundamental thermodynamic quantities of small molecules.

The ATcT approach relies on thermochemical networks, which explicitly account for the high de-

gree of interdependency between the thermodynamics of even very different molecules. All available

information, including both experimental and high-level theoretical data (with calibrated uncer-

tainties), is taken into account by the network to provide self-consistent, accurate values of bond

energies, enthalpies of formation and reaction, etc. with meaningful uncertainties. In some cases,

computational results are used to reanalyze published data for inclusion in ATcT. In this section, we

discuss such an example for the ionization energy (IE) of hydrogen peroxide, H2O2. This work was

carried out in collaboration with the “ATcT Task Force” led by Branko Ruscic (Argonne National

Laboratory).

The IE of H2O2 has potentially important impact on the ions of compounds involved in

hydrogen combustion chemistry, as well as several other key chemical species [197, 294]. In 2016,

Schio et al. studied H2O2 via threshold photoelectron spectroscopy (TPES), reporting an IE of

10.685 ± 0.005 eV [294]. This value disagrees by many σ with the (then current) ATcT value of

10.637 ± 0.006 eV [295], the largest contributors to which a photoionization mass spectrometry

(PIMS) measurement, 10.631 ± 0.007 eV [296], and an early photoelectron spectroscopy measure-

ment, 10.62±0.02 eV [297]. The TPES value is based on the assignment of peak “a” in Fig. 7.6b to

a vibrational hot band involving the torsional mode, placing the vibrational origin (the 0–0 tran-

sition) between peaks “a” and “b”. This assignment is largely based on harmonic Franck–Condon

simulations carried out by the authors of Ref. [294]. The ground state of H2O2, however, exhibits

large-amplitude nuclear motion (Fig. 7.6a) and a simple harmonic simulation is inadequate.

We have reanalyzed the TPES spectrum using simulations based on variational anharmonic

vibrational wavefunctions and energies of the neutral molecule and cation. For the neutral, we
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use the potential energy surfaces previously reported by Koput et al. [298, 299], while for the

cation we constructed a new surface at the FC-EOMIP-CCSD/ANO0 level of theory [260, 300].

We converged full-dimensional vibrational wavefunctions with the iterative diagonalization direct-

product DVR grid method. Franck–Condon factors were calculated with the overlap integrals of the

computed wavefunctions. The resulting photoelectron spectrum simulation is shown in Fig. 7.6b.

The simulated spectrum has been shifted so that the origin band coincides with peak “a”. In the

low-energy region of the spectrum, the first unresolved feature actually contains the 40
1 hot band

(ν4 is the torsional mode) and the origin band. Features up to 11.1 eV can also be assigned (see

Table 2 of Ref. [197]). The excellent qualitative agreement with experimental spectrum confirms

the correct origin assignment. This alternative interpretation of the TPES spectrum leads to a

revised IE of 10.649± 0.005 eV.

In the older PIMS measurement by Litorja and Ruscic [296], the reported IE of 10.631 ±

0.007 was based on the half-height of the first step in the onset of the photoionization efficiency

(PIE) curve, shown in Fig. 7.6c. The anharmonic simulations suggest, however, that the strong

40
1 hot band is probably biasing this determination to too small a value. In light of this, we have

reanalyzed the PIMS PIE curve in comparison to the integrated Franck–Condon simulation at

300 K (convoluted with the appropriate instrument line shape). The simulations indicate that the

PIMS value should be slightly increased to 10.645 ± 0.010 eV, which is now consistent with the

revised TPES value of 10.649± 0.005 eV.

A careful analysis of the experimental spectra also requires one to consider shifts due to

assymetric rotational envelopes. A completely quantitative analysis of this effect requires knowledge

of the the photoelectron partial wave amplitudes, which is outside the scope of this study. However,

an analysis of the rotational contours under various scenarios suggests that the peak of the origin

band contour will indeed be blue-shifted by about 7 meV relative to the true IE, though with

a large uncertainty of ±6 meV. This shift is mostly due to the large difference in the value of

(B + C)/2 in the cation (1.01 cm−1) and neutral (0.86 cm−1). Taking this into account leaders to

further refinement of the PIMS and TPES IE values: 10.638 ± 0.012 eV and 10.642 ± 0.008 eV,
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H2O2. Bond lengths are in Å, and angles are in degrees. (Figures b, c adapted with permission from
P. B. Changala et al., J. Phys. Chem. A, 121:8799 (2017). Copyright 2017 American Chemical
Society; Figure d reused with permission from J. Baraban et al., J. Mol. Spectrosc., 343:92 (2018).
Copyright 2018 Elsevier).



143

respectively. Together with a new ab initio IE calculated as part of this work (see Ref. [197] for

details), a revised ATcT analysis results in a final composite IE value of 10.641 ± 0.006 eV. This

value ends up being very similar to the previous best ATcT estimate (10.637± 0.006 eV [295]), but

this appears to be due to a fortuitous cancellation of the corrections associated with the vibrational

hot band analysis and rotational contour shifts.

During the course of this work, it was realized that the equilibrium structure of H2O2 had

surprisingly never been completely determined [301–303], despite sufficient spectroscopic data being

available [304–308]. The main challenge is the large difference between the equilibrium re structure

and the effective ground state r0 structure, making it critical to account for effects of large-amplitude

zero-point torsional motion [303,309]. We calculated the rovibrational zero-point corrections using

the same methods as above for the H2O2 IE study. Semi-experimental rotational constants (Bse
eq)

were determined by subtracting the ab initio zero-point motion correction from the measured

ground state constants for HOOH, HOOD, and DOOD [304–308]. Figure 7.6d shows the semi-

experimental equilibrium geometry fitted to the Bse
eq values [196]. Without the inclusion of zero-

point motion corrections, the fitted HOOH dihedral angle is 6◦ larger, illustrating the important

effects of large-amplitude torsional motion. It is interesting to note that the equilibrium OH bond

length in H2O2 (0.9617(2) Å) is much closer to that of H2O (0.9578(1) Å [310]) than the OH radical

(0.969628(9) Å [311]), consistent with the fact that the hybridization in H2O2 is more similar to

that in H2O than to OH.
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7.3.4 The molecular structure of gauche-1,3-butadiene, C4H6

The Diels–Alder cycloaddition reaction between a conjugated diene and a dienophile is one of

the most important ring-forming reactions in chemistry [312]. The classic example is the addition

of 1,3-butadiene, H2C=CH–CH=CH2, and ethylene, H2C=CH2, to form cyclohexene,

+

Although the trans isomer of butadiene is the thermodynamically most stable, it must isomerize to a

cis conformation before proceeding through the aromatically stabilized, pericyclic planar transition

state. The planarity of cis-butadiene itself, however, has not been established. In fact, a number

of quantum chemical studies [313–317] and gas-phase Raman experiments [318–320] have led to

the conclusion that “cis”-butadiene actually exhibits a non-planar gauche geometry [321], yet a

definitive structural characterization of this molecule has remained elusive.

