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Quantum and thermal effects play important roles in the fluctuations of ultracold Bose gases,

yet the fluctuations remain difficult to probe experimentally in 3D bulk systems. We seek to

amplify these fluctuations via a quench from positive to negative scattering length. Following such

a quench, initial fluctuations in the gas, whether seeded by a lattice potential, thermal fluctuations,

or quantum fluctuations, are amplified on a time-scale which is fast compared to the bulk collapse

of the cloud. We perform experiments on clouds seeded with an initial, well-understood density

perturbation due to an optical lattice and on clouds with no externally imposed fluctuations. We

compare our observations to a variety of theoretical models, which predict the static structure

factor as a function of time and momentum in the collapsing gas.
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Chapter 1

Introduction

1.1 The world of ultracold interacting Bose gases

The field of ultracold atoms has flourished tremendously in the last several decades, par-

ticularly after the development of laser cooling, magnetic trapping, and evaporative cooling. The

first observation of Bose-Einstein condensation (BEC) was achieved right here in JILA in 1995 in

a gas of 87Rb and was quickly followed by a veritable explosion of work done with BECs which has

continued to this day [6, 41]. Among the many things learned during this time was the importance

of interatomic interactions. At very low energies, the interactions between particles may be charac-

terized by a parameter called the s-wave scattering length: as. I will generally omit the subscript

s and use a to denote the s-wave scattering length. To oversimplify, when a > 0, the interaction

between atoms is repulsive, and when a < 0 they are attractive. The magnitude of a determines

the interaction strength between particles [98, 101].

The interaction strength of various atomic species varies widely [32]. It is impossible to

calculate a from first principles for all but the simplest atoms. For instance, in a single atom of

87Rb there are 37 electrons, 37 protons, and 50 neutrons, and that’s only mentioning particles

known about in the 1930s. Yet interactions are of extreme importance to the experimentalist

hoping to understand and exploit them. Certain species, such as 87Rb, have interactions which

are unvarying over a large range of experimental parameters and which are also favorable for

the elastic interactions necessary for evaporative cooling, which is frequently required to achieve

quantum degeneracy. Other atoms, such as 85Rb, have much stronger interactions which make
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them prone to inelastic collisions, an impediment to evaporative cooling[32].

Yet the interactions are what make the few-body and many body physics questions interest-

ing. A truly ideal gas is a pretty boring thing. With ultracold atoms, and with the right choice of

atom, we are fortunate enough to possess a tool allowing us to tune the strength |a| and sign of the

interactions via a Fano-Feshbach resonance (which I will abbreviate to Feshbach resonance for the

sake of brevity)[32]. These Feshbach resonances arise due to the proximity of a bound molecular

state in a closed spin channel to the energy of two colliding particles in an open spin channel.

[52, 53, 50, 51, 49]

With the ability to tune the scattering length a in an ultracold dilute gas comes the opportu-

nity to explore quantum mechanical effects which can only be accessed at such low temperatures.

Previous work in my lab has investigated the Efimov effect, which is a three-body effect resulting in

an infinite series of three-body bound states in a system with unitary interactions (a → ±∞)[45].

Observing this effect requires a system of three particles which interact with pairwise divergent

interactions in a coherent way. Phenomena like the Efimov effect (and the Feshbach resonance

itself) require these very cold, dilute conditions for the subtle quantum-mechanical effects to be

observed.

Today’s dilute ultracold atomic gasses are certainly not the only systems in which quantum

mechanical effects are important. Superconductivity was first observed in 1911 when mercury was

sufficiently cooled [93, 43]. Superfluid Helium, despite its sweltering temperature, is even more

similar; liquefied 4He exhibits viscosity-less flow up to a toasty 2.17 K. Clearly, one need not be

cold for quantum mechanics to be relevant. If 2.17 Kelvin does not seem hot to you, we can increase

the temperature very slightly to 300 K, where everyday metals contain a degenerate Fermi gas of

electrons. Increasing our temperature a bit more to 106 K and we have the degenerate quantum

matter of a neutron star. It may seem unfair to call both superfluid helium at 2 K and neutron

stars at 106 K hot, but since the condensates in our lab are on the order of 10−8 K, I think its fine.
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1.2 Timeline of scientific investigation of interacting Bose gases

1.2.1 Before 1995

The prehistory of Bose gas physics began in 1924 when Satyendra Nath Bose derived Plank’s

radiation law using only counting statistics and the quantized nature of photons [18]. Prior to Bose’s

work, all derivations of Planck’s law required appealing to classical physics; Bose’s derivation was

entirely quantum in nature. Bose sent his results to Albert Einstein following difficulty in publishing

his findings, and Einstein, recognizing the importance of this new insight, translated Bose’s work

into German and had it published on Bose’s behalf [46]. It is worth appreciating the fact that

Bose’s derivation fit quite comfortably on a single page, and in notation so similar today’s notation

that I found it only slightly difficult to follow the derivation even in German; it should be noted

that I do not speak a word of German.

Einstein extended Bose’s argument to an ideal gas of massive particles and clearly elucidated

the phenomena of condensation for an ideal gas at low temperatures, emphasizing how this follows

from Bose’s method of defining the state of the gas [47]. Einstein summarized Bose’s method

“Following Bose: A states of the gas is microscopically defined by specifying how many molecules

are sitting in each [unit cell of configuration space]”. In contrast “According to the hypothesis

of the statistical independence of the molecules: A state is microscopically defined by specifying

for each molecule the [unit cell of configuration space] in which is sits.” This is how Einstein

elucidated the difference between gases composed of indistinguishable (following Bose, wherein the

molecules are not treated as ‘mutually statistically independent’) versus distinguishable particles

(the molecules are treated as ‘mutually statistically independent’). Einstein’s detailed treatment

of both approaches in [47] makes clear how the subtle difference in defining the state of a gas has

dramatic impact on its properties.

However, while the work of Bose and Einstein feels very familiar to an ultracold atomic

physicist in the early 2020s, the phenomena of Bose-Einstein condensation would first be recog-

nized within a system very unlike the dilute gases envisioned by Einstein and generated in today’s
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ultracold atom labs: superfluid Helium. Helium had first been liquefied in 1908 [92], but efforts

to solidify it indicated that helium remained a liquid under its own pressure all the way down

to zero temperature. Since the entropy of a zero temperature system must be zero, this implied

that somehow the liquid helium was undergoing an unknown ordering process. In 1937-1938, the

phenomenon of superfluidity was experimentally verified by two groups independently [3, 75]. That

same year Fritz London and L. Tisza proposed that the explanation for this ’liquid degeneracy’

may be closely related to the condensation predicted by Bose and Einstein the previous decade

[56, 123].

However, while interest in superfluid Helium and superfluidity in general remained high

in the decades that followed, Bose-Einstein condensation was less fashionable. When Landau

developed his own two-fluid model in 1941, he did not consider BEC to be a promising explanation

of Helium’s superfluidity [79]. Indeed the disagreement between Landau and Tisza was rather strong

as demonstrated by back-to-back letters to the editor of Physical Review in 1949 [80, 121]. Yet

the connection between superfluidity and Bose-Einstein condensation would continue to develop

via work of Bogoliobov which was published in 1947 and to this day remains an indispensable

framework for understanding elementary excitations of superfluids and Bose-Einstein condensates

[17]. Bogoliobov’s transformation recasts the real, interacting, particles into a new basis of non-

interacting quasiparticles. Diagonalization of the Hamiltonian in the quasiparticle basis provides

the dispersion relationship for weakly interacting superfluid systems. Underappreciated at the time

was the applicability of Bogoliobov’s treatment to Bose-Einstein condensation.

In the 1950’s work by Feynmann, Matsubara, Onsager, and Penrose revisited the subject

of superfluid helium and contended that London’s hypothesis was essentially correct; Bose con-

densation was fundamental to superfluidity. Onsager and Penrose calculated that even at zero

temperature, only 10% of the atoms were in the ground state due to depletion caused by the inter-

atomic interactions [54, 96, 84]. Around this same time work in superconductivity was converging

on similar ideas, exemplified in the famous paper on superconductivity by Bardeen, Cooper, and

Schrieffer in 1957 [11].
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1.2.1.1 Spin-polarized hydrogen

In 1959, Hecht [64] considered systems of spin-polarized bosonic gases of hydrogen. and the

prospect of spin-polarized and seemed puzzled that” “...it seems that no one has pointed out the

exciting possibility that such atomic gases and liquids would show superfluid properties since H

and T atoms are bosons.” It seems that this observation was slightly ahead of its time; similar

observations were made by Stwalley and Nosanow in 1976 [115]. Experimental progress towards

stabling a sample of spin polarized hydrogen reached an important milestone in 1980 with the heroic

experimental efforts of Silvera and Walraven [111] to achieve such a stable sample using a dilution

refrigerator coated with a thin film a superfluid 4He, which was required as otherwise the hydrogen

would instantly adsorb to any surface. However, progress towards BEC on that front slowed due

to the dueling requirements for high density and low temperatures and the enhanced losses such

densities and temperatures caused through recombination processes. Attempts to reach BEC in

Hydrogen would continue, motivated in part by the determination that spin-polarized Hydrogen

would remain a gas at all temperatures, ensuring that a BEC would be robust against collapse

[116]. Despite this fact, Hydrogen would have to wait a few years after other systems to finally

be condensed [48, 39]. In the efforts to cool Hydrogen, the technique of evaporative cooling was

developed [83]. Evaporative cooling remains the method of choice for cooling bulk atomic gases to

ultracold temperatures and is the final stage of cooling used in for the work in this thesis.

1.2.1.2 Alkali atoms

While spin polarized hydrogen was being pursued, Hydrogen’s neighbors below it on the

periodic table became increasingly popular subjects of experiments on laser cooling and trapping,

despite the fact that the ground state of low temperature alkali systems is a solid. Beginning

in the mid 1970s, it was proposed that lasers interacting with atoms could be used to slow and

cool atoms [129, 63]. Tremendous progress was made in the next two decades in the experimental

development of techniques used to cool atoms such as Doppler and sub-Doppler cooling of neutral
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atoms and ions [128, 100, 88, 34, 35, 117, 91, 8]. Ultimately these efforts led to the first observation

of Bose Einstein condensation in a dilute atomic gas of 87Rb here at JILA in 1995. This was the

first really unambiguous demonstration of Bose condensation to demonstrate the phenomena as

Einstein had conceived it: in a gas, albeit non-ideal. These systems are not technically in the

absolute ground state, which is indeed a solid, but the extremely low densities slow the rate of

recombination processes which nucleate solidification sufficiently to allow for long-lived metastable

BEC.

1.2.2 Interactions and early BEC

With the success of condensing 87Rb here at JILA and 23Na at MIT [7, 41], attention turned

to understanding these fascinating new systems, and the role of interactions was paramount. The

scattering lengths of the alkalis were not as well understood as it is now, although rapid progress

in understanding interactions was swiftly made. For ultracold alkali atoms, the interactions can be

encapsulated almost entirely by a single parameter, the s-wave scattering length a [32]. It had been

predicted earlier that negative scattering lengths precluded stable condensation except in small

samples [106]. This was the reason for the difficulty in condensing 7Li [21, 20, 31, 38]. Negative

scattering lengths also pose a problem for efficient evaporation generally. The rate of inelastic

three-body collisions is generally higher for negative a than for positive a of equal magnitude [19].

For these reasons positive s-wave scattering lengths are required for production of large BECs

by way of evaporative cooling. Early experiments demonstrated in spectacular fashion how a BEC

is incapable of persisting when the scattering length is tuned negative earning the name bosenova

for the similarity between condensate collapse and core collapse supernovae of very massive stars

[105, 44]. These experiments produced a small, persistent remnant since for a sufficiently small

atom number the zero point energy stabilizes the sample against collapse.
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1.2.2.1 General overview of the role of interactions from 2000 to present

Following the realization of BEC, interest was renewed in understanding these systems, par-

ticularly in the context of trapped gases where BEC was accessible. The behavior of BEC at

negative scattering lengths was explored in the context of one dimensional samples [97, 24, 23, 25].

These studies found that a 1D condensate remained stable at negative a and formed stable solitons.

Early experiments in one dimensional 7Li samples produced such soliton trains following a quench

to attractive interactions [77, 114]. These experiments confirmed the prediction that during the

collapse, phase differences between the solitons determine their interactions; neighboring solitons

with a phase difference of π between them repel each other and prevent the local density from ex-

ceeding the critical density for total collapse. The origin of these phase fluctuations was attributed

to a combination of factors. Fluctuations of the initial condensate were proposed to seed these

relative phases in [2]. Alternatively, in [22] interference of the condensate order parameter during

the first stages of collapse were found to create soliton trains wherein the solitons behaved both

repulsively (with π relative phase) and attractively (with no relative phase) over the course of an

implosion process with multiple phases.

In three dimensions, such as the 85Rb bosenova experiments [44] the picture was less clear.

The observations reported in [44] indicated that long after the quench to negative a, the number

of condensed atoms was well above the predicted critical number. This surprising result was ex-

plained by the fact that the implosion process was sufficiently violent enough to allow multiple

bright solitons to nucleate with relative phases such that the solitons interact repulsively despite

the attractive interatomic interactions [37]. This resembles the mechanism discussed above in 1D.

Subsequent numerical studies supported this notion [94, 95]. However, later numerical calculations

did not find a repulsive phase between the implosion remnants as originally postulated when fluc-

tuations were included [42]. The question of how to interpret the results of experiments like the

JILA bosenova [44] has remained salient and continues to be pursued [14, 15, 120].

Solitons have also been generated in two dimensional system. In contrast to 1D and 3D, the
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two dimensional solitons were stabilized by rapidly oscillating the scattering length [108, 33, 61, 31].

However, our interest in this thesis is not in the nature of solitons in various dimensions, but in

understanding fluctuations in bulk 3D BEC.

1.2.3 Fluctuations

The nature of fluctuations in Bosonic systems of varying dimension is the subject of much of

Chapter 4, where we shall derive quantitative results for uniform and harmonically trapped systems

for d = 1, 2, 3. In lower dimensional systems, the fluctuations are larger, to the point that they

preclude the existence of a true, phase-coherent BEC. This fact has been understood for many

decades. Mermin and Wagner [86] provided a a proof that long-range order is impossible at any

finite temperature in a one- or two- dimensional isotropic spin-S Heisenberg model. A consequence

of this fact is that Bose-Einstein condensation is impossible in such systems [85, 67]. This follows

from the fact that the systems considered by Mermin and Wagner belong to the same universality

class as Bose gases [68].

In 3D, the phase fluctuations (in a uniform gas) for large distances are bounded from above

by a constant, as was derived for finite temperature by Kane and Kadanoff [74]. The one-body

density matrix therefore asymptotically approaches a finite value. In one and two dimensions, the

magnitude of the phase fluctuations is unbounded for large distances, and therefore the off-diagonal

portion of the one-body density matrix decays to zero. Interestingly, this decay is exponential for

one-dimension but algebraic for two-dimensions. This turns out to be related to the Berezinskii-

Kosterlitz-Thouless (BKT) transition [78, 13]. We will not be discussing the BKT transition in this

thesis.

The fact that the phase fluctuations remain large over large distances in 1D and 2D math-

ematically follows from the nature of the ∝ p−1 momentum dependence of the phase operator

for the condensate order parameter and the convergence, or lack thereof, of a momentum inte-

gral (Eq. 4.130). The analogous calculation for density fluctuations always converges (Eq. 4.135),

because the momentum dependence ∝ p of the density operator is linear. Hence, the density fluc-
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tuation effects will tend to be smaller than those of the phase fluctuations. Fluctuations in lower

dimensions are larger than in 3D as a consequence of the volume element of the integral.

1.3 A brief overview of my career

Physics has always been a passion of mine, and ultracold atoms in particular have always

been a topic of fascination. I was fortunate enough to work with laser cooling and trapping of

atoms as an undergraduate at Lawrence University, and continued in this direction when I arrived

at JILA, originally in the bi-group of Debbie Jin and Eric Cornell. My first few years at JILA were

spent working with Bose-Fermi mixtures of 87Rb and 40K and studying their interactions, which

nature has allowed us to tune simply by changing the magnetic field the atoms experience. We also

worked to create very smooth optical potentials amenable to rapid rotation of these ultracold gases.

I owe a great deal to my fellow graduate student Ming-Guang Hu, who was an excellent teacher and

enjoyable to work with. Ming-Guang and I were joined by Dhruv Kedar in 2015. While the grand

vision of the lab in B231 was aimed toward rotating Bose-Fermi mixtures with the ultimate goal of

investigating quantum Hall physics in ultracold atoms, we took a detour to perform experiments

on Bose polarons in the strongly interacting regime [69]. This work was tragically interrupted by

Debbie’s illness and death in 2016. The world was robbed of a brilliant, kind scientist, and I was

robbed of a wonderful advisor. However, I’m not sure how the aftermath of this tragedy could have

gone better for my fellow graduate students and I; our voices were heard, listened, and acted on by

professors and advisors who clearly cared deeply about helping Debbie’s students succeed. Dhruv

joined Jun Ye’s experiments on Strontium optical lattice clocks, and I was sad to cease working

with him, he was a wonderful labmate.

Ultimately, I found myself switching to slightly different, but very related work in what

was previously the Fermi Gas lab in Debbie’s group. I learned to operate my second BEC creation

machine of graduate school, and with a new species of atom, 39K, which would allow us to investigate

and expand the limits of our understanding of few-body physics. I worked with my fellow graduate

students Roman Chapurin and Xin Xie, as well as with undergraduates Jerod Popowski, Carlos
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Lopez-Abadia, and Bjorn Sumner. Things proceeded well in the new lab and we were able to

experimentally and theoretically placed Efimov physics on a more robust universal foundation than

had yet been realized. Noah Schlossberger joined our lab, but in what felt like no time at all, he

switched to the eEDM Gen-III experiment. From late 2016 to early 2020, the JILA Resonantly

Interacting Boson lab (JRIB) focused on few-body physics. We produced detailed measurements

of the Feshbach resonance in the |1,−1〉 state of 39K and its associated Efimov spectrum, providing

a through picture of this effect and testing the limits of universality [28, 132].

In late 2019, an collection of chronic medical conditions I have lived with since childhood

coalesced into an obstacle I could no longer ignore and I required some time off and a restructuring

of my schedule to accommodate my treatment. This was compounded by the global Covid-19

pandemic and the most pathological series of objective lenses that myself and my advisors have

ever seen. By the middle of 2020, Xin Xie and Roman had both graduated and I was the sole

master of my laboratory, which certainly has its pro and cons. A good deal of time and effort was

expended in the analysis and trouble shooting of the high resolution imaging, a problem which was

not satisfactorily solved until a replacement lens arrived in fall 2021 which reduced aberrations to

a tolerable level. From there, it was a short two months until data collection was completed. The

road to results has been long and difficult, and the path taken has diverted somewhat from the

original vision for an fluctuation microscope. To understand our successes and struggles in this

project, a prologue of sorts for the original scientific vision is useful.

1.4 Vision for a fluctuation microscope

Fluctuations in BEC are important to understanding systems of ultracold bosons, particularly

when the interactions between the atoms are strong. Unfortunately, they are also very difficult to

observe in 3D. The goal of this work is to overcome the difficulties of accurately characterizing subtle

density perturbations that are the signatures of these fluctuations by amplifying those perturbations

via a quench to attractive interactions. The general concept is straightforward: an initially stable

trapped condensate undergoes a rapid interaction quench to negative as which suddenly changes
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(a) (b)

Figure 1.1: Illustration of the evolution of a local density perturbation in a uniform gas. A initial
density bump dissipates for repulsive interatomic interactions as shown in (a). A initial density
bump grows in magnitude and contracts in size following a quench to strong attractive interactions
as in (b). The curves are for qualitative and illustrative purposes only.

the mean field potential experience by the atoms from repulsive to attractive. The inward force on

the cloud increases as the cloud contracts, and local density maxima continue to drive this inward

movement. The densest regions of the cloud pull harder and harder on all the atoms in the vicinity.

Consider an infinite uniform BEC sitting happily at a stable positive scattering length and

suppose there exists a single isolated density bump, perhaps the results of a externally imposed

local potential well which is switch off at t = 0. The aligned forces of kinetic energy pressure

and repulsion due to as > 0 each push particles away from higher density regions. The density

profile will thus tend to dissipate to match the background density as show in Fig. 1.1a. If the

interactions between the particles was instead quenched at t = 0 to a sufficiently attractive value,

the evolution of the density bump takes a very different turn. An atom at the edge of the bump will

still be pushed outwards due to the kinetic pressure of the wavefunction, but for a sufficiently strong

interatomic attraction, the net force on the particle will be inward and the bump will grow until

other processes such as molecular recombination become relevant. The growth of the perturbation

following such a quench is show in Fig. 1.1b.

Of course, even if the wavefunction is perfectly uniform at t = 0, any measurement of the
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Figure 1.2: Illustration of how density fluctuations are amplified in a uniform gas, the data are
randomly generated and for illustrative purposes only. A measurement of the density profile at
t = 0 (blue line) would yields shot noise on top of the uniform density. If the density profile were
measured at a later time (orange line) following a quench to attractive interactions, the density
perturbations from shot noise will have concentrated in the dense regions, thereby being amplified
compared to there initial amplitude. This is illustrated by the orange line magnifying the preexisting
structure indicated by the blue line.

system will inevitably contain shot noise. If the atomic density is measured at t = 0, the result

would more closely resemble the t = 0 curve in Fig. 1.2. However, density shot noise at t = 0 may

be small and difficult to measure. Consequently, if the condensate is allowed to evolve for some

time after the quench, those same fluctuations will be amplified enough to be measurable.

Above T = 0 K the cloud will also have fluctuations due to the temperature, and interactions

cause additional quantum fluctuations apart from the ubiquitous shot noise. The density pertur-

bations are simply the coordinate space signature of the elementary excitations of the Bose fluid.

In momentum space, these excitations are simply plane waves traveling in all different directions.

In the case of a trapped BEC, thermal fluctuations, quantum fluctuations, and shot noise are all

still present, and a quench to negative scattering length will still serve to amplify local densities

perturbations if the density is sufficiently high or the scattering length sufficiently large. While

in the uniform gas there is no external potential such that the evolution of the wave function is
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governed solely by kinetic and interaction dynamics, in a trapped gas there exists an additional

inward force. The density also drops to zero at the edge of the cloud, so the force due to the

interaction potential is exclusively inward at the clouds edge. In essence, the cloud will implode

globally following a quench to negative a in addition to the local dynamics.

1.4.1 Wavefunction implosion

While the logic that a sudden change of interaction from repulsive to attractive would lead

to the BEC imploding is intuitively reasonable, we can be more quantitative here in elucidating

the physics behind implosions without delving yet as deeply into the theory as we shall in Chapter

4. Yet a few equations are not unwarranted here. The behavior of BECs is commonly considered

using the time-dependent Gross-Piteavskii equation (GPE):(
− ~2

2m
∇2 + Vext(r, t) + g|Ψ(r, t)|2

)
Ψ(r, t) = i~

∂

∂t
Ψ(r, t). (1.1)

The GPE, is a non-linear Schrodinger equation incorporating interactions between the particles

[102]. It provides a good model to expand upon the discussion of 1.4 by analyzing each of its terms.

The first term − ~2
2m∇2Ψ represents what I have been calling the kinetic pressure of the gas. Where

the wavefunction has large spatial curvature this term is large, corresponding to a large wave vector

k and hence large momentum ~k. Such a wavefunction will not generally remain localized in the

absence of other confining factors, as things with large kinetic energy tend to move. Hence, a very

tightly contained Ψ will spread out, as though responding to an internal pressure, and this tendency

will be stronger the more tightly contained and thus rapidly varying Ψ is.

The second term on the LHS of Eq. 1.1 is the external potential. In the context of my work

trapping atoms, this is most often a trapping potential, provided in the lab by magnetic or optical

fields, but is not always. Gravity is a non-trapping potential contributing to Vext (non-trapping in

the lab case, certainly trapping on the scale of the planet). In our experiments, Vext is nearly always

modeled as a harmonic potential with its minimum defining the origin of our coordinate space. The

optical lattice potentials which we impose to seed density perturbations are an exception to this



14

rule.

The third term is the star of the GPE show; a flamboyant new character to Schrodinger’s

cast, ready to cause drama and incapable of minding its own business. This is because the third

term represents the interactions between atoms. We can rewrite the interaction term as g|Ψ|2 ∝ an

where the density is of course n(r) = |Ψ|2 and the interaction parameter g ∝ a is linear in the

scattering length. Whether this term aids the kinetic pressure in pushing the atoms apart or the

external potential in forcing them together depends on the scattering length a, which is among

the most important quantities throughout this work. When a is negative, the interaction term gn

produces a confining potential, whereas a positive a provides a repulsive potential. This term is

also called the mean field (MF).

With this in mind, we consider the balance of these forces for a trapped Bose cloud, and in

particular consider how the kinetic energy, confinement potential, and mean-field interactions will

change when the cloud departs from its equilibrium size. Before the quench, if the cloud is too

large, the kinetic energy and mean-field repulsion each lessen while the trapping potential becomes

steeper; the end result being the cloud contracts. If the cloud is too small, the opposite happens

and the cloud will expand back towards equilibrium. This is the balance of forces at work in Fig.

1.3 on the left.

When the scattering length is suddenly quenched to a negative value, the balance of forces may

no longer be stable. The wavefunction Ψ is unchanged during the quench if it is fast enough, and

the trapping potential remains the same, so they act as they did before the quench. The interaction

potential is a very different matter and the cloud will begin to contract as the outward pressure of

the mean-field is suddenly replaced with an inward pull. But in contrast to the repulsive case, this

produces positive feedback since the mean-field potential scales with the density, and as the cloud

implodes it becomes denser and denser. For weak enough interactions, the negative feedback of the

increasing influence of the kinetic term can eventually halt this collapse and a smaller equilibrium

cloud may become stable, but for dense clouds or strong interactions, the positive feedback of the

imploding cloud’s mean-field attraction outpaces the negative feedback response of the kinetic and
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Figure 1.3: The balance of forces changes with a quench to attractive interactions. Before the
quench all three components provide negative feedback to perturbations away from equilibrium.
After the quench, the mean-field potential instead provides positive feedback

potential terms in the GPE. To be clear the potential Vext is always inwards, but weakens as the

cloud shrinks, providing the negative feedback.

1.4.2 Mode stability

While the GPE is certainly a quantum mechanical expression, the argument and physical

intuition provided by the previous Section feel quite classical in nature to me personally. A compli-

mentary picture for understanding implosions is provided by the theory of elementary excitations,

first developed by Bogoliobov [17]. The details of Bogoliobov’s theory are explained in more detail

in Chapter 4, but the results of important here is the dispersion relation for the excitations upon

a Bose-condensed gas:

ε(k) =

[
gn

m
k2 +

(
k2

2m

)2
]1/2

(1.2)

This dispersion relation is derived in Chapter 4 starting from assumptions of weak interactions

in a uniform condensate at positive scattering length, but remains reasonably accurate even for

systems without these attributes [62, 72] For positive a, ε2(k) > 0 for all densities, and the k-modes

may be grouped into two regimes: the high-k particle-like excitations where the kinetic energy ~2k2
2m

dominates over the interaction energy, and the low-k phonon-like excitations. For a > 0 the modes
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Figure 1.4: Dispersion relation for positive and negative a. On the positive side the low-k modes
exhibit linear momentum dependence like those of phonons while at large k the modes exhibit the
free-particle-like quadratic behavior.

are all stable. For a < 0 the situation is very different. As mentioned, the same dispersion relation

applies even for a < 0, and this fact has important consequences for how these modes evolve in

time. A quantum state ψ will evolve according to

ψ(t) = ψ0e
−iE~ t. (1.3)

Expressing the energy in terms of frequency E = ~ω and considering Eq. 1.2 when |g|n > ~2k2
2m

we see how the frequency associated with ε(k) is purely imaginary for a range of wavenumbers.

The effect on the evolution of ψ according to Eq. 1.3 is to induce the exponential growth of these

modes. Now the connection to density fluctuations and how implosions should amplify them is

becoming apparent. Density fluctuations are equivalently expressible in terms of superpositions of

momentum modes, and those modes, or rather a subset of them, will grow following a quench to

a < 0; and in a way which depends on the post-quench scattering length, the cloud density, and

the wavenumber of the mode. The growth of the modes goes hand in hand with the amplification
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of the associated density perturbations.

This is the motivation for our use of an interaction quench to amplify the subtle fluctuations

of our BEC such that they may be directly observed. The discussion has been necessarily limited

and incomplete, and indeed as our experiments were performed and analyzed, our understanding

improved, and the simple physical picture presented in these Sections became more complicated.

1.4.3 Calibrating fluctuations measurement

The fluctuations we seek to amplify are detected via in-situ absorption images of condensates

following a quench and subsequent evolution of the condensate where the fluctuations grow during

the implosion process outlined above. The in situ density distribution is then analyzed to compute

the structure factor S(k) defined as:

S(k) =
1

N
〈|δn(k)|2〉. (1.4)

The structure factor is simply the average squared value of the Fourier transformed density for a

particular k. Experimentally, this is determined by taking an ensemble of in-situ density measure-

ments, subtracting the mean density profile from each individual realization, and computing the

FFT of the remainder. It is therefore critical to understand how structure in the clouds density is

captured by the imaging system. Previous work in this lab was essentially always concerned with

bulk properties of the cloud, and in-situ imaging was unnecessary for those projects. In contrast,

understanding and calibrating the newly installed in-situ imaging is essential to the business of

measuring fluctuations. The design and characterization on bench tests was carried out by Xin

Xie, and further information may be found in her thesis [131], but Chapter 3 of this work is dedi-

cated to our continuation of her thorough work. Generically, the task of in-situ measurement of a

high optical depth BEC is a difficult one, and we understood that to have confidence in our results

demanded an empirical method of calibrating the transfer function. This is the basis for our lattice

calibration.

The calibration lattices are the other important addition to the apparatus in this work (the



18

(a) (b)

Figure 1.5: Real space and Fourier space density distributions. The red circle in (b) corresponds
to the Y-lattice, with a lattice spacing of 2.5 µm while the green circle marks the X-lattice peak in
Fourier space. In (b) the central peak corresponding to the culk distribution of the cloud is masked.

first being the high-resolution imaging just mentioned). With optical lattices, we have the ability

to write density fluctuations directly onto the cloud and know with high confidence precisely how

deep or shallow the lattice is. The lattice potential can be characterized via establish methods

using short lattice pulse to excited momentum modes in units of 2~kL which are then measured

in time-of-flight. The transfer function of the imaging can then be calibrated, and by decreasing

the depth of the lattice to a very small fraction of the chemical potential, we may calibrate our

sensitivity to structure at the wavelength of the lattice. For this reason two lattices with differing

periodicity are used in this work.

This turned out to be very important for a responsible methodology, as the imaging system

did not perform as expected for several reasons, some of which are still not fully understood.

Hints of this are already present in Figure 1.5, where the signal for the Y-lattice seems to be

distorted and very near the edge of the resolved region, despite bench measurements and the design

indicating this spatial frequency should be well within our resolution. When the terms X-lattice

or Y-lattice are used, they refer to the direction of that lattice’s wave vector. The details of the
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lattice characterization are presented in Chapter 5

1.5 Contents of this Thesis

The rest of this thesis will build upon the vision present in Section 1.4. In Chapter 2 I

review the apparatus, focusing on those components which are relevant to the production of BECs

but without going into the level of detail such an apparatus chapter often does because I am the

last person to use this apparatus. Those components of the apparatus which are critical for the

science of this thesis have been given their own Chapters. These include the optical lattices and

the high-resolution imaging system.