In another joint theoretical-experimental collaboration with the McCarthy and Patterson

groups, a combination of sensitive microwave techniques and high accuracy rovibrational cal-

culations has been used to conclusively show that cis-butadiene possesses a non-planar gauche

equilibrium geometry and undergoes facile tunneling interconversion between its two enantiomeric

forms [198]. Prior attempts to measure the microwave spectrum of gauche-butadiene have been

unsuccessful due to multiple experimental challenges. First, the gauche conformer lies 2.93 kcal

mol−1 above the more stable trans conformer [322]. At room temperature this translates into a

relative population of only about 1%. Second, it possesses a very small dipole moment (ca. 0.09 D)

leading to weak rotational transitions, the frequencies of which are sensitive to the C=C–C=C

torsional angle τ (Fig. 7.7a). These experimental challenges were overcome with a combination

of cavity-enhanced FTMW combined with a supersonic expansion and chirped-pulse FTMW in

a cryogenic buffer gas cell (similar to the buffer gas cell apparatus used for the frequency comb

spectroscopy described in this thesis). Further experimental details can be found in Ref. [198].

Spectral searches were initially guided by high-level ab initio calculations. With 10 atoms and
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24 vibrational modes, butadiene is too large for a brute-force direct-product DVR grid calculation.

We therefore turned to the rotational curvilinear VMP2 method to calculate accurate rovibrational

parameters. We constructed a full-dimensional FC-CCSD(T)/ANO1 PIP PES and the associated

curvilinear reaction path coordinate system. The gauche form of butadiene has a double-well

potential energy curve along the τ torsion angle as shown in Fig. 7.7b. The ground vibrational

state splits into v = 0+ and 0− tunneling components. Both tunneling components support an

independent manifold of rotational sub-levels, and transitions within these appear as closely spaced

doublets in the microwave spectrum. Rotational constant predictions calculated via rotational

VMP2 guided targeted spectroscopic searches, which soon led to the observation of transitions

near the predicted frequencies. The observed transitions were used to fit rotational constants

for several isotopologues of gauche-butadiene. These measured rotational constants were finally

corrected with theoretical zero-point motion shifts to determine the semi-experimental equilibrium

structure summarized in Table 7.1. The fitted dihedral angle of τ = 33.8(13)◦ unambiguously

establishes the non-planarity of gauche-butadiene.

Table 7.1: Semi-experimental equilibrium geometry of gauche-butadiene. Bond lengths are in Å,
and angles are in degrees. Numbers in brackets [ ] are fixed to ab initio values (see Ref. [198] for
details).

Parameter Value

r(C–C) 1.48(2)
r(C=C) 1.33(1)
∠C–C=C 124.1(5)
∠C=C–C=C (τ) 33.8(13)
r(C–H1) 1.08(1)
∠H1–C=C 123(2)
∠H1–C=C–C 2(1)
r(C–H2) [1.07983]
∠H2–C=C 118(1)
∠H2–C=C–H3 [2.410]
r(C–H3) 1.083(5)
∠H3–C–C 116.2(6)
∠H3–C–C=C −146.4(7)

Microwave transitions between the v = 0+ and 0− tunneling components are symmetry
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forbidden, so that the 0+/0− tunneling splitting ∆inv cannot be directly probed. Multi-state

rotational VMP2 calculations, however, reveal that the two tunneling components interact via a

C × (JaJc +JcJa)-type Coriolis term, with an interaction constant C = 20− 30 MHz depending on

the isotopologue. This interaction results in the largest spectroscopic perturbations near crossing-

points of the 0+/0− rotational manifolds (Fig. 7.7c). By a careful fit of the microwave transition

frequencies to an interacting two-state model, both the tunneling frequency ∆inv and the Coriolis

interaction coefficient C can be determined. Table 7.2 shows the results of this analysis for the

fully deuterated d6 isotopologue. The excellent agreement between the observed and calculated

tunneling parameters is indicative of the robust zeroth-order treatment that curvilinear VSCF

provides. A similar tunneling-Coriolis interaction mechanism has also been used to analyze the

recently identified microwave spectrum of gauche-isoprene, a subtituted butadiene derivative [323].

Table 7.2: Tunneling parameters of d6-gauche-butadiene. ∆inv is the tunneling inversion splitting
(the energy difference between the v = 0+ and 0− vibrational states). C is the coefficient of the
(JaJc + JcJa) Coriolis interaction operator.

Parameter Expt. Calc.

∆inv / cm−1 0.55 0.58
C / MHz 23.4 23.3

At first glance, the non-planar geometry of gauche-butadiene might be justified by invoking

repulsive steric interactions between the terminal hydrogen atoms. Wiberg et al. have recently

suggested, however, that upon closer examination this effect is probably too weak to account for

the observed structure [324]. Instead, one must consider terminal π-interactions. At the planar

cis configuration, 1,4-π interactions are Hückel antiaromatic, destabilizing the molecule, while at

twisted geometries the π system has a Möbius topology, stabilizing the π-electron system. A

detailed study of a large number of heterodienes shows that this mechanism is consistent with the

observed effects [324]. This is an excellent example of new insights into molecular interactions

inspired by the precise structural information made available by the combination of high resolution

spectroscopy and high level rovibrational theory [182].
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7.4 Conclusions

This chapter has highlighted several applications of high-accuracy rovibrational calculations

to the spectroscopy of complex polyatomic molecules. Each of these examples featured floppy

molecules that exhibit highly anharmonic, large-amplitude nuclear motion. Direct-product DVR

grid techniques provide a flexible, numerically exact method to treat these systems, but they

are restricted to relatively small molecules. Curvilinear rotational-VMP2 provides quantitative

predictions via a less expensive perturbative approach. For large systems, like butadiene, there are

few, if any, comparable alternative methods.

The high quality zeroth-order picture of curvilinear VSCF suggests it may be useful for ap-

plications beyond pure spectroscopy. We are currently exploring extensions to it to study quantum

reaction dynamics and resonance states via complex scaling [325–329], as well as thermodynamical

properties such as partition functions with thermal variants [330]. It may be possible to combine the

benefits of curvilinear VSCF with other techniques. For example, the VSCF Hamiltonian could be

used for pre-conditioned spectral transformations with iterative diagonalization methods [205,211]

or to generate an importance sampling trial function for diffusion Monte Carlo techniques [331,332].

Ultimately, a good zeroth-order picture that accurately captures the physics of strong anharmonic-

ity forms an excellent starting point for a variety of nuclear motion calculations.
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[115] Krätschmer, W., Lamb, L. D., Fostiropoulos, K., and Huffman, D. R. Solid C60: a new form
of carbon. Nature, 347(6291):354–358 (1990).
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Appendix A

Infrared line lists

A.1 Nitromethane, CH3NO2

Tables A.1 and A.2 list the rovibrational transition frequencies for the m = 0 and |m| = 1

components, respectively, of the ν3 + ν6 band (Section 3.2.2). Tables A.3 and A.4 list the m = 0

transitions for the ν1 and ν10o bands (Section 3.2.3).

Table A.1: Line list for the 2953 cm−1 band (m = 0) of nitromethane, assigned as ν3 + ν6.
Transitions are specified with the lower state (′′) and upper state (′) asymmetric top quantum
numbers J , Ka, and Kc. E

′′ (E′) is the lower (upper) state energy in cm−1. An offset of 2950 cm−1

has been subtracted from the IR line positions and upper state energies. “Component 1” and
“component 2” refer to members of a mixed bright state/dark state doublet.

m′′ J ′′ K ′′a K
′′
c E′′a m′ J ′ K ′a K

′
c Line Pos. E′ Comment

0 2 2 0 2.421311 0 1 1 1 0.8969 3.3182
0 2 0 2 1.549651 0 1 1 1 1.7690 3.3186
0 0 0 0 0.000000 0 1 1 1 3.3184 3.3184
0 2 2 1 2.327828 0 1 1 0 1.1362 3.4640
0 1 0 1 0.547713 0 1 1 0 2.9161 3.4638
0 3 2 1 4.322080 0 2 1 2 −0.0584 4.2637
0 3 0 3 2.935110 0 2 1 2 1.3287 4.2638
0 2 2 1 2.327828 0 2 1 2 1.9358 4.2637
0 1 0 1 0.547713 0 2 1 2 3.7159 4.2636
0 3 2 2 3.970934 0 2 1 1 0.7220 4.6929
0 2 2 0 2.421311 0 2 1 1 2.2719 4.6932
0 2 0 2 1.549651 0 2 1 1 3.1437 4.6934
0 4 0 4 4.703276 0 3 1 3 0.8403 5.5436 component 1
0 3 2 2 3.970934 0 3 1 3 1.5730 5.5440
0 2 0 2 1.549651 0 3 1 3 3.9944 5.5440

(continued on next page)
a Ground state energies from Ref. [52].
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Table A.1: (continued)

m′′ J ′′ K ′′a K
′′
c E′′a m′ J ′ K ′a K

′
c Line Pos. E′ Comment

0 4 0 4 4.703276 0 3 1 3 0.9769 5.6802 component 2
0 3 2 2 3.970934 0 3 1 3 1.7096 5.6805
0 2 0 2 1.549651 0 3 1 3 4.1310 5.6806
0 4 2 3 6.082186 0 3 1 2 0.3326 6.4148 component 1
0 3 2 1 4.322080 0 3 1 2 2.0930 6.4151
0 3 0 3 2.935110 0 3 1 2 3.4799 6.4150
0 2 2 1 2.327828 0 3 1 2 4.0869 6.4147
0 4 2 3 6.082186 0 3 1 2 0.4721 6.5543 component 2
0 3 2 1 4.322080 0 3 1 2 2.2327 6.5547
0 3 0 3 2.935110 0 3 1 2 3.6193 6.5544
0 2 2 1 2.327828 0 3 1 2 4.2265 6.5544 weak
0 4 2 2 6.839377 0 3 3 1 0.6678 7.5072
0 4 4 0 8.311898 0 3 3 1 −0.8046 7.5073
0 3 2 2 3.970934 0 3 3 1 3.5361 7.5070
0 2 2 0 2.421311 0 3 3 1 5.0860 7.5073
0 4 4 1 8.295303 0 3 3 0 −0.7425 7.5528
0 3 2 1 4.322080 0 3 3 0 3.2309 7.5530
0 2 2 1 2.327828 0 3 3 0 5.2248 7.5526
0 5 0 5 6.860890 0 4 1 4 0.4886 7.3495
0 4 2 3 6.082186 0 4 1 4 1.2671 7.3493
0 3 0 3 2.935110 0 4 1 4 4.4145 7.3496
0 5 2 4 8.619788 0 4 1 3 −0.0580 8.5618 component 1, blended
0 4 2 2 6.839377 0 4 1 3 1.7222 8.5616
0 4 0 4 4.703276 0 4 1 3 3.8584 8.5617
0 3 2 2 3.970934 0 4 1 3 4.5908 8.5618
0 5 2 4 8.619788 0 4 1 3 0.1185 8.7383 component 2
0 4 2 2 6.839377 0 4 1 3 1.8990 8.7383
0 4 0 4 4.703276 0 4 1 3 4.0351 8.7384
0 3 2 2 3.970934 0 4 1 3 4.7679 8.7388
0 5 4 1 11.352928 0 4 3 2 −1.5563 9.7966
0 5 2 3 9.856035 0 4 3 2 −0.0594 9.7966
0 4 4 1 8.295303 0 4 3 2 1.5013 9.7966
0 4 2 3 6.082186 0 4 3 2 3.7148 9.7969
0 3 2 1 4.322080 0 4 3 2 5.4746 9.7967
0 5 4 2 11.234530 0 4 3 1 −1.2089 10.0256
0 4 4 0 8.311898 0 4 3 1 1.7136 10.0255
0 4 2 2 6.839377 0 4 3 1 3.1866 10.0260
0 3 2 2 3.970934 0 4 3 1 6.0545 10.0255
0 6 0 6 9.409937 0 5 1 5 0.0883 9.4983
0 5 2 4 8.619788 0 5 1 5 0.8783 9.4981
0 4 0 4 4.703276 0 5 1 5 4.7953 9.4985
0 6 2 5 11.560383 0 5 1 4 −0.3965 11.1639 component 1
0 5 2 3 9.856035 0 5 1 4 1.3077 11.1637

(continued on next page)
a Ground state energies from Ref. [52].
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Table A.1: (continued)

m′′ J ′′ K ′′a K
′′
c E′′a m′ J ′ K ′a K

′
c Line Pos. E′ Comment

0 5 0 5 6.860890 0 5 1 4 4.3030 11.1639
0 4 2 3 6.082186 0 5 1 4 5.0816 11.1638
0 6 2 5 11.560383 0 5 1 4 −0.2190 11.3414 component 2
0 5 2 3 9.856035 0 5 1 4 1.4853 11.3413
0 5 0 5 6.860890 0 5 1 4 4.4808 11.3416
0 4 2 3 6.082186 0 5 1 4 5.2591 11.3413
0 6 4 2 15.137207 0 5 3 3 −2.5377 12.5996
0 6 2 4 13.256243 0 5 3 3 −0.6579 12.5984 blended
0 5 4 2 11.234530 0 5 3 3 1.3649 12.5994
0 5 2 4 8.619788 0 5 3 3 3.9795 12.5993
0 4 2 2 6.839377 0 5 3 3 5.7600 12.5994
0 6 4 3 14.743171 0 5 3 2 −1.5973 13.1459 blended
0 5 4 1 11.352928 0 5 3 2 1.7934 13.1463
0 5 2 3 9.856035 0 5 3 2 3.2907 13.1467
0 4 4 1 8.295303 0 5 3 2 4.8515 13.1468
0 4 2 3 6.082186 0 5 3 2 7.0647 13.1468
0 6 6 0 17.788197 0 5 5 1 −2.6539 15.1343
0 5 4 2 11.234530 0 5 5 1 3.9001 15.1346
0 4 4 0 8.311898 0 5 5 1 6.8224 15.1343
0 6 6 1 17.786379 0 5 5 0 −2.6450 15.1414
0 5 4 1 11.352928 0 5 5 0 3.7881 15.1411
0 4 4 1 8.295303 0 5 5 0 6.8458 15.1411
0 7 0 7 12.350829 0 6 1 6 −0.3695 11.9813 component 1
0 6 2 5 11.560383 0 6 1 6 0.4209 11.9812
0 5 0 5 6.860890 0 6 1 6 5.1207 11.9816
0 7 0 7 12.350829 0 6 1 6 −0.2185 12.1324 component 2, overlap
0 6 2 5 11.560383 0 6 1 6 0.5715 12.1319
0 5 0 5 6.860890 0 6 1 6 5.2709 12.1318
0 7 2 6 14.895396 0 6 1 5 −0.7442 14.1512
0 6 2 4 13.256243 0 6 1 5 0.8948 14.1511
0 6 0 6 9.409937 0 6 1 5 4.7417 14.1516
0 5 2 4 8.619788 0 6 1 5 5.5319 14.1517
0 7 2 5 17.012438 0 6 3 4 −1.1530 15.8594
0 6 4 3 14.743171 0 6 3 4 1.1160 15.8591
0 6 2 5 11.560383 0 6 3 4 4.2986 15.8590
0 5 2 3 9.856035 0 6 3 4 6.0030 15.8591
0 7 4 4 18.767500 0 6 3 3
0 6 4 2 15.137207 0 6 3 3 1.7430 16.8802
0 6 2 4 13.256243 0 6 3 3 3.6240 16.8802
0 5 4 2 11.234530 0 6 3 3 5.6459 16.8805 weak
0 5 2 4 8.619788 0 6 3 3
0 7 4 4 18.767500 0 6 3 3
0 6 4 2 15.137207 0 6 3 3 1.6553 16.7925