Chapter 3 will contain the more detailed description of the imaging systems as it represents a

major component of the experiment that is mostly new to this work. The principles of absorption

imaging will be discussed in detail. Certain features of data analysis are intimately connected

with the imaging procedure and as such will be reviewed in this chapter as well. These include

the expected density profiles, principal component analysis, and thermometry. The Fourier space

analysis of the imaging will be deferred to later Chapters.

Chapter 4 will review the relevant theory of BEC in general and fluctuations in particular.

The ideas present in Section 1.4 will be discussed in greater detail. The structure factor and its

time evolution following a quench will be expanded upon and the arguments of Section 1.4 will be

both supported and challenged as a result of a more thorough theoretical analysis.

Chapter 5 will discuss the control lattices. The calibration of the lattice will be described

in detail and compared with a priori expectations, with tension between expectations and mea-

surements being reviewed. Predictions of the theory given in Chapter 4 will be compared to our

controlled implosions with well characterized lattices. The effects of lattice potentials persisting

during the implosion time are found to be in agreement with theory, and an unforeseen application

of implosions to characterizing our confining potential will be explored.

Chapter 6 will review our experiments of implosions in the absence of a lattice potential. The

predictions of Chapter 4 will be applied to our efforts using implosions to amplify fluctuations. The
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successes and failures of our experiments to measure the static structure factor will be evaluated and

the final results summarized. We will return in some detail to the question of how to analyze the

data in Fourier space in this Chapter as well as part of the discussion on experimental challenges.

Chapter 7 will contain the conclusion and outlook of this thesis. Additionally, several appen-

dices containing results which are useful and necessary but which do not warrant placement in the

main text are included.



Chapter 2

Apparatus

The work in this dissertation departs from the few-body focused studies of Feshbach and

Efimov physics led by my fellow graduate students Roman Chapurin and Xin Xie. However, with

the exception of the vertical imaging system and optical lattice, the apparatus and cooling procedure

follow those outlined in their theses with very little modification. Given my position as the last

person to use this lab, this apparatus chapter will never be used as a reference in the way that

Roman’s and Xin’s theses were used by me. As such, I will not go into nearly the same level of

detail as can be found in their theses and will be referring the reader to their theses for a substantial

portion of this chapter [27, 131].

2.1 Overview of cooling procedure

While our atoms eventually end up at ultracold temperatures well below one µK, they start

above room temperature, and over half each experimental cycle consists in cooling the atoms to the

ultracold regime. Our apparatus has three vacuum chambers: MOT1, MOT2, and the science cell.

The cooling process begins with two three-dimensional magneto-optical traps (MOTs). The energy

level diagram of the three manifolds relevant to laser cooling of 39K is shown in Fig. 2.1, and the

Zeeman spectra for the S1/2, P3/2, and P1/2 are shown in Figs. 2.2, 2.3, and 2.4 respectively. The

collection chamber (MOT1) cools the atoms from well above room temperature down many orders

of magnitude, perhaps down to about 1 ∼ 10 mK; the temperature in the collection MOT is not

something we have measured since I joined the lab in late 2016. Cooling is a secondary purpose



22

Figure 2.1: Energy level diagram for 39K. The detuning of each hyperfine sublevel with respect to
the fine structure energy is given in parentheses in units of MHz. The dotted line indicates the fine
structure energy in absence of hyperfine interactions. The g-factors for each level are computed
analytically from the quantum numbers as in [87]. All calculations for this figure and for Figs. 2.2,
2.4, and 2.3 were performed by myself in Matlab using reference data for 39K found in [122] or
using NIST CODATA values.

Figure 2.2: Ground state manifold. This manifold is the lower line for both the D1 and D2
transitions. Repump D2 (D1) lasers couple the F = 1 states to the P3/2 (P1/2) manifold while trap
D2 (D1) lasers couple the F = 2 states to the P3/2 (P1/2) manifold.
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Figure 2.3: P3/2 manifold. This manifold is the upper line of the D2 transition.

Figure 2.4: P1/2 manifold. This manifold is the upper line of the D1 transition.
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of MOT1 compared to the more vital task of collecting as many atoms as possible. The MOT1

chamber possesses a getter which provides potassium vapor to the chamber which is heated to

prevent adsorption to the walls thereby allowing reasonable collection rates. During initial loading

the atoms are continuously launched from MOT1 through a narrow tube to MOT2 by a push beam

propagating along the tube and are guided also by a hexapole field consisting of six permanent

magnets on the outside of the tube.

The narrow tube also serves as a narrow enough restriction that the pressure in MOT1 is

significantly higher than in MOT2, allowing maximum atom collection in MOT1 and reducing

background pressure in MOT2 which might hinder cooling. Unlike MOT1, MOT2 is not loaded

from the ambient vapor pressure but from MOT1 by way of a beam of atoms launched from MOT1

to MOT2; therefore the alignment of the push beam from MOT1 to MOT2 is critical. The D2

trap and repump light are derived from the same lasers for both MOT1 and MOT2. The Zeeman

spectrum for the ground state manifold is shown in Fig. 2.2 and that of the excited state of the

D2 transition is shown in Fig. 2.3.

For the first 20 seconds of the experimental cycle, MOT1 is on at full power, pushing as

many atoms as possible to MOT2; loading beyond this time yields diminishing returns. Following

the MOT1 to MOT2 loading, a 20 ms endMOT1 stage is performed by detuning the D2 beams

further from resonance, providing transitional cooling to the next stage; the endMOT is similar to

the compressed MOT stage described next, but using only D2 light. Following the endMOT, the

MOT1 light is turned off and MOT2 undergoes a 2 ms compressed MOT (CMOT) stage where

the D2 trap light is turned off while the D2 repump light is jumped to a new frequency. The D1

trap and repump beams are turned on at this time and the magnetic field is increased as well (the

compression part). Following the CMOT stage comes the grey molasses stage (GM) where the D2

repump light is turned off leaving only the D1 light on the atoms. This stage lasts about 6 ms and

cools the atoms down to 10µK. Further details of the frequencies, gradients, and timings may be

found in previous theses [27, 131].
1 The term endMOT is inherited from the graduate students before me.
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The GM stage ultimately brings the temperature of the atoms in the MOT2 chamber to

10µK. The atoms are then shuttled via a mechanically translated quadrupole trap (QT). The

MOT2 primary coils are mounted on a cart for this purpose and are also called the cart coils. The

loading into the cart QT raises the temperature to 100µK. When the cart arrives at the science

cell, current in the cart coils is ramped down while that in the science coils ramps up to form the

science QT. When the cart QT has been ramped off, the cart is returned to the MOT2 chamber.

The optical dipole trap (ODT) is then loaded for about six seconds before the QT is turned off,

the science coils are switched from anti-Helmholtz to Helmholtz configuration, and a bias field

is applied. The bias field is necessary to bring the scattering length for the |1,−1〉 atoms to a

suitable positive value. The all-optical evaporation procedure then takes place, taking several more

seconds to bring the atoms to the desired temperature, typically < 300µK. During evaporation, the

atoms are transferred from the initial loading ODT beam to a crossed ODT formed by a vertically

propagating beam and a horizontally propagating elliptical beam. These two beams provide a

slightly oblate harmonic trap. Details of the ODT will be covered in a later section.

2.2 Lasers for cooling

The diode laser system is described in great detail in Roman’s thesis [27]. With the exception

of some rearranging of a few imaging optics to provide a slightly more convenient alignment and

power balancing procedure, the optical layout is identical to Fig. 2.15 of [27], with the only

difference being the addition of a few mirrors and ND filters immediately before the top and side

probe AOMs at the top of said figure.

2.3 Magnetic field control and trapping

The MOT1 primary and shim coils are driven and servoed by a rack-mounted system which,

in contrast to every other coil in the experiment, do not have their control voltage set by the

computer, but rather by manual potentiometers. The MOT2 shim coils are a different story,

indeed these coils take different values for the MOT1 to MOT2 collection, endMOT, CMOT, GM,
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Figure 2.5: Magnetic field control enclosure. I constructed this enclosure as part of several efforts in
our lab to reduce magnetic field noise. The box contains the H-bridge relays for the science coils in
the rear of the box (upper left, difficult to see). It also contains the following for the cart coil circuit
and the science coil circuit: current sensors, IGBTs, cooling plates for the IGBTs, servo electronics,
sense resistors and their TECs, and inputs/outputs for water, analog and digital control, and finally
power.

and QT load stages. The optimum shim current values were optimized every few months, most

often using the atom number and cloud size in the science QT as the diagnostic observables.

2.3.1 High current coils

The high current coils mounted on the cart and science cell are driven by two large HP

power supplies capable of outputting 400 A. The science coils circuit contains an H-bridge for

switching between Helmholtz and anti-Helmholtz configurations. Fluxgate transducers paired with

high stability sense resistors mounted on actively stabilized TECs provide in-loop and out-of-loop

current measurements. The servo outputs for the science coils and the cart coils each connect to the

insulated gate bipolar transistor’s (IGBT) gate controlling the coils current. The science coils may
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be operated in Helmholtz or anti-Helmholtz configurations, and because the required current is 10

times larger when the anti-Helmholtz configuration is used, two separate servo systems complete

with current monitors and servo electronics, are used. Which servo controls the science IGBT is

determined via a digital switch. The current monitors, sense resistors, sense resistor TECS, servos,

H-bridge, IGBTs, and water-cooled IBGT mounting plates are contained in a large aluminum box I

constructed in early 2019, consolidating several free standing components into a shielded enclosure,

shown in Fig. 2.5. Combined with other mitigation efforts like moving sources of B-field noise away

from the atoms, and improved filtering of the servos, we were able to dramatically improve our

field stability, ultimately reaching about 2-5 mG RMS shot-to-shot variation; see previous theses

for details [131, 27].

2.3.2 Low current science coils

The science cell also contains several smaller coils used for a variety of purposes. Two pairs

of shim coils, one parallel to the horizontal imaging axis which is used to properly bias the field

for low field σ− imaging, and the other perpendicular to that axis which was occasionally used

to provide a slosh-inducing gradient on the atoms. Vertically, a single coil coaxial with the large

bias coils provides a gradient suitable for Stern-Gerlach measurements. A final, specialized coil

for rapid B-field quenches, called the fast-B coil, is also positioned coaxial to the bias coils. In

the early vision for this experiment, the quench to attractive interactions was to be achieved by

a very rapid jump of the magnetic field. The fast-B coil requires a much more finely tuned and

sophisticated servo including a feed-forward capability to ultimately allow ramps of over 10 G in

5-10µs. Ultimately, the quench to negative scattering length was instead achieved via state transfer

to the |2,−2〉 weakly interacting state. In this thesis, ket notation |F,mF 〉 refer to the hyperfine

angular momentum quantum numbers. More details on the fast-B apparatus and protocols can be

found in Xin Xie’s thesis [131].
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2.4 State Control

Our atoms are prepared in the |1,−1〉 sublevel of the 42S1/2 ground state of 39K; see Fig.

2.2. This is a low-field seeking state, as is required for confinement and transport in the QTs. Prior

to loading the cart QT in the MOT2 chamber, the repump D1 light is extinguished while the D1

trap light remains on and rapidly pumps the atoms out the of F = 2 manifold. Only the mF = −1

sublevel is loaded into the cart QT and therefore only |1,−1〉 atoms are loaded into the ODT. Spin

purity is required to sustain efficient evaporation. The |1,−1〉 state’s Feshbach resonance near 32.6

G provides the tunability of the collisional cross section needed for evaporation, as seen in Fig.

2.6a. The other spin states either posses a negative scattering length or else have a substantial

imaginary component as shown in Fig. 2.6b.

(a) Real part of a (b) Imaginary part of a

Figure 2.6: Real and imaginary parts of the intra-species scattering length. The atoms are prepared
in the |1,−1〉 state which allows tuning of the scattering length via the Feshbach resonance near
32.6 G. The imaginary part of the scattering length is related to two-body inelastic collisions.
Implosions are performed by flipping the atoms into the |2,−2〉 state, which is also the imaging
state. The |2,−2〉 state scattering length is flat over the depicted B-field range at 33.4 a0.
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2.5 Hyperfine transitions

Previous work in our lab used a wider variety of spin states than was required for this work.

These transitions are driven by a collection of antenna tuned to the transition frequency for a given

pair of states and the magnetic field. Details regarding the tuning, construction, and mounting

of these antenna may be found in Roman and Xin’s theses [27, 131]. The transition between spin

states may be driven with a resonant microwave or RF field or via adiabatic rapid passage (ARP),

also known as a Landau-Zener transition [135]. The most important transition for this thesis is

the |1,−1〉 → |2,−2〉 microwave transition. The |1,−1〉 state is the preparation state used in

evaporation and is the initial state of the atoms priori to the quench to negative interactions. The

|2,−2〉 state is both the state to which we quench as it possesses a small negative scattering length

(see Fig. 2.6a); it is also the lower state of the cycling |2,−2〉 → |3,−3〉 transition used for imaging

the cloud. When speed is not an important factor, such as for imaging expanded and therefore

low density clouds in TOF, we use an ARP via a sweep of the frequency across the resonance.

When the initial and final frequencies are sufficiently detuned from resonance, the atoms will follow

the dressed states which asymptotically approach the bare states away from resonance. ARPs are

more robust and stable against drifting B-fields as the initial and final detuning can be very large

compared to any the change in resonant frequency due to changing B-fields. While ARPs are

highly reliable and only rarely require optimization, they also take a considerable amount of time

as the frequency must be swept slowly with respect to the resonant Rabi frequency. Our ARPs

require about 200 µs to complete, too long for the quench experiments in this thesis. Ideally, our

quench from positive to negative scattering length to amplify implosions would be instantaneous.

An instant quench is obviously impossible, but the slow timescale of the ARP may be dramatically

improved upon by instead using a resonant π pulse at the cost of increased sensitivity to inevitable

magnetic field noise. For the |1,−1〉 → |2,−2〉 transition used to initiate implosions, the pulse

lasts 6-8 µs, sufficiently rapid with respect to the implosion dynamics to be negligible. Examples

of resonance position and Rabi-frequency measurements are shown in Fig. 2.7a.
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(a) (b) Two measurements of duration of a π pulse.

Figure 2.7: Measurements of the center frequency and pulse duration for the |1,−1〉 → |2,−2〉 tran-
sition. In (a) are two measurements of the resonance position for the |1,−1〉 → |2,−2〉 transition.
In (b) are two measurements of duration of a 2π pulse. The 2π pulse yields the minimum observed
optical depth, this time is divided by two to give the duration of a π pulse. The residual signal in
the π pulse minima in (b) also appears at t = 0 microseconds and is related to the extremely high
optical depth of the in situ cloud.

2.6 Optical Dipole trap

The optical trapping fields are provided by three high powered beam lines focused within

the science cell. The ODT light is derived from a 50 W amplifier made by Nufern which is seeded

by low power (15-50 mW) 1064 nm laser. This laser is divided into three beams (H1, V, and H2)

each coupled to a photonic crystal fiber (PCF). The optical layout of the 1064 nm system up to

and including the three PCF input couplings is enclosed in black metal paneling for safety, and

is unchanged from previous theses [27, 131]. The PCF fibers route the H1, V, and H2 to their

respective breadboards and each beam is ultimately aligned to the center of the science cell. A

photo of the area surrounding the science cell is given in figure 2.8. The two horizontal trapping

beams, H1 and H2, are mounted on the side breadboard shown in the schematic of Fig.2.9. The

ODT loading beam, also referred to as H1, is focused to a waist of 28 µm and precisely aligned

to a favorable position within the science cell just off center of the QT. If H1 is too close to the

zero of the QT, Majorana spin flips transfer many atoms into states with poor collisional behavior
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Figure 2.8: A view of the area surrounding the science cell. This image is intended to give the
reader an idea of the space constraints of the experiment; optical layouts are given in Figs. 2.9,
2.10, 2.11, and 2.14 which will provide much more clarity and understanding. The copper bias coils
of the cell are visible just to the right of center. The H1 and H2 beams are enter the science cell
from the breadboard in the bottom-left portion, see Fig. 2.9. The breadboard in the top half of
the image holds the V beam input optics and many of the optics of the X,Y, and Z lattice, see Fig.
2.10. The periscope diverting light from the H1 input optics to the top breadboard may be seen at
the far left, where a 1” mirror diverts the beam upward and a 2” mirror mounted on a 1.5” steel
post steers light onto the top breadboard.

and essentially zero atoms are loaded. The atoms are transferred from H1 to the vertical (V), and

sheet (H2) ODT beams during the evaporation procedure. Atom number and temperature at the

end of evaporation is sensitive to the relative alignment of these three beams. All three beams are

independently intensity stabilized with a JILA AOM intensity servo and in-loop photodetector. An

additional out-of-loop photodetector allows monitoring of the beams’ power for each beam.
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Figure 2.9: Layout of the H1 and H2 beam optics. The breadboard for the input optics (up-beam
of the science cell) is mounted such that the beam high is level with the atoms and is depicted in
grey. Optics on the input breadboard are positioned roughly to scale. The H1 beam is used only
during loading of the ODT from the science QT and is focused to a 28 micron waist. The H1 beam
propagates at a 45 degree angle to the X-axis. During loading the H1 beam is ramped off as the
H2 beam is ramped on. The H2 beam is focused in the vertical direction but not the horizontal
direction by the +500 mm cylindrical mirror mounted on a longitudinal translation stage to align
the waist to the atoms. The figure shows the behavior of the Z-size of the beam from the +500
cyl lens to the collimating lens after the science cell. The H2 beam propogates along the X-axis in
the −x̂. For both H1 and H2 (and V, see Fig. 2.11) the beams are collimated and sent to servo,
monitoring, and alignment optics, although most light is dumped into water-cooled beam dumps.
The optics down-beam of the atoms are not shown to scale
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Figure 2.10: Top breadboard. This breadboard holds the input optics for the V beam and the
vertical/top probe light. It also receives the lattice light from the H1/H2 breadboard via a periscope
from the H1 optics. The lattice light is shifted by an AOM to offset the X, Y, and Z lattice beam
frequencies. The Y and Z lattice beam lines are fiber coupled and routed to the Y and Z lattice
optics of Fig. 2.14. The X lattice light is delivered alongside the V beam light and directed down
by a short-wave pass dichroic mirror through which the top probe light is transmitted. The ODT
V beam and the top probe beam are overlapped with each other down through the science cell and
atoms until separated by a long-wave pass dichroic below the science cell as shown in Fig. 2.11.
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Figure 2.11: Top probe light and V ODT beams. The inset box shows the downward propagation
of the probe and V beam through the science cell, outside the inset the beams are propagating
horizontally. All beam sizes are exaggerated for clarity, particularly the probe light which is light
blue-grey and is collimated at the atoms. To compensate for the +125 mm lens which focuses the
V beam and steers the X-lattice beams (not shown), the probe light is not collimated when it is
combined with the V beam by the SWP dichroic depicted in green at the top of the inset. The
probe light is resonant with the |2,−2〉 → |3,−3〉 cycling transition and is circularly polarized for
a σ− transition. Light scattering by the atoms is depicted by the blue dashed lines and is collected
by the +30 mm objective. The unscattered light is divergent after the objective and due the the
exaggerated size of the probe beam at the atoms is depicted as diverging dramatically after the
objective. The unscattered light is much less divergent than indicated. The bias field is produced
by Helmholtz coils above and below the science cell which are not show and the bias field oriented
in the ẑ direction. The V beam of the ODT is shown in red. Below the science cell and the objective
the probe light is reflected by the LWP dichroic mirror (red) to the eyepiece and camera. The V
beam is transmitted through the dichroic and sent to the servo, monitoring, and alignment optics.
After the LP-dichroic path lengths are not to scale and several mirrors are omitted.
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2.6.1 Trap characterization

Accurate knowledge of the trapping potential is critical in determining the density of the

BEC. In fact, the properties of the condensate relevant to this thesis are determined from six

basic quantities: scattering length, total atom number, temperature, and the trapping frequency

in the x̂, ŷ, and ẑ directions. Temperature measurements typically require knowledge of the trap

frequencies as well, although this requirement is relaxed for long time-of-flight measurements. We

experimentally determine ωx, ωy, and ωz by inducing a sloshing motion in the clouds center-of-

mass and measuring their position after a variable amount of time. The confining potential stems

from the dipolar interaction between the atoms and the 1064 nm laser forming the optical dipole

trap. The 1064 nm light is red-detuned from the D1 and D2 transitions to the trapping potential

is attractive with respect to beam intensity [57]. The ODT is is deepest at the intersection of

the focused ODT beams, which are Gaussian in profile and approximate a parabola near the trap

minimum.

The vertical slosh is induced by briefly turning off the H2 beam, allowing the atoms to fall

away from their equilibrium position before the potential is restored and the cloud oscillates about

its initial position as shown in Fig. 2.12b. However, for H2 powers near the lower limit required

for sustaining against gravity, this method has its challenges. The power of H2 (and the other two

beams) is determined by a waveform generated by an arbitrary waveform generator; because the

smallest programmable time step is far too long to directly program the chopping of H2, which

generally lasts <500µs, the chop is performed by digitally chopping the AOM RF for the desired

impulse time. As a result, the servo rails and when the AOM is switched back on the power spikes

to its maximum possible power for a time before oscillating as the servo reestablishes the desired

setpoint. This provides a slosh impulse much more powerful than desired at low power settings and

portions of the cloud may slosh right on out of the trap or into regions of H2 which are anharmonic.

This leads to difficulty in characterizing the trap at low trap frequencies. Less forceful sloshes may

be attained by simultaneously chopping the servo setpoint and the H2 AOM, since the servo does
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not rail and only small residual power oscillations which very quickly damp away occur following

the restoration of the trap. This allowed us to reduce the impulse time to < 150 µs and measure

trap frequencies as low as 2π× 45 and with more accuracy and repeatability. The calibration of ωz

is shown in Fig. 2.12a.

The horizontal trap frequencies are measured in situ using the vertical imaging system. To

induce slosh in the x̂, and ŷ directions an additional beam (one of the X-Lattice beams, to be

described below) is intentionally misaligned and ramped up slowly to shift the cloud’s equilibrium

position. The perturbing beam is then extinguished and the cloud returns to and oscillates about

its equilibrium position as shown in Fig. 2.13b. The misalignment of the lattice beam is carefully

done with a micrometer to ensure it may be returned to its proper alignment. We are able to

measure the horizontal trap frequencies in both principal axes simultaneously. The calibration

curves for ωx and ωy (Fig. 2.13a) are fit with a different functional form than the vertical frequency

ωz (Fig. 2.12a) due to the absence of gravitational effects on the horizontal confinement.

2.7 Optical lattices

In order to understand how implosions will amplify intrinsic density fluctuations we intro-

duced density fluctuations of our own by way of a weak optical lattice. Three lattices, one in each

of the x̂, ŷ, and ẑ directions, each formed by two running wave beams intersecting at a small angle

were constructed to provide the control perturbations. The design and alignment of the lattices

posed a tricky engineering problem due to the limited optical access to the science cell, see Fig.

2.8 All three lattices must be detuned with respect to each other and to the H2 and V beams.

Following the transfer of atoms from the H1 loading beam to the crossed ODT formed by H2

and V, a flipper mount places a half wave plate prior to the PBS in the H1 beam path on the

breadboard containing the H1 and H2 beam paths prior to their entry into the science cell; see

Fig. 2.9. With the lattice diversion waveplate introduced, the PBS reflects the 1064 nm light to a

periscope directing the light to the top breadboard, which is shown in Fig. 2.10. Here the beam’s

polarization is cleaned with waveplates and a PBS, before passing through a beam reducer. The
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(a) (b)

Figure 2.12: (a) Calibration of the vertical trap frequency vs the setpoint; the beam power is linear
in the setpoint. Below a certain beam power the ODT cannot hold the cloud up against gravity. The
functional form of the frequency dependence is altered by gravity as the trap frequency depends on
the curvature, i.e. the second derivative of the potential. Measurements from two months in 2021
are shown in (a). The difference between the two calibration curves is due mainly to intentional
changes in alignment of the H2 beam. (b) Example of a vertical slosh measurement. Each datum
represents one experimental run as the measurements are destructive.

(a) (b)

Figure 2.13: (a) Calibration of the horizontal trap frequency vs the setpoint; the beam power
is linear in the setpoint. The slosh frequency scales as the square root of the power. The X
frequency fit contains only one free parameter and intersects the origin. The Y frequency contains
a contribution from the H2 beams transverse profile and so the Y frequency fit intersects at the Y
axis at 21 Hz. (b) Example of a horizontal slosh measurement. Each experimental cycle yields an
X and Y position.
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beam then passes through a 70:30 BS and the 30% transmitted is coupled to a PMSM fiber and is

launched into the Z-lattice optics depicted in Fig. 2.14 The 70% reflected light immediately passes

through an additional 70:30 BS and its 30% transmitted light passes through a broadband AOM

and the first sideband coupled to an additional PMSM fiber which is launched into the Y-lattice

optics also shown in Fig. 2.14. The light which is reflected from the second 70:30 NPBS passes

through an AOM. The first sideband of this light passes through a 50:50 NPBS and a 90:10 NPBS,

such that the two reflected beams have similar powers. The portion of the X-lattice light which is

transmitted through the 90:10 NPBS is aligned to the lattice monitor PD used for calibration and

monitoring. The two beams which form the X-lattice are incident upon a three inch mirror with a

45 degree hole bored through it to allow the V beam of the ODT to pass through; the V beam is

then flanked by the parallel X-lattice beams and they are subsequently diverted down toward the

science cell by a SWP dichroic mirror through which the top probe beam passes, see Fig. 2.10. The

X-lattice beams are steered by the same +125 mm lens above the science cell shown in the inset

of Fig. 2.11, but are not shown in that figure. As mentioned above, one of the X-lattice beams is

used to induce slosh in the X and Y directions; this is done by misaligning the micrometer on the

three inch mirror which parallelizes the X-lattice beams with respect to the V ODT beam. This

misalignment is done in a controlled and reversible way by the high-tech trick of taking a photo

of the micrometer before turning it. The geometry of the lattice beams will be discussed in more

detail in Chapter 5.
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Figure 2.14: Optics for Y and Z lattices.



Chapter 3

Image Apparatus and Analysis

The primary tool which we have to learn about our atomic system is absorption imaging

(AI). Absorption imaging allows us to directly measure the spatial distribution of our atomic

cloud. How the atoms move over time and their various responses to different conditions allows

us to learn other properties, such as temperature and the oscillation frequency of our trap among

many others. The basic premise of AI is simple: we briefly shine laser light upon our atomic

cloud, which absorbs many of the photons; then a bit later we again briefly shine the laser after

the atoms are gone. Simplistically, the difference between the pictures, first when the atoms are

there and thus leave a shadow, second when they are not and have no shadow, tells us where the

atoms are. A background picture with the laser off is also taken to subtract out background light.

The probe frequency, atomic spectrum, optical depth, background light, polarization, scattering off

dust, timing, focus, and many other things influence the resulting absorption images. The details

of AI are well established [81, 103, 131, 27], but given the central role AI in our experiment and

the fact that all images are processed by analysis software written by myself, I believe a thorough

discussion on the details is warranted.

3.1 Absorption Imaging: the Basics

As the name suggests, absorption imaging relies on probe light being absorbed by the atoms.

As the light passes through the atomic cloud, it is absorbed and re-emitted by the atoms in some

random direction. If we have very few atoms, most of the photons from our probe laser will pass
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unaffected through the cloud. If we have many atoms, then many photons are absorbed. The

intensity of the probe thus depends on, among other things, how many atoms through which it

passed. Therefore, as the probe laser beam goes through the cloud, it will become dimmer. This

attentuation of the probe may be described by the mathematical formula known as Beer’s Law or

the Beer-Lambert Law,

I = I0e
−OD, (3.1)

where OD is the optical depth (OD) of the atom cloud the laser beam has passed through and I0 is

the initial intensity of the beam. The OD of the atomic cloud is one of the most important pieces of

data in the lab. While the OD is indeed calculated from a set of images, not a raw image in and of

itself, it is nevertheless treated in lab like a simple picture (when things are going right). From the

calculated ’OD image’ we extract everything we can know about the cloud. Boiling it all down, the

only thing that determines the measured OD is how much light was absorbed/scattered as it passed

through the imaging system. If one knows the properties of your light, atoms, trap, and optics

very well, then the only free parameter is how many atoms the light had to travel through. This is

expressed as a column integrated density n(x, y). Assuming the laser travels in the z direction with

initial intensity I0 before the cloud, then (assuming a collimated probe) the intensity just after the

cloud is:

I = I0e
−n(x,y)σ, (3.2)

where σ is the absorption cross section of our atom [55]. The cross-section contains the information

about how likely the photons are to be absorbed by the cloud. Since n(x, y) has units of inverse

area), it is clear that σ must itself have units of area. We will discuss the cross section more later.

Clearly we can see from Eqs. 3.1 and 3.2 that

OD = n(x, y)σ. (3.3)

Therefore given we understand our atom’s response perfectly as encapsulated in σ, determining the

OD is really determining the density! So now how specifically do we determine the OD? If we had

no background light whatsoever then all of the light would come from the probe beam. Ignoring
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the background light for now, we take two images and consider the probe intensity for the same

pixel in those two images. That light has intensity Ishadow in the shadow frame when the atoms

are present. When the atoms are not present during the light frame, that light has intensity Ilight

since no light was absorbed. In the language of Eq. 3.1 its obvious that I0 = Ilight and therefore

Ishadow = Ilighte
−OD. Solving then yields:

OD = ln
Ilight
Ishadow

. (3.4)

However, in the real world, there will always be some background light. This can be caused by actual

background light from non-laser sources or it can be background currents or thermal fluctuations on

the camera detector. Let us assume that the response of the camera is a contribution linear in the

probe intensity plus a constant background term, then to isolate the laser light in the light frame

and shadow frame we simply note that Ilight laser = Ilight− Idark and Ishadow laser = Ishadow − Idark

where Ilight, Ishadow, and Idark are apparent intensities that the camera tells us in some units

(frequently just ‘counts’), and Ishadow laser, Ilight laser are the corrected intensities actually due to

the laser (still in the cameras units). But remember, in determining the density we only care about

the OD due to the atoms absorbing the laser, thus:

OD = ln
Ilight laser

Ishadow laser
= ln

Ilight − Idark
Ishadow − Idark

. (3.5)

On the right hand side Ishadow, Ilight, Idark are the actual camera image files that I work with on

the computer. Presuming that we know σ quite well we can use Eq. 3.3 to get the density and

hence the number [103]

N =

∫ ∞

∞

∫ ∞

∞
n(x, y)dxdy =

1

σ

∫ ∞

∞

∫ ∞

∞
ODdxdy. (3.6)

3.1.1 Ideal Beer’s Law

Consider a laser beam propagating along z incident on a collection of atoms. Let us assume

(for now) that each atom has an identical cross-section σ0. If we consider the atoms as a series of
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thin sheets with some atoms in each sheet with thickness dz, then the change in intensity of the

laser field is only on how many atoms lie within that sheet:

∆I = IinNatoms = Iinna(x, y, z)σdz. (3.7)

Where the density of the atoms is na(x, y, z). Rewriting this in terms of an absorption coefficient

κ = n(x, y, z)σ0

dI

dz
= −κ(na(x, y, z))I(z) (3.8)

shows how the absorption coefficient is independent of the intensity. This is the meaning behind

our constraint that the cross-section σ is independent of I(z). Omitting the transverse coordinates,

we proceed by rearranging and multiplying by an integrating factor e
∫ z
0 κ(z′)dz′

dI(z)

dz
e
∫ z
0 κ(z′)dz′ + κ(z)I(z)e

∫ z
0 κ(z′)dz′ = 0. (3.9)

The product rule may be applied in reverse. Integrating and rearranging yields:

d

dz

(
I(z)e

∫ z
0 κ(z′)dz′

)
= 0

I(z)e
∫ z
0 κ(z′)dz′ − I(0) = 0

I(z) = I(0)e−
∫ z
0 κ(z′)dz′

(3.10)

Identifying ODBeer =
∫ z
0 κ(z

′)dz′ yields Beer’s Law in its simplest form

I(z)I0e
−ODBeer . (3.11)

This only applies when the absorption coefficient κ is independent of I [55]. This relation defines

the ‘ideal’ OD: ODideal = ODBeer = σ0ncol(x, y). However, life is tough in the aluminum siding

business, and so we must grapple with the realities of absorption imaging in the real world.

3.1.2 Absorption Imaging in the Real World: Bad Light

In the real world, some of the light incident on our CCD is composed of photons which are of

the wrong frequency, polarization, or origin, origin meaning they did not pass through the atoms
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and imaging system as intended. Inevitably, some of this light shows up on our CCD, and we

denote the intensity of this bad light Ibad. This affects our measured OD and puts a limit on the

maximum OD our imaging can accurately measure [81, 16]:

ODmeas = ln
IL0 + Ibad
IS0 + Ibad

and IL0 is the intensity good photons of the probe beam without atoms present, and IS0 is the

intensity of the good photons when atoms are present. The dark frame (ID) is omitted for simplicity

here. The maximum OD of the imaging system, i.e. the OD when every good photon is absorbed

is thus

ODmax = ln
IL0 + Ibad

Ibad
.

We want only the optical depth from the good photons:

ODgood = ln
IL0

IS0

. (3.12)

We can solve for this in terms of the measured OD and the maximum OD, the latter of which is

measured by imaging a cloud with a much higher OD than the maximum. This correction yields

ODgood = ln
1− e−ODmax

e−ODmeas − e−ODmax
. (3.13)

It is best to operate comfortably below the maximum achievable OD to minimize errors in measuring

the OD of clouds near the maximum OD; if ODmeas ' ODmax the denominator in Eq. (3.13)

becomes vary small, and small sources of noise can dramatically influence the inferred ODgood.

3.1.3 Absorption Imaging in the Real World: Saturation

The following derivation follows sections 7.6 and 7.6.2 of [55]. The attenuation of the probe

beam as it passes through the atoms is generally

dI

dz
= −κ(ω, z)I(z) = −n(z)σ(ω, I(z))I(z). (3.14)

The cross section’s dependence on the frequency ω of the probe light is [55, 36, 66, 127, 125, 126, 124]:

σ(ω) = σ0
Γ2/4

(ω − ω0)2 + Γ2/4
. (3.15)
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Figure 3.1: Saturation of OD due to bad light. This image does not accurately reflect the true
optical depth of the cloud because of bad light which leaks through. The maximum apparent OD
of 2.5 is due to 8% bad light.

The FWHM of the lineshape Γ is the decay rate of atoms from the excited state back to the ground

state, ω0 is the resonant frequency of the transition ~ω = Eexcited − Eground, and the resonant

cross-section σ0 in terms of the transition wavelength λ0 is

σ0 =
3λ20
2π

. (3.16)

Saturation of the transition also gives the cross-section intensity dependence. Reasoning from

population dynamics and Einstein coefficients, we can introduce a terms to the absorption coefficient

which accounts for the saturation of the transition. The absorption coefficient is then

κ(ω, I) =
nσ(ω)

1 + I/Is(ω)
(3.17)
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where

Is(ω) =
~ωΓ
2σ(ω)

. (3.18)

In my experience, the term saturation intensity is, almost without exception, used to refer to the

value of Is on resonance [55]. Then

Isat ≡ Is(ω0) =
πhc

3λ
Γ (3.19)

is the saturation intensity. For the cycling transition |2,−2〉 → |3,−3〉 in 39K, this is 1.75 mW/cm2.

Expanding this out into it’s full glory yields

κ(ω, I) = nσ0
Γ2/4

(ω − ω0)2 +
1
4Γ

2(1− I/Isat)

=
nσ0

4δ2/Γ2 + 1 + I/Isat

(3.20)

where δ = ω − ω0. On resonance, Eq. 3.14 then becomes
dI

dz
= − nσ0I(z)

1 + I(z)/Isat)

ds0
dz

= −nσ0s0(z)

1 + s0(z)

(3.21)

where s0(z) = I/Isat [16]. Integrating this can be done as follows:∫ sout

sin

1 + s0
s0

ds0 = −nσ0
∫ z

0
dz

ln
sout
sin

+ (sout − sin) = nσ0z = −ODBeer

ODBeer = ODmeas + (sin − sout)

ODBeer = ODmeas + sin(1− e−ODmeas)

(3.22)

Where ODBeer is the hypothetical OD when the absorption coefficient has no intensity dependence.

We may express this as

ODBeer = ODideal = ln
L−D

S −D
+
L− S

Isat
, (3.23)

where S, L, and D are the rectangular arrays of the shadow, light, and dark frames respectively

in units of cameras counts. The saturation intensity Isat is also expressed in camera counts, and

is dependent on the exposure duration of the probe. When effects like atomic acceleration due to

photon recoil may be ignored Isat will be linear in the pulse duration. For the side imaging system

Isat = 125 counts/µs, while for the top imaging system Isat = 9 counts/µs.
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3.1.4 Absorption imaging In the real world, final form

Putting everything in this section together to understand exactly how to compute the atomic

column density, let’s write the equations with all terms included.

Iout(z) = Iine
−ODmeas

ODideal = ODBeer = −ncolσ0

ODmeas = ln
IL − Idark
IS − Idark

= ln
IL0 + Ibad − Idark
IS0 + Ibad − Idark

ODgood = ln
IL0 − Idark
IS0 − Idark

ODmax = ln
IL0 + Ibad − Idark

Ibad − Idark

ODgood = ln
1− e−ODmax

e−ODmeas − e−ODmax

ODideal = ODgood +
IL
Isat

(1− e−ODgood) = ODgood +
IL − IS
Isat

(3.24)

Where IL = ILmeas = IL0 + Ibad is the measured light frame instensity and IL0 is the intensity of

only the photons of the correct polarization and intensity (and similarly for IS , IS0).

3.2 Side Imaging

The side imaging configuration allows us to characterize cloud during time of flight expansion.

We apply saturation corrections. All images taken with the side camera are absorption images. In

this context, “side” and “side imaging” refers to the imaging performed with the probe beam which

propagates horizontally through the science cell with k̂side = −(x̂+ ŷ)/
√
2 . A diagram of the side

imaging optics is given in Fig. 3.2. A more detailed description may be found in [27], from where

Fig. 3.2 was taken. The side imaging is used to measure the atom number and temperature in time-

of-flight expansion and is always used on resonance with the |2,−2〉 → |3,−3〉 cycling transition.

Use of a cycling transition is important for absorption imaging; if an atom ever decays into a state

other than the |2,−2〉 ground state, the probe light will no longer couple (strongly) to an excited

state and the optical cross section of that atom will drop to nearly zero. When a cycling transition

is used, the excited state has only one decay path available and the atom will always decay back
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Figure 3.2: Side imaging system, figure courtesy of Roman Chapurin [27] (Fig. 3.10 in [27] reprinted
with permission).

to the initial ground state.

3.2.1 Calibrating Side probe intensity

Our side imaging intensity can be calibrated in a few ways. One is to rely on the camera

specifications and optical layout to extrapolate the probe intensity at the atoms. Another way is

to measure many clouds with stable and repeatable number and vary the intensity; the resulting

behavior of ODmeas can be fit to a model yielding the saturation intensity in terms of camera

signal, as shown in Fig. 3.3. This method is the most convenient, but fails at low probe intensities

as the signal is lost in the noise. A third method, and the most fool-proof (a necessity when I’m

in the lab) is to directly compare camera response to probe with known intensity. This is done by

reducing the beam size such that it is small enough to comfortably fit within the power meter’s
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Figure 3.3: Optical density vs probe intensity. We fit to a model with the saturation intensity in
counts is a parameter. Here the saturation intensity is found to be 602(22) counts for the 20 µs
pulse The cyan points are masked because the OD is washed out when signal to noise is low

photo detector and the CCD region of interest. This can be done with an iris placed sufficiently

close to the camera. The power of the beam is then measured with a power meter for various

probe intensities and corresponding images are taken. It’s critical that exactly the same amount

of light be measured by our camera and the power meter; if any light misses the camera, then one

cannot trust the comparison to the power meter unless one can be confident in exactly how much

light is hitting the camera. The number of counts per pixel per microsecond per mW of power

is then computed from these data. The total counts as a function of measured power provides a

sanity check on the cameras linearity, but this information can also be obtained by taking pixel-

by-pixel ratios of images with varying intensities. Intensity dependent behavior pixel ratios are a

red flag for camera saturation. Fortunately no saturation was detected in either the top or side

imaging cameras. For the side imaging, the saturation intensity (assuming no bad light) is 1250
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Figure 3.4: image of beam used for calibratiing probe intensity. right, camera signal vs probe power
measured via powermeter. linearity is good

counts for our standard 20us pulses, and we typically operate at 15-40% pf this value and apply

the appropriate correction.

(a) (b)

Figure 3.5: Example absorption images taken with the side imaging system (a) and the top imaging
system (b). The side image (a) is taken after 17 ms of time-of-flight expansion. The top image (b)
is taken in-situ. Images are false color.
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3.3 Top imaging

The top imaging system has much higher magnification and resolution. The term “top

imaging” is so named because the probe beam propagates from the top of the chamber downward

through the atoms (k̂top = −ẑ). The setup and characterization of the vertical imaging optics is

significantly more involved than with the side imaging. Much of the design and characterization

was carried out by Xie Xin and is covered in her thesis [131]. The system is outlined in Fig. 3.6,

with the objective shown in Fig. 3.7. The objective had to be modified from Xin Xie’s original

design due to a pathological aberration stemming from the custom machine work required to satisfy

space constraints. We shall first describe the original objective in the main text before describing

the discovery and investigation of aberrations which forced us to replace the primary lens of the

objective.

3.3.1 Design of vertical imaging system

Our design of the higher-resolution imaging system used for this work is guided by the scale

of the implosions, which is initially determined by the geometry of the optical lattice used to seed

the density perturbations. However, we are also constrained significantly by the geometry of the

science cell, its surrounding coils and antennae, and especially the cart which moves beneath the

objective for each shot. In order to maintain a high level of control along as many degrees of

freedom as possible, the objective is mounted on a mount consisting of an XYZ translation stage

from Newport, an Edmund (66-534) goniometer for pitch control (centered about the objective),

and an Edmund rotary stage (66-516) providing roll control.

The objective itself is held in close proximity to the bottom window of the science cell, and is

concentric with the primary coils surrounding the science cell. The objective consists of five parts:

two lenses, two spacer rings, and the holder those four elements are mounted within. The holder

and the two rings are constructed out of eddy-current-free Ultem to avoid stray magnetic fields

which could likely complicate the magnetic field quenches. The original primary lens is a Thorlabs
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Figure 3.6: Top imaging system used for in-situ imaging.

CNC-polished asphere (AL4532-B) which sets the numerical aperature of the system. The asphere

sits below a much thinner plano-convex lens (LA1978-B), and the two are separated by a spacer

ring. The eyepiece used is a 1500 mm plano-convex lens from CVI optics (PLCX-50.8-77.6-C). The

specifications of the imaging system using the original primary lens were determined by previous

work to be the following: Effective focal length of 31.03 mm; NA (defined by the acceptance cone) of

0.384; exit pupil diameter (defined as the image of the stop) of 26.15 mm; limiting aperture (limited

by the spacer ring between the two pieces) of 22 mm; Airy disk radius at 767 nm of 1.13 µm [131].

However, the primary lens was replaced in September 2021 due to unexpected aberrations.
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Figure 3.7: The objective for the high magnification imaging system, taken with permission from
Xin Xie’s thesis [131]. The objective is comprised of a +750 mm plano convex lens and a +30 mm
asphere. Additional information on the original design and testing process may be found in Xin
Xie’s thesis [131]. The new objective has the same holder, retaining rings, and secondary lens but
a different asphere with a similar focal length which did not require turning down to fit the holder.

3.3.1.1 Top imaging aberrations

Unfortunately, we encountered significant problems when using the above design to image

our atoms. The problem first became evident when the lattice was turned on and the fringes of

the atomic density corrugations were located at a dramatically different location on the CCD than

the bulk cloud itself. A large amount of time, several months, were spent trying to understand the

nature and cause of this phenomenon. It was possible to bring these fringes onto the atomic cloud,

but the cloud as a whole was inevitably defocused. It seemed as though the objective was exhibiting

dramatic spherical aberration, well in excess of what anyone in the group expected or though likely.

Only after exhausting every idea we could test with the objective in the experiment did we decide

to remove the objective for additional bench testing. Our bench tests confirmed the presence of

substantial spherical aberration, and we switched the high NA asphere from the one machined here

at JILA to the one Thorlabs machined down to size for us. This seemed to help some, but the

improvements were minor. We tested and falsified a hypothesis that the optical coating was to be

blamed when another JILA machined lens exhibited similar aberration. Eventually, a new stock
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Figure 3.8: Left, out of focus, but fringes on top of cloud. middle, cloud size vs objective Z. right
focused bulk cloud, but fringes far away.

asphere compatible with the objective holder geometry was found from Edmund Optics (37-434)

which did not require custom machining, and immediately provided the least aberrated images to

date. Our conclusion is that the machining of these precision aspheric lenses was the cause of this

aberration. This was surprising as three different lenses exhibited this problem despite the careful

efforts of machinists with experience in machining precision glass. Enough time had been wasted

on this puzzling problem that we were happy to proceed with the new Edmund asphere.

However, our imaging system had been carefully designed with the at the time unquestioned

assumption that the lenses were optically sound. Several months of modeling the optical system

using Zemax and the objective holder and mount with solidworks had promised a diffraction limited

resolution of 1.1 micrometers. At this point we were behind schedule, and low on manpower, so the

optical layout with the new lens could not be studied with the same level of detail. Fortunately,

the optical lattices provided a shortcut for verifying the magnification and measuring the actual

resolution, which turned out to be 2.5 micrometers, more than a factor of two worse than originally

planned, and placing the wavenumber of the Y-lattice used for many of the experiments described

in Chapter 5 at the very edge of the resolution.
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3.3.2 Top camera calibration

The high magnification, in-situ images used to measure the static structure factor in this

work are all taken using the top imaging system. Immediately below the science chamber sits the

high NA objective, perched carefully on a mount with five degrees of freedom. Because of the

large magnification M = 50 of the top imaging system, the probe intensity at the CCD is a factor

M2 = 2500 lower than at the atoms. This prevents imaging at probe intensities at or below the

saturation intensity because such a weak signal on our camera is lost in the noise. Additionally, the

extremely high OD of the in situ clouds, which can be on the order of ODB ≈ 300 would effectively

block all resonant light. For this reason, we operate at I/Isat ≈ 150. The probe intensity was

calibrated in the same manner as described in section 3.2.1.

3.4 Fringe removal with PCA

The OD of the cloud is, as already mentioned, calculated using three frames, one with the

shadow of the atoms, one without, and a dark frame to account for common mode noise. If the

probe intensity profile changes between the shadow and light frames, this difference will manifest

as structured noise. Our CCD is limited in speed such that our shadow and light frames are

taken 400 ms apart. Air currents, dust, thermal effects, reflections, etaloning, and more may cause

such deviations. The top imaging system is particularly prone to substantial interference fringes,

which can make the atomic density difficult to discern. As the primary aim of this work is to

characterize density fluctuations in BEC, fluctuations or fringes from imaging are also of great

concern should they appear at the same spatial frequencies as the fluctuations to be measured.

Fortunately, these fringes rarely appear at frequencies of concern. However, even a low frequency

fringe can have substantial impact on the analysis of that image, generally making it difficult to

determine the size shape and position of the cloud and overall making life harder. Fortunately,

established techniques exist to mitigate this problem, chief among them being principal component

analysis (PCA) [82, 133, 4, 90, 112].
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Principal component analysis allows one to reconstruct a new light frame for a given shadow

frame given a set of reference frames. A few tens of reference light frames are decomposed into a

characteristic basis set capturing the most important variations from the average. A portion of the

shadow image, away from the atoms, is then decomposed into this basis, and a new light frame

with the same noise profile away from the atoms is constructed. Although only pixels without

influence from the atoms are used to determine the relative weights of the reconstructed shadow

image, the characteristic basis set is computed from a reference set with no atoms at all, and so

the reconstructed image fills in the region with atoms as though there were non. The end result is

much closer to what the shadow frame would look like without the shadow. This is exactly what

an ideal light frame is, and yields dramatically reduced fringes. A total of M images are taken, so

M light, and M shadow (and M dark) which form both our reference set and the data set, as you

can use all your light frames as the reference pool for each shadow frame. It is essential that the

images be generally similar, e.g. if you change the size of the probe beam or alter the magnification,

an accurate reconstruction will be difficult, PCA is not magic, we are trying to recreate what the

shadow frame would look like without the atoms. Each image is j × k pixels, typically about 5002

pixels total. Before reconstructing ideal light frames to match our shadow frames, we compute the

basis we will use for said reconstruction [112, 133, 82]. Let the reference images (the light frames)

be Li for i = 1...M and flatten these into column vectors Li (jk × 1)let

〈L〉 = 1

M

M∑
i=1

Li

be the average and let dLi = Li − 〈L〉 be the deviation of the ith reference vector Li. So then let

A = [L1,L2, ...,LM ]

be a matrix. A is thus jk rows by M columns as described above. We now compute the matrix

C = AAT ,

Which is a huge square matrix, letting p = jk be the number of pixels in each frame, C is p×p total

elements. Each image on the top camera has p = jk = 4962 pixels so C therefore has 4964 > 60
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billion total elements. After converting to double precision, each element is eight bytes, so C is an

over 400 gigabyte matrix. The eigenvectors of C are the so-called eigenfaces of the images [82], that

is, the eigenvectors of C, when reshaped into a j × k matrix are the typical noise patterns in the

M reference light frames, and those eigenfaces with the largest eigenvalues are the most prominent

noise patterns. So the eigenvectors of C provide the perfect basis from which to reconstruct our

new light frame. However, C is so large MATLAB won’t let me compute it. This makes me sad.

However, it turns out that the eigenvectors of C = AAT and C ′ = ATA are related:

C ′Vi = ATAVi = λVi

AATAVi = AλV i

C(AVi) = (AAT )AVi = λ(AVi) = λUi

(3.25)

Therefore, we can compute these eignevectors via Ui = AVi where Vi are the eigenvectors of

C ′ = ATA which is much smaller; C ′ has size M×M . After normalizing each eigenface, we have an

orthonormal basis with which to characterize the noise patterns in a shadow frame. Normalization

is not a necessary step, but makes compensating for the masked out region of the shadow more

convenient.

Consider one shadow frame S1 and the ensemble of of M reference images Li (some of which

are a closer match to S1 than it’s original light frame L1, and so we could get some improvement

by using a different light frame which produces fewer fringes in the OD calculation, but we can do

better). We then compute the deviation of S1 from the average Si = S1 − 〈S〉. To ensure we do

not let the atoms influence the reconstruction we mask the atom region in S1. The inner products

S1 · Ui = ci (3.26)

give the decomposition coefficients ci of the shadow frame deviations from the average into the

characteristic noise patterns Ui. Then the reconstructed light frame can be computed

L1 = 〈L〉+ 〈D〉+
M∑
i=1

ciUi. (3.27)
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We employ an additional minimization routine wherein the OD is computed for the new light

frame as we vary the coefficients ci and the noise away from the atoms is minimized as a function

of each ci. This fine-tunes the coefficients and provides an even more well matched reconstruction

L1.

3.4.1 Nature of fringes

In this section we discuss how fringes may appear in absorption imaging. By fringe we mean

a ripple pattern on either one of the raw images used to compute the optical depth or on the

OD image itself. A fringe which appears with perfect repeatability between two raw images will

subtract out and the resulting OD image will not exhibit that fringe. The relationship between

fringe amplitude and optical depth is not in general a linear one, as fringes can be caused in a

number of different ways, and may even be dependent on the atomic density itself.

Suppose there is a piece of dust on the edge of the probe after it has passed through the

atoms which scatters light into the camera, including (but not only) the same region of the camera

as the shadow of the atoms appears. If this piece of dust is stuck on a mirror and moves slightly

from shot-to-shot then it will produce fringes of a consistent and characteristic pattern and will

appear on light frames taken with no atoms present in a similar fashion to shadow frames where

the atoms cast their shadow. In this case, the constructed light frame will accurately reconstruct

the fringe and it will subtract out nicely.

If the piece of dust is directly in the shadow of the atoms (on the mirror with the dust,

not the camera), and if the imaging were otherwise perfectly repeatable, then the fringes will only

appear on light frames, but always subtract between two light frames. In fact, all OD images taken

with no atoms would produce perfectly flat, featureless OD profiles since we’ve asserted that the

imaging in the absence of atoms are identical. In the limit of infinite OD, the shadow frames would

not possess the fringe from this piece of dust as it is in the shadow of the atoms. In this case, a

basis set of reference frames with no atoms would not be usable to reconstruct a light frame to

match the shadow frame closely because the shadow frame lacks the fringe but all light frames used
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as the basis have the fringe.

3.5 Fitting the Images

The density distribution as measured by imaging the cloud is the observable at the core of all

our analysis. Generally, the cloud is only partially condensed, and accurate characterization of the

condensate vs thermal components of the cloud is critical in determining the density, temperature

and other properties vital for thorough understanding. This section describes the functional forms

we use to fit our imaged density distributions and how we subsequently extract information about

the atom number of both the condensate and the thermal cloud and the temperature of the system

as a whole. The results of this section are specific to the case of interacting Bose gases in a

three-dimensional harmonic potential. We will begin by presuming that the thermal cloud is well

described by the Bose distribution and that the condensate is in the so-called Thomas-Fermi regime

[102]. In this case the three-dimensional density profile for the entire cloud ntot(r) is [113, 10]:

ntot(r) =
g3/2(z(r))

λ3T
+ nc,0

(
1− x2

R2
x

− y2

R2
y

− z2

R2
z

)
(3.28)

where nc,0 is the peak value of the condensate density, λT =
√
2π~2/mkBT is the thermal wave-

length, and z(r) = exp (µ− V (r))/kBT is the fugacity in terms of the chemical potential µ. The

Bose function gν is defined by the equation

gν(z) =

∞∑
n=1

zn

nν
. (3.29)

The form of Eq. 3.28 neglects the mean-field effects of the condensate on the thermal atoms (and

vice versa) which will perturb the potential experiences by the thermal cloud from the external

harmonic potential. The parabolic form of the condensate density is invalid near the edge of the

cloud where the density experiences a sudden bend, but describes the bulk density quite well. For

the thermal cloud, we assume z(r) = 1 since at the transition temperature µ = 0. Therefore the

total density is given by

ntot(r) =
nth,0,3D
g3/2(1)

g3/2

(
exp

[
−1

2

(
x2

σ2x
+
y2

σ2y
+
z2

σ2z

)])
+ nc,0

(
1− x2

R2
x

− y2

R2
y

− z2

R2
z

)
(3.30)
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where nth,0,3D is the thermal (subscript th) peak (subscript 0 indicating r = 0) density for the

three-dimensional cloud (subscript 3D). The widths σi are related to the temperature by

σi =
1

ωi

√
2kBT

m
. (3.31)

In Appendix C we discuss the density distribution in more detail and consider the ballistic expansion

of the gas. In the absence of collisional or interaction effects upon the thermal component, the

thermal component will retain the form of Eq. 3.30 with the size changing in time as

σi(t) = σi0(1 + ω2
i t

2) (3.32)

which through Eq. 3.31 allows the temperature to be measured via

Ti =
mω2

i σ
2
i (t)

kB(1 + ω2
i t

2)
. (3.33)

When the cloud is in thermal equilibrium the temperature is obviously the same in each direction,

so Eq. 3.33 is a useful check to ensure that the cloud is indeed in thermal equilibrium. It is possible

for a sufficiently rapid change in conditions, such as dramatically reducing the trap depth along

the z axis while maintaining strong confinement along x and y, to require a significant amount

of time to reestablish an isotropic momentum distribution and thus reestablish a well defined

temperature. Significant in this context meaning significant in an experimental context and may

change depending on the goals of the experiment. Generically, a few (∼3) collisions must occur on

average for cross-dimensional equilibrium to occur, and a few trap periods to ensure this occurs

globally [5, 89]. We should note that the σi are not RMS widths of the thermal cloud because the

profile is not a Gaussian, but rather a sum of Gaussians according to Eq. 3.29. If only the first

term in the sum is kept then the profile is purely Gaussian.

3.5.1 Column densities

Of course the imaging procedure yields a two dimensional image as the probe beam actually

measures the column density along the imaging axis. The fitting functions we actually use to fit the
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data are thus obtained by integrating Eq. 3.30 along one dimension. The integral of the thermal

part is ∫
nth,0,3D
g3/2(1)

g3/2(z) =

∫
nth,0,3D
g3/2(1)

∞∑
m=1

1

m3/2
exp

(
−mx

2

2σ2x
− my2

2σ2y
− mz2

2σ2z

)
dz

=
nth,0,3D
g3/2(1)

∞∑
m=1

∫
1

m3/2
exp

(
−mx

2

2σ2x
− my2

2σ2y
− mz2

2σ2z

)
dz

=
nth,0,3D
g3/2(1)

∞∑
m=1

∫
1

m2
exp

(
−mx

2

2σ2x
− my2

2σ2y
− z′2

2σ2z

)
dz′√
2

=
nth,0,3D√
2 g3/2(1)

√
2π σz

∞∑
m=1

1

m2
exp

(
−mx

2

2σ2x
− my2

2σ2y

)
ntherm,0,2D(r) =

nth,0,2D
g2(1)

g2

(
exp

(
−mx

2

2σ2x
− my2

2σ2y

))

(3.34)

where in the last line we simply defined the peak column density to be ñth,0,3D with normalization.

The thermal column density is therefore fit with three terms nth,0,2d, σx, σy. The condensate term

is quite straightforward yielding

nc,2D(x, y) = nc,0,2D

(
1− x2

R2
x

− y2

R2
y

)3/2

(3.35)

with the three fit parameters nc,0,2D, Rx, Ry for the peak density and size of the condensate. The

total column density is the sum of these two components

ncol(x, y) = nth,2D(x, y) + nc,2D(x, y) (3.36)

In time of flight it may be shown (see Appendix C)that both the thermal component and the

condensate maintain their functional form, with only the length scales changing [73, 26, 40, 113].

3.6 Potential problems

Due to the time constraints following the receipt of the new primary lens used to gather the

data we shall present in Chapter 6, the high-resolution top imaging system used in the implosion

experiments may have been insufficiently or inaccurately characterized. An enormous amount of

time was spent on pathological imaging defects in a series of custom cut lenses, and when the lens

with which the data discussed in this chapter arrived, we proceeded with all deliberate haste to



63

data collection. Additionally, the condensate itself is so optically dense that we used extremely

high probe intensities to compensate, and the condensate always appeared aberrated in the in-

situ images as indicated by the presence of rings and ripples around the condensate. The odd

appearance of the Y-lattice peak in Fourier space (see Fig. 5.13a) may be a symptom of a poorly

understood point-spread function.

Fundamentally, we are limited by our incomplete knowledge of the point spread function. The

measurement contrast suppression factor we shall discuss in section 5.5 is essentially our attempt

to measure the point spread function of our imaging system for two wave numbers only. If the

results of low vs high density X-lattice calibrations are accurate then our imaging system displays

a density dependent point spread function. In Figure 3.10 the Fourier profile of the condensate

is compared with that of the thermal cloud by controlled which portion of the density profile is

unmasked in computing the FFT. The resolved disk for Fig. 3.10a appears noticeably smaller than

in Fig. 3.10b, suggesting that the resolution of the imaging system is different for different parts

of the cloud. If the density distribution itself is a major contributor to the point spread function

of the imaging system, then a full understanding of the imaging system requires a sophisticated

model outside the scope of this thesis.

Any imaging system will additionally possess noise. The fringes discussed in Section 3.4 are

one type of noise we encountered, and the saturation intensity correction discussed in Section 3.1.3

may also introduce noise. Since we are in the business of measuring density fluctuations, which one

might consider “noise” in other contexts, we are faced with the problem of distinguishing genuine

density variations on the cloud from apparent variations which in reality are imaging noise and do

not correspond to real density fluctuations. The influence of imaging noise on our results will be

discussed in more detail in Section 6.1.
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(a) (b)

Figure 3.10: Average Fourier space profiles of the high-temperature low-density tImp = 0. In (a),
only the region of position space containing the condensate was unmasked, the typical treatment for
the data in this thesis. In (b), an annulus in position space was selected to correspond to thermal
atoms, with the central condensate masked. Both (a) and (b) are derived from the same set of
images, yet the edge of the plateau, which represents the resolution of our imaging, is at a larger
wavenumber for the thermal atoms. The features at the top left and bottom right corner of each
image, and the arrow-like feature on either side of (b) are imaging artifacts which may be ignored.



Chapter 4

Fluctuation Theory of BEC

The goals of this chapter are twofold. The overarching conceptual goal is to understand the

nature of fluctuations, and in particular why fluctuations in three dimensions are experimentally

challenging even in the absence of technical limitations. The other goal is to provide the quantitative

predictions for the fluctuations of a 3D bulk BEC in terms of the experimental data; the structure

factor provides the connection between experiment and theory.

4.1 Criterion for BEC

The standard definition of a BEC is a system with a macroscopic occupation of the single

particle ground state. This definition is clear and unambiguous in non-interacting systems, but

when interactions are present the single particle states are modified by interactions with all the

particles present and this definition, while still fundamentally valid, becomes more complicated

to define. Here we formalize the concept of Bose-Einstein condensation in terms of the one-body

density matrix. We shall see that the BEC corresponds to the existence of off-diagonal long range

order in the one-body density matrix and, equivalently, the macroscopic occupation of one of the

single particle states. The treatment here resembles that given in standard texts on BEC and

superfluidity [102, 98]. The one-body density matrix is defined:

n(1)(r, r′) = 〈ψ̂†(r)ψ̂(r′)〉 (4.1)

The field operators ψ̂†(r) and ψ̂(r′) are the creation (at r) and annihilation (at r′) operators in

position space. The meaning of the average 〈...〉 is not identical for all situations. If the state is
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pure state then the average is the standard inner product of the state over its Hilbert space. If

instead ψ̂ represents a statistical mixture of possible states, then the average is an ensemble average

according to the relative probabilities of each state. It is in the second sense in which the density

matrix will generally be used in this thesis.