(continued on next page)
a Ground state energies from Ref. [52].
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Table A.1: (continued)

m′′ J ′′ K ′′a K
′′
c E′′a m′ J ′ K ′a K

′
c Line Pos. E′ Comment

0 6 2 4 13.256243 0 6 3 3 3.5361 16.7924 overlap
0 5 4 2 11.234530 0 6 3 3
0 5 2 4 8.619788 0 6 3 3
0 7 6 1 21.948226 0 6 5 2 −3.2809 18.6673
0 6 6 1 17.786379 0 6 5 2 0.8807 18.6671
0 6 4 3 14.743171 0 6 5 2 3.9241 18.6673
0 5 4 1 11.352928 0 6 5 2 7.3146 18.6675
0 7 6 2 21.927772 0 6 5 1 −3.2034 18.7244
0 6 6 0 17.788197 0 6 5 1 0.9366 18.7248
0 6 4 2 15.137207 0 6 5 1 3.5872 18.7244
0 5 4 2 11.234530 0 6 5 1 7.4901 18.7247
0 8 0 8 15.683641 0 7 1 7 −0.7391 14.9445 blended
0 7 2 6 14.895396 0 7 1 7 0.0492 14.9445
0 6 0 6 9.409937 0 7 1 7 5.5346 14.9445
0 8 2 7 18.622625 0 7 1 6 −1.1604 17.4622 tentative
0 7 2 5 17.012438 0 7 1 6 0.4498 17.4623
0 7 0 7 12.350829 0 7 1 6 5.1117 17.4625
0 6 2 5 11.560383 0 7 1 6 5.9019 17.4623
0 8 2 6 21.143107 0 7 3 5 −1.5966 19.5465 blended
0 7 4 4 18.767500 0 7 3 5 0.7782 19.5457
0 7 2 6 14.895396 0 7 3 5 4.6502 19.5456
0 6 2 4 13.256243 0 7 3 5 6.2896 19.5458
0 7 4 3 19.614558 0 7 3 4 1.5684 21.1830 tentative
0 7 2 5 17.012438 0 7 3 4 4.1707 21.1832
0 6 4 3 14.743171 0 7 3 4 6.4402 21.1834
0 7 4 3 19.614558 0 7 3 4 1.3625 20.9771 tentative
0 7 2 5 17.012438 0 7 3 4 3.9658 20.9782
0 6 4 3 14.743171 0 7 3 4 6.2355 20.9787
0 8 8 0 30.831142 0 7 7 1 −4.5623 26.2688 very weak, blended
0 6 6 0 17.788197 0 7 7 1 8.4802 26.2684
0 8 8 1 30.830978 0 7 7 0 −4.5623 26.2687 very weak, blended
0 7 6 1 21.948226 0 7 7 0 4.3211 26.2693
0 6 6 1 17.786379 0 7 7 0 8.4830 26.2694
0 9 0 9 19.408388 0 8 1 8 −1.1478 18.2606 tentative
0 7 0 7 12.350829 0 8 1 8 5.9091 18.2599 tentative

a Ground state energies from Ref. [52].
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Table A.2: Line list for the 2953 cm−1 band (|m| = 1) of nitromethane, assigned as ν3 + ν6.
Transitions are specified with the lower state (′′) and upper state (′) J quantum number and τ , an
energy ordering index for a given J and m (counting only non-zero spin-weighted levels). E′′ (E′)
is the lower (upper) state energy in cm−1. An offset of 2950 cm−1 has been subtracted from the
IR line positions and upper state energies.

|m′′| J ′′ τ ′′ E′′a |m′| J ′ τ ′ Line Pos. E′ Comment

1 3 1 7.545719 1 2 1 0.7904 8.3361
1 2 1 6.459007 1 2 1 very weak
1 1 1 5.390459 1 2 1 2.9457 8.3361
1 4 1 9.383413 1 3 1 0.3800 9.7634
1 3 2 8.197563 1 3 1
1 2 1 6.459007 1 3 1 3.3043 9.7633
1 5 1 11.564673 1 4 1 0.0002 11.5648
1 4 2 10.534994 1 4 1 1.0298 11.5648
1 3 2 8.197563 1 4 1 3.3673 11.5648
1 3 1 7.545719 1 4 1 4.0193 11.5650
1 6 1 14.126832 1 5 1 −0.7197 13.4071
1 5 2 13.134167 1 5 1 0.2729 13.4071
1 4 1 9.383413 1 5 1 4.0240 13.4074
1 7 1 17.076453 1 6 1 −1.0788 15.9976
1 5 1 11.564673 1 6 1 4.4330 15.9976
1 8 1 20.415573 1 7 1 −1.4281 18.9874
1 7 2 19.500138 1 7 1 −0.5125 18.9876
1 6 1 14.126832 1 7 1 4.8611 18.9879

a Ground state energies from Ref. [52].

Table A.3: Line list for the ν1 (m = 0) band of nitromethane. Transitions are specified with the
lower state (′′) and upper state (′) asymmetric top quantum numbers J , Ka, and Kc. E

′′ (E′) is
the lower (upper) state energy in cm−1. An offset of 2970 cm−1 has been subtracted from the IR
line positions and upper state energies.

J ′′ K ′′a K
′′
c E′′a J ′ K ′a K

′
c Line Pos. E′

2 0 2 1.549651 1 0 1 2.4433 3.9930
0 0 0 0.000000 1 0 1 3.9928 3.9928
3 0 3 2.935110 2 0 2 1.9923 4.9274
1 0 1 0.547713 2 0 2 4.3796 4.9273
4 0 4 4.703276 3 0 3 1.5774 6.2807
2 0 2 1.549651 3 0 3 4.7311 6.2807
5 0 5 6.860890 4 0 4 1.1802 8.0410
3 0 3 2.935110 4 0 4 5.1061 8.0412
6 0 6 9.409937 5 0 5 0.7647 10.1746
4 0 4 4.703276 5 0 5 5.4713 10.1746

(continued on next page)
a Ground state energies from Ref. [52].