The diagonal of the one-body density matrix is simply the density of the system n(1)(r, r) =

n(r) and obeys the normalization
∫
n(r)dr = N . The off-diagonal components represent the correla-

tions between different parts of the the system. We may define the momentum-space representation

of the one-body density in exactly the same way as in position space

n(1)(p,p′) = 〈ψ̂†(p′)ψ̂(p)〉 (4.2)

where the momentum-space field operator is the Fourier transform of the coordinate-space field

operator

ψ̂(p) =

∫
ψ(r)

exp (−ip · r)
(2π~)3/2

dr.

Evaluating Eq. 4.2 for p = p′ yields the momentum distribution n(p)

n(p) =
1

(2π~)3

∫
n(1)

(
R+

s

2
,R− s

2

)
e−p·s/~dRds (4.3)

and where s = r− r′. The normalization is the same as in coordinate space
∫
n(p)dp = N .

4.1.1 Uniform systems

We first consider a uniform ideal system of N particles in a volume V . In such a system the

eigenstates are simply plane waves:

φ(p) =
eip·r/~√
V

. (4.4)

The volume V and the number N will generally drop out in the thermodynamic limit wherein those

two extensive quantities N , V → ∞ while their ratio N/V = n is held constant. We can express

the density matrix as a sum over momenta:

n(1)(r, r′) =
1

V

∑
p

Npe
ip·(r−r′)/~ (4.5)
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where Np are the occupation numbers for each momentum state. At larger separations |r′−r| only

the p = 0 mode contributes while all other terms interfere to zero and we have

lim
|r′−r|→∞

n(1)(r, r′) =
N0

V
. (4.6)

Where N0 is the occupation number of the zero-momentum state. This motivates using non-zero

asymptotic behavior of the one-body density matrix as the criterion for Bose-Einstein condensation.

4.1.2 Trapped systems

Of course an alternative formulation is needed for spatially finite systems encountered in the

lab since the infinite limit is obviously problematic. The customary approach is to expand the

density matrix in terms of its eigenfunctions φj(r) satisfying the equation:∫
n(1)(r, r′)φj(r

′)dr = λjφj(r). (4.7)

The density matrix is positive definite and Hermitian, ensuring its eigenvalues λj are positive as

they must be since, under the normalization convention
∫
φ∗iφjdr = δij , we identify λj = nj as the

occupation of the single particle wavefunction φj(r); additionally
∑

i ni = N . We may express the

density matrix in the diagonalized form

n(1)(r, r′) =
∑
j

njφ
∗
j (r

′)φj(r). (4.8)

At zero temperature, the ideal gas possesses exactly one non-zero eigenvalue, that of the lowest

energy single-particle state which has eigenvalue N indicating all the particles are condensed into

that state. Therefore, for an interacting system, we require that the occupation of one of the states

be of order N and all others finite and of order unity in the thermodynamic limit N → ∞ for

Bose-Einstein condensation to occur. In our lab, N0 approaches N for T → 0, although even at

T = 0 interactions will deplete the zero-momentum state such that N0/N never quite reaches unity.

For superfluid Helium, N0/N ≈ 0.1, a sufficiently large portion that it’s reasonable to regard that

system as being at least partially condensed.
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One may reasonably ask “if we’ve just argued that long-range off-diagonal behavior of the

density matrix is our criterion, but this doesn’t apply to trapped system, what was the point of

considering the long-range off diagonal behavior of the one-body density matrix?”. A fair question,

and we shall return to it later in more detail when the connection between the phase correlation

function and the density matrix is established. However, while the infinite limit may be irrelevant

to trapped gases, the meaning of long-range is still perfectly coherent in a spatially finite system.

It will turn out that the opposite regime from BEC the density matrix drops off exponentially over

a microscopic distance and with an asymptotic limit of zero. It’s true that in a finite system the

density matrix necessarily goes to zero as |r − r′| → ∞ since there are no more atoms beyond a

certain distance, but the density matrix may drop off non-exponentially or over an intermediate

distance, so the criterion still has value.

4.2 Presence and absence of BEC in 1, 2 and 3 dimensional ideal gases

This section aims to to provide a cohesive argument for the presence or absence of Bose-

Einstein condensation in one, two, and three dimensions in terms of the behavior of the chemical

potential. This approach compliments arguments regarding the existence of long-range order al-

luded to in the previous sections. We will return to the question of long-range off-diagonal order

and the connection to phase fluctuations in later sections, but here we understand BEC as a state

where one of the low-lying states is microscopically occupied. Here we consider ideal gases. We

begin in section 4.2.1 with a presentation of results about Bosonic systems which are true as a

consequence of Bosonic physics (e.g. the Bose-Einstein distribution function). In section 4.2.2 we

shall introduce results, themes, and definitions which will be common to all systems discussed in

this section, and we do so for the purpose of convenience and foreshadowing. We will then discuss

uniform ideal systems in Sec. 4.2.3 and then consider the influence of harmonic external potential

in Sec. 4.2.4.
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4.2.1 General facts of Bose systems

The total number of particles in a Bose gas is given in general by [12]

N =
∑
i

1

e(εi−µ)/kBT − 1
(4.9)

where the sum is over each individual eigenstate εi. Converting the sum to an integral we have

N = Vd

∫ ∞

0

1

e(ε−µ)/kBT − 1

ddk

(2π)d
(4.10)

where Vd is the system volume in d dimensions. These integrals may be directly evaluated over the

wavenumber as in Eq. 4.10, but an alternative approach in terms of the density of states D(ε) can

also be illuminating. In terms and integral over the density of states the total particle number is:

N = Vd

∫ ∞

0

D(ε)

e(ε−µ)/kBT
dε (4.11)

The density of states in one, two, and three dimensions are given in Appendix A for the uniform

gas and for harmonic confinement.

4.2.2 Foreshadowing

In the following sections, the chemical potential µ will be evaluated for D = 3, D = 2 and

D = 1 dimensions according to Eq. 4.10 and Eq. 4.11. The behavior of µ in the highly degenerate

regime will be determined and the occupancy of the ground state N0 thus estimated according to

N0 ≈ kBT/|µ|. We will then evaluate whether or not N0 ≈ N is possible in the thermodynamic

limit. In anticipation of the forthcoming results it is useful to have certain facts in mind from the

outset. The chemical potential µ is a central parameter for these systems, and for a classical or

Bose gas µ ≤ 0, as long as we define E = 0 to be the energy of the system’s single-particle ground

state. At zero temperature for all non-interacting cases described here the chemical potential will

vanish µ(T = 0) = 0 − O(1/N). The chemical potential µ is often expressed through the fugacity

z = exp(µ/kBT ) where z ∈ (0, 1) since µ ∈ (−∞, 0). Throughout my thesis, a statement that µ = 0

is, unless otherwise stated, ignoring the 1/N fractional corrections to µ. As a consequence of the
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form of the Bose-Einstein distribution a particular function, referred to in this thesis as the Bose

function1 gν(z) will be a recurring feature [12]. The Bose function gν(z) is defined by

gν(z) =
∞∑
n=1

zn/nν . (4.12)

Finally, the degeneracy parameter (also called the phase-space density) of the gas is defined for

a d-dimensional gas with particle density nd as the product ndλdT where λT =
√

2π~2
mkBT is the

thermal wavelength. When ndλ
d
T � 1 the particle wavefunctions are all overlapping and the gas

is considered deeply degenerate. In the opposite limit, ndλdT � 1, the particles lose their wavelike

qualities and behave as classical free particles well separated from each other and thus quantum

effects are less important.

4.2.3 Uniform ideal system

With these facts in mind, we turn to the specific case of uniform, ideal, Bosonic systems.

We shall begin with three dimensional systems before turning to two and finally one dimensional

systems. The quantitative results for each case will be consolidated and listed in summary at the

end for each case.

4.2.3.1 3D uniform potential

In three dimensions equation 4.11 becomes problematic as in 3D the density of states is

D3U (ε) =
√
2m2ε /(2π2~3) which assigns zero weight to the ground state ε = 0. Hence a correction

is required and the total number is given by

N =
z

1− z
+

V m3/2

√
2 π3~3

∫ ∞

0

√
ε

e(ε−µ)/kBT
dε (4.13)

The correction term z/(1− z) is identically equal to N0 according to Eq.4.9 since the ground state

has ε = 0. A detailed derivation of the correction term z/(1 − z) can be found in [12] and is not

included here. A naive implementation of Eq. 4.10 converges perfectly fine but does not accurately
1 The Bose function g(z) is also known as the polylogarithm, Liν(z) and sometimes the Bose-Einstein integral or

the Fermi-dirac integral when expressed in terms of integrals over those distributions
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account for the ground state, although this failure is less clear in the momentum integral of Eq. 4.10

compared to the energy integral of Eq. 4.11. Therefore, we use the replacement N → N −N0 and

proceed, finding
N −N0

V3
=
g3/2(e

−µ/kBT )

λ3T
=
g3/2(z)

λ3T
(4.14)

where N0 is the number of particles in the ground state, is the thermal wavelength and is the Bose

function. The case2 of g3/2(1) = ζ(3/2) ≈ 2.61 shows how in three dimensions the population of

the excited state is bounded from above to a finite value. The chemical potential is bounded from

above by zero, and so the fugacity z ≤ 1. Since g3/2(z) converges at z = 1, the number of excited

particles is limited by Eq. 4.14 and any additional particles must therefore occupy the ground

state, which has ε = 0 and hence the chemical potential µ is zero when N exceeds the value given

by Eq. 4.14.

What temperature will this saturation of excited states take place for a given atom number

N? We determine T3D by setting N0 = 0 and µ = 0 which are approximately true at the onset of

Bose-Einstein condensation, and solving Eq. 4.14 for T . The result is

T3D =
2π~2

mkB

(
N

V
ζ(3/2)

)2/3

. (4.15)

We can describe the degeneracy of the cloud according the the phase space density n3Dλ
3
T

which is well below unity for non-degenerate systems but exceeds it in degenerate systems. For

temperatures well above the transition temperature, n3Dλ3T � 1 and g3/2(z) ≈ z so that the

chemical potential may be approximated:

µ(T � T3D) = kBT ln(n3Dλ
3
T ). (4.16)

The behavior of µ changes dramatically at T = T3D. As T → T3D from above, the chemical

potential increases monotonically. Once the temperature reaches the transition temperature, µ

becomes zero and remains zero for all lower temperatures. This behavior differs from that seen in

lower dimensions as we shall see.
2 The Riemann Zeta function ζ(s) obeys gν(1) = ζ(ν)
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3D uniform potential results For the 3D uniform gas we have the following results:

N =
V m3/2

√
2 π3~3

∫ ∞

0

√
ε

e(ε−µ)/kBT
dε+

z

1− z
Total number (with correction) (4.17)

Nex =
g3/2(z)

λ3T
Occupation of excited states (4.18)

T3D =
2π~2

mkB

(
N

V
ζ(3/2)

)2/3

Transition Temperature to BEC (4.19)

µ(T ≤ T3D) = 0 Chemical potential below T3D (4.20)

µ(T � T3D) = kBT ln(n3Dλ
3
T ). Chemical potential well above T3D (4.21)

4.2.3.2 2D uniform potential

In two dimensions the density of states D2U (ε) = m/(2π~2) does not treat the ground state

as pathologically as the density of states in three dimensions D3U . Therefore, we shall not treat

the ground state separately and simply evaluate Eq. 4.10. The result is

N = −V2mkBT
2π~2

ln(1− z) (4.22)

Solving for the chemical potential µ yields

µ = kBT ln(1− e−T2D/T ) < 0 (4.23)

where

T2D =
2π~2n2D
mkB

(4.24)

is the characteristic temperature for the uniform 2D system, n2D = N/V2 is the number density

and V2 is the area (2D volume) of the system. The chemical potential thus increases monotonically

with T . For T � T2D, the exponential in the logarithm approaches unity from below. Expanding

ln(1− e−x) about x = 0 and substituting x = T2D/T yields

µ = kBT

[
ln

(
T2D
T

)
− 1

2

(
T2D
T

)
+

1

24

(
T2D
T

)2

...

]
(4.25)

which for high temperatures reduces to simply the first term. So for T � T2D, µ ≈ −kBT ln(T/T2D)

(this agrees with [98, 99]). For T � T2D the exponential et2D/T approaches zero from above.
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Expanding ln(1− y) about y = 0 and substituting y = e−T2D/T yields

µ = −kBT

[
e−T2D/T

1
+
e−2T2D/T

2
+
e−3T2D/T

3
...

]
(4.26)

which reduces to simply the first term. Hence T � T2D implies the chemical potential approaches

zero from below as µ ≈ −kBTe−T2D/T . The occupation of the ground state can be approximated

N0 ≈ kT/|µ|. Then for N0 ≈ N , the condition for BEC, requires that T/T2D ≈ 1
ln(N) which

precludes BEC of an ideal gas in the thermodynamic limit for two dimensional systems (except,

perhaps, in the theoretical case of exactly T = 0). Since for any finite temperature we do no have a

macroscopic occupation of any of the low lying states, we are justified in our decision not to treat

the ground state separately as was required in three dimensions. We can express Eq. 4.23 in terms

of the degeneracy parameter n2λT

µ = kBT ln(1− e−n2λ2
T ). (4.27)

2D uniform potential results In 2D we have the following results:

N = −AmkBT
2π~2

ln
(
1− e−|µ|/kBT

)
Total number (4.28)

T2D =
2π~2n2D
mkB

Transition temperature (4.29)

µ = kBT ln
(
1− e−T2D/T

)
chemical potential (4.30)

µ ≈ −kBTe−T2D/T T � T2D (4.31)

µ ≈ kBT ln

(
T2D
T

)
T � T2D (4.32)

n2Dλ
2
T =

T2D
T

degeneracy parameter (4.33)

µ = kBT ln
(
1− e−n2DλT

)
chemical potential (4.34)

N0 ≈
kBT

|µ|
≈ eT2D/T ground state occupation (4.35)

N0 ≈ N =⇒ T

T2D
≈ 1

lnN
Precludes BEC in thermodynamic limit (4.36)
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4.2.3.3 1D Uniform potential

In one dimension the density of states diverges at zero momentum since D1U (ε) =
√
m√
2 π~

1√
ε
.

Therefore, we need not worry about the integral neglecting a macroscopic occupation of the ground

state if one should occur (which it will not for finite temperature). In one dimension the integral

in Eq. 4.10 becomes

N = V1
1

2

√
mkBT

2π~2
g1/2(e

−|µ|/kBT ) =
L

2λT
g1/2(e

−|µ|/kBT ) (4.37)

where V1 is the length of the system. Defining the 1D degeneracy parameter n1DλT and squaring

yields

(n1DλT )
2 =

2π~2n21D
mkBT

=
T1D
T

which motivates the identification

T1D =
2π~2n21D
mkB

as the characteristic temperature in 1D. For T � T1D (equivalently n1DλT � 1) we can use the

behavior near zero of gν(z) ≈ z so

2n1DλT = 2

√
T1D
T

= g1/2(z) ≈ eµ/kBT .

Therefore, The high temperature behavior for µ is given by

µ = kBT ln

(
2

√
T1D
T

)
= kBT ln(2n1DλT ). (4.38)

In the opposite limit, where n1DλT � 1 we can make use of the limit as the argument of g1/2

approaches unity from below[130]

lim
|w|→0

gν(e
w) = Γ(1− ν)(−w)s−1.

So

2n1DλT = g1/2(e
µ/kBT ) ≈ −2

√
π
√
kBT√

|µ|

The low temperature behavior of the chemical potential is thus

µ ≈ − πkBT

(n1DλT )2
= −πkBT

2

T1D
.
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The occupation of the ground state is thus

N0 ≈ kBT/|µ| ≈
T1D
πT

.

Again we see that large ground state occupation N0 ≈ N requires T/T1D ≈ 1/N

1D uniform potential results: In 1D uniform systems we have the following results:

N =
L

2

√
mkBT

2π~2
g1/2

(
e−|µ|/kBT

)
Total number (4.39)

T1D =
2π~2n21D
mkB

Characteristic temperature (4.40)

n1DλT =

√
T1D
T

Degeneracy parameter (4.41)

µ = kBT ln

(
2

√
T1D
T

)
= kBT ln(2n1DλT ) T � T1D (4.42)

µ = − πkBT

(n1DλT )2
= −πkBT

2

T1D
T � T1D (4.43)

N0 ≈ N =⇒ T

T1D
≈ 1

πN
Precludes BEC in thermodynamic limit (4.44)

4.2.4 Harmonically trapped ideal systems

In uniform ideal systems, we’ve seen how the dimensionality precludes true BEC in the

thermodynamic limit for one and two dimensional systems. This was done by determining the be-

havior of the chemical potential µ in the limit of highly degenerate systems where the d-dimensional

degeneracy parameter nλdT � 1. For d = 1, 2, µ was a monotonically-increasing function for all tem-

peratures, and so the fugacity z = eµ/kBT < 1. The occupation of the ground state N0 = z/(1− z)

then remains negligible for all finite temperatures. In this section we consider harmonically trapped

systems. We shall see that BEC is present in two and three dimensions in the thermodynamic limit

below a well defined transition temperature. The one dimensional system will be an edge case for

which the transition temperature approaches zero in the thermodynamic limit, but BEC may still

occur in lab settings [76].
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4.2.4.1 3D Harmonic confinement

The density of states for the three dimensional harmonically trapped gas isD3H(ε) = ε2/(2~3ωxωyωz)

and so as in the uniform case, we must treat the ground state with ε = 0 separately. The total

number of excited particles is:

Nex =
1

2~3ω̄3

∫ ∞

−

ε2

e(ε−µ)/kBT
dε

=

(
kBT

~ω̄

)3

g3(z)

(4.45)

The critical temperature occurs for z = 1 as in the uniform case and solving for the critical

temperature yields

T3D =
~ω̄
kB

(
N

ζ(3)

)1/3

(4.46)

We can use this temperature to rewrite the number of excited atoms as

Nex

N
=

(
kBT

~ω̄

)3 ζ(3)

N
=

(
T

T3D

)3

(4.47)

which is a very familiar looking expression. 3D harmonic trap results We have the following

results for for a harmonically trapped ideal Bose gas in three dimensions.

Nex =
1

2~3ω̄3

∫ ∞

−

ε2

e(ε−µ)/kBT
dε (4.48)

=

(
kBT

~ω̄

)3

g3(z) Number of excited atoms (4.49)

T3D =
~ω̄
kB

(
N

ζ(3)

)1/3

Transition temperature (4.50)

N0 = N

[
1−

(
T

T3D

)3
]

Condensate fraction (4.51)

4.2.4.2 2D Harmonic confinement

The density of states for the two dimensional harmonically trapped gas isD2H(ε) = ε/(~2ωxωy).

In the uniform 2D system we did not need to separate the ground state out of the integral, but

since the density of states erroneously gives the ground state a weight of zero for the trapped gas,
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we must separate the ground state:

N = N0 +
1

~2ω̄2

∫ ∞

0

ε

e(ε−µ)/kBT
dε. (4.52)

This is suggestive that there will be BEC in two dimensions. The number of excited particles is

thus:

Nex =

(
kBT

~ω̄

)2

g2(z). (4.53)

the two dimensional trapped system seems much more analogous to the three dimensional trapped

system than was the case for uniform systems. The transition temperature is analogously derived:

T2D =
~ω̄
kB

(
N

ζ(2)

)1/2

(4.54)

The condensate fraction follows as in 3D.

2D harmonic trap results: We have the following results for for a harmonically trapped

ideal Bose gas in two dimensions.

Nex =
1

~2ω̄2

∫ ∞

−

ε

e(ε−µ)/kBT
dε (4.55)

=

(
kBT

~ω̄

)2

g2(z) Number of excited atoms (4.56)

T2D =
~ω̄
kB

(
N

ζ(2)

)1/2

Transition temperature (4.57)

ζ(2) =
π2

6
ζ(2) unlike ζ(3) has a convenient (and famous) value (4.58)

N0 = N

[
1−

(
T

T2D

)2
]

Condensate fraction (4.59)

4.2.4.3 1D Harmonic confinement

The density of states for the one dimensional harmonically trapped gas is D1H(ε) = 1/~ω

and is thus simply a constant. Therefore the integral

Nex =
1

~ω̄

∫ ∞

0

1

e(ε−µ)/kBT
dε

diverges. Let us return to the sum

N =
∑
ε

1

e(ε−µ)/kBT − 1
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which is necessarily true. It turns out that one can proceed by separating the sum into three

components and exploiting some obscure mathematical identies. This is is the approach of [99].

An alternative derivation is given by [76] and yields

N −N0 = −kBT
~ω

ln

[
1− z exp

(
− ~ω
2kBT

)]
(4.60)

This expression relies on the approximation ~ω � kBT . The transition temperature is determined

from the following transcendental equation

N =
kBT1D
~ω

ln

(
2kBT1D

~ω

)
(4.61)

which has the solution in terms of the Lambert W function W0(x). In the thermodynamic limit

N → ∞ with Nω → C for some constant C the transition temperature goes to zero according to

T1D =
~ωN

kBW0(2N)
(4.62)

since the denominator blows up but the numerator remains fixed. However, if the confining potential

is at all tighter than harmonic, so that V (x) ∝ kx2−ε for ε > 0 then T1D > 0 in the thermodynamic

limit [9]. Of course in finite harmonic systems BEC will still occur, an the condensate fraction goes

as
N0

N
= 1−

T ln
(
2kBT
~ω

)
T1D ln

(
2kBT1D

~ω

) (4.63)

The ideal one dimensional gas in a harmonic potential thus will generally undergo BEC in laboratory

conditions.

1D harmonic trap results: We have the following results for for a harmonically trapped

ideal Bose gas in one dimension.

Nex = −kBT
~ω

ln

[
1− z exp

(
− ~ω
2kBT

)]
Number of excited atoms (4.64)

N =
kBT1D
~ω

ln

(
2kBT1D

~ω

)
Equation for transition temperature (4.65)

T1D =
~ωN

kBW0(2N)
Transition temperature using Lambert W (4.66)

N0 = N

1− T ln
(
2kBT
~ω

)
T1D ln

(
2kBT1D

~ω

)
 Condensate fraction (4.67)
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4.3 Weakly interacting Bose gases

The previous sections concerned ideal gases only. When interactions are included many

properties of the system may be changed dramatically. The theory of an almost ideal Bose gas

was first developed by Bogoliobov in 1947 and his approach remains popular today. Bogoliobov

theory for weakly interacting dilute Bose gases may be found in textbooks on BEC and superfluidity

[102, 98] and we shall not go into as much detail here, but a thesis concerning the measurement of

fluctuations in interacting BEC would be incomplete without a presentation of the basic theoretical

framework. Bogoliobov theory provides the dispersion relation used in the Introduction of this

thesis to motivate the implosion technique used in this thesis. The prerequisites for applicability

of Bogoliobov theory will be introduced in the context of interactions and their effects before

outlining the formalism of the Bogoliobov approximation and transformation. We shall conclude

with a presentation of the Gross-Pitaevskii equation.

4.3.1 Dilute and cold gases

In the context of Bose gases dilute means that the interparticle distance is much larger than

the interaction range of interparticle forces. A cautionary note is warranted; the s-wave scattering

length a which parameterizes low energy scattering is the characteristic length ultimately used to

determine the diluteness condition na3 � (15
√
π /128)2 ≈ 1/25 where (15

√
π /128) is the LHY

coefficient to the quantity
√
na3 in the beyond mean-field correction to the (many-body) ground

state energy [102]. However, the scattering length ultimately depends upon the actual interatomic

interactions which may be characterized by interaction range r0. The diluteness condition is then

r0 � d = n−1/3 =

(
N

V

)
. (4.68)

We generally treat the interaction as vanishing beyond r0 since the interparticle potentials U(r)

generally tend towards zero for r � r0. The Fourier transform of the potential U(r) yields the

scattering amplitude

U(p) =

∫
U(r)e−ip·r/~dr, (4.69)
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from which we can see that for p � ~/r0, where U(r) = 0, the scattering amplitude U(p) rolls

off since the exponent will oscillate the integral to zero. However in the opposite limit then the

exponent becomes unity and V (p) is independent of the momentum p. The range of the potential

prompts an obvious characteristic momentum pc = ~/r0. Therefore, by cold we mean that the

thermal momentum pt ∼
√
2mkbT is much smaller than pc. Hence, the coldness condition may be

expressed as

T � ~2

2mkbr
2
0

. (4.70)

From this limitation on the momentum, we see that the low p behavior of Eq. 4.69 will dominate

and hence we can approximate U0 =
∫
U(r)dr with the result

U0 = g =
4π~2

m
a, (4.71)

where a is the s-wave scattering length we all know and love. The interaction term U0 = g = 4π~2a
m

may be derived using the Born approximation for the scattering amplitude between two particles,

details may be found in standard texts [102, 98]. We may express the Hamiltonian of the system

in terms of the field operators ψ̂:

Ĥ =

∫ (
~2

2m
∇ψ̂†(r)∇ψ̂(r)

)
dr+

1

2

∫
ψ̂†(r)ψ̂†(r′)U(r′ − r)ψ̂(r′)ψ̂(r)dr′dr (4.72)

where U(r′ − r) is the two-body scattering potential. In the case of a uniform gas occupying a

volume V the field operator can be expanded as a superposition of plane waves :

ψ̂(r) =
1√
V

∑
p

âpe
ip·r/~, (4.73)

where âp is the annihilation operator for a single particle state of a plane wave with momentum p

and the commutators for âp are [âp, âq] = δpq and [â†p, âq] = 0. Substituting of this ansatz into

Eq. 4.72 yields:

Ĥ =
∑
p

p2

2m
â†pâp +

1

2V

∑
p1,p2,q

Vqâ
†
p1+qâ

†
p2−qâp1 âp2 . (4.74)

Here Vq =
∫
U(r) exp[−iq · r/~]dr is the Fourier transform of the two-body scattering potential.

To get Eq. 4.74 from Eq. 4.72 one must use Eq. 4.73 with p → [p1 + q,p2 − q,p2,p1] for
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[Ψ†(r)Ψ†(r′),Ψ(r′),Ψ(r)] respectively in Eq. 4.72. Then move the q exponents next to the U(r′−r)

to get the Vq term via Eq. 4.69. So the Hamiltonian after these substitutions and some rearranging

is expressed

Ĥ = (...) +
1

2V 2

∑
p1,p2,q

∫
â†p1+qâ

†
p2−qU(r′ − r) exp

[
iq · (r′ − r)/~

]
âp1 âp2 exp

[
i(−p1 · r− p2 · r′ + p1 · r+ p2 · r′)/~

]
dr′dr

(4.75)

The other exponentials cancel and since we have two spatial integrals, one of which is used up for

Vq and the other is then empty (all creation and annihilation operators are independent of r so can

be moved out of the integral). That second integral will also give us a needed factor of V .

In the name of coldness and diluteness we are permitted to simply replace the integral over

U(r′ − r) with U0. So we would simply replace Vq with U0 in Eq. 4.74 and only keep q = 0 terms.

This yields the new Hamiltonian:

Ĥ =
∑
p

p2

2m
â†pâp +

U0

2V

∑
p1,p2

â†p1
â†p2

âp1 âp2 . (4.76)

Remember, we are considering a BEC here, so the lowest energy state is occupied with a macroscopic

number of particles in the condensate. This means that one can use the Bogoliobov approximation

which is to replace the operator â0 with a c-number.

â0 ≡
√
N0 ≈

√
N (4.77)

In a cold and dilute BEC, the occupation number of particles in excited momentum states is very

low. Therefore in the lowest-order approximation, we keep only the p = 0 term and the Hamiltonian

yields the energy of the ground state

E0 =
U0

2V
N2

0 ≈ U0

2
Nn (4.78)

We can determine the pressure of the gas and its compressibility.

P ≡ −∂E0

∂V
=
g

2
n2

∂n

∂P
=

1

gn
(4.79)
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The hydrodynamic equation yields the speed of sound c:

1

mc2
=
∂n

∂P
c =

√
gn

m
(4.80)

The compressibility is infinite for an ideal gas. In an interacting system the compressibility is

positive only when a > 0. In fact, the instability of a uniform Bose gas for attractive interactions is

manifest in these results; negative a gives negative pressure and an imaginary speed of sound, both

of which indicate such a system is not thermodynamically stable. Finally, the chemical potential

is given by

µ =
∂E0

∂N
= gn = mc2 (4.81)

which is always positive when a > 0. This is the energy required to add one particle into the

condensate, or the energy gained by subtracting one particle from the condensate.

4.3.2 Higher order approximations: Bogoliobov approximation and excitation

spectrum

In computing the lowest order approximation to the ground state energy in Eq. 4.78 we only

considered the zero-momentum terms of the Hamiltonian 4.76. We are ultimately interested in

fluctuations and excitations and so require a higher order approximation to the Hamiltonian. Let’s

examine the intermediate Hamiltonian Eq. 4.75 we used in the previous section

Ĥ = (...) +
1

2V 2

∑
p1,p2,q

∫ (
â†p1+qâ

†
p2−qU(r′ − r) exp

[
iq · (r′ − r)/~

]
âp1 âp2 exp

[
i(−p1 · r− p2 · r′ + p1 · r+ p2 · r′)/~

])
dr′dr

(4.75)

Even though we go to higher orders in p here, p remains small. This means q is remaining small

enough that Vq = U0 no matter what. So this yields Eq. 4.76

Ĥ =
∑
p

p2

2m
â†pâp +

U0

2V

∑
p1,p2,q

â†p1+qâ
†
p2−qâp1 âp2 . (4.76)

Let’s consider the physical meaning of Eq. 4.76 when applied to our state. As written here,

we are annihilating a single p2 particle, then annihilating a single p1 particle, then creating a
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p2 − q particle, and lastly creating a p1 + q particle. But for that to be physically valid, we know

momentum must be conserved, so physically we can deduce certain restraints. Let us consider all

the possible ways of expressing that second term to the next nonvanishing order, which by our

analysis above, will be quadratic in p since linear terms would violate conservation of momentum.

Of course we still have the p1,p2,q = 0 term, which we will separate out. We are left with a

variety of terms with nonvanishing pi. Suppose p1 and p2 are each zero. Then we can see that

with q = p the term ∝ â†pâ
†
−pâ0â0 (creation of two particles of opposite momenta) is non-vanishing.

This suggests there is a term corresponding to the complimentary physical process, the annihilation

of two particles of opposite momenta, a term ∝ â†0â
†
0âpâ−p, for which we have q = −p. There are

no other quadratic terms where p1 and p2 have the same magnitude.

If p1 = 0 and p2 = p then our annihilation operators destroy a single particle with p and the

creation operators must fix to preserve momentum conservation. This can be done in two ways,

with q = 0 which gives the term ∝ â†0â
†
pâ0âp and with q = p which gives the term ∝ â†pâ

†
0â0âp.