177
Table A.3: (continued)

J ′′ K ′′a K
′′
c E′′a J ′ K ′a K

′
c Line Pos. E′

7 0 7 12.350829 6 0 6 0.3615 12.7123
5 0 5 6.860890 6 0 6 5.8517 12.7126
8 0 8 15.683641 7 0 7 −0.0576 15.6260
6 0 6 9.409937 7 0 7 6.2160 15.6259
9 0 9 19.408388 8 0 8 −0.4740 18.9344
7 0 7 12.350829 8 0 8 6.5840 18.9348

10 0 10 23.525068 9 0 9 −0.8898 22.6353
8 0 8 15.683641 9 0 9 6.9517 22.6353
3 2 2 3.970934 2 2 1 1.4048 5.3757
2 2 0 2.421311 2 2 1 2.9544 5.3757
4 2 3 6.082186 3 2 2 1.0544 7.1366
3 2 1 4.322080 3 2 2 2.8151 7.1372
2 2 1 2.327828 3 2 2 4.8091 7.1369
5 2 4 8.619788 4 2 3 0.7016 9.3214
4 2 2 6.839377 4 2 3 2.4820 9.3214
3 2 2 3.970934 4 2 3 5.3505 9.3214
6 2 5 11.560383 5 2 4 0.3120 11.8724
5 2 3 9.856035 5 2 4 2.0167 11.8727
4 2 3 6.082186 5 2 4 5.7907 11.8729
7 2 6 14.895396 6 2 5 −0.0986 14.7968
6 2 4 13.256243 6 2 5 1.5397 14.7959
5 2 4 8.619788 6 2 5 6.1772 14.7970
8 2 7 18.622625 7 2 6 −0.5235 18.0991
7 2 5 17.012438 7 2 6 1.0869 18.0993
6 2 5 11.560383 7 2 6 6.5391 18.0995
9 2 8 22.741677 8 2 7 −0.9491 21.7926
8 2 6 21.143107 8 2 7 0.6497 21.7928
7 2 6 14.895396 8 2 7 6.8973 21.7927

a Ground state energies from Ref. [52].

Table A.4: Line list for the ν10o (m = 0) band of nitromethane. Transitions are specified with the
lower state (′′) and upper state (′) asymmetric top quantum numbers J , Ka, and Kc. E

′′ (E′) is
the lower (upper) state energy in cm−1. An offset of 3050 cm−1 has been subtracted from the IR
line positions and upper state energies.

J ′′ K ′′a K
′′
c E′′a J ′ K ′a K

′
c Line Pos. E′ Comment

2 2 1 2.3278 1 1 1 1.4118 3.7396
1 0 1 0.5477 1 1 1 3.1916 3.7393
2 2 0 2.4213 1 1 0 1.4628 3.8841
0 0 0 0.0000 1 1 0 3.8837 3.8837

(continued on next page)
a Ground state energies from Ref. [55].
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Table A.4: (continued)

J ′′ K ′′a K
′′
c E′′a J ′ K ′a K

′
c Line Pos. E′ Comment

3 2 2 3.9710 2 1 2 0.6791 4.6501
2 0 2 1.5497 2 1 2 3.1001 4.6498
3 2 1 4.3221 2 1 1 0.8052 5.1273
2 2 1 2.3278 2 1 1 2.7992 5.1270
1 0 1 0.5477 2 1 1 4.5793 5.1270
4 2 3 6.0822 3 1 3 −0.0225 6.0597
3 0 3 2.9351 3 1 3 3.1246 6.0597
4 2 2 6.8395 3 1 2 0.0506 6.8901
3 2 2 3.9710 3 1 2 2.9188 6.8898
2 0 2 1.5497 3 1 2 5.3405 6.8902
4 4 1 8.2954 3 3 1 −0.1496 8.1458
3 2 1 4.3221 3 3 1 3.8235 8.1456
2 2 1 2.3278 3 3 1 5.8179 8.1457
4 4 0 8.3120 3 3 0 −0.1394 8.1726
2 2 0 2.4213 3 3 0 5.7510 8.1723
5 2 4 8.6197 4 1 4 −0.7495 7.8702
4 0 4 4.7032 4 1 4 3.1674 7.8706
5 2 3 9.8561 4 1 3 −0.7800 9.0761
4 2 3 6.0822 4 1 3 2.9936 9.0758
3 0 3 2.9351 4 1 3 6.1409 9.0760
5 4 2 11.2347 4 3 2 −0.7982 10.4365
4 2 2 6.8395 4 3 2 3.5968 10.4363
3 2 2 3.9710 4 3 2 6.4652 10.4362
5 4 1 11.3531 4 3 1 −0.7575 10.5956
4 4 1 8.2954 4 3 1
3 2 1 4.3221 4 3 1 6.2729 10.5950
6 2 5 11.5602 5 1 5 −1.5864 9.9738 weak
5 0 5 6.8608 5 1 5 3.1128 9.9736 overlapped with 615 ← 625

6 2 5 11.5602 5 1 5 −1.7127 9.8475
5 0 5 6.8608 5 1 5 2.9866 9.8474
6 2 4 13.2562 5 1 4 −1.5958 11.6604
5 2 4 8.6197 5 1 4 3.0410 11.6607
4 0 4 4.7032 5 1 4 6.9572 11.6604
6 4 3 14.7434 5 3 3 −1.4608 13.2826
5 2 3 9.8561 5 3 3 3.4258 13.2819
4 2 3 6.0822 5 3 3 7.2000 13.2822
6 4 2 15.1375 5 3 2 −1.3996 13.7379
5 4 2 11.2347 5 3 2 very weak
4 2 2 6.8395 5 3 2 6.8982 13.7377
6 6 1 17.7865 5 5 1 −1.7785 16.0080 blended, weak
4 4 1 8.2954 5 5 1 7.7114 16.0068
6 6 0 17.7884 5 5 0 −1.7791 16.0093 blended, weak
4 4 0 8.3120 5 5 0 7.6973 16.0093

(continued on next page)
a Ground state energies from Ref. [55].
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Table A.4: (continued)

J ′′ K ′′a K
′′
c E′′a J ′ K ′a K

′
c Line Pos. E′ Comment

7 2 6 14.8950 6 1 6
6 0 6 9.4096 6 1 6 3.0763 12.4859 (no comb. diff. found)
7 2 5 17.0123 6 1 5 −2.3396 14.6727
6 2 5 11.5602 6 1 5 3.1128 14.6730 see 515 ← 505

5 0 5 6.8608 6 1 5 7.8122 14.6730
7 4 4 18.7676 6 3 4 −2.1202 16.6474
6 2 4 13.2562 6 3 4 3.3910 16.6472
5 2 4 8.6197 6 3 4 8.0271 16.6468
7 4 3 19.6150 6 3 3 −2.0864 17.5286
6 4 3 14.7434 6 3 3
5 2 3 9.8561 6 3 3 7.6718 17.5279
7 2 6 14.8950 7 1 6 3.3472 18.2422
6 0 6 9.4096 7 1 6 8.8327 18.2423

a Ground state energies from Ref. [55].

A.2 Naphthalene, C10H8

Table A.5: Line list for the ν29 band of naphthalene. Transitions are specified with the lower state
(′′) and upper state (′) asymmetric top quantum numbers J , Ka, and Kc. Line positions are given
in cm−1.

J ′′ K ′′a K
′′
c J ′ K ′a K

′
c Line Pos. J ′′ K ′′a K

′′
c J ′ K ′a K

′
c Line Pos.

1 0 1 1 1 0 3064.5194 8 0 8 7 1 7 3065.0889
1 0 1 2 1 2 3064.4017 8 0 8 8 1 7 3064.2144
1 1 0 1 0 1 3064.6690 8 0 8 9 1 9 3064.0293
1 1 0 2 2 1 3064.2528 8 1 8 7 0 7 3065.0972
1 1 1 0 0 0 3064.7279 8 1 8 8 2 7 3064.1656
1 1 1 2 0 2 3064.5172 8 1 8 9 0 9 3064.0332
2 0 2 1 1 1 3064.6708 8 2 6 8 1 7 3064.8343
2 0 2 2 1 1 3064.5063 8 2 6 8 3 5 3064.3302
2 0 2 3 1 3 3064.3481 8 2 6 9 3 7 3063.7335
3 0 3 3 1 2 3064.4839 9 0 9 8 1 8 3065.1466
3 0 3 4 1 4 3064.2969 9 0 9 9 1 8 3064.1433
3 1 2 3 0 3 3064.7039 9 0 9 10 1 10 3063.9680
3 1 2 3 2 1 3064.4141 9 1 8 8 2 7 3065.1692
3 1 2 4 2 3 3064.1400 9 1 8 9 2 7 3064.2996
3 1 3 2 0 2 3064.8398 9 1 8 10 2 9 3063.8850
3 1 3 3 2 2 3064.3515 9 1 9 8 0 8 3065.1533
3 1 3 4 0 4 3064.3646 9 1 9 9 2 8 3064.1138
3 2 1 2 1 2 3065.0374 9 1 9 10 0 10 3063.9724

(continued on next page)
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Table A.5: (continued)

J ′′ K ′′a K
′′
c J ′ K ′a K

′
c Line Pos. J ′′ K ′′a K

′′
c J ′ K ′a K

′
c Line Pos.