Similarly is p1 = p and p2 = 0 then q = 0,−p yields terms ∝ â†pâ
†
0âpâ0 and ∝ â†0â

†
pâpâ0. But

the commutation relations allow use to write the four terms described in this paragraph together

in the form â†0â
†
pâ0âp. Hence, to quadratic order in p our Hamiltonian may be written:

Ĥ =
∑
p

p2

2m
â†pâp +

U0

2V
â†0â

†
0â0â0+

U0

2V

∑
p6=0

(
4â†0â

†
pâ0âp + â†pâ

†
−pâ0â0 + â†0â

†
0âpâ−p

) (4.82)

Where we haven’t touched the first term. We continue with the Bogoliobov approximation for

â0 ≈
√
N in the third term of Eq. 4.82, but we need to be more precise in the second term. To

do this we use the normalization relation â†0â0 +
∑

p 6=0 â
†
pâp = N , which is true by inspection. We

can hit both sides of that to get

â†0â
†
0â0â0 = â†0Nâ0 − â†0

∑
p 6=0

â†pâp

 â0.
Now we use the normalization relation to substitute again for â†0â0, which gives the N2 term and

a single term of N
∑

. We use the commutation relations [âp, âq] = δpq and [â†p, âq] = 0 to get the
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other term like N
∑

(and dropping the higher order terms). We are left with

â†0â
†
0â0â0 = N2 − 2N

∑
p6=0

â†pâp (4.83)

We also require the scattering length a beyond the lowest order Born approximation. Without

deriving them here, we find the results [102]:

a =
m

4π~2

U0 −
U2
0

2V

∑
p6=0

m

p2

 U0 = g

1 +
g

V

∑
p6=0

m

p2

 (4.84)

where as always g = 4π~2a
m . Doing the various substitutions outlined we get the following expression:

Ĥ =
gN2

2V
+
∑
p

p2

2m
â†pâp +

1

2
gn
∑
p6=0

2â†pâp + â†pâ
†
−p + âpâ−p +

mgn

p2
. (4.85)

4.3.2.1 Bogoliobov Transformation

We are ready to do our Bogoliobov transformation. Equation 4.85 can be diagonalized via

the Bogoliobov transformation:

âp = upb̂p + v−pb̂
†
−p, â†p = upb̂

†
p + v−pb̂−p. (4.86)

The two parameters up and v−p are determined by the following constraints: the new operators b̂†p

and b̂p are assumed to obey the same Bosonic commutation relation as the real particles operators

âp and â†p: [
b̂p, b̂

†
p′

]
= δpp′ (4.87)

This commutator definition thus constrains the two parameters up and v−p. Some math follows

which is not particularly physically illuminating, see section 4.2 of [102] for the details. The explicit

form of up, v−p is

up =

(
p2/2m+ gn

ε(p)
+

1

2

)1/2

v−p = −
(
p2/2m+ gn

ε(p)
− 1

2

)1/2

(4.88)

where

ε(p) =

[
gn

m
p2 +

(
p2

2m

)2
]1/2

(4.89)
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is the Bogoliobov dispersion law for the elementary excitations of the system. We can now diago-

nalize the Hamiltonian 4.85 into the simple form

Ĥ = E0 +
∑

ε(p)b̂†pb̂p, (4.90)

where

E0 =
1

2
gnN +

1

2

∑
p6=0

[
ε(p)− gn− p2

2m
+
m(gn)2

p2

]
, (4.91)

is the ground state energy calculated to the higher-order approximation. Looking at the Hamilto-

nian 4.90 we see it resembles that of a system of non-interacting quasiparticles each with energy

ε(p). Consider how the dispersion relation depends on p; in the limit of small and large p we have

εp→0 ≈ p

√
gn

m
= pc, εp→∞ ≈ p2

2m
+ gn. (4.92)

Looking at the explicit form of u, v substituting the low momentum dispersion relation will yield

up→0, vp→0 ≈ ±
(
mc

p
± 1

2

)1/2

(4.93)

so |up| ≈ |v−p| � 1 and âp ∼ up

(
b̂p − b̂†−p

)
. At low momenta, the real particles resemble a

roughly equal number of quasiparticles of positive and negative momenta. For the higher momenta

limit, we know that ε ∼ p2/2m + gn and so |up| ' 1 and |v−p| ' 0 and the quasiparticle b̂p is

indistinguishable from the real particle so âp ∼ b̂p. The fact that the high momentum excitations

resemble real particles is also suggested by the high momentum behavior of Eq. 4.92 which resembles

that of a free particle. The ground state of the weakly interacting system at T = 0 is the vacuum

state of the Bogoliobov quasiparticles :

b̂p6=0 |0〉 = 0 (4.94)

The transition between the phonon-like and particle like regimes occurs around p2/2m ∼ gn = mc2.

Setting p2/2m = gn and letting p = ~/ξ defines the healing length:

ξ =

√
~2

2mgn
=

1√
2

~
mc

. (4.95)
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The occupation number Np of the quasi-particles is given by the normal Bose expression

Np = 〈b̂†pb̂p〉 =
1

exp[βε(p)]− 1
(4.96)

This must not be confused with the average particle occupation number 〈â†pâp〉. The chemical

potential of a gas of quasi-particles is zero by construction since their number is not fixed but

is determined by the condition of thermodynamic equilibrium, in analogy with Planck’s black

body law for photons. The actual particle occupation number 〈â†pâp〉 is, under the Bogoliobov

transformation,

np = 〈â†pâp〉 = |v−p|2 + |up|2 〈b̂†pb̂p〉+ |v−p|2 〈b̂†−pb̂−p〉 . (4.97)

holding only for p 6= 0. This is important to note since if we are interested in the number of atoms

in the condensate (for which p = 0) we have

N0 = N −
∑
p 6=0

np = N − V

(2π~)3

∫ [
|v−p|2 +

|up|2 + |v−p|2

exp[βε(p)]− 1

]
d3p (4.98)

We see how the |v−p|2 term indicates that the interactions cause there to be some particles with

non-zero momenta, even in the limit of T = 0 since

lim
T→0,p6=0

ε(p)/(kBT ) = ∞ =⇒ 〈b̂†pb̂p〉 = 0

which is obvious from the form of Eq. 4.89. Here, we see the difference between the quasi-particles

occupation number with momentum p 6= 0 and the real particles occupation number for such p.

Even though we calculate zero quasiparticles at absolute zero, we still have a non-zero number of

actual atoms in higher p states.

4.3.3 LHY corrections

The ground state energy Eq. 4.91 in the higher-order approximation can be easily calculated

by replacing the sum with an integral in momentum space resulting in

E0 =
gnN

2

[
1 +

128

15
√
π
(na3)1/2

]
, (4.99)
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while the chemical potential µ = ∂E0/∂N is thus easily shown to be

µ = gn

[
1 +

32

3
√
π
(na3)1/2

]
. (4.100)

These expressions give the LHY correction to the mean-field values of the ground state energy and

chemical potential for a weakly interacting Bose gas. They are included for completion and are not

relevant for the work in this thesis.

4.3.4 The GP equation

The dynamics of the weakly interacting Bose gas is well described by the Gross-Piteavskii

equation, which suitable not only for uniform systems for which the Bogoliobov theory above was

developed but also for non-uniform systems. The GP equation describes the evolution of the

wavefunction Ψ(r, t) according to(
− ~2

2m
∇2 + Vext(r, t) + g|Ψ(r, t)|2

)
Ψ(r, t) = i~

∂

∂t
Ψ(r, t). (4.101)

The mean field term, g =
∫
Veff (r)d

3r can be expressed in terms of the scattering length yielding

g = 4π~2a/m. This equation resembles the Schrodinger equation with an additional term describing

the interactions which renders the GP equation nonlinear. We are interested in fluctuations from

the mean and so it is natural to expand the wavefunction as

Ψ(r, t) = [Ψ0(r) +O(r, t)] e−iµt/~ (4.102)

where O(r, t) describes small oscillations about the mean equilibrium value Ψ0(r). Expanding

O(r, t) as

O(r, t) =
∑
i

[ui(r)e
−iωit + v∗i (r)e

+iωit] (4.103)

and substituting into the GP equation leads to the coupled differential equations

~ωiui(r) = (Ĥ0 − µ+ 2gn(r))ui(r) + g(Ψ0(r))
2vi(r),

−~ωivi(r) = (Ĥ0 − µ+ 2gn(r))vi(r) + g(Ψ∗
0(r))

2ui(r),

(4.104)
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where Ĥ0 = −~2∇2

2m + Vext(r). So far these representations are entirely classical, reflecting the fact

that the condensate behaves as a classical field. Quantization is achieved by rewriting these in

terms of field operators consisting of the still-classical condensate order parameter Ψ0(r) and an

operator describing the fluctuations Ô(r, t)

Ψ̂(r, t) =
[
Ψ0(r) + Ô(r, t)

]
e−iµt/~. (4.105)

The fluctuation operator is defined analogously to Eq. 4.86 as

Ô(r, t) =
∑
i

[ui(r)b̂
†
ie

−iωit + v∗i (r)b̂ie
+iωit] (4.106)

where b̂†i and b̂i are the creation and annihilation operators for the i-th elementary excitation

which has frequency ωi. The ui, vi and ωi are the solutions to the Bogoliobov equations of Eqs.

4.104. In this way, the Bogoliobov theory of the uniform case is extended to the trapped case. My

understanding is that Eli solves for those things.

4.4 BEC, Superfluidity, and Fluctuations

In the first section of this chapter the criterion for BEC was determined to be a macroscopic

occupation of one of the low-lying single-particle ground states, and this criterion was shown to

be equivalent to the behavior of the off-diagonal behavior of the one-body density correlation

function. We then developed the theory of BEC in ideal gases for dimensions d = 1, 2, 3 for

both uniform systems and harmonically confined systems. The role of dimensionality and the

external potential was shown to be crucial to the existence, or lack thereof, of BEC at finite or

zero temperature. In determining whether or not those systems exhibited BEC we emphasized the

macroscopic occupation criterion, but did not explore the existence of BEC from the perspective of

the one-body density matrix. The role of fluctuations has thus been relegated to the background

so far in this chapter. Moving forward, we wish to emphasize the role of fluctuations. The physics

of BEC and fluctuations thereof more or less requires Bogoliobov’s theory and its extension to

non-uniform systems and so was introduced in Section 4.3.
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With the vocabulary and formalism established for these systems, we may now focus of the

role of fluctuations in BEC. The interplay between the phenomena of Bose-Einstein condensation

on the one hand and superfluidity on the other may be understood in the framework of quantum

hydrodynamics. The role of the wavefunction’s phase turns out to be central to this interplay, more

central than its modulus. In the following section we highlight the role of phase and dimensionality

in the behavior of the off diagonal portion of the one-body density matrix, providing a fluctuation

focused perspective on the phenomenon of BEC to compliment the energetics based arguments of

this chapter’s first section. This framework provides, at least in my opinion, a view which is more

physically intuitive in understanding how fluctuations manifest in d-dimensional system. We shall

begin by discussing a criterion for superfluidity in terms of the spontaneous creation of elementary

excitations. We then highlight the importance of the phase and describe BEC in the language of

quantum hydrodynamics. The nature of phase fluctuations in determining the presence or absence

of long-range order in various dimensions will finally be discussed.

4.4.1 Landaus criterion for superfluidity

Consider a (uniform) fluid with energy E and momentum P in a given reference frame K and

suppose K ′ is a reference frame moving with velocity V with respect to K. If we ignore relativity

and proceed with Galilean transformations we may express the energy of the fluid in K ′ by

E′ = E +
1

2
MV 2 −P ·V

P′ = P−MV

(4.107)

where M is the total fluid mass. Suppose one of the frames (K) is the fluid’s rest frame and consider

the creation of an excitation with momentum p and energy ε(p) within the fluid which is initially

in the ground state with energy E0. The total energy of the fluid is then E0 + ε(p) and the total

momentum is P = p by construction. Let’s give our fluid some context by further supposing the

fluid was initially flowing within a tube at constant velocity v and denote the tubes rest frame as
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K ′. Then Eq.4.107 indicates:

E′ = E0 + ε(p) +
1

2
Mv2 − p · v

P′ = p−Mv

(4.108)

In the tube’s rest frame, the energy of the system has changed by ∆E = ε(p)−p ·v. Therefore we

identify ε(p)−p ·v as the energy of the excitation in the tube frame and conclude that excitations

may appear if

ε(p)− p · v < 0, (4.109)

and the fluid may transfer momentum to the tube only under the necessary condition v > ε(p)/|p|.

The creation of such an excitation and the subsequent transfer of the momentum to the environment

represents a dissipative mechanism. Since the system’s excitations follow the dispersion relation

ε(p), there will be a momentum p minimizing ε(p)/|p|. We may therefore define a critical velocity

vc of the fluid through the tube for which

vc = min
p

ε(p)

|p|
. (4.110)

If the flow through the tube is less than vc then it is impossible for the creation of an elementary ex-

citation to be energetically favorable and the flow will not dissipate. The criterion for superfluidity,

which is defined as flow without dissipation, is thus:

v < vc = min
p

ε(p)

|p|
. (4.111)

This is Landau’s criterion of superfluidity [79]. In the case of an ideal Bose gas, we have

ε(p) =
p2

2m

and so vc = 0 indicating that the idea Bose gas (in an infinite uniform system) is not actually

a superfluid! At a finite but small temperatures the system will necessarily occupy some of the

elementary excitations. In the Bogoliobov picture we may view these excitations as non-interacting

quasiparticles and assume the system behaves like a non-interacting gas of these quasiparticles.

Thermalization with the environment takes place via interactions between the quasiparticles and
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the wall of the tube, and so excitations may be created and destroyed through this process. The

thermally excited excitations of course contribute to the flow of particles through the tube, but

in their interaction with the tube, the flow associated with these excitations does dissipate! The

finite temperature fluid thus possesses a superfluid component which flows without dissipation

and a normal component which does dissipate, at least with respect to the walls of the tube. The

normal component will therefore equilibrate such that its velocity vn is zero with respect to the

tube wall. The occupation of the elementary excitations is thus

Np =
1

exp[(ε(p) + p · (vs − vn))/kBT ]− 1
(4.112)

where vs is the superfluid velocity and vn is the normal-fluid velocity.

4.4.2 The role of the condensate phase

One striking result of the previous section was the implication that a BEC in an ideal gas is

not a superfluid. Therefore, the identification of the condensate density |Ψ0| with the superfluid

density ns is not a general truth. Of course, BEC and superfluidity are still related and we shed

some light on the nature of that relationship in this section. Under a Galilean transformation the

field operator Ψ̂(r, t) transforms according to:

Ψ̂′(r, t) = Ψ̂′(r− vt, t) exp

[
i

~

(
mv · r− 1

2
mv2t

)]
(4.113)

In a uniform fluid we may write the condensate part of the wavefunction in the coordinate system

where the sample is in equilibrium [102] as

Ψ0 =
√
n0 e

−iµt/~. (4.114)

In the frame where the fluid is moving with velocity vs the order parameter may be written

Ψ0 =
√
n0 e

iΦ

Φ(r, t) =
1

~

[
mv · r−

(
1

2
mv2 + µ

)
t

] (4.115)
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where Φ is the phase in the moving frame. From Eq. 4.115 we extract the important result

vs =
~
m
∇Φ (4.116)

relating the superfluid velocity to the phase of the condensate order parameter. The appearance

of the order parameter’s phase Φ but not its density n0 is indicative of the more important role of

the condensate phase to superfluidity compared to the density.

4.4.3 Quantum Hydrodynamics and the phase correlation function

The formalism of hydrodynamics is a useful framework for understanding supfluidity. For an

normal fluid we have the total energy of the system H:

H =

∫
(∇φ)2 ρ

2
+ e(ρ)dr, (4.117)

where φ is the so-called velocity potential obeying vs = ∇φ, ρ is the density of the fluid and

e(ρ) is the internal energy per unit volume. The variation δH of the fluid energy appears in the

hydrodynamic equations:
∂ρ

∂t
=
δH

δφ
,

∂φ

∂t
= −δH

δρ
. (4.118)

Thus ρ and φ are the congucate variables of the system and the corresponding quantum mechanical

operators obey the commutation relation

[φ̂(r), ρ̂(r′)] = −i~δ(r− r′). (4.119)

We may write the Hamiltonian for a quantum fluid as

Ĥ =

∫
∇φ̂ ρ̂

r
∇φ̂+ e(ρ̂)dr, (4.120)

where φ̂ = ~
m Φ̂. In terms of the operators b̂† and b̂ for the phonons which obey the commutation

relation b̂k′ b̂†k − b̂†k′ b̂k = δkk′ we may write the density deviation and phase operators as

δρ̂ =
1√
2V

∑
k

(
ρ̄~k
c

)1/2 (
b̂ke

ik·r + b̂†ke
−ik·r

)
(4.121)
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Φ̂ = −µt
~

− 1√
2V

∑
k

i

(
m2c

ρ~k

)1/2 (
b̂ke

ik·r − b̂†ke
−ik·r

)
(4.122)

There is a typo in Equation (6.66) of [102], where the m in the
(
m2c
ρ~k

)1/2
quantity is erroneously a

linear power (giving
(

mc
ρ~k

)1/2
). The form here is correct. The one-body density matrix n(1)(r, r′) =

〈Ψ̂†(r)Ψ̂(r′)〉 may be computed in terms of the field operator

Ψ̂(r, t) =
√
n0 e

iΦ̂, (4.123)

where n0 is the condensate density and Φ̂ is the phase operator. The one-body density matrix

obeys

n(1)(r, r′) = n0

〈
e−i[Φ̂(r)−Φ̂(r′)]

〉
= n0e

− 1
2
〈[Φ̂(r)−Φ̂(r′)]2〉 = n0e

−(χ(0)−χ(s)), (4.124)

where

χ(s) = 〈Φ(r)Φ(r′)〉 (4.125)

is the phase correlation function and s = |r− r′| [74, 102]. This is a key relationship, as it directly

relates the long range order to the phase properties of the system. If regions of the system are highly

correlated, i.e. if the phase coherence of the system is large, then the phase correlation function

χ(0) ≈ χ(|r− r′|) and the off diagonal part of n(1)(r, r′) will not drop off. We demonstrated in Sec.

4.1 that this is defines a BEC. Using Eq. 4.122 we have:

χ(s) = 〈Φ(r)Φ(r′)〉

χ(s) = − m2c

2V ρ~

〈∑
k

k−1
(
b̂ke

ik·r − b̂†ke
−ik·r

)(
b̂ke

ik·r′ − b̂†ke
−ik·r′

)〉

χ(s) =
m2c

2V ρ~

〈∑
k

k−1
(
b̂kb̂

†
ke

ik·(r−r′) + b̂†kb̂ke
−ik·(r−r′)

)〉

χ(s) =
m2c

2V ρ~

〈∑
k

k−1
(
(1 + b̂†kb̂k)e

ik·(r−r′) + b̂†kb̂ke
−ik·(r−r′)

)〉

χ(s) =
m2c

V ρ~
∑
k

(
1

2
+ 〈b̂†kb̂k〉

)
eik·(r−r′)

k

(4.126)

In the above, we have only one sum over k since all momentum cross terms vanish. We have

also dropped the terms containing b̂kb̂k and b̂†kb̂
†
k as they vanish (or contribute to higher order?).

From the fourth line to the last we have switched the sum over k in the last term (as is allowed by
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symmetry) to produce like exponentials. Expressing the integral in terms of momentum p = ~k

we have

χ(s) =
m2c

ρ

∫ (
Np +

1

2

)
eip·s/~

p

ddp

(2π~)d
(4.127)

where Np = 〈b̂†pb̂p〉 = [ecp/kBT − 1]−1 is the thermal distribution of phonons. In three dimensions

this is identical to Eq. (6.71) of [102]. In the high temperature limit kBT � cp we have Np ≈

kBT/cp� 1/2 and so

χ(s) =
m2kBT

ρ

∫
eip·s/~

p2
ddp

(2π~)d
(4.128)

Expanding the exponential according to Euler’s formula and dropping the sine term since it is an

odd function yields:

χ(s) =
m2kBT

ρ

∫
cos (p· s/~)

p2
ddp

(2π~)d
. (4.129)

The density matrix thus decays according to n(1)(s) = n0e
−(χ(0)−χ(s)) with

χ(0)− χ(s) =
m2kBT

ρ

∫
1− cos (p· s/~)

p2
ddp

(2π~)d
. (4.130)

We can evaluate the integral for d = 1, 2, 3 finding:

〈[Φ̂(r)− Φ̂(r′)]2〉 = m2kBT

ρ

∫ ∞

−∞

1− cos (p· s/~)
p2

dp

(2π~)
=
m2kBT

2ρs~2
|r− r′| 1 Dimension

(4.131)

〈[Φ̂(r)− Φ̂(r′)]2〉 = m2kBT

ρ

∫ pco

0

1− cos (p· s/~)
p

(2π)dp

(2π~)2
≈ m2kBT

2πρs~2
[
γ + ln

(
2pco|r− r′|

)]
2 dimensions

(4.132)

〈[Φ̂(r)− Φ̂(r′)]2〉 = m2kBT

ρ

∫ pco

0
(1− cos (p· s/~))(4π)dp

(2π~)3
≈ kBT

2π2ρs~2

pco − ~ sin
(
pco|r−r′|

~

)
2|r− r′|

 3 dimensions

(4.133)

where γ ≈ 0.577 is Euler’s and constant we have introduced an ultraviolet cutoff pco because the

hydrodynamic formalism is only valid for long wavelengths, and the integrals in d = 2 and d = 3

dimensions do not converge otherwise. We omit the cutoff in the one dimensional integral because

it does converge and otherwise the result is ugly, but strictly speaking, it too should be limited in
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its range. The 2π and 4π are simply the angular parts for two and three dimensions. The results

of Eqs. 4.131, 4.132 and 4.133 were first given by Kane and Kadanoff, although the 2D and 3D

results differ slightly in form [74]. Other sources also have slight differences [98, 60] in 2D and 3D,

but they do not affect the limiting behavior. In 1D the one-body density matrix tends towards zero

exponentially: n(1)(r− r′) ∼ e−|r−r′|. In 2D it decays algebraically: n(1)(r− r′) ∼ 1
|r−r′| . In 3D, it

settles to a constant non-zero value. Therefore, in 1D and 2D we do not expect BEC in uniform

systems. Note that quantum hydrodynamics requires an interacting fluid, so these results do not

map perfectly onto the demonstration in Sec. 4.2.3, which were ideal systems. Of course, these

results do not apply to T = 0 exactly, so we should not place too much confidence in them for zero

temperature systems.

Let us also compute the density-density correlation function 〈δρ̂(r)δρ̂(r′)〉. The one-body

density matrix was given in Eq. 4.124 only in terms of the phase correlation function, because the

contribution of the density is negligible in comparison. To understand why, we compute analogously

to Eq. 4.126. The operator math is identical so we can simply write down the answer

%(s) = 〈δρ̂(r)δρ̂(r′)〉

=
ρ̄~
2V c

〈∑
k

k
(
b̂ke

ik·r + b̂†ke
−ik·r

)(
b̂ke

ik·r′ + b̂†ke
−ik·r′

)〉

=
ρ̄~
V c

∑
k

(
1

2
+ 〈b̂†kb̂k〉

)
keik·(r−r′)

(4.134)

For kBT � pc we have

%(s) =
ρ̄~
c

∫
cos (p· s/~) ddp

(2π~)d
(4.135)

for the density correlations in d dimensions.

4.5 Discussion

The low momentum behavior for the density correlation function %(s) = 〈δρ̂(r)δρ̂(r′)〉 and

the phase correlation function χ(s) = 〈Φ(r)Φ(r′)〉 are very different. The phase correlations go as

k−2 in the integrand while k drops out of the integral entirely; although naturally the integrals
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will introduce a factor of kd−1 due to the volume element, and it is this which differentiates the

behavior of the one-body density matrix in different dimensions. The stronger dependence on the

phase Φ̂ of the order parameter justifies the omission of density effects in Eq. 4.124.

The quantum hydrodynamic picture has provided us with quantitative results on the nature

of fluctuations in multiple dimensions. We have seen how the phase fluctuations destroy long range

order in 1D and 2D for finite temperature, a complimentary view to arguments from the chemical

potential for ideal gases in earlier sections. We have also seen how the density fluctuations are much

less important in determining the off-diagonal long range behavior of the system. We have also seen

how in low dimensions the fluctuations of both the phase and the density are greater than in higher

dimensions. We have even seen some interesting intermediate behavior in the two-dimensional case

that has not yet been explored in our discussion, the algebraic, as opposed to exponential (as in

1D), decay of the one-body density matrix to zero. This suggests a sort of intermediate behavior

for these systems which turns out to be related to a transition to a superfluid state which does not

exhibit BEC: the Berezinskii-Kosterlitz-Thouless (BKT) transition. However, the conceptual goal

of this chapter, which was to explain how and why dimensionality affects fluctuations, has been

fairly thoroughly addressed.

4.6 The Static Structure Factor

With the conceptual understanding of fluctuations having been extensively explored so far,

it is time to shift gears and bring the theory back to the lab.

4.6.1 Static Structure factor for a > 0

The static structure factor is the quantity of primary interest in this thesis, and here we

provide its definition. The static structure factor is related to the dynamic structure factor S(p, ω),

which characterizes inelastic scattering by a probe which transfers momentum ~p and energy ~ω to

the system [102]. One approach to understanding the static structure factor is from the perspective

of linear response theory [102]. However, the conceptual task mentioned at the beginning of this
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chapter was to develop the tools necessary to understand the nature of fluctuations in different

dimensions in order to motivate the technique used in this thesis, and it is this author’s hope that

that task has been achieved in the previous sections. As such, we shall narrow our focus from this

point forward to the question of what measurements will reveal the fluctuations in our bulk three

dimensional BEC, and what we expect to measure.

The treatment here is due to our theory collaborator Eli Halperin, and his forthcoming thesis

will be a much more thorough development of these ideas [62]. We begin with the correlation

function.

ν(r1 − r2) =
1

n̄
〈δn(r1)δn(r2)〉 (4.136)

where δn(r) = n̄− n(r) is the density deviation from the average. The static structure factor S(k)

is the Fourier transform of the static correlation function

S(k) =

∫
ν(r)e−ik·rdr (4.137)

We may rearrange to express this as

S(k) =
1

N
〈|δn(k)|2〉 (4.138)

where

δn(k) =

∫
δn(r)e−ik·rdr (4.139)

is the Fourier transform of the density deviation. The static structure factor is the ensemble average

of the square of the Fourier transform of the density deviation. In the Bogoliobov approximation

the static structure factor may be written

S(k) = 〈â†kâk〉+ 〈â−kâ
†
−k〉+ 〈â†kâ

†
−k〉+ 〈â−kâk〉 (4.140)

where the âk are the annihilation operators for real particles with wavenumber k. We perform the

Bogoliobov transformation

âk = ukb̂k + v−kb̂
†
−k â†k = ukb̂

†
k + v−kb̂−k (4.141)
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where

uk, v−k = ±

√
~2k2/2m+ gn

2ε(k)
± 1

2
(4.142)

and

ε(k) =

√
2gn

~2k2
2m

+

(
~2k2
2m

)2

. (4.143)

The structure factor may now be expressed as

S(k) =
1

ε(k)

~2k2

2m

(
〈b̂†kb̂k〉+ 〈b̂−kb̂

†
−k〉+ 〈b̂†kb̂

†
−k〉+ 〈b̂−kb̂k〉

)
(4.144)

We proceed as usual with

〈b̂†kb̂k〉 = 〈b̂†−kb̂−k〉 =
1

eε(k)/kBT
(4.145)

〈b̂†kb̂
†
−k〉 = 〈b̂kb̂−k〉 = 0 (4.146)

[b̂k, b̂
†
k] = 1 (4.147)

which reduces to

S(k) =
1

ε(k)

~2k2

2m
coth

(
ε(k))

2kBT

)
. (4.148)

This is the structure factor for a uniform BEC. The use of the Bogoliobov approximation â0 =

â†0 ≈
√
N in deriving Eq. 4.140 assumes a condensate contains most of the atoms.

4.6.2 Evolution of structure factor at a < 0

The details of the computation for the time evolution of the structure factor following a quench

to a < 0 is beyond the scope of this thesis, which, despite the topics covered in the last thirty or

so pages, is an experimentally focused work. Details may be found in the forthcoming thesis of

our colleague Eli Halperin who performed the numerical simulations and theoretical work much of

this thesis relies on [62]. The validity of Bogoliobov theory for systems with attractive interactions

is not obvious a priori. It turns out that the Bogoliobov procedure is incapable of diagonalizing

the Hamiltonian and producing Bosonic quasiparticles for all values of k [62]. Progress can still be
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made within the Bogoliobov framework and the evolution of the structure factor may be expressed

as
S(k, t) =

1

ε(k)

~2k2

2m
coth

(
ε(k)

2kBT

)(
1 +

~2k2n(gi + |gf |)
m|εf (k)|

sin2
(
εf (k)t

~

))
S(k, t) = S(k, 0)

(
1 +

~2k2n(gi + |gf |)
m|εf (k)|2

sin2
(
εf (k)t

~

))
(gf < 0)

(4.149)

This is the prediction for the evolution of the structure factor following a quench to attractive

interactions. The structure factor may be measured with in-situ density measurements of the

cloud following a quench.

4.7 Related work in 2D

In two dimensions, fluctuations have been the subject of extensive experimental efforts. The

group of Cheng Chin as the University of Chicago and more recently the group of Chen-Lung Hung3

at Purdue University have explored interacting BECs in 2D and measured the static structure factor

in a number of experiments over more than a decade [72, 59, 71, 104, 29, 30]. In particular the work

in [72] concerned the direct measurement of the structure factor in 2D for interacting condensates

at various interactions strengths, all with a > 0. They place great emphasis on a comprehensive

understanding of the imaging systems optical transfer function to accurately extract the density

correlations from in-situ images of their 2D BEC. They used images of a non-interacting thermal

cloud for which the expected structure factor is flat to characterize the aberrations in their system.

This was the motivation for analyzing the structure factor of the thermal component away from

the condensate in Section 3.6 and comparing the resulting profile with the corresponding analysis

we use to determine the structure factor of the condensate.

In a later work, the oscillations predicted by Eq. 4.149 were observed following a quench

between two positive values of a [71]. In the experiment most analogous to our own, the cloud

was quenched from gi = 0.25 to gf = 0.079 where the interaction strength for the 2D superfluid

is g2D =
√
8π a/lz where a is the scattering length and lz is the harmonic oscillator length in the

z-direction which is frozen out the dynamics to make the system effectively 2D. Growth of the
3 Dr. Hung was a graduate student in Dr. Chin’s lab
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structure factor was observed immediately following the quench, which was performed by abruptly

changing the magnetic field over 300 µs, which was sufficiently slow compared to all other relevant

timescales. One should note that the form of Eq. 4.149 presumes the gf < 0, we may rewrite the

evolution for the structure factor following a quench between two values of a as

S(k, t) = S(k, 0)

(
1 +

~2k2n(gi − gf )

mεf (k)2
sin2

(
εf (k)t

~

))
. (4.150)

This expression is valid for all quenches, and correctly predicts no dynamics for gi = gf , which

Eq, 4.149 as written, does not as it presumes gf < 0. The oscillations of of the structure factor

after the quench-down gi > gf measured in [71] matched the predictions of Eq. 4.150. In our case,

for which gf < 0 (and g = g3D = 4π~2a/m) the ε(k) may be imaginary and since sin(ix) = sinh(x),

we do not expect oscillations for unstable mode but rather runaway growth. In the quench up

experiments of [71], for which gf > gi > 0, the initial trajectory of the structure factor for a given k

is downward, and the observed oscillation frequencies were 65% greater than predicted. Subsequent

theoretical work [104] considered the influence on a thermal bath of atoms on the evolution of the

static structure factor. Most recently the Hung group at Purdue quenched to attractive interactions

and observed the growth of unstable modes followed by the fragmentation of the gas into 2D solitons

in [29]. In a subsequent paper, the interactions were quenched to attractive interactions and held

for up to 2 ms, and the growth of the structure factor was observed for stable and unstable modes,

as predicted by Eq. 4.150, see Fig. 2 of [30]. However, the amplitude of the growth was lower than

that predicted by Eq. 4.150, and they fit their data to

S(k, δτ) = e−Γk∆τScoh(k) + Sinc(k) (4.151)

where Scoh is given by Eq. 4.150 and

Sinc(k) =
1

2

[
η−

[
Γ2
k

~2(Γ2
k + 4ε2f )

] [
1− e−Γk∆τ

[
cos

(
2εf

∆τ

~

)
−

2εf
~Γk

sin

(
2εf

∆τ

~

)]]
+ η+

[
1− e−Γk∆τ

]]
(4.152)

with η± = 1± ε2i /ε2f . Sinc(k) is an incoherent additive background which does not grow over time4 .

The coupling between the the coherent and incoherent contribution is governed by the k-dependent
4 It is also the most annoying equation I’ve ever typeset in my life
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damping rate Γk, which is a fit parameter of their model for which they find Γk ∼ 0.5εi/~. They also

emphasize the used of a high temperature thermal gas to calibrate their imaging transfer function.



Chapter 5

Controlled Demolition

5.1 Optical Lattice overview

The use of optical lattices to provide a well understood control case for implosions is an

important stepping stone to understanding how intrinsic fluctuations are amplified. This chapter

shall describe the geometry of the optical lattices used to write our imposed density perturbations,

how they are calibrated, and how those density perturbations evolve following a quench to negative

scattering length along with a comparison to numerical simulations of such a quench. We shall

finish with a calibration of our resolution at the two wavevectors of the X-lattice and Y-lattice.

5.2 Lattice geometries

The optical lattices used as seed potentials in this work are formed by the interference of

two running beams intersecting at shallow angles. Each lattice is referred to by the direction of its

wavevector. Only the X-lattice and Y-lattice are used in this thesis, so discussion of the Z-lattice

is omitted.

5.2.1 X-lattice geometry

The X-lattice geometry is shown in Fig. 5.1a. The X-lattice beams flank the V-beam of the

ODT and enter the science cell from above; the +125 mm lens which focuses the VODT beam steers

the X-lattice beams toward the atoms. Due to the small waist, and large corresponding divergence,

of the X-lattice beams, each beam’s individual focus is longitudinally shifted down-beam from the
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(a) X-lattice (b) Y-lattice

Figure 5.1: Geometry of X-lattice (a) and Y-lattice (b). Prior to the two-inch mirror which focuses
the V-beam of the ODT, the X-lattice beams are parallel to the V-beam (not shown). The V ODT
lens steers the X-lattice beams inward such they intersect at the atoms with a half-angle of ∼ 8.5
degrees. The Y-lattice beams enter on either side of the H2-beam (not shown). The Y-lattice
beams intersect at ∼12 degrees.

atoms’ position and thus the lattice beams do not provide a noticeable perturbation to the trapping

potential for typical intensities used for seeding the density perturbation. The maximum attainable

power of the X-lattice beams is sufficient to shift the cloud’s equilibrium position, but this power

is only used in the trap-frequency measurements described in 2.6.1. For the typical purpose of

imposing a small seed potential the X-lattice beams do not perturb the cloud.

5.2.2 Y-lattice geometry

The Y-lattice beams enter the science cell on either side of the H2 ODT beam which provides

the vertical confinement for the atoms. These beams, like the H2 beam, are directed to the science

cell by mirrors approximately 45 cm away from the science cell to provide room for the cart which

transfers the atoms from MOT2 into the science cell. This severely constrains the space available for

the Y-lattice periscopes. As a result, proper Y-lattice alignment is much more difficult to achieve
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since alignment must be performed using hex keys socketed into the adjustment knobs of the 1/2-

inch kinematic mirror mounts atop the Y-lattice periscopes. This is in contrast to the alignment

optics of the X-lattice which possess differential micrometers. Fortunately, the alignment of each

lattices is quite stable, so once the optimum alignment is achieved the lattice intensity does not

vary day to day. As mentioned in Chapter 2, the Y-lattice light is fiber coupled and routed from the

upper optical breadboard of Figure 2.10 to the section of the optical table beneath the H1/H2 and

side-imaging breadboards. The fiber limits the maximum power of the Y-lattice to substantially

below that of the X-lattice. Unlike the X-lattice, the beams are not focused by any lens near the

science cell, and this further reduces the maximum Y-lattice depth compared to the X-lattice, the

beams of which are somewhat focused by the VODT lens, although the focus is down-beam of the

atoms.

5.3 Optical lattice characterization

This section shall describe how the lattice’s are characterized. We shall first describe the

physics used for absolute measurements of the lattice depth using a short, powerful lattice pulse.

In this thesis, a short laser pulse means 0.5 − 500µs timescale control of a CW laser as controlled

by an AOM not the vastly faster timescales of pulsed lasers. A lattice pulse is simply both lattice

beams being pulsed at the same time. The lattice pulse calibration method will be shown to be

invalid for weak lattice of the sort used as seed potentials in this work. We shall then describe how

the shallow-lattice regime is calibrated with respect to the absolute lattice depth measurements of

deep lattices.

5.3.1 Absolute lattice depth measurements of deep lattices

Consider a uniform BEC with uniform phase at t = 0 subject to a lattice potential for the

duration of a short laser pulse. We write the potential as

U(x) = −U0

2
(1− cos(2kLx)). (5.1)
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If pulse is on for a short enough time that none of the atoms will have moved much, then each portion

of the wavefunction will acquire a phase given by U(x) in the normal manner ψ(t) = ψ(0)eiEt/~

[110, 109]. If we suppose ψ(x, t = 0) = ψ0 then

ψ(x, t > 0) = ψ0e
iU(x)t/~

= ψ0e
i
U0t cos(2kLx)

2~

(5.2)

where we have ignored the global portion of the phase irrelevant to the dynamics. Now if we take

a look at Appendix B we have the identity Eq. B.9 which allows us to write

ψ(x, t > 0) = ψ0

∞∑
n=−∞

inJn

(
U0t

2~

)
ei2nkLx. (5.3)

where Jn is the Bessel Function of the first kind [1]. The pulse transforms the original wavefunction

ψ0 containing only a single component with momentum p = 0 into a superposition of components

with p = 2n~kL (n∃Z) each with probability

|ψn|2 = |Jn
(
U0t

2~

)
|2. (5.4)

In the trapped case, the argument is identical differing only in the minor detail that ψ0 has a finite

momentum spread because of the finite spatial extent. The evolution of a trapped BEC subjected

to a suitably short pulse and immediately released from the trap is characterized by a symmetric

pattern of clouds exploding away from the central cloud with relative populations given by Eq. 5.4.

We shall refer to the argument of the Bessel function Jn as the pulse parameter.

This effect, which we refer to as Bragg diffraction, provides a convenient method for character-

izing the lattice depth U0 when the pulse is sufficiently short. If the amplitude evolves substantially

during the lattice pulse, Eq. 5.3 becomes invalid. Therefore, the pulse duration must be short com-

pared to the timescales of the atomic motion. An obvious upper bound to the pulse duration is

therefore the trap period of the ODT. The trap period of the ODT is on the order of 10 ms, and

indeed the atoms can not be considered stationary for long pulses on this order. However, the

lattice itself provides a timescale. In an optical lattice the atoms experience a sinusoidal potential

due to their off-resonant interaction with the 1064 nm ODT beams:

U(y) = U0 cos
2(kLx). (5.5)
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Where U0 is proportional to the laser intensity and the lattice wavevector is kL = π/d. Expanding

and noting that in the harmonic approximation U(y) = 1
2mω

2
hox

2 we see that

ω2
ho =

2U0k
2
L

m
=

4U0EL

~2
(5.6)

and easily rearrange to show that [70]

Tho = 2π/ωho =
π~√
U0EL

. (5.7)

The oscillation period here provides a characteristic timescale of the lattice relevant for the calibra-

tion method described above, and satisfies the physicist’s biological requirement to express physical

systems in terms of harmonic oscillators whenever possible. The pulse duration must be only a

fraction of Tho for the atoms to be considered stationary. In the lab the validity of Eq. 5.4 is

evaluated using the linearity of the pulse parameter with respect to the pulse duration as described

in the next section.

5.3.2 Deep Lattice calibration

The results of the previous section form the basis for absolute calibrations of the lattice

potential. A priori consideration of the beam geometries provides an estimate of the lattice depth,

but imperfect alignment of the beams with respect to each other and the atoms, uncertainties in the

beam size and shape at the atoms, and non-ideal polarization make an entirely a priori evaluation

of the lattice potential unwise. The diffraction of non-zero momentum sidebands due to a short

pulse is immune to these uncertainties since the evolution according to Eq. 5.4 provides a measure

of exactly how strong any potential of the form of Eq. 5.1 is at the location of the cloud. In other

words, Bragg diffraction only measures the amplitude of the Fourier component of the potential

corresponding to that of the lattice, and does so accurately and precisely where the atoms are, no

calculation of beam powers required.

To characterize the lattices a small BEC is produced, then exposed to a short lattice pulse

at the same moment the main ODT beams (H2 and V) are turned off. The cloud, or perhaps
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Figure 5.2: Time-of-flight absorption images of a condensate taken after variable-duration lattice
pulses for fixed lattice power. Pulse duration for top cloud is zero (no lattice pulse) and increasing
by ten microseconds each row. Bottom row pulse duration is 50 microseconds. Each row is the
data from a single experimental cycle.

clouds, are imaged from the side after >20 ms of time-of-flight. The entire density distribution (of

multiple clouds corresponding to different multiples of the lattice recoil momentum) is then fit with

a single global condensate size and shape given by a Thomas-Fermi profile where the amplitude of

each mode is given by Eq. 5.4. The separation between adjacent modes is simply ∆x = 2n~ktTOF

assuming purely ballistic motion. Several images of clouds for different values of the lattice pulse

parameter

α(U0, t) =
U0t

2~
(5.8)

are shown in Fig. 5.2, where the pulse parameter was measured for various times at a fixed lattice
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(a) (b)

Figure 5.3: Lattice calibration using Bragg diffraction. In (a) the entire multi-component cloud is fit
according to a single Thomas-Fermi profile where the amplitude of the several clouds is constrained
according to Eq. 5.4 with a single pulse parameter. In (b) the populations of the first nine diffracted
order from lattice pulses versus pulse duration. Each curve is an independent fit to the given mode
from which the pulse parameter may be extracted. The pulse parameters for each order agree to
better than 1%. We use the global pulse parameter from (a) to characterize the lattices, (b) is
included for reference.

power. When the pulse duration becomes too long for Eq. 5.4 to be valid, the density distribution

will no longer resemble the precise prediction of Eq. 5.4. This can be seen in Fig. 5.3a where the

pulse parameter saturates beyond a certain pulse duration, indicating where the measurement is

not providing an accurate measurement of the lattice depth. By checking that we remain in the

linear regime of Fig. 5.3a we ensure accurate characterization of the lattice depth.

5.3.3 Shallow lattice calibration

The purpose of the lattice is to write a well understood density fluctuation on an in-situ

cloud as an analogy to intrinsic fluctuations. Therefore, in-situ images of perturbed clouds must

be translated into absolute units. Diffraction experiments in situ are certainly possible, but are ill

suited for characterizing the lattice since presence of the trapping potential spoils the free expansion

of the various momentum modes. Furthermore, the Bessel function distribution of Eq. 5.3 is difficult

to fit until momentum populations are well separated, but the trap means they may never separate
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(a) (b)

Figure 5.4: Averaged, squared Fourier transforms of the density with and without the X-lattice.
The color scale is the same for both images, and the natural log of the squared Fourier transform
is shown. Prior to computing the Fourier transform the average density profile in the absence of
the lattice is subtracted from each individual cloud. On the left fifteen clouds without lattices were
imaged, and no structure is apparent at kx = 1.73µm−1. In contrast, the presence of the lattice is
apparent in (b). Only four density profiles are averaged in (b), making it slightly noisier.

at all, and even if they do separate, the field of view of the in-situ imaging system is far too small due

to the large magnification. The only signature of the lattice available to us for high magnification,

in-situ imaging is the density distribution itself; it is in the Fourier transformation of the data

where the seed lattice perturbations are evident, as in Fig. 5.4. Extracting the lattice depth from

the density profiles themselves turns out to be complicated by imperfect imaging as well, making a

careful calibration chain between in-situ images and time-of-flight Bragg pulse measurements of the

lattice depth indispensable. The first link of the calibration chain is the absolute measurement of

the lattice depth possible for deep enough lattices, as described in the last section. A photodetector

in the beamline of the unused X-lattice light (see Figure 2.10) simultaneously records the residual

lattice power. This photodetector is directly proportional to the depth of the X-lattice and Y-

lattice, with the proportionality constant dependent on attenuation and alignment. It is critical

that the alignment of the lattice optics for both the X and Y lattices be robust enough that the
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proportionality constant between the lattice PD and the lattice depth at the atoms be stable.

Substantial work on the optomechanical stability of the lattice optics was required to achieve

sufficient stability. Alignment and optimization of the lattices is performed by maximizing the

lattice pulse parameter for fixed power while adjusting each of the four beams, two for each lattice.

When alignment is completed several neutral density (ND) filters are placed in the lattice

beam path to attenuate the beam. Electronically, the lattice power may only be reliably controlled

over a factor of about 20 using the H1 AOM which is insufficient dynamic range. The position

of these filters is important as ND filters may be damaged and cause intensity dependent effects

on the beam profile, pointing, and attenuation. The lattice PD conversion factors are measured

using the most powerful lattice possible given the overall lattice attenuation, and so in practice

the attenuation is empirically chosen that maximum lattice power is just sufficient to allow Bragg

diffraction measurements to be validly performed, this is the reason that only one lattice depth

is used to calibrate the lattice PD in Fig. 5.5a; if the lattice were weaker the diffraction method

could not be used. The power must also be low enough that additional ND filters will operate in

the linear regime.

Once the system is well characterized and robust such that one may be confident in inferring

the true lattice depth at the atoms from the lattice PD, the in-situ signature of the lattice may

be calibrated. In real space, the lattice is quite subtle, and relatively deep lattices are needed to

directly see the perturbation in the density. In Fourier space the lattice is quite visible, as shown

in Fig. 5.4, where on the left a BEC with no lattice applied exhibited no obvious feature at the

X-lattice wavevector of kx = 2π/(3.63µm), and on the right a very clear peak is prominent. The

region around the peak is integrated and plotted versus the known power for various lattice depths,

as in Fig. 5.5b. The inegrated quantity is then fit to the form

F (U0) = F0 +AUp
0 (5.9)

where the exponent p should be approximately two since we are squaring the FFT of the density.

Due to noise and imperfect imaging p is a floating parameter of the fit with the result p = 1.90(11).
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(a) (b)

Figure 5.5: Calibration of the in-situ X-lattice. In (a) the lattice depth is determined in time-of-
flight imaging following a short pulse and compared to a photodetector in the X-lattice beamline
(see Fig. 2.10). The slope of the linear fit in (a) is the conversion factor which determines the
lattice depth in (b) based on the measured PD voltage. For (b) the clouds are imaged in situ for
various known lattice depths and the square of the Fourier transform of the density is computed
and subsequently integrated in the region of Fourier space corresponding to the X-lattice.

If p = 2 is fixed, the intermediate lattice depths of 10-40 nK are systematically biased. Several

images with no lattice at all are taken and used to fix the background signal F0 so the fit of the

integrated lattice peak only has the amplitude A and the exponent p as floating parameters. This

provides the calibration of lattice depth vs in-situ measurement we require.

5.4 Lattice implosion experiments

In this section we discuss implosion experiments in the presence of a seed potential. For these

experiments the cloud is cooled to sufficiently low temperatures that no thermal component was vis-

ible in time-of-flight measurements. The atoms undergo all-optical evaporation in the |1,−1〉 state.

The density is determined by what value with which the scattering length the cloud equilibrates;

larger values of a produce a larger, less-dense cloud. The lattice potential is then adiabatically

applied over 200 ms and held for the same amount of time to ensure the system is in equilibrium

at the time of the quench. The quench is performed by using a resonant microwave π-pulse to
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transfer the cloud from the |1,−1〉 state to the |2,−2〉 state; the duration of the microwave pulse is

∼7 microseconds. Following the quench the cloud evolves for a variable length of time we shall call

the implosion time before the cloud is imaged in situ using the |2,−2〉 → |3,−3〉 cycling transition.

5.4.1 Lattice sanity checks

We performed some experiments with the lattice as sanity checks to ensure we had an accurate

understanding of how the density perturbation behaves after the lattice potential is removed. The

first such experiment was performed by turning the lattice potential off a variable amount of time

before the imaging and observing the relaxation and revival of the lattice signal, as show in Fig.

5.6a. The quench is always performed since |2,−2〉 is both the imaging state and the state with

attractive interactions, but the time between quench and imaging is 5 µs, negligible in comparison

to the dynamics. Only the first few oscillations of the density perturbation are observable. From

the timescale of the oscillation evident in Fig. 5.6a we performed implosion experiments where

the lattice was turned off at a moment where the trajectory of the density oscillation was either

positive, negative, or flat, see Fig. 5.6b. If the lattice remains on, the initial trajectory is flat but

the perturbation begins to grow rapidly. If the lattice is turned off at the moment of quench the

tendency for the perturbation to relax is in conflict with the instability of the mode.

5.4.2 Persistent lattice

The first implosion experiments with our control lattices were performed without removing

the lattice seed-potential following the quench. A comparison between numerical simulation and

experiment is given in Fig. 5.7 for an initial lattice depth of ∼8 nK [62]. The numerical results

have been adjusted with an overall scaling factor which accounts for imperfect contrast but which

does not affect the time dependence. These data were taken with a cloud of 4.44e5(2.3%) atoms

and trap frequencies [ωx, ωy, ωz] = 2π × [74.8, 74.7, 72.7] giving a peak density 10.3e13 cm−3 and

chemical potential 95 nK. The agreement between the simulation and the prediction is excellent,

and even reflects the drop off in the data at long times. The drop-off observed in Fig. 5.7 is caused
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(a) (b)

Figure 5.6: Perturbation response to turning off the lattice. In (a) the lattice is turned off a
variable time before imaging and the perturbation relaxes before reviving with opposite phase.
If the system were an infinite uniform (except the perturbation) superfluid we would expect the
oscillation of the perturbation amplitude to last indefinitely. In (b) we see the influence of this
transient response depicted in (a). When the lattice is turned off 100 µs before the quench (green)
we see the perturbation continuing to shrink. The initial trajectory of the amplitude is downward.
When the lattice is turned off 300 µs before the quench (blue), the perturbation has just begun
to grow again, and we see the perturbation grow from a smaller initial amplitude and continue to
grow. The initial trajectory here is upward. If the lattice is left on during implosions, we see the
behavior depicted by the red squares. The initial trajectory is flat in this case. If the lattice is
turned off at the moment of quench, the initial trajectory remains flat (black circle, gray stars) but
the lattice does not grow very much.

by both number loss through three-body recombination and the increasing deviation of the density

perturbation from a perfect sinusoid.

We fit the initial growth also to the function

ñkx(t) = ñkx(0) cosh
t

τ
(5.10)

where ñkx(0) is the initial size of the perturbation and τ is an exponential growth constant. The

growth time constant τ does depend on the time range to be included in the fit, so to capture the

early times a cutoff time for the fit domain is chosen. We select 300 µs to be our cutoff time and

find that the perturbation growth time constant is 176(7) microseconds. Fitting the simulation

results to Eq. 5.10 over the same domain as the experimental data gives consistent results, which



114

Figure 5.7: Growth of the X-lattice seed perturbation at kx = 1.73 for the 3.63µm X-lattice. The
solid line indicates numerical simulations using the GPE. Open circles correspond to individual
experimental cycles. The simulation is fit to the experimental data with a single overall scaling
factor.

is unsurprising given the good agreement apparent in Fig. 5.7.

In the introduction to this thesis the amplification of fluctuations at a given wavevector was

motivated through the dispersion relation

ε(k) =

[
gn

m
~2k2 +

(
~2k2

2m

)2
]1/2

, (5.11)

which becomes imaginary for negative scattering lengths. We argued that the timescale for the

implosions would grow with a time constant τ = ~/ε(k), how has this prediction been borne

out? In Fig. 5.8a the dispersion relation for the peak and average density of the cloud is given

and in Fig. 5.8b are the expected growth timescales ~/ε. The timescales predicted by τ = ~/εf

are significantly slower than the observed timescales and the simulation results. The observed

timescales were independent of the initial lattice depth as indicated by Fig. 5.9, as expected.

5.4.3 Vanishing lattice

To better reflect implosions seeded by intrinsic fluctuations of the BEC, the seed potential

should not persist during the implosion process. After all, the fluctuations we wish to magnify are
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(a) (b)

Figure 5.8: Dispersion relation ε(k) and corresponding timescales τ = ~/ε(k) expected for the
peak and average density of the condensate. The wavevector of the X-lattice is 1.73 µm−1 and is
indicated with a vertical black line. The timescale predicted by the dispersion relation alone are
substantially slower than indicated by Fig. 5.7. Note the change in the y-axis labels of (a) above
and below the ε = 0 reference line, where below the line the energy is imaginary. The blue (orange)
densities indicated are the initial peak (average) densities of the data of Fig. 5.7.

Figure 5.9: Growth of the X-lattice seed perturbation at kx = 1.73 for the 3.63µm X-lattice vs
initial lattice depth. For deeper lattices, the local density may be sufficiently high as to change the
growth rate, but no dependence is observed for shallow lattices.
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Dataset
Name λL (nK) kL

(µm−1)

Seed
Depth
(nK)

Peak
Density

(1013 cm−3)

Average
Density

(1013 cm−3)

Chemical
Potential

(nK)
YHD 2.45 2.56 11.3 10.3 5.89 95.3
YLD 2.45 2.56 11.3 5.42 3.10 118.3
XHD 3.63 1.73 6.2 8.98 5.13 83.1
XLD 3.63 1.73 11.3 4.81 2.75 105.1

Table 5.1: Conditions for the four experiments performed with the lattice potential removed at the
moment of the quench.

not reinforced by any external potential. Therefore, we performed several implosion experiments

with a seed potential which vanishes at the time of the quench. Implosions seeded by either the X-

lattice or Y-lattice alone were performed for high density and low density clouds. The temperature

of the cloud was low enough that a precise measurement could not be made as the condensate

did not show a thermal component which could be fit, suggesting the temperature to be below

80 nK, as temperatures above this contain a fitable thermal component. The conditions for these

experiments are given in Table 5.1.

The evolution of the ky = 2.5 µm−1 perturbations of the Y-lattice is shown in Fig. 5.10

for both high and low densities. Results for the X-lattice with kx = 1.73 µm−1 are shown in Fig.

5.11. Numerical simulations for each scenario are plotted alongside the experimental data. The

Y-lattice data do not agree with simulations well. The reasons for this are complex and perhaps not

fully understood. One possibility is a systematic error in determining the density. This possibility

is explored for The Y-lattice implosions in Fig. 5.12 by comparing simulations performed for a

range of densities. The high density implosion data can be reasonably well accounted for by a 13%

underestimation of the density, but the low density data cannot be explained in this way.

A separate contributing factor is the noise floor of the lattice depth measurement. The Y-

lattice wavenumber is near the edge of our resolution, and the seed depth of 11.3 nK was selected to

be deep enough to be detectable, but shallow enough to remain a small perturbation on the chemical

potential, which is on the order of 100 nK. Therefore, the relaxation predicted by simulations will

not be visible as the density perturbation shrinks below the noise floor. This is certain to impact
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(a)

(b)

Figure 5.10: Perturbation depth vs implosion time for clouds seeded with a 11.3 nK perturbation
from the Y-lattice where ky = 2.5 µm−1. The initial density-weighted density is 5.89×1013 cm−3 in
(a) and 3.10×1013 cm−3 in (b). Solid lines are numerical simulations of the first 1000 microseconds
after the quench [62]. In the high density case (a) the ky mode is unstable only near the center of
the cloud, and we see initial decrease of the perturbation, before it begins to grow rapidly at later
times. In the low density case (b) the ky mode is stable throughout the cloud
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(a)

(b)

Figure 5.11: Perturbation depth vs implosion time for clouds seeded with a perturbation from the
X-lattice where kx = 1.73 µm−1. Solid lines are numerical simulations of the first 1000 microseconds
after the quench [62]. The initial density-weighted density is 5.13×1013 cm−3 in (a) and 2.75×1013

cm−3 in (b). In the high density case (a) the seed perturbation is 6.2 nK and the kx mode is
unstable throughout most of the cloud and immediate growth follows. In the low density case (b)
the seed perturbation is 11 nK and kx mode is unstable only near the center of the cloud, and
the pertuirbation was observed to grow more slowly than in the higher density cloud. Numerical
simulations indicate an initial decrease of the perturbations amplitude in (b) prior to growth at
later times; this is not evident in the experimental data
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(a)

(b)

Figure 5.12: Perturbation depth vs implosion time for clouds seeded with a 11.3 nK perturbation
from the Y-lattice where ky = 2.5 µm−1. To illustrate the possibility of a density calibration error
numerical simulations for a range of densities is plotted with the initial depth fixed to 11.3 nK (solid
curves) [62]. The solid curves have no free parameters. In (a), we see that if the actual density is
6.66e13 cm−3 the simulation better reflects the observed growth. This would require a systematic
error of 13%, a realistic possibility. However, the experiments with lower density shown in (b)
cannot be explained through density miscalibrations alone. One factor guaranteed to be present is
the noise floor near 10 nK; this prevents the initial decrease of the perturbation amplitude from
being clearly observed. The legend gives the density-weighted density in cm−3 for the simulation
results.
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(a) (b)

Figure 5.13: Fourier space images of in-situ data. In (a) the peak it sue to the Y-lattice, in (b) it is
due to the phantom lattice. A magenta circle indicates the rgion used to integrate the peaks. The
Y-lattice is very near the phantom in Fourier space, and since the phantom cannot be removed, it
effectively behaves similar to the persistent X-lattice of Fig. 5.7. This can contaminate the Y-lattice
signal.

the low density Y-lattice data of Fig. 5.10b and 5.12b, since for any plausible density error, the

perturbation is predicted to relax in the first few hundred microseconds.

A third contributing factor to the tension between numerics and observations exemplified in

Fig. 5.10 is due to what we call the phantom lattice, see Fig. 5.13b. This is a lattice presumably

caused by reflections of the H2 ODT beam which interfere to create a subtle lattice potential which

cannot be removed without turning off the H2 beam, which is required to hold the atoms against

gravity. The phantom lattice is very near the Y-lattice in Fourier space, as shown in Fig. 5.13. If

the contribution from the phantom is not sufficiently masked out in Fourier space, effects like the

earlier than expected growth of the Y-lattice seen in Fig. 5.10a may occur.

.
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Figure 5.14: Influence of the phantom lattice on the integrated Y-lattice signal. Each curve cor-
responds to a different size mask (in Fourier space) applied to mask the phantom lattice prioir
to integrating the Y-lattice Fourier peak. Unlike Figs. 5.10b and 5.12b, the lattice signal is not
converted to perturbation amplitude. It is clear that as the mask on the phantom lattice peak in
Fourier space decreases, more of the phantom lattice signal leaks into the Y-lattice data. For Figs.
5.10b and 5.12b, a mask of 0.4 µm−1 was used.

5.5 Contrast correction

As mentioned at the close of Chapter 3, one of the major challenges faced in this experiment

is limited knowledge of the transfer function of our in-situ imaging. In particular, we are concerned

that the fidelity with which we image the density fluctuations is worse than expected. Even for

extremely deep lattices for which the cloud is divided into several non-overlapping local condensates,

we were unable to directly see the density drop to zero between lattice sites. The impact of this

contrast suppression on the data analysis of unseeded implosions will be discussed in Section 6.4.

To attempt to compensate for this problem we returned to our lattice experiments to evaluate
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for kx = 1.73 and ky = 2.5 our efficiency in detecting density structure at these two values of

k. To this end, we created synthetic density distributions numerically by defining a 3D trap

potential V0(r) with similar trap frequencies to our experiments, defined a value of the chemical

potential, defined a lattice potential Vx(r), and filled in the density according to the Thomas-Fermi

prescription n(r) = Θ(µ − V0(r) − Vx(r)) where Θ is the Heaviside function. These 3D density

profiles were summed along the z-direction to mimic the profiles observed in the experiment. The

square modulus of the two-dimensional FFT was calculated for each density profile. In Fig. 5.15

the density profiles and cross section in real space and frequency space are shown for Vx = 0 while

in Fig. 5.16 the lattice depth is 20%. The lattice potentials Vx(r) are strictly nonnegative, so the

density was uniformly renormalized to ensure constant N between clouds of differing lattice depths.

To quantify the strength of the lattice for different fractional lattice depths, the integrated

volume of the region indicated in magenta in Fig. 5.16 is divided by the integrated volume of the

central peak indicated by the green circle of the same figure. In Fig. 5.17 this ratio is shown for

various lattice depths as a fraction of µ. Let us call Vx/µ = Ṽx and the ratios between the lattice

peak and the bulk peak RN (ṼX) where the subscript N indicates it is computed numerically. We

then reanalyzed our in-situ lattice calibration curves and calculated the corresponding ratio we

shall dub RE(Ṽx) where the E indicates experimental data. The experimental data were fit to a

curve of the form

RE(Ṽx) =

√
c20 +

(
A
Vx
µ

)2

(5.12)

where the constant c0 is fixed by reference shots, see Fig. 5.18. We then compute the ratio

RN (ṼX)/RE(Ṽx)|c0=0 to determine by what factor the density fluctuation is suppressed in our

measurement. The quantity RE(Ṽx)|c0=0 indicates we are only comparing the lattice contribution

of our calibration curve, i.e. we set c0 = 0 but do not modify A from its fitted value. We see from

Fig. 5.19 that the suppression factor we infer from this procedure depends on what normalized

lattice depth Ṽx is chosen as the reference. For the data in Fig. 5.18 the unperturbed chemical
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(a) (b)

(c) (d)

Figure 5.15: Synthetic Thomas-Fermi profiles without any lattice potential in (a) and its cross
section in (c). the square modulus of the FFT is shown in (b), and its cross section in (d). the
color scale for (b) is chosen to match Fig. 5.16



124

(a) (b)

(c) (d)

Figure 5.16: Synthetic Thomas-Fermi profiles with a lattice potential equal to 20% of the chemical
potential in (a) and its cross section in (c). the square modulus of the FFT is shown in (b), and
its cross section in (d).
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Figure 5.17: Ratio between the volume of the lattice peak and central peak in Fourier space.

potential was 82 nK, and we can see that at a lattice depth of 16 nK is sufficiently deep to have

a clearly resolved lattice signal compared to the unseeded cloud. We therefore select 20% as our

reference depth to determine the suppression factor from Fig. 5.19, with the conclusion that at

kx = 1.73 our sensitivity is suppressed by a factor of
√
27 compared to a perfect imaging system.