3 2 1 3 1 2 3064.7743 9 2 7 9 1 8 3064.8850
3 2 1 4 3 2 3063.9725 9 2 7 9 3 6 3064.3341
4 0 4 3 1 3 3064.8222 9 2 7 10 3 8 3063.7039
4 0 4 4 1 3 3064.4500 10 0 10 9 1 9 3065.2060
4 0 4 5 1 5 3064.2470 10 0 10 10 1 9 3064.0759
4 1 4 3 0 3 3064.8909 10 0 10 11 1 11 3063.9096
4 1 4 4 2 3 3064.3267 10 1 9 9 2 8 3065.2435
4 1 4 5 0 5 3064.2925 10 1 9 10 0 10 3065.1025
4 2 2 4 1 3 3064.7658 10 1 9 10 2 8 3064.2364
4 2 2 4 3 1 3064.2657 10 1 9 11 2 10 3063.8360
4 2 2 5 3 3 3063.9096 10 2 8 10 1 9 3064.9458
4 3 1 3 2 2 3065.2256 10 2 8 10 3 7 3064.3234
4 3 1 4 2 2 3064.9241 10 2 8 11 3 9 3063.6748
4 3 1 5 4 2 3063.7607 10 2 9 9 1 8 3065.2970
5 0 5 4 1 4 3064.8940 10 2 9 10 1 10 3065.1220
5 0 5 5 1 4 3064.4041 10 2 9 10 3 8 3064.1169
5 0 5 6 1 6 3064.1955 10 2 9 11 1 10 3063.8679
5 1 4 4 2 3 3064.8170 11 0 11 10 1 10 3065.2650
5 1 4 5 0 5 3064.7827 11 0 11 11 1 10 3064.0113
5 1 4 5 2 3 3064.4220 11 0 11 12 1 12 3063.8503
5 1 4 6 2 5 3064.0499 11 1 10 10 2 9 3065.3122
5 1 5 4 0 4 3064.9396 11 1 10 11 0 11 3065.1663
5 1 5 5 2 4 3064.2950 11 1 10 11 2 9 3064.1655
5 1 5 6 0 6 3064.2236 11 1 10 12 2 11 3063.7834
5 2 3 5 1 4 3064.7658 11 1 11 10 0 10 3065.2660
5 2 3 5 3 2 3064.2802 11 1 11 11 2 10 3063.9994
5 2 3 6 3 4 3063.8542 11 1 11 12 0 12 3063.8503
5 3 2 4 2 3 3065.3033 11 2 10 10 1 9 3065.3446
5 3 2 5 2 3 3064.9089 11 2 10 11 3 9 3064.0738
5 3 2 6 4 3 3063.6914 11 2 10 12 1 11 3063.8019
5 3 3 4 2 2 3065.2799 12 0 12 11 1 11 3065.3226
5 3 3 5 2 4 3064.9507 12 0 12 12 1 11 3063.9465
5 3 3 6 4 2 3063.6880 12 0 12 13 1 13 3063.7897
6 1 5 5 2 4 3064.9107 12 1 11 11 2 10 3065.3763
6 1 5 6 0 6 3064.8387 12 1 11 12 2 10 3064.0906
6 1 5 6 2 4 3064.4118 12 1 11 13 2 12 3063.7271
6 1 5 7 2 6 3064.0101 12 1 12 11 0 11 3065.3226
6 2 5 5 1 4 3065.1368 12 1 12 12 2 11 3063.9401
6 2 5 6 1 6 3064.9290 12 1 12 13 0 13 3063.7897
6 2 5 6 3 4 3064.2260 13 0 13 12 1 12 3065.3810
6 2 5 7 1 6 3064.1843 13 0 13 13 1 12 3063.8849
6 2 5 7 3 4 3063.7038 13 0 13 14 1 14 3063.7296
7 0 7 6 1 6 3065.0268 13 1 12 12 2 11 3065.4386
7 0 7 7 1 6 3064.2825 13 1 12 13 0 13 3065.2883

(continued on next page)
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Table A.5: (continued)

J ′′ K ′′a K
′′
c J ′ K ′a K

′
c Line Pos. J ′′ K ′′a K

′′
c J ′ K ′a K

′
c Line Pos.

7 0 7 8 1 8 3064.0862 13 1 12 14 2 13 3063.6706
7 1 6 6 2 5 3065.0019 13 1 13 12 0 12 3065.3810
7 1 6 7 0 7 3064.9024 13 1 13 13 2 12 3063.8809
7 1 6 7 2 5 3064.3887 13 1 13 14 0 14 3063.7296
7 1 6 8 2 7 3063.9715 13 2 11 12 3 10 3065.4484
7 1 7 6 0 6 3065.0419 13 2 11 13 3 10 3064.2002
7 1 7 7 2 6 3064.2130 13 2 11 14 3 12 3063.5742
7 1 7 8 0 8 3064.0943 13 2 12 12 1 11 3065.4482
7 2 5 7 1 6 3064.7970 13 2 12 13 3 11 3063.9725
7 2 5 7 3 4 3064.3164 13 2 12 14 1 13 3063.6747
7 2 5 8 3 6 3063.7670 14 0 14 13 1 13 3065.4385
7 3 4 6 2 5 3065.4827 14 0 14 14 1 13 3063.8224
7 3 4 7 2 5 3064.8698 14 0 14 15 1 15 3063.6694
7 3 4 7 4 3 3064.1352 14 1 14 13 0 13 3065.4385
7 3 4 8 4 5 3063.5621 14 1 14 14 2 13 3063.8209

14 1 14 15 0 15 3063.6694

A.3 Buckminsterfullerene, C60

A line list of the assigned R-branch transitions of the 8.5 µm band of C60, as well as the raw

spectrum itself, is located in a permanent online data repository [154].



Appendix B

Spectroscopic constants of the ν3 band of vinyl bromide

Table B.1 below contains the fitted spectroscopic parameters for the ν3 band of vinyl bromide

(see Fig. 2.1). The fit was performed using the standard Watson A-reduced quartic Hamiltonian [64]

and nuclear quadrupole hyperfine terms with the PGOPHER program [333].

Table B.1: Effective Hamiltonian fits for the ν3 band of CH2CH79Br and CH2CH81Br. The
standard Watson A-reduced quartic Hamiltonian (Ir representation) was used to fit the measured
transition frequencies. All values are given in cm−1, except for χaa, χbb−cc, and |χab|, which are
given in MHz. All ground state (v = 0) constants are taken from Ref. [334], again except for χaa,
χbb−cc, and |χab|, which are taken from Ref. [335]. Values in [ ] brackets are held fixed during the
fit. 1σ uncertainties are specified in parentheses; for ν0 values, the uncertainty corresponds to the
estimated absolute frequency accuracy of our calibration procedure.