The data of Fig. 5.19 are derived from the squared magnitude of the FFT, so the suppression factor

in terms of the density is the square root of the quantity plotted.

Repeating this procedure for the other three data sets of Table 5.1 yielded interesting results.

The suppression factor for the low-density X-lattice data set was found to be
√
43 , over 50% greater

than the high-density X lattice case. The Y-lattice high-density suppression factor was found to

be
√
155 while the low-density suppression factor was

√
135 . The Y-lattice wavenumber lies at

the edge of our resolution, so the suppression factor was expected to be much larger than for the

X-lattice wavenumber. The density dependence at kx = 1.73 µm−1 was not expected, but may be

the result of a slight misalignment of the X-lattice along the line of sight and the fact that the low-

density cloud is larger than the high-density cloud. Imaging through a larger cloud with a slightly

misaligned density corrugation will result in lower contrast. That this density dependence was much
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Figure 5.18: Calibration data for the high density implosion experiments with a X-lattice seed
potential discussed in the previous chapter.

Figure 5.19: Ratio of ideal sensitivity to observed sensitivity for the X-lattice Fourier component.
Depending on which normalized lattice depth fraction Ṽx is chosen as the reference, our inferred
value of the suppression factor for our observations varies from 23 to 37. We select a 20% lattice
depth (Ṽx = 0.2) to balance between sufficient signal to noise with the desire to investigate the
small perturbation limit (see Fig. 5.18).



127

weaker for the Y-lattice may be because the Y-lattice slices are better aligned to the imaging axis.

However, the fact that the Y-lattice suppression factor is actually lower for the low density case

seems inconsistent with this hypothesis, although the closer agreement in the Y-lattice suppression

factors may indicate that they are essentially the same, and the difference in suppression factors is

simply a statistical fluctuation.



Chapter 6

Intrinsic Fluctuations

This chapter concerns our use of implosions to amplify and measure intrinsic fluctuations in

bulk 3D BECs. We sought to test the theoretical predictions of the structure factor S(k, t) and

its evolution following the quench to negative scattering length. We were unable to clearly observe

many of the effects predicted. Based on the forthcoming discussions and those of the previous

chapters, particularly in regard to the challenges in imaging a bulk 3D BEC, we shall approach our

analysis assuming as correct the time dependence for the growth of the structure factor predicted by

the theoretical model introduced at the end of Chapter 4 in order to test the model’s prediction for

the pre-quench structure factor. We shall begin with a discussion of the challenges we faced in our

data collection and analysis and potential sources of error. We shall then proceed to a description

of the data collection process followed by a review of the results for four data sets covering both

high and low regimes of temperature and density. We shall focus on the wavenumbers for which

we have calibration data.

6.1 Discussion of sources of error

We begin our discussion by highlighting the difficulties we encountered in the experiment.

Before we begin, it is useful to be explicit about what sources of noise exist in the system. First and

foremost, we are seeking to measure the density fluctuations of BEC, and density fluctuations may

arise in several ways. An ideal BEC in an perfect harmonic potential, completely isolated from the
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surrounding environment, including a measurement apparatus,1 will exhibit density noise even at

zero temperature due to the discrete nature of atoms and the associated shot-noise. An interacting

BEC will exhibit interaction effects which deplete the single particle ground state and modify the

density fluctuation spectrum. The effects of the interactions is not necessarily to increase the

density fluctuations for all wavelengths, and indeed the repulsive interactions used in this thesis

have been shown to suppress the structure factor at small k [72]. Figure 6.1 shows the predicted

suppression for our densities at zero temperature. Let us call the total density noise which exists at

T = 0 quantum density noise. The zero temperature BEC corresponds to the quasiparticle vacuum

state in the Bogoliobov picture, as discussed in Chapter 4. At any finite temperature T > 0 some

of these quasiparticle states will be excited and thermal density fluctuations will exist. Let us call

these density fluctuations thermal density noise. The contributions of both quantum density noise

and thermal density noise are included in the expression for the structure factor which, for a BEC

in equilibrium at positive scattering length, is given by

S0(k) =
1

ε(k)

~2k2

2m
coth

(
ε(k))

2kBT

)
. (6.1)

The cloud may also have density noise which we shall call ‘superthermal’. If one taps their knuckle

on a table, the table will vibrate with some frequency spectrum, but these excitations are not

thermally excited. If one were to compute the temperature required to thermally populate the

vibrational states the table occupies following the knuckle tap the resulting temperature would be

many orders of magnitude greater than the actual temperature. Eventually, dissipative processes

like turbulence and friction will distribute the energy as heat and the noise spectrum would become

thermal (to the extent that one may neglect the quantum noise of classical object like a table).

Superthermal density noise in our condensate may arise in several ways, such as sloshing or stirring.

Uncharacterized contributions to the confining potential may also cause superthermal density noise,

such as the phantom lattice mentioned in Chapter 5. We shall include quantum density noise,

thermal density noise, and superthermal density noise in the broader group of real density noise,
1 We are ignoring the measurement problem; possibly the concept of a physical system in the absence of a measuring

apparatus is incoherent, but we aren’t making metaphysical claims
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(a) (b)

Figure 6.1: Structure factor S0th vs scattering length for our data sets. The longer wavelength
fluctuations are more strongly suppressed than those at shorter wavelengths. The densities used
are 〈n〉 = 5.5e13 cm−3 for the high-density data and 〈n〉 = 3.2e13 cm−3 for the low-density data.
The fact that S0th for various densities and wavenumbers all converge to 1.0 in the limit of vanishing
interactions clarifies the normalization of S(k). S(k) = 1.0 is the result for naïve, poisonnian shot-
noise in the density.

because they reflect the actual density configuration of the condensate.

Additionally we have the effects of imperfect resolution and knowledge of the imaging point

spread function. These include the contrast fidelity discussed at the end of the last chapter and

may stem from aberrations in the imaging system. We shall refer to these as imaging calibration

errors.

Finally we will have noise contributions from the measurement process. These include photon

shot noise on the detector, imaging artifacts like interference fringes, and anything which does not

represent actual density structure of the atomic cloud. Any contribution to the measured density

fluctuations that does not arise from the real density noise or imaging calibration errors we shall call

imaging noise. In other words, imaging noise refers to sources of inferred density structure which are

not due to the actual density distribution of the atoms or are unrelated to the imaging point-spread

function. Imaging noise itself may be divided into two categories, cloud-related imaging noise and

cloud-unrelated imaging noise. Cloud-related imaging noise contributions are those which only

appear in the presence of the atomic cloud, such as certain types of fringes and probe saturation

related noise. In the following discussion we shall consider in turn imaging calibration error, then

imaging noise, and finally real density noise. First, we shall elucidate the strategy we take in
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analyzing the data in the presence of these sources of noise.

6.1.0.1 Strategy for coping with noise

In Chapter 4 we discussed how the static structure factor is predicted to evolve following a

quench to negative a. The structure factor evolves according to

S(k, t) =
1

ε(k)

~2k2

2m
coth

(
ε(k)

2kBT

)(
1 +

~2k2n(gi + |gf |)
m|εf (k)|2

sin2
(
εf (k)t

~

))
S(k, t) = S0(k)(1 + Srel(k, t))

(6.2)

If we had perfect quantitative understanding of both our imaging transfer function (resolution

fidelity as a function of k) and the imaging noise contributions to our images (such as photon shot

noise, or unsubtracted probe beam structure), and we were confident that superthermal density

noise is a negligible contribution to the real density noise of the condensate, we would be able

to robustly test the predictions for both the structure factor S0 of the pre-quench cloud and the

fractional growth Srel(k, t). Unfortunately, our understanding of our resolution is limited as is that

of the imaging noise introduced by the imaging procedure. We have quantitative understanding of

our resolution only at the two lattice wavenumbers, and have very little quantitative understanding

of the imaging noise. Therefore, we adopt the strategy of assuming the accuracy of the relative

growth factor Srel(k, t) and use this to to extract a value for the noise background and the initial

structure factor S0(k). This value of S0(k) may then be compared with theory. We therefore fit

the data to

Sraw(k, t) = c0(k) + Sexp(k, t = 0)(1 + Srel(k, t)) (6.3)

where c0(k) and S0exp(k) are the fitting parameters. Time-independent imaging noise is charac-

terized by c0(k) and S0exp(k) is the experimentally determined initial structure factor. The ‘raw’

signal Sraw(k, t) is2 the squared Fourier amplitude normalized by the atom number, as discussed in

Section 4.6; the details of computing Sraw(k, t) from our in-situ images will be discussed in Section

6.3. In terms of real density noise, imaging noise, and the resolution correction discussed in Section
2 Since the raw signal Sraw(k, t) is comprised of both real density noise contributions and imaging noise, it is not

technically correct to call Sraw(k, t) the ‘raw structure factor,’ although this is an easy detail to forget.
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5.5, the raw signal is

Sraw(k, t) ∝
RealDensityNoise(k, t)

Resolution(k)
+ ImagingNoiseCloud(k)+ ImagingNoiseNoCloud(k). (6.4)

6.1.0.2 Imaging calibration error

The top imaging system was designed and intended to yield a diffraction limited resolution of

1.1 µm, but we were unable to achieve this performance and estimate the actual resolution to be 2.5

µm. Additionally, the fidelity of our imaging structure well within the resolution limit seemed to be

compromised. We calculated the contrast suppression factor for our two lattice wavevectors in the

previous chapter. In Section 6.4 we will discuss in more detail how we implement this correction

in our analysis and its influence on our results.

6.1.0.3 Imaging noise

The imaging noise is dominated by a few effects which may influence the inferred density

profile for reasons unrelated to the calibration of the optical transfer function of our in-situ imaging,

which we addressed in the last section, or due to the real density noise to be discussed in the next

section. Sources of imaging noise include fringes and photon shot noise on the detector. In Chapter

3 we discussed fringe removal from absorption images. This procedure works well when the fringes

themselves do not depend on the atomic cloud. A fringe may appear due to a speck of dust drifting

through the side of the probe beam as it propagates from the atoms to the camera, and typically

this will not be problematic. However, in some situations the fringes depend strongly on the atomic

cloud. In my early years at JILA, while I was working with rotating gases and Bose polarons, we

had a particularly pathological fringe which plagued our imaging for several days, but only appeared

when the atoms were present. The culprit turned out to be a speck of dust which sat down-beam

from the atoms and lay within the shadow of a large atomic cloud such that when atoms were there,

the speck did not scatter any light as it was in the shadow; but for the light frame, taken with no

atoms, the speck scattered a great deal of light and produced rings on the light frame which were

absent in the shadow frame.



133

It was only when our laser became unlocked and several images were accidentally taken

with no atoms did we notice the fringe didn’t appear in the OD analysis, and the rings from

the scattered light suddenly appeared in the “shadow” image as well, allowing the fringe to be

perfectly subtracted away in the computation of the OD, but only when the atoms were absent.

That frustrating experience taught me the valuable lesson that imaging noise can manifest in

unexpected ways, and the value that absorption images with no atoms present may provide the

experimenter in understanding noise. In the limit of small pixel-by-pixel differences between the

light and shadow frame the effect on the optical depth is linear as structure subtracts nicely, but

when the shadow frame deviates substantially (fractionally speaking) the effect of noise becomes

increasingly nonlinear.

We analyzed the Fourier spectrum of a set of images taken in the absence of atoms during

the experimental runs for the main data. Occasionally during the data scans a laser would become

unlocked or the cart would become stuck and the experiment would proceed for hours without

producing any atoms, but with each OD image taken faithfully by the machine. One such set of

over 600 images were taken during collection of the lowest temperature data set. We compute the

square of the FFT for the same region of real-space as we do for images with atoms. In Fig. 6.2 we

analyze these images both with and without subtracting the mean OD profile for all 600 images, and

the fractional impact on the amplitude (squared) in Fourier space is shown in Fig. 6.2c. Structure

from the probe beam is apparent, but this structure is most readily observed in the presence of

atoms. In Fig. 6.3 the 51 images taken for the tImp = 0 time step of the same data set are analyzed

in the same manner as Fig. 6.2. Structure from the probe beam is written onto the atoms when

computing the OD through the saturation intensity correction as described in Section 3.1.3, see

Eq. 3.23. This structure is subtracted out when the mean density profile is subtracted from each

individual image, as shown by Fig. 6.3b which does not show any apparent structure for k > 1.

It remains possible that in subtracted the mean OD profile in computing the structure factor

we fail to fully eliminate the noise written onto the atoms by the saturation intensity correction. In-

deed, if we attempt to compensate for shot-to-shot changes in the cloud position by post-processing
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(a) (b) (c)

Figure 6.2: Squared FFT in the absence of atoms, x and y axes are wavenumbers k = 2π/λ in
inverse microns. The color axis in (a,b) is ln(S0raw). The same region of real space is analyzed for
each panel. In (a,b) no atoms were present and the logarithm is display for increased visibility. In
(a) the OD image for each individual experimental cycle was analyzed with no subtraction of the
average. In (b) we do perform the subtraction of the mean OD prior to computing the FFT. In (c)
the effect of subtracting the average is shown for the central region of Fourier space. To compute
(c), the array values (without taking the log) in (b) are subtracted from (a) (also without taking
the log) and divided (pixel-wise) by the values shown in (a). Therefore, (c) indicates the fractional
increase in noise for each pixel in Fourier space if the average is not subtracted; despite the visual
similarity of (a) and (b), subtracting the mean OD suppresses noise on the order of 25% for k > 1.
In (a,b) the entire Fourier profile is shown; features at k > 3 are imaging artifacts well beyond our
resolution.

the density profiles to align them to a common center, these shifts, typically only a few pixels, rein-

troduce a large amount of noise to the structure factor calculation.

For each data set in Table 6.1 we evaluated a number of images taken during data collection

for which there were no atoms in the same manner as to be described in detail in Section 6.3

without normalizing by the observed atom number. This provides a quantitative estimate of how

much noise the images exhibit from noise contributions present even when atoms are not present.

In Figure 6.4 the unnormalized structure factor evaluated for images both with an without atoms

present is shown for one of the high-density data sets in Fig. 6.4a and for one of the low-density

data sets in Fig. 6.4b. The data indicate that from k = 1 µm−1 to k = 2.3 µm−1 cloud-unrelated

imaging noise accounts for nearly all of the signal in the low density data, while it accounts for

about half of the noise in the high-density data. This trend was consistent across all high density

and low density data. Near the edge of the resolution limit kres = 2.5 µm−1 cloud-unrelated noise
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(a) (b) (c)

Figure 6.3: Squared FFT in the presence of atoms, x and y axes are wavenumbers k = 2π/λ in
inverse microns. The color axis in (a,b) is ln(S0raw). The same region of real space is analyzed
for each panel. In (a) the OD image for each individual experimental cycle (51 total images) was
analyzed with no subtraction of the average. In (b) we do perform the subtraction of the mean
OD prior to computing the FFT. In (c) the effect of subtracting the average is shown for the
central region of Fourier space. To compute (c), the array values (without taking the log) in (b)
are subtracted from (a) (also without taking the log) and divided (pixel-wise) by the values shown
in (b). Therefore, (c) indicates the fractional increase in noise for each pixel in Fourier space if the
average is not subtracted. Contrary to the case where no atoms were present shown in Fig. 6.2,
subtraction of the mean density profile is required, as otherwise noise from the probe beam is
written onto the atoms. In some regions of k-space the noise from probe beam may be more than
10x the atomic signal. Unlike in Fig. 6.2, we only show the resolved region, indicated clearly by
the plateau reaching out to nearly k = 3 µm−1 in (b).

begins to dominate for all cases.

6.1.0.4 Real density noise

Of course, some of the density noise we see is due to actual structure on the cloud. The

fluctuations we wish to amplify and measure by imploding the BEC are the quantum density noise,

which is present even a T = 0, and the thermal density noise. The sum of these two contributions

is given by Eq. 6.2. However, density structure may exist on the cloud for other reasons and these

density fluctuations are not included in Eq. 6.2. We refer to these fluctuations as superthermal

density noise. As we saw in the previous chapter, there appeared to be what we described as a

’phantom’ lattice, which is a type of superthermal density noise which is well correlated shot to shot,

a ‘static’ source of superthermal density noise. This lattice seemed to be caused by self interference

of the H2 ODT beam as it remained visible when the atoms were confined by only that beam and
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(a) (b)

Figure 6.4: The unnormalized structure factor evaluated for images both with an without atoms
present. In (a) the low-temperature, high-density images with atoms yield nearly twice the signal
obtained in the absence of atoms. In contrast, (b) indicates the low-temperature, low-density
images with atoms yield very similar Sraw as images without atoms. In the language of Section
6.1 the orange circles represent the cloud-unrelated imaging noise, while the difference between the
blue and orange markers is due to a combination of cloud-related imaging noise and real density
noise, which itself is comprised of quantum and thermal density noise and superthermal density
noise. We shall see that imaging noise dominates over real density noise.

all others were physically blocked from leaking into the science cell. We were able to mitigate the

phantom lattice with a carefully constructed aperture, but other phantoms may exist of which we

are unaware. That the phantom is visible is already a piece of luck, since if the phantom wave

vector possessed a large enough z component, then the density corrugation would be washed out

by the geometry of our imaging. If such a phantom exists due to back-reflection of the V ODT

beam, it would be entirely invisible to the top imaging system. Locally, real density structure may

exist from phantom lattices or stray reflections and thus perturb the density from our expectation.

These perturbations to the confining potential cannot be turned off as the calibration lattices could

be, and it was shown in the previous chapter how influential such a persistent structure may be on

the implosion process.

If there are unknown density features in the confining potential, then the impact of any

initial velocity the condensate possesses at the time of quench may be to generate waves as the
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condensate sloshes over the perturbation. We saw in the last chapter how the initial velocity of the

lattice ripples had a profound effect on the subsequent evolution, as shown in Figure 5.6b. This is a

plausible explanation for the inconsistent temperature dependence we shall observe in forthcoming

sections. Colder clouds will actually be more sensitive to roughness of the optical potential, as

(non-static) superthermal density ripples will take longer to damp away in colder clouds. During

preparation of the initial conditions for each data set, measurements were performed to ensure the

cloud is at rest and in equilibrium at the moment of the quench, however we saw in Chapter 4

how fluctuations in the phase are far more important to the behavior of a Bose superfluid, and so

the possibility that minute phase or velocity fluctuations might be magnified and surpass the effect

of the density fluctuations we seek to amplify cannot be discounted. Density fluctuations arising

in this way are a form of superthermal density noise which may not be correlated shot to shot as

opposed to the static superthermal noise sources mentioned above.

6.1.1 Shall I compare BEC to summer’s day?

At the beginning of this section (6.1) the example was used of tapping one’s knuckles on a

table to describe superthermal density noise. A better analogy would be the surface of a pond on

a pleasant summer’s day. A perfectly calm pond3 will have fluctuations of the local water level due

to thermal excitations. These are not waves or ripples that one can see by eye, but rather the same

fluctuations which cause Brownian motion. They are microscopic, but they do exist. Only at zero

temperature would these fluctuations vanish. If a perfectly stationary boat were floating on the

perfectly calm pond, the water level would contain a static dip where the boat displaces the water.

This would be most obviously seen if the pond froze and the boat were then removed; a depression

would exist in the otherwise flat surface of the frozen pond. But suppose the boat and the (liquid)

pond were struck by a summer’s breeze; the boat would begin to rock and the surface of the pond

would develop waves. In our experiment, the phantom lattice is like the boat, and the BEC is
3 The pond is classical, we are not considering quantum effects in this analogy, don’t @ me.
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like the pond.4 As the water flows around the boat, ripples will form but these ripples have no

relationship to the thermally excited fluctuations which are microscopic. Eventually, turbulence

will redistribute all the energy of these macroscopic, superthermal waves as heat and the pond will

appear still once more, but still have the static dip in water level where the boat floats.

In our experiment, we know we have at least one boat on our pond, the phantom lattice.

If this phantom lattice (or others) is moving, density and velocity fluctuations will be generated

like waves on the pond. How can we distinguish waves of this sort from the thermal fluctuations

of the pond? Let’s consider a different question: how could we determine the temperature of the

water from a video of a pollen grain, or the molecular mass of an unknown liquid at a known

temperature?5 If one were to perform such an experiment, perhaps in a small dish under a

microscope, held by an undergraduate with too much coffee in their system, the challenge would

be to separate the thermal, Brownian motion of the pollen from the superthermal macromotion

of the the sloshing liquid. If one wished to determine the molecular mass of an unknown liquid,

one could record the motion of the pollen at a range of temperatures, and analyze its motion in

frequency space. Based on the principles of atomic theory and the mass of the pollen, one could

fit6 a model of the power spectral density of the pollen containing two free parameters, the molar

mass of the liquid, and a background noise profile reflecting the trembling hands of the student.

We embrace a similar approach, where the validity of Srel(k, t) in Eq. 6.2 is assumed a priori and

a fit to Eq. 6.3 is used to isolate the portion of our observed density which evolves with the time

dependence predicted by Srel(t) from a noise background which does not.

Of course, if our input parameters to the theoretical predictions are faulty, or if other un-

accounted for phenomena are present then the theoretical prediction of Eq. 6.2 cannot be relied

upon. Such errors may arise from the typical types of experimental error in BEC experiments, like

density calibration errors or the presence of spin impurities. Discussion of these more mundane

sources of error will be deferred to Section 6.6.
4 and background gas collisions are when ‘rough winds do shake the darling buds of May’ into the pond
5 This is apparently the Comps 2 portion of the thesis.
6 It is left as an exercise to the reader to do this.
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data set
Name

Temper-
ature
(nK)

Peak
Density
(1013 cm−3)

Average
Density
(1013 cm−3)

Chemical
Potential

(nK)
LTHD 100 10.3 5.89 93
HTHD 226 9.39 5.37 84
LTLD 91 5.82 3.32 121
HTLD 210 5.54 3.17 115

Table 6.1: Conditions for unseeded implosions. The data sets are labeled with HT (LT) indicating
high (low) temperature and HD (LD) indicating high (low) density.

6.2 Sample preparation

Clouds of a known density and temperature are prepared for four different combinations of

temperature and density, with the conditions for each data set given in Table 6.1. The system is

then quenched to a final scattering length of −33.4 a0 by way of a 6-8 µs microwave pulse resonant

with the |1,−1〉 → |2,−2〉 transition. We then wait up to 1000 µs, in steps of 40 µs, and image

the atoms using the |2,−2〉 → |3,−3〉 cycling transition. The imaging is done on resonance in the

I � Isat regime for the probe intensity. In all cases, a five microsecond gap between the quench

and the start of image acquisition is inserted which we shall ignore in our treatment. We shall refer

to the shortest implosion time, which technically takes place beginning five microseconds after the

completion of the microwave pulse, as the tImp = 0 time step, and similarly ignore this short time

gap for all other time steps. The high temperature (HT) and low temperature (LT) data for a given

density (high density (HD) and low density (LD)) were taken during the same data run. So 26

experimental cycles were taken with an HTHD cloud, first with zero µs implosion time (tImp = 0),

then tImp = 40 µs, and proceeding to the final implosion time of tImp = 1000 µs. The conditions

are then changed to prepare a LTHD cloud and 26 experimental cycles, one for each time step, are

performed. This procedure is repeated back and forth until a few dozen images for each time step

are collected for each temperature. The HTHD and LTHD data sets were taken together this way

over three days in early November 2021. The HTLD and LTLD data sets were taken together in

late November 2021. The primary way the densities of the LD data set are reduced compared to
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the HD data sets is by adiabatically increasing the scattering length of the cloud to 250 a0 over

several dozen microseconds.

6.3 Computation of the structure factor

In Chapter 4 we introduced the structure factor which quantifies the fluctuation spectrum

as a function of temperature, density, and scattering length. Recall that the structure factor is the

ensemble average of the squared Fourier transform of the real-space density deviations normalized

by the total number N

S(k) =
1

N
〈|δn(k)|2〉. (6.5)

The quantity δn(k) is computed via

δn(k) =

∫
δn(r)e−ik·rdr (6.6)

where δn(r) = n(r) − 〈n(r)〉 and 〈n(r)〉 is the ensemble average density. Let us go through the

details of the calculation for a few data points of the HTLD data set by considering Fig. 6.5.

We first compute the two-dimensional density profile of each image for a given time step.

The mean density profile is then computed for the specific tImp, such as the tImp = 0 time step of

Fig. 6.5a. For each of the individual images with the implosion time (Fig. 6.5b) a mask is applied

to both the mean (〈n(x, y)〉) and individual density profiles ni(x, y) and the total atom number for

the mean (individual) density 〈NW 〉 (NiW ) within the unmasked region is computed by summing

the pixel values and multiplying by the effective pixel area. The subscript on NW stands for

window to indicate we only care about atoms within the unmasked region of real space. The mask

is constructed to isolate only the portion of the image containing the condensate, and the same

mask is used for all the images for a given tImp. The density deviation δni(x, y) for the individual

profile ni(x, y) is computed as δni(x, y) = ni(x, y)−C 〈n(x, y)〉 where C = NiW / 〈NW 〉 is a scaling

factor to account for total number fluctuations. An example δni(x, y) is displayed in Fig. 6.5c. The

structure factor Si(k) = |δni(x, y)|2/NiW is then computed by performing a two-dimensional fast

Fourier transform (FFT), squaring the magnitude, and dividing by NiW . The resulting structure
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factor is shown in Fig. 6.5d. The structure factor is symmetric about the origin, but we display the

entire plot for aesthetic reasons.

Unlike the last chapter, the condensate is not seeded with a well defined density perturbation,

and so we extract the fluctuation amplitudes from an annulus in Fourier space. We divide the

structure factor Si(k) into rings of constant width in k-space as shown in Fig. 6.5d and compute

the mean value for each ring. We chose a ring width of 0.2 µm−1 as this reflects the characteristic

size of the features in k-space; if the rings were much wider, we would lose resolution in our

determination of S(k) and if the rings were smaller, neighboring rings would become increasingly

correlated and signal-to-noise would suffer due to the decrease in the number of pixels in k-space. It

is evident in Fig. 6.5d that the innermost rings are influenced by the low-k peak which reflects the

bulk size, shape and position of the cloud. Number fluctuations in the absence of size or position

fluctuations would manifest only at k = 0 if the scaling factor C were fixed to unity, but since

the mean density is scaled before computing the density deviation the k = 0 term is near zero by

construction. It is not identically zero due to machine precision. Additionally the phrase “number

fluctuations in the absence of size fluctuations” does not reflect reality because the size of the cloud

is a function of total number. Since we compute the density deviation from the average density

distribution, shot-to-shot changes in the position are actually the largest contributing factor for

k < 1. In principle these can be compensated for by shifting the optical densities of each image

to center them to within a pixel of the common center, but this cannot be performed when the

saturation intensity correction to the absorption imaging is included in the computation of the

optical depth or density profile. If the saturation correction is used, spatial structure from the

probe beam is written onto the density profile; when δn(x, y) = n(x, y) − C 〈n(x, y)〉 is computed

without shifting the images, this structure subtracts out very well, to the point of being negligible.

However, if the images are aligned to a common center, the pixel-by-pixel subtraction will actually

magnify the probe beam’s structure.

As the cloud evolves following the quench, we expect to see features develop in k-space as

density fluctuations are amplified. We present in Fig. 6.6 a tImp = 800 µs rendition of the tImp = 0
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(a) (b)

(c) (d)

Figure 6.5: Example data for calculation of the structure factor for the tImp = 0. Panels (a,b,c) are
in real space, with the x, and y axes given in pixels; the effective pixel size is 0.32 µm, a red scale
bar is shown for reference. The color axes of (a,b,c) are column densities in m−2. The average two-
dimensional density profile, displayed in (a) is calculated from 33 individual experimental cycles.
In (b) on of those 33 density profiles is displayed. A mask is applied to both density arrays and
the density deviation δn(x, y) = n(x, y) − C 〈n(x, y)〉 is computed where C is the scaling factor
described in the main text to ensure that

∫
δn(x, y) = 0 within the unmasked region; the resulting

density deviation array, with mask applied, is shown in (c). The structure factor Si(k) is computed
from the FFT of (c) and displayed in (d) along with the eleven annuli over which we average Si(k).
The innermost ring extends from k = 0.6 µm−1 to k = 0.8 µm−1, while the outermost ring extends
from k = 2.6 µm−1 to k = 2.8 µm−1. The first couple rings are influenced by the bulk structure of
the cloud as a whole, particularly from shot-to-shot changes in cloud position.
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(a) (b)

(c) (d)

Figure 6.6: Example data for calculation of the structure factor for the tImp = 800 µs. Panels
(a,b,c) are in real space, with the x, and y axes given in pixels; the effective pixel size is 0.32 µm,
a red scale bar is shown for reference. The color axes of (a,b,c) are column densities in m−2. The
density distributions at 800 microseconds of implosion time do not look much different from the
t = 0 case presented in Fig. 6.5. For the individual experimental cycle shown here in (b), the cloud
position is offset slightly from the mean profile in (a). In Figs. 6.5a and 6.5b the individual profile
was well aligned to the mean. The offset is visible in the density deviation (c) and contributes to
the low-k portion of the structure factor shown in (d). At larger k we see more fluctuations in
(d) than was evident in Fig. 6.5d due to the growth of fluctuations over 800 microseconds. Note
the mask at [kx, ky] = [0.3,−2.15] (mind the flipped y-axis) bounded by the upper magenta circle
which is introduced to mask the phantom lattice, which could not be perfectly eliminated. The
lower magenta circle shows the unmasked signal at the phantom wavevector; the prominent feature
within this region may be the signature of the phantom lattice growing, and so it is omitted in
computing the mean S(k) for the rings over which the phantom region overlaps.
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µs data of Fig. 6.5 which illustrates this growth. The phantom lattice discussed in the last chapter

may be responsible for the feature within the lower magenta circle. For this reason a mask is applied,

indicated by the upper magenta circle, although for computing the ring results both regions are

masked.

6.4 Contrast correction

One of the challenges we were confronted with in our experiment was the poor contrast of

density perturbations in our in-situ images. This was the problem considered in Section 5.5, and

can be understood by comparing the predicted growth at a given k compared to the observations.

Figure 6.7 shows the raw signal Sraw(k, t) Figure 6.7 shows how, under the presumption that

the prediction is accurate, but our detection may be inefficient, the dominant contribution to the

observations at tImp = 0 must be noise which is not growing over time, which is to say it is not real

density noise. If the noise offset is subtracted uniformly from the blue data points in Fig. 6.7, then

the remaining contribution grows with the same relative behavior as the prediction, but with an

amplitude given by the fitting parameter S0exp in Eq. 6.3 such that S0exp/S0th = 0.04, suggesting

that our sensitivity at this wavenumber (k = 1.7) is only about 4%. We multiply the observed

structure factor by a factor of 27, the contrast suppression factor we calculated for the high-

density, X-lattice wavenumber kx = 1.73 µm−1 and repeat the fit to Eq. 6.3, with the result shown

in Fig. 6.8. The growing component is well captured by the fit model and our inferred structure

factor of S0exp(1.7) = 4.37 is consistent with the prediction of S0th(1.7) = 4.12. Unfortunately,

applying the contrast suppression correction to the low-density k = 1.7 µm−1 rings as well as the

rings at k = 2.5 µm−1 wavenumber (high density and low density) did not yield the same agreement

with theory.

6.5 Results

Here we present the results of the implosion experiments investigating the structure factor.

A direct fit to the functional form with a scaling factor and background offset was performed. The
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Figure 6.7: Observed structure factor vs implosion time for the k = 1.7 ring in the high temperature,
high density data set. We fit the data to Eq. 6.3 which has two free parameters, an overall scaling
factor and an offset to account for sources of imaging noise. The prediction is given by the dotted
purple line and the fit by the solid maroon line. Clearly, the predicted growth is much more rapid
than was observed; after 170 us the prediction doubles from 4.12 to 8.32, while the observations
go from 2.28 to 2.45, an increase of only 7%. The blue line gives the value of the imaging noise
fit parameter, 2.12 for these data. If the background is subtracted out, then the fit indicates the
non-noise contribution grows by a factor of (2.45− 2.12)/(2.28− 2.12) = 2 as constructed.

experimental data, along with the analytic prediction of Eq. 6.2 and is shown in Figs 6.12, 6.13,

6.14, and 6.15. In those figures the correction has not been applied to any of the rings. In the next

section the contrast suppression correction factor discussed in section 5.5 is applied to the k = 1.7

µm−1 and k = 2.5 µm−1 rings, and in section 6.5.2 we give the results without this correction.

6.5.1 Calibrated wavenumbers

We first present results using the contrast correction factor discussed in the previous section.

Only two values of k could be calibrated in this manner. We display the inferred structure factor

along with the fit parameters in Fig. 6.9; where we have included the results for the other values

of k for which we lack knowledge of the contrast suppression factor to indicate the influence of the
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Figure 6.8: Refit to the model of Eq. 6.3 after applying the contrast correction factor calculated
for the high-density X-lattice wavenumber. While the noise is substantial, the growing component
matches the prediction of Eq. 6.2 very well, with the S0exp/S0th equal to 1.06.

contrast suppression. Only for the high-density k = 1.7 µm−1 ring do we clearly see the expected

temperature trend, and only the HTHD data are quantitatively consistent with the prediction. The

LTHD data lie below the high temperature data, but above and inconsistent with the prediction.

No temperature dependence is evident in the low-density k = 1.7 µm−1 ring, and the inferred

structure factor is much higher than expected. For both densities, the k = 2.5 µm−1 ring was

observed to be much greater than the expected value. The temperature dependence of the LT and

HT high-density sets has the correct trend. With the previous mentioned exception of the HTHD

k = 1.7 µm−1 ring, the ratios S0exp(k)/S0th(k) lie well above one as shown in Figs 6.9c and 6.9d.

The imaging noise, shown in 6.9e and 6.9f is quite large, as expected.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.9: Results with the contrast correction applied according to Section 5.5. The correction
is only applied to the k = 1.7 µm−1 and k = 2.5 µm−1 ring, the other values are displayed with no
correction to illustrate the influence of the contrast suppression. Figures (a,c,e) are high-density
while (b,d,f) are low density. The measured structure factor (circles) along with the prediction (x’s)
is shown in (a,b), the scaling parameter is shown in (c,d); if the growth were perfectly described
by the model, the scaling amplitude would be one. The noise offset is shown in (e,f).
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6.5.2 Uncorrected results

In Fig. 6.10 are the results for all rings without the contrast suppression taken into account for

any of the rings. With the exceptions mentioned in the previous paragraph, the data are identical

between Figures 6.9 and 6.10, but are plotted again in Fig. 6.10 or visibility. The small ratio

S0exp/S0th of Fig. 6.10c and 6.10d are an order of magnitude below unity, highlighting how little

growth is apparent if the contrast suppression factor is not accounted for. If the simplistic approach

of simply evaluating the signal at tImp = 0, without regard to the subsequent evolution and without

attempting to characterize the signal as a growing component on top of a noise component, we do

find temperature behavior which qualitatively resemble the predicted behavior for majority of the

data, as shown in Fig. 6.11.

As we have seen, the observed growth of the fluctuations is difficult to reconcile with theoreti-

cal predictions for the majority of our data. Only the high-density data are in qualitative agreement

with the expected temperature dependence, and of those only the high-temperature data are in

quantitative agreement. The raw data (without any consideration of the contrast suppression) for

tImp = 0 are in qualitative agreement, but the growth of the fluctuations is the signature we rely

upon to distinguish “signal noise” from “noise noise” and only a small fraction of the tImp = 0 signal

appears to grow according to the predictions of Eq. 6.2. The contrast correction initially seemed

quite promising, as indicated by the good agreement between the HTHD data at k = 1.7 µm−1

and shown in Fig. 6.7 and Fig. 6.8, but applying the same method to the other data set for which

we have the calibration data did not provide the same level of agreement. After accounting for the

contrast suppression, the k = 2.5 µm−1 appears to disagree with the prediction by a similar factor

as when the correction is omitted, but in the opposite direction. In this section we discuss various

sources of error beyond those discussed in Section 6.1 which may have affected the experiment and

how we attempted to account for them.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.10: Results without the correction applied to any of the wavenumbers. With the exception
of the k = 1.7 µm−1 and k = 2.5 µm−1 ring, these values are identical to Fig. 6.9 but are provided
hear with more visibility.
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(a) (b)

Figure 6.11: The initial value of the structure factor signal evaluated from the fit to Eq. 6.3 without
distinguishing between the noise component and the growing component. For most values of k the
temperature dependence is qualitatively in agreement with predictions.
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6.6 Other potential sources of error

The factors discussed in Section 6.1 are particularly salient for the experiments of this chapter

because they represent ways the fluctuation signal seek is entangled7 with various sources of noise

or imaging limitations. The theoretical predictions were then leveraged to aid in untangling said

signal, with limited success. The theoretical prediction can only be trusted to the degree that the

calculation is performed with the correct parameters. Furthermore, if unaccounted for phenomena,

such as an unexpected impurity atoms causing inelastic collisions, are present, then the theory

cannot be leveraged as described in Section 6.1.1. Such problems may arise if the conditions we

use as the inputs to our theoretical predictions are in error.

6.6.1 Miscalibrated conditions

The predictions for the growth of the structure factor depend on the density of the system,

and the value at tImp = 0 depends on temperature. The number and the temperature are extracted

from time-of-flight imaging using the side imaging system, and this was checked before and after

data collection, as were the trapping frequencies and the magnetic field which determines the

initial scattering length. There are thus six quantities which determine the density profile of the

cloud (N, a(B), T, ωx, ωy, ωz). Of these, a and ωxyz are most precisely known and are unlikely to

contribute to miscalculating the density. The number and temperature are more prone to error,

and as we saw in section 5.4.3 a density error of 20% may have a significant impact. It is also

possible that the system was not in equilibrium at the time of the quench. Care was taken to

ensure that the cloud was not breathing or sloshing at the time of the quench, and the cloud was

allow to equilibrate for as long as possible to ensure the condensate was in equilibrium with the

thermal component. However, the thermalization time, particularly for the two low-density data

sets, may have been insufficient. Since the low-density conditions were generated by preparing the

cloud at a = 250 a0 compared to a = 110 a0, the three-body recombination was significantly worse
7 in the colloquial sense
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for those two data sets and the equilibration time was limited to 50 ms which may not provide

enough time for superthermal density fluctuations to relax.

6.6.2 Spin purity

The spin purity of the initial or final state may also influence the dynamics. If the initial

state were pure but five percent of the atoms were not transferred to the |2,−2〉 state, interspecies

interactions between the |1,−1〉 and |2,−2〉 state may have had unforeseen consequences. The

pulse frequency and duration were checked before after and during each period of data collection,

but if these parameters changed during data collection, the spin purity of the final state could be

compromised. Time-of-flight imaging from the side showed no detectable population remaining

in the |1,−1〉 state following our π pulses, suggesting the fidelity of the pulse to be >99%. If

inelastic collisions were to take place after the quench, presumably the effects would be limited

by the number of the impurity species. No systematic trend as a function of time in the data

was observed for any of the data sets, although individual experimental cycles were occasional

outliers and were removed from the analysis. Impurities in the initial state would also cause these

complications, but are even less likely to go unnoticed while operating the experiment as this is

checked periodically with Stern-Gerlach and spectroscopic measurements and the spin purity is

known to be indistinguishable from 100% in earlier stages of the evaporation.

6.6.3 Revisiting S0exp(k)/S0th(k)

Consider Figure 6.9c and Figure 6.9d which represent a bottom-line proportional comparison

of experiment versus theory for the pre-quench static structure function S0(k) . It is worth noting

that S(k) goes as the square of the amplitude of a density fluctuation. If we consider only calibrated

wavenumbers k = 1.6 µm−1 and k = 2.6 µm−1 of Figure 6.9c and Figure 6.9d, there are eight

distinct experiment-theory comparisons, for high/low temperature, high/low density and high/low

wavenumber. Six of those ratios are in the range 1-7, so that the agreement in density amplitude

is good to about a factor of 2.6. Only on the low-n, high-k points are the amplitudes off by as
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much as a factor of size. In the ratio plots shown in Figure 6.9c and Figure 6.9d, the temperature

dependencies seem in some cases to be very far from prediction, far in excess of error bars. In

Figure 6.16a and Figure 6.16b we replot the bottom-line comparison but: (i) presenting only the

calibrated wavelengths for clarity (ii) putting the high and low density on the same vertical scale,

and (iii) making the comparison on an absolute scale, not as ratios. For clarity, in four places we

include a black bar showing the theoretically expected difference (not ratio) between high and low

temperatures, translated vertically to allow comparison with the experimental data. In this picture

the deviation from observed temperature dependence is within error bars in two cases and not so

starkly out of range for the other two. The overwhelming discrepancy is not in the temperature

dependence but that the experimental points are displaced upwards from theory by an amount

(a) (b)

Figure 6.16: Direct comparison between experiment and theory for high-density (a) and low-density
(b) conditions. The two plots share the same vertical axis. A black bar with representing the
difference between the high and low density predictions has been placed alongside the experimental
observations as a visual aid to comparing between experiment and theory.
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which depends on the initial density of the cloud and on the wavenumber observed.

Plotting the theory-experiment comparison on an absolute scale makes more sense if we want

to understand the discrepancy as a possible additive offset. We suspect most of the difference is

due to superthermal density noise of various kinds, whether due to laser speckle in the confining

optical potential, or to as-yet not thermalized ripples leftover from the preparation. It particularly

makes sense that the low density points show greater additional noise than high density points,

because, as discussed in Section 6.6.1, the low-density points undergo and additional “last-minute”

preparation step, wherein the scattering length is made more positive so as to expand the cloud.

As the cloud expands it moves over hypothetical imperfections in the trapping potential at speeds

approaching the speed of sound. As for the k-dependence of the discrepancy, this may reflect the

structure of trap imperfections. Certainly the imperfection we are explicitly aware of has a k-vector

of magnitude 2.3 µm−1, quite similar to the magnitude of our“high-k” ring.



Chapter 7

Summary and Outlook

The explosion of research that has followed in the wake of physicists’ ability to cool and

trap atoms has been truly remarkable, and the work done here at JILA as been a big part of

that story. In writing this thesis and in working in the lab over the last several years, I have

been impressed, and somewhat intimidated, by the astonishing amount of knowledge that has been

acquired by the scientific community and by how much remains unknown. Over the years, many

perplexing phenomena in ultracold atomic physics, particularly those involving strongly interacting

systems, have been explained, or sometimes explained away, by appealing to the mysterious role

of fluctuations. I am reminded of the role turbulence plays in classical fluid dynamics, incredibly

important, but extremely difficult to understand. It is the goal of our work to tackle the difficult

problem of testing our models of quantum fluctuations in bulk 3D gases to shed light on this murky

topic. It is our hope that these efforts will provide insight into these phenomena and prompt future

work which may improve upon our own.

In this thesis, we presented a vision for a fluctuation microscope which uses the instability

of a Bose-Einstein condensate quenched to attractive interactions and the subsequent implosion

process to amplify fluctuations which are otherwise too small and subtle to see. The challenges and

uncertainties which come with in-situ imaging a bulk 3D cloud, particularly when resolving fine

density structure is the goal, prevented the thorough, independent testing of the both fluctuation

spectrum of the initial cloud and the growth characteristics following the quench. Fundamentally,

we lack the precise quantitative understanding of the imaging resolution, technical noise, and
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unexpected contributions to the actual density profile to provide a thorough comparison to theory.

However, it was always understood by our group that these issues would be challenging, and

we developed a strategy to calibrate our measurements using a well known density perturbation

supplied by an optical lattice. This turned out to be incredibly valuable, as the imaging difficulties

were numerous and extremely time consuming. Only with the optical lattice data was a quantitative

test to the theoretical predictions of the structure factor possible.

The lattice experiments demonstrated quantitatively that our detection of density fluctua-

tions was significantly less efficient than anticipated, and accounting for this phenomenon for the

two wavenumbers for which our lattice data permitted a retroactive calibration brought clarity to

our understanding. At these wavenumbers, k = 1.7 µm−1 and k = 2.5 µm−1, we were able to see

an effect of temperature on the static structure factor which qualitatively agrees with the theoret-

ical prediction that structure factor grows with temperature for our high density experiments. To

arrive at this conclusion, we leveraged the assumption for the magnitude of the relative growth to

extract the initial structure factor as a free parameter. While the result agreed within error only

for the high density, high temperature data, the dependence on temperature seen for both cali-

brated wavenumbers provides support for the predictions of the density fluctuations of the initial

sample. Without these results, one may be tempted to concluded that our observations falsified

the predictions for the structure factor.

The utility of the lattice experiments in the calibration of our imaging supports the general

notion that fluctuation measurements in-situ of a bulk 3D condensate require a thorough, quanti-

tative understanding of one’s imaging transfer function and sources of technical noise. Subsequent

experimental work must emphasize this in order to place the experimenter in the position to ro-

bustly test each prediction for the static structure factor. In a hypothetical alternate reality where

another year of lab work were possible, we would likely perform additional lattice experiments and

attempt to develop a quantitative model of imaging resolution and noise, and certainly perform the

systematic characterization of the high resolution objective which time constraints prevented.

Theoretically, our understanding has matured from the vision presented in the introduction.
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The fact that the structure factor is predicted to grow for all wavenumbers, even those for which

the mode is stable, was surprising to our group. The importance of the velocity/phase of the

order parameter at the time of the quench was also not appreciated until after data collection

was concluded. The phase fluctuations are larger than density fluctuations, as we determined in

Chapter 4. The role of phase fluctuations was not definitively experimentally established by this

work. It is my hope that future work will shed light on this and related questions, and that this

work will help others in their efforts studying these subtle quantum systems.
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Appendix A

Density of States

A.1 Density of states for a free particle

the volume on an d-ball and the surface area of the corresponding d-sphere in d dimensions

is given by

Vd(R) =
πd/2

Γ(d/2 + 1)
Rd Sd(R) =

2πd/2

Γ(d/2)
Rd−1 (A.1)

A free particle has energy εp = p2

2m hence

dp

dε
=

√
m

2ε
.

In general the density of states for a system is

g(ε) ≡ ddε
dε

where dε is the total number of states with energy less than ε. The phase space associated with a

particle with d degrees of motional freedom confined to a box volume V is

V =

∫
V
ddr

∫ ∞

0
ddp.

One could explicitly solve the Schrodinger equation in d dimensions to proceed, but here we will

use the fact that there is on average one quantum state per volume (2π~)d in phase space.

As a brief aside, I learned recently that this value did not require quantum mechanics in its

modern (i.e. post 1925) form but was in fact determined by Otto Sackur and Hugo Tetrode in

1912 [107, 119, 118, 58]. Their method relied on deriving the entropy of a monoatomic ideal gas
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under the assumption that elementary volume of phase space was zhd for a system with d degrees

of freedom. Classical physics does not provide an a priori justification for this ansatz, but in their

comparison to experimental data then available for mercury vapor, they found agreement with the

quantization of phase space. The descretization of pohase space into elementary cells is a top-down

method of calculating the actual number of microstates available to a system; later methods using

standarad quantum mechanics provides a bottum-up approach. Tetrode actually fit the constant

z and determined it to be consistent with unity, prompting him to propose it may be precisely

unity. I find it interesting how much this approach reflected Planck and Einstein’s own approaches

in phenomenologically determining the necessity, utility, and numerical value of Planck’s constant

h, particularly considering Sackur and Tetrode applied h in the problem of massive particles as

opposed to photons. In a paper celebrating the 100th anniversary of the Sackur-Tetrode equation

for the absolute entropy, Grimus repeats Tetrode’s fit to mercury data and finds it accurately

determines h to within 1%.

The total number of states Nε with energy E < ε and thus with momentum p < pε =
√
2mε

is thus

Nε =
V(ε)
(2π~)d

=
V

(2π~)d

∫ pε

0
ddp =

V

(2π~)d

∫ ε

0
ddε

√
m

2ε
(A.2)

We compute the integral using Eq. ?? for the volume in p-space.

Nε =
V

(2π~)d
Vd(

√
2mε ) =

V (2πmε)d/2

(2π~)dΓ(d/2 + 1)
(A.3)

and thus the density of states (per unit volume) is

D(ε) =
1

(2π~)d
Vd(

√
2mε ) =

d(2πmε)d/2

2ε(2π~)dΓ(d/2 + 1)
(A.4)

and using

Γ(m+ 1/2) =
(2m)!

4mm!

√
π
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we can see that
D3U (ε) =

m3/2

√
2 π2~3

√
ε

D2U (ε) =
m

2π~2

D1U (ε) =

√
m√
2 π~

1√
ε

(A.5)

where we have used the subscript U to denote the system is uniform.

A.2 Density of States for harmonic confinement

For the harmonic oscillator in d dimensions, the eigenstates have energies

ε{n} = ~
∑

ωini

where {n} denotes the set of occupation numbers {n1, ..., nd} for each dimension and we are ignoring

the zero-point energy. We make the assumption that all the ωi are equal to proceed under the

simplifying relation nT =
∑
ni is the total occupation of all modes. We determine the number

of states Nε with energy E < ε by counting the available combinations of the ni. If d = 1 then

Nε1D = nT + 1 since n1 may vary from 0 to nT . Then for d = 2 and fixed n ≤ nT we have n + 1

options for n1 and n+ 1− n1 options for n2, making the multplicity

Nε2D =

n=nT∑
n=0

n1=n∑
n1=0

n+ 1− n1 =

n1=nT∑
n1=0

n2

Since n1 and n2 have exactly the same set of options (as we could have fixed n2 instead) we can

replace n2 → n1 in
∑n1=nT

n1=0 n2 and thus Nε2D = Tn where Tn is the nth triangular number. Adding

a third dimension and considering how for each unique choice of n3 the multiplicity of states is

TnT−n3 , and recognizing our sums for each dimension are identical, the multiplicity of the 3D QHO

with total occupancy less than or equal to nT is the sum of the first nT triangular numbers, also

known as the tetrahedral number Ten. This can be generalized to high dimensions.

We are interested in d = 1, 2, 3 only. For these cases the density of states in a harmonic
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oscillator is
D1H(ε) =

1

~ω

D2H(ε) =
ε

~2ω2

D3H(ε) =
ε2

2~3ω3

(A.6)

where the subscript H indicates harmonic confinement. Although these results were derived for

isotropic potentials, they generalize to anisotropic traps with the substitution ω2 → ωxωyωz.



Appendix B

Lattice potentials

B.1 Interference of two laser fields

Optical lattices are the result of interference of optical fields. While optical interference is

a general phenomenon, in the context of optical lattices as used in AMO physics typically the

interfering fields are coherent. In our laboratory each lattice is produced by two laser fields if the

same wavelength. We may therefore write the two fields as

E1 = E01 cos(k1 · r− ωt)

E2 = E02 cos(k2 · r− ωt)

(B.1)

where ω is the frequency of the laser and |k1| = |k2| = ωc are the lasers’ wavevectors of equal

magnitude which differ in direction. The polarization and magnitude of the fields are determined

by E0,i. When the polarization are identical, we will get an intensity of the form [65]:

I = I1 + I2 + 2
√
I1I2 cos δ (B.2)

Where δ = (k1 − k2) · r and we have switched from electric vector fields to scalar intensities. In

the case of equal intensities I1 = I2 = I0 we get

I = 2I0(1 + cos δ) = 4I0 cos
2 δ

2
(B.3)

and we can see that we have maxima whenever δ = 2πn for integer n. Defining the lattice spacing as

d, the maxima occur when 2πn = 2π
d r. So if k1 =

2π
λ (cos θx̂+sin θŷ) and k2 =

2π
λ (− cos θx̂+sin θŷ)
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in terms of the laser wavelength λ then we see that

δ = (k1 − k2) · r =
4π

λ
x cos(θ).

Hence we can see that the lattice spacing is given by

d =
λ

2 cos θ
. (B.4)

Now let us define the lattice wavevector kL as the half the magnitude of the reciprocal lattice

wavevector:

kL =
δ

2
=
π

d
ŷ =

2π sin(θ)

λ
. (B.5)

The single photon recoil (such as from an off-resonant excitation of the atom by the lattice beams)

is determined by Eγrec = ~2k20/2m where k0 = 2π/λ. The subscript L denotes the lattice while the

subscript 0 denotes the light field. The lattice recoil energy is given by

ELrec = ~2k2L/2m (B.6)

The lattice recoil energy ELrec and the photon recoil Eγrec are the same in the case of counter-

propagating beams, for which θ = π/2. Future reference to the lattice recoil ELrec will omit the rec

subscript for concision.

B.2 Partial derivation of Raman-Nath approximation

The generating function for Bessel function of the first kind is (9.4.41 of [1])

exp

[
z

2

(
t− 1

t

)]
=

∞∑
n=−∞

tnJn(z), (B.7)

a form amenable to the exponential representation of sin(θ), thus yielding:

eia sin(θ) = e
a
2
(eiθ−e−iθ) =

∞∑
n=−∞

einθJn(a). (B.8)

With the substitution θ → θ + π/2 we get the Jacobi-Anger expansion

eia cos(θ) =

∞∑
n=−∞

inJn(a)e
inθ (B.9)



Appendix C

Thermal distribution of Bosons

A Maxwell-Boltzmann ensemble in a harmonic trap has the form

n(x, y, z) =
Nthωxωyωzm

3/2

(2πkbT )3/2
e

−m
2kbT

(x2ω2
x+y2ω2

y+z2ω2
z)

=n0,th,MB,3De
−
(

x2

2σ2
x
+ y2

2σ2
y
+ z2

2σ2
z

)

=
Nth√

2σ2x

√
2σ2y

√
2σ2z π

3/2
e
−
(

x2

2σ2
x
+ y2

2σ2
y
+ z2

2σ2
z

) (C.1)

where in the second line n0,th,MB,3D is the peak (n0) (ie at the center), thermal (nth), Maxwell-

Boltzmann (nMB), three-dimensional (n3D) density:

n0,th,MB,3D =
Nthωxωyωzm

3/2

(2πkbT )3/2
. (C.2)

The third line of C.1 is deliberately written in a manner emphasizing that the 2 often seen in

normalized Gaussian prefactors is due to the σ terms, not the π. So considering that the RHS of

C.1 is given as the argument of the Bose function gν(z) =
∑∞

n=1
zn

nν , we can thus think of the Bose

function as a series of Gaussians with there size and amplitude rescaled in particular ways. How

precisely? Let’s simplify to one dimension and consider the base Gaussian:

G1(x) =
1√
2σ2

e
−x2

2σ2 = Ae
−x2

2σ2 . (C.3)

This is the argument of gν(z), so the first term is of course unmodified, but the nth term gives a

prefactor of 1/nν and transforms the exponential like:

e
−x2

2σ2 ⇒ e
−nx2

2σ2 = e
−x2

2(σ/
√
n )2
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Thus the nth term of the series of Gaussians is

Gn(x) =
A

nν
e

−x2

2(σ/
√
n )2 . (C.4)

This is a new Gaussian with σnthterm = σ/
√
n , but since we are discussing density to get

number we integrate over all space, which gives a factor of 1/
√
n (per dimension!) from the rescaled

Gaussian since
∫
e

−x2

2σ2 = σ
√
2π and a factor of 1/nν from the denominator in ??. More explicitly:

∫ ∞

−∞
Gn(r)d

dr =
1

nν+d/2

∫ ∞

−∞
G1(r)d

dr. (C.5)

Thus, for three dimension, ν = 3/2 so the total normalization is

n0,th,BE,3D = n0,th,MB,3D

∞∑
n=1

1

n3
. (C.6)

C.0.1 Time of flight analysis

Following [134] we can derive the density profile of a thermal cloud obeying Maxwell-Boltzmann

statistics for simplicity. The probability column density of the cloud is given by

n(r0,p0)dx0dz0dpx0dpz0 = C exp

(
− x2

2σ2x
− z2

2σ2z
− p2x

2p2x0
− p2z

2p2z0

)
dr20dp

2
0. (C.7)

Let us suppose the cloud is in thermal equilibrium so px0 = py0 = pz0 = p0 and that the con-

stant C fixes the normalization. Now lets consider where the atoms will be after a time t and

change n(r0,p0) = n(x0z0, p0, p0) into n(x0, z0, x(t), z(t)). A particle initially at r0 = (x0, z0) with

momentum p0 = (px0, pz0) will move after a time t such that:

x = rx0 +
px0
m
t

z = rz0 +
pz0
m
t

(C.8)

where we ignore gravity. Inverting yields:

px0 =
x− rx0

t
m

px0 =
x− rx0

t
m

(C.9)
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We can use this to define the change of coordinates via∫∫
f(a, b)dadb⇒

∫∫
f(c, d) (C.10)

To simplify, consider the initial probability density of the cloud

n(x0, p) = C exp

[
1

kbT

(
mω2x20

2
+

p2

2m

)]
(C.11)

The position-space form of the cloud is thus Gaussian n(x) ∝ exp
[
− x2

0
2σ2

]
with

σ0 =
1

ω

√
kbT

m
. (C.12)

When the cloud is released, the particles move ballistically. We measure the position of the particles

after a time t at a position x, and thus we know it’s momentum must be p = m(x−x0)
t So integrating

over all initial positions requires a delta function to enforce momentum conservation δ(x−(x0+
pt
m)).

The delta function in p space is thus

δ(x− (x0 +
pt
m)) = t

mδ(p−
m
t (x− x0))

and then the position after the time of flight is done by integrating over the initial probability

density so constrained:

ntof (x, t) = C

∫∫
exp

[
−1

kbT

(
mω2x20

2
+

p2

2m

)]
t
mδ(p−

m
t (x− x0))dx0dp. (C.13)

Applying the delta function and simplifying yields:

ntof (x, t) = C
t

m
exp

(
−mx2

2kbT

)∫
exp

(
−m
2kbT

[(
ω2 +

1

t2

)
x20 −

2x

t2
x0

])
ntof (x, t) = C

√
2πkbTm√
1 + ω2t2

exp

(
−mx2

2kbT

[
ω2

1 + ω2t2

])
.

(C.14)

Hence we see that the Gaussian cloud with initial rms size σ0 =
√
kbT/m /ω expands and remains

Gaussian but with σ(t) = σ0
√
1 + ω2t2

This is convenient because although an ideal, thermal Bose gas is not Gaussian, but instead

has a density distribution given by the first term of Eq. 3.28, which is the Bose function g3/2,
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the argument of the Bose function gν(z) =
∑∞

n=1
zn

nν , is itself a Gaussian. So every term of that

function has the same form as:

ntof (x, t) = C

∫∫
exp

[(
−x20
2σ2

+
−p2

2mkbT

)]
t
mδ(p−

m
t (x− x0))dx0dp (C.15)

C.0.1.1 Thomas Fermi Expansion

The parabolic shape of a condensate in the Thomas Fermi regime also expands by a simple

rescaling of its widths, conveniently retaining its original functional form [73, 26, 40]



ProQuest Number: 

INFORMATION TO ALL USERS 
The quality and completeness of this reproduction is dependent on the quality  

and completeness of the copy made available to ProQuest. 

Distributed by ProQuest LLC (        ). 
Copyright of the Dissertation is held by the Author unless otherwise noted. 

This work may be used in accordance with the terms of the Creative Commons license 
or other rights statement, as indicated in the copyright statement or in the metadata  

associated with this work. Unless otherwise specified in the copyright statement  
or the metadata, all rights are reserved by the copyright holder. 

This work is protected against unauthorized copying under Title 17, 
United States Code and other applicable copyright laws. 

Microform Edition where available © ProQuest LLC. No reproduction or digitization  
of the Microform Edition is authorized without permission of ProQuest LLC. 

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, MI 48106 - 1346 USA 

29321798

2022


	Introduction
	The world of ultracold interacting Bose gases
	Timeline of scientific investigation of interacting Bose gases
	Before 1995
	Interactions and early BEC
	Fluctuations

	A brief overview of my career
	Vision for a fluctuation microscope
	Wavefunction implosion
	Mode stability
	Calibrating fluctuations measurement

	Contents of this Thesis

	Apparatus
	Overview of cooling procedure
	Lasers for cooling
	Magnetic field control and trapping
	High current coils
	Low current science coils

	State Control
	Hyperfine transitions
	Optical Dipole trap
	Trap characterization

	Optical lattices

	Image Apparatus and Analysis
	Absorption Imaging: the Basics
	Ideal Beer's Law
	Absorption Imaging in the Real World: Bad Light
	Absorption Imaging in the Real World: Saturation
	Absorption imaging In the real world, final form

	Side Imaging
	Calibrating Side probe intensity

	Top imaging
	Design of vertical imaging system
	Top camera calibration

	Fringe removal with PCA
	Nature of fringes

	Fitting the Images
	Column densities

	Potential problems

	Fluctuation Theory of BEC
	Criterion for BEC
	Uniform systems
	Trapped systems

	Presence and absence of BEC in 1, 2 and 3 dimensional ideal gases
	General facts of Bose systems
	Foreshadowing
	Uniform ideal system
	Harmonically trapped ideal systems

	Weakly interacting Bose gases
	Dilute and cold gases
	Higher order approximations: Bogoliobov approximation and excitation spectrum
	LHY corrections
	The GP equation 

	 BEC, Superfluidity, and Fluctuations
	Landaus criterion for superfluidity
	The role of the condensate phase
	Quantum Hydrodynamics and the phase correlation function

	Discussion
	The Static Structure Factor
	Static Structure factor for a>0
	Evolution of structure factor at a<0

	Related work in 2D

	Controlled Demolition
	Optical Lattice overview
	Lattice geometries
	X-lattice geometry
	Y-lattice geometry

	Optical lattice characterization
	Absolute lattice depth measurements of deep lattices
	Deep Lattice calibration
	Shallow lattice calibration

	Lattice implosion experiments
	Lattice sanity checks
	Persistent lattice
	Vanishing lattice

	Contrast correction

	Intrinsic Fluctuations
	Discussion of sources of error
	Shall I compare BEC to summer's day?

	Sample preparation
	Computation of the structure factor
	Contrast correction
	Results
	Calibrated wavenumbers
	Uncorrected results

	Other potential sources of error
	Miscalibrated conditions
	Spin purity
	Revisiting S0exp(k)/S0th(k)


	Summary and Outlook
	 Bibliography
	Density of States
	Density of states for a free particle
	Density of States for harmonic confinement

	Lattice potentials
	Interference of two laser fields
	Partial derivation of Raman-Nath approximation

	Thermal distribution of Bosons
	Time of flight analysis