79Br 81Br

Parameter Ground state ν3 Ground state ν3

ν0 0 3027.4152(10) 0 3027.4041(10)
A 1.810093 1.804461(7) 1.809641 1.804053(9)
B 0.1388471 0.1387183(4) 0.1380359 0.1379096(5)
C 0.1288373 0.1286733(5) 0.1281362 0.1279755(5)
∆J ×107 0.534 0.520(12) 0.528 0.553(13)
∆JK ×105 −0.10216 −0.1188(29) −0.10146 −0.1018(47)
∆K ×104 0.4223 0.1624(40) 0.4206 0.2835(51)
δJ ×108 0.57 [0.57] 0.57 [0.57]
δK ×106 0.3922 [0.3922] 0.3841 [0.3841]
χaa 470.98 469.55(237) 393.58 394.13(237)
χbb−cc 37.04 31.59(733) 30.86 22.68(716)
|χab| 246.14 [246.14] 204.17 [204.17]

RMS error×104 2.20 2.24



Appendix C

Icosahedral symmetry and spherical tensor operators

This appendix summarizes key results from a group theoretical analysis of icosahedral C60.

C.1 Icosahedral character table and correlations

Table C.1 reproduces the character table of the icosahedral Ih molecular symmetry group

(adapted from Table A-16 of Ref. [18]). It is useful to note that Ih is a direct product group of

I and the inversion group {E, i}. I is the icosahedral rotation group, containing only the pure

rotation symmetry operations of the icosahedron. Transformation properties of the symmetric top

Table C.1: Character table for the Ih(M) molecular symmetry group of C60. “φ” is the equivalent
rotation angle corresponding to the given group element class. The symmetries of the body-fixed
angular momentum operators (Jx,y,z) and dipole moment operators (x, y, z) are indicated. The lab
frame dipole moment operators each belong to the symmetry given by Γ∗, the parity-antisymmetric
irreducible representation (Au for Ih).

Ih: E 12C5 12C2
5 20C3 15C2 i 12S3

10 12S10 20S6 15σ :
φ: 0 2π

5
4π
5

2π
3 π 0 2π

5
4π
5

2π
3 π :

Ag: 1 1 1 1 1 1 1 1 1 1 :
Au: 1 1 1 1 1 −1 −1 −1 −1 −1 : Γ∗

T1g: 3 η+ η− 0 −1 3 η+ η− 0 −1 : (Jx, Jy, Jz)
T1u: 3 η+ η− 0 −1 −3 −η+ −η− 0 1 : (x, y, z)
T2g: 3 η− η+ 0 −1 3 η− η+ 0 −1 :
T2u: 3 η− η+ 0 −1 −3 −η− −η+ 0 1 :
Gg: 4 −1 −1 1 0 4 −1 −1 1 0 :
Gu: 4 −1 −1 1 0 −4 1 1 −1 0 :
Hg: 5 0 0 −1 1 5 0 0 −1 1 :
Hu: 5 0 0 −1 1 −5 0 0 1 −1 :

Note: η± = (1±
√

5)/2.
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rotational wavefunctions |Jkm〉 can be determined by recognizing that they transform as the the

irreducible representation (irrep) D(J) of the rotation group SO(3), and then correlating between

D(J) and the irreps of I, which is a subgroup of SO(3). This is facilitated by the fact that the

character of D(J) under a symmetry element is determined solely by the angle of the equivalent

rotation (φ in Table C.1) via

χ(J)(φ) =
sin
(
(J + 1

2)φ
)

sin(φ/2)
. (C.1)

Once the characters of D(J) are determined, the reduction in terms of the irreps of I is straightfor-

ward. These results are summarized in Table C.2 (and have been derived previously by others; see,

for example, Table 3 of Ref. [153]). The correlations between irreps of SO(3) and I determine much

of the fundamental structure of C60. For example, the fact that the lowest non-vanishing multipole

moment of C60 is the hexacontatetrapole (64-pole) is due to the fact that the first D(J>0) that

correlates to A is for J = 6 (26 = 64). These correlations are also critical in determining nuclear

spin statistics and the spherical tensor properties of rovibrational effective Hamiltonians for C60.
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Table C.2: Correlation of irreps D(J) of the SO(3) rotation group to those of I, the icosahedral
rotation group. For J = 30n + mod(J, 30), the representation is equal to that of mod(J, 30) plus
n× (1A+ 3T1 + 3T2 + 4G+ 5H).

J : A T1 T2 G H
0 : 1
1 : 1
2 : 1
3 : 1 1
4 : 1 1
5 : 1 1 1
6 : 1 1 1 1
7 : 1 1 1 1
8 : 1 1 2
9 : 1 1 2 1
10 : 1 1 1 1 2
11 : 2 1 1 2
12 : 1 1 1 2 2
13 : 1 2 2 2
14 : 1 1 2 3
15 : 1 2 2 2 2
16 : 1 2 1 2 3
17 : 2 2 2 3
18 : 1 1 2 3 3
19 : 2 2 3 3
20 : 1 2 2 2 4
21 : 1 3 2 3 3
22 : 1 2 2 3 4
23 : 2 3 3 4
24 : 1 2 2 4 4
25 : 1 3 3 3 4
26 : 1 3 2 3 5
27 : 1 3 3 4 4
28 : 1 2 3 4 5
29 : 3 3 4 5
30 : 2 3 3 4 5



Appendix D

Spherical top R selection rule

In this appendix, we derive the R selection rule introduced in Section 5.3.3 for the case of

a linear dipole moment function. Then we discuss the basis of this rule in terms of both a simple

physical picture and some general arguments based on icosahedral symmetry and the Wigner-Eckart

theorem.

D.1 Explicit derivation for linear dipole moment operator

Let {qx, qy, qz} be triply degenerate vibrational coordinates for an IR active fundamental.

Their conjugate momenta are {px, py, pz}, with [qx, px] = i, [qx, py] = 0, etc. The molecule body-

fixed frame components of the vibrational angular momentum are

`x = qypz − qzpy (D.1)

and cyclic permutations thereof. The commutation relations between the components of the vibra-

tional angular momentum and the coordinates are

[`z, qx] = iqy, (D.2)

[`z, qy] = −iqx, (D.3)

[`z, qz] = 0, (D.4)

and cyclic permutations thereof.
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The body-fixed dipole moment can be expanded to first order in the triply degenerate vibra-

tional coordinates

~µbf ∝


qx

qy

qz

 . (D.5)

The lab-fixed dipole moment is related to the body-fixed one by

~µL = S−1 · ~µbf, (D.6)

where the direction cosine matrix S−1 is, in terms of the standard Euler angles,

S−1 =


cθcφcχ− sφsχ −cθcφsχ− sφcχ sθcφ

cθsφcχ+ cφsχ −cθsφsχ+ cφcχ sθsφ

−sθcχ sθsχ cθ

 . (D.7)

(Cosine and sine are abbreviated as c and s, respectively.)

We now compute the commutators of the components of the vibrational and total angular

momentum with ~µL. We begin with the z component of the vibrational angular momentum:
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[`z, ~µL] = [`z, S
−1 ·


qx

qy

qz

]

= S−1 · [`z,


qx

qy

qz

]

= S−1 ·


iqy

−iqx

0



= i


qy(cθcφcχ− sφsχ) + qx(cθcφsχ+ sφcχ)

qy(cθsφcχ+ cφsχ) + qx(cθsφsχ− cφcχ)

−qy(sθcχ)− qx(sθsχ)

 . (D.8)

We now evaluate the commutator with the z component of the total angular momentum
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Jz = −i∂χ:

[Jz, ~µL] = [−i∂χ, S−1 · ~µbf]

= −i[∂χ, S−1] · ~µbf

= −i


−cθcφsχ− sφcχ −cθcφcχ+ sφsχ 0

−cθsφsχ+ cφcχ −cθsφcχ− cφsχ 0

+sθsχ sθcχ 0

 · ~µbf

= −i


−cθcφsχ− sφcχ −cθcφcχ+ sφsχ 0

−cθsφsχ+ cφcχ −cθsφcχ− cφsχ 0

+sθsχ sθcχ 0

 ·


qx

qy

qz



= i


qx(cθcφsχ+ sφcχ) + qy(cθcφcχ− sφsχ)

qx(cθsφsχ− cφcχ) + qy(cθsφcχ+ cφsχ)

−qx(sθsχ)− qy(sθcχ)

 (D.9)

We can now see that

[`z, ~µL] = [Jz, ~µL] (D.10)

and therefore

[Rz, ~µL] = [Jz − `z, ~µL] = 0. (D.11)

It must be that Rx and Ry also have vanishing commutators with ~µL (our choice of body-fixed

z axis was arbitrary to begin with), so that R2 = R2
x +R2

y +R2
z completely commutes with the lab

frame dipole moment operator,

[R2, ~µL] = 0, (D.12)

and dipole transitions must therefore satisfy ∆R = 0. The z component relation,

[Rz, ~µL] = 0, (D.13)

also implies ∆kR = 0, where kR is the body-fixed z projection of R.
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D.2 A simple physical picture

We can approximate the carbon cage of C60 as a spherical elastic shell depicted in Fig. D.1a.

A fixed point on the sphere is marked with a red dot. Vibrational motion deforms the surface and

produces an oscillating dipole moment oriented along the direction of deformation (Fig. D.1b). The

electric field of incident radiation exerts a torque on the oscillating vibrational dipole causing the

deformation to rotate (Fig. D.1c), but leaving the orientation of the shell itself unchanged. The

deformation is able to move along the surface of the sphere freely, like a traveling wave, without

the body of the sphere moving. This can only occur because the deformation has no preferred

orientatation.

µ

δ+

δ-

µ

δ+

δ-

δ-

δ+

µ

δ+

δ-

a b c

d e f

µ

Figure D.1: A simple physical picture for the R selection rule. (a) A spherical shell is deformed,
producing (b) an oscillating vibrational dipole. (c) Rotation of this dipole by an electric field
rotates the deformation, but not the underlying spherical shell. (d) An aspherical shell can also
be deformed, producing (e) a similar oscillating dipole along its long axis. (f) Rotation of this
dipole requires that the entire body move, as the orientation of the vibration is fixed relative to
the body-fixed frame.

The three-fold degeneracy of the T1u IR active vibrations of C60 leads them to behave like the

above deformation of a spherical shell. The vibrational angular momentum ` is associated with the
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rotation of the deformation, while the “pure rotational” angular momentum R is associated with

the rotation of the spherical frame itself. The vibrational dipole is a “slippery handle.” Because it

can rotate freely with respect to the frame, an electric field can only exert a torque on ` and not

R. Spectroscopically, this translates to the ∆R = ∆kR = 0 selection rules.

To help solidify this physical picture, consider the more common case of a less symmetrical

molecule, illustrated as an oblong shell in Fig. D.1d. A vibrational deformation along the long axis

of the shell again produces an oscillating vibrational dipole in the same direction (Fig. D.1e). Unlike

the spherical case, however, this non-degenerate vibration has a definite preferred orientation with

respect to the shell. Vibrations along the short axis occur at a different frequency, and so they

cannot “resonantly” travel freely between the long and short axes. Electric radiation that torques

the vibrational dipole moment must rotate the deformed shell as a whole (Fig. D.1f). Thus, in non-

spherical molecules, vibrational excitations can occur with a simultaneous change in the angular

momentum of the entire molecular frame. (An example of this type of oblong shell is a linear

molecule such as acetylene, HCCH. The deformation along the long-axis would correspond to the

antisymmetric CH stretching mode. Such a Σ− Σ transition has ∆J = ±1 selection rules.)

D.3 Spherical tensor operators and the Wigner-Eckart theorem

The R selection rule can also be understood in the general formalism of spherical tensor

operators. The triply generate vibrational coordinates {qx, qy, qz} behave as a vector, i.e. the

components of a proper rank-1 tensor, with respect to the SO(3)M rotation group generated by the

body-fixed components of R. Therefore, in the linear dipole approximation ~µbf ∝ (qx, qy, qz)
T is

also a rank-1 vector in SO(3)M. When rotating body-fixed quantities into the lab frame, we use

the direction cosine matrix S−1 (Eq. D.7). Each row of S−1 itself transforms as a rank-1 vector in

SO(3)M. Therefore, rotating the body-fixed dipole moment operator into the lab frame, Eq. D.6,

amounts to performing three separate tensor couplings between a pair of rank-1 vectors to generate

a rank-0 operator. Each row of S−1 is coupled with ~µbf to form a single lab frame component of ~µL,

each of which is a spherical rank-0 operator in SO(3)M. We can then make use of the Wigner-Eckart
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theorem [152,161], from which it follows that matrix elements of the form

〈R, kR, J,m|T̂ (k)
q |R′, k′R, J ′,m′〉, (D.14)

are zero unless |R′ − k| ≤ R ≤ R′ + k and kR = k′R + q, where k and q are the rank and tensor

component of the operator T̂
(k)
q in SO(3)M. For the linear dipole approximation, each lab-frame

component of ~µL is a spherical operator with k = q = 0, leading to the ∆R = ∆kR = 0 selection

rule.

Wait a minute, one might protest. Isn’t the lab-frame dipole moment operator ~µL a vector?

It is and it isn’t. This is an excellent example of the difference between the SO(3)M and the

SO(3)L rotation groups. SO(3)M is generated by the body-fixed frame components of R, while

SO(3)L is generated by the lab frame components of J. Each lab frame component of ~µL is a rank-

0 spherical tensor operator in SO(3)M (under the linear dipole approximation), while the three

components together transform as a rank-1 vector operator in SO(3)L. Electric dipole transitions

therefore have ∆R = 0 and ∆J = 0,±1 selection rules. The two rotation groups co-exist, providing

complementary descriptions of the properties of spherical tensor operators.

We can now see that the “slipperiness” of the vibrational transition dipole for spherical tops

in our simple physical picture above is associated with its rank-0 tensor properties. However, for

icosahedral tops like C60, the true molecular symmetry group is not quite SO(3)M, but rather the

lower symmetry icosahedral group Ih. Therefore, the lab frame dipole moment operators may have

higher rank contributions that break the ∆R = 0 selection rule. As can be seen in the Ih character

table (Table C.1), the lab frame dipole moment operators each transform as Au. Table C.2 indicates

that Au operators can have not only rank-0 contributions, but also rank-6, 10, 12, etc. Such higher

rank contributions in ~µL must come from corresponding terms in the body-frame dipole moment

operator ~µbf, which transforms as T1u. The linear approximation restricts ~µbf to transform as a

rank-1 vector, but, in general, rank-5, 6, 7, . . . contributions are possible. These high rank terms

are expected to be small, making the ∆R = 0 selection rule quite strong.
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